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Binomial level densities
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It is shown that nuclear level densities in a finite space are described by a continuous binomial function,
determined by the first three moments of the Hamiltonian, and the dimensionality of the underlying vector
space. Experimental values for55Mn, 56Fe, and60Ni are very well reproduced by the binomial form, which
turns out to be almost perfectly approximated by Bethe’s formula with backshift. A proof is given for which
binomial densities reproduce the low moments of Hamiltonians of any rank: A strong form of the famous
central limit result of Mon and French. Conditions under which the proof may be extended to the full spectrum
are examined.
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The vast majority of studies on level densities rely
Bethe’s formula@1#:

rB~E,a,D!5
A2p

12

eA4a(E1D)

~4a!1/4~E1D!5/4
. ~1!

Although only two parameters are involved for a giv
nucleus—and a third, the spin cuttoff, for work at fixed a
gular momentumJ—their dependence on mass number, e
citation energy, and shell effects makes their determina
delicate ~see @2,3# for recent work and earlier references!.
The problem is that the validity—and hence the success—
the formula goes well beyond the independent particle
sumption made in deriving it, and one is left wonderi
about the true meaning of the parameters. The shell m
Monte Carlo method provides an alternative approach
level densities@4–6# whose reliability is now established@7#.
The problem is that the calculations are hard.

To combine the simplicity of Eq.~1! with a parametriza-
tion of clear microscopic origin, we propose a continuo
binomial form to describe the shell model level densities
will be shown to work well with experimental data, to repr
duce strikingly Eq.~1! over a wide range of energy, and
provide a strong form of the central limit theorem~CLT!,
generalizing the famous result of Mon and French~MF! @8#
for Hamiltonians of arbitrary rank.

Consider a system ofm particles moving inD orbits,
spanning a space of dimensionalityd. To specify a binomial
densityrb(x,N,p,S) three parameters are needed:N, the ef-
fective number of particles, the asymmetryp, and an energy
scale «. The span~distance between lowest and highe
eigenstates!, centroidEc , variances2, and the adimensiona
energy variablex are given by

S5N«, Ec5Np«, s25Npq«2, x5
E

S
, ~2!

wherep1q51. Calling x̄512x, the density is

rb~x,N,p,S!5pxNqx̄Nd
G~N11!

G~xN11!G~ x̄N11!

N

S
, ~3!
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which reduces to a discrete binomial, (n
N) if x5n/N5n«/S,

with integern.
It is often convenient to introducel5p/q. Then

pxNqx̄Nd5
lxN

~11l!N
d[lxNd0[d5d0~11l!N, ~4!

whered0 is the number of states atx50. To determineN, p,
andS ~or «), Eqs.~2! for SandEc cannot be used, since th
spectrum is not known. We have to rely instead on the m
ments of the HamiltonianH, i.e., averages given by th
traces ofH K, to be equated with the corresponding mome
of rb(x,N,p,S), which for low K are the same as those o
the discrete binomial@Eqs. ~11!#. The necessary definition
and equalities follow:

d21tr~H K!5^H K&, Ec5^H 1&, MK5^~H2Ec!
K&,

s25M 2, M̄K5
M K

sK
, g15M̄35

q2p

ANpq
,

g25M̄4235
126pq

Npq
; d5d0~11p/q!N. ~5!

N andp can be extracted either through the equations
g1 andg2, or through those forg1 andd. The former option
is unambiguous, and it has the advantage of warning us
the binomial form is doomed ifg2 /g1

2.1. The latter~which
we adopt here! is simpler, and physically cogent for the nat
ral choiced051, which locates the ground state atx50.
OnceN andp are known,S5(Ns2/pq)1/2 follows. The cen-
troid Ec provides the energy reference. With the simp
choice, the predicted ground state is atE052Sp, which
may not coincide with the exact value, usually taken as o
gin. Therefore a shiftD may be necessary, as in Eq.~1!.

Let us apply these prescriptions to55Mn, 56Fe, and60Ni,
for which data are available@9#. There is also a Monte Carlo
calculation that does very well for the first of these nuc
@5#. The space chosen by Nakada and Alhassid is thep f
1g9/2 shells. The dimensionalities are given byd5(z

D)(n
D)

where D530 and z,n are the numbers of active proton
and neutrons~e.g., z58, n512 for 60Ni). In general, to
©2001 The American Physical Society03-1
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proceed, we would have to calculate the three low
moments of the Hamiltonian, a feasible task even in en
mous spaces. Here we simplify matters by making first
neutral choicep50.5,N5 ln d/ln 25~42,44,49! for the three
nuclei in the order above. Then, we bypass the calcula
of s2 and estimateS directly. A first approximation comes
from the single particle energies at (0,6,7,7,10) MeV
( f 7/2,p3/2, f 5/2,p1/2,g9/2), respectively, for which the differ-
ences between highest and lowest states come
~138,148,170! MeV for (55Mn,56Fe,60Ni). Correlations in-
crease these numbers by an amount that ranges from 10
for 56Ni to 20 MeV for 48Cr, according to exact calculation
in the p f shell @10#. Hence the estimateS5(15365,133
65,18565) for the trio. FixingN and allowingS to vary
within the error bars, the remaining uncertainty com
from the position of the ground state, which is also allow
to vary within 6«/2'1.5 MeV. Numbers that fall very
comfortably within the assigned error bars,S
5(150,165,185),D5(1.15,20.40,0.20) MeV, define bino
mial densities that agree very well with the experimen
ones@11# ~where the error bars are apparently smaller th
the original ones in@9#!.

Figure 1 gives the experimental points for the first tw
nuclei, the binomials~whose parameters have been estima
above!, and fits to the binomials using Bethe’s formula yiel
ing (4a,D)5(21.5,21.5) and (21.3,23.4) for 55Mn and
56Fe, respectively.

The near identity between binomial and Bethe forms
tends to'40 Mev. Therefore, the inmense experience ac
mulated by fitting Eq.~1! to the data can be reanalyzed
terms of Eq.~3! whose phenomenological potential has be
illustrated by the simple exercise above. Its efficiency
dealing with rigorously calculated moments will be demo
strated in@13#.

The near identity between Bethe and binomial forms a
has a mathematical significance that is discussed in the p
graph that follows the one containing Eq.~15!.

For 60Ni in Fig. 2, instead of showing lnrB—which fits
obviously as well as in Fig. 1—a different check is propos
As our finite space can provide reliable densities only in

FIG. 1. Experimental, binomial@Eq. ~3!#, and Bethe@Eq. ~1!#
logarithmic level densities in55Mn and 56Fe. For parameters se
text.
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finite interval, to have an idea of its range, the space has b
enlarged by adding thed3/2 ands1/2 shells, at 3 MeV below
f 7/2. The parameters found for the smaller space (N,S,D)
5(49,185,0.2), become~65,285,0.8! for the larger one. The
densities coincide nicely in the region of interest. Discrep
cies become appreciable after 25 MeV, which provides
preliminary indication: binomial densities can be trusted
an interval of '0.15S above the ground state. It is ver
much in the logic of the construction, that knowledge of t
level density up to a given energy, can be extended to hig
energies.

The first part of the program is now successfully co
pleted.

To understand in what sense binomial and Hamilton
moments coincide we derive the general form for both. T
following notation will prove very useful (a is an arbitrary
array!:

@a#Þ
l 5 (

a1 . . . a l

aa1
, . . . ,aa l

, a iÞa j . ~6!

If a i can takeL values, there areL(L21), . . . ,(L2 l 11)
[L ( l ) terms ~Boole’s notation!. If the indices are ordered
a1,a2 , . . . , wedefine analogously@a#,

l 5@a#Þ
l / l !.

For the binomial case we start from the standard resu

M~ t !5(
n

pnqN2nS N
n Det(n2Np)5~peqt1qe2pt!N,

~7!

MK5S ]

]t D
K

M~ t !u t505M [K] u t50 .

To evaluateMK , consider the multinomial expansion~Leib-
nitz rule! for the Kth t derivative of a product ofN factors
ha,t

FIG. 2. Experimental logarithmic level densities for60Ni, com-
pared with binomial ones calculated in two spaces.
3-2
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F )
a51

N

ha,tG [K]

5 (
a,ka

K!
h1,t

[k1]

k1!

h2,t
[k2]

k2!
•••5(

s,l s
K!)

@h[s] #,

l s

~s! ! l s

5(
s,l s

K!)
@h[s] #Þ

l s

~s! ! l sl s!
, ( sls5K. ~8!

In the second equality, thel s factors with commonka5s
have been regrouped in@h[s] #,

l s and then the original order
ing among the factors has been relaxed.@Notations from Eq.
~6!.# Note also that~obviously! (sl s5N.

Identifying ha,t5peqt1qe2pt, we have

ha,t
[s] 5pq@qs21eqt1~2 !sps21e2pt#. ~9!

Calling hs5ha,t50
[s] (h051,h150), and N2 l 05 l , the mo-

ments follow from Eq.~8!, and noting thatN( l )5N!/(N
2 l )! 5N!/ l 0!, ~the N! coming from the equality of all the
ha,t factors!, the result is

MK5K!(
s,l s

N( l ))
~hs!

l s

~s! ! l sl s!
, s>2. ~10!

The dominant terms maximizel, subject to the conditions
(sls5K,( l s5 l<N. Keeping contributions up toO(1/N),
the normalized moments (MK /sK,s25Nh2) for K52k
andK52k11, respectively, are

N(k)

Nk
~2k21!!! F11

1

~N2k11! S k(2)h4

6h2
2

1
k(3)h3

2

9h2
3 D G ,

~11!

N(k)

Nk
~2k11!!!

kh3

3ANh2
3/2

.

They will remain dominant as long ask,AN.
To calculate moments of a Hamiltonian, we writeH K

5((aha,t)
K. In the single particle caseha,t5ma«a , so the

summands commute, and the multinomial expansion isex-
actly the same as in Eq.~8!, with derivatives,@s#, replaced
by powerss, and we have now@hs#Þ

l s5@«sms#Þ
l s . Sincema

s

5ma , and there arel factors, the number operators contri
ute as) i 51,lma i

, whose trace ism( l )/D ( l ) ~it must be propor-

tional to m( l ), and unity at the closed shell in which theD
orbits are full!. Definingea

s 5«a
s D21 the moments for a one

body (r 51) Hamiltonian follow:

M K
r 515K!(

s,l s
m( l )

Dl

D ( l ))
@es#Þ

l s

~s! ! l sl s!
s>1. ~12!

In the dilute limit (m!D), Dl /D ( l )'1, and @es#Þ
l s

'((aea
s ) l s[^es& l s, the notation in MF, whose result@8# @Eq.

~7!# is identical to Eq.~12! ~thes51 terms cancel sinceH is
taken to be traceless!. The complete analogy with Eq.~10! is
obvious.
02130
To understand how to dispose of the conditionm!D, let
us calculates2(m) ~usem̄5D2m):

K (
a

«a
2ma1 (

aÞb
«a«bmambL

m

5(
a

«a
2Fm

D
2

m(2)

D (2)G
5

mm̄

D21 (
a

«a
2

D
, ~13!

where we have added and subtracted the terms necessa
eliminate the restrictionaÞb and remembered that(a«a
50. Similarly, for the third moment we find

M 3
r 515

mm̄~m̄2m!

~D21!(2) (
a

«a
3

D
. ~14!

Under particle-hole transformation~i.e., m→m̄), the even
moments are symmetric, and the odd ones antisymme
which simplifies enormously the calculations. For examp
Eq. ~13! follows from the argument thats2(m) must be a
two-body operator that reduces to the correct value
m,m̄51. More generally, the leading term forM̄2k

r 51

5M 2k
r 51/„s2(m)…k must have the form

m(k)m̄(k)@D (2)#k

mkm̄kD (2k)
~2k21!!! 5F~m,k!~2k21!!!, ~15!

which follows from demanding rank 2k, symmetry in par-
ticles and holes, vanishing form,m̄,k, and correct value a
m,m̄5k ~i.e., dk

215k!/D (k)). The important point is that
F(m,k)'1 as long ask!m, i.e., as long as this term re-
mains dominant the moments are those of a Gaussian (C.
When the leading odd moments and subdominant even o
are included we end up with an expression identical to
~11! onceN and p have been extracted as explained at
beginning. Hence, we have proved that the level density
a one-body Hamiltonian has binomial moments forK,AN,
a strong version of the central limit theorem~CLT is a state-
ment about the even-K dominant term only!.

The near identity between Eqs.~1! and~3! is an excellent
reason to expect that for single particle Hamiltonians
binomial behavior extends to the full spectrum, since Eq.~1!
is a rigorous mathematical result that applies in this case

For a Hamiltonian of higher rank,H5(xyWxyZx
1Zy ,

whereZx
1,Zy create and annihilater particles, the operators

do not commute. Nevertheless, Eq.~11! is of use in giving
the correct counting: there are (2k21)!! ways of contract-
ing H 2k in k pairs,k(2k11)!!/3 ways of contractingH 2k11

in k21 pairs, and one triple, etc. However, the contributio
of each term are different. In other words, for the domina
term, say, the factorF(m,k) becomes extremely compli
cated. The problem was solved by Mon and French@8#. Here
we give an idea of their result. For simplicity assume thatH
is a two-body operator (r 52), and stay in the dilute limit.
Then the variances2(m)5^H 2&m /dm must be
3-3
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s2~m!5
m(2)

2
s2~2!, s2~2!5

( Wxy
2

d2
. ~16!

Now consider̂ H 4&, leading to three possible contractions
written in MF as HHHH5AABB1ABBA1ABAB. The
first two givem(2)

„s2(2)…2/45„s2(m)…2, but for the last one
we havem(4)

„s2(2)…2/4, which vanishes atm52. The gen-
eral result is that form52 and K52k, only tk5(k21

2k )/k
terms survive, the Catalan numbers, i.e., the normalized m
ments of the semicircular density for Wigner’s Gaussian o
thogonal ensemble. Asm increases the number of surviving
terms increases rapidly so as to have againF(m,k)'1.

It is straightforward to apply similar arguments to the
other dominant and subdominant terms. Thus, we can com-
bine the Mon-French analysis and the advantages of the
nomial geometry, to obtain a strong form of the CLT, seen
apply generally to higher rank Hamiltonians.

A hard question arises: Why stop the analysis at the lo
moments? As mentioned, it is practically certain that for ran
one the proof of binomial behavior must extend to the fu
spectrum. The strong formal analogy between rank one a
higher should encourage the generalization. The catch is th
more often than not, systems undergo phase transitions.
there is little risk in attributing them to some form of collec
tivity, we can guess that the binomial forms will be valid in
. C

Y
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the absence of strong enough collectivity. Random Hamil
nians fulfill this condition, and I propose to include them in
larger class:A Hamiltonian acts as random if it does no
have strong enough collective components.

There may be two reasons for the good performance
binomials in the nuclear case. One is the strong domina
of the single particle field. The other is the lack of sufficie
collectivity in the nuclear Hamiltonian. It is certainly no
random, as it contains sizable pairing and quadrupole for
@12#. However, they do not seem to be strong enough.
quantitative estimate of the relative strength of the differe
components is given bys2: we have already seen that th
single particle contribution is far stronger than the two-bo
part, and from@12# we know that in the latter, pairing plus
quadrupole only contributes a fraction of the total, sufficie
to give them a capital spectroscopic role but, apparently
the possibility of distorting the binomial forms.

The formalism is ready to examine the problem, whic
will become even more interesting with the suggestion th
Hamiltonian matrices at fixed quantum numbers always ha
binomial level densities@13#.

The author thanks Professor J. B. French for providi
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the use of exact continuous binomials. I had some very u
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