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The half-diagonal two-body density matrixr2h(r1 ,r2 ,r18) is a key quantity in theoretical descriptions of
nucleon knockout reactions at intermediate energies, due to its central role in treatments of the propagation and
final-state interactions of ejected nucleons in the nuclear medium. This quantity is calculated for a simple
model of the ground state of infinite symmetrical nuclear matter, based on a Jastrow-correlated wave function
and a Fermi hypernetted-chain analysis. The dependence ofr2h on the variablesr 1185ur12r18u, r 125ur1

2r2u, and the angleu betweenr12r18 and r12r2 is investigated in some detail. Significant departures from
ideal Fermi gas behavior in certain domains reflect the importance of short-range correlations and their inter-
play with statistical correlations. The quality of approximations tor2h proposed by Gerschet al., Rinat, and
Silver is assessed by comparison with the Fermi hypernetted-chain results.
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I. INTRODUCTION

In this paper we present results of a numerical calcula
of the half-diagonal two-body density matrixr2h(r1 ,r2 ,r18)
of the ground state of uniform, isospin symmetrical, sp
saturated nuclear matter. The calculation has been perfor
within the framework of the microscopic analysis ofr2h car-
ried out by Ristig and Clark~RC! @1# for a uniform strongly
interacting Fermi fluid. The RC analysis implemen
ne
rin
ty

x
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correlated-basis-function theory at the variational level a
exploits hypernetted-chain techniques. The Fourier-sp
counterpart ofr2h , known as the generalized momentu
distribution n(p,Q), has been the subject of a previous n
merical study@2,3# of the nuclear-matter ground state with
the same framework.

For a unit-normalized ground-state vectoruC&, the half-
diagonal two-body density matrix is defined by
he system
r2h~r1 ,r2 ,r18!5A~A21!E C* ~r1 ,r2 ,r3 , . . . ,rA!C~r18 ,r2 ,r3 , . . . ,rA!dr3 . . . drA . ~1!

In writing this expression, we have supressed spin/isospin state labels and a sum over all the spin/isospin variables. T
is considered to have constant nucleon densityr with corresponding Fermi wave numberkF5(6p2r/n)1/3, wheren54 is the
level degeneracy of plane-wave single-particle states. Performing a Fourier transformation in the variablesr1185r12r18 and
r1825r182r2, we obtain the generalized momentum distribution

n~p,Q!5
1

n

r

AE r2h~r1 ,r2 ,r18!e
2 ip•(r12r18)e2 iQ•(r182r2)dr1dr2dr18 . ~2!
titu-
nal

or-

ts
on
If dynamical correlations are neglected, the remaining ki
matical correlations generated by the Pauli exclusion p
ciple lead to the following half-diagonal two-body densi
matrix of the infinite noninteracting Fermi system~the ideal
Fermi gas!

r2h
F ~r1 ,r2 ,r18!5rr1

F~r1 ,r18!2
1

n
r1

F~r1 ,r2!r1
F~r18 ,r2!.

~3!

In this expression,r1
F(r i ,r j ) is the one-body density matri

of the ideal Fermi gas, given by
-
-

r1
F~r i ,r j !5r l ~kFr i j !, ~4!

in terms of the Slater exchange functionl (x)[3x23(sinx
2xcosx), wherer i j 5ur i2r j u.

Considering the general case where the fermion cons
ents may experience strong interactions, the half-diago
two-body density matrixr2h(r1 ,r2 ,r18) of an infinite many-
fermion system has several formal properties that are imp
tant to our treatment. First,r2h is a symmetrical function
of r1 and r18 . Second, with our normalization choice, i
diagonal part is related to the radial distribution functi
g(r 12) by
©2001 The American Physical Society01-1
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r2~r1 ,r2 ,r1!5r2g~r 12!. ~5!

Third, it fulfills the sequential relation

E r2h~r1 ,r2 ,r18!dr25~A21!r1~r1 ,r18!. ~6!

Fourth, if the system is subject to strong short-range rep
sions or has statistical correlations corresponding to sin
particle level degeneracyn51, the ‘‘hard-core’’ condition

r2h~r1 ,r1 ,r18!50 ~7!

must hold. Finally,r2h has the asymptotic behavior

lim
r 2→`

r2h~r1 ,r2 ,r18!5rr1~r1 ,r18!. ~8!

Three approximations have been proposed for estima
the half-diagonal two-body density matrixr2h(r1 ,r1 ,r18) of
a uniform quantum fluid in terms of the one-body dens
matrix r1(r1 ,r18) and the radial distribution functiong(r ):

~i! Approximation of Gersch, Rodriguez, and Smith@4#

r2h
G ~r1 ,r2 ,r18!5rr1~r1 ,r18!@g~r 12!#

1/2@g~r 182!#1/2, ~9!

~ii ! Silver’s approximation@5#

r2h
S ~r1 ,r2 ,r18!5rr1~r1 ,r18!g~r 12!, ~10!

~iii ! Rinat’s approximation@6#

r2h
R ~r1 ,r2 ,r18!5rr1~r1 ,r18!g~ u~r11r18!/22r2u!.

~11!

We note that Silver’s approximation lacks symmetry in t
variablesr1 and r18 , while Rinat’s estimate deviates from
the requisite short-range behavior@Eq. ~7!#. Otherwise, these
approximations fulfill the formal properties ofr2h listed
above.

The three approximations were introduced in the cont
of deep-inelastic neutron scattering in liquid helium. Amo

FIG. 1. Radial distribution functiong(r ) as a function ofr. The
curve labeledv2 corresponds to our calculation using MC mod
@Eq. ~15!# and the FHNC/0 algorithm, and curvev14 to the varia-
tional calculation of Ref.@11# using the Urbanav14 potential atkF

51.33 fm21.
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these constructions, those of Gerschet al. and Silver have
been employed in the analysis of quasielastic electron s
tering off nuclei in Refs.@7# and @8#, respectively.

The diagonal part ofr2h(r1 ,r2 ,r18), which is the radial
distribution functiong(r 12) multiplied byr2, can be taken as
a minimal descriptor of nucleon-nucleon correlations with
the nuclear medium. It has been extensively studied in
case of infinite nuclear matter by means ofab initio nuclear
many-body theory~for treatments within the variationa
correlated-basis-function theory, see@9–11#!. Its experimen-
tal determination in the case of finite nuclei is indirect, b
has been attempted in a few cases~for example@12#!. By its
definition, the half-diagonal two-body density matr
r2h(r1 ,r2 ,r18) is a more detailed descriptor of the correl
tion structure of the nuclear medium. In analogy with Bo
fluids @13,14#, this quantity is expected to appear in fund
mental sum rules that furnish insights into the nature of
elementary excitations of nuclear matter. Moreover,r2h
arises naturally in the description of a number of proces
occurring in finite nuclei, for example in the calculation
dispersive effects in inelastic electron scattering@15#. How-
ever, the growing interest in the half-diagonal two-body de
sity matrix has been largely driven by its appearance i
number of quantitative ‘‘post-mean-field’’ treatments of th
propagation of ejected nucleons and their final-state inte
tions ~FSI! ~see, for example, Refs.@16,7#!. A proper account
of FSI is critical to the extraction of reliable information o
momentum distributions, spectral functions, and transp
ency of finite nuclei from the results of diverse experimen
notably: ~i! inclusive quasielastic (e,e8) scattering@17–19#,
~ii ! exclusive (e,e8N) @20–25# and (e,e8NN) @25–27# reac-
tions,~iii ! (p,p8) and (p,2p) proton scattering and knockou
@28,29#, and~iv! photonuclear reactions such as (g,N) @30–
33# and (g,2N) @31,34#.

The first microscopic theoretical studies of the quantit
n(p,Q) and r2h(r1 ,r2 ,r18) in strongly correlated system
were carried out by Ristig and Clark at the variational lev
of correlated-basis-function theory@1,35#. Starting from
cluster-diagrammatic decompositions of these quantit
Ristig and Clark applied hypernetted-chain techniques@9# to
their evaluation for a ground-state wave function of Jastro
Slater or Jastrow form, under the assumption of Fermi
Bose statistics, respectively. In the present work, we rep
results of a Fermi hypernetted-chain~FHNC! treatment of
r2h(r1 ,r2 ,r18) for a simple model of nuclear matter in th
leading approximation FHNC/0 defined by the omission
elementary diagrams. The calculational scheme adopte
outlined in Sec. II. In Sec. III, we exhibit and discuss t
corresponding numerical results. Section IV presents num
cal results forr2h in the approximations of Gerschet al.,
Silver, and Rinat, obtained upon employing the FHNC/0
gorithm to calculate the building blocksr(r 118) andg(r ) of
these estimates, which are compared with the FHNC/0
sults from our direct calculation ofr2h . Section V reviews
the main conclusions of this investigation and surveys
prospects for future developments.

II. FERMI HYPERNETTED-CHAIN CALCULATION

The RC analysis@1# of the half-diagonal two-body densit
matrix r2h of a uniform, isotropic fluid ofA strongly inter-
1-2
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FIG. 2. Half-diagonal two-body density matrixr2h(r1 ,r2 ,r18) for the MC model of uniform symmetrical nuclear matter as given by
FHNC/0 approximation and for the ideal Fermi gas of the same densityr50.182 fm23, as a function ofr 12 andr 118 for three representative

values ofu[(r118 ,r12)̂.
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acting fermions in its ground state is predicated on a Jastr
Slater wave function

C5N 21)
i , j

A

f ~r i j !F. ~12!

In this ansatz,F is a Slater determinant of plane-wave orb
als, representing the ground state of the reference ideal F
gas of particle densityr5nkF

3/6p2, while f (r i j ) is a Jastrow
two-body correlation function depending only on the sca
separation of particlesi , j . The constantN, taken as the norm
of ) f F, is introduced to normalizeC to unity. Development
of the corresponding generalized momentum distribut
n(p,Q) in a factorized Iwamoto-Yamada cluster expans
leads, in the thermodynamic limit, to an infinite series who
addends are generally reducible, in that they are represe
02430
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as products of cluster diagrams. Transformation to coo
nate space yields the corresponding cluster series forr2h .
With guidance from analogies with the earlier analysis of
Bose problem@35#, resummation of the latter series is the
carried out using hypernetted-chain techniques, taking pro
account of asymptotic behaviors. The functionr2h is ex-
pressed as a sum of two components, i.e.,

r2h~r1 ,r2 ,r18!5r2h
(2)~r1 ,r2 ,r18!1r2h

(3)~r1 ,r2 ,r18!,
~13!

wherer2h
(2) contains all terms generated purely by two-po

functions, andr2h
(3) is a remainder whose terms depend a

on irreducible three-point functions.~‘‘Two-point’’ and
‘‘three-point’’ refer to the underlying graphical topology!
The first component, constructed from certain one-body d
1-3
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sity matrices and quantities provided by solution of a se
FHNC equations, takes the explicit form

r2h
(2)~r1 ,r2 ,r18!5rr1~r 118!gQdd~r 12!gQdd~r 182!

1rr1D~r 118!l ~kFr 118!

3@gQdd~r 12!FQde~r 182!

1gQdd~r 182!FQde~r 12!#2nrr1D~r 118!

3@n21l ~kFr 12!2FQcc~r 12!#

3@n21l ~kFr 182!2FQcc~r 182!#. ~14!

The corresponding result forr2h
(3) may be found in Ref.@1#.

@TheQ index appearing in Eq.~14! is introduced to make the
necessary connection with Ristig’s notation@36#; it should
not be confused with the momentum variableQ in the defi-
nition of the generalized momentum distribution.# Further,
r1(r1 ,r18) is the full one-body density matrix,r1D(r1 ,r18)
is its direct-direct~dd! component, the functionsFQxy(r )
@with xy5dd ~direct-direct!, de ~direct-exchange!, and cc
~circular-circular!# are two-point quantities that serve as for
factors, andgQdd(r )511FQdd(r ).

The FHNC result forr2h may be assembled from diagra
sets that are summed in the FHNC treatments of the o
body density matrix@36,37# and the radial distribution func
tion @9#. For example, one hasFQxy(r )5NQxy(r )1XQxy(r ),
whereNQxy andXQxy are made up of the nodal~N! and the
non-nodal~X! diagrams that arise in the FHNC analysis
the one-body density matrix. Here we implement the FHN
algorithm at the initial~zeroth! level where elementary dia
grams are omitted, resulting in the so-called FHNC/0
proximation. Contributions from elementary diagrams a
expected to become important only at densities higher t
ordinarily found in nuclei@38#, since they become significan
only if three or more particles are close together. We a
choose to omit the three-point quantityr2h

(3) , since by similar
reasoning it is expected to be small compared tor2h

(2) . This
calculational scheme~viz., the FHNC/0 algorithm togethe
with neglect of r2h

(3)) does obey the condition~7!, and it
preserves the symmetry with respect tor1 andr18 . However,
it is generally accompanied by~relatively small! violations
of the diagonal property~5! and the sequential relation~6!
@3#. Henceforth, we shall refer to our calculational scheme
FHNC/0 for brevity, and the corresponding estimate
r2h(r1 ,r2 ,r18) will be denoted byr2h

FHNC/0(r1 ,r2 ,r18).

III. NUMERICAL RESULTS

The numerical results for the half-diagonal two-body de
sity matrix r2h

FHNC/0(r1 ,r2 ,r18) are based on a simple mod
of symmetrical nuclear matter near its saturation dens
namely the ‘‘Monte Carlo’’~MC! model@39,40#. This model
corresponds to the nucleon densityr50.182 fm23 ~or kF
51.392 fm21) and is defined by the Jastrow two-body co
relation function

f ~r !5expF2C1e2C2r
~12er /C3!

r G , ~15!
02430
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with parameter valuesC151.7 fm, C251.6 fm21, andC3

50.1 fm. The MC model originated in a variational Mon
Carlo treatment of the ground state of symmetrical nucl
matter based on thev2 potential@41#. The correlation func-
tion ~15! provides a reasonable ‘‘average’’ description of t
short-range~and longer-range! spatial correlations, but it

FIG. 3. Half-diagonal two-body density matrixr2h(r1 ,r2 ,r18)
at nucleon densityr50.182 fm23 as a function ofr 12 for constant
values of r 118 ~equal to 0.10, 1.93, and 4.97 fm! and of u

[(r118 ,r12)̂ @equal to 10°~curves A!, 70° ~curves B!, and 170°
~curves C!#. Dashed line: ideal Fermi gas. Solid line: FHNC/0 a
proximation calculated with MC correlations@Eq. ~15!#.
1-4
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misses the specific effects arising from the state depend
of the realistic nucleon-nucleon interaction.

In Fig. 1, the radial distribution functiong(r ) derived
from the MC model via the FHNC/0 algorithm is compar
with the result forg(r ) obtained in the chain-summatio

FIG. 4. Half-diagonal two-body density matrixr2h(r1 ,r2 ,r18)
at nucleon densityr50.182 fm23 as a function ofr 118 for constant
values of r 12 ~equal to 0.10, 1.32, and 4.97 fm! and of u

[(r118 ,r12)̂ @equal to 10°~curves A!, 70° ~curves B!, and 170°
~curves C!#. Dashed line: ideal Fermi gas. Solid line: FHNC/0 a
proximation calculated with MC correlations@Eq. ~15!#. ~For r 12

50.10 fm and forr 1254.97 fm, the FHNC/0 curves are esse
tially indistinguishable; the same holds for the ideal Fermi g
curves.!
02430
ce
evaluation@38# reported in Ref.@11#, based on the Urbana
v14 two-nucleon potential and the Urbana-VII three-nucle
interaction. As seen in the figure, the MC model has a lar
correlation hole than that produced by thev14/Urbana-VII
interaction, reflecting the unrealistically large repulsive co
of thev2 potential. The strength of the two-body correlatio

s

FIG. 5. Half-diagonal two-body density matrixr2h(r1 ,r2 ,r18)

at nucleon densityr50.182 fm23 as a function ofu[(r118 ,r12)̂
for constant values ofr 118 @equal to 0.10, 1.93, and 4.97 fm# and of
r 12 „equal to 0.10 fm@curves ~a!#, 1.32 fm @curves ~b!#, and
4.97 fm @curves ~c!#!. Dashed line: ideal Fermi gas. Solid line
FHNC/0 approximation calculated with MC correlations@Eq. ~15!#.
1-5
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FIG. 6. Approximations r2h
G (r1 ,r2 ,r18) ~dashed line G!, r2h

S (r1 ,r2 ,r18) ~solid line S!, r2h
R (r1 ,r2 ,r18) ~solid line R!, and

r2h
FHNC/0(r1 ,r2 ,r18) ~solid line FHNC/0!, for the MC model of uniform symmetrical nuclear matter, as functions ofr 12, for representative

values ofr 118 andu[(r118 ,r12)̂. ~For r 11850.10 fm, curves G, S, and R are essentially indistinguishable.!
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may be measured by the wound parameterkdir5r*@ f (r )
21#2dr , which takes the value 0.297 in the MC model.~Ob-
viously, the corresponding parameter for thev14/Urbana-VII
interaction would be significantly smaller.! The MC model,
along with another simple model in whichf (r )21 has
Gaussian shape~the G2 model, withkdir50.111 at kF
51.392 fm21), has been employed in previous FHNC
calculations ofn(p,Q) @2,3#. In contrast to the MC case, th
Gaussian or G2 model corresponds to an unrealisticallysoft
short-range repulsion. Of the two simple models of the tw
body correlations, the MC model appears on balance to
the better choice. While its use may be expected to y
overestimates of the effects of short-range geometric co
lations on the two-body density matrix, this feature is ac
ally of advantage in numerical exploration, since it provid
for a stronger test of the adequacy of proposed approxi
tions tor2h .

We have studied the dependence ofr2h
FHNC/0(r1 ,r2 ,r18) on

the variablesr 118 , r 12, and u[(r118 ,r12)̂ in the ranges 0
<r 118<10 fm, 0<r 12<10 fm, and 0<u<180°. The three-
dimensional plots of Fig. 2 provide representative views
r2h(r1 ,r2 ,r18) as given by the FHNC/0 approximation i
02430
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juxtaposition with the results for the ideal Fermi gas at t
same anglesu and the same density. Figures 3, 4, and
display cross sections of the FHNC/0 and Fermi-gas res
for the half-diagonal two-body density matrix under vari
tion of one of the three variablesr 118 , r 12, andu, with each
of the other two variables kept fixed at three selected valu
Since r2h is symmetric under interchange ofr 12 and r 182,
further information on the behavior of this function may b
inferred from the figures provided.

Upon considering the variation ofr2h
FHNC/0(r1 ,r2 ,r18) as a

function of r 12 for fixed values ofr 118 ~less than;3 fm)
and of u ~not small!, one sees a rapid increase withr 12,
toward the asymptotic behavior prescribed by Eq.~8!. When
r2h

FHNC/0 is viewed instead as a function ofr 118 for fixed val-
ues ofr 12 and u, it exhibits oscillatory behavior. These be
haviors are dictated mainly by the first term in the express
~14!, namely rr1(r 118)gQdd(r 12)gQdd(r 182), which is the
dominant contribution under the stated conditions.

The impact of the dynamical short-range correlations
revealed by comparing the plots in Figs. 2–5 derived fro
our FHNC/0 calculation with those for the ideal Fermi ga
Generally, the dynamical short-range correlations tend
1-6
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FIG. 7. Approximations r2h
G (r1 ,r2 ,r18) ~dashed line G!,

r2h
S (r1 ,r2 ,r18) ~solid line S!, r2h

R (r1 ,r2 ,r18) ~solid line R!, and
r2h

FHNC/0(r1 ,r2 ,r18) ~solid line FHNC/0!, for the MC model of uni-
form symmetrical nuclear matter, as functions ofr 118 , for represen-

tative values ofr 12 and u[(r118 ,r12)̂. ~For r 1251.32 fm andu
570°, 170° and forr 1254.97 fm, the four curves are essential
indistinguishable.!
02430
lower the values ofr2h , and this effect is seen to be quit
pronounced.

IV. NUMERICAL COMPARISON WITH
APPROXIMATIONS OF GERSCH et al., SILVER,

AND RINAT

It is of practical interest to compare the predictions of t
simple formulas~9!–~11! for r2h(r1 ,r2 ,r18) with the results
of the FHNC/0 evaluation of this quantity. As inputs forg(r )
and r(r1 ,r18) in the constructions~9!–~11!, we take the
FHNC/0 versions of these quantities calculated for the M
model. Figures 6–8 illustrate the comparison for selec
values of the variablesr 118 , r 12, andu[(r118 ,r12)̂. It should
be noted thatr2h

S (r1 ,r2 ,r18) does not depend on the variab
r 182 or u. In Fig. 6, we displayr2h(r1 ,r2 ,r18) as a function
of r 12 for nine combinations of values of the variablesr 118
~0.10, 1.93, and 4.97 fm! andu (10°, 70°, and 170°). Simi-
larly, in Fig. 7, r2h is plotted as a function ofr 118 for six
combinations of values of the variablesr 12 ~1.32 and 4.97
fm! and u (10°, 70°, and 170°). Finally, Fig. 8 presen
results forr2h as a function ofu for six combinations of
values ofr 118 ~0.10, 1.93, and 4.97 fm! and r 12 ~1.32 and
4.97 fm!.

The behaviors ofr2h
FHNC/0, r2h

G , and r2h
R as functions of

r 12 at givenr 118 , and as functions ofr 118 at givenr 12, de-
pend on the value ofu, whereas the behavior of the approx
mationr2h

S is independent ofu. As can be seen mainly from
Figs. 6 and 7, r2h

R and r2h
S show the most promin-

ent deviations fromr2h
FHNC/0 at small values ofu ~and not

very small values ofr 118), for all values ofr 12. On the other
hand,r2h

G remains rather close tor2h
FHNC/0. For intermediate
t-
FIG. 8. Approximations r2h
G (r1 ,r2 ,r18)

~dashed line G!, r2h
S (r1 ,r2 ,r18) ~solid line S!,

r2h
R (r1 ,r2 ,r18) ~solid line R!, and

r2h
FHNC/0(r1 ,r2 ,r18) ~solid line FHNC/0!, for the

MC model of uniform symmetrical nuclear ma

ter, as functions ofu[(r118 ,r12)̂, for representa-
tive values ofr 118 and r 12.
1-7
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and large values ofu ~and again not very small values o
r 118), the approximationr2h

R shows significant departure
from r2h

FHNC/0, whereas r2h
S and r2h

G exhibit behavior
similar tor2h

FHNC/0 ~the similarity being greater forr2h
G ). Con-

sidering the three simple estimates, on the wholer2h
G

deviates least fromr2h
FHNC/0; this rough agreement presum

ably stems from the fact that, within the FHNC/0 algorith
the functions@g(r )#1/2 ~with r 5r 12 or r 5r 182) appearing in
expression~9! behave in a manner similar to the functio
gQdd(r ) appearing in the leading first term of the express
~14! for r2h

FHNC/0.

V. CONCLUSIONS

In summary, we have presented a microscopic evaluat
within Fermi hypernetted-chain theory, of the half-diagon
two-body density matrix of nuclear matterr2h(r1 ,r2 ,r18) for
the case of state independent, central, two-body correlati
The momentum-space transformn(p,Q) of r2h has been
studied previously in the same context@2,3#. Our results for
ol

e
ys

n-

02430
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r2h demonstrate a rich sensitivity of this quantity to sho
range correlations. The simple approximations tor2h due to
Silver and Rinat depart significantly from the FHNC/0 r
sults in certain regions of the pertinent spatial variabl
while such deviations are less prominent for the approxim
tion of Gerschet al.

These results have immediate application within exist
treatments of final-state interactions. Indeed, the FHN
evaluation ofr2h has been employed as input to a descr
tion of FSI in inclusive quasielastic scattering of GeV ele
trons from nuclear matter, based on correlated Glau
theory, with findings to be detailed elsewhere@42#. Further
studies ofr2h(r1 ,r2 ,r18) in nuclear matter should extend th
analysis and the calculations to realistic, state-dependent
relations. There have been some efforts in this direct
within self-consistent Green’s function theory@43#. As a first
step toward microscopic determination ofr2h in finite nuclei,
a local-density approximation may be developed, in analo
with what has been done for the one-body density matrix
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