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Binomial level densities
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It is shown that nuclear level densities in a finite space are described by a continuous binomial function,
determined by the first three moments of the Hamiltonian, and the dimensionality of the underlying vector
space. Experimental values f&tMin, %%Fe, and®Ni are very well reproduced by the binomial form, which
turns out to be almost perfectly approximated by Bethe’s formula with backshift. A proof is given for which
binomial densities reproduce the low moments of Hamiltonians of any rank: A strong form of the famous
central limit result of Mon and French. Conditions under which the proof may be extended to the full spectrum
are examined.
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The vast majority of studies on level densities rely onwhich reduces to a discrete binomia,'l‘,) (if x=n/N=ne/S,
Bethe’s formulg1]: with integern.
It is often convenient to introduce=p/q. Then
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Although only two parameters are involved for a given . .
g y b g whered, is the number of states &t=0. To determineN, p,

nucleus—and a third, the spin cuttoff, for work at fixed an- )
gular momentuml—their dependence on mass number, ex_andS(or ¢), Egs.(2) for SandE, cannot be used, since the

citation energy, and shell effects makes their determinatiofPECtrum Is not known. We have to rely instead on the mo-

delicate (see[2,3] for recent work and earlier referenges ments of tKhe Hamiltoniar#, .ihe'h averages giyen by the
The problem is that the validity—and hence the success—dfaces of}t™, to be equated with the corresponding moments

the formula goes well beyond the independent particle as2f Po(X.N.p,S), which for low K are the same as those of

sumption made in deriving it, and one is left wonderingthe discre_tc binomiglEgs. (11)]. The necessary definitions
about the true meaning of the parameters. The shell mod&@nd equalities follow:
Monte Carlo method provides an alternative approach to -1 Ky— /1/K _ /1 _ N
level densitie$4 —6] whose reliability is now establishgd]. A7t =(H7), Be=(HT), Me=((H-Eo)"),
The problem is that the calculations are hard. M B
To combine the simplicity of Eq(l) with a parametriza- 2= M2 MK: K 71:/\73: a-p
ticn of_ clear microscopic origin, we propose a cont_ir_nuous ' K VN pq’
binomial form to describe the shell model level densities. It

will be shown to work well with experimental data, to repro- — 1-6pq N

duce strikingly Eqg.(1) over a wide range of energy, and to Y2=My—3= Npq ,  d=do(1+p/q)". ®)
provide a strong form of the central limit theoref@LT),

generalizing the famous result of Mon and Frertbtf) [8] N andp can be extracted either through the equations for
for Hamiltonians of arbitrary rank. v1 andy,, or through those foty; andd. The former option

Consider a system ofn particles moving inD orbits, is unambiguous, and it has the advantage of warning us that
spanning a space of dimensionalityTo specify a binomial  the binomial form is doomed i,/y>1. The latterwhich
densitypp(x,N,p,S) three parameters are needdtithe ef- e adopt hergis simpler, and physically cogent for the natu-
fective number of particles, the asymmefryand an energy ral choiced,=1, which locates the ground state xat0.
scale e. The span(distance between lowest and highestonceN andp are known S= (No?/pq) 2 follows. The cen-
Eigenstat% CentrOidEc-, Variance(fz, and the adimensional troid EC provides the energy reference. With the Simp|e
energy variables are given by choice, the predicted ground state is &= —Sp, which
may not coincide with the exact value, usually taken as ori-
gin. Therefore a shifs may be necessary, as in Ed).

Let us apply these prescriptions ¥avn, 56Fe, and®Ni,
for which data are availabl®]. There is also a Monte Carlo
calculation that does very well for the first of these nuclei
[5]. The space chosen by Nakada and Alhassid isphe
+gg, shells. The dimensionalities are given by (2)(?)

, (3 whereD=30 andzn are the numbers of active protons
and neutronge.g., z=8, n=12 for ®Ni). In general, to

E
S=Ne, E.=Npe, 0'2=NDCI82, X=§, (2

wherep+q=1. Callingx=1—x, the density is

'(N+1)
[(XN+ 1) (XN+1)

- N
pb(erip!S):pXNqXNd g
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FIG. 1. Experimental, binomidlEq. (3)], and Bethe[Eq. (1)] FIG. 2. Experimental logarithmic level densities fNi, com-

logarithmic level densities if°Mn and Fe. For parameters see Pared with binomial ones calculated in two spaces.

text.
finite interval, to have an idea of its range, the space has been

proceed, we would have to calculate the three lowesenlarged by adding thes, ands,, shells, at 3 MeV below
moments of the Hamiltonian, a feasible task even in enorf7,. The parameters found for the smaller spabeSA)
mous spaces. Here we simplify matters by making first the=(49,185,0.2), becomé5,285,0.8 for the larger one. The
neutral choicep=0.5N=Ind/In 2=(42,44,49 for the three  densities coincide nicely in the region of interest. Discrepan-
nuclei in the order above. Then, we bypass the calculatiogies become appreciable after 25 MeV, which provides a
of o and estimateS directly. A first approximation comes preliminary indication: binomial densities can be trusted in
from the single particle energies at (0,6,7,7,10) MeV foran interval of ~0.155 above the ground state. It is very
(f712,P312,T512,P112,9912) , respectively, for which the differ- much in the logic of the construction, that knowledge of the

ences between highest and lowest states come @vel density up to a given energy, can be extended to higher
(138,148,17p MeV for (*Mn,>Fe Ni). Correlations in-  energies.

crease these numbers by an amount that ranges from 10 MeV Tne first part of the program is now successfully com-
for *Ni to 20 MeV for *Cr, according to exact calculations pjeted.

in the pf shell [10]. Hence the estimat&=(153+5,133 To understand in what sense binomial and Hamiltonian
+5,185+5) for the trio. FixingN and allowingSto vary  mjoments coincide we derive the general form for both. The

within the error bars, the remaining uncertainty comes|owing notation will prove very usefuld is an arbitrary
from the position of the ground state, which is also aIIowedarraw

to vary within £&/2~1.5 MeV. Numbers that fall very
comfortably  within the assigned error barsS
=(150,165,185A=(1.15-0.40,0.20) MeV, define bino-
mial densities that agree very well with the experimental [a]';&z E Qup - - Aap AT Q. (6)
ones[11] (where the error bars are apparently smaller than @A
the original ones i9]).
Figure 1 gives the experimental points for the first two
nuclei, the binomial$whose parameters have been estimatedf @; can takeL values, there are(L—1), ...,L—1+1)
above, and fits to the binomials using Bethe's formula yield- =L terms (Boole's notation. If the indices are ordered,
ing (4a,A)=(21.5—15) and (21.3-3.4) for ®Mn and @1<ay, ..., wedefine analogouslya]. =[a],/I!.
ke, respectively. For the binomial case we start from the standard result
The near identity between binomial and Bethe forms ex-
tends to~40 Mev. Therefore, the inmense experience accu-
mulated by fitting Eq.(1) to the data can be reanalyzed in

’r\: et(anp):(peqt_qufpt)N,

terms of Eq.(3) whose phenomenological potential has been =
illustrated by the simple exercise above. Its efficiency in )
dealing with rigorously calculated moments will be demon- 51K
strated in[13]. M :<_> Mt = MK
The near identity between Bethe and binomial forms also K at (Ole=o li=o0-

has a mathematical significance that is discussed in the para-
graph that follows the one containing Ed5).

For ®Ni in Fig. 2, instead of showing Ipg—which fits ~ To evaluateM , consider the multinomial expansidbeib-
obviously as well as in Fig. 1—a different check is proposednitz rule) for the Kth t derivative of a product oN factors
As our finite space can provide reliable densities only in &h,,
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[kl

N [K] hlt [kz] [h[S]]'j
{H ha't} E T ky! kz “.ZS,IS K!H (s
his! Is
=> k] ()2 , X sle=K. (8
s (sh'sl!

In the second equality, thk, factors with commork,=s
have been regrouped [i(*!]'s and then the original order-
ing among the factors has been rela¥édbtations from Eq.
(6).] Note also thatobviously = =N
Identifying h,, = pe¥'+qe P', we have

hil=palq> te+(—)%p° te 1. )
Calling hg= at o (hp=1h;=0), andN—Iy=I, the mo-
ments follow from Eq.(8), and noting thatN)=N!1/(N
—1)I=N!/l1g!, (the N! coming from the equality of all the
hat factors), the result is

e
=2,

n

M= K'E NOTT ((IhS) (10)
S S|

The dominant terms maximizk subject to the conditions
>sls=K,2l;=1<N. Keeping contributions up t®(1/N),
the normalized momentsM/d®,0?=Nh,) for K=2k
andK=2k+ 1, respectively, are

N® 1 k®h, k(3)h§
—(2k—1)!1| 1+ + ,
NK ( ) (N=k+1)\ 6h3  9hd
(11)
N(k)(2k+1)n Khs
Nk " 3Nh3%

They will remain dominant as long &s< /N.

To calculate moments of a Hamiltonian, we writeX
=(2,1ha,t)'<. In the single particle case, =m,e,, So the
summands commute, and the multinomial expansioexis
actly the same as in Ed8), with derivatives] s], replaced
by powerss, and we have nO\@hS]'jz[sSmS]';. Sincem?,
=m,, and there aré factors, the number operators contrib-
ute asll;_y,;m,,, whose trace isn’/D() (it must be propor-
tional tom(", and unity at the closed shell in which tie
orbits are ful). Defininge=¢3D ! the moments for a one-
body (r=1) Hamiltonian follow:

|
D' [e°]2
M=K > mh— 1. (12
“ szl DO (sh'sll 42
In the dilute limit (m<D), D'/DM~1, and [eS]';

~(=2,€5)'s=(€%'s, the notation in MF, whose resyB] [Eq.
(7)] is identical to Eq(12) (thes=1 terms cancel sincH is
taken to be tracelessThe complete analogy with EQLO) is
obvious.
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To understand how to dispose of the conditiorkD, let
us calculater?(m) (usem=D—m):

@)
m m
2
+ = ———
gsam“ a;ﬁ S“S'Bm“mﬁ>m E “«D p@
£a

mm
“b-12p M

=

where we have added and subtracted the terms necessary to
eliminate the restrictiorw# B and remembered that ¢,
=0. Similarly, for the third moment we find

3
€y

D"

mﬁ(ﬁ—m)
(D-1)®

>

a

My = (14)

Under particle-hole transformatiofi.e., m—m), the even
moments are symmetric, and the odd ones antisymmetric,
which simplifies enormously the calculations. For example,
Eq. (13) follows from the argument that?(m) must be a
two- body operator that reduces to the correct value for

m,m= 1 More generally, the leading term foM
= M5 Y (0®(m)) must have the form

MMM D@1

@y (kDU =Fmi2k-1)!,

(15

which follows from demanding rankk2 symmetry in par-
ticles and holes, vanishing fon,m<k, and correct value at
m,m=k (i.e., d, '=k!/D®). The important point is that
F(m,k)=1 as long ak<m, i.e., as long as this term re-
mains dominant the moments are those of a Gaussian (CLT)
When the leading odd moments and subdominant even ones
are included we end up with an expression identical to Eq.
(11) onceN andp have been extracted as explained at the
beginning. Hence, we have proved that the level density for
a one-body Hamiltonian has binomial moments Kox /N,
a strong version of the central limit theord@LT is a state-
ment about the eveK-dominant term only
The near identity between Eq4) and(3) is an excellent
reason to expect that for single particle Hamiltonians the
binomial behavior extends to the full spectrum, since @y.
is a rigorous mathematical result that applies in this case.
For a Hamiltonian of higher ranl(HzEXyWXyZIZy,
whereZ, ,Zy create and annihilate particles, the operators
do not commute. Nevertheless, EGl) is of use in giving
the correct counting: there areK2 1)!! ways of contract-
ing H ?¥in k pairs,k(2k+ 1)!1/3 ways of contracting 2<**
in k—1 pairs, and one triple, etc. However, the contributions
of each term are different. In other words, for the dominant
term, say, the factotF(m,k) becomes extremely compli-
cated. The problem was solved by Mon and Fre@hHere
we give an idea of their result. For simplicity assume tHat
is a two-body operatorr(=2), and stay in the dilute limit.
Then the variance-?(m)=(H ?),/d,, must be
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) the absence of strong enough collectivity. Random Hamilto-
m® E Wi, nians fulfill this condition, and | propose to include them in a
a?(m)=——0%(2), o%2)= (16 larger class:A Hamiltonian acts as random if it does not
2 dz have strong enough collective components

Now consider{’H %), leading to three possible contractions, _ . The_re may be two reasons for the good performance of
written in MF as HHHH=AABB+ABBA+ABAB. The Pinomials in the nuclear case. One is the strong dominance
first two givem®(a2(2))2/4= (o2(m))?, but for the last one of the _sl_nglg particle field. The o_ther_ is the .Iack of sufficient
we havem®(¢2(2))2/4, which vanishes an=2. The gen- collectivity in the n_uclear HamHtpman. It is certainly not
eral result is that fom=2 and K =2k, only t,= kzkl)/k random, as it contains sizable pairing and quadrupole forces

terms survive, the Catalan numbers, i.e., the normalized mcg-lz]' However, they do not seem to be strong enough. A

ments of the semicircular density for Wigner's Gaussian c)r_quantitative estimate of the relative strength of the different

. . ~"components is given by?: we have already seen that the
thogonal ensemble. As increases the number of surviving _. . A
. . single particle contribution is far stronger than the two-body
terms increases rapidly so as to have agg(m,k)~1. art, and from[12] we know that in the latter, pairing plus
It is straightforward to apply similar arguments to the part, P 9p

other dominant and subdominant terius. we can com- quadrupole only contributes a fraction of the total, sufficient

bine the Mon-French analysis and the advantages of the ip give them a capital spectroscopic role but, apparently not

. X he possibility of distorting the binomial forms.
nomial geometry, to obtain a strong form of the CLT, seen to . . . .
. Lo The formalism is ready to examine the problem, which
apply generally to higher rank Hamiltonians.

will become even more interesting with the suggestion that

A hard question anses. Why stop the anaIyS|s at the IoV\f-|amiltonian matrices at fixed quantum numbers always have
moments? As mentioned, it is practically certain that for rankbinomial level densitie§13]

one the proof of binomial behavior must extend to the full
spectrum. The strong formal analogy between rank one and The author thanks Professor J. B. French for providing
higher should encourage the generalization. The catch is thatpme very early encouragements, G. Dussel for insisting on
more often than not, systems undergo phase transitions. Ake use of continuous binomials, and G. Maez Pinedo for
there is little risk in attributing them to some form of collec- the use of exact continuous binomials. | had some very use-
tivity, we can guess that the binomial forms will be valid in ful discussions with Y. Alhassid, V. K. Kota, and A. Poves.
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