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Off-shell behavior of the in-medium nucleon-nucleon cross section
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The properties of nucleon-nucleon scattering inside dense nuclear matter are investigated. We use the
relativistic Brueckner-Hartree-Fock model to determine on-shell and half off-shell in-medium transition am-
plitudes and cross sections. At finite densities the on-shell cross sections are generally suppressed. This
reduction is, however, less pronounced than found in previous works. In case the outgoing momenta are
allowed to be off energy shell the amplitudes show a strong variation with momentum. This description allows
one to determine in-medium cross sections beyond the quasiparticle approximation, accounting thereby for the
finite width which nucleons acquire in the dense nuclear medium. For reasonable choices of the in-medium
nuclear spectral width, i.el; <40 MeV, the resulting total cross sections are, however, reduced by not more
than about 25% compared to the on-shell values. Off-shell effects are generally more pronounced at large
nuclear matter densities.
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[. INTRODUCTION vides a powerful tool to achieve such a consistent descrip-
tion. Starting from free nucleon-nucleon interactions, given
One major topic of modern nuclear physics is the invesin its modern form by one-boson-exchange potentialg,
tigation of hadron properties inside a dense hadronic enviene treats the two-body correlations in dense nuclear matter
ronment which exists, e.g., in the interior of neutron stars oin the ladder approximation of the Bethe-Salpeter equation.
is transiently created in energetic heavy ion collisions. In theéAs a result the nuclear matter saturation properties are quite
latter case, the theoretical framework to describe the timavell described. This is achieved without the adjustment of
evolution of heavy ion reactions is provided by kinetic trans-additional parameters, such as, e.g., done in relativistic mean
port theory. Starting from the quantum theory of stronglyfield models[15]. On the level of theT-matrix approxima-
interacting Fermi systems, formulated within the frameworktion both ingredients for the BUU equation follow from the
of the Dyson-Schwinger hierarchy of nonequilibrium many-on-shell in-mediunT matrix (or G matrix). The mean field is
body Green functionfl], one can derive semiclassical trans- determined by the real part Reof the T matrix whereas the
port equations of a Boltzmann-Uehling-Uhlenbe@UU) cross sectiono=|T|? is connected to the imaginary part
type [2,3]. These transport equations describe successfullim T via an optical theoref3]. Medium modifications arise
the time evolution of a nonequilibrated strongly interactingdue to the dressing of the quasiparticles and the existence of
hadron gas. To mention only the essential steps of such e Pauli operator which prevents the scattering of interme-
derivation there are the truncation of the many-body hierardiate states in the Bethe-Salpeter equatioot final states
chy at the two-body level, a Wigner transformation of theinto occupied phase space areas. Both aspects are most pro-
density matrices with subsequent gradient expansion up teounced at high densities and/or low momenta and lead to a
first order in, and the use of the quasiparticle approxima-suppression of the in-medium cross section compared to the
tion (QPA) which neglects the finite decay width of the par- free one.
ticles. The resulting BUU equation consists of two parts, a There have already been several studies devoted to the
drift term which propagates the particles dressed by the suin-mediumNN scattering problem. The "hingen groug4]
rounding medium in a self-consistent mean field and the coland later the Rostock grouyft6,17 derived in-medium cross
lision term responsible for binary nucleon-nucleon scattersections within the nonrelativistic Brueckner approach, in the
ing. In a consistent treatment both ingredients—namely, théatter case also at finite temperature. Relativistic calculations
mean field and the binary cross sections—should be treateslere performed if18—20. The most complete study of
on the same footing, which means to base both of them om-medium NN scattering within the Dirac-Brueckner ap-
the same effective interaction. Unfortunately, in most appli-proach was probably done by Li and Machlej@tl] who
cations to heavy ion collisions this is not done. The self-used the Bonn potentials as the bare interaction. Unfortu-
consistent mean field accounts for medium effects by its demately the different approaches have led to partially contra-
sity dependence. For the cross section, on the other hand, tétory results, in particular between relativisfit8,21] and
free (vacuun) expressions are widely used in transport cal-nonrelativistic calculationp4]. Therefore, in the first part of
culations. It has, however, been noticed that in particular athis paper we reexamine the problem of on-shell scattering.
incident energies below particle production thresholds, meThe results are obtained with the Bonn A potential. In large
dium modifications of the cross sections can play an imporparts we find good agreement with the previous investiga-
tant role for the reaction dynamics in heavy ion collisionstions of Li and Machleidf21]. However, their treatmeff1]
[4-6]. seems to overestimate the suppression of the in-medium
The relativistic (Dirac-)Brueckner approach7—13] pro-  cross section at low energies compared to the vacuum case.
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The second part of this paper is devoted to an additionabf the Lippmann-Schwinger type, the so-called Thompson
aspect: Kinetic transport equations are essentially based aguation[29]. The Thompson propagator projects thereby
the QPA which puts the nucleons on mass shell. The samge intermediate nucleons onto positive-energy states and re-
holds in the medium for dressed quasiparticles. If the imagistricts the exchanged energy transfer(ﬂyo) to zero. The
nary part of the nucleonic self-energy is negligible @m Thompson equation is most easily solved in the two-nucleon
<ReY), the quasiparticle approximation as the zero-widthc.m. frame:
limit (I"clm %) for the nucleon spectral function appears to
be justified[3]. However, it is well known that the spectral d3k
widths of hadrons change in the medium. It has further beeﬂ'(p,q.P)|c.m.:V(p.CI)+J’ 3
pointed out that in the medium also “stable” particles can (2m)
obtain a nonzero width, depending on their collision rates M*2 Q(k.P)
(collisional broadening see, e.g.[22]. Following the work % ’
of Botermans and Malflief3] there have been several at- E*?(k) 2E*(q)—2E* (k) +ie
tempts to derive transport equations for nonequilibrated 1)
Fermi systems beyond the quasiparticle approximation; see
[22-25 and references therein. However, as a result of thgyhere a=(q1—)/2=(q¥ —q3)/2 is the relative momen-
complications which arise giving up the QPA, these transporym of the initial states and similar,k are the relative mo-
equations were never used in practical applications to heawhenta of the final and intermediate states, respectively.
ion reactions but stayed more or less on the level of aca= (4, +q,) is the c.m. momentum. The starting energy in
demic considerations. Just very recently there have been SUEY. (1) is fixed to \S*=2E*(q). Sandwiching the one-
cessful attempts to formulate generalized transport equatiorb%son-exchange potential, Eq. (1), between in-medium

which can be handled in applications using test-particleysingrs Eq(4), the matrix elements acquire a density depen-
methodd 26,27. As the basic feature of these approaches thejence which is absent in nonrelativistic treatments and which

energy and momentum of the test particles are no long§g pejieved to be the major reason for the much improved
related by the mass-shell condition but according to the'rdescription of the nuclear saturation properti& in the

spectral distributions. Thus particles are propagated and al§@|asivistic theory. The Pauli operat@ prevents intermedi-

scattered off mass shell. Hence, knowledge of off-shell sCatyie states from scattering into forbidden phase space areas.

V(p.k)

T(k,a,P),

tering amplitudes becomes necessary. However, the behavior |.<ide the medium the particles are dressed which leads to

of such amplitudes is presently unknown to a large extentogactive masses and the kinetic momentum:
The off-shell structure of the scattering amplitude determines

in this context also the magnitude of nonlocal corrections to M*(k)=M+ReZ((k), k**=k*+ReS#(K). 2
the Boltzmann equation which can be translated into nonlo-
cal time and momentum shifts in the binary scattering Re and Im denote the real and imaginary parts since
procesq 28]. (above the Fermi surfagehe self-energy is generally com-
Here again the relativistic Brueckner approach provides plex. Here we adopt thquasiparticle approximatiani.e.,
natural tool to determine in-medium off-shell scattering am-the Im[ 3] will be neglected in Eq(1). This means that the
plitudes in the ladder approximation. In the present work wedecay width of the dressed nucleon state another stat&’
extend the on-shelNN scattering to the half-off-shell case is set equal to zero, resulting in an infinite lifetime of this
where the incoming particles are still on their mass shells butquasiparticle” state. Furthermore, the explicit momentum
the final states are generally off shell. These matrix elementgependence of the self-energy which enters via a ey
provide valuable information for future transport investiga- proportional to the spatial componed, of the vector self-
tions beyond the QPA. We investigate the off-shell structuréznergy is small and can be dealt with by introducing the
of the in-mzediumT matrix—respectively, the transition am- .q,ced kinetic momenturk* *= k* “4/(1+3,) and the re-
plitudes|T|* and the resulting cross sections—over a Wldeduced effective mas*=M*/(1+3,) [7]. Thus, the

range of nuclear matter densities. nucleons are given by plane waves which fulfill a quasifree
The paper is organized as follows. Firgec. 1) we Pirac equationg yp q

briefly sketch the basic features of the relativistic Brueckne
approach. In Sec. Ill the on-shell scattering problem in the
medium is discussed. Neutron-neutron and proton-proton
channels are considered separately, and total and diﬁerential : o .
cross section are given. We also compare with the results g ;?t?v(:_heie?orrza:'ﬁgrusogf ﬁ;";ef[fr]e ?;insezlf:;nsstent
other groups, mainly those of Li and Machlej@tl]. In Sec. P 9y sp ty

[y,k*“—=M*]u,(k)=0. ©)

IV we turn to the half-off-shell case and discuss the structure 1

of transition amplitudes and cross sections beyond the qua- E* (k) +M*

siparticle approximation and summarize in Sec. V. uy (k)= Y 2\ K| P )]
IIl. RELATIVISTIC BRUECKNER APPROACH E*(k)+M*

In the relativistic Brueckner approach the Bethe-Salpetewith x, being a Pauli spinor. The Dirac spinors depend on
equation is reduced to a three-dimensional integral equatiothe effective mass and thus on the nuclear density. In the
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Thompson equatiofil) and in the discussion below we deal |JMLS) scheme as described [ih0,30. From general sym-
with the rescaled quantitifd* andk* but will omit this in metries it follows that for each total angular momentdm
the notation further on. only six of the 16 helicity matrix elements are independent:

To summarize the kinematics of the Thompson equation

(i) the initial states are on shell, i.g, ={E*(q),*q} with
1 ) .

E*(q):‘/M*2+q2:§T/s—*. Trle final states fulfil energy- T3=(+—|TJ(p,q)|+—>, T4:<+_|TJ(p,q)|_+>'
momentum Conservat|opﬂ={5\/s_*,tp} and are off shell
as soon asp|#|q|. (i) The determination of the off-shell Ts=(++|Tp.q)|+ ), Te=(+—|T(p.q)|++),
matrix elements is perturbative in the sense that the quasi- (
particle approximation is applied to the Thompson equation,
althoughT is generally complex for incident momenta above Which in the on-shell casgp|=|q| further reduce to five
the Fermi surface which leads to a nonvanishing imaginaryndependent matrix elements since theg=Te. From the
part of the self-energy I and, correspondingly, an imagi- Six independent amplitudes in theM L S) representation the
nary optical potential8,11]. six independent partial-wave amplitudés in the helicity

To determine the scal&, and vector componens, and ~ representatioiffor | =0,1 and real and imaginary parts sepa-
3., of the self-energy is a subtle problem. Here on-shell amrately) are obtained as described in REB0]. Summation
biguities arise from the projection onto positive-energy state§ver J yields the full helicity matrix elementé5):
when theT matrix is decomposed into Lorentz invariant am-

T =(++|T(p,a)[++), T=(++|T(p,q)|— ),

; ; 2J+1
plitudes. This problem has been known for a long tir&¢)] }dj OO\ Y
and is still not completely resolved. [d2] we discussed the 2;‘ am | Dl JMAT (P @) INaA2)
failure of previously used recipd$8,11] which led to spuri- ~
ous contributions in the self-energy from the coupling to =(PA1N| T[ON 1), (6)

negative-energy states, in particular spurious contributions
from a pseudoscalar one-pion exchange which are not confdere ¢ is the scattering angle betweegnandp and\ =\,
pletely replaced by a pseudovector coupling. In RE3] this ~ —X,,N"=X\;—\5. The reduced rotation matriceﬁm,(e)
problem was extensively discussed and a method to miniare those defined by Ro§83]. The matrix elements on the
mize the on-shell ambiguities was proposed. Here we uselgft hand side of Eq(6) are independent of the third compo-
the scheme of13] where the Born ternV and the remaining nent of the isospit; and depend only on the absolute values
ladder kernel of the Thompson equation are treated sepg,q of the momenta.
rately. Thus we account properly for the pseudovector struc-
ture qf th_e Born contributior)vm_,] from 7r- and n-ex_change lIl. ON-SHELL SCATTERING
contributions when the projection of the full matrix onto
covariant amplitudes is performed. The remaining ladder The on-shell nucleon-nucleon cross section can be di-
kernel thereby is treated as a pseudoscalar. rectly determined from th&-matrix amplitudes. In this case
To solve the Thompson equatidf) in the c.m. system the extension to off-shell scattering is straightforward. An-
we apply standard techniques which are in detail describedther possibility is to determine the on-shell phase shifts
by Erkelenz[30]. After a partial-wave projection onto the [21,30. Doing so, an extension to the off-shell case is, how-
|[IMLS) states the integral reduces to a one-dimensional inever, unclear. Furthermore, the definition of the vacuum
tegral over the relative momentujk| and Eq.(1) decouples phase shift§see, e.g., Ref410,30) has to be modified in-
into three subsystems of integral equations for the uncouplegide the medium to account for the modified unitarity rela-
spin singlet, the uncoupled spin triplet, and the coupled triptions. To be more precise, the definition of in-medium phase
let states. As a result of the antisymmetry of the two-fermiorshifts should include the Pauli operator as pointed out in
states, we can restore the total isospir=0,1) of the two-  [16,17. To avoid such problems we will directly determine
nucleon system with the help of the selection rulethe cross sections from the matrix elements. The squared
(—)-*S*'=—1 which means that matrix elements are al-matrix elements are given as
ready antisymmetrized.
The Pauli operatoR is replaced by an angle-averaged

Pauli operatoa. For nonvanishing c.m. momenta the Fermi
sphere is in the twg-nucleon c.m. frame deformed to a Fermi )

ellipsoid for whichQ has to be evaluatgd,8]. We are solv- + ( > ?di-x.’(a)lm Tf(p,q)) } 7

ing the integral equations by the matrix inversion techniques J ™ i

of Haftel and Tabakif31]. Real and imaginary parts of tffe o .

matrix are calculated separately by the principal-value treatThe weighting factorgs;=2, i=1,...,4, andBs=pBs=4
ment given by Trefzet al. [32]. From there it is seen that arise from the sum over all helicity states. Using the orthogo-
ImT is essentially proportional to the angle-averaged Paulpality relation for the rotation matrices,

operator and thus it is strongly reduced for momenta below 5

the Fermi surface due to Pauli blocking. Then positive- J J _

energy helicityT-matrix elements are constructed from the dcog 0)d,,, (0)dy, () 2J+1 3y ®

3 ° 23+1 , 2
T(p.a,0)*=2 B{(@ deih{(ﬂ)ReTi(p.q))
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one obtains

. ° 2J+1
f d0|T(p,a,0)*= 2, 2 — —{[ReTi(p,a))*

+[ImT(p,a) 1% (9)

In the on-shell cas@p=q the differential cross section fol-
lows from the matrix elements by the standard expression

(M*)*

do=
s* 472

IT(q,9,6)[2dQ. (10)

A. Free cross section

The predictions of the Bonn potentials for frBEN cross

PHYSICAL REVIEW ®4 024003
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sections have in detail been discussed by Li and Machleidt FIG. 1. Totalnp in-medium cross section &t =1.4 fm™ L. The

[21]. Throughout this work we apply the Bonn A potential
[14] and the results of21] for the vacuum case are repro-

result of the full calculation is compared to a calculation where the
Pauli operator in the Thompson equation for the intermediate scat-

duced with high accuracy for both differential and total Crossiering states has been switched dif£1). Also the corresponding

sections. To demonstrate this feature, the results fr@hh

result of Ref.[21] is shown.

are included in Figs. 6 and 7 where the total neutron-proton

[T7=0.5(T"' =%+ T)'=1)] and proton-proton T}=T}'"1)
cross sections are shown. As found [21] the pp cross

With Q=1 the vacuum expressions are recovered. The
modification of the optical theorem by the presence of the

section is in particular at low energies significantly smallermedium, in particular the appearance of the inverse Pauli
than thenp cross section. It should, however, be noted tharoperator which Compensa’[es at momenta below the Fermi

in the present work as well as in RdR1] the pp cross
sections are not Coulomb corrected.

B. In-medium cross section

As already pointed out in Ref§18,19 a trivial medium

surface for the vanishing I, has been discussed in
[16,17,32. It becomes clear from E@12) that the use of the
vacuum relationgwith Q=1) to extract phase shifts from
the in-medium reaction matriR is an approximation justi-
fied at low densities and/or high energies. In between the

modification of the cross sections arises from the in-mediunfauli operator is essentially different from unity and appears

masses entering into the kinematical terM*()%/s* in Eq.
(10) which is due to the normalization of the relativistic

in the denominator of Eq12). Neglecting here the influence
of the Pauli operator will lead to an underestimation of the

spinor basis and the incoming flux. This phase space factdgiorresponding cross sections. The real and imaginary parts of
reduces the in-medium cross section by the order othe T matrix are related to the reaction matrix 2]

(M*/M)? at small momenta.

Besides the fact that one deals with dressed quasiparticles
the essential feature of the Bethe-Goldstone or Bethe-
Salpeter equation, respectively, is the occurrence of the Pauli

A R

71'QAR2
eT=———-—,
1+ (7RQ)?

T lrRr P

operator. This means that the vacuum relations which con-

nect the phase shifts with the real reaction matixare
modified by the Pauli operator. In a schematic notdtite
in-medium reaction matriR is connected to th& matrix by
(10,32

R—T=imRQT, (12)
which leads to a modified optical theorem
~ R 2 ~

ITI? =(mQ)~ImT]. (12)

"1+ (7RQ)?

For clarity of notation we suppress in Eqd.1)—(13) factors
M*/E* which can be absorbed inandT [10] and thes function

originating from the principal-value treatment of the Blankenbecler-

Sugar and Thompson propagators, respectively.

We emphasise this point because, as will be seen in the fol-
lowing, we find the in-medium cross sections to be substan-
tially less suppressed at low momenta than found by Li and
Machleidt[21] whereas we obtain good agreement with their
results at high momenta. The reason for the deviations can be
traced back to the different procedures used to determine the
cross sections. As discussed in Sec. Il the squared matrix
elements(7) provide an unambiguous and direct method to
extract the cross section. To determine phase shifts first has
to be done with caution since the occurrence of the Pauli
operator modifies the corresponding phase shift relations in
the medium{16]. If neglected, as done in the approximation
used in Ref[21], this effect leads in particular at low mo-
menta to an underprediction of the cross section. To illustrate
this effect in Fig. 4 we investigate the influence of the Pauli
operator on the in-mediump cross section. For a fair com-
parison the densityki=1.4 fm™ 1) as well as the value of

M* is chosen as in Ref21]. One curve in Fig. 1 is obtained
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by switching off the Pauli operator in the Thompson equation 10 . T

(1), i.e., settingQ=1. It is clearly seen that the influence of — k=

the Pauli operator leads even to an enhancement of the cross 8 L k,=1.1fm

section at momenta below: 180 MeV compared to th€ === k=134 fm-

=1 case which is due to the occurrenceQin the denomi- B ——k :; im

nator in Eqs.(12) and(13). As expected, at very small mo- = 6 ~m

menta the presence of the Pauli operator leads to a significant )

suppression of the cross section. One should, however, keep % 4

in mind that the Pauli operator acts here only on ithter- B

mediatestates in the Thompson equati@) and not on the ©

final states. Thus full Pauli blockin@=0 reduces the full 2 =l

matrix to its Born partV. In the transport approach, on the - TEeed

other hand, the Pauli blocking prevents also the scattering . . . . .

into occupied final states. Thus Fig. 4 refers only to Pauli 0 0 30 60 90 120 150 180
effects in the intermediate states, but demonstrates the im- O, [deg]

portance of accounting properly for the Pauli operator in the c.m.

in-medium optical theoren(i2). FIG. 2. Differentialnp in-medium cross section at fixed relative

In the following we consider the in-medium cross sectionse. m. momentum|q| =342 MeV (252/M =250 MeV) at various
at four different Fermi momente:=1.1, 1.34, 1.7, and 1.9 densities. Experimental data frof4] for the free scattering are
MeV, which corresponds to densitiesp=0.090, included.

0.1625, 0.332, and 0.4633 fm. For simplicity we denote
these densities in the text as pg5 po, 2pq, and Jpq al-
though these values do not exactly correspond to multiples (ﬁ
po=0.1625 fm 3. Again all calculations are performed us-
ing the Bonn A potential. The in-medium malgs*® entering
into Eq. (100 has in our calculation the value$*

o0, and Zpg, and also at g, the cross section was found to

e enhanced at forward angles compareg;toGoing higher

in density ($() we find this effect even more pronounced.
While the cross section stays now almost constant at back-
ward angles, it is strongly enhanced at forward angles. How-
:.766'6' 646.7, 433.6, and 310.1 MeV. These values arBver, at P, the cross section is highly anisotropic and domi-
slightly larger than those of Ref§21,10. Thus we expect |\ 40 1y ap-wave component. Here we see a suppression of
also slightly larger values for the in-medium cross section, i igher partial waves with increasing density. Apg3one
particular at low momenta, which are due to higher values cl’-heeds partial waves up to at ledst6 to approximate the
the kinematical factor1*)#/s*. The reason for the differ- full result (J=12), at 2, the partial waves<4 are almost
ent effective masses lies in different solution techniques foEufﬁcient and at;’a theobehavior is like as-+p wave with

the Thompson equatiail). As discussed in Sec. Il, we apply J=1 Fidure 3 shoows the same fpp scattering. Again our

a refined projection scheme in order to transform Thma- resuI.tS are in good agreement with the finding.s of R2f]

trix from the two-particle c.m. frame to the nuclear matter, "o "\ _ 1 -hannel 0p) the cross sections are gene.fally

rest frame where the self-energy compond@jsare deter- . . . o .
mined[12.13. In the medium the on-shell matrix (1) de- more isotropic than in tha@p channel. With rising density

pends on three variables: the relative momentyraf the

initial states, the scattering ange and the center-of-mass 10 T J
momentumP of the two-particle c.m. frame relative to the q=342MevV | — k=0
nuclear matter rest frame. As in Reff81,16,17 we consider - Ke=l1fm
only the case where the two-particle c.m. frame and the 81 -om k=134 fm -7
nuclear matter rest frame coincide, i.B50. = _— T I;Ff:'; 2:1 1
In Fig. 2 the differentiahp cross section at the different =2 6t s Ll i
densities is shown at fixed relative momenturq| E
=342 MeV which in the vacuum corresponds to a laboratory a ~._ 1
energy ofE;;,=29%/M =250 MeV. The vacuum definition 2 4 \\
of Ejp, Was used in21] to compare the cross sections at -g __________ — :
different densities. The presence of the medium tends to I e sl il
make thenp differential cross section more isotropic. At T i
backward angles the cross sections are decreasing with den-
sity. At forward angles the behavior is more complicated: At 0 L
moderate densitiesoE& 0.50¢ and lpg) the cross section is 0 30 60 90
reduced but at high densitiep€2p, and J,) a strong @c.m. [deg.]

enhancement of the forward scattering amplitude can be ob-

served. It is worth noticing that in this energy range we are in  FIG. 3. Differentialpp in-medium cross section at fixed relative
good agreement with the results obtained by Li andc.m. momentum|q|=342 MeV (29%/M =250 MeV) at various
Machleidt[21]. Similar results have been obtained atdd.5 densities.
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FIG. 4. Differentialnp in-medium cross section at laboratory FIG. 5. Differentialnp in-medium cross section at fixed relative

energyE,(p) =250 MeV at various densities. c.m. momentumqg| =342 MeV in the vacuunfupper curvesand
at ke=1.34 (pg) (lower curves. The contributions from the real

the cross sections are first decreasing 4§.%,) and then  part of theT matrix are shown separately.
increasing. At o we observe a dramatic increase of the
cross section at forward angles. In the cross section the  payli operator. This effects is maximal at low momenta and
contributions of higher partial waves are reduced with grow-igh densities. Whery lies below the Fermi surface the
ing density; e.g., apo partial waves up td<4 reproduced jmaginary part ofT vanishes completely. Thus, Pauli block-
the full result quite well whereas atpg only contributions  jng in the intermediate states makes the cross section more
from J<3 are relevant. isotropic.

The peculiar behavior atg seen in Figs. 2 and 3 can be  |n Figs. 6 and 7 we show the total in-mediurp andpp
understood from the presence of the mean field. In Figs. 2ross sections in the considered density rangp 9-3p, as
and 3 we investigated the density dependence of the crogsfunction ofE,,,, Eq.(14). Using this quantity the scale is
sections at an equivalent relative c.m. momentymThis  considerably stretched compared to the vacuum expression
does, however, not correspond to equivalent energies. At fiqu/M (used in[21]). There are two major aspects to be
nite density the laboratory energiuy(lal,p)=E(lal.p)  noticed: At high energiesE, ;=200 MeV we find good

—M is given by agreement with the previous calculations of R&fl]. For
np as well aspp scattering the cross sections reach
292 asymptotic values around 15-20 mb. At high densities the
Elab:W"_Es_EO (14 cross section has the tendency to rise again with increasing

laboratory energy. This behavior is even more pronounced in

and is therefore strongly modified by the presence of the
mean field. At high densities the energy scale is stretched by 1000 T - - T -
the decreasing effective mabt*. This effect is responsible \ — k=00
for the suppression of higher partial-wave contributions to AU U R k=Ll
. . . . LY --- k=134 fm
the differential cross section aboveRif one compares the N ki fm™
cross sections at identical c.m. momenta but at essentially Y . k;wfm-l
different incident energies. 100 .
To illustrate this effect in Fig. 4 we show the density
dependence of the differentialp cross section at the same
laboratory energye,,,=250 MeV. At comparable energies
rather than comparable c.m. momenta the difference in the
differential cross section gi, and 3y is how much less
pronounced. 10
The suppression of the in-medium cross section at for- . . . .
ward angles which occurs at higher densities can be under- 100 0 100 200 300 400 500
stood from Fig. 5 and Eq(13). This figure illustrates the E . [MeV]
influence of the Pauli operator and the imaginary part of the ab
T matrix. It is seen that gt the imaginary part off which FIG. 6. Totalnp in-medium cross section at various densities as
contributes in the vacuum by about 50% to the forward scata function ofEp). In addition the results of21] (squares for
tering amplitude ¢=0) is now strongly suppressed by the the free cross section are shown.

1

S,, [mb]
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1000 y - - y - =1\/s*=E*(q), these states are off energy shell. To obtain
— k=0 an impression as to how the off-shellness affectsTHneatrix
""""" k=11fm " amplitudes we consider first the matrix elements. In the on-
T e shell case the cross sections follow from the squared matrix
. k:=1:9 fm™ element$T(q,q)|? by Eq.(10). The squared matrix elements
100 L% |T(p,q)|2=f|T(p,q,6)|>dQ are also those quantities which

enter directly into a generalized transport equation as transi-
tion amplitudes for off-shell scatterin@7]. In that case it
makes more sense to speak in terms of transition amplitudes
than in terms of cross sections. The latter are obtained from
the transition amplitudes by integration over the final state

c,, [mb]

10 | 1 spectral distributions. Thus, the cross sections depend cru-
cially on the spectral width of the particles whereas the tran-
_100 0 100 200 300 400 500 sition amplitudes themselves are independent of the spectral
Elab [MeV] functions.

In Fig. 8 we show the isospin-averaged matrix elements

FIG. 7. Totalpp in-medium cross section at various densities as| T(P,)|? for NN scattering as a function gb and g at
a function of Ep). In addition the results of21] (squaresfor ~ Nnuclear matter densities @, po, 2po, and Jo. The am-
the free cross section are shown. plitudes|T|? are given in fnft and have to be multiplied by
the factor (27)® (due to our normalization of th& matrix)
the proton-proton channel and has been observed by oth¥fen they are inserted into ECLO) to obtain cross sections.
groups as wel[18,21]. The diagonal p=q) on-shell elements correspond to the
At low energies the in-medium cross sections are Considtota.l cross section. First of a”, it is seen that the amplltudes
erably less suppressed than observed in Rt} One rea- | 7| show the same behavior as the corresponéimgshel)
son is our somewhat larger values for the in-medium masg;foss sections, namely, a general decrease with momentum
but this effect is not sufficient to explain the deviations at@nd density. In the cross section this tendency is just en-
low energies. As illustrated by Fig. 1 the differences can bd1anced by the kinematical factdd*“/s* which decreases
understood by the low-density and high-momentum approxiwith density and also with momentum. _
mation made in[21] which neglects the influence of the  The off-shellness of the final states now given by
Pauli operator in the optical theorem. Besides this point, at s
0.504 we see a small additional enhancement ofrtpecross Aw=E*(q)—E* (p)zq -P (15)
section around an energy of 15 MeV which is not present in 2M*
the pp channel. A much stronger enhancement of the cross
section at low densities has been observed by éfmal.[17].  which is maximal perpendicular to the diagonal. It can be
In the finite temperature approach [df7] this critical en- seen from Fig. 8 that at low momenta the matrix elements
hancement is attributed to the onset of superfluidity. Cruciabre only weakly affected by the fact that the outgoing states
for such a superfluid state are contributions from hole-holeare off energy shell. This does not mean that the matrix ele-
scattering in the Pauli operator which are absent in the staimments do not change going away from the on-shell point.
dard Brueckner approachsed herg However, as discussed Indeed, the variation of the matrix elements is considerable
in [35] a signature of a bound pair state can appear at lovas will become even more clear further on. However, the
densities even when hole-hole scattering is neglected in thdependence of the matrix elements is nearly symmetrig in
Pauli operator. In the present calculations such a resonancendp, i.e.,
like enhancement of the cross section is only seen inl the
=0 amplitudes which correspond to the quantum numbers of IT(p.a)|?=(T(q,p)|?, (16)
the deuteron, i.e., thdS;, 3D, and the®S;-3D; transition
channels. Therefore the low-density enhancement ohne a@nd thus not strongly affected by the off-shellness of the

cross section can be interpreted as a precursor of a superfluf4itgoing states. In particular in the low-momentum region
state and supports the findings[86). the matrix elements fall off symmetrically with increasing

momentgp and/org. Only at the highest density ofg3 is the

asymmetry rather pronounced. The off-shell variation of the
IV. HALF OFF-SHELL SCATTERING outgoing states leads here to a resonance structure around
g=250 MeV where the amplitudes increase with different
strengths inp and q directions. The off-shell behavior is

In the following we consider the case of half-off-shell similar in thenp andpp channels, except that the resonance

Scattering. This means that the initial states with c.m. MOstructure at 30 is more pronounced in the latter case. The
menta+ g are on their mass she®* (q) = Vg?+M*2. How-  somewhat stronger off-shell dependence offipescattering
ever, now the momenta of the final stateg can vary inde- at high densities is also reflected in the stronger reduction of
pendently, i.e.|p|#]|q|. Since the requirement of energy the corresponding total cross section shown in Figs.
conservation fixes the final energigs,={p,,*p} to p, 11 and 12.

A. Matrix elements

024003-7
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|T|2 0.008
0.006
0.004

0.002

p [MeV 300

400 400

PHYSICAL REVIEW ®4 024003

krp=134fm™!

|T|20.ooa
0.006
0.004
0.002

|T|20.ooe
0.006
0.004
0.002

p [MeV 300

400 400

FIG. 8. Squared isospin averaged half-off-sfethatrix element$T|? in [fm*] at various densities. The initial states with relative c.m.
momentumg are on shell, and the final states with relative c.m. momemiare off shell.

In order to obtain a more quantitative impression of thetrix elementss| T|? from the on-shell point is shown at fixed
off-shell dependence next we investigate the deviation of thgalues of the on-shell momentugs= 100, 200, 300, and 400
amplitudess| T|? from their on-shell values as a function of MeV. First of all we see that the variation of the amplitudes

the off-shellnesséw of the final states.s|T|? is thereby
defined as the relative deviation, i.e.,

IT(q,60)|°~|T(q,50=0)|?

8|T|?=
|T(q,6w=0)|2

7

is pronounced. Within the range étv=*+50 MeV the ma-

trix elements can easily vary by more thari00%. Second,

we find that the patterns are similar at moderate densities
0.50¢ and py but become essentially different at large densi-
ties p=2p,. Thus, the off-shell behavior reflects a strong
medium dependence. The systematics of the different pattern

For a better comparison of the different densities the variablés, however, quite complex.

dw, i.e., the energy shift of the final states with momehta

Let us first consider moderate nuclear matter densities. At

relative to their on-shell energies, is scaled by the effectivdow momentaqg the amplitudes show an extremely strong

mass:

*

5= [E*(Q)~E*(p)]. 18)

The range for the variation obw is constrained by the
kinematical limits of our calculations, i.e., <Op,q
<400 MeV. The symmetric falloff witlp andq in the low-

variation around the on-shell point which reflects their steep
and symmetric fall off(see Fig. 8 As already mentioned,
this results in a strong suppression at negate and an
equally strong enhancement at positise. In the high-
momentum region the variation of the amplitudes is much
weaker which results in a smoother and less pronounced de-
pendence ondw. With increasing density the situation
changes drastically and is even reversed at lgrgeow the

momentum range which is reflected in Fig. 8 implies alreadyamplitudes are strongly enhanced in the negafiweregion

the following tendency: Fop<gq, i.e., Sw>0, one expects
an enhancement of the amplitudes, i&T|?>>0, whereas

and reduced at positivBw. This reflects the asymmetry of
|T|? around the on-shell diagonal seen in Fig. 8 in the high-

for p>q, i.e., dw<0, one expects a reduction of the ampli- momentum range.
tudes. For small values df this behavior is clearly seen To summarize, the half-off-shell matrix elements show a
from Fig. 9. There the deviation of the isospin-averaged mapronounced density dependence. At moderate densities, how-
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- k=11 fm" j
05 J :
£
e S // 0
E 0F o ;_ - —
2=} 7
J — 100 Mev
05 a— 200 MeV |
-------- =/ -~ 300 MeV
—- 400 MeV

0.5
E i |
o

-0.5 -

_1 1 1 1 1 1 1 . 1 X 1 1 1 1 n 1 L 1

-50 0 50 -50 0 50 -50 0 50 -50 0 50

dw [MeV] dw [MeV] dw [MeV] dw [MeV]
FIG. 9. Relative deviation of the isospin-averagedatrix el- FIG. 10. Relative deviation of the isospin-averaged approxi-

ementg T|? from their values at the on-shell point as a function of matedT-matrix elementgT|?, Eq. (19), from their exact off-shell
the off-shellnesw of the final statess|T|? is shown for various values as a function of the off-shellness of the final statess| T|?
densities at fixed incoming relative momergas 100, 200, 300, is shown for various densities at fixed incoming relative momenta
and 400 MeV. of q=100, 200, 300, and 400 MeV.

ever, the dependence on the incident on-shell momgatal ~ from the exact resultT(p,q)|? are shown as functions of
the final momenta which are off shell is to a large extent dw, again for fixed values af.

symmetric inp andg. This implies that the matrix elements

are not too much affected by the shift to off-shell energies B. Cross sections

but are mainly determined by the absolute values of the mo-
mentum statep andg. As a consequence, the off-shell ma-
trix elements can be approximated with an accuracy of abo

A cross section is obtained from the transition amplitudes
LJtT|2 by division through the incoming flux,

10-30 % by the on-shell points in the following way:
oy P g way B C 80 3 TR i (R
12— - ’
5 — 0, = 1 2. 2 E*(01)E*(02) E*(01)E*(02)
IT(p.*=[T(a.a)l%, a=\/5(p*+a®), (19

and multiplication by the final state phase space factors,

which follows from the symmetry assumptioh6). At large *4
nuclear matter densities this symmetry is more strongly vio- dg= (2m)* 8%+ 02— P1—P2)
lated, i.e., by about 20—40 % apg. Nevertheless, in view F*

of the extremely large variation of the matrix elements with

4 4
dw, ranging from almost complete suppression to an en- < |T , d'ps A d"p, A
hancement of more than a factor of 2, the accuracy of this IT(P1P2, 01| (2m)* (pl)(zw)4 (P2).
symmetry assumption is quite good in the considefagd (22)

interval. It can be applied in a straightforward way, e.g., in

transport calc_ulations, and requires only knowledge of the'I'he 5% function ensures energy-momentum conservation. In
on—sh_ell matrix elemgnts. However, apg3the amp]ltudgs the general case where the final stgtesp, are off shell, A
are highly asymmetric irp and q and thus approximation represents the full positive-energy spectral function. In the

(19) does no longer hold. Here an accurate description re(:1uasiparticle approximatioA reduces to the on-shell condi-

quires knowledge of the exact matrix elements. tion
Figure 10 illustrates the validity of the symmetry assump-
tion (19) and the strength of the explicit dependence of the A(p)=2m8(p*2—M*2)20 (p}). (23)
matrix elements on the energy shiftv. There the relative
deviations Thus the spectral function fulfills the sum rule
T(9,9)>—=|T(p,a)|? d 1
5|T|§ym=| (q.a)°~| (Zp 9)l 20 f Po p(p)= _ 24
I T(p,a)] (2m) E*(p)
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Here we choose spectral functions of a Breit-Wigner form Thus A satisfies the sum rule and in the zero-width limit

1
A(p)=2m

2pol’
T (p*2—M*2)24 (pl)?

(25

I'—0 the quasiparticle approximatid@3) is recovered. In
the two-particle c.m. frame the integré22) can easily be
evaluated. The total cross section is then given by

do=

2u dﬂf 2dp|T(p,q,6)|?
A s (sr _amr) ) PP

Xf dpo(2E* (q) — po) pol™?
({[2E* (@)= pol®~ (p?+M* )} 2+ [2E* (a) — po T ) (Pg— PP~ M*2)?+pgT'?]’

(26)

and 12 that the off-shell dependence of the total cross section
is moderate. The averaging over the Breit-Wigner distribu-
tions leads to significantly smaller off-shell effects than are
seen in the scattering amplitudes. Compared to the on-shell
M* value the cross sections are generally reduced, in the case of
r=- B ( )Im S4(p,p)+IMZy(p,p), (27 1=40 MeV by about 15-20%. At small nuclear densities
P this reduction is most pronounced at low momenta whereas

and depends on the density and momentum. In the presefit Nigher momenta there is no sizable effect. At large densi-
approach” follows from the imaginary part of th& matrix. ties the reduction is more pronounced at high momenta. Only

It can, however, only serve as an estimate for the full particld®" 1arge values ofl’=100 MeV (not shown hergcan a

width inside the medium. As discussed in Sec. Il the Bethe_reduction of the cross section of more than 50% be reached.

Salpeter equation is solved in the quasiparticle approximaPifferences in the off-shell structure of theN interaction,
tion. For the determination of tHE matrix this treatment is €9 USing Bonn C, do not lead to essentially different re-
justified since the conditioﬁ<Esp=E* -3, is readily ful- sults. This is consistent with the observations made in Ref.

filled. However, since the standard Brueckner-Hartree-Fock?1] Where it has been demonstrated that the on-shell cross

(BHF) approach accounts only for the particle-particle corre-Sections are not much affected by the use of different param-

lations of the Brueckner hole-line expansion Imvanishes ~ €trizations like Bonn B or C.
for momenta below the Fermi surface due to Pauli blocking.
Long-range correlations which are usually treated in random- 150 T

which reduces to expressighO) in the zero-width limit. As
discussed i3] the widthI" is determined by the imaginary
part of the self-energy,

-1
phase-approximation-typgRPA-type approaches by a lad- kg=1.1 fm
der summation in the particle-hole channel contribute to the ;=(1)OM =

- =10 Me

spectral width[36], but are not taken into account in the =
standard Brueckner-Hartree-Fock approach. RPA correla&
tions lead further to a depletion just below the Fermi surface &
and an occupation of states above the Fermi surface. Thus
the Dirac-BHF(DBHF) results forl” do not represent the full
width but give a reliable estimate only at momenta well
above the Fermi surface where particle-particle correlations
can be regarded as the dominant contribution§ tdn the
considered density and energy raidgeanges from about 10
MeV at 0.5, to more than 40 MeV at &, as the outcome of
the present DBHF calculationi43].

Thus, the cross sections shown in Figs. hp) and 12
(pp) give an estimate for the off-shell dependence of the
total cross section. For this purpose we choose two typical

50 |

values forI" which cover the range of spectral width in 0
nuclear matter as is predicted by DBHF calculations, L'e.,
=10 MeV and 40 MeV. The present results are obtained
with a constant, i.e., momentum-independéhtfor a better

50 100 150 200 250
2¢*/M [MeV]

50 100 150 200 250 300

2¢*/M [MeV]

FIG. 11. Totalnp cross section at various densities as a function

comparison of the various densities the cross sections a 2¢2/M. The quasiparticle approximatioti’ € 0) is compared to
shown as a function of /M which corresponds in the the case where the final states have a finite spectral widifi of
vacuum to the laboratory energy. It can be seen from Figs. 1% 10, 40 MeV.
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————T— of the scattering amplitudes is required when one intends to
k=11fm" | k,=1.34 fm™" ] go beyond the quasiparticle approximation in order to obtain

60 —TI=0 a more realistic description of transport phenomena for par-
R --- I'=10 MeV ticles with finite width. In a dense hadronic environment cre-
e T=40 MeV ated, e.g., in heavy ion collisions also “stable particles” like

nucleons acquire a finite spectral width. Throughout this

work we applied the Bonn A potential as the nucleon-

R — nucleon interaction since this potential yields the most rea-
""""""""""""""" T sonable saturation properties for nuclear matter.

Concerning the on-shell scattering we find a qualitative
agreement with the previous investigations of Li and
Machleidt[21], however, less reduced in-medium cross sec-
tions at low energies. The reason therefore lies in the fact
that we account for modifications of the optical theorem due
to the presence of the medium which have been neglected in
the approximation made if21]. In the np cross section an
additional low-density enhancement appears which can be
1 interpreted as the precursor of a superfluid state. The present
L L approach was then extended to the case where incoming and
50 100 150 200 250 50 100 150 200 250 300 outgoing momenta of the scattered nucleons can vary inde-

2q"/M [MeV] 2¢°/M [MeV] pendently and—due to energy-momentum conservation—the
final states are off energy shell. The resultifignatrix ele-
ments or transition amplitudes show a strong variation
around the on-shell point. The shape of the transition ampli-
tudes depends, however, mainly in a symmetric way on the
incoming and outgoing momenta. The fact that the final
V. SUMMARY states are off shell and _the incoming ones on ;hell plays
thereby a minor role. This allows one to approximate the

In the present work we investigated the in-mediumhalf-off-shell matrix elements in a suitable way by their on-
nucleon-nucleon cross section within the relativigirac) shell values. Such an approximation works well at moderate
Brueckner-Hartree-Fock approach. We considered both omuclear matter densities but at large densities precise knowl-
shell scattering and the more general case where the finaldge of the amplitudes is required. In a conservative estimate
momenta are allowed to be off energy shell. The in-mediunfinite width effects lead to a reduction of the total cross sec-
cross sections can serve as input for transport calculation afons by about 20% compared to the on-shell scattering. Off-
heavy ion collisions. Information on the off-shell dependenceshell effects are more pronounced at larger nuclear densities.

FIG. 12. Totalpp cross section at various densities as a function
of 2g%/M. The quasiparticle approximatiof’ €0) is compared to
the case where the final states have a finite spectral with' of
=10, 40 MeV.
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