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Test of the proton-neutron random-phase approximation method
within an extended Lipkin-type model
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An extended Lipkin-Meshkov-Glick model for testing the proton-neutron random-phase approximation
(pnRPA) method is developed, taking into account explicitly proton and neutron degrees of freedom. Besides
the proton and neutron single-particle terms two types of residual proton-neutron interactions, one simulating
a particle-particle and the other a particle-hole interaction, are included in the model Hamiltonian so that the
model is exactly solvable in an isospin SU&3$U(2) basis. The behavior of the first excit@dllective state
obtained by(i) exact diagonalization of the Hamiltonian matrix afid with the pnRPA is studied as a
function of the model parameters and the two results are compared with each other. Furthermore, charge-
changing operators simulating nuclear beta decay and their action on eigenfunctions of the model Hamiltonian
are defined and transition amplitudes of them are calculated using exact, the Tamm-DancgfRiEW
eigenfunctions.
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The proton-neutron  random-phase  approximatiorwith reality, since these transitions are calculated in the lit-
(pnRPA) method has been extensively employed in the literature in the framework ggnRPA methods. The main con-
erature to compute nuclear matrix eleme(&ME’s) for  clusion was that the RPA gives results closer to the exact
charge-changing processes like, for instance, bgjagnd  ones when the-n interaction, besides the-p andn-n in-
double-beta gB) decay[1—4]. However, in these cases this teractiqns, i_s also introduced into the model Hamilt.onian.
method faces the problem of a large sensitivity of the NME's I this Brief Report we develop an extended Lipkin model
to the strength of the particle-particleg;) interaction. ~Suitable for testingnRPA-type methods. The model Hamil-
Namely, they decrease rapidly in magnitude and crosdonian contains, besides single-particle terms of proton and
through zero in the physically acceptable regionggf,, ~ N€ulron type, two types gi-n residual interactions, one at-
making it difficult to fix this constant for accurate calcula- tractive, simulating a particle—particle two-body interaction,

tions. It should be mentioned that such a problem does ncipe other repulsive, simulating a particle-hole—two-body in-

exist when the calculations are made with shell-model-base raction, chosen such that the model is exactly solvable in
. n isospin SU(2» SU(2) basis. In this model we calculate
methods, but until now these methods have not been pre

S he ener ra and transition ampli f suitabl -
pared to attack nuclei with a large number of nucleons outy e energy spectra and transition amplitudes of suitably de

ined charge-changing operators and compare the results
side closed shells, as is the case for m@gt emitters[14]. g ding op P

hi bl ; ‘ hod with the ones of thgpgnRPA approximation to the model.
TO. overcome this problem extensions o heRPA metho . The comparison between the exact gamRPA calculations
going beyond the boson approximation were developed i

h M 5 g In th dels lik 4 uniik Tor charge-changing transitions allows us to extract useful
€ recen past — ) n hese models like- and uniike- .qnc1ysions about the limits of validity gfnRPA methods
nucleon residual interactions are both taken into account

he RPA level. H in the f K of th h d‘%hich may be now extrapolated for realistic situations.
the evel. However, in the framework of those metho SCharge-changing transitions have also been treated in exactly

the competition between these two kinds of residual interacéolvable models if13] but their model, based on %8

tion, as well as their limits of applicability, are still not well symmetry, is basically different from our Lipkin-type one.
understood. It thus appears useful to develop exactly solv- Consider anN-nucleon system composed of two sub-

able nuclear models distinguishing between prafonand = . oms- one containinly,, protons, the otheN,, neutrons.

neutron(n) degrees of freedom to test tMRPA method In analogy with the LMG model, inside each subsystem the

and its _recent extensions use_d in realistic nuclear-structurlg?ucleonS of the same kind are distributed into two levels.
calculations for change-changing processes.

Recently, the Lipkin-Meshkov-GlickLMG) model[10] each having alp- (Ny) fold degeneracy, and separated by

. S n energye, (€,), respectively. Furthermore, the states in
was extended to take into account explicitly the proton an P : )
ach subsystem are characterized by two quantum numbers:
neutron degrees of freedahl,12. The proton and neutron Y y q

. distinguishing between the lowercE —1) and upper
arts of the Hamiltonian were taken to be of the LMG form ; .
gnd in addition, a residugb-n interaction was included. (o=1) levels andp; (n;) denoting all the other quantum

This model is exactly solvable in a quasispin SU(Z)numbers characterizing the protgneutron states of the

. ) / level.
®SU(2) basis and it was used to test the RPA method using For the model Hamiltonian we choose the following ex-

the energy spectrum of the model Hamiltonian. Aldo : . . . . )
. " . ) ression, written in terms of isospin operators:
[12]), charge-changing transitions simulating nuclgade- P pin op

cays were introduced and computed within this model and H=e(TH+TE) + v, (THTE+ TATM)
the results compared with RPA calculations. However, such (D) L T(2)(2)
a comparison is only a schematic one and has no connection FWpn(TH T+ TETE), (1)
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where one considelg, = €,= € as a resonable assumption of generally nondegenerate when both types of residual interac-
the model. The terms proportional 14,, scatter ap-n pair  tion, one attractive \(,,) and the other repulsivei,,), are
from one level to the other one, while the terms proportionapresent. A more detailed study of the Hamiltonian spectrum
to W,,, scatter ap-n pair into ann-p pair within the same will be done elsewhere.

levels. The two kinds of isospin operator entering Bg.are For treating our model Hamiltonian within tinRPA we
defined as first define thepnRPA phonon operator as
TH=> al.a TW=> al_a t X0 -Yo~ T TR
+ — Ap+An;— > - ~ An;—p; - = — , OT=TV+TY,
. V(g-sl[0~,07]|g.s)

T=5 2 (@, —a an), )] O =TW+T1®, (®)

Above, X and Y are thepnRPA amplitudes,g.s) is the

T(E):Z agﬁapr’ T@):Z a;ranﬁ' uncorrelated g.s. of Eg. (5, and the norm

(9.sl[®7,07]|g.s)=N,+N,=N appearing in the expres-
@ 1 + + sion of I'" is taken such that the excited state is normalized
=5 Z (@n 1 8n+—ap_ap ). (3 to unity. The first excitedcollective state in thepnRPA
framework is obtained by operating by tkepllective) pho-

Each of the two sets of operatorS P, T, T%) and  non operator onto the correlated gsnRPA):
(1@, 73 T fulfill the SU(2) commutator relations and F_ye-

X0 —
the Hamiltonian matrix can be diagonalized exactly in the |15 =T'T|pnRPA) = ————=——|pnRPA). 9
isospin SU(2R SU(2) basis: N
;= ITOTW) g | T@TE), (4) The pnRPA equation reads
The (unperturbegiground stateg.s) and excited state, |) A-Q B X ~0 (10)
can be written formally as B A+Q/\Y '
lg.sy=|TW, —TW)|T@), T, and the excitation energf and theX andY amplitudes can

be expressed in terms of the submatriéeand B as

k1) =2 (TOT)|g.s), (5) —
! 0= JATBL X— oyl \/—A 2w
wherek=0, ... N,andl=0, ... N,. Forinstance, the first ' 20 20
p

excited state of the system has one excited proton or neutrorhe submatricesin this case just number$ have the ex-

and isN=(N,+N,) fold degenerate: pressions
1 s|[0@7,H,07]|g.s
2% = (VNG T, - T +.2) T2, -72) p-lo2ln B o9
VN g.sl[07,07][g.s)
+ NG| TD, =TT, —T@ 4 1)), (6) g__(gsll0"H O gs) 12
where the norm factors in E¢6) were chosen such thtY) g.sl[07,07]|g.s)
is normalized. One observes that the basis is formed from thgnd after some algebra one obtains
g.s. of the system haviny, protons and\, neutrons and 2. N2
from excited states belonging to systems with the same total A=e+ (Np+ N”)Wp”, B= 2NpN”Vp”_ (13
number of nucleonsgi.e., N=N,+N,) but with a different N N

number of protons and neutrons. This brings us to the phi- As an example, in Fig. 1 we display the scaled excitation
losophy of thepnRPA method where one starts from the g.s.energy of the first excited state,=(E;— Ey)/e, as a func-
of a system with K,,N,,) and, by the action of thenRPA  tion of the quantityNV,,/e and for a fixed value of the
phonon operator onto the g.s., one gets excited states of SYSW), /€, in the casesN=4+4 andN=20+20. Since the
tems with a different number of protons and neutrons buktrength parametehs,, andW,,, represent different types of
such that the total number of nucleons is conserved. p-n residual interactiofii.e., attractive and repulsive, respec-
The energy spectrum of E¢l) can be obtained exactly tively), they are chosen with opposite sign. Comparing the
by diagonalizing the Hamiltonian matrix corresponding toexact andpnRPA results one observes that tp@RPA
the multiplet with (M"=3N,,T®=3N,) which contains |argely underestimates for low values ofN, especially for
the g.s. and all the excited states of interest. After diagonalrge values of the model paramet¥/,,/e. However, a
ization the exact wave functions will be linear CombinationSStrong improvement is observed when the number of nucle-
of the SU2) basis wave function#): ons increasesN= 20+ 20), which is in accordance with the
‘I’:E . @ fact that theanPA works better for systems with a Iarger
e Tl number of particles, where the collective features manifest
stronger. These features demonstrate thatpthRPA treat-
wherec;; are the mixing coefficients. Characteristic featuresment of our generalized LMG Hamiltonian produces mean-
of the obtained energy spectrum are as follows: the energigsgful interpretation of the excitation spectrum as a function
increase when the strengths of interactions increase and ao# the model parameters.
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(b)

FIG. 2. (@ Transitions from(4;4) to (3;5) for NW,,/e

=-0.2. (b) Transitions from (20;20) to (19;21) foNW,,/e
=-0.2.

this degree of freedom will produce also a change in the
values of the normalization factors of E@S) and(6), which
have to be recalculated in order to keep the corresponding
states normalized to unity. As an intuitive physical corre-

We consider now charge-changing transitions simulatingSpgtr;dmenc.i’] Onﬁofi;‘ érlgig';irassgﬁ'it'g?e‘;:(g]gﬂ sub-
for instance, nuclear beta decay. In such a transition a net’fﬁy with &p P u :

FIG. 1. First excited state versus=NV,/e=—0.2. (a) For
N=N,+N,=4+4. (b) For N=N,+N,=20+20.

tron transforms into a protofor vice versy, such that the TheM ™~ operates in a similar manner &', but now one
total number of nucleons remains constant. Let us define throton is transformed into one neutron and the transition
following charge-changing transition operators: simulates nucleag™ decay.
R . We proceed now to the calculation of the g$1%) tran-
Mf=x*" > aLannjgu Mo=x" > agig-apjcr" sition amplitudes(which correspond to a charge-changing
Lo’ Lo (14) transition in a realistigpnRPA calculation using (i) exact

. wave functions andii) pnRPA wave functions. For the ex-
The M™ operator can destroy one neutron from any of theact calculation we performed the diagonalization of the
states of the two levels of the neutron subsystem and creatgamiltonian and got the exact wave functions as linear com-
one proton in any of the states of the two levels of the protorpination of the unperturbed states in the full (@Ubasis.
subsystem. Such an operator can connect states belonging@noting the exact g.s. of thelg,N,,) system asP, and the

systems with the same total number of nucledwsbut dif-  first excited state belonging to thal{+1,N,— 1) system as
fering from each other in the number of protons and neutronsy, one obtains the following results.

in their respective subsystems. For example, it can connect (g) Exact transition amplitudes:

states of the systefiNy)|N,) with states of the systefiN, -

+1)|N,—1). This transition simulates nucleg@~ decay. Tor=(W1|M*[¥0) = (VN C11Co1+ VNpCoLan) x (15
The factory " in front can be interpreted as the strength of  (b) The correspondingnRPA results:

the transition. We imagine that the creation of the proton can

occur only in ap state which is unoccupiedree), both in the To=(1°|M " |pnRPA)=(g.s|[T .M "]|g.s)
lower and in the upper level of the subsystem. Hence, we _ i n
suppose that such free states exist in the lower levigh an a \/N(XN”“LYNP)X ' (16)

accompanying free upper leyadven in the g.s. of the sys- o

tem. The existence of free states in the subsystems of thEhe coefficientsc;; are the ones of Eq(7) related to the
N-nucleon system does not affect the consistency of thgecor_nposnmn of the g.s. and first excited state wave func;-
model. Moreover, their presence does not influence either th#ons in terms of the unperturbed wave functions of the basis
possible values of the total angular moment(wich only (4). In formula(16) theXterm represents the_proton-neutron
depend of the number of particlesr the Hamiltonian eigen- T@mm-Dancoff approximationp(fTDA). Similar formulas
values. The only quantity which is affected is the degeneracyre obtained for th&1 ™~ operator.

of the g.s. and excited states of the system which now in- In Fig. 2 we display the corresponding transitions as a
creases, but this effect can easily be accounted for. Allowingunction of the model parametédV,,/e and for a fixed
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value of theNV/e (—0.2), in the case of the systems with 2.8

N=8 and N=40. For comparison, the exact results are 2

drawn on each figure besides th@TDA and pnRPA re- (zu)’ 1'5\ onTDA

sults. One notices that the results obtained withgh&DA x

andpnRPA methods are quite different from each other, the ! \W
pnTDA result being constant and deviating substantially 0.5 \‘\\
from the exact result. Contrary to this, tiEnRPA result RPAN
closely follows the exact one both for tig as well as the 0.25 0.5 075 1 L.25 1.5 1.7%
B+ type of transition. Another important conclusion emerg- @ NVon

ing from our model is the following: the competition be-
tween the particle-particle— and particle-hole—type residual
interactions leads to the characteristic behavior of the transi-
tion amplitudes of the charge-changing operators first dis-
cussed in2] in the case of a realistic proton-neutron quan-
tum (RPA) (pnQRPA) model using delta-force interaction.
Similar behavior was observed i8] in the case of the
pnQRPA with realistic forces. This feature in the realistic
cases refers to the fact that the suppression of the NME’s is 0.25 0.5 0.75 1 135 1.5 1.7
in agreement with the experimental value only if the both ®) NV

kinds of residual interactiongi.e., particle-particle and FIG. 3. (@ Transitions from(4;4) to (5;3) for NW,,/e

particle-hole typﬁa_re_included. Their strengths do not differ — _o.2. (b) Transitions from (20;20) to (21;19) foNW,, /e

very much in realistic calculations. Our model also shows= _g 2.

that only when both types of such interactions are taken into ) )

account does one obtain the best agreement between ex&ggult deviates considerably from the exact one for siall

and RPA result. Also, the results are very closed when th&hile for bigger N, when the collective effects manifest

values of their strengthé.e., NV,,/e andNW,,/e) do not ~ Sronger, thepnRPA result comes close to the exact one.

differ much. We also show how charge-changing transitions can be
Figures 3 displays the same transitigasthe same values treated within our model by defining model charge-changing

. ~ transition operators simulating nuclegr- decay and their
of the model parameteras Fig. 2, but for thévl - operator,  a¢tion on eigenfunctions of the model Hamiltonian. Transi-

simulating 8" decay. Similar conclusions as in the case oftion amplitudes of these operators were first calculated using
the M * operator emerge. exact wave functions and then using thel DA and pnRPA

Concluding, we have extended the LMG model to thewave functions. The agreement betweenpn&RPA and ex-
case of anN-nucleon system composed of two subsystemsact results is good while for thpnTDA the agreement is
one consisting oN, protons the other oN, neutrons. The poor. This demonstrates the importance of the presence of
nucleons inside the two subsystems interact in the same maoerrelations in the ground state. Finally, our model can simu-
ner as in the original LMG model but in proton-neutron late the competition between the particle-hole and particle-
space. The two terms simulate the particle-particle and thparticle interactions in the transition amplitudes of the
particle-hole forces of the more realistic models. Our modetharge-changing operators analogously to the realistic calcu-
is exactly solvable in an SU(Z)SU(2) basis and the energy lations[2,3]. All these features emerging from the study of
spectrum of the model Hamiltonian is obtained by an exactharge-changing transitions in the framework of our exactly
diagonalization. The first excited state of the spectrum wasolvable Lipkin-type model encourage us to use it further, to
obtained also by th@nRPA method, and its behavior was test the limits of applicability of higher-order RPA-type ap-
studied as function of the model parameters. gRPA  proaches.
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