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Test of the proton-neutron random-phase approximation method
within an extended Lipkin-type model

S. Stoica,1 I. Mihut,1 and J. Suhonen2
1Department of Theoretical Physics, Institute of Physics and Nuclear Engineering, P.O. Box MG-6, 76900-Bucharest, Roma

2Department of Physics, University of Jyva¨skylä, P.O. Box 35, FIN-40351 Jyva¨skylä, Finland
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An extended Lipkin-Meshkov-Glick model for testing the proton-neutron random-phase approximation
(pnRPA) method is developed, taking into account explicitly proton and neutron degrees of freedom. Besides
the proton and neutron single-particle terms two types of residual proton-neutron interactions, one simulating
a particle-particle and the other a particle-hole interaction, are included in the model Hamiltonian so that the
model is exactly solvable in an isospin SU(2)^ SU(2) basis. The behavior of the first excited~collective! state
obtained by~i! exact diagonalization of the Hamiltonian matrix and~ii ! with the pnRPA is studied as a
function of the model parameters and the two results are compared with each other. Furthermore, charge-
changing operators simulating nuclear beta decay and their action on eigenfunctions of the model Hamiltonian
are defined and transition amplitudes of them are calculated using exact, the Tamm-Dancoff, andpnRPA
eigenfunctions.
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The proton-neutron random-phase approximat
(pnRPA) method has been extensively employed in the
erature to compute nuclear matrix elements~NME’s! for
charge-changing processes like, for instance, beta (b) and
double-beta (bb) decay@1–4#. However, in these cases th
method faces the problem of a large sensitivity of the NME
to the strength of the particle-particle (gpp) interaction.
Namely, they decrease rapidly in magnitude and cr
through zero in the physically acceptable region ofgpp ,
making it difficult to fix this constant for accurate calcul
tions. It should be mentioned that such a problem does
exist when the calculations are made with shell-model-ba
methods, but until now these methods have not been
pared to attack nuclei with a large number of nucleons o
side closed shells, as is the case for mostbb emitters@14#.
To overcome this problem extensions of thepnRPA method
going beyond the boson approximation were developed
the recent past@5–9#. In these models like- and unlike
nucleon residual interactions are both taken into accoun
the RPA level. However, in the framework of those metho
the competition between these two kinds of residual inter
tion, as well as their limits of applicability, are still not we
understood. It thus appears useful to develop exactly s
able nuclear models distinguishing between proton~p! and
neutron~n! degrees of freedom to test thepnRPA method
and its recent extensions used in realistic nuclear-struc
calculations for change-changing processes.

Recently, the Lipkin-Meshkov-Glick~LMG! model @10#
was extended to take into account explicitly the proton a
neutron degrees of freedom@11,12#. The proton and neutron
parts of the Hamiltonian were taken to be of the LMG for
and, in addition, a residualp-n interaction was included
This model is exactly solvable in a quasispin SU(
^ SU(2) basis and it was used to test the RPA method u
the energy spectrum of the model Hamiltonian. Also~in
@12#!, charge-changing transitions simulating nuclearb de-
cays were introduced and computed within this model a
the results compared with RPA calculations. However, s
a comparison is only a schematic one and has no conne
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with reality, since these transitions are calculated in the
erature in the framework ofpnRPA methods. The main con
clusion was that the RPA gives results closer to the ex
ones when thep-n interaction, besides thep-p andn-n in-
teractions, is also introduced into the model Hamiltonian

In this Brief Report we develop an extended Lipkin mod
suitable for testingpnRPA-type methods. The model Hami
tonian contains, besides single-particle terms of proton
neutron type, two types ofp-n residual interactions, one at
tractive, simulating a particle–particle two-body interactio
the other repulsive, simulating a particle-hole–two-body
teraction, chosen such that the model is exactly solvabl
an isospin SU(2)̂ SU(2) basis. In this model we calculat
the energy spectra and transition amplitudes of suitably
fined charge-changing operators and compare the re
with the ones of thepnRPA approximation to the model
The comparison between the exact andpnRPA calculations
for charge-changing transitions allows us to extract use
conclusions about the limits of validity ofpnRPA methods
which may be now extrapolated for realistic situation
Charge-changing transitions have also been treated in ex
solvable models in@13# but their model, based on SO~5!
symmetry, is basically different from our Lipkin-type one.

Consider anN-nucleon system composed of two su
systems: one containingNp protons, the otherNn neutrons.
In analogy with the LMG model, inside each subsystem
nucleons of the same kind are distributed into two leve
each having anNp- (Nn-) fold degeneracy, and separated
an energyep (en), respectively. Furthermore, the states
each subsystem are characterized by two quantum num
s distinguishing between the lower (s521) and upper
(s51) levels andpi (ni) denoting all the other quantum
numbers characterizing the proton~neutron! states of the
level.

For the model Hamiltonian we choose the following e
pression, written in terms of isospin operators:

H5e~Tz
(1)1Tz

(2)!1Vpn~T1
(1)T1

(2)1T2
(2)T2

(1)!

1Wpn~T1
(1)T2

(1)1T1
(2)T2

(2)!, ~1!
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where one considersep5en5e as a resonable assumption
the model. The terms proportional toVpn scatter ap-n pair
from one level to the other one, while the terms proportio
to Wpn scatter ap-n pair into ann-p pair within the same
levels. The two kinds of isospin operator entering Eq.~1! are
defined as

T1
(1)5(

i
api1

† ani2
, T2

(1)5(
i

ani2
† api1

,

Tz
(1)5

1

2 (
i

~api1
† api1

2ani2
† ani2

!, ~2!

T1
(2)5(

i
ani1

† api2
, T2

(2)5(
i

api2
† ani1

,

Tz
(2)5

1

2 (
i

~ani1
† ani1

2api2
† api2

!. ~3!

Each of the two sets of operators (T1
(1) ,T2

(1) ,Tz
(1)) and

(T1
(2) ,T2

(2) ,Tz
(2)) fulfill the SU~2! commutator relations and

the Hamiltonian matrix can be diagonalized exactly in t
isospin SU(2)̂ SU(2) basis:

F j5uT(1)Tz
(1)& ^ uT(2)Tz

(2)&. ~4!

The ~unperturbed! ground state~g.s.! and excited statesuk,l &
can be written formally as

ug.s.&5uT(1),2T(1)&uT(2),2T(2)&,

uk,l &5(
k,l

~T1
(1)!k~T1

(2)! l ug.s.&, ~5!

wherek50, . . . ,Np andl 50, . . . ,Nn . For instance, the firs
excited state of the system has one excited proton or neu
and isN5(Np1Nn) fold degenerate:

u1st&5
1

AN
~ANpuT(1),2T(1)11&uT(2),2T(2)&

1ANnuT(1),2T(1)&uT(2),2T(2)11&), ~6!

where the norm factors in Eq.~6! were chosen such thatu1st&
is normalized. One observes that the basis is formed from
g.s. of the system havingNp protons andNn neutrons and
from excited states belonging to systems with the same t
number of nucleons~i.e., N5Np1Nn) but with a different
number of protons and neutrons. This brings us to the p
losophy of thepnRPA method where one starts from the g
of a system with (Np ,Nn) and, by the action of thepnRPA
phonon operator onto the g.s., one gets excited states of
tems with a different number of protons and neutrons
such that the total number of nucleons is conserved.

The energy spectrum of Eq.~1! can be obtained exactl
by diagonalizing the Hamiltonian matrix corresponding
the multiplet with (T(1)5 1

2 Nn ,T(2)5 1
2 Np) which contains

the g.s. and all the excited states of interest. After diago
ization the exact wave functions will be linear combinatio
of the SU~2! basis wave functions~4!:

C i5(
i , j

ci j F j , ~7!

whereci j are the mixing coefficients. Characteristic featur
of the obtained energy spectrum are as follows: the ener
increase when the strengths of interactions increase and
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generally nondegenerate when both types of residual inte
tion, one attractive (Vpn) and the other repulsive (Wpn), are
present. A more detailed study of the Hamiltonian spectr
will be done elsewhere.

For treating our model Hamiltonian within thepnRPA we
first define thepnRPA phonon operator as

G†5
XQ12YQ2

A^g.s.u@Q2,Q1#ug.s.&
, Q15T1

(1)1T1
(2) ,

Q25T2
(1)1T2

(2) . ~8!

Above, X and Y are thepnRPA amplitudes,ug.s.& is the
uncorrelated g.s. of Eq. ~5!, and the norm
^g.s.u@Q2,Q1#ug.s.&5Np1Nn5N appearing in the expres
sion of G† is taken such that the excited state is normaliz
to unity. The first excited~collective! state in thepnRPA
framework is obtained by operating by the~collective! pho-
non operator onto the correlated g.s.upnRPA&:

u1st&5G†upnRPA&5
XQ12YQ2

AN
upnRPA&. ~9!

The pnRPA equation reads

S A2V B

B A1V
D S X

YD 50, ~10!

and the excitation energyV and theX andY amplitudes can
be expressed in terms of the submatricesA andB as

V5AA22B2, X5AA1V

2V
, Y52AA2V

2V
. ~11!

The submatrices~in this case justc numbers! have the ex-
pressions

A5
^g.s.u@Q2,H,Q1#ug.s.&

A^g.s.u@Q2,Q1#ug.s.&
,

B52
^g.s.u@Q2,H,Q2#ug.s.&

A^g.s.u@Q2,Q1#ug.s.&
, ~12!

and after some algebra one obtains

A5e1
~Np

21Nn
2!Wpn

N
, B5

2NpNnVpn

N
. ~13!

As an example, in Fig. 1 we display the scaled excitat
energy of the first excited state,v5(E12E0)/e, as a func-
tion of the quantityNVpn /e and for a fixed value of the
NWpn /e, in the casesN5414 andN520120. Since the
strength parametersVpn andWpn represent different types o
p-n residual interaction~i.e., attractive and repulsive, respe
tively!, they are chosen with opposite sign. Comparing
exact andpnRPA results one observes that thepnRPA
largely underestimatesv for low values ofN, especially for
large values of the model parametersNVpn /e. However, a
strong improvement is observed when the number of nu
ons increases (N520120), which is in accordance with th
fact that thepnRPA works better for systems with a large
number of particles, where the collective features manif
stronger. These features demonstrate that thepnRPA treat-
ment of our generalized LMG Hamiltonian produces mea
ingful interpretation of the excitation spectrum as a functi
of the model parameters.
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We consider now charge-changing transitions simulati
for instance, nuclear beta decay. In such a transition a n
tron transforms into a proton~or vice versa!, such that the
total number of nucleons remains constant. Let us define
following charge-changing transition operators:

M̂ 15x1 (
i , j ,s,s8

apis
† anjs8 , M̂ 25x2 (

i , j ,s,s8
anis

† apjs8 .

~14!

The M̂ 1 operator can destroy one neutron from any of
states of the two levels of the neutron subsystem and cr
one proton in any of the states of the two levels of the pro
subsystem. Such an operator can connect states belongi
systems with the same total number of nucleons,N, but dif-
fering from each other in the number of protons and neutr
in their respective subsystems. For example, it can con
states of the systemuNp&uNn& with states of the systemuNp
11&uNn21&. This transition simulates nuclearb2 decay.
The factorx1 in front can be interpreted as the strength
the transition. We imagine that the creation of the proton
occur only in ap state which is unoccupied~free!, both in the
lower and in the upper level of thep subsystem. Hence, w
suppose that such free states exist in the lower level~with an
accompanying free upper level! even in the g.s. of the sys
tem. The existence of free states in the subsystems of
N-nucleon system does not affect the consistency of
model. Moreover, their presence does not influence either
possible values of the total angular momentum~which only
depend of the number of particles! or the Hamiltonian eigen-
values. The only quantity which is affected is the degener
of the g.s. and excited states of the system which now
creases, but this effect can easily be accounted for. Allow

FIG. 1. First excited state versusk5NVpn/e520.2. ~a! For
N5Np1Nn5414. ~b! For N5Np1Nn520120.
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this degree of freedom will produce also a change in
values of the normalization factors of Eqs.~5! and~6!, which
have to be recalculated in order to keep the correspond
states normalized to unity. As an intuitive physical corr
spondence, one can imagine associating thep ~or n) sub-
system with ap ~or n) closed or open nuclear shell.

TheM̂ 2 operates in a similar manner asM̂ 1, but now one
proton is transformed into one neutron and the transit
simulates nuclearb1 decay.

We proceed now to the calculation of the g.s.→u1st& tran-
sition amplitudes~which correspond to a charge-changin
transition in a realisticpnRPA calculation! using ~i! exact
wave functions and~ii ! pnRPA wave functions. For the ex
act calculation we performed the diagonalization of t
Hamiltonian and got the exact wave functions as linear co
bination of the unperturbed states in the full SU~2! basis.
Denoting the exact g.s. of the (Np ,Nn) system asC0 and the
first excited state belonging to the (Np11,Nn21) system as
C1 one obtains the following results.

~a! Exact transition amplitudes:

T01[^C1uM̂ 1uC0&5~ANnc11c211ANpc22c21!x
1. ~15!

~b! The correspondingpnRPA results:

T01[^1stuM̂ 1upnRPA&>^g.s.u@G,M̂ 1#ug.s.&

5
1

AN
~XNn1YNp!x1. ~16!

The coefficientsci j are the ones of Eq.~7! related to the
decomposition of the g.s. and first excited state wave fu
tions in terms of the unperturbed wave functions of the ba
~4!. In formula~16! theX term represents the proton-neutro
Tamm-Dancoff approximation (pnTDA). Similar formulas
are obtained for theM̂ 2 operator.

In Fig. 2 we display the corresponding transitions as
function of the model parameterNVpn /e and for a fixed

FIG. 2. ~a! Transitions from (4;4) to (3;5) for NWpn /e
520.2. ~b! Transitions from (20;20) to (19;21) forNWpn /e
520.2.
3-3
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value of theNV/e (20.2), in the case of the systems wi
N58 and N540. For comparison, the exact results a
drawn on each figure besides thepnTDA and pnRPA re-
sults. One notices that the results obtained with thepnTDA
andpnRPA methods are quite different from each other,
pnTDA result being constant and deviating substantia
from the exact result. Contrary to this, thepnRPA result
closely follows the exact one both for theb2 as well as the
b1 type of transition. Another important conclusion emer
ing from our model is the following: the competition be
tween the particle-particle– and particle-hole–type resid
interactions leads to the characteristic behavior of the tra
tion amplitudes of the charge-changing operators first d
cussed in@2# in the case of a realistic proton-neutron qua
tum ~RPA! (pnQRPA) model using delta-force interactio
Similar behavior was observed in@3# in the case of the
pnQRPA with realistic forces. This feature in the realis
cases refers to the fact that the suppression of the NME
in agreement with the experimental value only if the bo
kinds of residual interactions~i.e., particle-particle and
particle-hole type! are included. Their strengths do not diffe
very much in realistic calculations. Our model also sho
that only when both types of such interactions are taken
account does one obtain the best agreement between
and RPA result. Also, the results are very closed when
values of their strengths~i.e., NVpn /e andNWpn /e) do not
differ much.

Figures 3 displays the same transitions~at the same values
of the model parameters! as Fig. 2, but for theM̂ 2 operator,
simulatingb1 decay. Similar conclusions as in the case
the M̂ 1 operator emerge.

Concluding, we have extended the LMG model to t
case of anN-nucleon system composed of two subsystem
one consisting ofNp protons the other ofNn neutrons. The
nucleons inside the two subsystems interact in the same m
ner as in the original LMG model but in proton-neutro
space. The two terms simulate the particle-particle and
particle-hole forces of the more realistic models. Our mo
is exactly solvable in an SU(2)̂SU(2) basis and the energ
spectrum of the model Hamiltonian is obtained by an ex
diagonalization. The first excited state of the spectrum w
obtained also by thepnRPA method, and its behavior wa
studied as function of the model parameters. ThepnRPA
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result deviates considerably from the exact one for smalN,
while for bigger N, when the collective effects manifes
stronger, thepnRPA result comes close to the exact one.

We also show how charge-changing transitions can
treated within our model by defining model charge-chang
transition operators simulating nuclearb6 decay and their
action on eigenfunctions of the model Hamiltonian. Tran
tion amplitudes of these operators were first calculated u
exact wave functions and then using thepnTDA andpnRPA
wave functions. The agreement between thepnRPA and ex-
act results is good while for thepnTDA the agreement is
poor. This demonstrates the importance of the presenc
correlations in the ground state. Finally, our model can sim
late the competition between the particle-hole and parti
particle interactions in the transition amplitudes of t
charge-changing operators analogously to the realistic ca
lations @2,3#. All these features emerging from the study
charge-changing transitions in the framework of our exac
solvable Lipkin-type model encourage us to use it further
test the limits of applicability of higher-order RPA-type a
proaches.

FIG. 3. ~a! Transitions from (4;4) to (5;3) for NWpn /e
520.2. ~b! Transitions from (20;20) to (21;19) forNWpn /e
520.2.
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