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Caloric curves for small systems in the nuclear lattice gas model
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For pedagogical reasons we compute the caloric curve for 11 particlesitetti8e. Monte Carlo simula-
tion can be avoided and exact results are obtained. We compare canonical and microcanonical results for the
caloric curve. Even down to this small system, agreement between the canonical model and the microcanonical
model is surprisingly good. We point out that the introduction of kinetic energy in the nuclear lattice gas model
modifies the results of the standard lattice gas model in a profound way. The model is also used to test the
accuracy of the saddle-point approximation for density of states.

DOI: 10.1103/PhysRevC.64.017601 PACS nuner25.70.Pq, 24.10.Pa, 64.60.My

In a recent papefrl], we pointed out that microcanonical readily done. The degeneracy factors are given in Table I.
calculations in the lattice gas moddlGM) with constant They can be obtained with little effort in this simple case.
energy are no harder to implement than canonical calcula- Instead of writingg(N,,) we will find it convenient to
tions with constant temperature. We will call the first write g as a function ofe* whereE* is the excitation en-
MLGM, and the second, CLGM. For practical cases at hanergy. The degeneracy factg(E*) as a function oE*/|¢| is
(A~100 or 200, the calculations use Monte Carlo simula- plotted in Fig. 1. The distribution is discrete but in Fig. 1 we
tions with Metropolis algorithm. show it as a continuous distribution and label the y axis by

In this Brief Report we take a small system and do LGMdN(E*)/d|e|. If one wants to define a temperature, the stan-
calculations without any Monte Carlo simulation. The rea-dard practice in the microcanonical model is to compute
sons for doing these “exact” calculations are the following: ¢ In Q(E*)/)(E*)=1/T (see[5]). An inspection of Fig. 1
(1) we see if there are substantial differences between micreshows that as a function of excitation energy the temperature
canonical and canonical results for such small systé2hsf  will rise first, approach+ «, will then switch towards— o
anomalies in caloric curves arise because of extreme finiteand as the excitation energy will further increase the tem-
ness, and3) this constitutes an example where an exactperature will approach 0 from the negative side. This hap-
density of states can be compared with an approximate dempens because in SLGM there is an upper bound to energy.
sity of state obtained from the saddle-point approximationThis is of course well known for spin 1/2 systems in a mag-
The latter is of course of frequent use in nuclear phyg2ds netic field if the kinetic energy of the spin system is sup-
and this is a case where, unlike many other cases, numericptessed5].
accuracy can be easily verified. The caloric curve in microcanonical SLGM is shown in

In our example, we take 11 particles in & Gubic lattice
As our objective is solely pedagogical, we assume there is TABLE |. Degeneracy factorg(N,,) with N,, nearest neigh-
just one kind of particle¢nucleong. We have then a freeze- bor bonds.
out density 0.44, which is somewhat higher than the freeze-

out density used in lattice gas model calculati¢8s The Nnn 9(Npn)
nearest neighbor bonds are attractiwe:—5.33 MeV to get
the nuclear matter binding energy correct. 0 462
. L 1 888

The nuclear lattice gas model which is denoted here by 9 8511
LGM is an extension of the standard textbook lattice gas
model as discussed, for example[4#]. We denote the stan- 3 38128
dard lattice gas model by SLGM. The difference is simple: in 4 150030
SLGM, the nucleons are frozen in their lattice sites. In LGM, 5 481 368
dictated by the physics of the nuclear problem, they are 6 1171492
given momenta. In CLGM, these momenta are generated us- 7 2106 504
ing a Maxwell-Boltzmann distribution. In MLGM, they are 8 2772894
taken from a uniform distribution within a sphere in momen- 9 2643624
tum space. The addition of kinetic energy, however, changes 10 1895907
the caloric curve in an interesting and profound way. We will 11 1051632
find it useful to discuss the caloric curves in both SLGM and 12 481610
LGM. Chronologically, it is easier to discuss SLGM first, 13 174 408
then point out how LGM maodifies the results. In both the 14 50301
models the key quantities af@(27,11N,,)=g(N,,) = the 15 8984
number of configurations witiN,, nearest neighbor bonds 16 1056
for the case of 11 particles in*3attice sites. Once these are 17 96

known both canonical and microcanonical calculations are
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FIG. 1. The density of states in the standard lattice gas model. FIG. 2. The caloric curve in SLGM. From Fig. 1 it is clear that
This can be directly obtained from the table remembering thathe microcanonical definition of temperature would tend to infinity
N, ,=17 defines the ground state. around E*/|e|~8. For 11 particles this corresponds to about 4

MeV excitation per particle. At higher excitations, the standard
Fig. 2. In plotting this curve we used degeneracies of succegiefinition of temperature leads to large negative temperature. In the
sive discrete points in the excitation energy and divided bycanonical calculation, we assume a temperafpositive and nega-

|e| to get the temperature. Notice that in the positive side ofive) and obtaiE*/A) using the table.

the temperature there is no anomalous behavior. If we plot

E* along the y axis and along the x axis, the temperature N in our chosen case is 11. Now there is no upper limit to
will suddenly flip to large negative value at about half theE* . In Fig. 3 we have plotte®;g(E}) pyin(E* —EF). The
excitation energy available to the system. But this is merelymost important difference from Fig. 1 is that the negative
a reflection of the fact that the excitation energy available taemperature zone has completely disappeared. Thus the dif-
the system is finite. This will drastically change in the ference in the caloric curves obtained from SLGM and LGM
nuclear LGM where availability of kinetic energy will re- will be profound.

move the upper limit. _ _ N There are two ways one can calculate the temperature in
For canonical calculation, we pick a positive tem-the microcanonical model. One is the standard formula: 1/
perature: to get the caloric curve we compw&) =9 In Q(E*)/JE*, where

=2 eNppX g(Npp) eXp(—BNnn€)/Zg(Ny)exp(— BNyne).  Sub-

tracting out the ground state energy we obtain the plot in Fig.

2. The same procedure can be used for negative temperature. Q(E* )ocz 9(Ef ) pyin(E* —EF). 2

Both are used in Fig. 2. The similarity between caloric !

curves calculated in the microcanonical and canonical mod-

els is obvious although there are quantitative differences. The other intuitive approach would be to make the following
From SLGM we now turn to nuclear LGM which serves ansatz. Although we are talking of one system only, formally

as a model for nuclear disassembly. This was the case pr&d. (2) is similar to that of two systems characterized gy

sented in[1]. The excitation energy can come from two andpy;, which share energy with each other but are insulated

sources now: kinetic and potential. Consequently, we comfrom the rest of the universe so that the total endggydoes

pute 3;9(E*) puin(E* —E*) where g(E¥) is discrete and hot change. If the systems characterizedytandp are large

taken from the table ang,(Eyi,) is taken to be the integral then the sum above would be dominated by the largest term
in the sum which is obtained when the temperature
(Vm)*™

o 2 3. _ N2 3N/2— 1 of each subsystem is the same, i.ellng(E)/dE'
f 5( Ein— 2 pi72m |T1d"p; I'(3N/2) (2m)=E ' =91In pyin (Exin)/ dExin. We now use =3 In pyin(Exin)/ Ein -
(1)  This leads taT)=(Ey;n)/(1.9N—1). This(T) and the stan-
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FIG. 3. The density of states in the nuclear LGM. We have FIG. 4. The caloric curve in microcanonical and canonical treat-
plotted (the solid curve 2;9(E}) pyin(E* —E). For py;, we have  ments. For microcanonical we show two curves. The solid curve
used Eq.(1) and multiplied it by ¥/h%)N whereV=27/0.16 fnf.  takes the log of Eq(2) and differentiates with respect #6* to
The dotted curve is the saddle-point appoximation for the same@btain a temperature. The dashed curve definsem the average
density of states. Her®(8,) is separable into two parts. One part value of kinetic energysee text The dotted curve is the canonical
comes from the potential and is directly calculable from the tablecaloric curve for the nuclear LGM.

This is multiplied by (2rmT)3N2 which comes from the kinetic

energy. partition function are related b@(8) = | exp(— BE)p(E)dE.
The inverse transformation is

dard definition ofT agree quite well as can be seen in Fig. 4. , )

Notice also there is no backbending in the microcanonical P(E)=&XABoE)(1/2m) [ expli BE)Q(Bo+iB)dB.

caloric curve. If one wants to use the microcanonical nucleaﬁ_

LGM for practical calculations with nucleon numbers about

100 or higher and also wants to obtain a value for tempera-

ture, getting the temperature from kinetic energy is the only p(E)~ expBoE +In Q(BO)]’

easy option. V2m((EF) —(E)*)

In Fig. 4 we have also shown the caloric curve in nuclear
LGM in the canonical model. This agrees with the microca-where the value of3, is so chosen that at this valy&)
nonical calculation quite well. =E. The saddle-point approximation for the density of states

In the particular examplél1 particles in 8 boxes in the is also compared to the exact density of state in Fig. 3. Ex-
nuclear LGM, one has exact expressions for microcanonicatept for low excitation energies, the saddle-point approxima-
density of states. One can also compute numerically the cdion is seen to be excellent.
nonical partition function. In nuclear physics one often has For the case of 11 particles in & Battice we have done
numerical values for canonical or grand canonical partitionexact microcanonical and canonical calculations for the ca-
functions. The direct expression for the microcanonical dentoric curve. The main result of this Brief Report is that even
sity of state is usually intractable and in order to obtain afor this small number of particles there is surprising agree-
value one uses the saddle-point approximaf®6]. We can  ment between the two models. This is true even though we
use the nuclear LGM to test the accuracy of the saddle-poirdre far from the thermodynamic limit. In the models cosid-
approximation since here both the microcanonical density oéred no anomalous behavior in caloric curve is found.
state and the canonical partition function are directly calcu- After this paper was submitted, a different formulation of
lable. The microcanonical density of states and the canonicahe LGM was published7] where a negative specific heat

he saddle-point approximation for this integral leads to

3
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was found. In this last model volume is not a constant as irstates was compared with an exact density of states. Agree-
our calculation(and most LGM calculationsut an average ment was found to be very good.

volume was fixed by use of a Lagrange multiplier which  tpis \work was supported in part by the Natural Sciences

weighted each configuration with exp{V) whereV is the  and Engineering Council of Canada andleyFonds pour la

“volume” of the configuration. Negative heat capacities Formation de Chercheurs et 'Aide la Recherche du Que

have also been discussed in other contégts10]. bec We acknowledge communications with Professor Dieter
Lastly, the saddle-point approximation for density of Gross.
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