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Caloric curves for small systems in the nuclear lattice gas model
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~Received 26 September 2000; published 31 May 2001!

For pedagogical reasons we compute the caloric curve for 11 particles in a 33 lattice. Monte Carlo simula-
tion can be avoided and exact results are obtained. We compare canonical and microcanonical results for the
caloric curve. Even down to this small system, agreement between the canonical model and the microcanonical
model is surprisingly good. We point out that the introduction of kinetic energy in the nuclear lattice gas model
modifies the results of the standard lattice gas model in a profound way. The model is also used to test the
accuracy of the saddle-point approximation for density of states.
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In a recent paper@1#, we pointed out that microcanonica
calculations in the lattice gas model~LGM! with constant
energy are no harder to implement than canonical calc
tions with constant temperature. We will call the fir
MLGM, and the second, CLGM. For practical cases at ha
(A'100 or 200!, the calculations use Monte Carlo simul
tions with Metropolis algorithm.

In this Brief Report we take a small system and do LG
calculations without any Monte Carlo simulation. The re
sons for doing these ‘‘exact’’ calculations are the followin
~1! we see if there are substantial differences between mi
canonical and canonical results for such small systems,~2! if
anomalies in caloric curves arise because of extreme fin
ness, and~3! this constitutes an example where an ex
density of states can be compared with an approximate
sity of state obtained from the saddle-point approximati
The latter is of course of frequent use in nuclear physics@2#
and this is a case where, unlike many other cases, nume
accuracy can be easily verified.

In our example, we take 11 particles in a 33 cubic lattice
As our objective is solely pedagogical, we assume ther
just one kind of particles~nucleons!. We have then a freeze
out density 0.41r0 which is somewhat higher than the freez
out density used in lattice gas model calculations@3#. The
nearest neighbor bonds are attractive:e525.33 MeV to get
the nuclear matter binding energy correct.

The nuclear lattice gas model which is denoted here
LGM is an extension of the standard textbook lattice g
model as discussed, for example, in@4#. We denote the stan
dard lattice gas model by SLGM. The difference is simple
SLGM, the nucleons are frozen in their lattice sites. In LG
dictated by the physics of the nuclear problem, they
given momenta. In CLGM, these momenta are generated
ing a Maxwell-Boltzmann distribution. In MLGM, they ar
taken from a uniform distribution within a sphere in mome
tum space. The addition of kinetic energy, however, chan
the caloric curve in an interesting and profound way. We w
find it useful to discuss the caloric curves in both SLGM a
LGM. Chronologically, it is easier to discuss SLGM firs
then point out how LGM modifies the results. In both t
models the key quantities areG(27,11,Nnn)[g(Nnn)5 the
number of configurations withNnn nearest neighbor bond
for the case of 11 particles in 33 lattice sites. Once these ar
known both canonical and microcanonical calculations
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readily done. The degeneracy factors are given in Tabl
They can be obtained with little effort in this simple case

Instead of writingg(Nnn) we will find it convenient to
write g as a function ofE* whereE* is the excitation en-
ergy. The degeneracy factorg(E* ) as a function ofE* /ueu is
plotted in Fig. 1. The distribution is discrete but in Fig. 1 w
show it as a continuous distribution and label the y axis
dN(E* )/dueu. If one wants to define a temperature, the sta
dard practice in the microcanonical model is to comp
] ln V(E* )/](E* )[1/T ~see @5#!. An inspection of Fig. 1
shows that as a function of excitation energy the tempera
will rise first, approach1`, will then switch towards2`
and as the excitation energy will further increase the te
perature will approach 0 from the negative side. This h
pens because in SLGM there is an upper bound to ene
This is of course well known for spin 1/2 systems in a ma
netic field if the kinetic energy of the spin system is su
pressed@5#.

The caloric curve in microcanonical SLGM is shown

TABLE I. Degeneracy factorsg(Nnn) with Nnn nearest neigh-
bor bonds.

Nnn g(Nnn)

0 462
1 888
2 8511
3 38 128
4 150 030
5 481 368
6 1 171 492
7 2 106 504
8 2 772 894
9 2 643 624
10 1 895 907
11 1 051 632
12 481 610
13 174 408
14 50 301
15 8984
16 1056
17 96
©2001 The American Physical Society01-1
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Fig. 2. In plotting this curve we used degeneracies of suc
sive discrete points in the excitation energy and divided
ueu to get the temperature. Notice that in the positive side
the temperature there is no anomalous behavior. If we
E* along the y axis andT along the x axis, the temperatur
will suddenly flip to large negative value at about half t
excitation energy available to the system. But this is mer
a reflection of the fact that the excitation energy available
the system is finite. This will drastically change in th
nuclear LGM where availability of kinetic energy will re
move the upper limit.

For canonical calculation, we pick a positive tem
perature: to get the caloric curve we compute^E&
5(eNnn3g(Nnn)exp(2bNnne)/(g(Nnn)exp(2bNnne). Sub-
tracting out the ground state energy we obtain the plot in F
2. The same procedure can be used for negative tempera
Both are used in Fig. 2. The similarity between calo
curves calculated in the microcanonical and canonical m
els is obvious although there are quantitative differences

From SLGM we now turn to nuclear LGM which serve
as a model for nuclear disassembly. This was the case
sented in@1#. The excitation energy can come from tw
sources now: kinetic and potential. Consequently, we co
pute ( ig(Ei* )rkin(E* 2Ei* ) where g(Ei* ) is discrete and
taken from the table andrkin(Ekin) is taken to be the integra

E dS Ekin2( pi
2/2mDPd3pi5

~Ap!3N

G~3N/2!
~2m!3N/2E3N/221.

~1!

FIG. 1. The density of states in the standard lattice gas mo
This can be directly obtained from the table remembering t
Nnn517 defines the ground state.
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N in our chosen case is 11. Now there is no upper limit
E* . In Fig. 3 we have plotted( ig(Ei* )rkin(E* 2Ei* ). The
most important difference from Fig. 1 is that the negati
temperature zone has completely disappeared. Thus the
ference in the caloric curves obtained from SLGM and LG
will be profound.

There are two ways one can calculate the temperatur
the microcanonical model. One is the standard formula:T
5] ln V(E* )/]E* , where

V~E* !}(
i

g~Ei* !rkin~E* 2Ei* !. ~2!

The other intuitive approach would be to make the followi
ansatz. Although we are talking of one system only, forma
Eq. ~2! is similar to that of two systems characterized byg
andrkin which share energy with each other but are insula
from the rest of the universe so that the total energyE* does
not change. If the systems characterized byg andr are large
then the sum above would be dominated by the largest t
in the sum which is obtained when the temperatu
of each subsystem is the same, i.e.,] ln g(Ei* )/]Ei*
5] ln rkin (Ekin)/]Ekin . We now use 1/T5] ln rkin(Ekin)/]Ekin .
This leads tô T&5^Ekin&/(1.5N21). This^T& and the stan-

l.
t

FIG. 2. The caloric curve in SLGM. From Fig. 1 it is clear th
the microcanonical definition of temperature would tend to infin
around E* /ueu'8. For 11 particles this corresponds to about
MeV excitation per particle. At higher excitations, the standa
definition of temperature leads to large negative temperature. In
canonical calculation, we assume a temperature~positive and nega-
tive! and obtain̂ E* /A& using the table.
1-2
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dard definition ofT agree quite well as can be seen in Fig.
Notice also there is no backbending in the microcanon
caloric curve. If one wants to use the microcanonical nucl
LGM for practical calculations with nucleon numbers abo
100 or higher and also wants to obtain a value for tempe
ture, getting the temperature from kinetic energy is the o
easy option.

In Fig. 4 we have also shown the caloric curve in nucle
LGM in the canonical model. This agrees with the microc
nonical calculation quite well.

In the particular example~11 particles in 33 boxes in the
nuclear LGM!, one has exact expressions for microcanoni
density of states. One can also compute numerically the
nonical partition function. In nuclear physics one often h
numerical values for canonical or grand canonical partit
functions. The direct expression for the microcanonical d
sity of state is usually intractable and in order to obtain
value one uses the saddle-point approximation@2,6#. We can
use the nuclear LGM to test the accuracy of the saddle-p
approximation since here both the microcanonical density
state and the canonical partition function are directly cal
lable. The microcanonical density of states and the canon

FIG. 3. The density of states in the nuclear LGM. We ha
plotted ~the solid curve! ( ig(Ei* )rkin(E* 2Ei* ). For rkin we have
used Eq.~1! and multiplied it by (V/h3)N whereV527/0.16 fm3.
The dotted curve is the saddle-point appoximation for the sa
density of states. HereQ(b0) is separable into two parts. One pa
comes from the potential and is directly calculable from the tab
This is multiplied by (2pmT)3N/2 which comes from the kinetic
energy.
01760
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partition function are related byQ(b)5* exp(2bE)r(E)dE.
The inverse transformation is

r~E!5exp~b0E!~1/2p!* exp~ ibE!Q~b01 ib!db.

The saddle-point approximation for this integral leads to

r~E!'
exp@b0E1 ln Q~b0!#

A2p~^E2&2^E&2!
, ~3!

where the value ofb0 is so chosen that at this value^E&
5E. The saddle-point approximation for the density of sta
is also compared to the exact density of state in Fig. 3.
cept for low excitation energies, the saddle-point approxim
tion is seen to be excellent.

For the case of 11 particles in a 33 lattice we have done
exact microcanonical and canonical calculations for the
loric curve. The main result of this Brief Report is that ev
for this small number of particles there is surprising agr
ment between the two models. This is true even though
are far from the thermodynamic limit. In the models cos
ered no anomalous behavior in caloric curve is found.

After this paper was submitted, a different formulation
the LGM was published@7# where a negative specific hea

e

.

FIG. 4. The caloric curve in microcanonical and canonical tre
ments. For microcanonical we show two curves. The solid cu
takes the log of Eq.~2! and differentiates with respect toE* to
obtain a temperature. The dashed curve definesT from the average
value of kinetic energy~see text!. The dotted curve is the canonica
caloric curve for the nuclear LGM.
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was found. In this last model volume is not a constant as
our calculation~and most LGM calculations! but an average
volume was fixed by use of a Lagrange multiplier whi
weighted each configuration with exp(2lV) whereV is the
‘‘volume’’ of the configuration. Negative heat capacitie
have also been discussed in other contexts@8–10#.

Lastly, the saddle-point approximation for density
ics

e

01760
instates was compared with an exact density of states. Ag
ment was found to be very good.
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