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We present a phenomenological discussion of spin-independent, generalized dipole polarizabilities of had-
rons entering the virtual Compton scattering procgsh— yh. We introduce a new method of obtaining a
tensor basis with appropriate Lorentz-invariant amplitudes which are free from kinematical singularities and
constraints. The result is summarized in terms of a compact effective Lagrangian. We then motivate a gauge-
invariant separation into a generalized Born term containing ground-state properties only and a residual con-
tribution describing the model-dependent internal structure. The generalized dipole polarizabilities are defined
in terms of Lorentz-invariant residual amplitudes. Particular emphasis is laid on a physical interpretation of
these quantities as characterizing the spatial distributions of the induced electric polarization and magnetization
of hadrons. It is argued that three dipole polarizabiliies—namely, the longitudinal elegtig?), the trans-
verse electriarr(g?), and the magnetig(g?) ones—are required in order to fully reconstruct local polariza-
tions induced by soft external fields in a hadron. One of these polarizabiliti€g?), describes an effect of
higher order in the soft final-photon momentagrh We argue that the associated spatial distributions obtained
via Fourier transforms in the Breit frame are meaningful even for such a light particle as the pion. The spatial
distributions are determined at large distances/m_, for pions, kaons, and octet baryons by the use of chiral
perturbation theory.
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[. INTRODUCTION specific results for GPs as obtained from various models of
hadrons. Our investigations are rather directed to an analysis
Recently, Compton scattering with virtual photojar- of the general properties of GPs as well as their physical
tual Compton scatteringVCS)] has attracted considerable interpretation which, in our opinion, was only insufficiently
experimental and theoretical interg$ébr an overview see, covered previously. We mainly consider kinematical aspects,
e.g.,[1-3] and references therginBoth the near-threshold relegating dynamical aspects of properties of the generalized
[4] and high-momentum transfer regim{é&s-7] of VCS turn  polarizabilities such as sum rules, dispersion relations, etc.,
out to be very informative for studying the structure of had-to a future publication. In order to avoid complications re-
rons. lated to the spin of the target we only discuss the simplest
In the below-threshold region a set of structure functionscase of apseudgscalar particle like the pion. Our consider-
the so-called generalized polarizabiliti€sP9, has been in- ations may as well be applied to the spin-averaged part of the
troduced in Ref.[4] in order to parametrize structure- VCS amplitude for a target of arbitrary spin. For illustrative
dependent effects in the VCS amplitude to leading order irpurposes we make use of results obtained in the framework
the final-photon momenturg’. These GPs contain model- of ChPT.
dependent information beyond the low-energy theorem Our work is organized as follows. In Sec. Il, we introduce
(LET) of real[8,9] and virtual[10] Compton scattering. The a new method of obtaining invariant amplitudes of electro-
first experimental results for the generalized polarizabilitiesmagnetic reactions free from kinematical singularities and
of the proton have recently been obtained at the Mainz Miconstraints, usingdouble virtual Compton scattering as an
crotron (MAMI) for a four-momentum squared of? example. Section Ill contains a motivation for choosing a
=0.33 GeV [11]. Additional experiments aiming at proton specific(though standandform of the Born amplitude which
polarizabilities are presently carried out at Jefferson[U#t)  is used for separating convectional from internal contribu-
and MIT-Bates[13]. A sensitivity study of inelastic high- tions in the scattering amplitude. In Sec. IV, we show how
energy pion-electron scattering on the pion VCS amplitudegeneralized dipole polarizabilities can be defined in a
has been performed as part of the Fermilab E781 SELEXorentz-invariant manner from the invariant amplitudes
experiment14,15. without introducing inconvenient singular kinematical fac-
Theoretical predictions of the nucleon GPs have been oltors. In particular, we show that it is natural to introduce one
tained in different frameworks such as the constituent quarknore dipole polarizability—namely, the transverse electric
model[4,16-18, the linearo model[19], chiral perturbation one—which is needed in order to recover the electric polar-
theory (ChPT) [20,21], the Skyrme moddl22], models with  ization of the target induced by a soft external electric field.
effective photon-pion-nucleon Lagrangiai®8,24], and dis-  This quantity does not contribute in tif&(q’) limit of pre-
persion theorie$25,26. Pion and kaon GPs have been dis-vious analyses. We provide another explanation why to this
cussed at the one-loop level of ChiP27,28|. order only two of the three spin-independent polarizabilities
In the present paper we are not so much concerned withre accessible in photon electroproduction experiments. We
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give a physical interpretation of the generalized dipole polarso that in case of real photons tBematrix reads
izabilities in terms of the densities of the induced electric and

magnetic polarizations. In Sec. V we argue that the associ- Sii=i(2m)*6* (p+q—p'—q') Tycs. (2.9
ated space distributions are meaningful even for a light par-

H —_ ! !
ticle like the pion. We determine such space distributions af'S @ result of four-momentum conservatiprq=p’+q’,

large distances ~ 1/m.. derived from various form factors € tensofm,, depends on three linearly independent vectors
using the predictions of ChPT. In passing, we also inclugd™ Q andR:

SU(3); extensions of previous results obtained within two- 1 1

flavqr he.avy—ba}ryon ChEWBQhPT}. Anglyucal r(_asults of p= E(p+ p’), Q= E(q+q/),

spatial distributions obtained via dispersion relations are rel-

egated to the Appendix.

1
(p’—p)=§(q—q’)- (2.6

N| -

R:
Il. TENSOR BASIS AND INVARIANT AMPLITUDES

OF VCS . . L . .
Since we only consider the case of initial and final pions on

In our discussion of virtual Compton scattering off a spin-the mass shell, the vectoPs Q, andR are constrained by
less hadron, we will often refer to this hadron as a “pion,”
although our general considerations also hold true for other P?=M2-R? P-R=0, 2.7
spinless particles, nuclei, and even atoms, as well as for spin- ) ) ]
averaged amplitudes. We start our analysis with an investi?hereM is the pion mass. Hence, we can choose four inde-
gation of the general kinematical structure of the pion VcsPendent klnzemaztlcal invariants which, for the moment, we
amplitudeT s for the case of two virtual photons, assuming take to beQ®, R%, P-Q, andQ-R. o .
that both initial and final pions are on shell. Our aim is to The dlsprgte symmetries as well as gauge invariance im-
construct a tensor basis and a related set of Lorentz-invariaRQSe restrictions on the general form of the Compton tensor.
amplitudesB; that provides a complete parametrization of FOr charged pions the combination of pion crossing with
Tves. We require allB; to be free from kinematical singu- Charge-conjugation symmetry results in
larities and constraints, because this simplifies the classifica- _
tion of low-energy characteristics of the pion and also pro- Tu(P.QR)=T,(=P.QR), 28
vides technical advantages, for instance, when discussi
dispersion relations.

The problem of finding a set of amplitudes for VCS was T,(P,QR=T,,(P,—Q,R). (2.9
already addressed and solved by Tarrach for both spin-0 and
spin-1/2 target$29] by using a projection technique origi- Gauge invariance requires
nally proposed by Bardeen and Tuf&)]. Although, in prin-

"Bhereas photon crossing yields

ciple, we could directly use the results of Rlg#9], we prefer q,T*"=(Q+R),T#"=0,
to construct the tensor basis again, first, in order to demon-
strate a very simple and powerful alternative method which q,T*"=(Q—R),T*"=0, (2.10

avoids projections and, second, in order to rearrange the

VCS tensor in a manifestly gauge-invariant form and to splitvhere the first and second equations are not independent
it into structures contributing to real Compton scattering,0once photon-crossing symmetry is imposed. Finding a solu-
VCS with one photon virtual and, finally, VCS with both tion to Egs.(2.10 without introducing kinematical singulari-

photons virtual. ties or constraints is the main challenge in constructing ap-
To begin with, we define the amplitudg,cs of virtual ~ propriate amplitudes.
Compton scattering, Because of parity conservation, the Compton tensor trans-
forms as a proper second-rank Lorentz tensor. The most gen-
y(e,q)+m(p)—y(e',q')+m(p’), (21 eralT,, satisfying the crossing-symmetry conditions of Egs.

as (2.8) and(2.9) can be written as a linear combination

10
TVCS: 6ME;*T'U’V, (22) T#V: 21 TEu.VAi (211)
i=

whereT ,, is the Compton tensor given in terms of the co- _
variant (Wick) T,y product of the electromagnetic currents, of ten basis tensorﬁw which include the metric tens@,,,
and nine bilinear products ¢, K, andQ:?

TWFJ (m (P TWLi u(X)j(0)]|7(p)) €' *d.

2.3
23 IFor the neutral pior{but not for the neutral kagnwhich is its
We normalize all single-particle states as own antiparticle, only pion crossing is required to obtain E48).
2As a result of parity, structures containing a single fully antisym-
(p'|p)=2pg(2m)38%(p—p’), (2.4 metric tensore,, .z are excluded.
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TfLV: (P/J,QV+ PVQ/,L)( P- Q)a
,=(P,Q,~P,Q,)(P-Q)(Q-R),

7,,=(P,R,+P,R,)(P-Q)(QR),

PHYSICAL REVIEW C 64 015203

conclude thatAZ " ®(x) =xAS " ®e(x), where AS®e(x) is

an even function ok which has no pole at=0 and which
therefore has no kinematical singularities at all. In other
words, the sum of all Feynman diagrams contains the term
7, As, the tensorr,, carrying a factor oP-Q and the func-
tion A5 having no kinematical singularities.

The same consideration immediately 7applies to the ten-

8 9 6
sors7,, and 7,,. In the case ofr;, or 7,,, we have to

apply the procedure given by E@.13 twice — first for
showing that the corresponding functiém contains the fac-
tor of P- Q and second for showing that it contains the factor
of Q-R as well. Eventually, we conclude that all the coeffi-

cientsA; in Eq.(2.11) are free from kinematical singularities.

By means of the factorB- Q andQ- R in the tensor basis
Eqg.(2.12 we can solve the constraints of E¢®.10 without
T?WZ(QMRVJF Q,R,(QR), introducing singular coefficients and without using the pro-

jectors suggested in Ref30]. Indeed, inserting Eq2.11)
T,lLOV:(Q#RV—QVR,L)- (2.1  for T#" into Egs.(2.10 and collecting coefficients of the
independent four-momentd, Q, andR, we obtain a set of

Appropriate factors of-Q have been introduced such that six linear equations in the functior , of which only five
all 7, are even functions oP, as required by Eq(2.8). ~ are independent:
Correspondingly, factors ofQ-R provide for photon-
crossing-even basis tensofsee Eq.(2.9)]. With such a
choice OfT',w: all the functionsA; depend on the crossing-
even variable®?, R?, (P-Q)?, and Q-R)2.

At this point it might be worthwhile to explain why intro-
ducing factors oP-Q andQ-R into Egs.(2.12 is harmless
to the analytical properties of the functioAs in Eq. (2.11).
For that purpose, let us omit in Eq&.12 all factors of

P-Q or Q-R, and denote the resulting basis tensorsorby
with B\i the corresponding functions of the expansioof

wa: ( P,uRV_ PVR,u)( P- Q):

A+ Q%As—(Q-R)?Ag+(Q-R)?A;—R*Ag=0,
As—Q2Ag+R?A;—Ag=0,
A1+Q%A;+(P-Q)%As+(Q-R)*Ag— R?A;,=0,
Az+(P-Q)?Ag+R?Aq— Ap=0,

A1+ R?A,+(P-Q)?Ag+(Q-R)?Ag+Q%A;x=0,

in terms of the “reduced” tensor%'lw. Let us further as- A+ (P-Q)2A;+ Q%Ag+ Ap=0. (2.14
sume that the tensdr,, results from some set of Feynman _ _

diagrams consistent with all symmetries. Consider an arbiOne can now expres4;, i=1,...,5, interms of the re-
trary Feynman diagram denoted By Obviously, its contri- maining functionsA;, i=6, . . .,10, without singular coeffi-

bution to T, can be expressed in terms @f, or bilinear cients:

products of four-momentéhese are just thfé'/w) multiplied

by scalar coefficients. Any such coefficient will at most have
dynamicalsingularities related with propagators of interme-
diate particles but n&inematicalsingularities. Stated differ-

A1=R*(P-Q)?A;—(P-Q)?Aq
+[Q%R?—(Q-R)ZJAg+ (R?—Q?) Ay,

Azz[(Q'R)Z_(QZ)Z]Ae
+[Q?R*~(Q-R)?JA;+(R*~Q?)Ag,

ently, all individual contribution:a?\iG to the functions&i are
free from kinematical singularities. In general, a single con-
tribution is not separately crossing symmetric. Eventually,
crossing symmetry off ,, is obtained after adding one or
several crossed partnefS., of the diagramG. Let us con-

sider, for instance, the tensor structa@yz P.Q,+P,Q,
which is odd undeP— — P. We can then write

Az=—(P-Q)?As—R*Ag+ Ay,
A,=—(P-Q)?A;—Q?Ag— Ay,

coiG As=Q%As—R2A,+ Ag. (2.15

AS T C(x)=Ag(x)—AS(—x), (213

Using Eqgs.(2.195, we can finally rewrite Eq(2.11) as
where we introducedk=P-Q and, for brevity, omitted
P-independent arguments lik@2. The second term in Eq.
(2.13 represents the contribution of the crossed diag&m

which makes the ampIitudé?GC(x) odd. Note that both

contributions are nonsingular as-0. From Eq.(2.13 we  where

10
T2 TuAQ R (P-Q%(Q-RP), (216
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6 I i -
T°,=[(Q- R)2—(0Q%?] Pﬂpv_(P'Q)ZQMQﬁ Q% P-Q) In terms _ofFW and F,. itturns ou_t to_be rather stra|gh_tfor
ward to identify structures contributing for real or virtual

X ( P/.LQV+ PVQ,u) + (P ' Q)(Q R)( P,u,QV_ PVQ,LL)! phOtOI’]S.
For example, thé\,y contribution to the VCS amplitude
TL,=R*(P-Q)°g,,+[Q°R°~(Q-R)*|P,P, reads
—(P-Q)’R,R,~R¥(P-Q)(P,Q,+P,Q,) 10 1
e’ ' TI0 A= — 5 F*F! Ao, (2.20
+(P-Q)(Q-R)I(P,R,+P,R,), 2
g 2 9 2 which can be interpreted as the matrix element of the effec-
Tu==(P-Q)%g,,+[R*=Q7JP,P,+(P-Q) tive Lagrangian
L=- ZAl(}FW.’F“”qSTqb. (2.2

9 _
TMV_[QZRZ_(Q' R)z]g,uv_ RZQMQV_QzRMRV
+(Q-R)(Q,R,+Q,R,) Here A, represents a differential operator in terms(co-
po mrR variany derivatives acting on both pion and electromagnetic
10 _p2_ 2 _ . fields with Fourier components given by the functidr,.
Tur=(RP=Q98,,+ QuQ = RUR A (QuR,=QUR,) Similarly, the contribution of the amplitud&g can be writ-
(217 tenas

are five basis tensors which explicitly satisfy the crossing-
symmetry and gauge-invariance conditions of E@s8)—
(2.10. Respectively, the five functions;, i=6, .. .,10, can  \yhich results from the effective interaction Lagrangian
be considered as invariant amplitudes of virtual Compton
scattering which are free from kinematical singularities and 1 o
constraints. L=~ §AafayfﬁuPaPB¢T¢, (2.23
In passing we note that the same method of constructing a
basis and invariant amplitudes free from kinematical singu- : 5D 4t '
larities and constraints also works for the VCS amplitude ofwhere the action oP,Ps¢"¢ is defined by
a spin-1/2 target such as the nucleon. R i i
The tensorsT®, and T}, have exactly the same form as P3¢T¢=§¢>TDB¢— E(Dwﬁ)*d’,
for real Compton scattering and can easily be identified with
the more common notatiofsee, e.g., Ref.31])

elel* uTivASZ_(pMFMV)(ppF;V)AB, (2.22

A 1 1
. | | BoPyd’ b= 76'D,Dyd+ 7 (D) Dyt
TW:_(P‘Q)(P'Q )g/.w_(qq )P,U,PV

+(P-q)P.G,+ (P-Q)P.0,, +7(D8)D b~ 5 (DD o,
T=0,9,~(9:0')9,,,. (2.18 (2.24

However, also the remaining tensofy,, i=6,7,9, and and D,¢=d,¢+ieZA,¢ with e>0, e*/4r~1/137, with
thus the corresponding functios contribute to real Comp- £€ denoting the charge of the particle.

ton scatteringRCS. This, clearly, is a drawback of the basis ~ The tensor structures,,, i=6,7,9, involve higher pow-
of Egs.(2.17) and it would be convenient to have, instead, a€r's of photon momenta and thus are related to derivatives of

basis such thagxclusivelythe two tensord®  and T con- the electromagnetic fields. Introducing the four-vectors
y7a% y7a%

tribute to RCS, another one appears for the case of one vir- CiqhF, = — e, +(q- €)q

tual photon, and, finally, the two remaining structures also wy v v

contribute to y* w—y* 7. To that end let us introduce — 2 1% ,

e i T It iq/F!,=—q'2€  +(q - €' 2.2
gauge-invariant combinations of photon polarizations and q'*F,,=—0q7€,+(a"-€7)q,, (2.2
momenta,

F.=-—i(d.€6,—0,€,), F,,=i(q,€"—q,€,"). 3Here, we assume that “pion” and “antipion” are different par-

(2.19  ticles, such asr™ and 7 or K® andK®. For the case of a charged

) pion, the fieldp==" is given in terms of the Hermitian, Cartesian
These second-rank tensors represent the Fourier componefdsspin componentss;, as ¢=(d1—id,)/\2 [d'=m =(¢;

of the electromagnetic field-strength tensafF,,(x) +i¢,)/\2] and destroys ar* [7]. In the case of the neutral
=d,A,(X)—d,A,(x) associated with plane-wave initial and pion, we have to takeb=¢'= ¢, and replace the factor of 1/4 in
final photons described by the vector potenti#lg(x)  Eq. (2.21) by 1/8. These trivial changes also apply to the other
=€, exp(—ig-x) and A/ (x)=€," exp(q’-X), respectively. Lagrangians written below.
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which vanish for real photons, we obtain two more tensors—

namely,T;, and TS, — T/ ,—by using the identities

v ’ roN rx v 9 10
(a,.F*")(q'PF,, )= €€ *[4T,,+(R*=Q)T,.]

(2.26
and
(P,A,F“)(P7q'*F,)
_ I%x v 6 7
=ete'* [-2T,,+2T,,
+(R2+QH)TS,—(P-Q*T]. (227

The remaining linear combinatioR,,+ T/, is contained in
a product similar to Eq(2.27), however with photon mo-
menta interchanged in one factor:

(PF#q))(P7q"PF )+ (P"F ) (P ,q,F")

=ete'* (2T —2T],—2R°TS ). (2.28

With the above identities the most general VCS amplitudea
can be written in the following manifestly gauge-invariant

form:
1 v ! v ! V!
Tvcs=§F“ FBit (P F“")(PPF ) B+ [(P"Q'#F )

X(P7q'"F ,)+(P"0"F ) (P q°F ,)]B3
+(a,F*")(a'"F,,)Ba+ (P Q"F ) (P7q"PF ;) Bs.
(2.29

Here all the invariant amplitudeB; are free from kinemati-

PHYSICAL REVIEW C 64 015203

Equation(2.29 can be interpreted as the matrix element
of the effective interaction

1 a 2 - s 2 T
L= Z[Bl(]:‘uy) +ZB4(5 ]:/u/) ]¢ ¢

1. .
+ SIBoF W Fy, 4 Be(0,F ) (9" F,)

—2B3F (0,0 Fp,) 1P PPOT ¢, (2.31)
whereB; are differential operators acting on all the fields and
determined by their Fourier componerss.

Of course, after substitutingl—q,, 9'——0q,, p—
—p1, andp’—p,, Eq. (2.29 also describes the general ki-
nematical structure of the amplitude of the crossed reaction
v(d1) ¥(92) — 7(p1) 7m(p,) for on-shell pions. Exactly the
same considerations apply to any other spin-0 hadron assum-
ing the same symmetry principlélsorentz and gauge invari-
nce,P, T, andC conservationand are also applicable to a
properly spin-averaged VCS amplitude for hadrons with fi-
nite spin.

As mentioned before, the functiols depend on the four
invariantsQ?, R?, (Q-R)?, and P-Q)?. As an alternative,
the following combinations of the first three quantities can be
used as independent arguments Bf: q’+q'?=2(R?
+Q7%), 9-9'=R?-Q? andg’q'?=(R*+Q%)?-4(Q-R)%
Thus, we may write

cal singularities and constraints, because the transformation

from the basisT',, of Eq. (2.17 to the basis of Eq(2.29 is

Bi=Bi(v%q-9',9°+q'%9%q"?), (2.32
wherev is defined as
Mr=P.Q=P.q=P-q’. (2.33

nonsingular. This can also be easily seen from the following

relations between the two sets of amplitudesandB; :

P. 2 RZ_ 2
Bi=—Asot EQr (AG_A7)+—Q Ag,
4 4
RZ R2+Q2
By=—Ag+ 7(A6+A7)_ 2 (As—A7),

1

Bs=—

1 1
(AgtA7), B4:ZA9, Bszz(A7_Ae)-
(2.30

The determinant of the transformation expressiBy
(i=1,...,5) interms ofA; (i=6,...,10) is 1/32£0, inde-
pendently of the values of the kinematical variables.

In view of the rather compact and transparent structure of

Besides being manifestly crossing symmetric, this forrBof
has the advantage of having a simple limit if one or both
photons become real.

Finally, the Mandelstam invariants of the VCS reaction
read

s=(p+q)?=M?+2Mv+q-q’,
u=(p—q')?’=M?-2Mr+q-q’,
t=(q-0a")*=q’+0q’*~2q-q". (2.34

Ill. BORN TERMS AND GAUGE INVARIANCE

In order to describe the internal structure of the pion in

Eq. (2.29, we will use in the following the parametrization terms of its generalized polarizabilities as tested in virtual

of Tycs given by the amplitude®;. As seen from Egs.
(2.25 and(2.29, only the amplitude8, andB, are needed
to describe real Compton scattering, because yé¢h,,,

Compton scattering, we first have to isolate a convection
contribution which originates in two successive interactions
of the photons with the electromagnetic current of the pion,

ZQ'”FLFO- When only one photon is virtual, one more resulting in singularities at zero photon momenta. For a

amplitude B3) contributes. All five amplitudes3; enter,
when both photons are virtual.

pointlike (pseudgscalar particle of electric chargeZ, the
interaction with an external electromagnetic field can be de-

015203-5
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scribed in terms of the Lagrangian

Lo(D,b,¢)=D, (D p) ~M?¢o", (3.1)
where the covariant derivative
D,p=(d,+ieZA,)¢ (3.2

ensures the invariance of the Lagrangian undectmnical
gauge transformation

A,(X)—=A, (X)+d,AX), G(xX)—exd— ieZA(x)]qsg)é)

However, such a description is not sufficient for an extended
particle and we have to modify the above effective Lagrang-

ian.

PHYSICAL REVIEW G4 015203

Lei(d,b,d)=[0,+ieF(—d*)A,]1p[0"—ieF(—d*)A*]!

—M2¢pop’ (3.7)
and to the first-order electromagnetic vertex
L.(p',p)=(p'+p),F(d®), g=p'—p, F(0)=Z
(3.8

Note that Eq(3.7) is no longer invariant under the canonical
gauge transformation of E@3.3) and, correspondingly, the

electromagnetic vertex of Eq3.8) does not satisfy the

Ward-Fradkin-Takahashi identify32—34

q.“(p",p)#Z[A™H(p") A" (p)],
where A(p)=1/(p>—M?)

(3.9

is the free propagator of

To that end, let us first consider a classical systenm of £,(d,¢,¢). In fact, a different gauge transformation

constituents with charges,=eZ, and massem, which is
exposed to a static external potentdgl(r). The electrostatic
energy of such a system is given by

n

W=, e,An(r,)
a=1

n

=a§1 €a| Ao(R) + 4 ViAo(R)

1
+§PaipajViVjA0(R)+ sy (34)

A, (X)—=A,(X)+d,A(X),

P(x)—>exd —ieF(—a*) A (x)]$(x) (3.10

defines a local realization of the symmetry groufl}i.e.,
under two successive transformations described by smoothly
varying functionsA; and A, the fields transform as

A#HA#_F &MAlH(AM-i- 0#A1)+0')#A2
=A,+3d,(A1+Ay),

p—exd —ieF(—d*)A,]d

whereR is the center of mass of the charge distribution and

p.="r,— R are relative coordinates. In the continuum limit,

—exd —ieF(—d*)A,lexd —ieF(—d*)A,]¢

the expression for a spherically symmetric distribution reads

W=eZA(R)+ g<2r§>V2AO(R)+ ...=eF(V?)Ay(R),
(3.5

where X ,e,— [p(r)dr=Ze is the total charge,Eaeapgl

—>fr2p(r)dr=e<Zré) is the electric mean square radius,

andF(—q?)=Z—%(Zr)¢?+ - - - is the electric form factor.

=exf —ieF(— ) (A1+A,)]o. (3.1

Accordingly, we define aaoncanonicalcovariant derivative
as

D, p=[d,+ieF(—i*A,l¢P, (3.12

such thatD , ¢ transforms in the same way @sunder Eq.

Of course, the response of the extended system to the extdd.10 and the effective Lagrangian
nal field is determined by the potential and its derivatives ~ L
together with the corresponding moments of the charge dis- Le(d,¢,¢)=Lo(D, b, ¢)= DM¢>(DM¢)T— M2pet

tribution.

(3.13

A relativistic generalization to the case of an extended o )
pion suggests the following substitution for the vector potenJemains invariant under Ed3.10. We stress that from a

tial in Eq. (3.2):
ZA,(X)—=F(=3d*)A(X), (3.6)

which leads to the effective Lagrangran

4Since we do not treat the electromagnetic field as a dynamic
variable, it will not be included in the list of arguments of the

Lagrangian.

5Since we want to apply the Lagrangian for the case of spacelike

virtual photons, we assume the form factor to be real.

formal point of viewany (rea) function represented by a
power series would yield a realization of gauge invariance
and that the choice of electromagnetic form factor is entirely
motivated on physical grounds through E(&.5 and(3.6).
Although a description of a finite-size pion based on Eq.
(3.7) is mathematically consistent, it turns out to be inconve-
nient as soon as interactions of several particles with differ-
gnt form factors are considered. For instance, even a simple

a\ocal interaction of fieldsp, (a=1, ... n) of the form

z:im<¢a>=91;[ ba, (3.14
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v_vith a_vanishing net chargg associated_with_the product of Eo(DLﬁD'(P)=£o(DM€0'<P)+51(DM90,<P)+£2(<P)-
fields, is no longer automatically gauge invariant as soon as (3.23
different fields transform with different form factoFs,. Un-

der the gauge transformation of E@®.10), the interaction Here Ly and

Lagrangian, Eq.(3.14), picks up a space-time-dependent ] -

phase factor Ly(D,e,0)=—ie[e'D,o]f(—d%)d,F"" (3.24

generate the electromagnetic vertex

11 exd —ieF (=) A(x)]#1. (3.15
a ’ L(p'.P)=(p'+P),F(a?) —du(p'>=pA)f (0P,
On the other hand, this would not happen for the transforma- aq=p’ —p, (3.29

tion law of Eq.(3.3), because
which now satisfies the Ward-Fradkin-Takahashi identity

11 exi—iezaA(o)=1, (3.19 q.T(p',p)=Z(p'2=p?)=Z[A"(p") = A~ *(p)]
(3.26
grcgnd_eg the electric charge is conserved at the vertex, -€4ith the free propagator. The last term
aca~ VY-
We therefore redefine the field as folloya5]: Ly(@)=€Xf(— )3, F 1 H(— )" F,,lee"
(0= g(exdiel(~ ) d,A 0], (317 3.2
P vanishes, when at least one of the photons is real, thus sat-
wher isfying 9,F*"=0.
In the following wedefinethe (generalizegiBorn terms of
f(q?)= i[F(qz)—Z] (3.18 the virtual Compton scattering amplitude as the VCS ampli-
q? tude constructed from either of the Lagrangians of Eg§9)

and (3.21). According to the equivalence theorem of La-
generates a new field which transforms canonically undegrangian field theory36,37, the scattering amplitude does

Eqg. (3.10, i.e., not depend on the Lagrangian used as long as all external
] ) pions are on shell. To be specific, one obtains
p=exd —ief(—-d9%)d,A*]¢ (3.19
2p+ 2p'+q’
—exd —ief(—3d?)(d,A*+d*A)]exd —ieF(—d*)A]¢ ToO"=e?F(g®)F(a'?)| 29, (2p+a),(2p"+a'),
(p+q)*—M?
=exg —ief(—d?)(9,A*+5°A)] , )
_ o ~(2p—q'),(2p"—Qq), (3.28
Xexp{—le[Z—é’ f(—& )]A}¢ (p_qr)Z_MZ ’ ’
=exd —ief(—d?)d,A* —iezZA
exil —ief( VoA Jexp —1eZA) ¢ In fact, such a form of the Born amplitude is standard for a
=exp —ieZA)e. (3.20 discussion of structure-dependent characteristics of the tar-
_ _ _ get, and we have shown that this is a very natural generali-
Rewritten in terms ofp, the Lagrangiar(3.13 reads zation of the Born amplitude for a pointlike particle to the
‘ ; fu > case of a finite-size particle. As discussed in R88] in
Lo(D,e.¢)=D,e(D*¢) =M pe, (82D detail, such a generalization incorporates all low-energy sin-

gularities of the total VCS amplitude so that the non-Born
part of the amplitude can be expanded in powers of small
photon momenta giving rise t@eneralizefl polarizabilities.

where the seconghoncanonicalcovariant derivativeDch is
defined as
f ; ; 2y v
=[d,+ + - .
Due=LoutiezA, +ief(=)"Fule, (322 IV. LOW-MOMENTUM EXPANSION AND GENERALIZED
and 7,,=d,A,—d,A,. This second definition ensures ca- DIPOLE POLARIZABILITIES
nonical gauge invariance and simultaneously accounts for A \yell-known, general method of obtaining the low-
the finite size of the particle. energy expansion of a reaction amplitude consists of expand-
Organized in powers of the elementary charge, the Laing invariant amplitudes free from kinematical singularities
grangian can be expressed in terms of the canonical covaring constraints in a power serieee, e.g30,39). Follow-
ant derivative as ing this method, we first decompose the invariant amplitudes
Bi(»?,9-9',9%+q'2,9%q'?) into generalized Born and non-
Born contributions

®Recall our assumption th# can be expanded in an absolutely Bom . oNB -
convergent series. Bi=B"+B;-, i=1,...,5 4.0
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The generalized Born or convection contribution is associinitial and final pions are treated on a symmetrical footing.
ated with a set of diagrams describing single-pion exchangdstroducing the Fourier components of the electric and mag-
in s andu channels withyz# vertices taken in the on-shell netic fields as

regime. As we have seen in the previous section, additional ) .

nonpole terms are necessary to render the generalized Born E=i(doe—qeo), B=igXe,

terms gauge invariant. The thus constructed amplitude pos-

sesses all the symmetries of the total amplitddes and
contains all singularities of ,cg at low energies. Using the

specific form of the Born amplitud&522 given in the pre-

E/:_i(qéel*_qleé*), B/:_iqlxel*, (46)

we can rewrite Eq(4.5) in the Breit frame as

yious_ section,_we find thégeneralizedl Born parts of the Tves=[(B-B")B;—(E-E’)(B;+P?B,)
invariant amplitudes; , 5
+(E-9)(E"-q)P“Bs]pgr- (4.7)
2 2 12
BPO_(q.q')C, BEM—=_4C, C= 2e°F(q9)F(a™) In general, even after subtraction of the singyBorn) parts
(s—M?)(u—M?) of the amplitudes, aB*® still depend on the photon energies

(4.2 and the scattering angle and thus describe a series of multi-
poles and dispersion effects. However, in the limit ¢gf
andB*"=0 fori=3,4,5. —0, only scalar structure functions depending @h sur-
At energies below inelastic thresholds, the non-Born partsive:
of B; are regular functions of the kinematical variables. They
determine the deviation ofycs from its Born value of Eq. bi(9%)=B}?(0,09°,0). (4.9

(3.28. In particular, when the momenta of both photons are ) ) o
small,g~q’ —0, one obtains These functions yield the non-Born parts of the coefficients

in Eq. (4.7 which we interpret as generalized electric and
1 magnetic dipole polarizabilities:
“FA'F! by(0)+ (P, F*)(PPFE! )by(0
5 F#F1,,b1(0)+ (P,F*)(PPF/,)by(0) 8mM B(G)=bi(G?)

+0(g%), 4.3

_ Born
Tves=Tyest

2
q
NB ) SWMQT(QZ):_bl(qz)_(MZ_ Z)bz(qz),
where the constants;(0)=B;""(0,0,0,0),i=1,2, can be re-
lated to the ordinary electric and magnetic dipole polarizabil- o
ities of low-energy real Compton scattering, 87Ma,(9?)=—by(q?)— ( M2— Z)[bz(quqzbs(qz)],
8mMa=—by(0)—MZ2b,(0), 87MB=by(0). (4.9

(44 Wwhere P? has been taken in the limg’ =0 as well, i.e.,

. . L P2=M?—q?/4. If the initial virtual photon has a transverse
Equationg4.3) and(4.4) provide a Lorentz-invariant form of polarization in the Breit frame H=ExL ), the pion re-

the Iow-energy' theorem for virtual Compton scattering up tosponse to the transverse electric and magnetic fields is deter-
second order in the photon momeritar the case of the

nucleon, see Ref10]). mined by the(generalized transverse electric and magnetic

Now, following the original idea of Guichoet al.[4], we polarizabilities:
consider the case ’when the final phot.or}'is real and has a very (T{jES)T:&rM[(ET- E')ar(q?)+(B-B")B(q?)]
small momentuny’ — 0, whereas the initial photon momen-
tumq s allowed to be virtual and is not necessarily small. As + (higher orders irg’). (4.10
may be seen from Ed2.29, the amplitude ofy* m— y=r
with a real final photon is determined by three invariant am-For a longitudinal polarization§=E_ ||q) in the Breit frame,

litudesB;, B,, andBs,’ . ,
P 1 B andts (TNE) =8mM(EL-ENay(a)+O(q'?).  (4.11)

1 -
TVCSZEF,U«VFI’MBl_F(PMF,U«V)(PPF;W)BZ In the real-photon limitg®>—0, we have
+(quMFuv)(P(rqu;;a)B3' (4.5 B(0)=8, a (0)=ar(0)=a. (4.12

) ) _ _ ) i _All thus defined polarizabilities are functions @f free from
This equation has a particularly simple form in the pion Breitkinematical singularities. In particular, for pion, kaon, or
frame (PBF) defined byP=0—i.e., p=—p’'—in which the  pycleon targets they are regular functions below the two-

pion thresholdg?<4m?, and this region includes all space-

like momenta.
"The definition ofP of Eq. (2.6) differs by a factor of 1/2 from We will now interpreta, (%), a(9?), and 8(q%) by
Ref.[27]. means of a semiclassical qualitative picture. To that end, let
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us consider a system afpolarizable(neutra) constituents at a (q)— a(q)

positionsr, (a=1, ... ,n) with electric polarizabilitie&xﬁ . Bl@)=——F5—, (4.18

We allow the constituents to be anisotropic—i.e., the polar- a

izability tensors are symmetrie;; = o}, but not necessarily

diagonal ¢: ;). The system will respond to an external elec-

tric field E(t,r) by acquiring a dipole momeéht a;(9) = a1(q) 8, +B(q)q;q (4.19
n

Di(t)=47721 af Ej(t,ry). (4.13

Eqg. (4.15 can be rewritten as

such that the Fourier transformation results in

aij(r)=a-|-(r)5ij—ViVjB(r). (42@
Slow oscillations of this dipole moment generate radiation of
an outgoing long-wavelength electromagnetic wavét,r) ~ Because oB=B(r), the second term of Eq4.20 reads
through the interaction-D- E. For an incoming plane wave

with momentumg—i.e., E(r) = E exp(q- r)—the amplitude —V.V.B(r)=—| &;— Nl _B’(r) _ mB//(r)
for a transition to an outgoing plane wave with a very small t o2 r r2 '
momentum(viz., q' p<1, wherep characterizes the sys- 4.21)

tem’s extensionreads
On the other hand, from Eq4.18 written in the form

. a°B(q) = a(q) — a+(q), one obtains, for the Fourier trans-
fi=4m 2 af explia- pa) EiE], (414 form,

n

where p,=r,—R are the positions of the constituents with —~V2B(r)=—B"(r)— EBf(r):aL(r)_ a+(r).
respect to the center of maRf the system. The continuum r
limit of a system with spherical symmetry must be of the (4.22

form EliminatingB”(r) from Eq.(4.22) allows one to rewrite Eq.

n (4.20 as
az::l aia} exp(ig- pa) — a;j(Q) o _
o . aij<r)=aL<r>'—;+aT(r>(a,——'—;)
= a(9)0;0;+ ar(a)(5; —qd)), ' '
(4.19 3riri—r2s;
+———B(1). (4.23
wherea, and a; do not depend on the directianof g. In r
this way we recover the structure of the VCS amplitude
given by Egs.(4.10 and(4.117).

If the system under consideration is exposed to a stati
and uniform external electric fiel@’, an electric polariza- d
tion P is generated which is related to thiensityof the d—[rZB’(r)]= —r o (r)—a(r)], (4.29
induced electric dipole moments: '

Finally, the last term of Eq(4.23 is determined by reex-
gressing Eq(4.22 as

n which, assuming the boundary condition lim.r2B’(r)
PN =4mY, ol &(r—r,)E/=4ma;(r—-RE] . =0, is solved by’
a=1

(4.19

The tensor;;(r) is nothing else but the Fourier transform of
the polarizability tensor of Eq4.15:°

rZB’(r)=fwr’z[a,_(r’)—aT(r’)]dr’. (4.25

In other words, given the Fourier transforms

d
aij<r>=f ay(@ex i A (4.1

277)3. 10
Instead of Eq(4.25 we could also use
If we define rZBI(r):_frrZ[aL(r/)_aT(rr)]dr/’
0

resulting from the boundary condition ljmyr?B’(r)=0. Both re-

8The factor of 4r is related with the(standardl use of Gaussian sults are identical, because

units for the polarizabilities but natural units for charges and fields. f: 12 (M) — a(r)] dr= —0)— —0)=0
*We do not use different symbols for a functidift) and its 0 e (1) a(r)] % (0=0)~en(q=0)=0,
Fourier transfornt (w). where we made use of E(.12.
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_ dq Bij(r)=pB(r) & . (4.30
CVL,T(")EJ ap f(@)exp(—igqr—-, (426
(2m) Then the magnetizatiom induced by the uniform external
magnetic field and the corresponding induced electric current
' 5j(r)=V X M(r) are, up to an arbitrary gradient, given in

terms of the density of the magnetic polarizability as

the density of the full electric polarizability of the system
a@jj =Eaaﬁ , can be reconstructed as

nn A~ 3T M(r)=47B(r—R)B’, (4.32
aij(r):aL(r)rirj+aT(r)(5ij_rirj)+% ( b
where the Fourier transform ¢(r) is nothing but the gen-
0 eralized magnetic polarizabilit; :
xf [a (r")—a(r")]r'?dr’. 4.2 I P p(a)
r
: dg

In this context, it is important to realize that both longi- B(r)—f pla)exp—iq-r) (2m)% (4.33

tudinal and transverse polarizabilities and ay, respec-
tively, are needed to fully recover the electric polarization|_et us conclude this section by recalling that E410 was
P. The longitudinal polarizability is special, though, becauseobtained by keeping the lowest multipolarities of the final
it completely specifies the induced polarization charge den¢soft) photon. This, however, leads to different powers of the
sity of the system, photon momentung’ in such an expansion. Fof —0, the
energy of the initial photon in the Breit frame vanishes as
Sp(N==V-P(N=—4m(E"-V)a.(r), (428 el becausej,=gqj, in that frame. It then follows from Eq.
(4.6) that the transverse electric fielit} is of higher order in
g’ than the(transvzers)amagnetic fieldB. This is also clear
from the relationg"E+= —qogX B. When only terms up to
Viai(N=Vja(r), 4.29 order O(q’) are (rqetaTined,q'([)r?e transverse elizctric fielg does
which follows from Egs.(4.15 and (4.17). Combining par- not contribute. In order to translate E@.7) into a power
tial integration with the divergence theorem, one finds, foréxPansion of the non-Born part of the VCS amplitude up to

the Fourier transform of the induced polarization charge, 0(q'?), one has to add two more terms proportional to
(a-9")[dB1/d(q-q")]q'=0 and to a similar derivative of

where we made use of

) ) . ) the functionB, + P?B,. These terms introduce an additional
5P(Q)Ef dp(ryexplig-r)dr=iq-P(q)=4mia (q)q-E'. angular dependence and therefore higher multip@jeadru-
(430  poles.

The physical process of photon electroproductagik)

Such an induced charge density is the source of a longitudi+=h—e’(k’)+h'+y(q") consists of the Bethe-Heitler con-
nal electric(Coulomb field and thus generates an effective tribution, in which the real final photon is emitted by the
coupling of the typeE, -E’. initial and final electrons, respectively, and the VCS contri-

At the same time, the transverse polarizability de-  bution. The virtual photon of the VCS pary(q), is de-
scribes rotational displacements of charges which do nogcribed in terms of the polarization vector
contribute tosp(r). They can generate electric fields only for
a finite frequencyg,+ 0. Therefore, in the limig,—0 the e— | ,
effective couplingE+-E’ should vanish faster thaf, - E’. €= Ue(K) y,Ue(K),  q=k=k', (4.34
This is indeed the case, as we will see below. d

The relation(4.30 suggests an intimate connection be-\yhich is determined by the electron-scattering kinematics.
tween the longitudinal polarizabilityr, and the charge- porq .0, such ane, remains finite. Therefore, the trans-

density operator of the system. In a forthcoming publication o se electric field;=iqqer created by the electron transi-
we will verify this in a quantum-mechanical and fully rela- tion current is of ordet)(q’) in the Breit frame and is sup-

tivist_ic_framewo'rk. . . pressed in comparison with the magnetic and longitudinal
Similar considerations apply to the magnetic part of the

. ) X P electric fields generated by the current. As an immediate con-
VCS amplitude. In this case the electric po_larlzabmttq‘;s sequence the non-Born part of the VCS amplitude to order
should be replaced by the magnetic ofgs Since the mag-  ¢)(q') is characterized bywo structure functions[viz.,
netic induction is always transversee., B-q=0), terms 4 (g?) andB(q?)] rather than by all three functions appear-
containingq;q; in the magnetic analog of E¢4.195 do not  ing in the dipole approximation.
enter any observable and can thus be omitted. Hence, the Although we arrived at this conclusion by considering the
unobservable “longitudinal” magnetic polarizabilitg, (q) VCS amplitude in the Breit framgp=(q’' —q)/2], it is clear
can for allg be chosen to be identical with the transversethat two independent structure functions characterize the am-
one, B1(q) rather than only at the poimj=0, where the plitude to order®(q’) in any other frame such as, for ex-
equality 8, (0)= B+(0) is dictated by analyticity. With this ample, the center-of-masgs.m. frame. This is true because
choice g;;(g) = B(q) §;; , and the analog of Eq4.27 reads  the amplitude itself is Lorentz invariant and at the same time
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the real-photon energyy’ =|ci’|, remains of the same order
O(q’) for anyfinite Lorentz boost.

The above consideration gives a transparent explanation R L
of the theorem established in R¢B1], which states that — 203 F " 3,0"F5, 1P PPOTd,  (4.36
there are only two independent structure functions which de-
termine(q’) terms in the so-called full amplitudBy.sof ~ whereb; are differential operators acting on the electromag-
virtual Compton scattering for a spin-0 particle in the c.m.netic fields which are determined by their Fourier compo-
frame. Here, “full” refers to the fact that the polarization nentsb;(g?) [see Eq(4.9)]. The above Lagrangian contains
and the intensity of the initial photon are given by E41.34). all possible gauge-invariant terms involving at least one field

In terms of the notation introduced by Guichehal.[4],  strength tensof,, without derivatived O(w’)!].
this theorem establishes a linear relation between the c.m.

1. 1.
£polariz:Zb1fMVfﬂv¢T¢+ E[bz}-a#}-ﬁ,u

generalized polarizabilitie®(©1000 p(L10 guq pOL1O V. SPATIAL DISTRIBUTIONS
leaving only two of them independent. In the c.m. frame, the IN CHIRAL PERTURBATION THEORY
transverse electric field is not vanishing, and the above theo- o

rem can be rephrased as establishing a linear combination of A. Preliminary remarks

theE_, Er, andB responses in the c.m. frame which van-  |n accordance with the ideas presented in the previous
ishes wherg’ =0. This is just theE; response in the Breit section, we now consider the Fourier transforms of the
frame. g-dependent polarizabilities, generically denoted Fyg?),
The explicit relations between the c.m. polarizabilitiesand discuss the corresponding spatial distributiefs).
and the quantitiesy, (g% and B(q°) appearing at order  There is a well-known objection against a straightforward
O(q') read interpretation of sucliF(r) as a spatial distribution. The ar-
gument is related to the fact that the velocities of the target
before and after the interaction with the virtual photon de-
e? 3Ecm. pend on the photon momentum. If we think of the target as a
a ()=~ =\ 57 P e m), composite system of Kk Id t that th
47 N (2J+ DM posite system of, say, quarks we would expect that the
matrix element

e? 3E.

JI(R, 7 )R, 7'|O|R,7) ¢i(R,7)dRdrdR'd 7'
=gz N v oM (dem)r (439 J v

(5.9

of a transition operator Iiké)=fj”“(x)AM(x)d3x for a one-
where E, ,=M—q%(2M) and g mn= V- >+ q%/(4M?) photon reactioht depends on both the internélorentz-
denote the energy and the absolute value of the thrednvariand variablesr of the pionand on the pion’s center-
momentum of the initial pion in the c.m. frame at thresholdof-mass variableR (cf. Ref.[40]). Since a relativistic wave
(9’ =0). The spin factor 2+1 removes a related spin de- function(R, ), in general, does not factorize into a product

pendence hidden in the quantitieé'""*bS and is needed ©f the type ¢(7)exp(p-R), where ¢(r) denotes a
when our “pion” represents a spin-averaged hadron of spirP-independent internal wave function, some part of thedull
J+0. dependence of the transition matrix element may be related

When considering the Fourier transforms, the additionalVith the c.m., partly kinematical effects gfon ¢(7). We
factor of VE, , in Eq. (4.35 and the use of the Breit-frame COMe closest to associating the Fourier transfBi(m) of the
momentum irénsfqu ,t=\/_—qz instead of the c.m. mo- full matrix element5.1) with theinternal spatial structure of

rei .m. ; X : . : .

mentum transfeq wﬁl generate a difference for the spa- the par.tlcle l?y evalua'tmg'thls matrix element in the 'BI’EIt
tial distributions, especially for such a light particle as theff@me. in which the pion is at rest on the average—e.,

[
pion. From the analogy with the well-known case of electro- TP =0. . . . .
magnetic form factors, where spatial distributions are ob- 1here is a simple phenomenological argument suggesting

tained using the Breit-frame variables, we expect that anat the generalized magnetic polarizabilig(q®) defined
meaningful Fourier transformation in the case of the generdccording to Eq(4.9) is indeed only related to the internal
alized polarizabilities also requires the Breit frame. IndeedStructure. The point is that this quantity is a functionggf
the only difference between the kinematics of the reaction ofVithout I_<|ner;1at|cal singularities. In other words, any irregu-
VCS, y* m— ', and the kinematics of the reactiarf Ianty inits q behz_awor is not (_:aus_ed by a Lorentz contrac-
— r, in which the form factors are studied, originates in thelion and has nothing tol do with singular factors or with
presence of an additional photart which carries a vanish- duantities  like Po=3y4M“+q".  Moreover, even
ing momentung’ =0.

In analogy to Eq(2.29, the structure-dependent effects
as seen in VCS with ongsoft or hard spacelike virtual and ~ another  example  would  be O=[[j*(x")Al(X')
one soft real photon can be encoded in the following effecGg(x’,x)j*(x)A,(x)d*xd*’ involving two currents, wher&e is
tive Lagrangian: the Green function.
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singularity-free quantities liké3=P? should be irrelevant, ferently, the cutoffA =30 GeV is sufficient to resolve spatial
because the momentum scale on which the amplitydg®)  distributions of polarizations at scales-0.1 fm. In the case
changes has nothing to do with the particle ndssself and  of electromagnetic form factors, having steeper spatial distri-

is fully determined by interactions. butions (see beloy, the 30 GeV cutoff is sufficient for a
For the other polarizabilities the situation may be moregood resolution up to distances of 0.2 fm.
complicated. The sums, (9?)+ B(g%) anda+(g?)+ B(g?) There is yet another way of calculating the Fourier inte-

contain an overall factor d®? [see Eqs(4.9)] which, for the  gral of Eq.(5.2) based on a contour deformation in the com-
pion, introduces a small kinematical mass scale intogthe plex Q plane. This method is applicable when the analytical
behavior of these sums. So perhaps a more meaningful cogontinuation ofF(g?) to timelike momenta is known as in
sideration of spatial distributions relating t@, (r)+ 8(r) the case of the ChPT predictions. Since all singularities of
and at(r)+ B(r) is obtained with the factoP?/M? ex-  F(t) are located at real positivg it is possible to write a
cluded froma, (q2) + 8(q?) anda+(q?)+ B(q?) before per-  dispersion relation foF,'?

forming the Fourier transformations. In the following discus-

sion we will not encounter this problem, because in the 1 e dt
theory considered, namely, ChPT at lowest nontrivial order, F(g?) = _f ImF(t) ———,
either the sumsy, (g%) + B(g?%) and a+(g?)+ B(g?) are ex- T J tinin t—g*~i0*
actly zero[for pions and kaons a&?(p*)] or the particle mass

M is considered to be infinitgfor baryons in HBChPT at \ynich allows one to recast the Fourier integral fefr) at

3 . .
o(p?)]. o - r>0 as a superposition of Yukawa functions:
We will illustrate, by means of the more familiar example

of form factors, that associating a genefi¢r) with the in-
ternal structure of the particle leads to a self-consistent pic-
ture and does not create any visible problems even in the
case of such a light particle as the pion, for which the rela-
tivistic interlace of c.m. and internal variables is maximal. ) ] ]
To be specific, we will consider form factors calculated in\We made use of both methods and arrived at identical results
the framework of ChPT, mainly for two reasons. First, wefor F(r). _ . o
want to discuss the generalized polarizabiliteg?) pre- It is worthwhile recalling that polynomial pieces f(q?)
dicted by thesametheory in order to check that our consid- 9enerates(r) terms or derivatives thereof in the Fourier
eration of polarizabilities at scales-1/m, is not in conflict ~ transformF(r). Such terms typically originate from higher-
with other observables. Second, at present ChPT is the beQfder counter terms in the Lagrangian which are multiplied
tool for describing hadron structure at large scales and it iy @ priori unknown low-energy constants. However, in the
the only theory which agrees with the recent MAMI data onFourier transform, they do not contribute fgr) at finite r
generalized polarizabilities of the protdnl]. #0. In other words, the Fourier integral acts as a filter which
We would like to mention the following technical aspect ©nly transmits genuine effects of piofor kaon loops
concerning the Fourier transformation ofjalistribution ob-  through their contributions to a nonpolynomial partr(y?)
tained within ChPT. Such distributions are only reliably @nd to ImF(g?), respectively.
known for small momentay=O(m,,). Moreover, a straight-
forward integration over does not exist, because the inte-
grand typically diverges for large values q@f We therefore
enforce convergence by introducing a cutaffClearly, such
a cutoff disturbs the Correspondin'gdistributions at dis- As a first i”ustration, we brleﬂy discuss the scalar and
tancesr <1/A which are beyond the scope of ChPT. On thevector form factors of the pion as obtained in two-flavor
other hand, one might expect that the results are cutoff ind€ChPT in the limit of isospin symmetry. These form factors
pendent whem> 1/A. In practice, we make use of a Gauss-Parametrize matrix elements of the scalar densiy)
ian cutoff and, for anyg-dependent form factor or polariz- =m[u(x)u(x)+d(x)d(x)] with m=m,=my and the iso-
ability F(g°), we calculate~(r) as vector electromagnetic curref,(x)=3q(x) r3,4(X), re-
spectively:

(5.3

F(r)= ! foo e "im F(t)dt (5.4)
47r Ji ' '

min

B. Form factors

Sin(Qr) Q?|Q%Q
TR TN 2 (m(p")|S(0)| m(p)) = Fs(q?),
(5.2

— i - N2
F(r)—AI|an4wfo F(—Q% or

Depending on how small is, we have to choosd large (m (PO 7 (p)=(p+p)Fu(a®), a=p'—p.
enough in order to approach the limit af=cc. In particular, (5.5

for all generalized polarizabilities considered below we have

found the regularized Fourier integral of E®.2) to be in-

dependent ofA for A=30 GeV within an accuracy better !2Additional subtractions may be required resulting in additional
than 2% even at distances as short a0.1 fm. Stated dif- polynomial contributions.
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Recently, the one-loop calculations®g(q?) andF(g?) by 1
Gasser and Leutwyld®1] have been extended to the two-
loop level O(p®) [42,43.

In order to simplify the discussion, we perform two sub-
tractions in the form factorg(t) and plot the subtracte@nd
normalized functions,

%

Fs (q

0.2 0.4 0.6 0 1 2

_ 1
F(t)= O F(t)—tF’ (O)——tZF"(O) (5.6) GV
By that means we avoid polynomial contributions@fp®) = 1
andO(p®), which depend on low-energy constants, and em- - £
phasize the pieces originating from pion lodpsAs stated { =
before, such subtractions are not visible through the Fourier™ &
filter atr >0 and are thus irrelevant for the determination of 8
F(r). 0 ; :
At O(p%, the subtracted scalar form factor of the pion 0 0-22 02-4 0.6 2
reads ~4" (GeV?)
1 5
=1 m, 2X1 )04 19x?— 10x N
(5.7 )
wherex=g?/m?, and the function)®)(x) is defined a¥
0 , 3
L o1 0 0.2 04 06 2
J‘O)(X)=f In[1+x(y2—y)—i0*]dy=—2— oln( - ¢ GeV?) r (fm)
0

FIG. 1. Left panels: thegtwice-subtracted scalar and vector

4 form factors of the pion in ChPT at orde?(p®) [43] and the
o= 1-—, x<O0. (5.9 isovector charge form factor of the nucleon in HBChPT at order
X O(p®) [44,45. Right panels: corresponding spatial distributions ob-

. tained as Fourier transforms. Dashed lines: one-loop prediction.
As numerical values, we usé,=92.4 MeV[47] and the  ggid jines: two-loop predictiottfor pions only. Dotted lines: pre-

charged pion mass,=139.6 MeV. The polynomial in Ed. giction of the pole dominance model due to a scalar or vector me-
(5.7) results in vanishing first and second derivativeggat  son of mass 770 MeV.

t=0.
At one-loop order, the subtracted vector form factor is ofnontrivial order[ O(p3)] within HBChPT[44,45. With the
a similar form: above two subtractions one obtdins
2 _ 2_ m2  [(x—4 3x%—20x
— X—4 3x“—20x AV 2y ™ (0)
2y=1— T [Z_30 - o Ge(g9)=1- —JO(x)+
5.9
©9 miga (5x—8 o 21x°—40
At the two-loop level, the scalar and vector form factors are B 1672F2 6 IR+ 180 '
given by more lengthy expressions which can be found in i
Refs.[42,43. To be specific, we made use of Eq8.6)— (5.10
(3.8 and (3.16—(3.18 of Ref. [43] _usmg the parameters whereg,=1.267 is the axial-vector coupling constant.
(low-energy constants I;=—1.7, 1,=6.1, 13=2.9, I, The scalar form factor of the nucleon and the correspond-

—4.472,I6— 16.0(set 1[43)). ing spatial distribution were recently discussed by Robilotta
For comparison, we discuss as another example the is¢46] in the context of the two-pion-exchange contribution to
vector electric form factor of the nucleo@é(qz), to leading the NN potential(see Fig. 8 of that referenge

Balternatively, we could keep the polynomial contribution of the  %In this case one subtraction would be sufficient to remove low-
pion loops. However, in that case the result would still depend orenergy constants. Note that the functial{g?) and £(q?) used in

the renormalization condition chosen. Ref. [44] are related with the functiod®(x), Eq. (5.8), by
%The results for 8x<4 and 4<x are obtained by analytical 1672£(q?)=—-J®(x) and  (96r%m?2)J(q?) = —2x/3+(x
continuation. —4)30)(x).
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In Fig. 1 we show the three form factOQQZ) of Egs. strict operational sense. However, they certainly suggest a
(57), (59), and(51@ and their Corresponding Fourier trans- Simple intuitive piCtUre of the hadron periphery which is the
forms F(r) which, in the case oF=F, and F=GY, are  hatural domain of ChPT.
interpreted as the electric charge den&itfor the sake of

comparison we also present the results of a pole approxima- C. Polarizabilities
tion to those form factors, We now extend the discussion to spatial distributions as-
sociated with the generalized polarizabilities as introduced in
5 m? 5 S Sec. IV. The predictions for the generalized dipole polariz-
F(a%)= g2’ 4mrF(r)=m7re"™, (5.1)  apilities o, (q%) andB(g?) of the nucleon in the framework
q of SU(2) HBChPT atO(p3) read[21,4
with the mass scalm= 770 MeV arbitrarily chosen to be the 5 N 5
p-meson mass. aL(q )ZEWJ [8s+snT,(16y?— 16y +9)
As a first observation, we note that all spatial distributions 0
considered are positive at the one-loop order. Such a positive dy
sign confirms a@maybe tog naive understanding of the pe- —3mi(2y—1)2] o
ripheral structure of the target as being created by a cloud of 32
virtual pions which create, in the case ofrd or proton g2
target, a positive electric charge density of finite size. Also _ m (a+1)(2a—1)
the scalar density seen by an external scalar field carries a 8m,a(a+1)
positive sign. The QCD coupling of an external scalar field
'S(x) to the scalar densit$(x), y arctan/a toatl
\/a 1
Lex=—muxju(x) +d(x)d(x)]s(x), ~ (5.12
2\ _ g2 ! 2 2 2 dy
is described through the Lagrangiaf? Tr(xUT+Ux") at Ba%)= EﬂJ’O (2y—1)%(s+ mw)(4s—3m,,)1685/2
lowest order in ChPT, where, in the present cage,
=m?s(x). InsertingU= (o +i7 m)/F, the lowest-order in- E2
teraction reads = —16m7,a(a+ ) (a+1)(2a+1)
L= — %minz(x)fc,(x)z —s*fix)s(x).  (5.13 X @5 —-2a—-1|, (5.14
a

Thus,S*(x) has manifestly positive matrix elements which, where s= mfr+ g’(y?-y), a= —q2/(4mi), and E,
when probed througB as part of the pion cloud, lead to a =€0av2/(87F,) is the Kroll-Ruderman amplitude of*
positive density. photoproduction in the chiral limft’

When two-loop corrections are taken into account, the The transverse electric polarizability of the nucleon re-
spatial distributions at small distances; 1 fm, change dras- mains yet to be determined.
tically. In particular, the charge densify,(r) of the pion There are no published calculations of the nucleon’s gen-
which at the one-loop level was concentrated 0.3 fm,  eralized polarizabilitiesa, (q%) and B(g?) within SU(3);
now extends up to~0.6 fm. An even more dramatic effect HBChPT, except for the casg’=0 considered in Refs.
is observed for the scalar densifg(r), which due to the [49,50. However, it is straightforward to extend the results
two-loop contribution changes sign e0.7 fm. However, Of EQ. (5.14 to the SU(3) case in the limit of equaN, A,
one should keep in mind that ChPT is a low-energy effectiveand > masses. In this limit, thequare baryon-octet mass
field theory and it is likely that higher-order corrections will differences is considered as small in comparison with the
change the spatial distributions at short distances substagguare kaon mase)2 , which empirically is a good approxi-
tially. An indication for such a scenario is given by the dot- mation. Then, the structure of Feynman diagrams contribut-
ted lines in Fig. 1 which refer to short-range mechanismdgng to Compton scattering in the SU(3and SU(2) cases,
such as vector mesons. Of course, such mechanisms are only
included in ChPT by means of low-energy couplings in the

effective Lagrangian. ) ) The integral representations of E(p.14) are, of course, less
Finally, let us emphasize again that the above examplegynyenient than the equivalent elementary formulas. They are given
do not pretend tprovethat spatial distributions (r) have a  here only as a historical reference, in the form in which they were
first calculated and reportdd8]. The same results were found in-
dependently by the authors of Reff§9—21. Recently, results have
Analytical representations d¥(r) in ChPT at one-loop order also been given in the framework of the small-scale expansion in-
are given in the Appendix. cluding theA isobar as a dynamic degree of freedfid].
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TABLE I. Flavor coefficientsl , and I determining pion and dure, since the baryon mass difference in the transitions
kaon loop contributions to the generalized polarizabilities of octetz*A — 3 * is not fully negligible in comparison with the

baryons in SU(3) HBChPT at ordeiO(p®). pion massm.,.
5 > At O(p*), SU(2) and SU(3) ChPT predictions for all
B | I/9a Ik I /G three dipole polarizabilities, (q?), a1(q?), andB(qg?) have
D (D+F)2 1.00 2p24 o2 0.56 been reported for pions and kadi2¥,28. At that order, the
n (D+F)? 1.00 DO —F)> 0.04 three generalized dipole polarizabilities are degenerate, i.e.,
A 3D? 0.48 $D%+3F2 0.60 2 2 o2 B o
2+ %D2+2F2 0.56 (D+F)2 1.00 aL(q )_aT(q )_ ﬂ(q ) and aL(r)_aT(r)_ l(;ér]?é)
30 4F? 0.64 D2+F?2 0.52 '
3 $D2+2F2 0.56 O-F)? 0.04 and hence we only need to discuss, say, the generalized mag-
=0 (D—F)? 0.04 D+F)? 1.00 netic polarizability which can be expressed|28]
= (D—F)? 0.04 2D2+2F2 0.56
2
e 1 )
~B@A)= 557 5[ A+(B,+ Cox) 3@ (x,)
respectively, is very similar, the only difference resultiiay TV (4TF L)
from different meson-baryon couplings for charged mesons ,
y ping g +Cexd @ (x)]. (5.19

(or, stated differently, from different Kroll-Ruderman ampli-
tudes and(b) from different masses of the Goldstone bosons M is th f th icle i .
entering the appropriate loop diagrams. The generalized pdi€'€:M IS the mass of the particle in question,

larizabilities of the nucleon in SU(3)HBChPT receive, in 5

addition to the results of Eqg$5.14), contributions due to 9 _q
. . ; . Xp=—, Xk=—%, (5.20
kaon loops which are given by the same expressions as in me mﬁ
Egs. (5.14) after the replacements,—my and E,.—E,
where the functionJ(®’(x) is given by
eV2 |? IO(x)  230)(x)+x
2_p2 N — (0)7 (o — _
Er=Eir(yN=m"N) (877&,) = FH0= dx  x(x—4) ’ (5.2
. . ) . e\2 \? andA B,, C,., andCy are constants given below. The
Ek=Ekr(YN—K"A)+Egr(YN—K"3)= 8mFx Ik, terms in Eq.(5.19 depending orx,. andxy represent con-

(5.15  tributions of pion and kaon loops, respectively. The
g°-independent term proportional £originates from a con-
and tribution at short distances represented by low-energy con-
stants in the effective chiral Lagrangigbi]:

ED2+ 2F2, proton,
l,=0a=(D+F)? =3 ’
(D—F)?, neutron;

(5.16

cf. [49,50. In anO(p?) calculation, the difference between

the pion and kaon decay constants is of higher order. Enfthe numerical value ofA(7™) is fixed [52] by the experi-
pirically, F=1.22F . [47], but in our numerical analysis we mentally known axial E,) and theoretically known vector
make use of a universal vallg =F . with F;,=92.4 MeV. (F,) form factors of the radiative pion decay” —e* v,y

2F
A(m*)=AK®)=64m2(Lh+ L )= F—A=0.90i 0.12,
\%

A(7%) =A(K%)=A(K®=0. (5.22

Furthermore, we insert the SU(3jatio F/D = 2/3. using F,/F\,=0.448+0.062 [47]. The relation A(m)
By applying the same procedure to the other octet bary=A(K) is valid in the SU(3)-symmetry limit. The other
ons, one obtains a generic polarizabilfyg?) as constants entering Eg5.19 are flavor-dependent coeffi-
cients which determine contributions of pion and kaon loops,
| I« respectively:
F(a®)=[Eq. (5.14]x— +[Eq. (5-14)]mﬁmK><g—2-
A A 0
(5.17 Lo for [1 for =,
C,={ ~12 for=m, B,= .
The SU(3) coefficients . andl are identical with the ones 0 otherwise,

given in Eq.(4) of Ref.[49] for the caseq?=0. For conve- —1/4 forkaons,

nience, we collect these coefficients in Tabléusing F/D
=2/3). Note, however, that the pion-loop contribution for
andX* is perhaps not given very accurately by this proce-

—-1/2  for K+,
K= (5.23

—1/4 otherwise.
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FIG. 2. Generalized magnetic polarizabiligfq?) of pions and

kaons atO(p*) [27,28. Dashed lines: contribution of pion loops. ME

Solid lines: contribution of pion and kaon loops. Dotted lines: 79

vector-meson dominanc@/MD) predictions normalized t(f as NZ

given by SU(3) ChPT. ;ﬁ

The generalized polarizabilities of the Goldstone bosons are 0 0 02 0T4 0.6 0 0 012 014 0.6
shown together with the results for the proton, the, and —g* (GeVD) —¢* (Gev?)

the £~ in Figs. 2 and 3.
The spatial distributions calculated as the Fourier trans- FIG. 3. Generalized longitudinal electric and magnetic polariz-

forms of the generalized polarizabilities are shown in Figs. 4abilities a, (g% and 8(q?) of the proton, thet ™, and theZ "~ at

and 5. The corresponding analytical results obtained throug®(p®) (see[21,48 and the text Dashed lines: contribution of pion

Eq. (5.4) are given in the Appendix. For largethe pion and loops. Solid lines: contribution of pion and kaon loops. Dotted

kaon loop contributions to a generic polarizabilfyr) fol- lines: VMD predictions normalized ta and g as given by SU(3)

low an exponential behavioe 2M" and e ™', respec- ChPT.

tively, as determined by the nearest singularities @f?) for

timelike momentag?=4m?2 andq?=4m3 . The & singular-

ity at r=0 cannot be seen in these plots. However, at least 2 . . 2

for mesons, such a singularity exists for sure within ChPT, ”g nt “E A
and it is determined by the asymptotic value of the polariz- 100 1,0
ability for g?>— —o. Thus, the integrals of the spatial distri- < | <
butions over >0 are § 2 § 2
. & &
. -4 L L -4 1 |
lim f 47r?B(r) dr=p(q°=0)— B(q°=—=). o 1 2 3 o 1 2 3
e—0+7J€ - r (fm) r (fm)
(5.249 1 ; : 1
& + S 0
The generalized polarizabilities of the octet baryons, given f K f . K
by Egs.(5.14) and(5.19, vanish at infinity, so that the inte- < S
gral (5.24) gives justg in this case. This is not the case for = | = 4L |
. ! . (==X -
mesons, sinc&J®’ (x)—1 for x— —=. The corresponding 5 “E
& singularity in 47r2g(r) is driven by the limits53] o, . . T,
0 1 2 3 0 1 2 3
r (fm) r (fm)

_ o__
lim :Bﬂ'i(qz) :ﬁwt + E:Bﬂ'oi
G2 — oo FIG. 4. Density of the magnetic polarizabilig(r) of pions and
kaons atO(p*). The & singularity atr=0 is not shown[see the

15 discussion of Eq(5.249) in the tex{. Dashed lines: contribution of
lim ,87To(q2) = 5,8770, pion loops. Solid lines: contribution of pion and kaon loops. Dotted
q?——oo lines: VMD predictions normalized t8 as given by SU(3)ChPT.
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~ B 8 ; ; x increases, the very peripheral, negative part of the magnetic
#é 20 b 1 g s » polarizability of the pion cloud no longer contributes to
S 15 1 #g 4 .
10 = 2t ! ,B(QZ)ZJ B(r)exp(iq-r)dr, (5.26
2 ¥ N
o 5 5 0
& o L Yo, , , , due to the oscillatory behavior of the integrand for large
0o 1 2 3 4 6 1 2 3 4 distances. This explains why the magnetic polarizability
r (fm) r (fm) B(q?) for all the part_ig:les(_pions, kaons,_nucleons, etani-
15 , . 3 : : versally gets a positive increageee Figs. 2 and)3 The
g o8 5= slope of B(g?) at the origin is proportional to the mean
1 5 2 ] square radius of the spatial distribution,
— <
~ Z 1k J
E TV % dp(0) 2w (=
Ntf} Nmk- (4] ﬁ 2 = ? r4B(r)dr. (527}
& & dq 0
-1 L
0 ! 2 *  Obviously, for all mesons, the cloud distributionrd?3(r)
r (fm) <0 for allr=0. Hence, the slope is negative as a function of
- - q? (positive, when plotted againstq?). Also, the curvature
£ = A as a function ofy? is concave. For the proton, ti&~, and
79 T the £~ the asymptotic negative pion and kaon tails in the
; =~ integral (5.27) dominate over the positive contribution com-
= & ing from distances smaller than 1 fm, 1 fm, and 0.4 fm,
N§ & respectively. This makes the slopes of the magnetic polariz-
-1 ' : ability of all baryons considered positive as a function of
0 ! 2 3 —q? as well. On the other hand, such behavior is in some
r (fm) r (fm)

cases opposite to that expected from VMD. Supposejthe
2 -
FIG. 5. Density of the longitudinal electric and magnetic polar- dependence o8(q”) was determined by the or » mesons

izabilities a, (r) and (r) of the proton, theS~, and theZ~ at  Mediating electromagnetic interactions,

O(p®). Dashed lines: contribution of pion loops. Solid lines: con- )

tribution of pign and_kaon loops. Dotted lines: VMD predictions 2 = m,
normalized toa and 8 as given by SU(3) ChPT. [A(a )]VMD_’Bmi_QZ (528
_ _ 9m,— From this, the spatial distribution ¢(r),
lim ﬁKr(q2)=ﬁKt+§m—ﬁw0- _
o2 —o0 K [472B(r) luwp=mire ™' B, (5.29
. ) m,— would have the same sign @sfor all r>0. For thew® and
2I|m Bko(q ):3m_K:3w°- (525 for the octet baryons, having positiy such a sign is in
Q- conflict with the ChPT behavidisee Figs. 3 and 5 in which

the VMD distributions are also showrFrom a phenomeno-

The SU(2) results for pions are found in Eg89) and(40)  |ogical point of view, the full magnetic polarizabilitg of
of Ref.[27]. _ o the neutral pion should be approximately 3 times thg?)

It is very interesting that the loop contributions behaveprediction, mainly due to a paramagnetic contribution of the
exactly as one would expect from a classical interpretation of 1 transitionsm®— w or p°. In other words, a more realistic
the Langevin diamagnetism. In such a picture, a change iyMD curve should be 3 times higher than that shown in Fig.
the external magnetic field would produce circulating cur-4, 5o that the above conflict with ChPT would be even more
rents induced in the charge density of the meson cloud whicgeyere.
on their part give rise to an induced magnetization. Both pion | the case of thélongitudina) electric polarizability of
a_nd kaon clouds are seen to be diamagnetic, at least at larggtet baryons the long-range, peripheral part is suppressed
distances =1/m, . Simultaneously, these clouds generate ayjith increasing— q2. This part is relatively large for all bary-
positive sign for the electric polarizability. However, in the gpg except for th&S’s, and thusa, (q2) shows a rapid de-
case of_ the nucleon t_he diamagnetic character of the piogrease with increasing spaceligevhich is steeper than for
cloud disappears at distances 1/m_, where paramagnet- \/mp (see Fig. 3
ism prevails ang3(r) becomes positive. Another instructive feature of the plots shown in Figs. 4
~ When a hadron is probed by photons of very sitedce-  and 5 is that the kaon-loop contribution is concentrated at
like) momentgg|<m,,, the magnetic response is essentially apout the same scale of(or even at smaller scaleas the
only sensitive toB(q?=0)=8. When the momentuniq| VMD contribution due to the large mass of kaon pairs,
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2M~1 GeV. Kaon-loop contributions exactly fall into the generalized Born terms and a structure-dependent residual
short-range region where one finds other contributions opart. We then discussed the case of a real final photon and a
similar range treated via low-energy constants of the effecspacelike virtual initial photon which can be described in
tive Lagrangian of ChPT. However, a®(p®) no such terms of three invariant amplitudes depending on three kine-
counter terms contribute to the generalized polarizabilitiesmatical variables. In the limij’ — 0, the three residual am-
In other words, even though the relevant counter terms arplitudes reduce to functions @f only which we identified
formally of higher order in the power counting of ChPT, oneas generalized dipole polarizabilities (q2), a+(q?), and
may wonder whether their quantitative importance is under8(q?). All of them can, in principle, be determined in virtual
rated as compared to the kaon-loop contributions. Therefor&Gompton scattering, although the transverse electric polariz-
quantitative conclusions drawn from calculations keepingability is not accessible in experiments sensitive to structure-
kaon loops and ignoring short-range contributions have to beependent effects af(q’) only. We proposed a physical
treated with some care. For a similar conclusion, see Reinterpretation of these polarizabilities in termsspfatial dis-
[54]. tributions of an induced electric polarization and magnetiza-
The spatial distribution of3(r) for the nucleon shown in tion, respectively. In particular, we argued that a knowledge
Fig. 5 may also shed light on an old question which haf all three polarizabilities is required for a full description of
remained open for more than 30 years: Why is the magnetitnduced polarization phenomena. Following this line, we cal-
polarizability 8 of the proton so smallﬁprX 104 fm3®  culated spatial distributions for pions, kaons, and the baryon
[47]) despite a very |arge paramagnetic contribution ofAhe octet as Fourier integrals, USing the prediCtionS of ChPT. It
resonance WhiCh, in various evaluations based on quarwas found that the distributions obtained confirmed eXpeCta-
models, dispersion theories, effective Lagrangians, etctions based on a picture of a hadron’s periphery caused by a
ranges from+7 to +13x10°* fm3 (see, for example, “classical” pion cloud. Of course, any practicahalysisof
[55,56). In this context, it is sometimes stated that the pioneXxperimental data on photaeatteringwill eventually deal
cloud produces a large diamagneie., negativi contribu- ~ With the original, precisely defined momentum-space form

tion to B owing to the Langevin mechanism producing afactors, polarizabilities, etc. Thus, one should handle the
negative magnetic susceptibility of bound charges. Thisfound sp_atial distriputions with care. On the othgr hand, the
point of view became especially popular after calculations of “Space interpretation of suehdependent quantities clearly

. ) allows for a more intuitive visualization in analogy to the
B In the Skyr_me model(se_e, for examplle{57—SSZ), N phenomenology and terminology of classical electrodynam-
W.h'Ch the pion field of t_he sollton. produces mdged avery b'.gics and nonrelativistic quantum mechanics.
diamagnetic susceptibility resulting from the pion-cloud tail
of the soliton, ranging from-8 to — 16x 10~ 4 fm® [57-59.
Figure 5, however, shows that the pion-cloud periphery with
r=1 fm carries a very small diamagnetism of onty0.45 A.L. thanks the theory group of the InstitutrfiKern-
x10™* fm®, where the last number is expected to be a reliphysik for the hospitality and support during his stays in
able estimate because ChPT, even at leading nontrivial ordefjainz, where part of his work was done. He also thanks the
should be reasonable at such distances. We conclude th@istitute for Nuclear Theory in Seattle and the organizers of
Skyrme models overestimate the pion-cloud contribution tahe CEBAF-INT workshop on “Probing Nucleon Structure
diamagnetism and that a source for the missing diamagneyy Real and Virtual Compton Scattering(1994 for the
tism is probably related to short-range mechanisms ratheiospitality during the time when some ideas of the present
than with the pion cloud itself. In some dispersion theories ofyork were initially elaborated.

Compton scattering60], an additional exchange with a hy-

potheticalo meson is invoked in order to generate agreement ,ppenpiX: SPATIAL DISTRIBUTIONS TO ONE LOOP

with existing experimental data. This, of course, is just an

oversimplified model for such a short-range contribution. In this appendix we collect the analytical results for the
It would be very interesting and instructive to extend thespatial distributions in ChPT at the one-loop level which are

presently available ChPT predictions for the generalized poeasily obtained through Eg5.4). In the formulas below we

larizabilities of the nucleon at least to ordéXp*). This  use the notation

would allow one to check whether a modification of the den-

sity B(r), including relativistic(nucleon recoijl effects and ) t

other higher-order corrections, indeed provides sufficientt=d" XWZF’ XK="7, Zp=2Mgl, Zx=2mTl.

diamagnetisni56]. G (A1)

ACKNOWLEDGMENTS

The imaginary parts of the scalar and vector form factors of
VI. SUMMARY AND CONCLUSIONS the pion and of the isovector charge form factor of the
In the present paper we have developed a covariant foucleon are determined by the functiéff’(x) which has a
malism leading to a parametrization of the VCS tensor inPranching point ak=4:
terms of Lorentz invariants free from kinematical singulari-
ties and constraints. We motivated and performed a gauge- _ 2Xz—1
) i L ) S Im Fg(t)=F¢(0) V(X,),
invariant division of the VCS tensor into contributions of 2
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GENERALIZED DIPOLE POLARIZABILITIES AND THE . ..

Im Fy(t) = =5 —V(X,),
v X.—4 ,5X,—8
Im Ge(t)=| —g—+0a—5—|V(Xz),  (A2)

where

(A3)

Vo= — R
(X_(4WF7,)2 x ).

Evaluating the integral representation of Ef.4) with the
above imaginary parts results in

Amr2E D) m3F«(0) 48K( : 96+ 1 ETK( :
ar r=——-—Ko(z,)+ ——Ki(z,) |,
S (amF )2 Ze 0 2
Amr2Fy(r) - 8K()+16K()
ar rN=———|-—Koz,)+ 5Kz, |,

VU (amF )22 ° 2t
3 2
m 8+40g2

A47r2GY(r)= u Ko(Z,
0= Gor | T etz
16+ (80+87%)g3
- > “Kizn) |, (Ad)

where K, (z) is the modified Bessel functionK,(z)
= [ge 2o coshgt)dt.

The generalized polarizabilities of the nucleon, Egl4),
at timelike momentay have both a cut starting at=4m?
and a pole at=4m?:

6(t—4m?2)

Jt

4mfr)

2

T2
Im a,_(t)= gEﬂ_

+4m,8(t—4m?2)
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T 2
Im ﬂ(t)=1—GEw

(2 4me) 6(t—4m?)
ot

Jt
—4m,8(t—4m?2)|. (A5)
Accordingly, Eq.(5.4) results in
E2 z2
4mrla (r)= 7" (1+z,)e %+ E”Ei(—zw) ,
E2 22
477r2,8(r)=T” (1—zw)e*2w—§Ei(—zw) ., (A6)

where Ei(-2z)=—/3 (e Y/t)dt is the exponential integral.
The contribution of kaon loops is obtained by the substitu-
tions E,—Ex andm_—my as explained in Sec. V.

For pions and kaons, the generalized polarizabilities of
Eq. (5.19 have branching points &t=4m?2 and 4nZ but no
poles:

e? 2

47M (4xF )2

0(X,—4)

B,
—+C_ | —
(Xw 7T) Ny

Im B(t)=

C O(Xx—4)
« \/sz —4Xg

Then Eq.(5.4) gives

. (A7)

eZ

4 (47F )2

47Tr2B(I'): |:2m7TC7TZ7TKO(Z7T)

m

m,
+ 2mKCKZKKo(ZK) + TBWZ

X (A8)

Ki(z,) — LwKo(x)dx) .
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