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Off-shell behavior of the in-medium nucleon-nucleon cross section
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The properties of nucleon-nucleon scattering inside dense nuclear matter are investigated. We use the
relativistic Brueckner-Hartree-Fock model to determine on-shell and half off-shell in-medium transition am-
plitudes and cross sections. At finite densities the on-shell cross sections are generally suppressed. This
reduction is, however, less pronounced than found in previous works. In case the outgoing momenta are
allowed to be off energy shell the amplitudes show a strong variation with momentum. This description allows
one to determine in-medium cross sections beyond the quasiparticle approximation, accounting thereby for the
finite width which nucleons acquire in the dense nuclear medium. For reasonable choices of the in-medium
nuclear spectral width, i.e.,G<40 MeV, the resulting total cross sections are, however, reduced by not more
than about 25% compared to the on-shell values. Off-shell effects are generally more pronounced at large
nuclear matter densities.
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I. INTRODUCTION

One major topic of modern nuclear physics is the inv
tigation of hadron properties inside a dense hadronic e
ronment which exists, e.g., in the interior of neutron stars
is transiently created in energetic heavy ion collisions. In
latter case, the theoretical framework to describe the t
evolution of heavy ion reactions is provided by kinetic tran
port theory. Starting from the quantum theory of strong
interacting Fermi systems, formulated within the framewo
of the Dyson-Schwinger hierarchy of nonequilibrium man
body Green functions@1#, one can derive semiclassical tran
port equations of a Boltzmann-Uehling-Uhlenbeck~BUU!
type @2,3#. These transport equations describe successf
the time evolution of a nonequilibrated strongly interacti
hadron gas. To mention only the essential steps of suc
derivation there are the truncation of the many-body hie
chy at the two-body level, a Wigner transformation of t
density matrices with subsequent gradient expansion u
first order in\, and the use of the quasiparticle approxim
tion ~QPA! which neglects the finite decay width of the pa
ticles. The resulting BUU equation consists of two parts
drift term which propagates the particles dressed by the
rounding medium in a self-consistent mean field and the
lision term responsible for binary nucleon-nucleon scat
ing. In a consistent treatment both ingredients—namely,
mean field and the binary cross sections—should be tre
on the same footing, which means to base both of them
the same effective interaction. Unfortunately, in most ap
cations to heavy ion collisions this is not done. The se
consistent mean field accounts for medium effects by its d
sity dependence. For the cross section, on the other hand
free ~vacuum! expressions are widely used in transport c
culations. It has, however, been noticed that in particula
incident energies below particle production thresholds, m
dium modifications of the cross sections can play an imp
tant role for the reaction dynamics in heavy ion collisio
@4–6#.

The relativistic~Dirac-!Brueckner approach@7–13# pro-
0556-2813/2001/64~2!/024003~12!/$20.00 64 0240
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vides a powerful tool to achieve such a consistent desc
tion. Starting from free nucleon-nucleon interactions, giv
in its modern form by one-boson-exchange potentials@14#,
one treats the two-body correlations in dense nuclear ma
in the ladder approximation of the Bethe-Salpeter equat
As a result the nuclear matter saturation properties are q
well described. This is achieved without the adjustment
additional parameters, such as, e.g., done in relativistic m
field models@15#. On the level of theT-matrix approxima-
tion both ingredients for the BUU equation follow from th
on-shell in-mediumT matrix ~or G matrix!. The mean field is
determined by the real part ReT of theT matrix whereas the
cross sections.uTu2 is connected to the imaginary pa
Im T via an optical theorem@3#. Medium modifications arise
due to the dressing of the quasiparticles and the existenc
the Pauli operator which prevents the scattering of interm
diate states in the Bethe-Salpeter equation~not final states!
into occupied phase space areas. Both aspects are mos
nounced at high densities and/or low momenta and lead
suppression of the in-medium cross section compared to
free one.

There have already been several studies devoted to
in-mediumNN scattering problem. The Tu¨bingen group@4#
and later the Rostock group@16,17# derived in-medium cross
sections within the nonrelativistic Brueckner approach, in
latter case also at finite temperature. Relativistic calculati
were performed in@18–20#. The most complete study o
in-medium NN scattering within the Dirac-Brueckner ap
proach was probably done by Li and Machleidt@21# who
used the Bonn potentials as the bare interaction. Unfo
nately the different approaches have led to partially con
dictory results, in particular between relativistic@18,21# and
nonrelativistic calculations@4#. Therefore, in the first part o
this paper we reexamine the problem of on-shell scatter
The results are obtained with the Bonn A potential. In lar
parts we find good agreement with the previous investi
tions of Li and Machleidt@21#. However, their treatment@21#
seems to overestimate the suppression of the in-med
cross section at low energies compared to the vacuum c
©2001 The American Physical Society03-1
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The second part of this paper is devoted to an additio
aspect: Kinetic transport equations are essentially base
the QPA which puts the nucleons on mass shell. The s
holds in the medium for dressed quasiparticles. If the ima
nary part of the nucleonic self-energy is negligible (ImS
!ReS), the quasiparticle approximation as the zero-wid
limit ( G}Im S) for the nucleon spectral function appears
be justified@3#. However, it is well known that the spectra
widths of hadrons change in the medium. It has further b
pointed out that in the medium also ‘‘stable’’ particles c
obtain a nonzero width, depending on their collision ra
~collisional broadening!; see, e.g.,@22#. Following the work
of Botermans and Malfliet@3# there have been several a
tempts to derive transport equations for nonequilibra
Fermi systems beyond the quasiparticle approximation;
@22–25# and references therein. However, as a result of
complications which arise giving up the QPA, these transp
equations were never used in practical applications to he
ion reactions but stayed more or less on the level of a
demic considerations. Just very recently there have been
cessful attempts to formulate generalized transport equat
which can be handled in applications using test-part
methods@26,27#. As the basic feature of these approaches
energy and momentum of the test particles are no lon
related by the mass-shell condition but according to th
spectral distributions. Thus particles are propagated and
scattered off mass shell. Hence, knowledge of off-shell s
tering amplitudes becomes necessary. However, the beh
of such amplitudes is presently unknown to a large exte
The off-shell structure of the scattering amplitude determi
in this context also the magnitude of nonlocal corrections
the Boltzmann equation which can be translated into non
cal time and momentum shifts in the binary scatter
process@28#.

Here again the relativistic Brueckner approach provide
natural tool to determine in-medium off-shell scattering a
plitudes in the ladder approximation. In the present work
extend the on-shellNN scattering to the half-off-shell cas
where the incoming particles are still on their mass shells
the final states are generally off shell. These matrix eleme
provide valuable information for future transport investig
tions beyond the QPA. We investigate the off-shell struct
of the in-mediumT matrix—respectively, the transition am
plitudes uTu2 and the resulting cross sections—over a w
range of nuclear matter densities.

The paper is organized as follows. First~Sec. II! we
briefly sketch the basic features of the relativistic Brueck
approach. In Sec. III the on-shell scattering problem in
medium is discussed. Neutron-neutron and proton-pro
channels are considered separately, and total and differe
cross section are given. We also compare with the result
other groups, mainly those of Li and Machleidt@21#. In Sec.
IV we turn to the half-off-shell case and discuss the struct
of transition amplitudes and cross sections beyond the q
siparticle approximation and summarize in Sec. V.

II. RELATIVISTIC BRUECKNER APPROACH

In the relativistic Brueckner approach the Bethe-Salpe
equation is reduced to a three-dimensional integral equa
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of the Lippmann-Schwinger type, the so-called Thomps
equation@29#. The Thompson propagator projects there
the intermediate nucleons onto positive-energy states an
stricts the exchanged energy transfer byd(k0) to zero. The
Thompson equation is most easily solved in the two-nucle
c.m. frame:

T~p,q,P!uc.m.5V~p,q!1E d3k

~2p!3
V~p,k!

3
M* 2

E* 2~k!

Q~k,P!

2E* ~q!22E* ~k!1 i e
T~k,q,P!,

~1!

where q5(q12q2)/25(q1* 2q2* )/2 is the relative momen-
tum of the initial states and similarp,k are the relative mo-
menta of the final and intermediate states, respectivelyP
5(q11q2) is the c.m. momentum. The starting energy
Eq. ~1! is fixed to As* 52E* (q). Sandwiching the one-
boson-exchange potentialV, Eq. ~1!, between in-medium
spinors, Eq.~4!, the matrix elements acquire a density depe
dence which is absent in nonrelativistic treatments and wh
is believed to be the major reason for the much improv
description of the nuclear saturation properties@3# in the
relativistic theory. The Pauli operatorQ prevents intermedi-
ate states from scattering into forbidden phase space are

Inside the medium the particles are dressed which lead
effective masses and the kinetic momentum:

M* ~k!5M1ReSs~k!, k* m5km1ReSm~k!. ~2!

Re and Im denote the real and imaginary parts si
~above the Fermi surface! the self-energy is generally com
plex. Here we adopt thequasiparticle approximation; i.e.,
the Im @S# will be neglected in Eq.~1!. This means that the
decay width of the dressed nucleon statek to another statek8
is set equal to zero, resulting in an infinite lifetime of th
‘‘quasiparticle’’ state. Furthermore, the explicit momentu
dependence of the self-energy which enters via a termkSv
proportional to the spatial componentSv of the vector self-
energy is small and can be dealt with by introducing t
reduced kinetic momentumk̃* m5k* m/(11Sv) and the re-
duced effective massM̃* 5M* /(11Sv) @7#. Thus, the
nucleons are given by plane waves which fulfill a quasifr
Dirac equation

@gmk̃* m2M̃* #ul~k!50. ~3!

Using the normalization of Ref.@8# the self-consistent
positive-energy spinors of helicityl are defined as

ul~k!5AẼ* ~k!1M̃*

2M̃* S 1

2luku

Ẽ* ~k!1M̃*
D xl , ~4!

with xl being a Pauli spinor. The Dirac spinors depend
the effective mass and thus on the nuclear density. In
3-2
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OFF-SHELL BEHAVIOR OF THE IN-MEDIUM . . . PHYSICAL REVIEW C64 024003
Thompson equation~1! and in the discussion below we de

with the rescaled quantitiesM̃* and k̃* but will omit this in
the notation further on.

To summarize the kinematics of the Thompson equa
~i! the initial states are on shell, i.e.,qm5$E* (q),6q% with
E* (q)5AM* 21q25 1

2 As* . The final states fulfil energy

momentum conservationpm5$ 1
2 As* ,6p% and are off shell

as soon asupuÞuqu. ~ii ! The determination of the off-she
matrix elements is perturbative in the sense that the qu
particle approximation is applied to the Thompson equati
althoughT is generally complex for incident momenta abo
the Fermi surface which leads to a nonvanishing imagin
part of the self-energy ImS and, correspondingly, an imag
nary optical potential@8,11#.

To determine the scalarSs and vector componentsS0 and
Sv of the self-energy is a subtle problem. Here on-shell a
biguities arise from the projection onto positive-energy sta
when theT matrix is decomposed into Lorentz invariant am
plitudes. This problem has been known for a long time@8,9#
and is still not completely resolved. In@12# we discussed the
failure of previously used recipes@8,11# which led to spuri-
ous contributions in the self-energy from the coupling
negative-energy states, in particular spurious contributi
from a pseudoscalar one-pion exchange which are not c
pletely replaced by a pseudovector coupling. In Ref.@13# this
problem was extensively discussed and a method to m
mize the on-shell ambiguities was proposed. Here we u
the scheme of@13# where the Born termV and the remaining
ladder kernel of the Thompson equation are treated s
rately. Thus we account properly for the pseudovector str
ture of the Born contributionsVp,h from p- andh-exchange
contributions when the projection of the fullT matrix onto
covariant amplitudes is performed. The remaining lad
kernel thereby is treated as a pseudoscalar.

To solve the Thompson equation~1! in the c.m. system
we apply standard techniques which are in detail descri
by Erkelenz@30#. After a partial-wave projection onto th
uJMLS& states the integral reduces to a one-dimensiona
tegral over the relative momentumuku and Eq.~1! decouples
into three subsystems of integral equations for the uncou
spin singlet, the uncoupled spin triplet, and the coupled t
let states. As a result of the antisymmetry of the two-ferm
states, we can restore the total isospin (I 50,1) of the two-
nucleon system with the help of the selection ru
(2)L1S1I521 which means that matrix elements are
ready antisymmetrized.

The Pauli operatorQ is replaced by an angle-average
Pauli operatorQ̄. For nonvanishing c.m. momenta the Fer
sphere is in the two-nucleon c.m. frame deformed to a Fe
ellipsoid for whichQ̄ has to be evaluated@7,8#. We are solv-
ing the integral equations by the matrix inversion techniq
of Haftel and Tabakin@31#. Real and imaginary parts of theT
matrix are calculated separately by the principal-value tre
ment given by Trefzet al. @32#. From there it is seen tha
Im T is essentially proportional to the angle-averaged P
operator and thus it is strongly reduced for momenta be
the Fermi surface due to Pauli blocking. Then positiv
energy helicityT-matrix elements are constructed from t
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uJMLS& scheme as described in@10,30#. From general sym-
metries it follows that for each total angular momentumJ
only six of the 16 helicity matrix elements are independe

T15^11uTJ~p,q!u11&, T25^11uTJ~p,q!u22&,

T35^12uTJ~p,q!u12&, T45^12uTJ~p,q!u21&,

T55^11uTJ~p,q!u12&, T65^12uTJ~p,q!u11&,
~5!

which in the on-shell caseupu5uqu further reduce to five
independent matrix elements since thenT55T6. From the
six independent amplitudes in theuJMLS& representation the
six independent partial-wave amplitudes~5! in the helicity
representation~for I 50,1 and real and imaginary parts sep
rately! are obtained as described in Ref.@30#. Summation
over J yields the full helicity matrix elements~5!:

(
J

F2J11

4p Gdll8
J

~u!^l18l28uT
J~p,q!ul1l2&

5^pl18l28uT̂uql1l2&. ~6!

Here u is the scattering angle betweenq and p and l5l1

2l2 ,l85l182l28 . The reduced rotation matricesdll8
J (u)

are those defined by Rose@33#. The matrix elements on the
left hand side of Eq.~6! are independent of the third compo
nent of the isospinI 3 and depend only on the absolute valu
p,q of the momenta.

III. ON-SHELL SCATTERING

The on-shell nucleon-nucleon cross section can be
rectly determined from theT-matrix amplitudes. In this case
the extension to off-shell scattering is straightforward. A
other possibility is to determine the on-shell phase sh
@21,30#. Doing so, an extension to the off-shell case is, ho
ever, unclear. Furthermore, the definition of the vacu
phase shifts~see, e.g., Refs.@10,30#! has to be modified in-
side the medium to account for the modified unitarity re
tions. To be more precise, the definition of in-medium pha
shifts should include the Pauli operator as pointed out
@16,17#. To avoid such problems we will directly determin
the cross sections from the matrix elements. The squa
matrix elements are given as

uT̂~p,q,u!u25(
i 51

6

b iF S (
J

2J11

4p
d

l il i8
J

~u!ReTi
J~p,q! D 2

1S (
J

2J11

4p
d

l il i8
J

~u!Im Ti
J~p,q! D 2G . ~7!

The weighting factorsb i52, i 51, . . . , 4, andb55b654
arise from the sum over all helicity states. Using the ortho
nality relation for the rotation matrices,

E d cos~u!dll8
J

~u!dll8
J8 ~u!5

2

2J11
dJJ8 , ~8!
3-3
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one obtains

E dVuT̂~p,q,u!u25(
i 51

6

b i(
J

2J11

4p
$@ReTi

J~p,q!#2

1@ Im Ti
J~p,q!#2%. ~9!

In the on-shell casep5q the differential cross section fol
lows from the matrix elements by the standard expressio

ds5
~M* !4

s* 4p2
uT̂~q,q,u!u2dV. ~10!

A. Free cross section

The predictions of the Bonn potentials for freeNN cross
sections have in detail been discussed by Li and Machl
@21#. Throughout this work we apply the Bonn A potenti
@14# and the results of@21# for the vacuum case are repro
duced with high accuracy for both differential and total cro
sections. To demonstrate this feature, the results from@21#
are included in Figs. 6 and 7 where the total neutron-pro
@Ti

J50.5(Ti
J,I 501Ti

J,I 51)# and proton-proton (Ti
J5Ti

J,I 51)
cross sections are shown. As found in@21# the pp cross
section is in particular at low energies significantly smal
than thenp cross section. It should, however, be noted t
in the present work as well as in Ref.@21# the pp cross
sections are not Coulomb corrected.

B. In-medium cross section

As already pointed out in Refs.@18,19# a trivial medium
modification of the cross sections arises from the in-med
masses entering into the kinematical term (M* )4/s* in Eq.
~10! which is due to the normalization of the relativist
spinor basis and the incoming flux. This phase space fa
reduces the in-medium cross section by the order
(M* /M )2 at small momenta.

Besides the fact that one deals with dressed quasipart
the essential feature of the Bethe-Goldstone or Be
Salpeter equation, respectively, is the occurrence of the P
operator. This means that the vacuum relations which c
nect the phase shifts with the real reaction matrixR are
modified by the Pauli operator. In a schematic notation1 the
in-medium reaction matrixR is connected to theT matrix by
@10,32#

R̂2T̂5 ipR̂QT̂, ~11!

which leads to a modified optical theorem

uT̂u25
R̂2

11~pR̂Q!2
5~pQ!21uIm T̂u. ~12!

1For clarity of notation we suppress in Eqs.~11!–~13! factors
M* /E* which can be absorbed intoR andT @10# and thed function
originating from the principal-value treatment of the Blankenbec
Sugar and Thompson propagators, respectively.
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With Q51 the vacuum expressions are recovered. T
modification of the optical theorem by the presence of
medium, in particular the appearance of the inverse P
operator which compensates at momenta below the Fe
surface for the vanishing ImT̂, has been discussed i
@16,17,32#. It becomes clear from Eq.~12! that the use of the
vacuum relations~with Q51) to extract phase shifts from
the in-medium reaction matrixR is an approximation justi-
fied at low densities and/or high energies. In between
Pauli operator is essentially different from unity and appe
in the denominator of Eq.~12!. Neglecting here the influenc
of the Pauli operator will lead to an underestimation of t
corresponding cross sections. The real and imaginary par
the T matrix are related to the reaction matrix by@32#

ReT̂5
R̂

11~pR̂Q!2
, Im T̂52

pQR̂2

11~pR̂Q!2
. ~13!

We emphasise this point because, as will be seen in the
lowing, we find the in-medium cross sections to be subst
tially less suppressed at low momenta than found by Li a
Machleidt@21# whereas we obtain good agreement with th
results at high momenta. The reason for the deviations ca
traced back to the different procedures used to determine
cross sections. As discussed in Sec. II the squared m
elements~7! provide an unambiguous and direct method
extract the cross section. To determine phase shifts first
to be done with caution since the occurrence of the P
operator modifies the corresponding phase shift relation
the medium@16#. If neglected, as done in the approximatio
used in Ref.@21#, this effect leads in particular at low mo
menta to an underprediction of the cross section. To illustr
this effect in Fig. 4 we investigate the influence of the Pa
operator on the in-mediumnp cross section. For a fair com
parison the density (kF51.4 fm21) as well as the value o
M* is chosen as in Ref.@21#. One curve in Fig. 1 is obtained

-

FIG. 1. Totalnp in-medium cross section atkF51.4 fm21. The
result of the full calculation is compared to a calculation where
Pauli operator in the Thompson equation for the intermediate s
tering states has been switched off (Q51). Also the corresponding
result of Ref.@21# is shown.
3-4



io

f
r

-
ca
ke

e
rin
u
i

th

n

s
s-

a

, i
o

fo
y

te

s
e

th

t

or

at

t
d
A

o
i

n

o

d.
ck-

ow-
i-
of

lly

e

e

OFF-SHELL BEHAVIOR OF THE IN-MEDIUM . . . PHYSICAL REVIEW C64 024003
by switching off the Pauli operator in the Thompson equat

~1!, i.e., settingQ̄[1. It is clearly seen that the influence o
the Pauli operator leads even to an enhancement of the c

section at momenta below.180 MeV compared to theQ̄
[1 case which is due to the occurrence ofQ in the denomi-
nator in Eqs.~12! and ~13!. As expected, at very small mo
menta the presence of the Pauli operator leads to a signifi
suppression of the cross section. One should, however,
in mind that the Pauli operator acts here only on theinter-
mediatestates in the Thompson equation~1! and not on the
final states. Thus full Pauli blockingQ̄[0 reduces the fullT
matrix to its Born partV̂. In the transport approach, on th
other hand, the Pauli blocking prevents also the scatte
into occupied final states. Thus Fig. 4 refers only to Pa
effects in the intermediate states, but demonstrates the
portance of accounting properly for the Pauli operator in
in-medium optical theorem~12!.

In the following we consider the in-medium cross sectio
at four different Fermi momentakF51.1, 1.34, 1.7, and 1.9
MeV, which corresponds to densitiesr50.090,
0.1625, 0.332, and 0.4633 fm23. For simplicity we denote
these densities in the text as 0.5r0 , r0 , 2r0, and 3r0 al-
though these values do not exactly correspond to multiple
r050.1625 fm23. Again all calculations are performed u
ing the Bonn A potential. The in-medium massM* entering
into Eq. ~10! has in our calculation the valuesM*
5766.6, 646.7, 433.6, and 310.1 MeV. These values
slightly larger than those of Refs.@21,10#. Thus we expect
also slightly larger values for the in-medium cross section
particular at low momenta, which are due to higher values
the kinematical factor (M* )4/s* . The reason for the differ-
ent effective masses lies in different solution techniques
the Thompson equation~1!. As discussed in Sec. II, we appl
a refined projection scheme in order to transform theT ma-
trix from the two-particle c.m. frame to the nuclear mat
rest frame where the self-energy components~2! are deter-
mined @12,13#. In the medium the on-shellT matrix ~1! de-
pends on three variables: the relative momentumq of the
initial states, the scattering angleu, and the center-of-mas
momentumP of the two-particle c.m. frame relative to th
nuclear matter rest frame. As in Refs.@21,16,17# we consider
only the case where the two-particle c.m. frame and
nuclear matter rest frame coincide, i.e.,P50.

In Fig. 2 the differentialnp cross section at the differen
densities is shown at fixed relative momentumuqu
5342 MeV which in the vacuum corresponds to a laborat
energy ofElab52q2/M5250 MeV. The vacuum definition
of Elab was used in@21# to compare the cross sections
different densities. The presence of the medium tends
make thenp differential cross section more isotropic. A
backward angles the cross sections are decreasing with
sity. At forward angles the behavior is more complicated:
moderate densities (r50.5r0 and 1r0) the cross section is
reduced but at high densities (r52r0 and 3r0) a strong
enhancement of the forward scattering amplitude can be
served. It is worth noticing that in this energy range we are
good agreement with the results obtained by Li a
Machleidt@21#. Similar results have been obtained at 0.5r0 ,
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r0, and 2r0, and also at 2r0 the cross section was found t
be enhanced at forward angles compared tor0. Going higher
in density (3r0) we find this effect even more pronounce
While the cross section stays now almost constant at ba
ward angles, it is strongly enhanced at forward angles. H
ever, at 3r0 the cross section is highly anisotropic and dom
nated by ap-wave component. Here we see a suppression
higher partial waves with increasing density. At 3r0 one
needs partial waves up to at leastJ<6 to approximate the
full result (J512), at 2r0 the partial wavesJ<4 are almost
sufficient, and at 3r0 the behavior is like ans1p wave with
J<1. Figure 3 shows the same forpp scattering. Again our
results are in good agreement with the findings of Ref.@21#.
In the I 51 channel (pp) the cross sections are genera
more isotropic than in thenp channel. With rising density

FIG. 2. Differentialnp in-medium cross section at fixed relativ
c.m. momentumuqu5342 MeV (2q2/M5250 MeV) at various
densities. Experimental data from@34# for the free scattering are
included.

FIG. 3. Differentialpp in-medium cross section at fixed relativ
c.m. momentumuqu5342 MeV (2q2/M5250 MeV) at various
densities.
3-5
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the cross sections are first decreasing (0.5r0 , r0) and then
increasing. At 3r0 we observe a dramatic increase of t
cross section at forward angles. In thepp cross section the
contributions of higher partial waves are reduced with gro
ing density; e.g., atr0 partial waves up toJ<4 reproduced
the full result quite well whereas at 3r0 only contributions
from J<3 are relevant.

The peculiar behavior at 3r0 seen in Figs. 2 and 3 can b
understood from the presence of the mean field. In Fig
and 3 we investigated the density dependence of the c
sections at an equivalent relative c.m. momentumq. This
does, however, not correspond to equivalent energies. A
nite density the laboratory energyElab(uqu,r)5E(uqu,r)
2M is given by

Elab5
2q2

M*
1Ss2S0 ~14!

and is therefore strongly modified by the presence of
mean field. At high densities the energy scale is stretched
the decreasing effective massM* . This effect is responsible
for the suppression of higher partial-wave contributions
the differential cross section above 2r0 if one compares the
cross sections at identical c.m. momenta but at essent
different incident energies.

To illustrate this effect in Fig. 4 we show the densi
dependence of the differentialnp cross section at the sam
laboratory energyElab.250 MeV. At comparable energie
rather than comparable c.m. momenta the difference in
differential cross section atr0 and 3r0 is now much less
pronounced.

The suppression of the in-medium cross section at
ward angles which occurs at higher densities can be un
stood from Fig. 5 and Eq.~13!. This figure illustrates the
influence of the Pauli operator and the imaginary part of
T matrix. It is seen that atr0 the imaginary part ofT which
contributes in the vacuum by about 50% to the forward sc
tering amplitude (u50) is now strongly suppressed by th

FIG. 4. Differentialnp in-medium cross section at laborato
energyElab(r).250 MeV at various densities.
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Pauli operator. This effects is maximal at low momenta a
high densities. Whenq lies below the Fermi surface th
imaginary part ofT vanishes completely. Thus, Pauli bloc
ing in the intermediate states makes the cross section m
isotropic.

In Figs. 6 and 7 we show the total in-mediumnp andpp
cross sections in the considered density range 0.5r0–3r0 as
a function ofElab, Eq. ~14!. Using this quantity the scale i
considerably stretched compared to the vacuum expres
2q2/M ~used in @21#!. There are two major aspects to b
noticed: At high energiesElab>200 MeV we find good
agreement with the previous calculations of Ref.@21#. For
np as well as pp scattering the cross sections rea
asymptotic values around 15–20 mb. At high densities
cross section has the tendency to rise again with increa
laboratory energy. This behavior is even more pronounce

FIG. 5. Differentialnp in-medium cross section at fixed relativ
c.m. momentumuqu5342 MeV in the vacuum~upper curves! and
at kF51.34 (r0) ~lower curves!. The contributions from the rea
part of theT matrix are shown separately.

FIG. 6. Totalnp in-medium cross section at various densities
a function ofElab(r). In addition the results of@21# ~squares! for
the free cross section are shown.
3-6
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the proton-proton channel and has been observed by o
groups as well@18,21#.

At low energies the in-medium cross sections are con
erably less suppressed than observed in Ref.@21#. One rea-
son is our somewhat larger values for the in-medium ma
but this effect is not sufficient to explain the deviations
low energies. As illustrated by Fig. 1 the differences can
understood by the low-density and high-momentum appro
mation made in@21# which neglects the influence of th
Pauli operator in the optical theorem. Besides this point
0.5r0 we see a small additional enhancement of thenp cross
section around an energy of 15 MeV which is not presen
the pp channel. A much stronger enhancement of the cr
section at low densities has been observed by Almet al. @17#.
In the finite temperature approach of@17# this critical en-
hancement is attributed to the onset of superfluidity. Cru
for such a superfluid state are contributions from hole-h
scattering in the Pauli operator which are absent in the s
dard Brueckner approach~used here!. However, as discusse
in @35# a signature of a bound pair state can appear at
densities even when hole-hole scattering is neglected in
Pauli operator. In the present calculations such a resona
like enhancement of the cross section is only seen in thI
50 amplitudes which correspond to the quantum number
the deuteron, i.e., the3S1 , 3D1, and the3S1-3D1 transition
channels. Therefore the low-density enhancement of thenp
cross section can be interpreted as a precursor of a supe
state and supports the findings of@35#.

IV. HALF OFF-SHELL SCATTERING

A. Matrix elements

In the following we consider the case of half-off-she
scattering. This means that the initial states with c.m. m
menta6q are on their mass shellE* (q)5Aq21M* 2. How-
ever, now the momenta of the final states6p can vary inde-
pendently, i.e.,upuÞuqu. Since the requirement of energ
conservation fixes the final energiespm5$p0 ,6p% to p0

FIG. 7. Totalpp in-medium cross section at various densities
a function ofElab(r). In addition the results of@21# ~squares! for
the free cross section are shown.
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2As* 5E* (q), these states are off energy shell. To obta

an impression as to how the off-shellness affects theT-matrix
amplitudes we consider first the matrix elements. In the
shell case the cross sections follow from the squared ma
elementsuT(q,q)u2 by Eq.~10!. The squared matrix element
uT(p,q)u25* uT(p,q,u)u2dV are also those quantities whic
enter directly into a generalized transport equation as tra
tion amplitudes for off-shell scattering@27#. In that case it
makes more sense to speak in terms of transition amplitu
than in terms of cross sections. The latter are obtained f
the transition amplitudes by integration over the final st
spectral distributions. Thus, the cross sections depend
cially on the spectral width of the particles whereas the tr
sition amplitudes themselves are independent of the spe
functions.

In Fig. 8 we show the isospin-averaged matrix eleme
uT(p,q)u2 for NN scattering as a function ofp and q at
nuclear matter densities 0.5r0 , r0 , 2r0, and 3r0. The am-
plitudesuTu2 are given in fm4 and have to be multiplied by
the factor (2p)6 ~due to our normalization of theT matrix!
when they are inserted into Eq.~10! to obtain cross sections
The diagonal (p5q) on-shell elements correspond to th
total cross section. First of all, it is seen that the amplitud
uTu2 show the same behavior as the corresponding~on-shell!
cross sections, namely, a general decrease with momen
and density. In the cross section this tendency is just
hanced by the kinematical factorM* 4/s* which decreases
with density and also with momentum.

The off-shellness of the final states now given by

Dv5E* ~q!2E* ~p!.
q22p2

2M*
, ~15!

which is maximal perpendicular to the diagonal. It can
seen from Fig. 8 that at low momenta the matrix eleme
are only weakly affected by the fact that the outgoing sta
are off energy shell. This does not mean that the matrix e
ments do not change going away from the on-shell po
Indeed, the variation of the matrix elements is considera
as will become even more clear further on. However,
dependence of the matrix elements is nearly symmetricq
andp, i.e.,

uT~p,q!u2.uT~q,p!u2, ~16!

and thus not strongly affected by the off-shellness of
outgoing states. In particular in the low-momentum regi
the matrix elements fall off symmetrically with increasin
momentap and/orq. Only at the highest density of 3r0 is the
asymmetry rather pronounced. The off-shell variation of
outgoing states leads here to a resonance structure ar
q5250 MeV where the amplitudes increase with differe
strengths inp and q directions. The off-shell behavior is
similar in thenp andpp channels, except that the resonan
structure at 3r0 is more pronounced in the latter case. T
somewhat stronger off-shell dependence of thepp scattering
at high densities is also reflected in the stronger reduction
the corresponding total cross section shown in Fi
11 and 12.

s
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FIG. 8. Squared isospin averaged half-off-shellT-matrix elementsuTu2 in @ fm4# at various densities. The initial states with relative c.
momentumq are on shell, and the final states with relative c.m. momentump are off shell.
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In order to obtain a more quantitative impression of t
off-shell dependence next we investigate the deviation of
amplitudesduTu2 from their on-shell values as a function o
the off-shellnessdv of the final states.duTu2 is thereby
defined as the relative deviation, i.e.,

duTu25
uT~q,dv!u22uT~q,dv50!u2

uT~q,dv50!u2
. ~17!

For a better comparison of the different densities the varia
dv, i.e., the energy shift of the final states with momenta6p
relative to their on-shell energies, is scaled by the effec
mass:

dv5
M*

M
@E* ~q!2E* ~p!#. ~18!

The range for the variation ofdv is constrained by the
kinematical limits of our calculations, i.e., 0<p,q
<400 MeV. The symmetric falloff withp andq in the low-
momentum range which is reflected in Fig. 8 implies alrea
the following tendency: Forp,q, i.e., dv.0, one expects
an enhancement of the amplitudes, i.e.,duTu2.0, whereas
for p.q, i.e.,dv,0, one expects a reduction of the amp
tudes. For small values ofq this behavior is clearly see
from Fig. 9. There the deviation of the isospin-averaged m
02400
e

le

e

y
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trix elementsduTu2 from the on-shell point is shown at fixe
values of the on-shell momentumq5100, 200, 300, and 400
MeV. First of all we see that the variation of the amplitud
is pronounced. Within the range ofdv5650 MeV the ma-
trix elements can easily vary by more than6100%. Second,
we find that the patterns are similar at moderate dens
0.5r0 andr0 but become essentially different at large den
ties r>2r0. Thus, the off-shell behavior reflects a stron
medium dependence. The systematics of the different pat
is, however, quite complex.

Let us first consider moderate nuclear matter densities
low momentaq the amplitudes show an extremely stron
variation around the on-shell point which reflects their ste
and symmetric fall off~see Fig. 8!. As already mentioned
this results in a strong suppression at negativedv and an
equally strong enhancement at positivedv. In the high-
momentum region the variation of the amplitudes is mu
weaker which results in a smoother and less pronounced
pendence ondv. With increasing density the situatio
changes drastically and is even reversed at largeq: now the
amplitudes are strongly enhanced in the negative-dv region
and reduced at positivedv. This reflects the asymmetry o
uTu2 around the on-shell diagonal seen in Fig. 8 in the hig
momentum range.

To summarize, the half-off-shell matrix elements show
pronounced density dependence. At moderate densities, h
3-8
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ever, the dependence on the incident on-shell momentaq and
the final momentap which are off shell is to a large exten
symmetric inp andq. This implies that the matrix element
are not too much affected by the shift to off-shell energ
but are mainly determined by the absolute values of the
mentum statesp andq. As a consequence, the off-shell m
trix elements can be approximated with an accuracy of ab
10–30 % by the on-shell points in the following way:

uT~p,q!u2.uT~ q̄,q̄!u2, q̄5A1

2
~p21q2!, ~19!

which follows from the symmetry assumption~16!. At large
nuclear matter densities this symmetry is more strongly v
lated, i.e., by about 20–40 % at 2r0. Nevertheless, in view
of the extremely large variation of the matrix elements w
dv, ranging from almost complete suppression to an
hancement of more than a factor of 2, the accuracy of
symmetry assumption is quite good in the considereddv
interval. It can be applied in a straightforward way, e.g.,
transport calculations, and requires only knowledge of
on-shell matrix elements. However, at 3r0 the amplitudes
are highly asymmetric inp and q and thus approximation
~19! does no longer hold. Here an accurate description
quires knowledge of the exact matrix elements.

Figure 10 illustrates the validity of the symmetry assum
tion ~19! and the strength of the explicit dependence of
matrix elements on the energy shiftdv. There the relative
deviations

duTusym
2 5

uT~ q̄,q̄!u22uT~p,q!u2

uT~p,q!u2
~20!

FIG. 9. Relative deviation of the isospin-averagedT-matrix el-
ementsuTu2 from their values at the on-shell point as a function
the off-shellnessdv of the final states.duTu2 is shown for various
densities at fixed incoming relative momentaq5100, 200, 300,
and 400 MeV.
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from the exact resultsuT(p,q)u2 are shown as functions o
dv, again for fixed values ofq.

B. Cross sections

A cross section is obtained from the transition amplitud
uTu2 by division through the incoming flux,

v125
F* ~q1 ,q2!

E* ~q1!E* ~q2!
5

A~q1•q2!22M* 4

E* ~q1!E* ~q2!
, ~21!

and multiplication by the final state phase space factors,

ds5
M* 4

F*
~2p!4d4~q11q22p12p2!

3uT~p1p2 ,q1q2!u2
d4p1

~2p!4
A~p1!

d4p2

~2p!4
A~p2!.

~22!

The d4 function ensures energy-momentum conservation
the general case where the final statesp1 ,p2 are off shell,A
represents the full positive-energy spectral function. In
quasiparticle approximationA reduces to the on-shell cond
tion

A~p!52pd~p* 22M* 2!2Q~p0* !. ~23!

Thus the spectral function fulfills the sum rule

E dp0

~2p!
A~p!5

1

E* ~p!
. ~24!

FIG. 10. Relative deviation of the isospin-averaged appro
matedT-matrix elementsuTu2, Eq. ~19!, from their exact off-shell
values as a function of the off-shellnessdv of the final states.duTu2

is shown for various densities at fixed incoming relative mome
of q5100, 200, 300, and 400 MeV.
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Here we choose spectral functions of a Breit-Wigner form

A~p!52p
1

p

2p0G

~p* 22M* 2!21~p0G!2
. ~25!
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Thus A satisfies the sum rule and in the zero-width lim
G°0 the quasiparticle approximation~23! is recovered. In
the two-particle c.m. frame the integral~22! can easily be
evaluated. The total cross section is then given by
ds5
2M* 4

p4As* ~s* 24M* 2!
dVE p2dpuT~p,q,u!u2

3E dp0~2E* ~q!2p0!p0G2

„$@2E* ~q!2p0#22~p21M* 2!%21@2E* ~q!2p0#2G2
…@~p0

22p22M* 2!21p0
2G2#

, ~26!
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which reduces to expression~10! in the zero-width limit. As
discussed in@3# the widthG is determined by the imaginar
part of the self-energy,

G52
M*

E* ~p!
Im Ss~r,p!1Im S0~r,p!, ~27!

and depends on the density and momentum. In the pre
approachG follows from the imaginary part of theT matrix.
It can, however, only serve as an estimate for the full part
width inside the medium. As discussed in Sec. II the Bet
Salpeter equation is solved in the quasiparticle approxi
tion. For the determination of theT matrix this treatment is
justified since the conditionG!Es.p.5E* 2S0 is readily ful-
filled. However, since the standard Brueckner-Hartree-F
~BHF! approach accounts only for the particle-particle cor
lations of the Brueckner hole-line expansion ImS vanishes
for momenta below the Fermi surface due to Pauli blocki
Long-range correlations which are usually treated in rando
phase-approximation-type~RPA-type! approaches by a lad
der summation in the particle-hole channel contribute to
spectral width@36#, but are not taken into account in th
standard Brueckner-Hartree-Fock approach. RPA corr
tions lead further to a depletion just below the Fermi surfa
and an occupation of states above the Fermi surface. T
the Dirac-BHF~DBHF! results forG do not represent the ful
width but give a reliable estimate only at momenta w
above the Fermi surface where particle-particle correlati
can be regarded as the dominant contributions toG. In the
considered density and energy rangeG ranges from about 10
MeV at 0.5r0 to more than 40 MeV at 3r0 as the outcome o
the present DBHF calculations@13#.

Thus, the cross sections shown in Figs. 11 (np) and 12
(pp) give an estimate for the off-shell dependence of
total cross section. For this purpose we choose two typ
values for G which cover the range of spectral width
nuclear matter as is predicted by DBHF calculations, i.e.G
510 MeV and 40 MeV. The present results are obtain
with a constant, i.e., momentum-independent,G. For a better
comparison of the various densities the cross sections
shown as a function of 2q2/M which corresponds in the
vacuum to the laboratory energy. It can be seen from Figs
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and 12 that the off-shell dependence of the total cross sec
is moderate. The averaging over the Breit-Wigner distrib
tions leads to significantly smaller off-shell effects than a
seen in the scattering amplitudes. Compared to the on-s
value the cross sections are generally reduced, in the ca
G540 MeV by about 15–20 %. At small nuclear densiti
this reduction is most pronounced at low momenta wher
at higher momenta there is no sizable effect. At large de
ties the reduction is more pronounced at high momenta. O
for large values ofG.100 MeV ~not shown here! can a
reduction of the cross section of more than 50% be reach
Differences in the off-shell structure of theNN interaction,
e.g., using Bonn C, do not lead to essentially different
sults. This is consistent with the observations made in R
@21# where it has been demonstrated that the on-shell c
sections are not much affected by the use of different par
etrizations like Bonn B or C.

FIG. 11. Totalnp cross section at various densities as a funct
of 2q2/M . The quasiparticle approximation (G50) is compared to
the case where the final states have a finite spectral width oG
510, 40 MeV.
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V. SUMMARY

In the present work we investigated the in-mediu
nucleon-nucleon cross section within the relativistic~Dirac!
Brueckner-Hartree-Fock approach. We considered both
shell scattering and the more general case where the
momenta are allowed to be off energy shell. The in-medi
cross sections can serve as input for transport calculatio
heavy ion collisions. Information on the off-shell dependen

FIG. 12. Totalpp cross section at various densities as a funct
of 2q2/M . The quasiparticle approximation (G50) is compared to
the case where the final states have a finite spectral with oG
510, 40 MeV.
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of the scattering amplitudes is required when one intend
go beyond the quasiparticle approximation in order to obt
a more realistic description of transport phenomena for p
ticles with finite width. In a dense hadronic environment c
ated, e.g., in heavy ion collisions also ‘‘stable particles’’ lik
nucleons acquire a finite spectral width. Throughout t
work we applied the Bonn A potential as the nucleo
nucleon interaction since this potential yields the most r
sonable saturation properties for nuclear matter.

Concerning the on-shell scattering we find a qualitat
agreement with the previous investigations of Li a
Machleidt@21#, however, less reduced in-medium cross s
tions at low energies. The reason therefore lies in the
that we account for modifications of the optical theorem d
to the presence of the medium which have been neglecte
the approximation made in@21#. In the np cross section an
additional low-density enhancement appears which can
interpreted as the precursor of a superfluid state. The pre
approach was then extended to the case where incoming
outgoing momenta of the scattered nucleons can vary in
pendently and—due to energy-momentum conservation—
final states are off energy shell. The resultingT-matrix ele-
ments or transition amplitudes show a strong variat
around the on-shell point. The shape of the transition am
tudes depends, however, mainly in a symmetric way on
incoming and outgoing momenta. The fact that the fin
states are off shell and the incoming ones on shell pl
thereby a minor role. This allows one to approximate t
half-off-shell matrix elements in a suitable way by their o
shell values. Such an approximation works well at moder
nuclear matter densities but at large densities precise kn
edge of the amplitudes is required. In a conservative estim
finite width effects lead to a reduction of the total cross s
tions by about 20% compared to the on-shell scattering. O
shell effects are more pronounced at larger nuclear densi
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