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Importance of single-boson and single-fermion mappings in the thermal boson expansion
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In the context of the boson expansion theory, it is usually the case that the bosonization of single-boson
(fermion) states is ignored. Although this is tolerable to some extent in cold systems, it causes serious diffi-
culties in the treatment of thermal ensembles where the single-bdsomion density of states plays an
important role. In the framework of the thermo-field dynamics it is shown how extended forms of the Holstein-
Primakoff mapping for both bosons and fermions can lead to consistent thermal-boson expansions. Applica-
tions to theO(N) anharmonic oscillator and the Lipkin model are presented.
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[. INTRODUCTION lowest order when applied to the Lipkin model as a test case.
Moreover, a closer look shows that a choice of path | implies
The thermo-field dynamicdrFD) method with its appeal- that all thermal density of states in the system are of bosonic
ing simplicity is a powerful tool in the study of thermal type (Bose occupation numberalthough the original sys-
many-body problem§l] as is evidenced from a number of tem, the Lipkin model in this case, is pure fermionic. To
applications in condensed matter, nuclear, and high energgrcumvent this problem one may consider choosing path II.
physics[2,3]. he thermal density of states are then of fermionic type
As originally conceived by Umezawet al, the idea be- (Fermi occupation numbersince the thermalization is per-
hind the TFD relates to a revealing similarity between theformed on the original fermionic degrees of freedom. There-
thermal noise and the noise induced by a simple two-modére with regard to the statistics of the system, path Il seems
squeezed statfd]. It thus became possible to express thet0 be the correct answer.
statistical ensemble average for a given operator as the quan- However, there remains one hurdle that is still plaguing
tum average of the same operator on a thermal “groundhis path with inconsistencies. This relates to the quasiparti-
state.” This was the prelude that led to the formulation of acle energies defining the thermal density of states. As usual,
thermal theory through a formal doubling of all dynamical these are taken as solutions of a Hartree-Fock-Bogoliubov
degrees of freedom. In practice this is achieved by introductHFB) mean-field approximation, which in most systems
ing an auxiliary Fock space, the “tilde” transform of the leads to a dynamical mass generation. In the case of massless

original dynamical Fock space, with the requirement that thénodes, such as the Goldstone modes for instance, this turns
expectation value of any Operator in the TFD therma|out to be the wrong mean-field solution. Indeed it was shown

vacuum is exactly equal to the statistical average of the san While ago in the context of th®(N) vector mode[12,13
operator{4]. that the Hartree-BogoliuboyHB) approximation is prefer-
After several successful tests on systems of interacting@ble to the HFB approximation because the first is symmetry
particles, the TFD has proven to be a reliable substitute fofonserving while the latter is not. Therefore, the choice of
the standard temperature-dependent Green-function metholfte mean-field approximation is of prime importance for a
in perturbativd:?,] as well as in nonperturbati\l{éyal appli- Subsequent correct thermal treatment of the system. On the
cations. Recently the TFD has also been combined with thether hand, it was shown in Refs2,13 that the HB solu-
boson expansion theory with the claim of providing a con-tion is obtained after a bosonization of ti@(N) vector
sistent thermal-boson expansi6FBE) approach very much model by means of the Holstein-Primakoff mappiitPM).
needed in the description of collective phenomena in hofhus a HB mean-field solution is only obtained after
nuclear systemg7]. This question was considered by Provi- bosonization. Therefore when considering the symmetry
dencia and Fiolhaif8], Hatsuda[9], Walet and Klein[10], constraints, it is rather path | that is favoredhis is also the
and also recently by Civitarese and Rebditd] within the ~ point of view we wish to adopt here. However, it is clear that
TED formalism. amendments are needed in order to reconcile path | with the
In this regard, Hatsuda considered two points of viewrequirements of the statistics as explained earlier.
regarding the TBE9]. The first, here, called path I, consists ~ Therefore, in the present paper, we intend to revisit once
of a bosonization of the original degrees of freedom of themore the problem of the TBE. It is our understanding that the
system, substituting for these ideal boson images. Thereafter
the thermalization of the system is undertaken by doubling
those newly introduced bosons. The second possilgjih For fermionic systems and, in particular, in the case of the Lipkin
Il) proceeds on the other hand via a thermalization of thenodel used if{9,10], this problem does not show up in all gener-
system by doubling the original degrees of freedom and thegjity and has therefore escaped attention. In fact one can clearly see
a bosonization of the entire new system. As concluded by thehat in this case no substantial difference exists between the HFB
author the two paths do not lead to the same results in thend HB solutions.
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previous works although pioneering and very thorough inHFB approximation results in a dynamical mass generation
their study of the problem, failed to recognize one particularand as such the Goldstone bosons are not massless in the
aspect of the boson expansion, namely, the single-particlexact symmetry limit. The HB approximation, on the other
mapping. It is formally important because it allows the map-hand, leads to massless Goldstone excitations. In fact the
ping of all original degrees of freedom of the system. It waslatter corresponds to the leading-order solution of thg 1/
pointed out a while ago for fermiorfd4] and recently for expansion. This applies to the model at hand and we want to
bosons[15] that, in order to build a meaningful ideal Fock briefly review both of them.

space that contains at least images for each state of the origi-

nal Fock space, the usual bosonization of pairs of operators A. HEB mean-field

la Holstein-Primakoff needs to be extended such that it ac-

commodates single-operator mapping. We want to show herﬁ S'r;ﬁe this (lqtuesnog hda? been 3t_ud|ed _earhzr Wedqnly tre(;ﬁll
that this offers a simple solution to the problems outlined ere tne results needed for our discussion. According to the

above. In the following we first develop the idea for a purev"ork.[lz’l‘f’§| on the linear sigma model, .the HFB mean-ﬂejd

bosonic system, th@(N) anharmonic oscillator, where we solut_lon can be extr'acted using a Bogollubov_transformat|on,
explicitly show that the HFB solution is not viable for sym- that is, a pure rotation f_or the pions, and an inhomogeneous
metry reasons. Afterwards we show how to use path | to:[ransformatlon for the sigma that accounts for the condensa-

gether with and extended HPM to provide a consistent finitelion Of this mode in the vacuum. Therefore, leaving aside all

. . TSN . details of the calculationwhich can be found in Refs.
temperature N expansion. This prescription is then applied L .
to the purely fermionic Lipkin model. [12,13) one can show that the HFB quasiparticle energies as

well as the vacuum condensate are given by the following

coupled BCS gap equations
II. BOSONIC SYSTEM

. . _ 4 1 1
To illustrate the idea advocated earlier, let us here con- 2=+ 29 (N+2)=—+ —+(x0>2},
sider the anharmonic oscillator with @(N+ 1) symmetry. N 28, 28,
The (properly scaledmodel Hamiltonian reads 4g 1 1
2_ 2, N T o T 2
-, ) ) Eo=w+ N Nzg +325 +3(X,) } (2.2
LA ST M P2 BN 2P " 7
H= 4 0 S X+ X ]+ X+ X2 N7X, .
(2.9 (X >:1_i4_g Ni+3i+<x )2
w0 W2 N 28, 28, o

Furthermore, we want to take into account an expliojt ( )
#0) and a spontaneouéX,)# 0) symmetry breaking along It is easy to see from the above that, in the exact symmetry
the X mode? The variablesX_ X and their respective limit (»=0), there are no massless Goldstone bosons in the

conjugate momenta will be defined below. The subscripts mass spectrum

and o are used in analogy with the linear model in quan- \/N 491 1
tum field theory, where these modes represent the pion and 37:_71 +—|=— = (2.3
the sigma fields, respectively. (Xs)  N[& &

In the framework of the TFD formalism, the thermal treat-
ment of the model proceeds as usual by introducing th

“tilde” transform of each mode. As such the total Hilbert f vanishin Therefore it is clear that the HEB vacuum
space of a thermal system is then spanned by the direct pr08— 97 . :
€an by no means serve as a viable mean-field vacuum for any

uct of the eigenstates of the Hamiltonib)n) =Enn) and oy riative reatment of the full Hamitonian. However, as
9 is apparent from Eq2.3), in the largeN limit (N—o), the

=H-—H is the time-translation operator. Its diagonalization
leads finally to the excitation energies of the thermal system. B. HB mean field
However, as is generally the case one is not able to extract _ . )
the exact eigenvalues of the Hamiltonian. A common ap- To fix the notations needed later on, let us consider here
proximation scheme consists of splitting the Hamiltonianthe quantized forms for the variablis, andX, in terms of
into a diagonalizable mean-field part and a residual interacwhich the Hamiltonian in Eq(2.1) is written as
tion. The two commonly used approximations, the HFB and

itati icti i inter- - 1 - . 1
HB_, Iead_ to two q?alltanvely conﬂltlstlng risults in the mteTrh X = (a+a’), X,= (b+b"), (2.4
esting situation of a spontaneously broken symmetry. The Pw 2€,

I57T and P, denote their respective conjugate momenta.
2When discussing the question of the Goldstone mode we disre- AS mentioned, in the largdl limit, the pion exhibits the
gard in the following all problems related to the infrared diver- desired behavior of the Goldstone mode in the broken phase
gences. [12]. In this limit the pion is a “Hartree” particle, a semi-

Indeed, the difference between the quasiparticle energies is
Sinite and this leads to a finite mass for the pion in the limit
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classical mode that does not obey anymore the quantum sta- Br=x(T)B" +y(T)B. 2.9
tistics. Indeed in this limit l—<) the Fock contributions
induced by its wave function vanishes.

. ) . We insist here on the fact that the bos@n# need not be
The state of a “Hartree pion” is therefore suitable for a )

transformed since they are just auxiliary modes. This point

perturbative treatment of the residual interaction as well a3t view is different from those adopted in all earlier works
the thermal treatment of the system in TFD. However, th‘TQ—ll]. The unitarity of the Bogoliubov transformations

dellcaFe problem that remains 1s how to actually b.u'ld aHaryoa4s to the following constraints on the thermal amplitudes:
tree pion state. To answer this question a mapping was de-

signed in Ref[15] that allows a consistent bosonization of VAT)—v(T)=1, x3(T)—y3(T)=1.
pairs of pions and a simultaneous rebosonization of the ’
single pions. We recall here the extended Holstein-Primakoff |t was established in Ref15] that a vacuum state that is

mapping for bosons derived for that purpose compatible with the M expansion as given in Eq.7) is a
33), = ANT AT m) coherent statg¥') that accommodates condensates forAhe
(aa);=V2N+4(n+m)A, andb modes. The tilde conjugate Fock space will also have

a coherent stat@) as the vacuum state buildin analogy

S+ 3\ —
(a’a);=2n+m, with | W), such that

(@'a’)=(aa)’, W)= exl(A)A™ +(b)b* 1|0},
()= Vv2N+4(n+m)I'y(m)a;+ 2a;" Al'y(m), |@)=exq(A>K++<b)~b*]|(~)>, 2.9
(@) =(a), . (2.9

where the condensatéa) and(b) are taken as real numbers
HereN s an integern=A*A, m=3,a;" a;, andl'y is given  for simplicity. The statef0) and|0) denote the vacua for the

by original basis(i.e., a|0)=a|0)=b|0)=b[0)=A|0)=A|0)
m+N=2 112 =0). The state$¥) and|¥), on the other hand, are anni-
TN M= S Zme Ny 2miN=2)| (2.6 hilated by the shifted operator$, A, B, andB defined by

Thus instead of the original “Hartree-Fock pionst; we A=A—(A), j:ﬁ_m% B=B—(B), fgzl”g_m)_
have now an ideal bosoa; which, as was shown in Ref. (2.10
[15], is a Hartree pion. This is at the expense of introducing
a power series in a new bosérthat plays an auxiliary role. The condensateA) and(b) scale withN according to
Now that the Hartree state is constructed we can proceed to
the thermalization of the system using the TFD formalism. N

The time-translation operator or thermal Hamiltonian, (A)=d \[5

=H—H, of the system is obtained as usual by considering

the tilde conjugate of all operato’s, «; andb. Using the (bY+(b™)  2[x(T)+y(T)|(B)
mapping in Eqs(2.5) and(2.6), the thermal Hamiltoniar (Xg)= = =Ns.
is expanded in powers of the paramelter V2, V2, (.11

1 1
H=NHy+ \/NH1+H2+\/—NH3+ Nt (27 Finally the thermal vacuurto(T)) for the i, %, A, 4, B,
and B operators is given by the following two-mode
whereH,=H;—H;. squeezed state:
In order to determine the asymptotic field, or the indepen-

dent thermal quasiparticle representation, we introduce a uni- |0(T)) ~ex E 2,(T e & +2,(T)b* B+ |\I’>|ﬁf}
tary thermal Bogoliubov transformation that rotates the ini- T b ’
tial single-boson creation and annihilation operators (2.12
a;,a; ,b,b* and their tilde conjugaté.c) a;, o, b, b*
into the thermal quasiboson operators v, 8, 8" and
their t.c.

where z,(T)=[v(T)/u(T)] and z,(T)=[y(T)/x(T)]. To
set up the expansion of the thermal Hamiltonian in &q7)
we need to fix the values of the two condensates. This can be
ai+=u(T)7i++v(T);/i ’ readily done by minimizing the free energy
~ ~ F=NHy—TS, (2.13
& =u(M)y +v(Mn,

5 where the entropys in the approximation of independent
b*=x(T)B*+y(T)B, thermal quasiparticles, is given by
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S=—N[v?In(v?)—(1+v?)In(1+0v?)]

—y2In(y?)+ (1+y?)In(1+y?), (2.19

and the average energy of the thermal vacuum dtiqtes
given by
1 (0(T)[H|o(T))

N (0(T)[0(T))

w(1+20?)

0

(1+2D2)+952(1+202)

(D+1+D??

g(1+20v2)2 w’s
+ T(D+ V1+D?)%*+ 7+gs4— 7S.
w

(2.195

Here, for convenience, we introduce the paramBter

d
D=— (2.16

\/1+2v2.

The minimization procedure of the free enerdy with

respect tov, s, andd leads to the following three coupled

equations:

1
e
exd&,/T]—1’

7 29(1+2v?)
—=w?+49%+ ————(D+ 1+ D??,
S [}

0=2wDV1+D?+A(D+ V1+D?)? (2.1
where the gap parametdris given by
2gs? 1+2v?
A= 205  90F2T) oL A7 (218

w w?
and the Hartree pion mass as

AD

V1+D?

w+A+

=w(\y1+D?-D)2. (2.19

Er=
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(D+V1+ D2)2A
V1+D?

2wD+

1+ 202
H]_:
2

X[A+ A" —(t.c)]
[ng(1+2v2)
+ —

w

(D+V1+D??+ w?s+4gs’— 7

X (x—y)[B+B*—(tc)], (2.20

Ho=2 ELv vi—(t.c)1+E,[B T B—(tc)]

+28,[(GL AT =G_A)(GLA-G_A")—(tc)]
g(1+202?)
B ——
282
2gsy1+2v?

+—————=—[(G;—G_)(A+A")

ENE,

X[X(B+B)+y(B+B+)]-(t.c)],

[(G4+—G )% (A+AT)?—(tc)]

(2.21

where the function$&.. are given by

1
G.=—
T2

1
Ji+D2|

From the gap equation(2.17) it is easy to verify that, at the
minimum of the free energy, the terhd, vanishes. From the
expression of{, and more precisely from the coefficient of
the bilinear part iny; andy;, one can deduce the existence
of N uncoupled modes that are nothing but thermal Hartree
pions with the masg. given by

V1+D?+ (2.22

1+202
5§T=w(w+2A)=w2+4gsz+2g(g—v)=g.

(2.23

The sigma quasimass§,, that has purely perturbative char-
acter, is fixed by demanding that the bilinear partHf in

the B and B operators is diagonal. It reads

(1+202)

£5=w?+ 1295’ +29—

(2.29

Besides the thermal Hartree pion modes there exist non-
Goldstone excitations corresponding to themode. They
can be found by diagonalizing the remaining nondiagonal

To exhibit the full dynamics of the leading order in the part of #,. This can be realized by means of the thermal

1/N expansion one needs to generate the teimandH, of

random phase approximati¢fiRPA) with the following an-

the Hamiltonian and construct the corresponding terms of thgatz for the excitation operator:

thermal Hamiltonian{;=H,—H, and’H,=H,—H,. This

can be realized by using parameter differentiation techniques

(see Ref[12] for detail9. The net results for botk{; andH,
are

Qi=X,B*—Y,B+X,B"~Y,B+U, A"

~V,A+0, 4" -V, A. (2.25
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Using the usual Rowe equation of motion 1 N N
‘]ZZE E (C;pCZp_CIpclp): J+:p21 C;pclp,

(0(MI[6Q, ,(H7,Q,)110(T)) Pt
=0,0(M[[Q,.Q,1l0(T), (2.2 J=A3,)"
one can deduce readily the characteristic equation for thElere ¢;p.Cip (i=1,2p=1,... N) are fermionic creation
TRPA eigenvalues and annihilation operators. The indices “1” and “2” label
the lower and upper level, respectively, while the indgx’*
” 892 enumerates the sublevels.
Q02=—+ 5 (2.27 Although, from the start, the model only involves fermi-
S B (1+2v°) ons it is conceivable that collective modes may induce also
ggﬂ_(Qi_z]_gi_) bosonic degrees of freedom. Usually this fact is technically

accounted for by the bosonization of pairs of fermions. A
Thus to ordeO(1/y/N) the Hamiltonian in Eq(2.7) can then V€Y (_:onvenient _dynamical t_o_ol is the Holstein_-Primakoff
be written in the TRPA phonon basis as mapping for fermions. The original HPM for fermions, how-
ever, leads to an ideal Fock space in which there is no state
N representing a single fermion. Marshalek has proposed in
Ho=E,2, [y yi—(tc)]+ > Q,[Q,Q,—(tc)], Ref.[14] an extended form for the HPM that allows a con-
i=1 v=12 sistent mapping of pairs and single fermion states. We recall
(2.28  the fermion-boson images of the quasispin and single fermi-

onic operators according to this mapping
It appears from Eq<2.23), (2.24), and(2.27) that the results

obtained in this paper are in perfect agreement with those of 1 .
the finite temperature larghl limit obtained diagrammati- (J2)1=5Ns+Bg Bo,
cally in four space-time dimensions. In other words the con-
tribution (14 2v?/2€,) stands for the thermal tadpole while B B.+
2 2 2\7 i ; + 0 Bo™ N¢ i
the term[1+2v°/E,(Q25—4&%)] is nothing but the loop (‘J+)I:\/NBO 1— T; =),

that corresponds to two convoluted thermal propagdtee

Refs.[12,13). T
In the next section we wish to show how the extended (Cop)( = /1_ Bo BOa " Ea 3.2
Holstein-Primakoff mapping can be used for fermions to 2p/1 N 27 N TP '

yield a thermal-boson expansion for the Lipkin model con-

sistent with known results. Bg Bo Bo
(Ciph= 1_—N Q1p™ 1y A2

Ill. FERMIONIC SYSTEM N

To show that the idea of an extended HP mapping leads, ne=>, (a;pazp_afpalp).
as in the case of pure bosonic systems, to a consistent ther- p=1

mal treatment of fermionic systems, we consider now the N N . . .
two-level Lipkin modeF It consists ofN fermions distrib- HereéBo andaj, as well as their Hermitian conjugates are
uted over two levels with degenera®y(Q = N). The energy ~ 'd€al boson and fermion operators, respectively.

of the lower and upper level is e/2 and+ /2, respectively. Substituting the image8.2) into Eq. (3.1) we obtain the

The model Hamiltonian, written in terms of the generators of€'Mmion-boson image, of the Hamiltonian of the Lipkin
an SU_2) algebra[16], reads model. The thermal fermion-boson Hamiltoniafy then be-

comesH,=H,—H,. Thus we again follow path | by ther-

malizing the system obtained after mapping. The diagonal-
H=eJ,= 5V(I:+J:+J-J-), (3.1 ization of H, gives as usual the thermal excitations of the
system. To determine the thermal vacuum sta(@)), we
introduce as previously the thermal Bogoliubov transforma-
tion that rotates only the ideal fermions and their tilde trans-
form, such that

where the quasispin operatband its component$, ,J_,J,
are defined as

1 + + -
J2=§(J+J++J_J_)+J§, aip =XiBiptYiBip
a,=XBip~YiBip - (3.3
*To avoid any confusion we want to attract the attention of theThe auxiliary bosons, on the other hand are not rotated
reader to the fact that the notations used in this section are consince they, again, represent auxiliary degrees of freedom.

pletely independent from those of the previous section. Obviously our procedure cures the problems of path | that
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were encountered in RgP] regarding the fermion statistics.
As a consequence of E(B.3) one has only fermionic occu- Ho=¢
pation numbers.

Depending on the value of effective coupling constant X,
x,=(VN/e) the Lipkin system may be in one of two phases: —s?(K— 2d?)(BTB* +BB).
“normal” (x,<1) or “deformed” (x ,>1). In terms of

ideal fermions and bosons the deformed phase is charactefhe value of the condensate “shiftf and the coefficients of
ized by the appearance of a boson condensate. To take tHf¥e thermal Bogoliubov transformation are fixed at the mini-
possibility into account we introduce a properly normalizedmum of the grand canonical potentiétee energy F of the
shift of the initial boson operatd®, and define new bosons system, which reads

B and their tilde transform such that

1
E+Xool2) nf+e(1+3y,d*)B"B

F=(0(T)|H,|0(T))—TS—u(0(T)|N|O(T)), (3.9
B= Bo_d‘/ﬁ’ B= Bo_d\/ﬁ' (34 where the entrops and the number operatdt for the ideal

. . . . fermionsa™ anda are given b
Finally the thermal vacuum is written as a direct product of a g y

fermionic thermal vacuum sta{®(T)); that has the BCS- o o o o
like form and of a bosonic vacuum state that does not depend S=- N,le LyiIn(y{) —xiIn(x) ],
on temperature and in turn is a direct product of two vacua— e

for normal and tildeB, bosons,|0)g, and |5)BO, respec- N
tively. Thus, N= 21 (a1p81p+azpa2p)- (3.9

p:
|0(T))=[0(T))¢|0)g [0)g, The averages in E3.8) refer to the thermal vacuupd(T))
o in accordance with TFD. It is obvious from Eq8.7) that
—e ;{2 il('r) ai+pz~ai+p+d(B§+§§) the only contributing to the free energy k. One obtains

p i
ny—n;
3 3 F=Ne| — +d?—y d’K
X[0)4/0)4|0)g|0)g , (3.9 € 2 Xo

where +TN S, [0 In(n) = (1-n)In(1=n)] = uN[ns+ng],
al0),=B|0)g=0, 5|6>a:E|6>B:0- (3.10

To proceed with the evaluation of the dynamics we followWhere the notations; ,n, are used instead of; ,y5. Mini-

the steps of the previous section by first expanding the quahizing F with respect tod, n;, and n,, one obtains, for

sispin operators in powers of. This yields to order Vanishing chemical potenti#l.=0), the following solutions

O(1/\N) for the shiftd, the occupation numberg, and the quasipar-
ticle energies; :

d? :
(J_);=NdVK+ yN| VKB— —=(B* +B) 0: (normal phase
2K d2={ x,(na—ny—1 eformed phase (319
_— eformed phage
+ d? + B 2Xo P
———|2B"B+BB+-—(B*+B)+n#|,
2K 4K
1
(3.6 niZW. (3.12
wherenf=31_1(B3,B2p— B1pB1p), K=z—0d? andz=y] 1 ,
-y3. Eio=Fe §+Xod : (3.13

With similar expansions for J,), and (J,), one can
readily write down the three first terms of the expansion ofHere one sees that the single-particle energies become tem-
the Hamiltonian relevant in the larde limit perature dependent in the deformed phase. Thedepen-
dence is exactly the same as given by the thermal Hartree-
z ) Fock methodsee, e.g.[17]).
Ho=¢| — §+d _Xod K/, From Eq.(3.11) one deduces th&{,;=0 at the minimum.
The partH, of the thermal Hamiltonian is already diagonal
in the fermionic sector. There remains, however, the bosonic
Hl:s[d_)(od(K_dz)](B++ B), (3.7 sector that is at the most bilinear in the bosons and is diago-
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nalized by means of two separate Bogoliubov rotations orenergies are recovered. It appears that the bosons are ther-

the boson® and their tilde conjugat®, respectively: malized due to the collisions with the “heated” fermions.
The same is true for th& boson in case of th®(N) anhar-
B"=uC"+vC, B"=uC"+uC. (3.14  monic oscillator.

In fact this is nothing but the RPA for pairs of fermions and
the RPA frequencies» can be extracted after few simple IV. CONCLUSION

manipulations. One gets
In the present paper we have addressed the question of the

8\/1—x§(n1—n2)2: for the normal phase thermal-boson expansion within the thermo-field dynamics
®= 5 5 . formalism. We have stressed the importance of the bosoniza-

£\2(x5(n1=n2)*~1):  for the deformed phase. oy of single-boson(fermion) operators in addition to the
(3.19 usual bosor(fermion)-pair bosonization. To our knowledge
this point has been overlooked previously. We have shown
on two models, the boson@(N) anharmonic oscillator and
the fermionic Lipkin model, how this can lead to a consistent
o thermal-boson expansion. The leading-order results of the
Ho= Ei(BipBip— BipBip) + @[ CTC—(t.c)] expansion in both cases were derived and the thermal exci-

'=12p tations were shown to comply with both the symmetry and
the particle statistics requirements. It was also shown, in the
case of the anharmonic oscillator, that without the single-
particle mapping the thermal Goldstone excitations were
missing from the spectrum of the theory.

The termH, of the thermal Hamiltonian of the system takes
the form

in agreement with the result of the thermal HFB-RPIA].
Finally it is worth noting that the boson-fermion HP map-

ping in Eqs.(3.2) produces an interesting physical picture for

the thermal behavior of the Lipkin model. After the mapping

one obtains a system of ideal fermions interacting via the

exchange of an ideal bos¢see Eq(3.7)]. Although we did

not introduce a direcT dependence for the auxiliary bogon ACKNOWLEDGMENTS
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