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The half-diagonal two-body density matrpen(r1,r,,r1/) is a key quantity in theoretical descriptions of
nucleon knockout reactions at intermediate energies, due to its central role in treatments of the propagation and
final-state interactions of ejected nucleons in the nuclear medium. This quantity is calculated for a simple
model of the ground state of infinite symmetrical nuclear matter, based on a Jastrow-correlated wave function
and a Fermi hypernetted-chain analysis. The dependengg,obn the variables 1, =|r;—rq/|, ri;=|ry
—r1,|, and the angl® betweenr,—r,, andr,—r, is investigated in some detail. Significant departures from
ideal Fermi gas behavior in certain domains reflect the importance of short-range correlations and their inter-
play with statistical correlations. The quality of approximationgig proposed by Gerscét al,, Rinat, and
Silver is assessed by comparison with the Fermi hypernetted-chain results.
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I. INTRODUCTION correlated-basis-function theory at the variational level and
exploits hypernetted-chain techniques. The Fourier-space
In this paper we present results of a numerical calculatiortounterpart ofp,,, known as the generalized momentum
of the half-diagonal two-body density matrin(rq,r,r1)  distributionn(p,Q), has been the subject of a previous nu-
of the ground state of uniform, isospin symmetrical, spin-merical study[2,3] of the nuclear-matter ground state within
saturated nuclear matter. The calculation has been performegde same framework.
within the framework of the microscopic analysis#, car- For a unit-normalized ground-state vectdt), the half-

ried out by Ristig and ClarkRC) [1] for a uniform strongly diagonal two-body density matrix is defined by
interacting Fermi fluid. The RC analysis implements

th(rl,rz,rlr)zA(A—l)f WH(ry,rao,rg, .. FA)WV(ry,ro,rg, ... ra)drg...dra. 1)

In writing this expression, we have supressed spin/isospin state labels and a sum over all the spin/isospin variables. The system
is considered to have constant nucleon densityith corresponding Fermi wave number= (6 72p/ v)'3, wherev=4 is the

level degeneracy of plane-wave single-particle states. Performing a Fourier transformation in the viariables-r,, and

rio=ri, —r,, we obtain the generalized momentum distribution

1 ) )
n(p,Q)= > %J' pon(F1,rp,ry)e P (e =iQ(r=ragr. dr,dry, . (2)

If dynamical correlations are neglected, the remaining kine- ph(r; )= pl(kerij), (4)
matical correlations generated by the Pauli exclusion prin- . .
ciple lead to the following half-diagonal two-body density in terms of the Slater exchange functibfx)=3x""(sinx

matrix of the infinite noninteracting Fermi systefthe ideal ~ —XCO0Sx), wherer;;=|r;—ry|. _ .
Fermi gas Considering the general case where the fermion constitu-

ents may experience strong interactions, the half-diagonal
F F 1. F two-body density matriyp,,(rq,r,,rq:) of an infinite many-
p2h(r1vr2vrl’):ppl(rlrrl’)_;pl(rl!r2)p1(r1’ T2). fermion system has several formal properties that are impor-
3) tant to our treatment. Firsfp,, is a symmetrical function
of ry andrq,. Second, with our normalization choice, its
In this expressionp’(r; ,r;) is the one-body density matrix diagonal part is related to the radial distribution function
of the ideal Fermi gas, given by g(rqo) by
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these constructions, those of Gersathal. and Silver have
been employed in the analysis of quasielastic electron scat-
tering off nuclei in Refs[7] and[8], respectively.
The diagonal part op,(rq,ro,r1/), which is the radial
distribution functiong(r ;,) multiplied by p?, can be taken as
a minimal descriptor of nucleon-nucleon correlations within
the nuclear medium. It has been extensively studied in the
case of infinite nuclear matter by meansadi initio nuclear
many-body theory(for treatments within the variational
correlated-basis-function theory, sge-11]). Its experimen-
tal determination in the case of finite nuclei is indirect, but
[ has_ t_)een attempted in_afew casies example[lZ]}. By its _
005 1.00 2.00 3.00 4.00 definition, the half-diagonal two-body density matrix
r (fm) pon(ri,ro,rqy) is @ more detailed descriptor of the correla-
tion structure of the nuclear medium. In analogy with Bose
FIG. 1. Radial distribution functiog(r) as a function of. The  fluids [13,14], this quantity is expected to appear in funda-
curve labeledv, corresponds to our calculation using MC model mental sum rules that furnish insights into the nature of the
[Eq. (15)] and the FHNC/O algorithm, and curve, to the varia-  elementary excitations of nuclear matter. Moreovgs,
tional calculation of Ref{11] using the Urbana , potential atkg arises naturally in the description of a number of processes

0

=133 fm L. occurring in finite nuclei, for example in the calculation of
dispersive effects in inelastic electron scatterjitg]. How-
pa(r1,r2,11)=p2g(r ). (50  ever, the growing interest in the half-diagonal two-body den-
sity matrix has been largely driven by its appearance in a
Third, it fulfills the sequential relation number of quantitative “post-mean-field” treatments of the

propagation of ejected nucleons and their final-state interac-
©6) tions (FSI) (see, for example, RefEl6,7]). A proper account
of FSl is critical to the extraction of reliable information on
momentum distributions, spectral functions, and transpar-
Fourth, if the system is subject to strong short-range repulency of finite nuclei from the results of diverse experiments,
sions or has statistical correlations corresponding to singlenotably: (i) inclusive quasielasticg(e’) scattering[17—19,
particle level degeneracy=1, the “hard-core” condition (i) exclusive g,e’N) [20—-25 and (e,e'NN) [25—27 reac-
tions, (i) (p,p’) and (p,2p) proton scattering and knockout
pan(r,r1.11)=0 (@) [28,29, and(iv) photonuclear reactions such ag i) [30—
33] and (y,2N) [31,34.
The first microscopic theoretical studies of the quantities
lim pop(rq,ro,ri)=pp1(ri,rir). (8) n(p,Q) and pyp(rq,ra,rys) in strongly correlated systems
rp—o were carried out by Ristig and Clark at the variational level
) ) ) _ of correlated-basis-function theorj1,35. Starting from
Three approximations have been proposed for estimatingster-diagrammatic decompositions of these quantities,
the half-diagonal two-body density matrign(ry,r1,ri) of  Ristig and Clark applied hypernetted-chain technigi@so
a uniform quantum fluid in terms of the one-body densityiheir evaluation for a ground-state wave function of Jastrow-
matrix p(ry,r1/) and the radial distribution functiog(r):  sjater or Jastrow form, under the assumption of Fermi or
(i) Approximation of Gersch, Rodriguez, and Smi#]  gose statistics, respectively. In the present work, we report
G _ 1 12 results of a Fermi hypernetted-chaiRHNC) treatment of
pan(r1l2.r1)=ppa(r1,r1)[9(r2) 1™ g(r12) 1% (9) pon(ry,r2,r1,) for a simple model of nuclear matter in the
(i) Silver's approximatior5] leading appro_ximation FHNC/0 defi.ned by the omission of.
elementary diagrams. The calculational scheme adopted is

f Pon(r1,r2,r1)dro=(A=1)ps(ry,rys).

must hold. Finally,p,, has the asymptotic behavior

Pon(F1,T2,F1)=pp1(r1,r1)9(r12), (10)  outlined in Sec. II. In Sec. Ill, we exhibit and discuss the
corresponding numerical results. Section IV presents numeri-
(iii ) Rinat's approximation 6] cal results forp,, in the approximations of Gerscét al.,
R Silver, and Rinat, obtained upon employing the FHNC/O al-
Pon(r1,2,01) = ppa(re,ra)g(|(ry+ry)/2=ra). gorithm to calculate the building blocks(r,;/) andg(r) of

(1D these estimates, which are compared with the FHNC/O re-

We note that Silver's approximation lacks symmetry in theSUlts from our direct calculation gf,y,. Section V reviews
variablesr; andr;., while Rinat's estimate deviates from the main conclusions of this investigation and surveys the
the requisite short-range behavj@. (7)]. Otherwise, these Prospects for future developments.

approximations fulfill the formal properties g, listed Il EERMI HYPERNETTED-CHAIN CALCULATION
above. '

The three approximations were introduced in the context The RC analysi§l] of the half-diagonal two-body density
of deep-inelastic neutron scattering in liquid helium. Amongmatrix p,,, of a uniform, isotropic fluid ofA strongly inter-
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FIG. 2. Half-diagonal two-body density matrip,(r,r,,ry.) for the MC model of uniform symmetrical nuclear matter as given by the
FHNC/0 approximation and for the ideal Fermi gas of the same depsiy.182 fm 3, as a function of ;, andr ;, for three representative

values ofg= m

acting fermions in its ground state is predicated on a Jastrowas products of cluster diagrams. Transformation to coordi-
Slater wave function nate space yields the corresponding cluster seriep for
With guidance from analogies with the earlier analysis of the
., A Bose problen{35], resummation of the latter series is then
V=N .1;[ f(rip) ®. (12) carried out using hypernetted-chain techniques, taking proper
. account of asymptotic behaviors. The functipg, is ex-

In this ansatz® is a Slater determinant of plane-wave orbit- Pressed as a sum of two components, ..,

als, representing the ground state of the reference ideal Fermi @) )

gas of particle density = vk2/6m2, while f(r;;) is a Jastrow Pon(r1,2, 1) = p3R (Yo, 1) +pp (ry,ra,ry),

two-body correlation function depending only on the scalar (13
separation of particleisj. The constantV, taken as the norm

of [Tfd, is introduced to normaliz& to unity. Development Wherep$) contains all terms generated purely by two-point
of the corresponding generalized momentum distributiorfunctions, anqo(zi) is a remainder whose terms depend also
n(p,Q) in a factorized Iwamoto-Yamada cluster expansionon irreducible three-point functions(“Two-point” and
leads, in the thermodynamic limit, to an infinite series whose'three-point” refer to the underlying graphical topology.
addends are generally reducible, in that they are representddhe first component, constructed from certain one-body den-
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sity matrices and quantities provided by solution of a set of SRRERE LS RLLRE LS L
FHNC equations, takes the explicit form o 0.030 _
p(zi)(rlvr2rrl’):Ppl(rll’)ded(rlz)ded(rl’Z) ,:%/ ___
+pp1o(rir)l(Kera1) 0020 —
X[dodd(r12Foder12) Z _
+90dd(r172)Fodd 12 1= vppip(rir) ‘-; 0.010 —
X[v H(KeF 1)~ Food 1] = 3 ryp=0.10 fm
X[ H(Ker10)~Foed 1)l (14 O ¥ AT T T

0.00 1.00 2.00 3.00 400 5.00
The corresponding result fgr53) may be found in Ref[1]. ro (fm)
[TheQ index appearing in Eq14) is introduced to make the 12

necessary connection with Ristig’s notatif®6]; it should ] N———
not be confused with the momentum variaklen the defi- 1 PR TP S S
nition of the generalized momentum distributipfurther, 3 _Cf 487
p1(r1,rq/) is the full one-body density matrixg,p(rq,rq,) :

is its direct-direct(dd) component, the function& q,(r)
[with xy=dd (direct-direci, de (direct-exchange and cc
(circular-circulaj] are two-point quantities that serve as form
factors, andyqqq(r) =1+ Foqd(r)-

The FHNC result fop,,, may be assembled from diagram
sets that are summed in the FHNC treatments of the one-
body density matriX36,37 and the radial distribution func- ry=1.93 fm
tion [9]. For example, one haSg, (1) =Ngy, (1) + Xgxy/(r), 0000 EAa ittt
WhereNQXy and XQxy are made up of the nodéN) and the 0.00  1.00 2.00 3.00 4.00 5.00
non-nodal(X) diagrams that arise in the FHNC analysis of

s NA
:

0.012

0.008

0.004 F

P (1, 1p) (fm )

the one-body density matrix. Here we implement the FHNC ) (fm)
algorithm at the initial(zeroth level where elementary dia-

grams are omitted, resulting in the so-called FHNC/O ap- 00000 [y 'O TTTETETETE TR
proximation. Contributions from elementary diagrams are ry-=4.97 fm

expected to become important only at densities higher than
ordinarily found in nucle[38], since they become significant
only if three or more particles are close together. We also
choose to omit the three-point quantjt$?), since by similar = i
reasoning it is expected to be small compare@3. This
calculational scheméviz., the FHNC/0 algorithm together
with neglect ofp(f;])) does obey the conditiof7), and it
preserves the symmetry with respect fandr,, . However,

it is generally accompanied biyelatively small violations

of the diagonal property5) and the sequential relatio(®)

[3]. Henceforth, we shall refer to our calculational scheme as
FHNC/O for brevity, and the corresponding estimate of ryp (fm)

pan(r1,r2.r1) will be denoted byp5HNY(r 1,1 10).

) (fm )

\
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FIG. 3. Half-diagonal two-body density matripon(ry,ro,rqr)
at nucleon densitp=0.182 fm 2 as a function of ;, for constant
valie’sifruf (equal to 0.10, 1.93, and 4.97 frnand of 6
The numerical results for the half-diagonal two-body den-=(r1 .r12) [equal to 10°(curves A, 70° (curves B, and 170°
sity matrix p;hHNC/O(rl.I’z,flr) are based on a simple model (cur\(es C_)]. Dashed line: _ideal Fermi gas. Solid line: FHNC/0 ap-
of symmetrical nuclear matter near its saturation densityProximation calculated with MC correlatiofgg. (15)].
namely the “Monte Carlo”(MC) model[39,40. This model
corresponds to the nucleon densjty-0.182 fmi 3 (or ke with parameter value€,=1.7 fm, C,=1.6 fm %, andC,
=1.392 fm!) and is defined by the Jastrow two-body cor- =0.1 fm. The MC model originated in a variational Monte

Ill. NUMERICAL RESULTS

relation function Carlo treatment of the ground state of symmetrical nuclear
ICs matter based_ on the, potential[41]. The correla;io_n func-

f(r)=exr{ —CLe (1-e"™) (15) tion (15) provides a reasonable “average” des_cr|pt|on of fche
r ’ short-range(and longer-range spatial correlations, but it
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FIG. 4. Half-diagonal two-body density matrpon(ry,ra,ris)

at nucleon densitp=0.182 fm 2 as a function of 11 for constant FIG. 5. Half-diagonal two-body density matrin(ry,r2,r1/)
values of ry, (equal to 0.10, 1.32, and 4.97 fmand of ¢ at nucleon density=0.182 fm 2 as a function ofazm)

=(r1v.r12) [equal to 10°(curves A, 70° (curves B, and 170° o constant values af;,, [equal to 0.10, 1.93, and 4.97 frand of
(cur\_/es C_;]. Dashed line: |_deal Fermi gas. Solid line: FHNC/0 ap- r1, (equal to 0.10 fm[curves ()], 1.32 fm [curves (b)], and
proximation calculated with MC correlatiori&q. (15)]. (Forri, 4,97 fm [curves(c)]). Dashed line: ideal Fermi gas. Solid line:

=0.10 fm and forr,,=4.97 fm, the FHNC/O curves are essen- FHNC/0 approximation calculated with MC correlatidiiy. (15)].
tially indistinguishable; the same holds for the ideal Fermi gas

curves)

evaluation[38] reported in Ref[11], based on the Urbana
misses the specific effects arising from the state dependeneceg, two-nucleon potential and the Urbana-VII three-nucleon
of the realistic nucleon-nucleon interaction. interaction. As seen in the figure, the MC model has a larger
In Fig. 1, the radial distribution functiog(r) derived correlation hole than that produced by the/Urbana-VIl
from the MC model via the FHNC/0 algorithm is compared interaction, reflecting the unrealistically large repulsive core
with the result forg(r) obtained in the chain-summation of thev, potential. The strength of the two-body correlations

024301-5



M. PETRAKI, E. MAVROMMATIS, AND J. W. CLARK PHYSICAL REVIEW C64 024301

Fror T e R EARAEAREREEESE
0.030 3 3 FHNC/0 3 FHNC/0 E
0.0105_ ryp=0.10 fm E_ ryp=0.10 fm E_ r11,=0.10fm_§
E ¢ =10deg E 0=70deg E 0 =170 deg 3
0000 Bt B Bl G 1
0.00 2.00 4.00 0.00 2.00 4.00 0.00 2.00 4.00
rip (fm)

0.015 T T T T T T T
FHNC/0 C JFHNC/0 ]

0.010 FHNC/O

/Ozh(rlarQ’rl') (fmﬁ)

0.005 -
7= 1.93 fmf ryp0=1.93 fm ]
g =170deg [ 0 =170 deg]
0.000 L i P EFENET ETET AT AR Aol b b by

0.00 200  4.000.00 2.00 400000 200  4.00

ryp (fm)

e e e R
FS r=4.97fm rp=497fm [ rypo=4.97fm
0.0005 | [ | 7 =10deg 6=70deg His o =170 deg 3
0.0010 | SNS S pancio Fio &
L = LR L~ i
-0.0015 | SEHNETD - _—R\/FHNC/O 3
ITY FETY FETY PEYY PETY TN TN Y Y Y Y Y P P PP FETY FERY PETY PETY RUYY FUTY RTTY UTY PN Y00 Y Y1 PO FPTA P

0.00 4.00 8.00 0.00 4.00 8.00 0.00 4.00 8.00
rip (fm)
FIG. 6. Approximations p5.(ry,r,,r1/) (dashed line G p3,(ry,rp,r1) (solid line 9, ph.(ri.rp,r1) (solid line R, and
poHNCOr, 15,1 10) (solid line FHNC/Q, for the MC model of uniform symmetrical nuclear matter, as functions, of for representative

values ofr,1 and 6= m) (Forr,1=0.10 fm, curves G, S, and R are essentially indistinguishable.

may be measured by the wound parametgf=pJ[f(r) juxtaposition with the results for the ideal Fermi gas at the
—1]2dr, which takes the value 0.297 in the MC mod@b-  same angle®) and the same density. Figures 3, 4, and 5
viously, the corresponding parameter for thg/Urbana-VIl  display cross sections of the FHNC/O and Fermi-gas results
interaction would be significantly smalleiThe MC model, for the half-diagonal two-body density matrix under varia-
along with another simple model in which(r)—1 has tion of one of the three variables , r,,, andé, with each
Gaussian shapdéthe G2 model, withkg,=0.111 at kg of the other two variables kept fixed at three selected values.
=1.392 fm 1), has been employed in previous FHNC/O Since p,, is symmetric under interchange of, andrq.,,

calculations oin(p,Q) [2,3]. In contrast to the MC case, the further information on the behavior of this function may be
Gaussian or G2 model corresponds to an unrealistisalfy  inferred from the figures provided.

short-range repulsion. Of the two simple models of the two-  Upon considering the variation @hNr, r,,r;)) as a
body correlations, the MC model appears on balance to bginction of r,, for fixed values ofr,; (less than~3 fm)
the better choice. While its use may be expected to yielgyng of g (not smal), one sees a rapid increase withy,

overestimates of the effects of short-range geometric corrgpward the asymptotic behavior prescribed by ). When
lations on the two-body density matrix, this feature is actu-,FHNCI0 i yiiewed instead as a function ofy, for fixed val-

. . . . . . 2
ally of advantage in numerical exploration, since it provu_jesues ofr,, and 6, it exhibits oscillatory behavior. These be-
for a stronger test of the adequacy of proposed approximayayiors are dictated mainly by the first term in the expression

tions 10 pap (14), namely hich is th
. NC/0 , pp1(r11)9qdd(r1290dd(r172), which is the
We have studied the dependﬂﬂ (r1,r2.r1/) 0N dominant contribution under the stated conditions.
the variablesr{y,, rq,, and §=(rqy,r1,) in the ranges 0 The impact of the dynamical short-range correlations is

<ry=<10 fm, 0<r,,<10 fm, and G< #=<180°. The three- revealed by comparing the plots in Figs. 2-5 derived from
dimensional plots of Fig. 2 provide representative views ofour FHNC/O calculation with those for the ideal Fermi gas.
pon(ri,ra,ry) as given by the FHNC/O approximation in Generally, the dynamical short-range correlations tend to
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FIG. 7. Approximations pg(ry,r»,r/) (dashed line &
pon(r1.r2,ry) (solid line S, p5(ri,rp,ry/) (solid line R, and
poNCr 1 15,1 10) (solid line FHNC/Q, for the MC model of uni-
form symmetrical nuclear matter, as functions of , for represen-
tative values ofr, and Hzm. (For r{,=1.32 fm andé
=70°, 170° and forr;,=4.97 fm, the four curves are essentially
indistinguishable.
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lower the values op,,, and this effect is seen to be quite
pronounced.

IV. NUMERICAL COMPARISON WITH
APPROXIMATIONS OF GERSCH et al, SILVER,
AND RINAT

It is of practical interest to compare the predictions of the
simple formulag9)—(11) for p,n(rq,r,,ry/) with the results
of the FHNC/0 evaluation of this quantity. As inputs fip(r)
and p(rq,r1/) in the constructiong9)—(11), we take the
FHNC/0 versions of these quantities calculated for the MC
model. Figures 6—8 illustrate the comparison for selected
values of the variables;;, , r1,, andé=(r1y ,f15). It should
be noted thapgh(rl ,I2,r1,) does not depend on the variable
i1, or 8. In Fig. 6, we displayp,n(ry,r,,ri/) as a function
of rq, for nine combinations of values of the variables,
(0.10, 1.93, and 4.97 fjrand 6 (10°, 70°, and 170°). Simi-
larly, in Fig. 7, p,y, is plotted as a function of 1;, for six
combinations of values of the variableg, (1.32 and 4.97
fm) and # (10°, 70°, and 170°). Finally, Fig. 8 presents
results forp,, as a function ofé for six combinations of
values ofr;, (0.10, 1.93, and 4.97 fjmandr 4, (1.32 and
4.97 fm.

The behaviors op5™N° pS  and pR. as functions of
ri, at givenr,y, and as functions of, at givenr,,, de-
pend on the value of, whereas the behavior of the approxi-
mationp3, is independent ofl. As can be seen mainly from
Figs. 6 and 7,p%, and p3, show the most promin-
ent deviations fromp5N® at small values of¢ (and not
very small values of /), for all values ofr;,. On the other
hand, p5,, remains rather close tob,"“°. For intermediate
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and large values of) (and again not very small values of
riy), the approximationszh shows significant departures

from p5HNCO whereas p3, and pS, exhibit behavior
similar to p5N<"° (the similarity being greater fgs5,). Con-

sidering the three simple estimates, on the whp%

deviates least fromp5HNC/;

the functiong g(r)]*? (with r=r, orr=r,,) appearing in

this rough agreement presum-
ably stems from the fact that, within the FHNC/O algorithm,

PHYSICAL REVIEW C64 024301

pon demonstrate a rich sensitivity of this quantity to short-
range correlations. The simple approximationgig due to
Silver and Rinat depart significantly from the FHNC/O re-
sults in certain regions of the pertinent spatial variables,
while such deviations are less prominent for the approxima-
tion of Gerschet al.

These results have immediate application within existing
treatments of final-state interactions. Indeed, the FHNC/O

expression(9) behave in a manner similar to the functions evaluation ofp,, has been employed as input to a descrip-
Jodd(r) appearing in the leading first term of the expressiontion of FSI in inclusive quasielastic scattering of GeV elec-

(14) for p5HNCIO,

V. CONCLUSIONS

trons from nuclear matter, based on correlated Glauber
theory, with findings to be detailed elsewhé#?]. Further
studies ofp,(rq,r,rq/) in nuclear matter should extend the
analysis and the calculations to realistic, state-dependent cor-

In summary, we have presented a microscopic evaluatiorrelations. There have been some efforts in this direction
within Fermi hypernetted-chain theory, of the half-diagonalwithin self-consistent Green'’s function thedda3]. As a first

two-body density matrix of nuclear mattgs,(r,r»,ry.) for

step toward microscopic determinationgf, in finite nuclei,

the case of state independent, central, two-body correlations. local-density approximation may be developed, in analogy

The momentum-space transforn{p,Q) of p,, has been
studied previously in the same conté®t3]. Our results for

with what has been done for the one-body density matrix in
Refs.[44,45.
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