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QCD sum rule analysis for light vector and axial-vector mesons in vacuum and nuclear matter
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Extending previous work we study the constraints of QCD sum rules on mass and width of light vector and
axial-vector mesons in vacuum and in a medium with finite nuclear density. For the latter case especially the
effect of nuclear pions leading to vector—axial-vector mixing is included in the analysis. We examine the
consequences of the mixing effect for positions and shapes of the peaks which show up in the current-current
correlators. We also discuss the model dependences in the amount of mixing, in the evaluation of the four-
quark condensate, and in the width parametrizations for the meson spectral functions.
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I. INTRODUCTION other hand are therefore very welcome. The QCD sum rule
method[2,3] provides such a link. Before we sketch its basic
One of the main goals of modern nuclear physics is toconcepts, however, we want to dwell for a moment on the
study the behavior of nuclear matter under extreme condin-medium properties of hadrons.
tions. At low temperatures and densities the quarks and glu- For temperatures and densities below but near to the criti-
ons as the basic constituents of strongly interacting mattegal values which mark the transition to the QGP it is plau-
form hadrons due to the confinement mechanism. In addisible to expect that already there the properties of the in-
tion, the appearance of rather light mes@pisns and kaons volved hadrons such as, e.g., their masses and decay widths
signals the existence of a spontaneously broken symmetrget modified. Especially the aspect of chiral symmetry resto-
the chiral symmetry. In fact this symmetry is approximatelyration is interesting here. The properties of chiral partners
realized in the QCD Lagrangian. Another important hint thatshould start to approach each other and finally become iden-
chiral symmetry is spontaneously broken in the vacuum stattical in the chirally symmetric phase. Concerningand a,
is the absence of chiral partners with equal masses. In Besons possible scenarios are, e.g., discussed in[Ref].
chirally symmetric state chiral partners would have the saméor the case of finite temperature. In principle one can dis-
mass. This concerns for example the isovector-vector mesdinguish three types of possible phenomémdnich do not
p and its much heavier partner, the isovector—axial-vectoexclude each othgr
mesona,. It is expected that at high enough temperatures (&) Mass shifts: The masses pfanda; might approach
and densities confinement is lifted and chiral symmetry re€ach other. One has to distinguish in which way this actually
stored. High-energy heavy-ion collisions are dedicated to th&appens: The masses might meet at a value somewhere in
creation of this new state of matter, the quark-gluon plasm&etween their vacuum masséand possibly drop together
(QGP [1]. Unfortunately, even if such an ultrahot system of afterwards. It is, however, also possible that the masses of
quarks and gluons is created only its decay products—whichoth mesons drop and finallapproximately vanish at the
of course are hadrons and not deconfined quarks angoint of chiral symmetry restoration.
gluons—can reach the detectors. Thus, the proof for the ex- (b) Peak broadening: From the experimental point of view
istence of this new stage of matter has to be performed rathéhe p(a;) meson shows up as a peak in the vedtxial-
indirectly. In addition to the observable hadrons also photongecto) channel. In a medium the peaks might get broader
and dileptons are radiated from the hot fireball. These partmaybe without a change of the respective peak positions,
ticles deserve special attention since they do not suffer frorhe., the nominal massesintil the melted spectra in both
strong final state interactions. Therefore, once created in thehannels become degenerate.
high density region they are capable to carry information (c) Mixing: The distinct peaks might maintaitmaybe
from that region to the detectors. Altogether, the challenge isvithout shifts or broadeningbut thea; peak shows up with
to find unambiguous signs thatart off the observed spectra increasing height in the vector channel and vice versa.
of hadrons, photons, and dileptons are caused by the tran- In any case, the spectra in the vector and axial-vector
sient existence of the QGP. Clearly, to prove the existence afhannel become degenerate when chiral symmetry becomes
the QGP it is necessary to show that the spectra cannot bestored.
explained by a hot fireball made out of conventional inter- In fact, thep meson is supposed to be a good candidate to
acting hadrons. This task is especially complicated by theearch for a sign of chiral symmetry restoration. The reason
fact that there is no straightforward derivation of hadronicis that it has the quantum numbers of the photon. Therefore
Lagrangians from QCD as the underlying theory of strongthe p meson can decay via a virtual photon into a dilepton
interactions. Therefore it is natpriori clear how far one can pair. If this decay happens within a hot and dense medium
trust in-medium calculations with hadronic Lagrangians aghe dileptons contain information about the in-medium prop-
their parameters are adjusted to the description of vacuurerties of thep meson. Therefore, in principle the possible
processes. Connections between hadronic models and coscenarios discussed above or a mixture of them should leave
cepts on the one hand and QCD or QCD based models on tlieir marks in the dilepton spectra. Indeed, the HELIOS and
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CERES Collaborations have reported medium modificationsnodels in absence of a QCD description based on first prin-

in the dilepton spectra in the invariant mass range around theples. Even when only hadronic models are capable of cal-

p meson mas$7,8]. Whether the observed spectra can beculatingobservableguantities one can imagine that it is pos-

explained within a conventional hadronic scenaf@ or  sible to find other quantities which can be reliably

whether one has to include medium modifications inducedetermined both within the hadronic framework and in terms

by chiral symmetry restoratiofl0,11] is still a matter of ©f quark and gluon degrees of freedom. In this way one

discussion(see, also Refd.12,13, and references thergin obtains prgd|ct|ons for hadronic parameters such as masses

Also for the study of possible in-medium changes of had-and couplmg constants or cross-check for hadronlc.r_nodels.

ronic properties a closer connection between hadrons arfgoncerning the QCD sum rule method such quantities are

QCD is desirable. specific correlatorgsee below calculated in the deep space-
The QCD sum rule approach has the merit to relate cerlike region, i.e., for large momenta with g°<0. For very

tain low-energy quantities—which so far are not directly ac-large Q°=—g? QCD perturbation theory becomes appli-

cessible by QCD—uwith high-energy expressions which carfable. Proceeding ttsomewhat smaller values ofQ* non-

be calculated by the operator product expan§iefiin terms ~ perturbative corrections appear. They can be expanded in a

of quark and gluon degrees of freedom. Nonperturbative effower series in 12, called the operator product expansion

fects are encoded in the appearance of various quark aféPB:

gluon condensates. In the following this method is applied to

vector and axial-vector mesons placed in a cold medium with Cn

finite nuclear density. To clearly work out the modifications 2 on” 1.1

when changing from vacuum to a medium we also discuss Q

the vacuum sum rule analysis fpranda,; in some detail.

Before sketching the basic ideas of the sum rule approach VJQ the coefficientsc, the fa'.“OUS quark and gluon conqlen-
opates enter. One can imagine the sefled) as a separation

review the present status of in-medium analyses for vect :
and axial-vector mesons especially in the light of the pos—Of the hard(denominator and soft(numerator scales of the

sible scenarios of in-medium changes discussed above. COR[obIem(see, e.g., Ref24], gnd references therelrin_the
cerning finite temperaturd it has been showii4] that at numerator the nonperturbative effects enter. In practice, only

O(T?) and neglecting the pion mass only mixing occurs. Athe first few coefficients in Eq.1.1) can be determined. Of

systematic study beyond this linegrion) density approxi- _crzurset,hthls dqels not tr.natt.erfas Iorlr)gr?% IIS Iar%?e enough.
mation is complicated by unknown nonscalar higher twist us, e crucial question 1S Tor wnich valuesigr one can
condensate§15—17. For finite nucleon density previous trust the truncate_d series. If we want to ;earn something
analyses have restricted their attention to the vector channdiPout a hadrozn with massy, it turns out tha_lQ has o be of

In the first analyseEL8,19 only a possible mass shift for the the order ofm;. To get an order of magnitude estimate for

p meson has been taken into account, i.e., the possible scki€ coefficients, we have to ask about the typical scales for
narios of peak broadening and/or mixing as mentioned aboveenperturbative effects. Let us discuss step by step the dif-
have been excluded by hand. In this case it was found tha{gren_t cases of vacuum, f|n|te_ temperature and finite baryon
the p meson mass would drop in a nuclear medium. How-density. For vacuum the typical scales atgcp and the
ever, it has been shown by the authors of iR2] that their current quark masses. The up and down _qyark masses have
specific hadronic model also fulfills the sum rukee, also ONly & few MeV and are therefore negligibly small. The
Refs.[21,27)). This model predicts peak broadening for the Strange quark mass and,cp are between 100 and 200 MeV.

p meson and basically no mass shift. Subsequently, a syQ” the other hand, the typical hadron masses are of the order

tematic study revealed that independently of the chosen ha® 1 GeV. Therefore, one mighgl expect that the sum rule
ronic model the sum rule for the meson for finite density is 2nalysis leads to reasonable resul®. course, the masses of

in accordance with a specific mass-width correlaag];  the much lighter pions and kaons cannot be determined. Un-
For low width the mass has to decrease. If, however, th&ortunately th_ls optimistic picture is not complef[ely_true. In
mass stays constant—or even rises—the width has to ifact, there might be nonperturbative effects which introduce
crease. The sum rule does not have enough predictive pow8p additional hard scale, such as, e.g., instanit In this
to fix both the mass and the width of the vector meson. w&ase the sczane(sl.l) would break down for the interesting
will come back to that point below. To the best of our knowl- Valués ofQ”. It seems, however, that the influence of such
edge, the third possible in-medium modification, the mixing&ffécts on the anda; sum rules is not important. We there-
phenomena, has not yet been included in a systematic suffiré assumehroughout this work that the OPE works for the
rule analysis for the vector axial-vector system for finite den-Vector and axial-vector channel. Nonetheless, this consider-
sity. The purpose of the present work is to treat the propertie&tion shows that at present the QCD sum rule approach can-
of p anda, on equal footing, allowing for mass shifts, peak not be d_|rectly justified f_rom QCD without any additional
broadening, and mixing. assumptions. Therefore it should merely be regarded as a
Before we turn to the specific sum rule analysis for the
chiral partnersp anda; we discuss some important aspects
of the QCD sum rule approach focusing especially on in- We restrict our considerations here to hadrons made out of light
medium situations. Recall that our basic motivation was taguarks. The masses of the heavy quarks have to be regarded as part
describe various spectra of heavy-ion collisions by hadroniof the hard scal¢2].
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QCD based model and not as QCD itself. Turning to the casene can get. In Sec. IV we introduce our hadronic parametri-
of finite temperature involves new scales. It is common praczations which are used to analyze the sum rules. Results for
tice to approximate the low-temperat@iredium by a pion p anda, in vacuum are presented in Sec. V. These results
gas. Therefore the new scales are the temperature and tkerve as a reference frame with which we can compare the
pion mass. Also these quantities are of the ordeAgp. succeeding in-medium results. Section VI is devoted to the
Of course, T might also be lower. Therefore the previous discussion of the mixing phenomena while the in-medium
considerations apply also here. The case of finite baryon demesults are presented in Sec. VII. Finally we summarize and
sity py is more complicated. Here one approximates the meediscuss our results in Sec. VIII.

dium by a Fermi gas of nucleons. New in-medium scales are

the Fermi momentum and the nucleon mass. While the|. THE CURRENT-CURRENT CORRELATOR AND THE

former is reasonably small, e.g., for saturation density of BOREL SUM RULE
nuclear matter, the latter is of the order of 1 GeV. Since the ) ) ) )
nucleon mass enters the seri@sl) in the numerator it be- ~ The relevant quantity to look at is the covariant time or-

comes questionable whether the OPE still wadee also the dered current-current correlator

discussion in Ref.[26] and the successive comments

[2_7,2&). Full clarification of this question requires the deter- Hw(q):ij d“xeiq’((TjM(x)jV(O)). 2.1)
mination of all coefficients, which would be equivalent to

solving QCD in the nonperturbative low-energy domain.
This is of course out of reach. For our case at hand there i§
however, a class of contributions to the OPE which can b

or thep meson channgl, is the isospin-1 part of the elec-
omagnetic current

determined to all orders, namely, the twist-two condensates 1 _ o
[18,19,24,29 In fact their contribution to the coefficients in szE(Uyﬂu—dde). (2.2
the low density approximation is given by
ist- - This current-current correlator enters, e.g., the cross section
CLWISt two__ anmﬁn 3PN ' (1.2) g

of e*e”— hadrons(see below. For thea; meson channel

i.e., powers ofQ? in the denominator which in an optimal we have to deal with the corresponding axial-vector current

situation should suppress higher order contributions in Eq. 1

(1.1) are compensated by powers mﬁ, in the numerator. jﬁZE(UYMYSU_dVMst)- (2.3
Thus the class of twist-two contributions shows exactly the

unpleasant feature discussed above. In (B®) the dimen-
sionless quantitiea,, can be determined from the parton dis-
tributions in a nucleof18,19,24,29 Fortunately it turns out
thata, is strongly decreasing with increasingsuch that the
higher dimensional contributions of the twist-two conden-
sates can safely be neglected,29. This is a hint that the
OPE still works in the case of finite nuclear density. Of
course this is not a proof for the validity of the OPE.
Throughout this work weassumethat the OPE works. In

The expectation value in ER.1) is taken with respect to
the surrounding environment. We study here, first, vacuum
and, second, afisospin neutral equilibrated homogeneous
medium with finite nuclear density and vanishing tempera-
ture. In the medium Lorentz invariance is broken. All the
formulas which we will present in the following refer to the
Lorentz frame where the medium is at rest, i.e., where the
spatial components of the baryonic current vanish. For sim-

spite of these obvious problems inherent to the QCD su licity we restrict our considerations to mesons which are at

- ) : est with respect to the medium. For the vacuum case we can
rule approach for finite density we regard the analysis pre-

sented in the following as useful in view of the possibility to choose the rest system of thixial-vector meson without

. ) . . any loss of generality.
learn something about the in-medium properties of hadrons In the following the formulas without an explicit or A

from an approach which deals with the fundamental degreeﬁ1dex are valid for both vector and axial-vector channel. The

of freedom of QCD. Nonetheless we stress again that th . I .
QCD sum rule approach—especially for the case of finiteSorrelator(z.l) has the following decompositiotvalid for

nuclear density—is not as fundamental as QCD. mesons at rejt
This paper is organized in the following way. In the next Il — R(a2)—gq . ITisot g2 24

section we derive the in-medium Borel sum rules foand w8 =8, 8,R07 =0, ) @49

a; which we will use throughout this work for any quantita- |n the following we concentrate oR(q?). In the vector

tive statements. In Sec. Ill we make a detour to discuss ghannel one haBl'°'(g?) = q?R(q?) since the CUffenl,\f is

different type of sum rule, namely, the finite energy sumcgonserved. We prefer the use Rfinstead of[15° since it

rule. This will yield a qualitative picture what one has to 35 peen shown in Reff19,30,31 that the Borel sum rule

expect from a sum rule analysis and how much informationsee pelow is rather unstable for the latter quantity. The
divergence of the axial-vector channel is solely determined
by the pion decay. Hence we would not learn anything new

2At high temperatures it is not reasonable to deal with hadronic@bout theal_ by StUdyi”gH_'sotr in addition FOR- o
degrees of freedom. If one wants to learn something about hadrons Concerning, e.g., the dilepton production one is interested
low temperature expansions are appropriate. in the values of the dimensionless quantRy(g?) in the
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timelike regiong?>0. The reason is th&, is related to the

- c 1 (=
cross sectiore”e” — hadrons with isospin 1 vig32] ROPEM?) = M_12+Wj +dsImRh""“(:~:)e*3"\"2. (2.9
0
=1/t =
o (e —>hadron$=12wlmRV. (2.55  We observe that higher resonance states are now exponen-
oe’e —u'u") tially suppressed. Note that the subtraction constawif Eq.

At least for low energies the timelike region is determined by\%gjur:sl ndgor?ﬁsg arF)Lrjr:é dTS; fgtrh:rmggga’ a\t/arlgic,stthSe :rr: cor-

hadronic degrees of freedom. In principle, there are two POS5orate the Landau damping term in the subtraction constant
sibilities to describe the current-current correlator. Firstf ping

guided by an educated guess one might use a simple paraff This term comes from the ab_sor_ptlon of a spac_ehke me-
etrization with some free parameters. Second, one might ugPn by an on-shell nucleon. Having incorporated this term in
a hadronic model, e.g., for vector mesdi$,20,21,33—-3p ¢, we avoid double counting by restricting the integration in
using one or the other form of vector meson dominance. IrfEg. (2.9) to the timelike region. For a detailed discussion of
the following we will explore the first possibility and figure that point see Ref.40]. One gets in the linear density ap-
out which constraints for these free parameters are provide@roximation

by the QCD sum rule approach. For tagwe proceed com-

pletely analogously. We denote the result Bm the time- T _Pn (2.10

like region byR"™d On the other hand, the current-current 4my

correlator(2.1) can be calculated fog?<0 using Wilson’s

operator product expansi¢®PE) [14] for quark and gluonic
degrees of freedori2] (for in-medium calculations see, e.g.,
Refs.[18,19). In the following we shall call the result of that
calculationR°PE. A second representation in the spacelike
region which has to matcR°"F can be obtained frorR"d

by utilizing a subtracted dispersion relation. We find

Equation(2.9) is the QCD sum rule which we will utilize in
the following.

Having achieved a reasonable suppression of the energy
region above the lowest lying resonance the integral in Eq.
(2.9 is no longer sensitive to the details of the hadronic
spectral distribution in that region. For high energies the
quark structure of the current-current correlator is resolved.
QCD perturbation theory becomes applicable yielding

Ty o~ 2= ImR"™qs
_G Qfds# (2.6) 1/
o (stQ9s ImRM4s)=—| 1+ —| forlarges. (2.11)

8w T

with Q%:=—g?>0 and some subtraction constants _ _
Equation(2.6) connects hadronic with quark-gluon based These considerations suggest the ansatz

expressions. In principle, for a given hadronic parametriza- 1

tion of R"dwith free parameters this equation could be used IMR"™{s) =@ (57— S)IMR™®{s) + O(5—S¢)=— | 1+
to extract information about these parameters. This, how- 8
ever, would require the knowledge &"3{s) for arbitrary (212
large s. In practice, the situation is such that one has a pay,
rametrization for the current-current correlator for the energy
region of the lowest hadronic resonance, but one usually h

Phoerg(i)sdir\gizir?r;nrtz mirzfvglci‘dzfgr ﬁirbri]té?rlyizigrr'eesr(')ergri]ise'slncontinuum calculated from perturbative QCD. In the follow-
P 9 : 9 ying ing we useag(1 GeV)=0.36. Of course, the high-energy

are suppressed, but only by a factos?1/Clearly, it is desir- S : ; o
able to achieve a larger suppression of the part of the ha(?ehawor given in Eq(2.12) is only an approximation on the

ronic spectral distribution on which one has less access Tgr\ue spectral distribution for the current-current correlator.
L . ; " "Also the rapid crossover in Eq2.12) from the resonance to
this aim, a Borel transformatidi2,32] can be applied to Eq. P @12

. . 5 the continuum region is not realistic. However, exactly here
E%‘S)ingéfﬁ;grg'strary functiori(Q”) the Borel transforma- the suppression factors discussed above should become ef-
fective making a more detailed description of the crossover
5 and the high-energy region insignificant. The price we have
Q%) —TF(M?) 2.7 to pay for the simple decompositig@.12) is the appearance
of a new parametes;,, the continuum threshold, which in
with general depends on the nuclear density. We will elaborate

below on the determination .

as
- L

a
heres, denotes the threshold between the low energy re-

ion described by a spectral function for the lowest lying
sonance IIR"S, and the high-energy region described by a

~ 1 d \N To study the content of E¢2.9) for the vector and axial-
B:= lim W(_QZ)N<d_Qz) , (2.8 vector channel we need the OPE for the left-hand side
Q?—0,N—oe (LHS). In general, it is given by a Taylor expansion ivi%:
Q2%/N=:M2=fixed
where M is the so-called Borel mass. Applying the Borel ROPEM2)= D Cn ) (2.13
transformation to Eq(2.6) we finally get[24] M2n
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In the following we present the formulas for the case of finite w81 — _ 5
nuclear densityy. The vacuum casf2] is easily obtained (O 4)=55,((U7, ys\*u—dy, ys\%d)°)
by py—0. For the vector channel one g¢fi3,19 (for de-

tails see also Ref24], and references thergin 9 / _ — _
+ = ( (uy, Neu+dy,\d) > gy*\y
1 112 w K g=ud,s
o
cg=m( 1+ f) (2.143 2.19
v and
c/=0, (2.14h

A 8L o ai_dv xad)2
1/a 1 (09)= = 355 (VYA u=dy,\%d)?)
V_ S ~2 J—
02—ﬁ<?G > + 7 MnAzpnt my(qa), (2.149 o - -
— —( (uy N*u+dvy,\2d a2
v 5 56 y 176<( Yu Vi )wg,d,s oy ¢>
C3=— ﬂmNA4pN_ 8—17Ta5(04) (2.149 220

is very limited. Traditionally factorization is assumed which,

however, probably underestimates its value. In the following

for =012, (2155 e will use two _ya_lues for the four-quark condensates to
explore the sensitivity of the results

(O vac{ ODvac=(—292 MeW)®,(—281 MeV)®.
(2.21
The larger value is chosen as to obtain an optimal agreement

between QCD sum rule prediction and experiment forghe
meson properties in vacuum. Finally the terms proportional

while for the axial-vector sector one obtaif%15]

A S 3 88 A
c3=— ﬂmNA4PN+ a’n’as<(94>. (2.15h

We neglect(unknown condensates with dimension higher
than 6 and some less important twist-4 condensatesagnd
corrections(see Refs[19,41,24). We also neglect perturba- tto A, and A, in Eqs. (2.14), (2.19 stem from twist-2 con-

tive contributions proportional to the square of the curren ensates. Thev are obtained from the moments of the auark
guark masses. Note that all expectation values have to b} ' y q

taken with respect to the medium. We work here in the linea Istributions in a nucleoﬁlS]_. _We useAz_:O.Q, Aq4=0.12.
density approximation So far we have not specified for which valueshéf we

regard the sum rul€2.9) to be valid. Note that in practice
o Eq.(2.13 is a truncated series inMI?. Clearly, if M? is too
<O>~<O>vac+m<N|O|N>- (2.16  small the 1IM? expansion in Eq(2.13 breaks down. On the
N other hand, however, ik? is too large the exponential in
Eq. (2.9 does not sufficiently suppress the intermediate- and
high-energy parts of IiR"2{s) given in Eq.(2.12). As men-
tioned above this suppression is important since the model-
" DIV 3 ) ing of the region around the threshaddg is rather crude. If
(N(K)INCK')) = (2m) 2B, S(k=K'). 217 these qualitative considerations are put on a more quantita-
We defer the calculation of the in-medium expectation val-ive 1evel one can define a so called Borel window for the
ues of the scalar operators to Sec. VI and only discuss the[passed\/l in which the sum rule is validsee, e.g., Ref.
vacuum expectation values here. For the gluon condensaté3)- Following Ref.[30] we determine the minimal Borel
we use a canonical value off2] ((as/m)G2)yac mass s_uch that the Iagt accessible contribution to the OPE
=(330 MeV)". As compared to the gluon-condensate the(2.13, i.e., here the M® term, amounts to 10% of the total
influence of the two-quark condens&g] OPE result

A single nucleon state is denoted hy). It is normalized
according to

]
MG

min

=0.1RPFM2,). (2.22

¢ 1 2.2
mq(QQ>vac: - Efwmw (2.18

. . Lo . . The maximal Borel mass is chosen such that the continuum
is rather smalland is further diminished in a nuclear envi- L . .
ronmen. Hee =93 MeV denotes the pion decay con- o} LR 12 TR SUEEUEL P D 0 ance
stant andn,, the pion mass. While the values for gluon and which we want ?0 studv. ie

two-quark condensate are fairly well known the knowledge Y 1€,

about the four-quark condensates o 1 )
jdsﬁ O(s—sp)e Mmax
0

o
1+ =
a

3Note that the definition of©}’*) is chosen such that the factor-

- 2
= = | dsimR™{s)@(s;—s)e Mmax (2.2
ization assumption would imply© Y%y~ (qq)?2. fo 190(So~) (223
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As a guideline one can expect thafhaxscales with the point Nonetheless, the finite energy sum rules can be used to
where the average strength of Rfi{s) is located, i.e., with ~get a qualitative picture about the connection of the OPE side
the resonance magsquaredl Hence for largegsmal) reso-  to resonance parameters like mass and width. In fad®{jim
nance masses the value bf2_, will be large (small. It  is a mass distribution. Therefore it appears natural to define
might appear that in some cases the Borel window betweethe first two moments of this distribution, i.e., an average
M2. andM2_ is rather small or even closed. Then the summass and a width via

rule is meaningless. In practice the determination of the

. . . So
Borel window provides a quality check for the sum rule. f dsImREYs)
— 0
mli=———————— (3.2
Ill. FINITE ENERGY SUM RULES—THE QUALITATIVE So . ;
PICTURE fo dsiImR{Y(s)

The Borel sum rulé2.9) is not the only sum rule which is
used to connect hadronic and QCD based information. Inand
serting Eq.(2.12 in Eqg. (2.9 and expanding the RHS in

powers of 1M? one can compare the coefficients of this JSOdS(S— m?)2ImReY s)
expansion with the respective ones in the series on the LHS _ 0 v
given by Eq.(2.13. This yields the finite energy sum rufes o?m?:= SO : (3.3
(presented here for the meson for the vacuum case J dsimR{{s)
0
1fsoon RIYs)— CYso=0 3.1
7)o SIMRYTS) ~Coo=0, (3.13 Obviously, the finite energy sum rul¢8.1) can be used to

) connect these moments with the condenséiesl the con-

1 (s S tinuum threshol
——f OdssimR{fS(s)Jrc})’—O:c\z’, (3.1b e
mJo 2
—. So G
2:_ —_——
1 (s . ng y m 2 COSO, (3.4)
—| ds€ImRYYs)—cy 5 =2cy, (3.10
mJo 3
, 1(ss 2cs —,
where the coefficients of the OPE are given in E14), == 3+ cosg ™) (3.9

evaluated in this section fgry=0.

The first two of these sum rules are utilized, e.g., in Ref
[43]. Obviously the expansion of the RHS of H.9) relies
on the assumption that the Borel sum rule obtained by th
simple decompositiof2.12) is valid for arbitrary high values
of M?. As pointed out above this is doubtful due to the
limited knowledge of INRR"™{s) in the threshold region. Ac-
tually the sensitivity of the respective finite energy sum rule

‘We can learn two things from these simple relations: First,
éhe average mass is determined by the dimensi¢ghson

and two-quark condensates and the continuum threshold
while the dimension-6 condensatg®re the four-quark con-
densatg influence only the width. Second, we do not have
enough information at hand to determine all the phenomeno-

on the details of IR"s) arounds, is increasing when logical parameters. In our case at hand we have three of

going from Eq.(3.13 to Eq.(3.19. Thus it might be safe to them, n_a;mely th2e continuum threshaigl and the two mo-
extract information from the lowest finite energy sum (gle  Mmentsm® and o“. On the other hand, we only have two
Utilizing higher ones, however, becomes more and mor&guations for these parameters. Traditionally, the use of
doubtful. This is the reason why we prefer to use the BoreQRCD Sum rules is accompanied by an additional assumption,
sum rule. In addition, for the latter one a consistency checi@mely that the width is negligible. In this case the mass can

on its validity is provided by the determination of the Borel b€ determined. In general, however, the best we can hope to
window? gain are correlations between the free parameters. Being es-

pecially interested in mass and width we can vagyand

determine the corresponding values forand o. The result

“This derivation is actually oversimplified since it neglects the is shown in Fig. 1[For the four-quark condensat2.21) we

running of the coupling constant. For a rigorous derivation see Relhave ChOS_en the Iarge_r vallighe mQSt I.mportant thing to_
[42] and references therein. note here is that the _W|d_th grows with rising mass. We WI!|
5A consistency check for finite energy sum rules might be ob-find correlatlon_s of this kind again and again throughOl_Jt this
tained in the following way: Clearly the discontinuity between the WOrk. The qualitative understanding of this correlation is ob-
resonance and the continuum region in E4j12 is unrealistic. Itis ~ tained from the simple relation$.4), (3.5. We are reluc-
only used to avoid new additional parameters. Introducing instead 8nt, however, to draw any quantitative conclusions from the
smooth crossover one can test the sensitivity of the finite energprévious considerations. In principle we are interested in the
sum rules on these new parameters which model the crossover rgroperties of the vector and axial-vector resonances, e.g.,
gion. If a finite energy sum rule appears to be fairly insensitive totheir masses and widths as defined via Breit-Wigner-type
these new parameters it might be regarded as useful. parametrizations. In general, these masses and widtheare
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0.6 T We have to use as-dependent width in Eq(4.3) for the
following reason: In the following we will varyy (and other
051 parametersover large ranges. As outlined above the sum
04 rule (2.9 is insensitive to the modeling of the high-energy
% behavior of InR™Ys). In turn, there is a high sensitivity to
O 03[ the low-energy part. Therefore, especially for large widths
b we have to make sure that at threshold the spectral function
0.2 shows the correct behavior. On the other hand, we do not
01k want to overweight our parametrizations with too many in-
dependent parameters. Hence, we are aiming at simple pa-
L L L L L L L L L rametrizations which reproduce correctly the threshold be-

0
0.5 0.55 06 065 07 075 0.8 085 09 09 1 havior

m [GeV] In the vacuum the width of the meson is governed by

_ — ) the decay into two pions. We use the following parametriza-
FIG. 1. Correlation between mass and width o for the p tion:
meson as obtained from the finite energy sum r(3e4, (3.5. See

text for details. 3

2 T
PS5 am2) @45

m
pe(s)= yp;”(

— T 2
identical to the momentsn? and o2 of the distribution rel mp)

res
ImR™S In addition, as outlined above we doubt the quantltaWI,[h the momentum of the pions in the rest frame of the
tive reliability of the finite energy sum rulé8.1) due to their decayingp with invariant mass/s:
higher sensitivity to the details of the high-energy behavior. yingp '

Hence we prefer the use o_f th_e Borel sum r(2e9). For a P?ZT(S):(S—‘lmi)llz/Z- (4.6)
very elaborate use of combinations of finite energy sum rules
we refer to Ref[42]. Concerning thea, meson in vacuum its width is dominated
by the decay into rho plus pion. For simplicity we neglect the
IV. BREIT-WIGNER PARAMETRIZATION OF THE width of the rho meson here and use
CURRENT-CURRENT CORRELATOR ) o
The only remaining question is how to parametrize réecays)=y, al prL(?@[s—(mer m._)?]
ImR™s) which enters the sum rul€.9 via Eqg. (2.12. S prf(mg,)
Concerning the vector channel, experiments which deter- 4.7

: 4o T o
mine, e.g.e"e —m a suggest the parametrization with the momentum of pion and rho in the rest frame of the

decayinga,; with invariant massys:

pri(s)={[s—(m,+m,)?][s—(m,— mﬂ)z]}l’Z/(ZJE(). )
4.8

Sp( S)

IMR(Ys) = 4.

HereF, determines the absolute height of the spectrum and

S, denotes the spectral function of themeson which we In a nuclear environment a presumably rather sizable colli-
will specify further below. Concerning the axial-vector chan-sional width(see Ref[39], and references thergihas to be
nel not only thea, but also the pion shows up there. Henceadded to the decay width. The lowest threshold for a

the parametrization has to be extended to (axial-)vector meson collision with a nucleon is given by the
formation of pion plus nucleon. We assume that the thresh-
21(S) old behavior is dominated by the lowest accessible partial
IMRRYS) = mF a1 +7f28(s—m2). (4.2  wave. For thep meson this is ais wave leading to
1—-m?/s \¥?
The spectral functions are given by redl(s)= yp<1_—2”2 O(s—m2). (4.9
mz/m?
S(s)= — 1 VsI(s) (4.3  Forthea, meson it is a wave
T (s—m?)2+sI(s)? 2
ol s [ 1-m?/s )
Herem is the mass of the respective meson &hiis width. Far(s)= 731 1-m /m L O(s—mz).
a

We stress again that these Breit-Wigner parameters are not (4.10
identical to the moments introduced in the last section; there
is only a qualitative correspondence. We denote the on-shefor the vacuum casE /,(s) in Eq. (4.3 is given by Egs.
width by (4.5 and(4.7), respectively. For the case of nuclear medium
we restrict ourselves to the two extreme possibilities that the
y=T(m?). (4.4  width is either dominated by decays or by collisions. Hence
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we explore the two cases thht,,;(s) is either given by 1 T
Egs. (4.5 and(4.7) or by Egs.(4.9) and(4.10.
We will treatF, m, y and also the continuum threshagl 0.8

[see Eq.(2.12] as free parameters. The aim is to find out =
how the sum rule(2.9) constrains these parameters. As a5 0.6
general rule one can at best determine as many parameters
the hadronic side of the sum rule as one has powers\tt 1/ T 04
on the OPE sid¢19]. For the latter we have given in Egs. #

(2.14), (2.15 four orders in powers of M?. However, the 02}

perturbative par{(1/M?)° parf] has already been used to

determine the high-energy behavior in £8.12). Therefore 0 L I 4 1

at best only three parameters of the hadronic spectral distri 0.5 06 0.7 08 0.9 1
bution can be determined from the sum r@@9).® On the mass [GeV]

other hand, we have for each meson four free parameters in

the parametrizatio(2.12), (4.1)—(4.3). In the traditional sum FIG. 2. Deviationd as a function of width and mass of the

. . meson for vacuum. For the four-quark condensate a value of
rule approacti2,18,19,32,4]the width of the respective me- (—292 MeV)® has been used. The full lines border the region of

Sqn resonance is neglect@uarrow width approximation In QCD sum rule allowed parameter pairs witk=0.2%, the dashed
this case the_ numbe_r Qf free parame_ters reduces to 3 and tﬁﬁes border the allowed region fat<0.5%. The cross marks the
sum rule gains predictive power. This, however, means thal, erimental values for mass and width of fheneson[including

in addition to the QCD input represented by the OPE 0Ngpg (very smalj error bars according to Ref50]].
needs further knowledge to extract predictions from QCD

sum rules. In vacuum, this additional input comes fro_m ex'range given by the Borel window introduced above. Hence
periments which tell us that, e.g., tremeson indeed is a

ll-defined ith idth iderabl I we define the deviationl as an average over this window
well-defined resonance with a wi considerably smallef.o Ref[23] for further details.

than the mass. In contrast, for the in-medium case it is so fa
not clear if the pronounced peak structure of fheneson

survives in a nuclear surrounding or if it is washed out
[20,35-39, e.g., by its coupling to resonance-hole states
The a; meson already has a large vacuum decay width. |
addition, its mass is so high that it is hard to achieve a cle

For thep meson Figs. 2 and 3 show the allowed ranges
for mass and width for the vacuum case for the two different
values of the four-quark condensate given in 321). Ob-
viously, there is not only one point where the sum rules is
Neasonably fulfilled but a whole band of allowed mass-width
. os : ; ~~“pairs. Figures 2 and 3 qualitatively resemble Fig. 1: the band
separation between.IRﬁ and the hlgh-energy continuum in- ¢ 51 16wed mass-width pairs describes a correlation where
Eq. (2.19 [2]. We will come back to that point below when 4 yiqih rises with rising mass. Quantitatively, however, the
discussing the results of our QCD sum_rule anglyss for thejitterences between Fig. 1 and Figs. 2,3 are large stressing
a;. As for thep meson, medium effects in addition presum- g4in that the distribution moments defined in Sec. Il are not
ably lead to an additional broadening of tag To study the  jqentical to mass and on-shell width of the Breit-Wigner type

influence of the widths of the vector and axial-vector mesorgpectrm functiong4.3. We have also included the experi-
on the results extracted from QCD sum rules we will refrainmenta| point for thep meson in Figs. 2 and 3. Obviously the

from neglectingy and proceed with our general parametri- oo of (—292 MeV)® provides an optimal choice for the

zation(4.3). four-quark condensate. A smaller value for that condensate
shifts the band of allowed mass-width pairs either upwards
V. RESULTS FOR VACUUM or to the left(or both. From our qualitative considerations of

We shall now explore which values of mass and width ofSec. Il we expect that the four-quark condensate mainly

the p/a; meson are compatible with the sum ri&9). For

that purpose we vary the values forand y in large ranges.

For a given pair of mass and width we tune the remaining
parameters- and s, such that the agreement between left-
and right-hand side of Eq2.9) is best. The resulting mini- %
mal deviationd between LHS and RHS is a measure for the O
compatibility of the chosen mass-width pair with the sum <
rule, i.e., ifd is sufficiently small one might conclude thatthe = 04
chosen pair of mass and width is allowed by QCD sum rules.
We regard the sum rule to be approximately valid in the 0.2

widt

0.5 0.6 0.7 0.8 0.9 1
5This is also true if the finite energy sum rules were used instead mass [GeV]

of the Borel sum rule. The three sum ruléx1) provide three

constraints on the hadronic spectral distribution. See also the dis- FIG. 3. Same as Fig. 2 but with a four-quark condensate of

cussion in Sec. Ill. (—281 MeVY.
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1 > > 1
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T 04 - T 04 -
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02 - 02 -
0 1 1 1 1 0
1 1.2 14 1.6 1.8 2 1 1.2 14 1.6 1.8 2
mass [GeV] mass [GeV]
FIG. 4. Same as Fig. 2 foa; meson in vacuum; value for FIG. 5. Same as Fig. 2 foa; meson in vacuum; value for

four-quark condensate:—(292 MeV)’. The cross marks the ex- four-quark condensate:—281 MeV)’. The cross marks the ex-
perimental values for mass and width of the meson(including perimental values for mass and width of the meson(including
the error bars according to Ré¢b0]). the error bars according to Ré60]).

influences the widthsee Eq(3.5]. Hence a smaller value of fundamental reason why the four-quark condensates for
the four-quark condensate is supposed to increase the Widthanda, should be exactly the same. Only if the factorization
i.e., to shift the band upwards. We will further clarify that assumption strictly holds the two quantities defined in Egs.
point when discussing the results for tagmeson. Note that (2,19 and (2.20 coincide. Still, however, the values
also for the smaller value of the four-quark condensate of(—292 MeV)® and (—281 MeV)® are rather close. For the
(—281 MeV)® the deviationd is still reasonably small for succeeding in-medium calculations we will choose the re-
the experimental point0.46%). As discussed above the re- spective better value, i.e.~(292 MeV)® for the p meson
sults of Figs. 2 and 3 are only meaningful if the Borel win- and (—281 MeV)® for the a;. We note that for thea;
dow is reasonably large. For our choice for the condensat@acuum case a further reduction of the four-quark condensate
values leading to Fig. 2 we git2;,=0.71 Ge\f. The value does not improve the agreement between the sum rule and
for M2, depends on the resonance parameters. As alreadfie experimental results as the band is further shifted down-
mentioned small values for the resonance mass lead to sma¥ards and not to the left. Hence the agreement between sum
values for M2_ . For the case at hand we finMZ2, ~ rule and experiment appears to be better for ghian for
>1.5 GeV for all mass-width pairs lying in the inner band thea; meson. This rather old findi@] is most likely due to
shown in Fig. 2 and to the right of it. We regard that as athe fact that the separation between the resonance and the
reasonably large Borel window. For Fig. 3 the correspondingontinuum region is better realized in the vector channel. If
values areM fnin:o_65 GeVf andmfnax>1_4 GeA. the resonance appears to be closer to the continuum the sum
Concerning thea,; meson the corresponding mass-width rule is more sensitive to the details of the modeling of the
correlations are shown in Figs. 4 and 5. Qualitatively we fingn€arby transition to the continuum. Such details are neces-
again the same correlation between masses and widths. Howarily rather crude in our ansat2.12. Finally we present
ever, a tendency is visible that the sum rule supports |argg1e results for the Borel window for the preferable parameter
values of the width. We will find that this tendency increaseschoice (Fig. 5): We find M%;,=0.71 GeV? while all mass-
for the in-medium case. Comparing Figs. 4 and 5 we findwidth pairs enclosed by the dashed line obezyrznaX
that a decrease in the four-quark condensate shifts the banell.4 Ge\?. We note that we have not included the pion
to some extent to the left but merely downwards. To underbranch in the determinatio2.23 of the maximal Borel
stand that finding we note that the four-quark condensatenass to make sure that we really learn something about the
enters with a different sign in the two sum rules foanda,;,  properties of thea; meson.
respectively; see Eq$2.14d, (2.15h. Therefore we expect
an upward shift with decreasing four-quark condensate for
the p meson, as discussed above, and a downward shift for
thea,. Figures 4 and 5 support our considerations. Compar- Next we turn to the case of finite nuclear density. As
ing the results with the experimental values for mass anginted out by several grouggs.g., Refs[44,45) the inter-
width of thea; meson we find that the smaller value for the action of thep meson with the pion cloud of the nucleons
four-quark condensatéFig. 5 appears to be much better induces a mixing of the with its chiral partner the,; me-
suited—quite opposite to the case of feneson where the  son, This means that, e.g., tkgossibly medium-modified
larger value provides a better fit. In principle, there is nog, peak shows up in the spectral distributionR{A° of the
vector correlator and vice versa. Suppose now that one
would ignore that multipeak structure and still parametrize
"Note that the four-quark condensate enters the sum rule fgr the ImRIwith only one peak according to Eq&.12), (4.1). In
meson with a negative sign, cf. E@.149. a QCD sum rule analysis one has only access on certain mass

VI. IN-MEDIUM CORRELATORS AND p-A; MIXING
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averages of the spectral distribution on account of ).  The latter one is approximately evaluated using soft pion
Hence with a one-peak structure ansatz one would translatechniquegsee also Ref.15]) and taking into account up to
certain in-medium changes of the OPE side to changes dfvo pions in the initial and/or final state. One gets

mass and width of this peak which in reality, however, are

caused by the appearance of other distinct peaks. This would (ATA[T] (%)} ,(0)|AT)

be rather misleading. Indeed, for the comparable case of fi- — (AmemPTi i (0)IA

nite temperaturd it has been showf#] that the masses @f (AT T C01(0)A)

and a4, if understood as the positions of peaks in spectral :<A|TjM(X)j,,(O)|A7Ta7Tb>

distributions, do not change in the line@pion) density 1

approximatiorf Only if the notion of mass is used with a __ = arAb T :

different meaning(e.g., in the spirit of Sec. Il as the first f2 (AlLQs.[Qs TiLC0T O IIA). (6.3

moment of a spectral distributiprit would be correct to _ . .
attribute an in-mediun®(T?2) mass shift to this “mass.” For With the isovector axial charge

considerations beyond tf@(T?) approximation we refer to s
Refs.[16,17, Q2= f A3XY(X) Yo Vs 7 t(X). (6.4
Concerning the present work the mamsf a resonance 2

(which shows up in the spectral distribution of the current_l_O calculate the commutators in E6.3) with the currents
correlatoy is defined via Eq(4.3). For small width it gives et r
y a(4.9 9 (2.2 and (2.3 it is useful to generalize the latter to the full

the peak position of the resonance. In the following for our. ; ltilet

case of finite nucleon density we also try to account for thdSOSPIN MUtiplets

multipeak structures caused by mixing of vector and axial- Ve = a A? = a 6
vector currents. If we only used the sum r(@9) and intro- Pl AR S L ©.9
duced more than one peak, e.g., in Réfl) we Wpuld have |n fact, on account of32]

too many free parameters to draw any meaningful conclu-

sion. Therefordas for the case of finite temperatyd) the [QEVD]=ie®AS, [Q2AN]=ie®VS, (6.6)

key idea is to isolate the contribution of the respective new ) ] o
in-medium peats) also for the OPE side. In this way one the vector and axial-vector currents are mixed by their inter-
obtains sum rules for nonmixed correlatdirs the following ~ action with the nuclear pions. Finally the expectation values
called “bare”) which can be analyzed with the one-peakin Eg. (6.3 have to be weighted by the density of pions in
ansatz(p|us continuum, of CourgeThese(in genera| unob- the nuclear medium. For the dimensionless quantities defined
servable bare correlators mix to yield finally the “full” in- i Eq. (2.4) one ends up witlisee Ref[44] for detail9
medium correlators. The imaginary part of the latter in prin-

2\ Bb A2y £ R 2) _ Rb (a2
ciple can be observedee, e.g., Eq2.5]. We note that for Rv(0%) =Ry(q%) —¢[Ry(q°) —Ra(q9)],  (6.7a
the case of finite temperature the bare correlators coincide o ob, 2 b, 2 b, o
with the vacuum correlators in the linear density approxima- Ra(%)=Ra(q%) —&[RA(@°) —Ry(g9)],  (6.7b

tion [4]. As we shall see in the following, things are not so whereR?Y,, denotes the respective correlator with respect to

simple for the case of finite nucleon density. ) : S
. . . ... a system ofbare nucleons, i.e., without their pionic cloud.
To account for the interaction of the nuclear pions with L o
The mixing parameter is given by

the vector- and axial-vector currents nuclear matter is sepa-

rated into a Fermi gas of bare nucleons plus soft pions, sche- 4 olpy
tically[44 == ——. :
matically [44] 3 22 (6.9
|\I,>:\I,A|A>+§ W§‘|Awa>+§ ‘I’Q,b|A7Ta7Tb>+ o Here we have introduceldts]
' 2
(6. a M oy
O'N——4mN<N|’7T IN)= > N,, (6.9

where|¥) denotes the full nuclear matter state vector while ] ]
|A) denotes the bare one. The current-current corre{atdy ~ WhereN, denotes the scalar number of pions in the cloud
evaluated with respect {&#) can now be decomposed into a surrounding the nucleono contributes to the nucleon
bare correlator, i.e., a correlator with respectAd, and a  sigma termoy given by[24]
part involving the interaction witlisoft) pions: m

I 62 on = (NN (6.10

y7ag y7ad mvt )

Having split up the nucleons into bare nucleons plus a cloud
of soft pions we have to disentangle the nucleon sigma term
8\ote that anO(T2) modification at finite temperature corre- correspondingly45]:

sponds exactly t®(py/my) at finite baryon densitysee, e.g., Eq. b g 6.1
(3) in Ref. [4]). on=ontoy. (6.1
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At present, the value and even the signddis not a settled different transformation properties with respect to chiral
issue. We take gositivevalue of 25 MeV. This is in agree- transformations. This suggests that also at finite nucleon den-
ment with Ref.[45] but in contrast to Ref[44] where a sity the scaling assumptidi.14) is doubtful due to the pres-
negative value has been used. Our choicesfhis motivated ~ ence of virtual pions. In the present work we have explicitly
by the fact that this ensures that the two correla®ysand taken into account the contribution from the pion cloud of

R, become degenerate at some finite density: the nucleons. In this way we have expressed the full cor-
relator in terms of the bare correlators. We now assume the
Ry—Ra=(1-2&)(R—RY). (6.12  scaling property(6.14 only for the condensates with respect
to a system of bare nucleons. It takes the form

A negative value fofoy would lead to antimixing, i.e., in

this case the nuclear pions would work against chiral sym- obpon|?
metry restoration. This discussion already indicates that a (O4)p=(Os)va 1_W ’
model dependence is introduced by the decomposiédb), o

(6.2). Clearly “bare nucleons” are not observable objects.yhere for consistency we have to take the bare nucleon
We will come back to that point when we discuss our resultssigma termol,= oy — 0f~20 MeV instead of the full one

in t,t,]e last se_cITion.f | vsis for th o, ON~45 MeV. In the following we use this scaling assump-
ext we will perform a sum rule analysis for the correla- o (6 15 for both (0 ¥), and(O),

tors with respect to the system of bare nucledis, at In view of the uncertainty connected with the four-quark

nuclear saturatio_n .density)Nzo..l?/f.n?. Concerning the  oongensate it clearly would be fortunate to use sum rules
vector channel this is the essential difference as compared {gnich do not involve it. Indeed. in Ref43] the first two

our previou_s Worl{_23] where we have analyzed the sum rU|efinite energy sum rule€3.1a, (3.1b were used. However,

for the full in-medium correlatoRy, . Note that Eqs(2.14)_, with the same parameter seny, y,F,s) characterizing the
(2.15 are valld.for both fqll and bare co_rrelators. The differ- hadronic correlator the two sum rules are capable to deter-
ence appears in E¢2.16 in the calculation of the expecta- ine only two of these four parameters. To further restrict
tion value with respect to bare or full nucleons, respectively o narameter space additional information is required. In
In practice, the difference manifests itself only in the dlffer_- Ref.[43] it is suggested that the threshaiglis connected to

ent hanc_jllng of the four-quark condensate. All OPE contri-y o <cale of chiral symmetry breaking. Thus, the choice is
butions in Egs(2.14 and(2.15 except from the two- and  gjiher 1o make assumptions about the four-quark condensate
four-quark condensates come from chiral singlet operatorgy ahot the threshold parameter. As outlined above we pre-
They do not distinguish between bare nucleons and nucleong, 1o work with the Borel sum rule instead of the finite

dressed by soft pions. Hence their evaluation is standargherqy sum rules due to the larger sensitivity of the latter to
[23]. Things are dlff_erent for the two- and four-quark CON” the high-energy modeling. In this case we cannot get rid of
densates. Concerning the two-quark condensate, its Nhe four-quark condensate.

medium changgin linear density approximations deter- The sum rule analysis proceeds along the same lines as

mined by the nucleon sigma terf6.10. To calculate the  joserined above for the vacuum case. We analyze the Borel
in-medium change with respect to bare nucleons we have t9um rules for theo as well as thea, meson placed in a
take into account onlyrﬂ as defined via Eq6.11): !

medium ofbare nucleons. For the timelike part of the cor-

_ b relator in the vector channel we use again a single resonance
adp _ ONPN 6.13 parametrization of typé4.1). For the axial-vector channel
(0Q)yae  Tams’ ' we recall that there is a pion branch in addition to the
Here there is an additional change in the medium due to a

In practice, the value th<aq> is rather smallas compared change of the pion decay constant in nuclear matter. We

2 .
to the gluon condensatand further diminished in the me- replacef? in Eq. (4.2) by
dium. In contrast, the four-quark condensate is numerically

(6.195

important. In lack of a better access to the valudiq\f at fr2 g2 <EQ>b 6.1
finite density we made in Ref23] the common assumption ™ W(E(J)v ' (6.19
that this four-quark condensate scales with the density as the o
square of the two-quark condensate where we have utilized the in-medium version of the Gell-
_ 2 5 Mann—Oakes—Renner relatiq2.18 and neglected a pos-
(Ohme={O) (99) med —(O)vad 1- ONPN sible in-medium change of the pion mass. By using B®)
AL AL (90)vac 4/va f2m? with the replacement6.16 we also assume that thtype

(6.14 spectral function of the pion is not significantly smeared out.
In fact, pion properties are expected to change drastically in
In the comparable case of finite temperatdre., in a hot nuclear matter due to the strong couplingAehole states
pion gas, however, it was shown in Ref46] that such an [47]. However, thisp-wave coupling is not important here
assumption is wrong. This can be traced back to the fact thaince we deal with correlators which are at rest with respect
in the presence of pions the two-quark condensate behavés the nuclear environment. Working in the linear density
different as compared to the four-quark condensate due to i@pproximation, i.e., neglecting Fermi motion, the pions do
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FIG. 6. Same as Fig. 2 fop in system of bare nucleons at FIG. 8. Same as Fig. 5 fom; in system of bare nucleons at
normal nuclear matter density. For the calculation of the width thenormal nuclear matter density. For the calculation of the width the
two-pion threshold is adopted. See text for details. one-pion threshold is adopted. See text for details. Note the differ-

ent scale for the width as compared to previous figures.

T e o 1, . This can be accomplshed eithr by a lower peak
pp mass or by a larger width. For Fig. 7 the parametrization

to work with a pion spectral function which is neither shifted (4.9 with the one-pion threshold is used. For very small

nor broadened. width the masses allowed by the sum rule analysis agree for
Figs. 6 and 7. This is of course due to the fact that the details

VIl. RESULTS FOR NUCLEAR MATTER of the off-shell parametrization of the width do not matter if

. N the width is sufficiently small. For larger widths, however,
The results of the sum rule analysis are shown in Figs. ?‘a)here appear large differences between Figs. 6 and 7. The
7, and 8 As fo_r the vacuum case we f|n_d bands of allowe and in Fig. 7 is much less steep. This is easy to understand:
mass-width pairs. The interesting point IS how these banOI{’f’he demand for more strength at lower invariant masses is

have changed as compared to the respective vacuum case. fggior 1o fulfill if there is already some strength below the

already mentioned concerning the choice for the_vacuuero_pion threshold. Therefore, for the same peak mass the
four-qugrk condensate Vge have used the respective betiff, shoil wigth can be smaller if the one-pion threshold is
value,e e, (292 MeVy for the p meson and(—281 used instead of the two-pion threshold. The large differences
MeV)® for the a;. Hence we have to compare Figs. 6, 7 (0 peyeen Figs. 6 and 7 stress again that the Borel sum rule is
Fig. 2 and Fig. 8 to Fig. 5. — very sensitive to the low-energy behavior of the spectral dis-
For the p meson we have explored two possibilities 10 i tion. More generally one has to realize that peak mass
parametrize the energy dependence of the width. The samg,y o shell width are sufficient to characterize a spectral
parametrlzat|or(4.5) as for the vacuum case, 1.€., W't,h the, function only if the width is not too large. For large width
two-pion threshold, is used to obtain the results depicted ifyei5iis of the spectral shape become important, in the case at

Fig. 6. Here the mass-width band is shifted to the left ag 5y especially the details in the low-energy region. Con-
compared to the vacuum cag€ig. 2). Obviously, the in- cerning the Borel mass window we gm2 —0.64 Ge\l.

medium cha}nge of the condensates calls for more stre.ngth. %r all mass-width pairs in the inner bar;néns of Figs. 6 and 7
lower invariant masses as compared to the situation N d to the right of it we findv 2ma><>l'2 Ge\. Itis a generic

finding of sum rule analyses that the Borel window shrinks

! ' ' ' ' to some extent when changing from the vacuum to the in-
05k i medium casg423]. Still we regard the Borel window to be
. large enough to draw conclusions from the analysis.
> 06 Turning to thea; meson Fig. 8 shows that the tendency of
o - the sum rule to support large values of the witkbe Fig. 5
= increases in mediumNote that the width scale in Fig. 8
-E 041 differs from the previous figuresThe minimal Borel mass is
sl given byMZ,,=0.61 Ge\f while MZ,>2.0 Ge\ for the
) whole relevant mass-width range. For the width we have
0 used parametrizatiofd.10 with the one-pion threshold to
0.5 obtain Fig. 8. We have also analyzed the sum rule using

mass [GeV] instead Eq(4.7) with the rho-pion threshold. In this case we
did not find any mass-width pair with a deviatidriess than
FIG. 7. Same as Fig. 2 fop in system of bare nucleons at 1%. Therefore, we do not show a plot for the latter case. In
normal nuclear matter density. For the calculation of the width thefact, even if we allowed for larger values d@there would be
one-pion threshold is adopted. See text for details. no sign for the desired mass-width band. We conclude that

015202-12



QCD SUM RULE ANALYSIS FOR LIGHT VECTOR AND . .. PHYSICAL REVIEW (4 015202

parametrization(4.7) is incompatible with the in-medium

sum rule for thea; meson. Obviously this sum rule demands 0.08 -
for a spectral distribution which is smeared out over a large
invariant mass range. Restricting the mass range (ogther 0.06 [

high) lower limit of m.+m,~0.9 GeV appears to be insuf- :t:
ficient to fulfill the sum rule. Instead, the one-pion threshold & 44
o : g 0
(caused by nucleoa; collisiong does the job. Of course, +~
also other scenarios which might fulfill the sum rule are con-
ceivable. As we have learned from the previous in-medium
sum rule analysis the spectral function of fheneson gains
strength at Iower.invariant masgsither by a lower peak mass 00 02 04 06 08 1 12 14 16 18 2
or by a larger width Thus the effective threshold for the /5 [GeV]
in-medium decay of tha; meson into rho plus pion is prob-
ably lowered as compared to the vacuum case. Such a sce- g 9. |maginary part of the full in-medium vector correlator

nario might also be in line with the sum rule. We have nots| jine) as a function ofys= g2 The contribution of the bare
explored this possibility in further detail since we would yector (axial-vector correlator is given by the dashédotted line.
have to introduce a couple of new free parameters to mode§ee text for details.

e.g., the successive in-medium decays-p+ 7— 3. As
already noticed when discussing the results forgheeson  medium the resonance peaks are no longer higher than the
we find also for thea; that the QCD sum rule is sensitive to high energy continuum. Recalling that the modeling of the
the threshold modeling of the width provided that the on-onset of the continuum is rather crude one might further
shell width is not too small. This fact has not been suffi-soften the crossover regions leaving basically no room for
ciently taken into account in Ref48] leading to results for distinct peak structures. In total, we see a clear sign that the
thea; meson which differ from the ones presented here. Wén-medium spectral distributions get washed out with in-
also deduce from Fig. 8 that the nominal peak mass is shiftedreasing density.
to higher values. It is important to note that this shifb@t in
contradiction to chiral symmetry. What we have studied so VIIl. SUMMARY
far is the behavior of the correlators under the influence of
the system obare nucleons. Chiral symmetry only demands We have presented a QCD sum rule analysis for the in-
that thefull correlators of the vector and axial-vector channelmedium current-current correlators with the quantum num-
become degenerate at high enough density. This is achievdgrs ofp anda; mesons. For the medium we have chosen
by the pions as expressed by the mixing form(@al2 no  the case of a Fermi gas of nucleons at vanishing temperature.
matter how thea; mass changes under the influence of theFor comparison we have also presented the vacuum sum rule
bare nucleons. analysis forp anda;. As possible in-medium changes for the
To visualize the effect of mixing we now turn to the full spectral distributions of both correlators we have allowed for
in-medium correlators obtained from the bare ones via Eqmass shifts, peak broadening, and also mixing. The latter
(6.7). As already pointed out the sum rule analysis in generaéffect has not been considered in previous analyses
is not capable to pin down both in-medium mass and widtt{18,19,23.
for the respective meson. Nonetheless, to illustrate the effect In the QCD sum rule only a mass-averaged quantity in-
of mixing we arbitrarily take one pair of values for the  volving the respective spectral distribution enters. In general
meson from the inner band depicted in Fig. 7 and the optimathe sum rule is not capable to pin down the full information
pair for thea; meson. We choose

4

0.02 |-

) I 1 I I I I I I
m,=0.77 GeV, y,=0.21 GeV, sf{=1.15 GeV, 0.08 |- y
F,=1.1x10? GeV* (718, 006
B
m,;=1.86 GeV, y,,=1.67 GeV, °§ 0.04
s3'=3.84 GeV, F,=0.36 GeV. (7.1b 0.02
The results for the imaginary part of the full in-medium vec- .
tor and axial-vector correlators are shown in Figs. 9 and 10 00 02 04 06 08 1 12 14 16 18 2
together with the respective contributions from the bare cor- V5 [GeV]

relators. In the figures we have not included the delta func-

tion type contributions from the pion and from Landau FIG. 10. Imaginary part of the full in-medium axial-vector cor-
damping. Note that the shoulder of thecontribution at low  relator (full line) as a function of/s= \g?. The contribution of the
invariant mass is caused by thes ffactor present in Eq. bare axial-vectofvectop correlator is given by the dashédotted
(4.1). Especially the axial-vector correlator shows that in theline. See text for details.
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present in the spectral distribution such as the number ahis peak should not drastically modify the analysis for ghe
peaks, their positions, widths, and heights. Therefore oneneson as generally assumed for all details of the high-energy
needs an ansatz for the spectral distribution with some frepart. Note that Figs. 9 and 10 show that in general the posi-
parameters. These parameters can be constrained by the tien of thea, peak is beyond the onset of the continuum of
quirement that the spectral distribution has to fulfill the sumthe p branch, see also E7.1). Let us ignore that point for
rule. The simplest ansatz consists of only one péakhe a moment and face a second apparent contradiction of our
low-energy regimpand neglecting its width. In this case the results to naive expectations. Consider the influence of the
sum rule for thep meson demands an in-medium mass shiftadditional a;, peak on the determined ma¢®r a given
towards smaller massg48,19. At normal nuclear matter width). Clearly the mass which we have attributed to the
density the mass has to drop by roughly 16%. This, howevefeson in the old analysis would be a weighted average of the
is @ model-dependent statement since a specific choice f@f,e , peak and thea; peak. Therefore the trup peak

the form of the spectral distribution has been made, namelyy, |4 he at smaller mass values as compared to the result of
only one peak with vanishing width. In fact, if also the width y,o 44 analysis. In the present analysis, however, we have
IS |nclu.ded buF still using a one-peak ansatz it is alrgad%und just the opposite result. The solution to these apparent
impossible to fix both the mass and the width. One obtains Qontradictions is the appearance of the pion in the axial-

band of allowed mass-width paif3]. At small width this : ) . .
band of course has to start at the mass determined in Ref\é.ector branch. It is not the high lying, but the low lying

[18,19—provided the same condensate values are (sl pion yvhic_h has dqminantly pollutes the old analysis. Since
Ref. [23] for details. For larger widths the allowed masses ("€ Pion is much lighter than the the former has caused a
also increase. With increasing nucleon density the masd@0 large shift of the mass-width band to the left in the old
width band is shifted to the left, i.e., for a given value of the@nalysis. Thea, peak plays only a subdominant role as ex-
width to smaller masses. pected from modifications in the high-energy regime.

If the true in-medium spectral distribution possesses more After the decomposition of the full correlators into bare
than one peak but in the ansatz for that quantity only on@nes we have tacitly assumed that for the Iattgr t.he pnetpeak
peak was present then certain in-medium changes caused Bjsatz forthe low-energy part ofthe spectral distribution is
the additional peaks would be erroneously attributed tg€@sonable. In fact, also this assumption appears to be ques-
changes of mass and/or width of the single peak. Therefordionable due to the coupling of thenucleon system to reso-
in the present work we have made a further step to considdlancesisee, e.g., Ref438,39, and references thergirEs-
all possible in-medium modifications. The mixing of the vec- Pecially the apparently sizable coupling to the; resonance
tor with the axial-vector correlator by the virtual nuclear N* (1520) might create an additional peak at an invariant
pions has been included. Using soft pion techniques thighass of roughly 580 MeV, i.e., below the vacuum
mixing can be approximately calculated for the correlators?@a@K—provided that the resonance mass does not change in
irespective of the choice for the correlator momentgm the nuclear medium. Therefore, e.g., our result for the in-
Therefore the correlators can be decomposed into a superpgredium mass-width band of thebranch might still be pol-
sition of “bare” correlators for both the OPE sidg{<0)  luted by the influence of additional distinct peaks. We have
and the spectral distributiong{>0). In this way we have refrained from m_cludmg more than one peak in the ansatz
split off the mixing phenomenéat least the one induced by for_the spectral distribution since we would haye been forced
nuclear pionsfrom the sum rule analysis. Successively thet0 introduce much more free parameters which cannot be
latter has been applied to the bare correlators. As comparedetermined from the sum rule. Further work is necessary to
to previous works we have obtained a less drastic in-mediuriéparate the different peaks. On the other hand, we have
shift of the allowed mass-width band for thebranch. For aIready seen that the present sum rule analysis supports
the a, branch we have found that the sum rule is betteforoad |_n—med|um spectral func.tlons. It may appear that the
fulfilled for not too small values of the width. The preference Paryonic resonances also melt in a nuclear environrfsss,
of large widths increases with increasing density. We havé-9- Ref.[49], and references thergiand leave no sign of
also seen that for both the anda, meson at larger widths distinct peaks in the mesonic channels.
the respective sum rule is sensitive to the threshold modeling Concerning the included mixing effect of the vector and
of the energy dependence of the width. Therefore, it appea@xlal-vector channel the amount of mixing is determined by
to be insufficient to characterize a peak in the spectral distrithe value forafj. As we have already mentioned even the
bution by its position and on-shell width. A reasonable mod-sign of that quantity is still subject to discussion. Therefore it
eling of the energy dependence of the width is important tdS important to stress that the presented calculations are by
obtain meaningful results from a QCD sum rule analysis. N0 means free of model assumptions. The reason is that the

As already mentioned we have found that there is as€paration of nuclear matter into bare nucleons and soft
smaller in-medium shift of the mass-width band for the
meson as compared to the old analysis which did not include
the mixing phenomena. At first glance this is a striking re- 9yote that only resonances with awave coupling toN-p can
sult. Suppose that the old analysis is polluted by an addicontribute for the case at hand since we have consideregsons
tional a; peak, i.e., a peak at large invariant masses. First ot rest with respect to the nuclear medium. On account of the linear
all, one might argue that this additional peak is suppressedensity approximation we have neglected the Fermi motion of the
by the exponential function appearing in Eg.9). Therefore  nucleons.
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pions is a model dependent concept as an extrapolation in thtee following in-medium changes on the OPE side of ghe
off-shell region, i.e., to virtual pions is involved here. Unlessmeson sum rule at nuclear saturation density: The important
one can estimatey in a model independent way with un- changes are induced by the twist-two condensate with di-
ambiguous sign the mixing effect at finite density remains tomension 4, 2.X10 4, and the in-medium change of the
be a controversial issue. This is actually in contrast to thdour-quark condensate, 280" “. All other changes are an
case of finite temperature where the heat bath is modeled hyrder of magnitude smaller—3.6x10° from the in-

a gas of real pions. Hence the so far unavoidable modehedium change of the gluon condensate <118 ° from the
dependence which enters the calculation for finite nucleain-medium change of the two-quark condensate2.7
density is absent at finite temperature. In the calculations th& 10> from the twist-two condensate with dimension 6.
influence of o is twofold. First, it yields the amount of Therefore even if the change of the four-quark condensate
mixing on account of Eq(6.7). Here a change ofy does was completely neglected roughly two thirds of the in-
not influence the sum rule analysis for the bare correlator§hedium change would still persist. Thus, the results obtained
but it does influence the final result for the full correlatorshere would not drastically change. The vacuum contribution
exemplified in Figs. 9 and 10. Especiallydf] was negative Of the four-quark condensate is4.8x10™“. If the four-
one could no longer guarantee that the sign of the imaginar§luark condensate vanished completely at nuclear saturation
parts of the full correlators remains positive for all values ofdensity the in-medium change would be twice as large as the

the invariant mass/s. In this case the approximations which ©N€ gsed in our analysis. One should.real'iz'e that the previous
have led to Eq(6.7) should be revised. considerations are somewhat oversimplified as the depen-

dence on the Borel mass is different for the OPE contribu-

The second place wherey, appears is the in-medium ; )
dependence of the quark condensates. Most importantly, fions from the dimension-4 condensates as compared to the

enters the scaling assumpti@® 15 for the four-quark con- ones W?th dimension 6. In tqtal, however, we do not expect
densate via Eq(6.11). We have made this assumption in qualitative changes of the picture presented here even if the

lack of any better, more fundamental approach. One mighf)"medium behavior of the four-quark condensate was com-

corroborate our choice by the expectation that factorization*?lerely (_1|fferferr1]t. | o d with the OCD
roughly works as long as there is no fundamegginmetry n sp||te 0 thedargr-]zc u.ncet:tamtlesdcon_necte wit td? Q
principle which is in contradiction to factorization. In our SUM rul€ method at finite baryon density we regard it as a

case the interaction with the pions is determined by chirafJseful complemgnt to purely haf’ror?'c approaches since it
&onnects in a unique way hadronic with quark-gluon degrees

of freedom. We hope that the mentioned uncertainties can be

f finite t t in Ré#6]. Havi lit off th
case of finite temperature in Reé#6]. Having split off the removed step by step in the future.

pions one might expect that the factorization assumptio
works for the interaction of the vector and axial-vector me-
sons with the bare nucleons. Nonetheless it is important to
figure out how important the influence of the four-quark con-  The author wants to thank Ulrich Mosel for discussions
densate and especially of its in-medium change actually isand continuous support. This work was supported by GSI
At a typical value for the Borel mass M~1 GeV we find Darmstadt and BMBF.
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