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Importance of single-boson and single-fermion mappings in the thermal boson expansion
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In the context of the boson expansion theory, it is usually the case that the bosonization of single-boson
~fermion! states is ignored. Although this is tolerable to some extent in cold systems, it causes serious diffi-
culties in the treatment of thermal ensembles where the single-boson~fermion! density of states plays an
important role. In the framework of the thermo-field dynamics it is shown how extended forms of the Holstein-
Primakoff mapping for both bosons and fermions can lead to consistent thermal-boson expansions. Applica-
tions to theO(N) anharmonic oscillator and the Lipkin model are presented.
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I. INTRODUCTION

The thermo-field dynamics~TFD! method with its appeal-
ing simplicity is a powerful tool in the study of therma
many-body problems@1# as is evidenced from a number o
applications in condensed matter, nuclear, and high en
physics@2,3#.

As originally conceived by Umezawaet al., the idea be-
hind the TFD relates to a revealing similarity between
thermal noise and the noise induced by a simple two-m
squeezed state@4#. It thus became possible to express t
statistical ensemble average for a given operator as the q
tum average of the same operator on a thermal ‘‘grou
state.’’ This was the prelude that led to the formulation o
thermal theory through a formal doubling of all dynamic
degrees of freedom. In practice this is achieved by introd
ing an auxiliary Fock space, the ‘‘tilde’’ transform of th
original dynamical Fock space, with the requirement that
expectation value of any operator in the TFD therm
vacuum is exactly equal to the statistical average of the s
operator@4#.

After several successful tests on systems of interac
particles, the TFD has proven to be a reliable substitute
the standard temperature-dependent Green-function met
in perturbative@3# as well as in nonperturbative@5,6# appli-
cations. Recently the TFD has also been combined with
boson expansion theory with the claim of providing a co
sistent thermal-boson expansion~TBE! approach very much
needed in the description of collective phenomena in
nuclear systems@7#. This question was considered by Prov
dencia and Fiolhais@8#, Hatsuda@9#, Walet and Klein@10#,
and also recently by Civitarese and Reboiro@11# within the
TFD formalism.

In this regard, Hatsuda considered two points of vi
regarding the TBE@9#. The first, here, called path I, consis
of a bosonization of the original degrees of freedom of
system, substituting for these ideal boson images. There
the thermalization of the system is undertaken by doub
those newly introduced bosons. The second possibility~path
II ! proceeds on the other hand via a thermalization of
system by doubling the original degrees of freedom and t
a bosonization of the entire new system. As concluded by
author the two paths do not lead to the same results in
0556-2813/2001/64~1!/015201~7!/$20.00 64 0152
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lowest order when applied to the Lipkin model as a test ca
Moreover, a closer look shows that a choice of path I impl
that all thermal density of states in the system are of boso
type ~Bose occupation numbers! although the original sys-
tem, the Lipkin model in this case, is pure fermionic. T
circumvent this problem one may consider choosing path
The thermal density of states are then of fermionic ty
~Fermi occupation numbers! since the thermalization is per
formed on the original fermionic degrees of freedom. The
fore with regard to the statistics of the system, path II see
to be the correct answer.

However, there remains one hurdle that is still plagui
this path with inconsistencies. This relates to the quasipa
cle energies defining the thermal density of states. As us
these are taken as solutions of a Hartree-Fock-Bogoliu
~HFB! mean-field approximation, which in most system
leads to a dynamical mass generation. In the case of mas
modes, such as the Goldstone modes for instance, this t
out to be the wrong mean-field solution. Indeed it was sho
a while ago in the context of theO(N) vector model@12,13#
that the Hartree-Bogoliubov~HB! approximation is prefer-
able to the HFB approximation because the first is symme
conserving while the latter is not. Therefore, the choice
the mean-field approximation is of prime importance for
subsequent correct thermal treatment of the system. On
other hand, it was shown in Refs.@12,13# that the HB solu-
tion is obtained after a bosonization of theO(N) vector
model by means of the Holstein-Primakoff mapping~HPM!.
Thus a HB mean-field solution is only obtained aft
bosonization. Therefore when considering the symme
constraints, it is rather path I that is favored.1 This is also the
point of view we wish to adopt here. However, it is clear th
amendments are needed in order to reconcile path I with
requirements of the statistics as explained earlier.

Therefore, in the present paper, we intend to revisit o
more the problem of the TBE. It is our understanding that

1For fermionic systems and, in particular, in the case of the Lip
model used in@9,10#, this problem does not show up in all gene
ality and has therefore escaped attention. In fact one can clearly
that in this case no substantial difference exists between the H
and HB solutions.
©2001 The American Physical Society01-1
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previous works although pioneering and very thorough
their study of the problem, failed to recognize one particu
aspect of the boson expansion, namely, the single-par
mapping. It is formally important because it allows the ma
ping of all original degrees of freedom of the system. It w
pointed out a while ago for fermions@14# and recently for
bosons@15# that, in order to build a meaningful ideal Foc
space that contains at least images for each state of the o
nal Fock space, the usual bosonization of pairs of operatoà
la Holstein-Primakoff needs to be extended such that it
commodates single-operator mapping. We want to show h
that this offers a simple solution to the problems outlin
above. In the following we first develop the idea for a pu
bosonic system, theO(N) anharmonic oscillator, where w
explicitly show that the HFB solution is not viable for sym
metry reasons. Afterwards we show how to use path I
gether with and extended HPM to provide a consistent fin
temperature 1/N expansion. This prescription is then applie
to the purely fermionic Lipkin model.

II. BOSONIC SYSTEM

To illustrate the idea advocated earlier, let us here c
sider the anharmonic oscillator with anO(N11) symmetry.
The ~properly scaled! model Hamiltonian reads

H5
PW p

2

2
1

Ps
2

2
1

v2

2
@XW p

2 1Xs
2 #1

g

N
@XW p

2 1Xs
2 #22ANhXs .

~2.1!

Furthermore, we want to take into account an explicith
Þ0) and a spontaneous (^Xs&Þ0) symmetry breaking along
the Xs mode.2 The variablesXW p ,Xs and their respective
conjugate momenta will be defined below. The subscriptp
ands are used in analogy with the linears model in quan-
tum field theory, where these modes represent the pion
the sigma fields, respectively.

In the framework of the TFD formalism, the thermal trea
ment of the model proceeds as usual by introducing
‘‘tilde’’ transform of each mode. As such the total Hilbe
space of a thermal system is then spanned by the direct p
uct of the eigenstates of the HamiltonianHun&5Enun& and
those of the ‘‘tilde’’ Hamiltonian with the same eigenvalu
H̃uñ&5Enuñ&. The thermal HamiltonianH defined byH
5H2H̃ is the time-translation operator. Its diagonalizati
leads finally to the excitation energies of the thermal syst
However, as is generally the case one is not able to ext
the exact eigenvalues of the Hamiltonian. A common
proximation scheme consists of splitting the Hamiltoni
into a diagonalizable mean-field part and a residual inte
tion. The two commonly used approximations, the HFB a
HB, lead to two qualitatively conflicting results in the inte
esting situation of a spontaneously broken symmetry. T

2When discussing the question of the Goldstone mode we d
gard in the following all problems related to the infrared dive
gences.
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HFB approximation results in a dynamical mass genera
and as such the Goldstone bosons are not massless i
exact symmetry limit. The HB approximation, on the oth
hand, leads to massless Goldstone excitations. In fact
latter corresponds to the leading-order solution of the 1N
expansion. This applies to the model at hand and we wan
briefly review both of them.

A. HFB mean-field

Since this question has been studied earlier we only re
here the results needed for our discussion. According to
work @12,13# on the linear sigma model, the HFB mean-fie
solution can be extracted using a Bogoliubov transformati
that is, a pure rotation for the pions, and an inhomogene
transformation for the sigma that accounts for the conden
tion of this mode in the vacuum. Therefore, leaving aside
details of the calculation~which can be found in Refs
@12,13#! one can show that the HFB quasiparticle energies
well as the vacuum condensate are given by the follow
coupled BCS gap equations

E p
2 5v21

4g

N F ~N12!
1

2Ep
1

1

2Es
1^Xs&2G ,

E s
25v21

4g

N FN
1

2Ep
13

1

2Es
13^Xs&2G , ~2.2!

^Xs&5
h

v2
2

1

v2

4g

N FN
1

2Ep
13

1

2Es
1^Xs&2G .

It is easy to see from the above that, in the exact symm
limit ~h50!, there are no massless Goldstone bosons in
mass spectrum

E p
2 5

ANh

^Xs&
1

4g

N F 1

Ep
2

1

Es
G . ~2.3!

Indeed, the difference between the quasiparticle energie
finite and this leads to a finite mass for the pion in the lim
of vanishingh. Therefore it is clear that the HFB vacuum
can by no means serve as a viable mean-field vacuum for
perturbative treatment of the full Hamiltonian. However,
is apparent from Eq.~2.3!, in the largeN limit ( N→`), the
Goldstone mode can be recovered.

B. HB mean field

To fix the notations needed later on, let us consider h
the quantized forms for the variablesXW p andXs in terms of
which the Hamiltonian in Eq.~2.1! is written as

XW p5
1

A2v
~aW 1aW 1!, Xs5

1

A2Es

~b1b1!, ~2.4!

PW p andPs denote their respective conjugate momenta.
As mentioned, in the largeN limit, the pion exhibits the

desired behavior of the Goldstone mode in the broken ph
@12#. In this limit the pion is a ‘‘Hartree’’ particle, a semi

e-
1-2
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IMPORTANCE OF SINGLE-BOSON AND SINGLE- . . . PHYSICAL REVIEW C 64 015201
classical mode that does not obey anymore the quantum
tistics. Indeed in this limit (N→`) the Fock contributions
induced by its wave function vanishes.

The state of a ‘‘Hartree pion’’ is therefore suitable for
perturbative treatment of the residual interaction as wel
the thermal treatment of the system in TFD. However,
delicate problem that remains is how to actually build a H
tree pion state. To answer this question a mapping was
signed in Ref.@15# that allows a consistent bosonization
pairs of pions and a simultaneous rebosonization of
single pions. We recall here the extended Holstein-Primak
mapping for bosons derived for that purpose

~aW aW ! I5A2N14~n1m!A,

~aW 1aW ! I52n1m,

~aW 1aW 1! I5~aW aW ! I
1 ,

~ai ! I5A2N14~n1m!GN~m!a i12a i
1AGN~m!,

~ai
1! I5~ai ! I

1 . ~2.5!

HereN is an integer,n5A1A, m5( ia i
1a i , andGN is given

by

GN~m!5F m1N22

2~2m1N!~2m1N22!G
1/2

. ~2.6!

Thus instead of the original ‘‘Hartree-Fock pions’’ai we
have now an ideal bosona i which, as was shown in Ref
@15#, is a Hartree pion. This is at the expense of introduc
a power series in a new bosonA that plays an auxiliary role
Now that the Hartree state is constructed we can procee
the thermalization of the system using the TFD formalism

The time-translation operator or thermal Hamiltonian,H
5H2H̃, of the system is obtained as usual by consider
the tilde conjugate of all operatorsA, a i and b. Using the
mapping in Eqs.~2.5! and ~2.6!, the thermal HamiltonianH
is expanded in powers of the parameterN

H5NH01ANH11H21
1

AN
H31

1

N
H41¯, ~2.7!

whereHi5Hi2H̃ i .
In order to determine the asymptotic field, or the indep

dent thermal quasiparticle representation, we introduce a
tary thermal Bogoliubov transformation that rotates the i
tial single-boson creation and annihilation operat
a i ,a i

1 ,b,b1 and their tilde conjugate~t.c.! ã i , ã i
1 , b̃, b̃1

into the thermal quasiboson operatorsg i , g i
1 , b, b1 and

their t.c.

a i
15u~T!g i

11v~T!g̃ i ,

ã i
15u~T!g̃ i

11v~T!g i ,

b15x~T!b11y~T!b̃,
01520
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b̃15x~T!b̃11y~T!b. ~2.8!

We insist here on the fact that the bosonsA,Ã need not be
transformed since they are just auxiliary modes. This po
of view is different from those adopted in all earlier work
@9–11#. The unitarity of the Bogoliubov transformation
leads to the following constraints on the thermal amplitud

u2~T!2v2~T!51, x2~T!2y2~T!51.

It was established in Ref.@15# that a vacuum state that i
compatible with the 1/N expansion as given in Eq.~2.7! is a
coherent stateuC& that accommodates condensates for theA
andb modes. The tilde conjugate Fock space will also ha

a coherent stateuC̃& as the vacuum state buildin analog
with uC&, such that

uC&5exp@^A&A11^b&b1#u0&,

uC̃&5exp@^A&Ã11^b&b̃1#u0̃&, ~2.9!

where the condensates^A& and^b& are taken as real number
for simplicity. The statesu0& andu0̃& denote the vacua for the

original basis~i.e., aW u0&5aW̃ u0̃&5bu0&5b̃u0̃&5Au0&5Ãu0̃&
50). The statesuC& and uC̃&, on the other hand, are ann

hilated by the shifted operatorsA, Ã, B, andB̃ defined by

A5A2^A&, Ã5Ã2^A&, B5b2^b&, B̃5b̃2^b&.
~2.10!

The condensateŝA& and ^b& scale withN according to

^A&5dAN

2
,

^Xs&5
^b&1^b1&

A2Es

5
2@x~T!1y~T!#^b&

A2Es

[ANs.

~2.11!

Finally the thermal vacuumu0(T)& for theg i , g̃ i , A, Ã, B,

and B̃ operators is given by the following two-mod
squeezed state:

u0~T!&;expF(
i

za~T!a i
1ã i

11zb~T!b1b̃1G uC&uC̃&,

~2.12!

where za(T)5@v(T)/u(T)# and zb(T)5@y(T)/x(T)#. To
set up the expansion of the thermal Hamiltonian in Eq.~2.7!
we need to fix the values of the two condensates. This ca
readily done by minimizing the free energy

F5NH02TS, ~2.13!

where the entropyS, in the approximation of independen
thermal quasiparticles, is given by
1-3
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S52N@v2 ln~v2!2~11v2!ln~11v2!#

2y2 ln~y2!1~11y2!ln~11y2!, ~2.14!

and the average energy of the thermal vacuum stateH0 is
given by

H05
1

N

^0~T!uHu0~T!&

^0~T!u0~T!&

5
v~112v2!

2
~112D2!1

gs2~112v2!

v
~D1A11D2!2

1
g~112v2!2

4v2
~D1A11D2!41

v2s

2
1gs42hs.

~2.15!

Here, for convenience, we introduce the parameterD,

D5
d

A112v2
. ~2.16!

The minimization procedure of the free energyF with
respect tov, s, and d leads to the following three couple
equations:

v25
1

exp@Ep /T#21
,

h

s
5v214gs21

2g~112v2!

v
~D1A11D2!2,

052vDA11D21D~D1A11D2!2, ~2.17!

where the gap parameterD is given by

D5
2gs2

v
1

g~112v2!

v2
~D1A11D2!2 ~2.18!

and the Hartree pion mass as

Ep5Fv1D1
DD

A11D2G5v~A11D22D !2. ~2.19!

To exhibit the full dynamics of the leading order in th
1/N expansion one needs to generate the termsH1 andH2 of
the Hamiltonian and construct the corresponding terms of
thermal Hamiltonian:H15H12H̃1 andH25H22H̃2. This
can be realized by using parameter differentiation techniq
~see Ref.@12# for details!. The net results for bothH1 andH2
are
01520
e

es

H15A112v2

2 F2vD1
~D1A11D2!2

A11D2
DG

3@A1A12~ t.c.!#

1F2gs~112v2!

v
~D1A11D2!21v2s14gs32hG

3~x2y!@B1B 12~ t.c.!#, ~2.20!

H25(
i

Ep@g i
1g i2~ t.c.!#1Es@B 1B2~ t.c.!#

12Ep@~G1A 12G2A!~G1A2G2A 1!2~ t.c.!#

1
g~112v2!

2E p
2

@~G12G2!2~A1A 1!22~ t.c.!#

1
2gsA112v2

EpAEs

@~G12G2!~A1A 1!

3@x~B1B 1!1y~B̃1B̃1!#2~ t.c.!#, ~2.21!

where the functionsG6 are given by

G65
1

2 FA11D26
1

A11D2G . ~2.22!

From the gap equations~2.17! it is easy to verify that, at the
minimum of the free energy, the termH1 vanishes. From the
expression ofH2 and more precisely from the coefficient o
the bilinear part ing i and g̃ i , one can deduce the existenc
of N uncoupled modes that are nothing but thermal Hart
pions with the massEp given by

E p
2 5v~v12D!5v214gs212g

~112v2!

Ep
5

h

s
.

~2.23!

The sigma quasimass,Es that has purely perturbative cha
acter, is fixed by demanding that the bilinear part ofH2 in

the B and B̃ operators is diagonal. It reads

E s
25v2112gs212g

~112v2!

Ep
. ~2.24!

Besides the thermal Hartree pion modes there exist n
Goldstone excitations corresponding to thes mode. They
can be found by diagonalizing the remaining nondiago
part of H2. This can be realized by means of the therm
random phase approximation~TRPA! with the following an-
satz for the excitation operator:

Qn
15XnB 12YnB1X̃nB̃12ỸnB̃1UnA 1

2VnA1ŨnÃ12ṼnÃ. ~2.25!
1-4



th

e

on
le

e
to
n

d
th
th

o

l

i-
lso
lly
A
ff
-
tate

in
n-
call
mi-

re

-
al-

he

a-
ns-

d
om.
hat

th
o

IMPORTANCE OF SINGLE-BOSON AND SINGLE- . . . PHYSICAL REVIEW C 64 015201
Using the usual Rowe equation of motion

^0~T!u@dQn ,~H2 ,Qn
1!#u0~T!&

5Vn^0~T!u@dQn ,Qn
1#u0~T!&, ~2.26!

one can deduce readily the characteristic equation for
TRPA eigenvalues

Vn
25

h

s
1

8gs2

124g
~112v2!

Ep~Vn
224E p

2 !

. ~2.27!

Thus to orderO(1/AN) the Hamiltonian in Eq.~2.7! can then
be written in the TRPA phonon basis as

H25Ep(
i 51

N

@g i
1g i2~ t.c.!#1 (

n51,2
Vn@Qn

1Qn2~ t.c.!#,

~2.28!

It appears from Eqs.~2.23!, ~2.24!, and~2.27! that the results
obtained in this paper are in perfect agreement with thos
the finite temperature largeN limit obtained diagrammati-
cally in four space-time dimensions. In other words the c
tribution (112v2/2Ep) stands for the thermal tadpole whi
the term @112v2/Ep(Vn

224E p
2 )# is nothing but the loop

that corresponds to two convoluted thermal propagators~see
Refs.@12,13#!.

In the next section we wish to show how the extend
Holstein-Primakoff mapping can be used for fermions
yield a thermal-boson expansion for the Lipkin model co
sistent with known results.

III. FERMIONIC SYSTEM

To show that the idea of an extended HP mapping lea
as in the case of pure bosonic systems, to a consistent
mal treatment of fermionic systems, we consider now
two-level Lipkin model.3 It consists ofN fermions distrib-
uted over two levels with degeneracyV (V5N). The energy
of the lower and upper level is2«/2 and1«/2, respectively.
The model Hamiltonian, written in terms of the generators
an SU~2! algebra@16#, reads

H5«Jz2
1

2
V~J1J11J2J2!, ~3.1!

where the quasispin operatorJ and its componentsJ1 ,J2 ,Jz
are defined as

J25
1

2
~J1J11J2J2!1Jz

2 ,

3To avoid any confusion we want to attract the attention of
reader to the fact that the notations used in this section are c
pletely independent from those of the previous section.
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Jz5
1

2 (
p51

N

~c2p
1 c2p2c1p

1 c1p!, J15 (
p51

N

c2p
1 c1p ,

J25~ Ĵ1!1.

Here cip
1 ,cip ( i 51,2;p51, . . . ,N) are fermionic creation

and annihilation operators. The indices ‘‘1’’ and ‘‘2’’ labe
the lower and upper level, respectively, while the index ‘‘p’’
enumerates the sublevels.

Although, from the start, the model only involves ferm
ons it is conceivable that collective modes may induce a
bosonic degrees of freedom. Usually this fact is technica
accounted for by the bosonization of pairs of fermions.
very convenient dynamical tool is the Holstein-Primako
mapping for fermions. The original HPM for fermions, how
ever, leads to an ideal Fock space in which there is no s
representing a single fermion. Marshalek has proposed
Ref. @14# an extended form for the HPM that allows a co
sistent mapping of pairs and single fermion states. We re
the fermion-boson images of the quasispin and single fer
onic operators according to this mapping

~Jz! I5
1

2
nf1B0

1B0 ,

~J1! I5ANB0
1A12

B0
1B01nf

N
; ~J2! I5~J1! I

1 ,

~c2p! I5A12
B0

1B0

N
a2p1

B0

N
a1p , ~3.2!

~c1p! I5A12
B0

1B0

N
a1p2

B0

N
a2p ,

nf5 (
p51

N

~a2p
1 a2p2a1p

1 a1p!.

Here B0
1 and aip

1 as well as their Hermitian conjugates a
ideal boson and fermion operators, respectively.

Substituting the images~3.2! into Eq. ~3.1! we obtain the
fermion-boson imageHI of the Hamiltonian of the Lipkin
model. The thermal fermion-boson HamiltonianHI then be-
comesHI5HI2H̃I . Thus we again follow path I by ther
malizing the system obtained after mapping. The diagon
ization of HI gives as usual the thermal excitations of t
system. To determine the thermal vacuum stateu0(T)&, we
introduce as previously the thermal Bogoliubov transform
tion that rotates only the ideal fermions and their tilde tra
form, such that

aip
15xib ip

11yi b̃ ip ,

ãip
15xi b̃ ip

12yib ip . ~3.3!

The auxiliary bosonsB0 on the other hand are not rotate
since they, again, represent auxiliary degrees of freed
Obviously our procedure cures the problems of path I t

e
m-
1-5
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were encountered in Ref.@9# regarding the fermion statistics
As a consequence of Eq.~3.3! one has only fermionic occu
pation numbers.

Depending on the value of effective coupling consta
x

0
5(VN/«) the Lipkin system may be in one of two phase

‘‘normal’’ ( x
0
<1) or ‘‘deformed’’ (x

0
.1). In terms of

ideal fermions and bosons the deformed phase is chara
ized by the appearance of a boson condensate. To take
possibility into account we introduce a properly normaliz
shift of the initial boson operatorB0 and define new boson
B and their tilde transform such that

B5B02dAN, B̃5B̃02dAN. ~3.4!

Finally the thermal vacuum is written as a direct product o
fermionic thermal vacuum stateu0(T)& f that has the BCS-
like form and of a bosonic vacuum state that does not dep
on temperature and in turn is a direct product of two vacu
for normal and tildeB0 bosons,u0&B0

and u0̃&B0
, respec-

tively. Thus,

u0~T!&5u0~T!& f u0&B0
u0̃&B0

5expF(
ip

yi~T!

xi~T!
aip

1 ãip
11d~B0

11B̃0
1!G

3u0&au0̃&au0&Bu0̃&B , ~3.5!

where

au0&a5Bu0&B50, ãu0̃&a5B̃u0̃&B50.

To proceed with the evaluation of the dynamics we follo
the steps of the previous section by first expanding the q
sispin operators in powers ofN. This yields to order
O(1/AN)

~J2! I5NdAK1ANFAKB2
d2

2AK
~B11B!G

2
d

2AK
F2B1B1BB1

d2

4K
~B11B!1nf

bG ,
~3.6!

where nf
b5(p51

N (b2p
1 b2p2b1p

1 b1p), K5z2d2, and z5y1
2

2y2
2.
With similar expansions for (J1) I and (Jz) I one can

readily write down the three first terms of the expansion
the Hamiltonian relevant in the largeN limit

H05«S 2
z

2
1d22x

0
d2K D ,

H15«@d2x
0
d~K2d2!#~B11B!, ~3.7!
01520
t
:

er-
his

a

nd

a-

f

H25«S 1

2
1x

0
d2Dnf

b1«~113x
0
d2!B1B

2«
x

0

2
~K22d2!~B1B11BB!.

The value of the condensate ‘‘shift’’d and the coefficients of
the thermal Bogoliubov transformation are fixed at the mi
mum of the grand canonical potential~free energy! F of the
system, which reads

F5^0~T!uHI u0~T!&2TS2m^0~T!uN̂u0~T!&, ~3.8!

where the entropySand the number operatorN̂ for the ideal
fermionsa1 anda are given by

S52N (
i 51,2

@yi
2ln~yi

2!2xi
2ln~xi

2!#,

N̂5 (
p51

N

~a1p
1 a1p1a2p

1 a2p!. ~3.9!

The averages in Eq.~3.8! refer to the thermal vacuumu0(T)&
in accordance with TFD. It is obvious from Eqs.~3.7! that
the only contributing to the free energy isH0. One obtains

F5N«S 2
n12n2

2
1d22x

0
d2K D

1TN (
i 51,2

@ni ln~ni !2~12ni !ln~12ni !#2mN@n11n2#,

~3.10!

where the notationsn1 ,n2 are used instead ofy1
2 ,y2

2. Mini-
mizing F with respect tod, n1, and n2, one obtains, for
vanishing chemical potential~m50!, the following solutions
for the shiftd, the occupation numbersni , and the quasipar-
ticle energiesEi :

d25H 0: ~normal phase!

x
0
~n22n1!21

2x
0

: ~deformed phase!
~3.11!

ni5
1

11exp~Ei /T!
, ~3.12!

E1,257«F1

2
1x

0
d2G . ~3.13!

Here one sees that the single-particle energies become
perature dependent in the deformed phase. TheirT depen-
dence is exactly the same as given by the thermal Hart
Fock method~see, e.g.,@17#!.

From Eq.~3.11! one deduces thatH150 at the minimum.
The partH2 of the thermal Hamiltonian is already diagon
in the fermionic sector. There remains, however, the boso
sector that is at the most bilinear in the bosons and is dia
1-6



o

nd
le

es

p-
or
ng
th

ti

ther-
s.

f the
ics
iza-

e
wn

nt
the
xci-
nd
the
le-
ere

u-
rg-
ial

IMPORTANCE OF SINGLE-BOSON AND SINGLE- . . . PHYSICAL REVIEW C 64 015201
nalized by means of two separate Bogoliubov rotations
the bosonsB and their tilde conjugateB̃, respectively:

B15uC11vC, B̃15uC̃11vC̃. ~3.14!

In fact this is nothing but the RPA for pairs of fermions a
the RPA frequenciesv can be extracted after few simp
manipulations. One gets

v5H «A12x
0

2~n12n2!2 : for the normal phase

«A2~x
0

2~n12n2!221! : for the deformed phase.
~3.15!

The termH2 of the thermal Hamiltonian of the system tak
the form

H25 (
i 51,2;p

Ei~b ip
1b ip2b̃ ip

1b̃ ip!1v@C1C2~ t.c.!#

in agreement with the result of the thermal HFB-RPA@17#.
Finally it is worth noting that the boson-fermion HP ma

ping in Eqs.~3.2! produces an interesting physical picture f
the thermal behavior of the Lipkin model. After the mappi
one obtains a system of ideal fermions interacting via
exchange of an ideal boson@see Eq.~3.7!#. Although we did
not introduce a directT dependence for the auxiliary boson4

the correct temperature dependence of the boson excita

4No boson occupation numbers were introduced.
d
,

z.

te
d

01520
n

e

on

energies are recovered. It appears that the bosons are
malized due to the collisions with the ‘‘heated’’ fermion
The same is true for theA boson in case of theO(N) anhar-
monic oscillator.

IV. CONCLUSION

In the present paper we have addressed the question o
thermal-boson expansion within the thermo-field dynam
formalism. We have stressed the importance of the boson
tion of single-boson~fermion! operators in addition to the
usual boson~fermion!-pair bosonization. To our knowledg
this point has been overlooked previously. We have sho
on two models, the bosonicO(N) anharmonic oscillator and
the fermionic Lipkin model, how this can lead to a consiste
thermal-boson expansion. The leading-order results of
expansion in both cases were derived and the thermal e
tations were shown to comply with both the symmetry a
the particle statistics requirements. It was also shown, in
case of the anharmonic oscillator, that without the sing
particle mapping the thermal Goldstone excitations w
missing from the spectrum of the theory.
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