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QCD sum rule analysis for light vector and axial-vector mesons in vacuum and nuclear matter
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Extending previous work we study the constraints of QCD sum rules on mass and width of light vector and
axial-vector mesons in vacuum and in a medium with finite nuclear density. For the latter case especially the
effect of nuclear pions leading to vector–axial-vector mixing is included in the analysis. We examine the
consequences of the mixing effect for positions and shapes of the peaks which show up in the current-current
correlators. We also discuss the model dependences in the amount of mixing, in the evaluation of the four-
quark condensate, and in the width parametrizations for the meson spectral functions.
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I. INTRODUCTION

One of the main goals of modern nuclear physics is
study the behavior of nuclear matter under extreme co
tions. At low temperatures and densities the quarks and
ons as the basic constituents of strongly interacting ma
form hadrons due to the confinement mechanism. In a
tion, the appearance of rather light mesons~pions and kaons!
signals the existence of a spontaneously broken symm
the chiral symmetry. In fact this symmetry is approximate
realized in the QCD Lagrangian. Another important hint th
chiral symmetry is spontaneously broken in the vacuum s
is the absence of chiral partners with equal masses.
chirally symmetric state chiral partners would have the sa
mass. This concerns for example the isovector-vector me
r and its much heavier partner, the isovector–axial-vec
mesona1. It is expected that at high enough temperatu
and densities confinement is lifted and chiral symmetry
stored. High-energy heavy-ion collisions are dedicated to
creation of this new state of matter, the quark-gluon plas
~QGP! @1#. Unfortunately, even if such an ultrahot system
quarks and gluons is created only its decay products—wh
of course are hadrons and not deconfined quarks
gluons—can reach the detectors. Thus, the proof for the
istence of this new stage of matter has to be performed ra
indirectly. In addition to the observable hadrons also phot
and dileptons are radiated from the hot fireball. These p
ticles deserve special attention since they do not suffer f
strong final state interactions. Therefore, once created in
high density region they are capable to carry informat
from that region to the detectors. Altogether, the challeng
to find unambiguous signs that~part of! the observed spectr
of hadrons, photons, and dileptons are caused by the
sient existence of the QGP. Clearly, to prove the existenc
the QGP it is necessary to show that the spectra canno
explained by a hot fireball made out of conventional int
acting hadrons. This task is especially complicated by
fact that there is no straightforward derivation of hadro
Lagrangians from QCD as the underlying theory of stro
interactions. Therefore it is nota priori clear how far one can
trust in-medium calculations with hadronic Lagrangians
their parameters are adjusted to the description of vacu
processes. Connections between hadronic models and
cepts on the one hand and QCD or QCD based models on
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other hand are therefore very welcome. The QCD sum r
method@2,3# provides such a link. Before we sketch its bas
concepts, however, we want to dwell for a moment on
in-medium properties of hadrons.

For temperatures and densities below but near to the c
cal values which mark the transition to the QGP it is pla
sible to expect that already there the properties of the
volved hadrons such as, e.g., their masses and decay w
get modified. Especially the aspect of chiral symmetry res
ration is interesting here. The properties of chiral partn
should start to approach each other and finally become id
tical in the chirally symmetric phase. Concerningr and a1
mesons possible scenarios are, e.g., discussed in Refs.@4–6#
for the case of finite temperature. In principle one can d
tinguish three types of possible phenomena~which do not
exclude each other!.

~a! Mass shifts: The masses ofr anda1 might approach
each other. One has to distinguish in which way this actua
happens: The masses might meet at a value somewhe
between their vacuum masses~and possibly drop togethe
afterwards!. It is, however, also possible that the masses
both mesons drop and finally~approximately! vanish at the
point of chiral symmetry restoration.

~b! Peak broadening: From the experimental point of vi
the r(a1) meson shows up as a peak in the vector~axial-
vector! channel. In a medium the peaks might get broa
~maybe without a change of the respective peak positio
i.e., the nominal masses! until the melted spectra in both
channels become degenerate.

~c! Mixing: The distinct peaks might maintain~maybe
without shifts or broadening!, but thea1 peak shows up with
increasing height in the vector channel and vice versa.

In any case, the spectra in the vector and axial-vec
channel become degenerate when chiral symmetry beco
restored.

In fact, ther meson is supposed to be a good candidate
search for a sign of chiral symmetry restoration. The rea
is that it has the quantum numbers of the photon. There
the r meson can decay via a virtual photon into a dilept
pair. If this decay happens within a hot and dense med
the dileptons contain information about the in-medium pro
erties of ther meson. Therefore, in principle the possib
scenarios discussed above or a mixture of them should le
their marks in the dilepton spectra. Indeed, the HELIOS a
©2001 The American Physical Society02-1
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STEFAN LEUPOLD PHYSICAL REVIEW C 64 015202
CERES Collaborations have reported medium modificati
in the dilepton spectra in the invariant mass range around
r meson mass@7,8#. Whether the observed spectra can
explained within a conventional hadronic scenario@9# or
whether one has to include medium modifications indu
by chiral symmetry restoration@10,11# is still a matter of
discussion~see, also Refs.@12,13#, and references therein!.
Also for the study of possible in-medium changes of ha
ronic properties a closer connection between hadrons
QCD is desirable.

The QCD sum rule approach has the merit to relate c
tain low-energy quantities—which so far are not directly a
cessible by QCD—with high-energy expressions which c
be calculated by the operator product expansion@14# in terms
of quark and gluon degrees of freedom. Nonperturbative
fects are encoded in the appearance of various quark
gluon condensates. In the following this method is applied
vector and axial-vector mesons placed in a cold medium w
finite nuclear density. To clearly work out the modificatio
when changing from vacuum to a medium we also disc
the vacuum sum rule analysis forr and a1 in some detail.
Before sketching the basic ideas of the sum rule approach
review the present status of in-medium analyses for ve
and axial-vector mesons especially in the light of the p
sible scenarios of in-medium changes discussed above.
cerning finite temperatureT it has been shown@4# that at
O(T2) and neglecting the pion mass only mixing occurs
systematic study beyond this linear~pion! density approxi-
mation is complicated by unknown nonscalar higher tw
condensates@15–17#. For finite nucleon density previou
analyses have restricted their attention to the vector chan
In the first analyses@18,19# only a possible mass shift for th
r meson has been taken into account, i.e., the possible
narios of peak broadening and/or mixing as mentioned ab
have been excluded by hand. In this case it was found
the r meson mass would drop in a nuclear medium. Ho
ever, it has been shown by the authors of Ref.@20# that their
specific hadronic model also fulfills the sum rule~see, also
Refs. @21,22#!. This model predicts peak broadening for t
r meson and basically no mass shift. Subsequently, a
tematic study revealed that independently of the chosen
ronic model the sum rule for ther meson for finite density is
in accordance with a specific mass-width correlation@23#:
For low width the mass has to decrease. If, however,
mass stays constant—or even rises—the width has to
crease. The sum rule does not have enough predictive po
to fix both the mass and the width of the vector meson.
will come back to that point below. To the best of our know
edge, the third possible in-medium modification, the mixi
phenomena, has not yet been included in a systematic
rule analysis for the vector axial-vector system for finite de
sity. The purpose of the present work is to treat the proper
of r anda1 on equal footing, allowing for mass shifts, pea
broadening, and mixing.

Before we turn to the specific sum rule analysis for t
chiral partnersr anda1 we discuss some important aspec
of the QCD sum rule approach focusing especially on
medium situations. Recall that our basic motivation was
describe various spectra of heavy-ion collisions by hadro
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models in absence of a QCD description based on first p
ciples. Even when only hadronic models are capable of
culatingobservablequantities one can imagine that it is po
sible to find other quantities which can be reliab
determined both within the hadronic framework and in ter
of quark and gluon degrees of freedom. In this way o
obtains predictions for hadronic parameters such as ma
and coupling constants or cross-check for hadronic mod
Concerning the QCD sum rule method such quantities
specific correlators~see below! calculated in the deep space
like region, i.e., for large momentaq with q2!0. For very
large Q252q2 QCD perturbation theory becomes app
cable. Proceeding to~somewhat! smaller values ofQ2 non-
perturbative corrections appear. They can be expanded
power series in 1/Q2, called the operator product expansio
~OPE!:

(
cn

Q2n
. ~1.1!

In the coefficientscn the famous quark and gluon conde
sates enter. One can imagine the series~1.1! as a separation
of the hard~denominator! and soft~numerator! scales of the
problem~see, e.g., Ref.@24#, and references therein!. In the
numerator the nonperturbative effects enter. In practice, o
the first few coefficients in Eq.~1.1! can be determined. O
course, this does not matter as long asQ2 is large enough.
Thus, the crucial question is for which values ofQ2 one can
trust the truncated series. If we want to learn someth
about a hadron with massmh it turns out thatQ2 has to be of
the order ofmh

2 . To get an order of magnitude estimate f
the coefficientscn we have to ask about the typical scales f
nonperturbative effects. Let us discuss step by step the
ferent cases of vacuum, finite temperature and finite bar
density. For vacuum the typical scales areLQCD and the
current quark masses. The up and down quark masses
only a few MeV and are therefore negligibly small. Th
strange quark mass andLQCD are between 100 and 200 MeV
On the other hand, the typical hadron masses are of the o
of 1 GeV. Therefore, one might expect that the sum r
analysis leads to reasonable results.1 Of course, the masses o
the much lighter pions and kaons cannot be determined.
fortunately this optimistic picture is not completely true.
fact, there might be nonperturbative effects which introdu
an additional hard scale, such as, e.g., instantons@25#. In this
case the series~1.1! would break down for the interestin
values ofQ2. It seems, however, that the influence of su
effects on ther anda1 sum rules is not important. We there
fore assumethroughout this work that the OPE works for th
vector and axial-vector channel. Nonetheless, this consi
ation shows that at present the QCD sum rule approach
not be directly justified from QCD without any additiona
assumptions. Therefore it should merely be regarded a

1We restrict our considerations here to hadrons made out of l
quarks. The masses of the heavy quarks have to be regarded a
of the hard scale@2#.
2-2
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QCD SUM RULE ANALYSIS FOR LIGHT VECTOR AND . . . PHYSICAL REVIEW C64 015202
QCD based model and not as QCD itself. Turning to the c
of finite temperature involves new scales. It is common pr
tice to approximate the low-temperature2 medium by a pion
gas. Therefore the new scales are the temperature an
pion mass. Also these quantities are of the order ofLQCD.
Of course,T might also be lower. Therefore the previou
considerations apply also here. The case of finite baryon d
sity rN is more complicated. Here one approximates the m
dium by a Fermi gas of nucleons. New in-medium scales
the Fermi momentum and the nucleon mass. While
former is reasonably small, e.g., for saturation density
nuclear matter, the latter is of the order of 1 GeV. Since
nucleon mass enters the series~1.1! in the numerator it be-
comes questionable whether the OPE still works~see also the
discussion in Ref. @26# and the successive commen
@27,28#!. Full clarification of this question requires the dete
mination of all coefficientscn which would be equivalent to
solving QCD in the nonperturbative low-energy doma
This is of course out of reach. For our case at hand ther
however, a class of contributions to the OPE which can
determined to all orders, namely, the twist-two condensa
@18,19,24,29#. In fact their contribution to the coefficients i
the low density approximation is given by

cn
twist-two5anmN

2n23rN , ~1.2!

i.e., powers ofQ2 in the denominator which in an optima
situation should suppress higher order contributions in
~1.1! are compensated by powers ofmN

2 in the numerator.
Thus the class of twist-two contributions shows exactly
unpleasant feature discussed above. In Eq.~1.2! the dimen-
sionless quantitiesan can be determined from the parton di
tributions in a nucleon@18,19,24,29#. Fortunately it turns out
thatan is strongly decreasing with increasingn such that the
higher dimensional contributions of the twist-two conde
sates can safely be neglected@24,29#. This is a hint that the
OPE still works in the case of finite nuclear density.
course this is not a proof for the validity of the OP
Throughout this work weassumethat the OPE works. In
spite of these obvious problems inherent to the QCD s
rule approach for finite density we regard the analysis p
sented in the following as useful in view of the possibility
learn something about the in-medium properties of hadr
from an approach which deals with the fundamental degr
of freedom of QCD. Nonetheless we stress again that
QCD sum rule approach—especially for the case of fin
nuclear density—is not as fundamental as QCD.

This paper is organized in the following way. In the ne
section we derive the in-medium Borel sum rules forr and
a1 which we will use throughout this work for any quantit
tive statements. In Sec. III we make a detour to discus
different type of sum rule, namely, the finite energy su
rule. This will yield a qualitative picture what one has
expect from a sum rule analysis and how much informat

2At high temperatures it is not reasonable to deal with hadro
degrees of freedom. If one wants to learn something about had
low temperature expansions are appropriate.
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one can get. In Sec. IV we introduce our hadronic parame
zations which are used to analyze the sum rules. Results
r and a1 in vacuum are presented in Sec. V. These res
serve as a reference frame with which we can compare
succeeding in-medium results. Section VI is devoted to
discussion of the mixing phenomena while the in-mediu
results are presented in Sec. VII. Finally we summarize
discuss our results in Sec. VIII.

II. THE CURRENT-CURRENT CORRELATOR AND THE
BOREL SUM RULE

The relevant quantity to look at is the covariant time o
dered current-current correlator

Pmn~q!5 i E d4xeiqx^T jm~x! j n~0!&. ~2.1!

For ther meson channelj m is the isospin-1 part of the elec
tromagnetic current

j m
V5

1

2
~ ūgmu2d̄gmd!. ~2.2!

This current-current correlator enters, e.g., the cross sec
of e1e2→ hadrons~see below!. For thea1 meson channe
we have to deal with the corresponding axial-vector curr

j m
A5

1

2
~ ūgmg5u2d̄gmg5d!. ~2.3!

The expectation value in Eq.~2.1! is taken with respect to
the surrounding environment. We study here, first, vacu
and, second, an~isospin neutral! equilibrated homogeneou
medium with finite nuclear density and vanishing tempe
ture. In the medium Lorentz invariance is broken. All th
formulas which we will present in the following refer to th
Lorentz frame where the medium is at rest, i.e., where
spatial components of the baryonic current vanish. For s
plicity we restrict our considerations to mesons which are
rest with respect to the medium. For the vacuum case we
choose the rest system of the~axial-!vector meson without
any loss of generality.

In the following the formulas without an explicitV or A
index are valid for both vector and axial-vector channel. T
correlator~2.1! has the following decomposition~valid for
mesons at rest!:

Pmn~q!5qmqnR~q2!2gmnP isotr~q2!. ~2.4!

In the following we concentrate onR(q2). In the vector
channel one hasP isotr(q2)5q2R(q2) since the currentj m

V is
conserved. We prefer the use ofR instead ofP isotr since it
has been shown in Refs.@19,30,31# that the Borel sum rule
~see below! is rather unstable for the latter quantity. Th
divergence of the axial-vector channel is solely determin
by the pion decay. Hence we would not learn anything n
about thea1 by studyingP isotr in addition toR.

Concerning, e.g., the dilepton production one is interes
in the values of the dimensionless quantityRV(q2) in the

ic
ns
2-3
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STEFAN LEUPOLD PHYSICAL REVIEW C 64 015202
timelike regionq2.0. The reason is thatRV is related to the
cross sectione1e2→ hadrons with isospin 1 via@32#

s I 51~e1e2→hadrons!

s~e1e2→m1m2!
512pImRV . ~2.5!

At least for low energies the timelike region is determined
hadronic degrees of freedom. In principle, there are two p
sibilities to describe the current-current correlator. Fir
guided by an educated guess one might use a simple pa
etrization with some free parameters. Second, one might
a hadronic model, e.g., for vector mesons@13,20,21,33–39#
using one or the other form of vector meson dominance
the following we will explore the first possibility and figur
out which constraints for these free parameters are prov
by the QCD sum rule approach. For thea1 we proceed com-
pletely analogously. We denote the result forR in the time-
like region byRhad. On the other hand, the current-curre
correlator~2.1! can be calculated forq2!0 using Wilson’s
operator product expansion~OPE! @14# for quark and gluonic
degrees of freedom@2# ~for in-medium calculations see, e.g
Refs.@18,19#!. In the following we shall call the result of tha
calculationROPE. A second representation in the spaceli
region which has to matchROPE can be obtained fromRhad

by utilizing a subtracted dispersion relation. We find

ROPE~Q2!5
c̃1

Q2
1 c̃22

Q2

p E
0

`

ds
ImRhad~s!

~s1Q2!s
~2.6!

with Q2
ª2q2@0 and some subtraction constantsc̃i .

Equation~2.6! connects hadronic with quark-gluon bas
expressions. In principle, for a given hadronic parametri
tion of Rhad with free parameters this equation could be us
to extract information about these parameters. This, h
ever, would require the knowledge ofRhad(s) for arbitrary
large s. In practice, the situation is such that one has a
rametrization for the current-current correlator for the ene
region of the lowest hadronic resonance, but one usually
no model which remains valid for arbitrary high energies.
the dispersion integral of Eq.~2.6! higher lying resonance
are suppressed, but only by a factor 1/s2. Clearly, it is desir-
able to achieve a larger suppression of the part of the h
ronic spectral distribution on which one has less access
this aim, a Borel transformation@2,32# can be applied to Eq
~2.6!. For an arbitrary functionf (Q2) the Borel transforma-
tion is defined as

f ~Q2!→
B̂

f̃ ~M2! ~2.7!

with

B̂ª lim
Q2→`,N→`

Q2/N5:M25fixed

1

G~N!
~2Q2!NS d

dQ2D N

, ~2.8!

where M is the so-called Borel mass. Applying the Bor
transformation to Eq.~2.6! we finally get@24#
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R̃OPE~M2!5
c̃1

M2
1

1

pM2E
01

`

dsImRhad~s!e2s/M2
. ~2.9!

We observe that higher resonance states are now expo
tially suppressed. Note that the subtraction constantc̃2 of Eq.
~2.6! has dropped out. The other one,c̃1, vanishes in
vacuum. In a nuclear medium for a meson at rest, we inc
porate the Landau damping term in the subtraction cons
c̃1. This term comes from the absorption of a spacelike m
son by an on-shell nucleon. Having incorporated this term
c̃1 we avoid double counting by restricting the integration
Eq. ~2.9! to the timelike region. For a detailed discussion
that point see Ref.@40#. One gets in the linear density ap
proximation

c̃15
rN

4mN
. ~2.10!

Equation~2.9! is the QCD sum rule which we will utilize in
the following.

Having achieved a reasonable suppression of the en
region above the lowest lying resonance the integral in
~2.9! is no longer sensitive to the details of the hadron
spectral distribution in that region. For high energies t
quark structure of the current-current correlator is resolv
QCD perturbation theory becomes applicable yielding

ImRhad~s!5
1

8p S 11
as

p D for large s. ~2.11!

These considerations suggest the ansatz

ImRhad~s!5Q~s02s!ImRres~s!1Q~s2s0!
1

8p S 11
as

p D ,

~2.12!

wheres0 denotes the threshold between the low energy
gion described by a spectral function for the lowest lyi
resonance ImRres, and the high-energy region described by
continuum calculated from perturbative QCD. In the follow
ing we useas(1 GeV)'0.36. Of course, the high-energ
behavior given in Eq.~2.12! is only an approximation on the
true spectral distribution for the current-current correlat
Also the rapid crossover in Eq.~2.12! from the resonance to
the continuum region is not realistic. However, exactly he
the suppression factors discussed above should becom
fective making a more detailed description of the crosso
and the high-energy region insignificant. The price we ha
to pay for the simple decomposition~2.12! is the appearance
of a new parameters0, the continuum threshold, which in
general depends on the nuclear density. We will elabo
below on the determination ofs0.

To study the content of Eq.~2.9! for the vector and axial-
vector channel we need the OPE for the left-hand s
~LHS!. In general, it is given by a Taylor expansion in 1/M2:

R̃OPE~M2!5(
cn

M2n
. ~2.13!
2-4
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QCD SUM RULE ANALYSIS FOR LIGHT VECTOR AND . . . PHYSICAL REVIEW C64 015202
In the following we present the formulas for the case of fin
nuclear densityrN . The vacuum case@2# is easily obtained
by rN→0. For the vector channel one gets@18,19# ~for de-
tails see also Ref.@24#, and references therein!

c0
V5

1

8p2 S 11
as

p D , ~2.14a!

c1
V50, ~2.14b!

c2
V5

1

24K as

p
G2L 1

1

4
mNA2rN1mq^q̄q&, ~2.14c!

c3
V52

5

24
mN

3 A4rN2
56

81
pas^O 4

V& ~2.14d!

while for the axial-vector sector one obtains@2,15#

ci
A5ci

V for i 50,1,2, ~2.15a!

c3
A52

5

24
mN

3 A4rN1
88

81
pas^O 4

A&. ~2.15b!

We neglect~unknown! condensates with dimension high
than 6 and some less important twist-4 condensates anas
corrections~see Refs.@19,41,24#!. We also neglect perturba
tive contributions proportional to the square of the curr
quark masses. Note that all expectation values have to
taken with respect to the medium. We work here in the lin
density approximation

^O&'^O&vac1
rN

2mN
^NuOuN&. ~2.16!

A single nucleon state is denoted byuN&. It is normalized
according to

^N~kW !uN~kW8!&5~2p!32Ekd~kW2kW8!. ~2.17!

We defer the calculation of the in-medium expectation v
ues of the scalar operators to Sec. VI and only discuss t
vacuum expectation values here. For the gluon conden
we use a canonical value of@2# ^(as /p)G2&vac
5(330 MeV)4. As compared to the gluon-condensate t
influence of the two-quark condensate@2#

mq^q̄q&vac52
1

2
f p

2 mp
2 ~2.18!

is rather small~and is further diminished in a nuclear env
ronment!. Here f p593 MeV denotes the pion decay co
stant andmp the pion mass. While the values for gluon a
two-quark condensate are fairly well known the knowled
about the four-quark condensates3

3Note that the definition of̂O 4
V/A& is chosen such that the facto

ization assumption would implŷO 4
V/A&'^q̄q&2.
01520
t
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e

^O 4
V&5

81

224
^~ ūgmg5lau2d̄gmg5lad!2&

1
9

112K ~ ūgmlau1d̄gmlad! (
c5u,d,s

c̄gmlacL
~2.19!

and

^O 4
A&52

81

352
^~ ūgmlau2d̄gmlad!2&

2
9

176K ~ ūgmlau1d̄gmlad! (
c5u,d,s

c̄gmlacL
~2.20!

is very limited. Traditionally factorization is assumed whic
however, probably underestimates its value. In the follow
we will use two values for the four-quark condensates
explore the sensitivity of the results

^O 4
V&vac,^O 4

A&vac5~2292 MeV!6,~2281 MeV!6.
~2.21!

The larger value is chosen as to obtain an optimal agreem
between QCD sum rule prediction and experiment for ther
meson properties in vacuum. Finally the terms proportio
to A2 and A4 in Eqs. ~2.14!, ~2.15! stem from twist-2 con-
densates. They are obtained from the moments of the q
distributions in a nucleon@18#. We useA250.9, A450.12.

So far we have not specified for which values ofM2 we
regard the sum rule~2.9! to be valid. Note that in practice
Eq. ~2.13! is a truncated series in 1/M2. Clearly, if M2 is too
small the 1/M2 expansion in Eq.~2.13! breaks down. On the
other hand, however, ifM2 is too large the exponential in
Eq. ~2.9! does not sufficiently suppress the intermediate- a
high-energy parts of ImRhad(s) given in Eq.~2.12!. As men-
tioned above this suppression is important since the mo
ing of the region around the thresholds0 is rather crude. If
these qualitative considerations are put on a more quan
tive level one can define a so called Borel window for t
massesM2 in which the sum rule is valid~see, e.g., Ref.
@23#!. Following Ref.@30# we determine the minimal Bore
mass such that the last accessible contribution to the O
~2.13!, i.e., here the 1/M6 term, amounts to 10% of the tota
OPE result

U c3

Mmin
6 U50.1R̃OPE~Mmin

2 !. ~2.22!

The maximal Borel mass is chosen such that the continu
contribution to the right-hand side~RHS! of Eq. ~2.9! does
not become larger than the contribution from the resona
which we want to study, i.e.,

E
0

`

ds
1

8p S 11
as

p DQ~s2s0!e2s/Mmax
2

5E
0

`

dsImRres~s!Q~s02s!e2s/Mmax
2

. ~2.23!
2-5
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STEFAN LEUPOLD PHYSICAL REVIEW C 64 015202
As a guideline one can expect thatMmax
2 scales with the point

where the average strength of ImRres(s) is located, i.e., with
the resonance mass~squared!. Hence for large~small! reso-
nance masses the value ofMmax

2 will be large ~small!. It
might appear that in some cases the Borel window betw
Mmin

2 andMmax
2 is rather small or even closed. Then the su

rule is meaningless. In practice the determination of
Borel window provides a quality check for the sum rule.

III. FINITE ENERGY SUM RULES—THE QUALITATIVE
PICTURE

The Borel sum rule~2.9! is not the only sum rule which is
used to connect hadronic and QCD based information.
serting Eq.~2.12! in Eq. ~2.9! and expanding the RHS in
powers of 1/M2 one can compare the coefficients of th
expansion with the respective ones in the series on the L
given by Eq.~2.13!. This yields the finite energy sum rules4

~presented here for ther meson for the vacuum case!

1

pE0

s0
dsImRV

res~s!2c0
Vs050, ~3.1a!

2
1

pE0

s0
dssImRV

res~s!1c0
V

s0
2

2
5c2

V , ~3.1b!

1

pE0

s0
dss2ImRV

res~s!2c0
V

s0
3

3
52c3

V , ~3.1c!

where the coefficients of the OPE are given in Eq.~2.14!,
evaluated in this section forrN50.

The first two of these sum rules are utilized, e.g., in R
@43#. Obviously the expansion of the RHS of Eq.~2.9! relies
on the assumption that the Borel sum rule obtained by
simple decomposition~2.12! is valid for arbitrary high values
of M2. As pointed out above this is doubtful due to th
limited knowledge of ImRhad(s) in the threshold region. Ac-
tually the sensitivity of the respective finite energy sum r
on the details of ImRhad(s) arounds0 is increasing when
going from Eq.~3.1a! to Eq. ~3.1c!. Thus it might be safe to
extract information from the lowest finite energy sum rule~s!.
Utilizing higher ones, however, becomes more and m
doubtful. This is the reason why we prefer to use the Bo
sum rule. In addition, for the latter one a consistency ch
on its validity is provided by the determination of the Bor
window.5

4This derivation is actually oversimplified since it neglects t
running of the coupling constant. For a rigorous derivation see R
@42# and references therein.

5A consistency check for finite energy sum rules might be
tained in the following way: Clearly the discontinuity between t
resonance and the continuum region in Eq.~2.12! is unrealistic. It is
only used to avoid new additional parameters. Introducing inste
smooth crossover one can test the sensitivity of the finite ene
sum rules on these new parameters which model the crossove
gion. If a finite energy sum rule appears to be fairly insensitive
these new parameters it might be regarded as useful.
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Nonetheless, the finite energy sum rules can be use
get a qualitative picture about the connection of the OPE s
to resonance parameters like mass and width. In fact, ImRV

res

is a mass distribution. Therefore it appears natural to de
the first two moments of this distribution, i.e., an avera
mass and a width via

m̄2
ª

E
0

s0
dssImRV

res~s!

E
0

s0
dsImRV

res~s!

~3.2!

and

s2m̄2
ª

E
0

s0
ds~s2m̄2!2ImRV

res~s!

E
0

s0
dsImRV

res~s!

. ~3.3!

Obviously, the finite energy sum rules~3.1! can be used to
connect these moments with the condensates~and the con-
tinuum threshold!:

m̄25
s0

2
2

c2

c0s0
, ~3.4!

s25
1

m̄2 S s0
2

3
1

2c3

c0s0
2m̄4D . ~3.5!

We can learn two things from these simple relations: Fi
the average mass is determined by the dimension-4~gluon
and two-quark! condensates and the continuum thresh
while the dimension-6 condensates~here the four-quark con
densate! influence only the width. Second, we do not ha
enough information at hand to determine all the phenome
logical parameters. In our case at hand we have three
them, namely the continuum thresholds0 and the two mo-
ments m̄2 and s2. On the other hand, we only have tw
equations for these parameters. Traditionally, the use
QCD sum rules is accompanied by an additional assumpt
namely that the width is negligible. In this case the mass
be determined. In general, however, the best we can hop
gain are correlations between the free parameters. Being
pecially interested in mass and width we can varys0 and
determine the corresponding values form̄ ands. The result
is shown in Fig. 1.@For the four-quark condensate~2.21! we
have chosen the larger value.# The most important thing to
note here is that the width grows with rising mass. We w
find correlations of this kind again and again throughout t
work. The qualitative understanding of this correlation is o
tained from the simple relations~3.4!, ~3.5!. We are reluc-
tant, however, to draw any quantitative conclusions from
previous considerations. In principle we are interested in
properties of the vector and axial-vector resonances, e
their masses and widths as defined via Breit-Wigner-ty
parametrizations. In general, these masses and widths arnot
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identical to the momentsm̄2 and s2 of the distribution
ImRres. In addition, as outlined above we doubt the quant
tive reliability of the finite energy sum rules~3.1! due to their
higher sensitivity to the details of the high-energy behav
Hence we prefer the use of the Borel sum rule~2.9!. For a
very elaborate use of combinations of finite energy sum ru
we refer to Ref.@42#.

IV. BREIT-WIGNER PARAMETRIZATION OF THE
CURRENT-CURRENT CORRELATOR

The only remaining question is how to parametri
ImRres(s) which enters the sum rule~2.9! via Eq. ~2.12!.
Concerning the vector channel, experiments which de
mine, e.g.,e1e2→p1p2 suggest the parametrization

ImRV
res~s!5pFr

Sr~s!

s
. ~4.1!

HereFr determines the absolute height of the spectrum
Sr denotes the spectral function of ther meson which we
will specify further below. Concerning the axial-vector cha
nel not only thea1 but also the pion shows up there. Hen
the parametrization has to be extended to

ImRA
res~s!5pFa1

Sa1~s!

s
1p f p

2 d~s2mp
2 !. ~4.2!

The spectral functions are given by

S~s!5
1

p

AsG~s!

~s2m2!21s G~s!2
. ~4.3!

Herem is the mass of the respective meson andG its width.
We stress again that these Breit-Wigner parameters are
identical to the moments introduced in the last section; th
is only a qualitative correspondence. We denote the on-s
width by

g5G~m2!. ~4.4!

FIG. 1. Correlation between massm̄ and width s for the r
meson as obtained from the finite energy sum rules~3.4!, ~3.5!. See
text for details.
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We have to use ans-dependent width in Eq.~4.3! for the
following reason: In the following we will varyg ~and other
parameters! over large ranges. As outlined above the su
rule ~2.9! is insensitive to the modeling of the high-energ
behavior of ImRres(s). In turn, there is a high sensitivity to
the low-energy part. Therefore, especially for large wid
we have to make sure that at threshold the spectral func
shows the correct behavior. On the other hand, we do
want to overweight our parametrizations with too many
dependent parameters. Hence, we are aiming at simple
rametrizations which reproduce correctly the threshold
havior.

In the vacuum the width of ther meson is governed by
the decay into two pions. We use the following parametri
tion:

Gr
decay~s!5gr

mr
2

s S prel
pp~s!

prel
pp~mr

2!
D 3

Q~s24mp
2 ! ~4.5!

with the momentum of the pions in the rest frame of t
decayingr with invariant massAs:

prel
pp~s!5~s24mp

2 !1/2/2. ~4.6!

Concerning thea1 meson in vacuum its width is dominate
by the decay into rho plus pion. For simplicity we neglect t
width of the rho meson here and use

Ga1
decay~s!5ga1

ma1
2

s

prel
pr~s!

prel
pr~ma1

2 !
Q@s2~mr1mp!2#

~4.7!

with the momentum of pion and rho in the rest frame of t
decayinga1 with invariant massAs:

prel
pr~s!5$@s2~mr1mp!2#@s2~mr2mp!2#%1/2/~2As!.

~4.8!

In a nuclear environment a presumably rather sizable co
sional width~see Ref.@39#, and references therein! has to be
added to the decay width. The lowest threshold for
~axial-!vector meson collision with a nucleon is given by th
formation of pion plus nucleon. We assume that the thre
old behavior is dominated by the lowest accessible par
wave. For ther meson this is ans wave leading to

Gr
coll~s!5grS 12mp

2 /s

12mp
2 /mr

2D 1/2

Q~s2mp
2 !. ~4.9!

For thea1 meson it is ap wave

Ga1
coll~s!5ga1

s

ma1
2 S 12mp

2 /s

12mp
2 /ma1

2 D 3/2

Q~s2mp
2 !.

~4.10!

For the vacuum caseGr/a1(s) in Eq. ~4.3! is given by Eqs.
~4.5! and~4.7!, respectively. For the case of nuclear mediu
we restrict ourselves to the two extreme possibilities that
width is either dominated by decays or by collisions. Hen
2-7
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STEFAN LEUPOLD PHYSICAL REVIEW C 64 015202
we explore the two cases thatGr/a1(s) is either given by
Eqs.~4.5! and ~4.7! or by Eqs.~4.9! and ~4.10!.

We will treatF, m, g and also the continuum thresholds0
@see Eq.~2.12!# as free parameters. The aim is to find o
how the sum rule~2.9! constrains these parameters. As
general rule one can at best determine as many paramete
the hadronic side of the sum rule as one has powers in 1M2

on the OPE side@19#. For the latter we have given in Eq
~2.14!, ~2.15! four orders in powers of 1/M2. However, the
perturbative part@(1/M2)0 part# has already been used
determine the high-energy behavior in Eq.~2.12!. Therefore
at best only three parameters of the hadronic spectral di
bution can be determined from the sum rule~2.9!.6 On the
other hand, we have for each meson four free paramete
the parametrization~2.12!, ~4.1!–~4.3!. In the traditional sum
rule approach@2,18,19,32,41# the width of the respective me
son resonance is neglected~narrow width approximation!. In
this case the number of free parameters reduces to 3 an
sum rule gains predictive power. This, however, means
in addition to the QCD input represented by the OPE o
needs further knowledge to extract predictions from QC
sum rules. In vacuum, this additional input comes from
periments which tell us that, e.g., ther meson indeed is a
well-defined resonance with a width considerably sma
than the mass. In contrast, for the in-medium case it is so
not clear if the pronounced peak structure of ther meson
survives in a nuclear surrounding or if it is washed o
@20,35–39#, e.g., by its coupling to resonance-hole stat
The a1 meson already has a large vacuum decay width
addition, its mass is so high that it is hard to achieve a c
separation between ImRres and the high-energy continuum i
Eq. ~2.12! @2#. We will come back to that point below whe
discussing the results of our QCD sum rule analysis for
a1. As for ther meson, medium effects in addition presum
ably lead to an additional broadening of thea1. To study the
influence of the widths of the vector and axial-vector mes
on the results extracted from QCD sum rules we will refra
from neglectingg and proceed with our general paramet
zation ~4.3!.

V. RESULTS FOR VACUUM

We shall now explore which values of mass and width
the r/a1 meson are compatible with the sum rule~2.9!. For
that purpose we vary the values form andg in large ranges.
For a given pair of mass and width we tune the remain
parametersF and s0 such that the agreement between le
and right-hand side of Eq.~2.9! is best. The resulting mini-
mal deviationd between LHS and RHS is a measure for t
compatibility of the chosen mass-width pair with the su
rule, i.e., ifd is sufficiently small one might conclude that th
chosen pair of mass and width is allowed by QCD sum ru
We regard the sum rule to be approximately valid in t

6This is also true if the finite energy sum rules were used inst
of the Borel sum rule. The three sum rules~3.1! provide three
constraints on the hadronic spectral distribution. See also the
cussion in Sec. III.
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range given by the Borel window introduced above. Hen
we define the deviationd as an average over this windo
~see Ref.@23# for further details!.

For ther meson Figs. 2 and 3 show the allowed rang
for mass and width for the vacuum case for the two differ
values of the four-quark condensate given in Eq.~2.21!. Ob-
viously, there is not only one point where the sum rules
reasonably fulfilled but a whole band of allowed mass-wid
pairs. Figures 2 and 3 qualitatively resemble Fig. 1: the b
of allowed mass-width pairs describes a correlation wh
the width rises with rising mass. Quantitatively, however, t
differences between Fig. 1 and Figs. 2,3 are large stres
again that the distribution moments defined in Sec. III are
identical to mass and on-shell width of the Breit-Wigner ty
spectral functions~4.3!. We have also included the exper
mental point for ther meson in Figs. 2 and 3. Obviously th
value of (2292 MeV)6 provides an optimal choice for th
four-quark condensate. A smaller value for that condens
shifts the band of allowed mass-width pairs either upwa
or to the left~or both!. From our qualitative considerations o
Sec. III we expect that the four-quark condensate mai

d

is-

FIG. 2. Deviationd as a function of width and mass of ther
meson for vacuum. For the four-quark condensate a value
(2292 MeV)6 has been used. The full lines border the region
QCD sum rule allowed parameter pairs withd<0.2%, the dashed
lines border the allowed region ford<0.5%. The cross marks the
experimental values for mass and width of ther meson@including
the ~very small! error bars according to Ref.@50##.

FIG. 3. Same as Fig. 2 but with a four-quark condensate
(2281 MeV)6.
2-8
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influences the width@see Eq.~3.5!#. Hence a smaller value o
the four-quark condensate is supposed to increase the wi7

i.e., to shift the band upwards. We will further clarify th
point when discussing the results for thea1 meson. Note that
also for the smaller value of the four-quark condensate
(2281 MeV)6 the deviationd is still reasonably small for
the experimental point~0.46%!. As discussed above the re
sults of Figs. 2 and 3 are only meaningful if the Borel wi
dow is reasonably large. For our choice for the condens
values leading to Fig. 2 we getMmin

2 50.71 GeV2. The value
for Mmax

2 depends on the resonance parameters. As alre
mentioned small values for the resonance mass lead to s
values for Mmax

2 . For the case at hand we findMmax
2

.1.5 GeV2 for all mass-width pairs lying in the inner ban
shown in Fig. 2 and to the right of it. We regard that as
reasonably large Borel window. For Fig. 3 the correspond
values areMmin

2 50.65 GeV2 andMmax
2 .1.4 GeV2.

Concerning thea1 meson the corresponding mass-wid
correlations are shown in Figs. 4 and 5. Qualitatively we fi
again the same correlation between masses and widths. H
ever, a tendency is visible that the sum rule supports la
values of the width. We will find that this tendency increas
for the in-medium case. Comparing Figs. 4 and 5 we fi
that a decrease in the four-quark condensate shifts the
to some extent to the left but merely downwards. To und
stand that finding we note that the four-quark condens
enters with a different sign in the two sum rules forr anda1,
respectively; see Eqs.~2.14d!, ~2.15b!. Therefore we expec
an upward shift with decreasing four-quark condensate
the r meson, as discussed above, and a downward shif
the a1. Figures 4 and 5 support our considerations. Comp
ing the results with the experimental values for mass
width of thea1 meson we find that the smaller value for th
four-quark condensate~Fig. 5! appears to be much bette
suited—quite opposite to the case of ther meson where the
larger value provides a better fit. In principle, there is

7Note that the four-quark condensate enters the sum rule for tr
meson with a negative sign, cf. Eq.~2.14d!.

FIG. 4. Same as Fig. 2 fora1 meson in vacuum; value fo
four-quark condensate: (2292 MeV)6. The cross marks the ex
perimental values for mass and width of thea1 meson~including
the error bars according to Ref.@50#!.
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fundamental reason why the four-quark condensates for
anda1 should be exactly the same. Only if the factorizati
assumption strictly holds the two quantities defined in E
~2.19! and ~2.20! coincide. Still, however, the value
(2292 MeV)6 and (2281 MeV)6 are rather close. For the
succeeding in-medium calculations we will choose the
spective better value, i.e., (2292 MeV)6 for the r meson
and (2281 MeV)6 for the a1. We note that for thea1
vacuum case a further reduction of the four-quark conden
does not improve the agreement between the sum rule
the experimental results as the band is further shifted do
wards and not to the left. Hence the agreement between
rule and experiment appears to be better for ther than for
thea1 meson. This rather old finding@2# is most likely due to
the fact that the separation between the resonance and
continuum region is better realized in the vector channel
the resonance appears to be closer to the continuum the
rule is more sensitive to the details of the modeling of t
nearby transition to the continuum. Such details are nec
sarily rather crude in our ansatz~2.12!. Finally we present
the results for the Borel window for the preferable parame
choice~Fig. 5!: We find Mmin

2 50.71 GeV2 while all mass-
width pairs enclosed by the dashed line obeyMmax

2

.1.4 GeV2. We note that we have not included the pio
branch in the determination~2.23! of the maximal Borel
mass to make sure that we really learn something about
properties of thea1 meson.

VI. IN-MEDIUM CORRELATORS AND r-A1 MIXING

Next we turn to the case of finite nuclear density. A
pointed out by several groups~e.g., Refs.@44,45#! the inter-
action of ther meson with the pion cloud of the nucleon
induces a mixing of ther with its chiral partner thea1 me-
son. This means that, e.g., the~possibly medium-modified!
a1 peak shows up in the spectral distribution ImRV

had of the
vector correlator and vice versa. Suppose now that o
would ignore that multipeak structure and still parametr
ImRV

had with only one peak according to Eqs.~2.12!, ~4.1!. In
a QCD sum rule analysis one has only access on certain m

FIG. 5. Same as Fig. 2 fora1 meson in vacuum; value fo
four-quark condensate: (2281 MeV)6. The cross marks the ex
perimental values for mass and width of thea1 meson~including
the error bars according to Ref.@50#!.
2-9
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STEFAN LEUPOLD PHYSICAL REVIEW C 64 015202
averages of the spectral distribution on account of Eq.~2.9!.
Hence with a one-peak structure ansatz one would trans
certain in-medium changes of the OPE side to change
mass and width of this peak which in reality, however, a
caused by the appearance of other distinct peaks. This w
be rather misleading. Indeed, for the comparable case o
nite temperatureT it has been shown@4# that the masses ofr
and a1, if understood as the positions of peaks in spec
distributions, do not change in the linear~pion! density
approximation.8 Only if the notion of mass is used with
different meaning~e.g., in the spirit of Sec. III as the firs
moment of a spectral distribution! it would be correct to
attribute an in-mediumO(T2) mass shift to this ‘‘mass.’’ For
considerations beyond theO(T2) approximation we refer to
Refs.@16,17#.

Concerning the present work the massm of a resonance
~which shows up in the spectral distribution of the curre
correlator! is defined via Eq.~4.3!. For small width it gives
the peak position of the resonance. In the following for o
case of finite nucleon density we also try to account for
multipeak structures caused by mixing of vector and ax
vector currents. If we only used the sum rule~2.9! and intro-
duced more than one peak, e.g., in Ref.~4.1! we would have
too many free parameters to draw any meaningful con
sion. Therefore~as for the case of finite temperature@4#! the
key idea is to isolate the contribution of the respective n
in-medium peak~s! also for the OPE side. In this way on
obtains sum rules for nonmixed correlators~in the following
called ‘‘bare’’! which can be analyzed with the one-pe
ansatz~plus continuum, of course!. These~in general unob-
servable! bare correlators mix to yield finally the ‘‘full’’ in-
medium correlators. The imaginary part of the latter in pr
ciple can be observed@see, e.g., Eq.~2.5!#. We note that for
the case of finite temperature the bare correlators coin
with the vacuum correlators in the linear density approxim
tion @4#. As we shall see in the following, things are not
simple for the case of finite nucleon density.

To account for the interaction of the nuclear pions w
the vector- and axial-vector currents nuclear matter is se
rated into a Fermi gas of bare nucleons plus soft pions, s
matically @44#

uC&5CAuA&1(
a

Ca
AuApa&1(

a,b
Ca,b

A uApapb&1•••,

~6.1!

whereuC& denotes the full nuclear matter state vector wh
uA& denotes the bare one. The current-current correlator~2.1!
evaluated with respect touC& can now be decomposed into
bare correlator, i.e., a correlator with respect touA&, and a
part involving the interaction with~soft! pions:

Pmn5Pmn
b 1Pmn

p . ~6.2!

8Note that anO(T2) modification at finite temperature corre
sponds exactly toO(rN /mN) at finite baryon density~see, e.g., Eq.
~3! in Ref. @4#!.
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The latter one is approximately evaluated using soft p
techniques~see also Ref.@15#! and taking into account up to
two pions in the initial and/or final state. One gets

^ApauT jm~x! j n~0!uApb&

.^ApapbuT jm~x! j n~0!uA&

.^AuT jm~x! j n~0!uApapb&

.
21

f p
2 ^Au@Q5

a ,@Q5
b ,T jm~x! j n~0!##uA&, ~6.3!

with the isovector axial charge

Q5
a5E d3xc̄~x!g0g5

ta

2
c~x!. ~6.4!

To calculate the commutators in Eq.~6.3! with the currents
~2.2! and ~2.3! it is useful to generalize the latter to the fu
isospin multiplets

Vm
a 5cgmtac, Am

a 5cgmg5tac. ~6.5!

In fact, on account of@32#

@Q5
a ,Vm

b #5 i eabcAm
c , @Q5

a ,Am
b #5 i eabcVm

c , ~6.6!

the vector and axial-vector currents are mixed by their int
action with the nuclear pions. Finally the expectation valu
in Eq. ~6.3! have to be weighted by the density of pions
the nuclear medium. For the dimensionless quantities defi
in Eq. ~2.4! one ends up with~see Ref.@44# for details!

RV~q2!5RV
b~q2!2j@RV

b~q2!2RA
b~q2!#, ~6.7a!

RA~q2!5RA
b~q2!2j@RA

b~q2!2RV
b~q2!#, ~6.7b!

whereRV/A
b denotes the respective correlator with respec

a system ofbare nucleons, i.e., without their pionic cloud
The mixing parameter is given by

j5
4

3

sN
prN

f p
2 mp

2 . ~6.8!

Here we have introduced@45#

sN
p5

mp
2

4mN
^NupW 2uN&5

mp

2
Np , ~6.9!

whereNp denotes the scalar number of pions in the clo
surrounding the nucleon.sN

p contributes to the nucleon
sigma termsN given by @24#

sN5
mq

mN
^Nuq̄quN&. ~6.10!

Having split up the nucleons into bare nucleons plus a clo
of soft pions we have to disentangle the nucleon sigma t
correspondingly@45#:

sN5sN
b 1sN

p . ~6.11!
2-10
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At present, the value and even the sign forsN
p is not a settled

issue. We take apositivevalue of 25 MeV. This is in agree
ment with Ref. @45# but in contrast to Ref.@44# where a
negative value has been used. Our choice forsN

p is motivated
by the fact that this ensures that the two correlatorsRV and
RA become degenerate at some finite density:

RV2RA5~122j!~RV
b2RA

b !. ~6.12!

A negative value forsN
p would lead to antimixing, i.e., in

this case the nuclear pions would work against chiral sy
metry restoration. This discussion already indicates tha
model dependence is introduced by the decomposition~6.1!,
~6.2!. Clearly ‘‘bare nucleons’’ are not observable objec
We will come back to that point when we discuss our resu
in the last section.

Next we will perform a sum rule analysis for the correl
tors with respect to the system of bare nucleonsRV/A

b at
nuclear saturation densityrN50.17/fm3. Concerning the
vector channel this is the essential difference as compare
our previous work@23# where we have analyzed the sum ru
for the full in-medium correlatorRV . Note that Eqs.~2.14!,
~2.15! are valid for both full and bare correlators. The diffe
ence appears in Eq.~2.16! in the calculation of the expecta
tion value with respect to bare or full nucleons, respective
In practice, the difference manifests itself only in the diffe
ent handling of the four-quark condensate. All OPE con
butions in Eqs.~2.14! and ~2.15! except from the two- and
four-quark condensates come from chiral singlet operat
They do not distinguish between bare nucleons and nucle
dressed by soft pions. Hence their evaluation is stand
@23#. Things are different for the two- and four-quark co
densates. Concerning the two-quark condensate, its
medium change~in linear density approximation! is deter-
mined by the nucleon sigma term~6.10!. To calculate the
in-medium change with respect to bare nucleons we hav
take into account onlysN

b as defined via Eq.~6.11!:

^q̄q&b

^q̄q&vac

512
sN

b rN

f p
2 mp

2 . ~6.13!

In practice, the value ofmq^q̄q& is rather small~as compared
to the gluon condensate! and further diminished in the me
dium. In contrast, the four-quark condensate is numeric
important. In lack of a better access to the value ofO 4

V at
finite density we made in Ref.@23# the common assumptio
that this four-quark condensate scales with the density as
square of the two-quark condensate

^O4&med5^O4&vacS ^q̄q&med

^q̄q&vac
D 2

5^O4&vacS 12
sNrN

f p
2 mp

2 D 2

.

~6.14!

In the comparable case of finite temperature~i.e., in a hot
pion gas!, however, it was shown in Ref.@46# that such an
assumption is wrong. This can be traced back to the fact
in the presence of pions the two-quark condensate beh
different as compared to the four-quark condensate due t
01520
-
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.
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different transformation properties with respect to chi
transformations. This suggests that also at finite nucleon d
sity the scaling assumption~6.14! is doubtful due to the pres
ence of virtual pions. In the present work we have explici
taken into account the contribution from the pion cloud
the nucleons. In this way we have expressed the full c
relator in terms of the bare correlators. We now assume
scaling property~6.14! only for the condensates with respe
to a system of bare nucleons. It takes the form

^O4&b5^O4&vacS 12
sN

b rN

f p
2 mp

2 D 2

, ~6.15!

where for consistency we have to take the bare nucl
sigma termsN

b 5sN2sN
p'20 MeV instead of the full one

sN'45 MeV. In the following we use this scaling assum
tion ~6.15! for both ^O 4

V&b and ^O 4
A&b .

In view of the uncertainty connected with the four-qua
condensate it clearly would be fortunate to use sum ru
which do not involve it. Indeed, in Ref.@43# the first two
finite energy sum rules~3.1a!, ~3.1b! were used. However
with the same parameter set (mr ,g,F,s0) characterizing the
hadronic correlator the two sum rules are capable to de
mine only two of these four parameters. To further restr
the parameter space additional information is required.
Ref. @43# it is suggested that the thresholds0 is connected to
the scale of chiral symmetry breaking. Thus, the choice
either to make assumptions about the four-quark conden
or about the threshold parameter. As outlined above we
fer to work with the Borel sum rule instead of the fini
energy sum rules due to the larger sensitivity of the latte
the high-energy modeling. In this case we cannot get rid
the four-quark condensate.

The sum rule analysis proceeds along the same line
described above for the vacuum case. We analyze the B
sum rules for ther as well as thea1 meson placed in a
medium ofbare nucleons. For the timelike part of the co
relator in the vector channel we use again a single resona
parametrization of type~4.1!. For the axial-vector channe
we recall that there is a pion branch in addition to thea1.
Here there is an additional change in the medium due t
change of the pion decay constant in nuclear matter.
replacef p

2 in Eq. ~4.2! by

f p*
2' f p

2 ^q̄q&b

^q̄q&vac

, ~6.16!

where we have utilized the in-medium version of the Ge
Mann–Oakes–Renner relation~2.18! and neglected a pos
sible in-medium change of the pion mass. By using Eq.~4.2!
with the replacement~6.16! we also assume that thed-type
spectral function of the pion is not significantly smeared o
In fact, pion properties are expected to change drasticall
nuclear matter due to the strong coupling toD-hole states
@47#. However, thisp-wave coupling is not important her
since we deal with correlators which are at rest with resp
to the nuclear environment. Working in the linear dens
approximation, i.e., neglecting Fermi motion, the pions
2-11
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STEFAN LEUPOLD PHYSICAL REVIEW C 64 015202
not couple to the nucleons by excitingD ’s. In the context of
the ~necessary! approximations involved it seems reasona
to work with a pion spectral function which is neither shifte
nor broadened.

VII. RESULTS FOR NUCLEAR MATTER

The results of the sum rule analysis are shown in Figs
7, and 8. As for the vacuum case we find bands of allow
mass-width pairs. The interesting point is how these ba
have changed as compared to the respective vacuum cas
already mentioned concerning the choice for the vacu
four-quark condensate we have used the respective b
value, i.e., (2292 MeV)6 for the r meson and~2281
MeV)6 for the a1. Hence we have to compare Figs. 6, 7
Fig. 2 and Fig. 8 to Fig. 5.

For the r meson we have explored two possibilities
parametrize the energy dependence of the width. The s
parametrization~4.5! as for the vacuum case, i.e., with th
two-pion threshold, is used to obtain the results depicted
Fig. 6. Here the mass-width band is shifted to the left
compared to the vacuum case~Fig. 2!. Obviously, the in-
medium change of the condensates calls for more streng
lower invariant masses as compared to the situation

FIG. 6. Same as Fig. 2 forr in system of bare nucleons a
normal nuclear matter density. For the calculation of the width
two-pion threshold is adopted. See text for details.

FIG. 7. Same as Fig. 2 forr in system of bare nucleons a
normal nuclear matter density. For the calculation of the width
one-pion threshold is adopted. See text for details.
01520
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vacuum. This can be accomplished either by a lower p
mass or by a larger width. For Fig. 7 the parametrizat
~4.9! with the one-pion threshold is used. For very sm
width the masses allowed by the sum rule analysis agree
Figs. 6 and 7. This is of course due to the fact that the det
of the off-shell parametrization of the width do not matter
the width is sufficiently small. For larger widths, howeve
there appear large differences between Figs. 6 and 7.
band in Fig. 7 is much less steep. This is easy to underst
The demand for more strength at lower invariant masse
easier to fulfill if there is already some strength below t
two-pion threshold. Therefore, for the same peak mass
on-shell width can be smaller if the one-pion threshold
used instead of the two-pion threshold. The large differen
between Figs. 6 and 7 stress again that the Borel sum ru
very sensitive to the low-energy behavior of the spectral d
tribution. More generally one has to realize that peak m
and on-shell width are sufficient to characterize a spec
function only if the width is not too large. For large widt
details of the spectral shape become important, in the cas
hand especially the details in the low-energy region. C
cerning the Borel mass window we getMmin

2 50.64 GeV2.
For all mass-width pairs in the inner bands of Figs. 6 an
and to the right of it we findMmax

2 .1.2 GeV2. It is a generic
finding of sum rule analyses that the Borel window shrin
to some extent when changing from the vacuum to the
medium case@23#. Still we regard the Borel window to be
large enough to draw conclusions from the analysis.

Turning to thea1 meson Fig. 8 shows that the tendency
the sum rule to support large values of the width~see Fig. 5!
increases in medium.~Note that the width scale in Fig. 8
differs from the previous figures.! The minimal Borel mass is
given by Mmin

2 50.61 GeV2 while Mmax
2 .2.0 GeV2 for the

whole relevant mass-width range. For the width we ha
used parametrization~4.10! with the one-pion threshold to
obtain Fig. 8. We have also analyzed the sum rule us
instead Eq.~4.7! with the rho-pion threshold. In this case w
did not find any mass-width pair with a deviationd less than
1%. Therefore, we do not show a plot for the latter case
fact, even if we allowed for larger values ofd there would be
no sign for the desired mass-width band. We conclude

e

e

FIG. 8. Same as Fig. 5 fora1 in system of bare nucleons a
normal nuclear matter density. For the calculation of the width
one-pion threshold is adopted. See text for details. Note the dif
ent scale for the width as compared to previous figures.
2-12
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parametrization~4.7! is incompatible with the in-medium
sum rule for thea1 meson. Obviously this sum rule deman
for a spectral distribution which is smeared out over a la
invariant mass range. Restricting the mass range by a~rather
high! lower limit of mp1mr'0.9 GeV appears to be insu
ficient to fulfill the sum rule. Instead, the one-pion thresho
~caused by nucleon-a1 collisions! does the job. Of course
also other scenarios which might fulfill the sum rule are co
ceivable. As we have learned from the previous in-medi
sum rule analysis the spectral function of ther meson gains
strength at lower invariant mass~either by a lower peak mas
or by a larger width!. Thus the effective threshold for th
in-medium decay of thea1 meson into rho plus pion is prob
ably lowered as compared to the vacuum case. Such a
nario might also be in line with the sum rule. We have n
explored this possibility in further detail since we wou
have to introduce a couple of new free parameters to mo
e.g., the successive in-medium decaysa1→r1p→3p. As
already noticed when discussing the results for ther meson
we find also for thea1 that the QCD sum rule is sensitive t
the threshold modeling of the width provided that the o
shell width is not too small. This fact has not been su
ciently taken into account in Ref.@48# leading to results for
thea1 meson which differ from the ones presented here.
also deduce from Fig. 8 that the nominal peak mass is shi
to higher values. It is important to note that this shift isnot in
contradiction to chiral symmetry. What we have studied
far is the behavior of the correlators under the influence
the system ofbarenucleons. Chiral symmetry only demand
that thefull correlators of the vector and axial-vector chann
become degenerate at high enough density. This is achi
by the pions as expressed by the mixing formula~6.12! no
matter how thea1 mass changes under the influence of
bare nucleons.

To visualize the effect of mixing we now turn to the fu
in-medium correlators obtained from the bare ones via
~6.7!. As already pointed out the sum rule analysis in gene
is not capable to pin down both in-medium mass and wi
for the respective meson. Nonetheless, to illustrate the e
of mixing we arbitrarily take one pair of values for ther
meson from the inner band depicted in Fig. 7 and the opti
pair for thea1 meson. We choose

mr50.77 GeV, gr50.21 GeV, s0
r51.15 GeV2,

Fr51.131022 GeV4; ~7.1a!

ma151.86 GeV, ga151.67 GeV,

s0
a153.84 GeV2, Fa150.36 GeV4. ~7.1b!

The results for the imaginary part of the full in-medium ve
tor and axial-vector correlators are shown in Figs. 9 and
together with the respective contributions from the bare c
relators. In the figures we have not included the delta fu
tion type contributions from the pion and from Landa
damping. Note that the shoulder of ther contribution at low
invariant mass is caused by the 1/s factor present in Eq.
~4.1!. Especially the axial-vector correlator shows that in t
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medium the resonance peaks are no longer higher than
high energy continuum. Recalling that the modeling of t
onset of the continuum is rather crude one might furth
soften the crossover regions leaving basically no room
distinct peak structures. In total, we see a clear sign that
in-medium spectral distributions get washed out with
creasing density.

VIII. SUMMARY

We have presented a QCD sum rule analysis for the
medium current-current correlators with the quantum nu
bers ofr and a1 mesons. For the medium we have chos
the case of a Fermi gas of nucleons at vanishing tempera
For comparison we have also presented the vacuum sum
analysis forr anda1. As possible in-medium changes for th
spectral distributions of both correlators we have allowed
mass shifts, peak broadening, and also mixing. The la
effect has not been considered in previous analy
@18,19,23#.

In the QCD sum rule only a mass-averaged quantity
volving the respective spectral distribution enters. In gene
the sum rule is not capable to pin down the full informati

FIG. 9. Imaginary part of the full in-medium vector correlat
~full line! as a function ofAs5Aq2. The contribution of the bare
vector~axial-vector! correlator is given by the dashed~dotted! line.
See text for details.

FIG. 10. Imaginary part of the full in-medium axial-vector co
relator~full line! as a function ofAs5Aq2. The contribution of the
bare axial-vector~vector! correlator is given by the dashed~dotted!
line. See text for details.
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STEFAN LEUPOLD PHYSICAL REVIEW C 64 015202
present in the spectral distribution such as the numbe
peaks, their positions, widths, and heights. Therefore
needs an ansatz for the spectral distribution with some
parameters. These parameters can be constrained by th
quirement that the spectral distribution has to fulfill the su
rule. The simplest ansatz consists of only one peak~in the
low-energy regime! and neglecting its width. In this case th
sum rule for ther meson demands an in-medium mass s
towards smaller masses@18,19#. At normal nuclear matter
density the mass has to drop by roughly 16%. This, howe
is a model-dependent statement since a specific choice
the form of the spectral distribution has been made, nam
only one peak with vanishing width. In fact, if also the wid
is included but still using a one-peak ansatz it is alrea
impossible to fix both the mass and the width. One obtain
band of allowed mass-width pairs@23#. At small width this
band of course has to start at the mass determined in R
@18,19#—provided the same condensate values are used~see
Ref. @23# for details!. For larger widths the allowed masse
also increase. With increasing nucleon density the ma
width band is shifted to the left, i.e., for a given value of t
width to smaller masses.

If the true in-medium spectral distribution possesses m
than one peak but in the ansatz for that quantity only o
peak was present then certain in-medium changes cause
the additional peaks would be erroneously attributed
changes of mass and/or width of the single peak. Theref
in the present work we have made a further step to cons
all possible in-medium modifications. The mixing of the ve
tor with the axial-vector correlator by the virtual nucle
pions has been included. Using soft pion techniques
mixing can be approximately calculated for the correlat
irrespective of the choice for the correlator momentumq.
Therefore the correlators can be decomposed into a supe
sition of ‘‘bare’’ correlators for both the OPE side (q2!0)
and the spectral distribution (q2.0). In this way we have
split off the mixing phenomena~at least the one induced b
nuclear pions! from the sum rule analysis. Successively t
latter has been applied to the bare correlators. As comp
to previous works we have obtained a less drastic in-med
shift of the allowed mass-width band for ther branch. For
the a1 branch we have found that the sum rule is bet
fulfilled for not too small values of the width. The preferen
of large widths increases with increasing density. We h
also seen that for both ther anda1 meson at larger widths
the respective sum rule is sensitive to the threshold mode
of the energy dependence of the width. Therefore, it app
to be insufficient to characterize a peak in the spectral dis
bution by its position and on-shell width. A reasonable mo
eling of the energy dependence of the width is importan
obtain meaningful results from a QCD sum rule analysis

As already mentioned we have found that there is
smaller in-medium shift of the mass-width band for ther
meson as compared to the old analysis which did not incl
the mixing phenomena. At first glance this is a striking
sult. Suppose that the old analysis is polluted by an ad
tional a1 peak, i.e., a peak at large invariant masses. Firs
all, one might argue that this additional peak is suppres
by the exponential function appearing in Eq.~2.9!. Therefore
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this peak should not drastically modify the analysis for ther
meson as generally assumed for all details of the high-ene
part. Note that Figs. 9 and 10 show that in general the p
tion of thea1 peak is beyond the onset of the continuum
the r branch, see also Eq.~7.1!. Let us ignore that point for
a moment and face a second apparent contradiction of
results to naive expectations. Consider the influence of
additional a1 peak on the determined mass~for a given
width!. Clearly the mass which we have attributed to ther
meson in the old analysis would be a weighted average of
true r peak and thea1 peak. Therefore the truer peak
should be at smaller mass values as compared to the res
the old analysis. In the present analysis, however, we h
found just the opposite result. The solution to these appa
contradictions is the appearance of the pion in the ax
vector branch. It is not the high lyinga1 but the low lying
pion which has dominantly pollutes the old analysis. Sin
the pion is much lighter than ther the former has caused
too large shift of the mass-width band to the left in the o
analysis. Thea1 peak plays only a subdominant role as e
pected from modifications in the high-energy regime.

After the decomposition of the full correlators into ba
ones we have tacitly assumed that for the latter the one-p
ansatz for~the low-energy part of! the spectral distribution is
reasonable. In fact, also this assumption appears to be q
tionable due to the coupling of ther-nucleon system to reso
nances~see, e.g., Refs.@38,39#, and references therein!. Es-
pecially the apparently sizable coupling to theD13 resonance
N* (1520) might create an additional peak at an invari
mass of roughly 580 MeV, i.e., below the vacuumr
peak9—provided that the resonance mass does not chang
the nuclear medium. Therefore, e.g., our result for the
medium mass-width band of ther branch might still be pol-
luted by the influence of additional distinct peaks. We ha
refrained from including more than one peak in the ans
for the spectral distribution since we would have been forc
to introduce much more free parameters which cannot
determined from the sum rule. Further work is necessary
separate the different peaks. On the other hand, we h
already seen that the present sum rule analysis supp
broad in-medium spectral functions. It may appear that
baryonic resonances also melt in a nuclear environment~see,
e.g., Ref.@49#, and references therein! and leave no sign of
distinct peaks in the mesonic channels.

Concerning the included mixing effect of the vector a
axial-vector channel the amount of mixing is determined
the value forsN

p . As we have already mentioned even t
sign of that quantity is still subject to discussion. Therefore
is important to stress that the presented calculations are
no means free of model assumptions. The reason is tha
separation of nuclear matter into bare nucleons and

9Note that only resonances with ans-wave coupling toN-r can
contribute for the case at hand since we have consideredr mesons
at rest with respect to the nuclear medium. On account of the lin
density approximation we have neglected the Fermi motion of
nucleons.
2-14
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QCD SUM RULE ANALYSIS FOR LIGHT VECTOR AND . . . PHYSICAL REVIEW C64 015202
pions is a model dependent concept as an extrapolation in
off-shell region, i.e., to virtual pions is involved here. Unle
one can estimatesN

p in a model independent way with un
ambiguous sign the mixing effect at finite density remains
be a controversial issue. This is actually in contrast to
case of finite temperature where the heat bath is modele
a gas of real pions. Hence the so far unavoidable mo
dependence which enters the calculation for finite nuc
density is absent at finite temperature. In the calculations
influence of sN

p is twofold. First, it yields the amount o
mixing on account of Eq.~6.7!. Here a change ofsN

p does
not influence the sum rule analysis for the bare correla
but it does influence the final result for the full correlato
exemplified in Figs. 9 and 10. Especially ifsN

p was negative
one could no longer guarantee that the sign of the imagin
parts of the full correlators remains positive for all values
the invariant massAs. In this case the approximations whic
have led to Eq.~6.7! should be revised.

The second place wheresN
p appears is the in-medium

dependence of the quark condensates. Most importantl
enters the scaling assumption~6.15! for the four-quark con-
densate via Eq.~6.11!. We have made this assumption
lack of any better, more fundamental approach. One m
corroborate our choice by the expectation that factoriza
roughly works as long as there is no fundamental~symmetry!
principle which is in contradiction to factorization. In ou
case the interaction with the pions is determined by ch
symmetry. Here factorization breaks down as proven for
case of finite temperature in Ref.@46#. Having split off the
pions one might expect that the factorization assump
works for the interaction of the vector and axial-vector m
sons with the bare nucleons. Nonetheless it is importan
figure out how important the influence of the four-quark co
densate and especially of its in-medium change actually
At a typical value for the Borel mass ofM'1 GeV we find
s-

l.

t.
l.
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the following in-medium changes on the OPE side of ther
meson sum rule at nuclear saturation density: The impor
changes are induced by the twist-two condensate with
mension 4, 2.731024, and the in-medium change of th
four-quark condensate, 1.531024. All other changes are an
order of magnitude smaller:23.631025 from the in-
medium change of the gluon condensate, 1.331025 from the
in-medium change of the two-quark condensate,22.7
31025 from the twist-two condensate with dimension
Therefore even if the change of the four-quark condens
was completely neglected roughly two thirds of the i
medium change would still persist. Thus, the results obtai
here would not drastically change. The vacuum contribut
of the four-quark condensate is24.831024. If the four-
quark condensate vanished completely at nuclear satura
density the in-medium change would be twice as large as
one used in our analysis. One should realize that the prev
considerations are somewhat oversimplified as the dep
dence on the Borel mass is different for the OPE contri
tions from the dimension-4 condensates as compared to
ones with dimension 6. In total, however, we do not exp
qualitative changes of the picture presented here even if
in-medium behavior of the four-quark condensate was co
pletely different.

In spite of the large uncertainties connected with the Q
sum rule method at finite baryon density we regard it a
useful complement to purely hadronic approaches sinc
connects in a unique way hadronic with quark-gluon degr
of freedom. We hope that the mentioned uncertainties can
removed step by step in the future.
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