
RAPID COMMUNICATIONS

PHYSICAL REVIEW C, VOLUME 64, 021301~R!
Self-energy effects in the superfluidity of neutron matter
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The superfluidity of neutron matter in the channel1S0 is studied by taking into account the effect of the
ground-state correlations in the self-energy. To this purpose the gap equation has been solved within the
generalized Gorkov approach. A sizable suppression of the energy gap is driven by the quasiparticle strength
around the Fermi surface.
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It is widely recognized that superfluidity is an extreme
subtle process when it is considered on an entirely mic
scopic level. Most of the calculations in nuclear physics,
least concerning finite nuclei, are therefore based on p
nomenological effective interactions. On the other han
series of nuclear matter and neutron matter calculations
ists with the bareNN force used in the gap equation@1#. This
is insofar the first step of a systematic microscopic appro
as it is well known that in the gap equation the bare partic
particle interaction has to be taken to the lowest order
not aG matrix, i.e., a ladder summation, since the gap eq
tion is in itself a two-body equation@2,3#. The next terms in
the effective pairing interaction are screening terms. Th
are due to the possibility of medium polarization whic
when treated within the induced interaction theory@4#, has
turned out to strongly affect the pairing gap@5–7#. On the
other hand the self-energy corrections due to polariza
effects have attracted much less attention. Only very rece
has it been stressed that the consideration of the quasipa
strength can have a sizable effect on the gap value@8,9#.
Here we want to extend the latter work in investigating c
relation effects beyond the ones taken into account in R
@8# and we will see that they are indeed quite important. O
study must be considered as an intermediate step towar
fully consistent treatment where self-energy and vertex c
rections are taken into account on an absolutely equal f
ing. The latter aspect may turn out to be decisive beca
sometimes strong cancellation between the two contribut
can occur~see, e.g., discussion in Ref.@10#!. All those con-
siderations are of great importance for a more microsco
understanding of superfluidity in nuclei as well as in neutr
stars, but also for a precise estimate of the pairing gap
fact, pairing in exotic nuclei at present is studied with effe
tive density dependent interactions modeled on pairing
culations in neutron matter@10,11#. In the latter systems it is
well known that superfluidity drives their rotational dynam
ics @12# as well as their cooling@13#. In this work we shall
study pure neutron matter but we expect that very analog
effects will occur in symmetric nuclear matter.

Let us first discuss some properties of the single-part
self-energySp(v) of neutron matter. In the Brueckner ap
proach@14# the perturbative expansion ofS can be recas
according to the number of hole lines as follows:
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Sp~v!5Sp
1~v!1Sp

2~v!1 . . . . ~1!

The on-shell values ofS1 represent the Brueckner
Hartree-Fock~BHF! mean field and the on-shell values ofS2

give the so-called rearrangement term, which gives the la
est contribution to the ground-state correlations. The o
shell values enter several physical properties of neutron m
ter, including pairing. In terms of the self-energy one m
calculate, at a given order of the hole-line expansion,
quasiparticle energy, as the solutionvp of the equation

vp5
p2

2m
2eF1Sp~vp!, ~2!

whereeF is the Fermi energy. We neglect here the imagina
part of the self-energy. The quasiparticle energy around
Fermi surface is obtained by expanding the self-ene
aroundp5pF andv50:

v5
p22pF

2

2m*
5

p22pF
2

2m

m2

memp
, ~3!

wherem* , me , andmp are the effective mass,e-mass, and
p-mass, respectively, calculated at the Fermi surface.
two masses are defined for any momentum as

me~p!5mF12S ]S~p,v!

]v D G
v5vp

, ~4!

mp~p!5mF11
m

p S ]S~p,v!

]p D G
v5vp

21

. ~5!

Their properties have been extensively studied in Ref.@14#.
The k-mass is related to the nonlocality of the mean fie
and, if the self-energy isv independent~static limit!, it co-
incides with the effective mass. This quantity is of great
terest whenever the momentum dependence of the mean
can give some effects such as transverse flows in heavy
collisions @15#. The e-mass is related to the quasipartic
strength. The latter gives the discontinuity of the moment
distribution at the Fermi surface, and measures the amou
correlations included in the considered approximation.
©2001 The American Physical Society01-1
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FIG. 1. One-hole-line off-shell Sk
1(v)

~dashed line! and two-hole-line off-shellSk
2(v)

~solid line! for three values of the momentumk.
The Fermi momentumkF is fixed at 0.8 fm21.
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The self-energy has been calculated in two approxim
tions: up to the first order~BHF! and up to the second orde
~EBHF! of the hole-line expansion in the framework of th
Brueckner theory adopting the continuous choice@16#. The
ArgonneV14 potential has been used for the bare interact
@17#. The calculations have been performed for a range
Fermi momenta where the energy gap is expected to be
largest, i.e., 0.5<kF<1.3 fm21, corresponding to a densit
range from 0.0042 through 0.074 fm23. A typical result for
the off-shell neutron self-energySp(v) is plotted in Fig. 1.
The contribution from the rearrangement term shows a p
nounced enhancement in the vicinity of the Fermi ener
which is to be traced back to the high probability amplitu
for particle-hole excitations neareF @16#. At high momenta
this contribution vanishes. FromSp(v) the effective masse
are extracted according to Eqs.~4! and~5!. They are depicted
in Fig. 2, where the full calculation is compared to that
cluding only the BHF self-energy. We may distinguish tw
momentum intervals: atk'kF the momentum dependence
the effective massm* is characterized by a bump, whos
peak value exceeds the value of the bare mass; far abovkF
the bare mass limit is approached. One should take into
count that in this range ofkF the neutron density is quite
small ~at the maximumkF51.3 fm21,r50.074 fm23).
This behavior of the effective massm* is due mostly to the
e-mass, as shown in the lower panel of Fig. 2. In both pan
of Fig. 2 it is also reported, for comparison, the effecti
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mass in the BHF limit~only S1 included!, which exhibits a
much less pronounced bump at the Fermi energy. It is p
cisely the influence of this increased bump structure, wh
we want to investigate here, since in Ref.@8# the rearrange-
ment term has not been taken into account.

The generalized BCS theory can be found in various te
books on the many-body problem@2,18,19#. Here we follow
closely the formalism developed in@2#, where the gap equa
tion is written

Dp~v!52E d3p8

~2p!3E dv8

2p i
Vp,p8~v,v8!Gp8~v8!Dp8~v8!.

~6!

The kernelG is defined as

Gp~v!5Gp~2v!Gp
s~v!

5@Gp
21~v!Gp

21~2v!1Dp
2~v!#21. ~7!

The functionsGp(v) and Gp
s(v) are the nucleon propaga

tors of neutron matter in the normal state and in the sup
fluid state, respectively . Thev symmetry in the two propa-
gators is to be traced back to the time-reversal invarianc
the Cooper pairs. The effective interactionV is the block of
all irreducible diagrams of the interaction. The short-ran
correlations~ladder diagrams! are already taken into accoun
FIG. 2. Effective mass~upper panels! and
e-mass ~lower panels! for three densitiesr
5kF

3/3p2 in the BHF approximation~dashed
line! and EBHF approximation~solid line!.
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by the gap equation and do not appear in the irreduc
block V. The long-range components have been studied
the context of the induced interaction approach@6,7#. In the
present Rapid Communication we only consider the fi
term in the perturbative expansion ofV, namely the bare
interaction, because we want to disentangle the influenc
the correlations coming only from the self-energy expans
from the ones due to the induced interaction. The comp
solution of the generalized gap equation requires further
fort.

Assuming the pairing interaction is identified with th
bare interactionVp,p8 , the energy gap does not depend
the energy~static limit!, i.e., Dp(v)[Dp . In this limit the
self-energy corrections are not expected to modify the a
lytical structure of the kernelGp(v) which is now an even
function of energy: at each momentump there exist two
symmetric poles6Vp in the complexv plane. Thev inte-
gration can be performed as follows:

E dv

2p i
G~v2!52

Z p
2

2Vp
, ~8!

where we denote byZ p
2 the residue of the kernel at the po

Vp . Since the largest contribution to the integral is comi
from the pole part of the two Green’s functions, we expa
the single particle propagator to the first order invp @see Eq.
~2!#, Gp(v)'Zp•(v2vp)21, and therefore the denomina
tor in Eq. ~7! becomes

G21~v2!'2Z p
22~v22vp

2!1Dp
2 , ~9!

whereZ p
22 is given by

Z p
22'S ]G21~v!

]v D U
v5vp

•S ]G21~2v!

]v D U
v52vp

5F12
]Sp~v!

]v G2U
v5vp

~10!

and

Vp'Avp
21Z p

2Dp
2. ~11!

In this approximation the generalized gap equation, Eq.~6!,
becomes

D̃p52
1

2
E d3p8

~2p!3

ZpVpp8Zp8

Avp8
2

1D̃p8
2

D̃p8 , ~12!

whereD̃p5ZpDp is the real pairing correction to the quas
particle energy spectrum. The main difference from the B
limit is the presence of the quasiparticle strength, which
less than one in a small region around the Fermi surfac
we saw earlier. The pairing interaction turns out to be
duced in that region, where the Cooper pairs are ma
formed. This is the way self-energy corrections come i
play suppressing the pairing gap. As to the self-energy
fects, Eq.~12! is quite general because there is no expans
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in the self-energy so far. The self-energy corrections can
taken at any order of approximation.

One may further restrict thev integration to only the pole
part at the Fermi energy, i.e., expanding the self-energy n
the Fermi surface according to Eq.~3!. In this case thev
integration can also be performed analytically and one ea
obtains

D̃p52Z F
2E d3p8

~2p!3

Vp,p8D̃p8

2ApF
2~p82pF!2/m* 21D̃p8

2
,

~13!

whereZF is the quasiparticle strength at the Fermi surfa
and coincides with the inverse of thee mass defined by Eq
~4!. It arises from the discontinuity of the momentum dist
bution at the Fermi surface and measures the amount of
relations included in the model. As is well known the pairin
modifies the chemical potential which is calculated se
consistently with the gap equation from the closure equa
for the density of neutrons. In our approximation it is give
by

r52E d3p

~2p!3E dv

2p i
Gp

s~v1! ~14!

'2E d3p

~2p!3

Zp

2 S 12
vp

Avp
21D̃p

2D .

~15!

The prefactor 2 is due to spin degeneracy. Our numer
investigation is based on the solution of the two coupled g
equations, Eqs.~12! and~15!, along with the self-energy ap
proximated to the second order of the hole-line expansio

The ArgonneV14 potential has been adopted as the pair
interaction which is consistent with the self-energy da
where the same force has been used. The gap equation
been solved in the form of Eq.~12!, coupled with Eq.~15!.
This is quite a satisfactory approximation, especially in vie
of studying the self-energy effects. The results are repo
in Fig. 3 for a set of differentkF values. The solid line
represents the solution of the gap equation in the stand
BCS limit with the free single-particle spectrum. This is ve
close to the prediction obtained replacing the bare mass
the effective mass calculated in the BHF but still keepi
Z51 ~dotted line!. This similarity stems from the fact that a
the Fermi surfacem* /m from BHF is close to one as show
in Fig. 2. The self-energy effects are estimated in two
proximations. In the first onem* and theZ factor are calcu-
lated from the approximationS5S1 in a BHF code. In the
considered density domain theZ factor is'0.9. Despite its
moderate reduction a strong suppression of the gap is
tained as shown in Fig. 3~upper long-dashed line!. It is due
to the exponential dependence of the gap on all quantit
Still a further but more moderate reduction is obtained wh
the rearrangement term is included in the second approxi
tion S'S11S2 ~short-dashed line!. The smallerZ factor
1-3
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(Z'0.83 atkF50.8 fm21) is to a certain extent counterba
anced by an increase of the effective mass (m* /m'1.2 at
the samekF).

The self-energy corrections are mostly concentra
around the Fermi surface; therefore it is not appropriate
use Eq.~13! for a quantitative prediction of the gap, since
extends their effect beyond the Fermi surface. The s
energy effect turns out to be overestimated by Eq.~13! as we
checked numerically. In Fig. 3 the results are reported for

FIG. 3. Energy gap in different approximations (D̃ in the text!.
Solid line: free single-particle spectrum; dotted line: effective m
from BHF approximation andZ51; upper ~lower! long-dashed
line: solving the gap equation in the form of Eq.~12! @Eq. ~13!#
with BHF effective mass andZ; upper ~lower! short-dashed line:
solving the gap equation in the form of Eq.~12! @Eq. ~13!# with
EBHF effective mass andZ.
a-

m

uc
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two adopted approximations of the self-energy~lower long-
dashed and short-dashed lines, respectively!.

In Ref. @8# the self-energy effect has also been inves
gated within the generalized gap equation but the self-ene
has been considered only at the level of BHF approximati
However the approximations adopted in Ref.@8# for solving
the gap equation understimate the correlation effects so
only a moderate reduction is obtained. In the present
proach, including onlyS1, the reduction is more pro
nounced. Taking into account, in addition, the rearrangem
term S2 results in a further non-negligible reduction.

In conclusion we have shown that the superfluidity o
strongly correlated Fermi system requires a description in
context of the generalized Gorkov approach. The fact that
quasiparticle strength can be significantly smaller than
cannot be counterbalanced by a corresponding enhance
of the effective mass. Moreover we have shown that relia
predictions from the generalized gap equation can only
obtained if the correlation effects are fully taken into a
count. We have treated here neutron matter but we ex
that the self-energy effects on the gap are very similar
symmetric nuclear matter. The next important step forw
will be to include not only self-energy effects but also, on
equal footing, vertex corrections. This shall be studied in
future work.
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