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Observing non-Gaussian sources in heavy-ion reactions
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We examine the possibility of extracting non-Gaussian sources from two-particle correlations in heavy-ion
reactions. Non-Gaussian sources have been predicted in a variety of model calculations and may have been
seen in various like-meson pair correlations. As a tool for this investigation, we have developed an improved
imaging method that relies on a basis spline expansion of the source functions with an improved implemen-
tation of constraints. We examine under what conditions this improved method can distinguish between
Gaussian and non-Gaussian sources. Finally, we investigate pion, kaon, and proton sources fréPb the
reaction at 450 GeV/nucleon and from t8€>b reaction at 200 GeV/nucleon studied by the NA44 experiment.
Both the pion and kaon sources from tBd>b correlations seem to exhibit a Gaussian core with an extended,
non-Gaussian halo. We also find evidence for a scaling of the source widths with particle mass in the sources
from the p-Pb reaction.
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[. INTRODUCTION direct comparison of the proton and kaon sources from the
p-Pb reaction suggests a simple scaling of the source widths
Two-particle correlations have proven to be an importanthat one should expect based on Lund-type string phenom-
tool for experimentally accessing the space-time extent ognology in a fragmenting string.
heavy-ion collisions. For like-meson pair correlatiofesg., Extracting the source functiorgp(r’), begins by noting
s andK’s), the correlation is dominated by the so-calledthat Sp(r’) is related to the experimentally measured two-
Hanbury Brown—TwisgHBT) effect (in other words, Bose- particle correlationCp(q'), through a simple linear integral
Einstein symmetrization of the meson-pair wave fundtion equation[2,18]:
and the Coulomb corrected correlations are usually ad-
equately p'arametrized by Gaussidris-6]. Since meson Rp(q’)ECp(q’)—lzf dr'K(q’,r")Se(r’). (1)
final-state interactiongFSI) can usually be neglected, the
Coulomb corrected correlation function becomes very nearl
the Fourier transform of a source function. Thus, a Gaussia
correlation corresponds to a Gaussian source function.
general, there is no reason to expect the source to be Gau
ian. In fact, non-Gaussian sources may already have be
observed in datf§7-12|.

hus, “imaging the source” means somehow inverting this
equation. Here primes denote quantities in the pair center-of-
Sg]ass(c.m.) frame. Although for imaging purposes it is sim-
e;ﬁlest to write Eq(1) in the pair c.m., Eq(1) may be written
in any frame askp(q’) is a Lorentz invariant observable. In

There are several reasons to expect non-Gaussian sourcest' (1), P=p;+p; is thg tqtal_ momentum of the pair in the
contributions from resonance decays should lead to an expd® ffaf“e- The subscnpt_mdlcates the boo;t from the lab to
nential halo[13—15, effects of space-momentum correla- the pair c.m. frameR/Py is th_e boost velocity between the
tions (caused by either floi2,16] or string fragmentation r@mes. The kemel of Eq(1) is
[17]) should lead to a focusing of the sourd®], and even
simple geometry should lead to non-Gaussian sources. Ex-
perimentally distinguishing between Gaussian and nons
Gaussian sources is difficult and may be complicated by FS air from a relative separation of in the pair c.m. to the
within the pair. Recently it was realized that, by applying : . C1 N e
imaging techniques to the correlation data, we may extrac?ere(.:tor\.N'th relative momentuqi =3 (p; —p;). The source
the two-particle source function directf{t1,12). The imag- unction |tsellf IS the_: quasiprobability of emitting the pair a
ing has two main advantages over the traditional HBT ap_d|stance Of apart, n the c.m..frame. We write the source as
proach: it is model independent, meaning that it may reveal convolution of Wigner functiond)(r,t,P/2),
non-Gaussian features in the source, and it can clearly sepa-
rate the effects of the FSI and symmetrization from effects Sp(r’)zf dt’f d®RATD(R+r/2T+t/2,P/2)
due to the source itself. This last point requires elaboration:
imaging extracts source functions that may be directly com- XD(R—r/2T—t/2,PI2), 3
pared using correlations that cannot easily be compared
when they arise from completely different particles. It is thiswhere the variables in the lab frame are understood as func-
feature that allows us to compare proton, kaon, and pionions of the variables in the pair c.m. frame. Here the Wigner
sources fronp-Pb andS-Pb reactions from NA44. Indeed, a functions are normalized particle emission rates

K(@',r) =@ ()2~ 1. )

he wave functiond®(~) describes the propagation of the

0556-2813/2001/64)/01490218)/$20.00 64 014902-1 ©2001 The American Physical Society



D. A. BROWN AND P. DANIELEWICZ PHYSICAL REVIEW C64 014902

Ed’N EdeN terpreting the results: imaging i.s forn_"nulated in the pair c.m.
D(r.t,p)=— 3 3 (4)  frame as opposed to a frame in which we have more intu-
d°rdtd’p/ d°p ition, e.g., the lab frame. In this paper, we work with only the

first term in the spherical expansions, i.e., the angle-averaged

and may be computed directly from a transport model agqrce and correlation. The drawback of performing a one-
discussed in Ref$11,12,1@. Due to the time integral in Ed. gimensional analysis is that the angular information is lost

(3), we cannot distinguish whether a givehis associated g the resulting source function is even more difficult to
with a time separation or a spatial separation. interpret.

Inverting Eq.(1) is generally an ill-posed problem. This  1pe angle-averaged version of Hd) is
means that small fluctuations in the data, even if well within
statistical or systematic errors, can lead to large changes in
the imaged source function. Ill-posedness stems from experi- R(q)=C(q)— 1:47TJ' drr?K(a,r)s(r). (5
mental factorge.qg., limited statistics, finite sized momentum
bins, etc) and the intrinsic resolution of the kernel in E).  Here q=|q’|. For like pairs in the pair c.m. frame,=0.
In other fields, this stability problem is attacked using a va-This implies thatq’| = gin, = ‘/q2_q02_
riety of tactics including forcing the source function to obey | Eq. (5), the kernel is simply the kernel in EQ), but
known constraints or choosing a representation of the probayeraged over the angle betwegmndr:
lem in which the kernel’s resolution may be optimized. Both
of these techniques were exploited in REgf2]. While the 11
imaging in Ref.[12] was successful, the restored sources K(q,r):Efild(coseqr)K(q,r). (6)
were represented in a basis that does not exhibit the continu-
ity that we expect to see in the source. In this paper, we=or identical spin-zero bosons with no FSlI, this kernel is
report a dramatic improvement of the imaging by using a
representation of the source in which we have direct control K(g,r)= sin(2qr)/2qr, (7
over the continuity of the source. Our choice of representa- . o
tion still allows us to utilize constraints and to optimize the While with FSl it is
resolution of the kernel. 5

This paper is organized as follows. First, we will set up K(g,r)= z |9i(1)] -1 (8)
the problem of inverting angle-averaged correlatigns., | “even (21 +1)
expressed in terms ajmvzx/qz—qg) and outline the im-
proved imaging method. The details of the imaging metho
and our representation of the source are contained in the
appendices. Next, we apply the imaging method to correla- 1
tions corresponding to Gaussian and non-Gaussian sources. K(q,r)==
This will orient us to some of the issues we will face when 2
examining real data. Finally, we will confront like-pion, like-
kaon, and two-proton correlation data fr&Pb collisions at
200 GeV/nucleon from NA44 ang+ Pb collisions at 450
GeV/nucleon.

d;erel is the orbital angular momentum quantum number.
inally, for protons, the spin-averaged kernel is

> (2j+1)(g)s(N1*-1. 9)

jsil’

Herel andl’ are both orbital angular momentum quantum
numbers and ands are the total angular momentum and
spin quantum numbers. In the last two caggs, the relative
final-state radial wave function. For uncorrected meson data,
g is the solution of the Klein-Gordon equation including the
ll. STATEMENT OF THE PROBLEM Coulomb potential. For protong is the solution of the

In this section, we will set up the imaging problem. To Schralinger equation using the C_oulomb potential and
simplify our discussion, we will consider only angle- REID93[19] nucleon-nucleon potential.
averaged correlations and sources. First, we will outline the Given that the identical particle kernels in Egs) or (5)
one-dimensional imaging problem and mention some of ou@e Fourier transform kernels at large distances, we expect
expectations based on experience with Fourier transform&Ur transforms to behave like Fourier transforms. If E5).
Second, we will outline how we utilize the basis spline rep-Were a Fourier transform, then by discretizing E§), we
resentation. Finally, we will describe our solution using aWould be converting the imaging problem into a finite Fou-
Bayesian approach to imaging. The details of the basis splinder transform. In this case, the sampling theorem tells us
basis and the imaging itself are included in the Appendices?oW the sizes of the bins and the numbers of bins in the

appropriate Fourier spaces are related,

A. The one-dimensional imaging problem hom ke

Ar= and Ag= , (10

max max

The source function and correlation in E4) both may
be expanded in spherical harmonics and the relations be-
tween the angular coefficients are listed in Hdfl]. With  whereq,,,,=NAQ, I nax=NAr, andN is the number of bins
this expansion, we may image the individual components oin bothr andq space.
the correlation function and compile a full three-dimensional Using these relations, we may get a feeling for how struc-
imaged source. When doing this, one must take care in inture in the data affect the imaged source. For example, the
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low-qg structure in the data sets the large length scale behav-
ior of the source. Conversely, the highportion of the data 1= (a) N,=2

sets the short length scale behavior of the source and there- L

fore sets the size of the smallest features we could hope to

resolve in the source. For example, if the correlation dies off O * * *
around ag~80 MeV/c, then we should not expect to re-

solve structure smaller thakr ~8 fm. Owing to the fact that 1+
our kernel is not a trigonometric function in general, these D<><\ (b) N,=1

estimates are qualitative at best. Nevertheless, we will often
appeal to Fourier theory for explanations of some of the ef-
fects that we see while imaging.

1 —
B. The representation of the problem L (¢) N,=0

In our calculations, we expand the imaged source in a 0 1| —
function basis [ R N
Ny 0 2 4 8

r

S(r)=2, SBi(r) (1D
i=1 FIG. 1. Sample plots olf\I{)h degreeb-splines. In all panels, the
) ) . . knots are marked by carets and the knotsaD are actuallyN,
and, in this basis, the error on the source is +1 regular knots piled together.
Ny

_ 5 We choose to represent the source function in a basis
AS(r)= iJ.E:l A®S;Bi(r)Bj(r). (12 spline(also known a-spling basis[22] as this basis has all
' of the features we require for a good representation. Plots of
HereA2S s the covariance matrix of the source coefficients.S0mMe samplé-splines are shown in Fig. 1 and this basis is
Once we average the kernel over momentum bins to accouftailed in Appendix AB-splines are piecewise polynomials
for the experimental binning, our inversion problem reducetNd aré continuous up to the degree of these polynomials.

to the following matrix equation: The 'd“ degree b-spline is the box-spline, making our
b-spline expansion a natural generalization of the approach
Nm in Refs.[11,12. Furthermore, in thé-spline basis the con-
R=R(q)= >, KijS;, (13)  cept of the “edge of a bin” in the box-spline basis is re-
=1 placed with the concept of a knf22]. A knot is simply the
o place where the polynomials that make up thepline are
where the kernel matrix is patched together. In the “optimized discretization” scheme
of Ref.[12], the edges of the box-splines are varied to mini-
_Am qi+Aq/2d fmdrrzK( B (1) (14  Mize the relative error of the source. We may generalize this
U AQ) g - age q 0 a4.0)5;{r). idea to theb-splines easily by varying the locations of the

knots. We will give examples of choosing the knots in Sec.
Here Aq is the momentum bin size. Our source vector isllI C and we will explain in detail how to choose the “opti-
made of the coefficient§; of the basis function representa- mal knots” in Appendix A.
tion of the source and our data vector is made of the corre-
lation valuesR; . C. The reconstruction

The function basis that we use to represent our source . . .
P Once we have converted the inversion problem into a ma-

fgnctpn must have several prqpertle(aj it must be eff|-. . trix inversion by choosing a representation of the source, we
cient, i.e., requiring few coefficients to represent a realistic roceed as in Ref§11,12,23,24and extract the source. The
source,(2) it should be continuous, or at least have continu-p e ’

. ) : . details of the Bayesian approach to imaging are discussed in
ity as an option, ang) it should have an adjustable param- Appendix B and we summarize the main results here. To

eter that we might use to optlmlge the respl_qt|or_1 N @ MaNNEgiain the coefficients of the source, we seek the source that
analogous to Ref.12]. One obvious possibility is to either minimizes they?:

use a Laguerre expansi¢g0] (so that the first term is an X

exponential fitted to the sourcer an Edgeworth expansion ¥2=(K-S—R)T-(A?R) 1. (K-S—R), (15)
[20,21] (so that the leading term is a Gaussian fitted to the

source. The down side of either of these choices is that it iswhere A?R is the covariance matrix of the correlation data.
difficult to adjust the terms in one’s expansion to maximizeThe source that does this is

the resolution of the inversion. Furthermore, one could argue

that if one picks one of these bases and keeps only a few S=A%S-KT-(A’R) L. R. (16)
terms in the expansion, then one biases the inversion to give,
for example, only Gaussian sources. The covariance matrix of this source is
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T C T ] FIG. 2. Model proton correlation correspond-
© osL T ] ing to (a) Gaussian proton source function and to
C I ] (b) dipole proton source.
0.25 | (a) Gaussian Test Source T (b) Dipole Test Source _]
C R,=4.5 fm T R,=3.5 fm ]
ol v v v b v by T e e e e ]
0 50 100 0 50 100 150
q [MeV/c] q [MeV/c]
A%S=[KT-(A’R)" . K] % (17) The reader should note that, when we image, we are really

finding a probability density for the source given the corre-
One should note the dependence on the experimental uncdation data rather than the source itself. The set of source
tainty AR in Egs.(16) and(17). In Eq.(16), the points with  coefficients and the covariance matrix of the source charac-
the largest error contribute to the source determination théerize the height and width of this probability distribution. In
least. Also, in Eq(17) the points that are most affected by the end, we use the source coefficients as an estimator of the
the points with the large error also have the largest uncertrue source.
tainty.

In order to stabilize the inversion, we can take advantage . TESTS OF THE IMAGING

of prior information in the form of equality constraintg5s]. . L . . .
An equality constraint is a condition on the vector of source We now expl_ore the imaging in tH@spIme basis t_)y n-
coefficients that has the generic fofnS=c. One example verting some simple mo_del correlations. We consider two
of such a constraint is that the source has slope zero at tHBOd€l sources, a Gaussian source:

origin. Such a situation arises if the normalized particle N 2
emission rated) [cf. Eq.(4)], have a maximum. In this case S(r)= exg — r (22)
we write (2\7Rg)3 4RZ
Nim and a source with a dipole form-factor-like shape:
S'(r—0)=2, $B/(r—0)=0. (18)
i=1 ) RD
_ : SO=N s e aRe @3
Thus, this case correspondsds=B/ (r—0) andc=0. We m (r°+4Rp)
can implement this type of constraint by adding a penalty_ )
term to they?: This second source has a roughly Gaussian peak and an ex-
tended tail that one could imagine corresponds to long-time
X2+ N\ (C-S—c)2. (199  emission of particles. We chose this source to facilitate com-

parison to the experimental results in the next section. We

Here\ is a trade-off parameter and we may vary it in orderPick Rg=4.5 fm, Rp=3.5 fm, andA=1. To generate the
to emphasize stability in the inversiéby making\ huge or  correlations, we convolute the source with the proton kernel
to emphasize goodness Of(ﬁ]y Setting)\ to Zero. Such an in Eq. (9) and bin the correlation in G'Me\Z/Sizedq bins.

ability to trade-off stability for goodness of fit is discussed in TO simulate realistic data, we take the error bars from the
Ref. [26] in detail. With this modification of they?, the real data of Ref[27] and add statistical scatter consistent

imaged source is with these error bars. The data[i2i7] are plotted in the same
size momentum bins as in our test, this data is fully corrected
S=A?%S.[KT-(A’R) L R+NCT-C], (20 for various experimental effects, and these effects are prop-
erly reflected in their estimates for the experimental uncer-
and the covariance matrix of source now is tainty. The resulting correlations are shown in Fig. 2. In all
of our tests, we confine ourselves to proton correlations be-
A%S=[KT-(A%R)"L.K+rCT-C] L. (21)  cause the proton FSI are more important than meson FSI and

place a more demanding test on the imaging.

There is another way in which prior information enters  Our first test is to examine how the quality of the source
into the inversion—in the representation we choose for theeconstruction depends on the number of coefficients in the
source. By using, sapN,=2 in ab-spline expansion of the source expansion. In this test we will use only box-splines.
source, we are really assuming that our source and its firdh the second test, we will use higher degkesplines in the
and second derivatives are all continuous. reconstruction. In this test, we will use a fixed separation
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1073

10+

FIG. 3. Reconstructions of the Gaussian
source with different numbers of coefficients in
the source image. In both panels, the model
sources are the solid curves and the reconstructed
source is the curve with the error band.

10-8

S(r) [fm™3]

T T T T

between the knotgequivalent to using equal width box- an apparent signal. We adopt the second viewpoint, but com-
splines. In the third test, we will demonstrate the use of thement that the “amount of information” in a data set is an
“optimal knots” in analogy to the “optimized discretiza- imprecise concept.
tion” method of Ref.[12]. In the final test, we will demon- Since it is not clear as to which number of coefficients we
strate the practical use of equality constraints. should use, we will try both. Additionally, we will image
using seven box-splines so that we may compare the results
with the higher-degree results of the next section. In Figs. 3
and 4 we plot the inversions of the proton correlations in Fig.
Before we begin our imaging tests, we must decide on the.
size of our imaging region and set the number of coefficients First we look at the Gaussian source images in Fig. 3. In
that we wish to reconstruct. Naively, to sgt., we might all three panels, the inversions are reasonable representations
use the Fourier estimates from Edq&0) giving r,.,=103  of the true source. Only by looking at thé is it clear which
fm. Experience has shown us that the source is usually lost image is the “best”: for panela) xy?=122, for panel(b)
statistical noise and is consistent with zero to within the er-?=91, and for panelc) x?=76. Since there are only 83
rors long before this ... S0, we set,,,=45 fm, roughly  points in the proton correlations, the inversion with 14 coef-
half of what the naive Fourier estimate suggests. If we findicients is “too good” and 11 coefficients seems to be the
this is too conservative, we may increase it later. best choice. Before moving on to discuss the dipole sources,
To set the number of coefficients, we could use the naiveve mention that the fluctuations in the imaged sources are
Fourier estimate again. Doing so, we find tlat=4.1 fm  not independent. If they were, then we would expect that
and that we should use 11 coefficients. On the other handpughly one-third of the bins would differ from the true
Eq. (13) suggests that the imaging problem is really a prob-source by at least a standard deviation.
lem of simultaneously solving a set of linear equations. Now we turn to the dipole sources. Looking at Fig. 4,
Given this, we look at the data and see that there are roughlyone of the images are ideal—all three have large fluctua-
15-16 points that are different from one and hence contaitions that imply that there is a zero somewhere around 10 fm.
useful information. This suggests that we try using somein these three plots, the? is not much of a guide either. The
thing like 14 coefficients in the source. x%'s are 104, 90, and 77, respectively. Finally we comment
This raises the question of the amount of information in athat we cannot tell which images in Figs. 3 and 4 correspond
data set. If a correlation is Gaussian, than one could argu@ Gaussian sources or dipole sources.
that it contains only two pieces of information: the height We have seen that increasing the number of coefficients
and width of the Gaussian. On the other hand if one bins thén the reconstruction helps to reproduce the source, however
data, one could argue that there are rebllgieces of infor-  there is a practical limit as to how many coefficients we may
mation corresponding to the number of bins where there imdd. As the number of source coefficients increases, they

10 "|“““m|||||||||||||| il
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FIG. 4. Reconstructions of the dipole source
with different numbers of coefficients in the
source image. In both panels, the model sources

I j are the solid curves and the reconstructed source
"m"""m" is the curve with the error band.
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— 107 ¢ E source is the solid curve and the reconstructed
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1 E i % , ] source is given by the points with errors. The
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become less constrained by the data. At some point there adegree-1 splines, 94 for degree-2 splines and 93 for degree-3
more source coefficients than can be constrained by the dasplines. In these plots, the region past17 fm is lost in the

and then the extra coefficients only serve to reproduce theoise from the correlation. We notice that all the plots ex-
high frequency statistical fluctuations in the correlation datahibit the same kind of fluctuations seen in tg=0 images

At this point, the imaged source tends to oscillate about thé the last section, however they are less noticeable because
true source as we have over-resolved the source. In gener#€ b-splines are so delocalized. Finally, we mention that the

we can never tell when we are over-resolving the source adnphysical rise out past 40 fm is most likely a result of
we do not know the true source. aliasing. It is more obvious in these plots because theblast

spline has a cusp at the edge of the image.

We also image the dipole source in FighR Using the
same settings as for the Gaussian source, we are able to
We expect the source function to be continuous as it is theeproduce the more complicated behavior of the dipole
convolution of two emission rates, yet we represent it byshaped source over two decades in source intensity. More
discontinuous box-splines. Thus, our first improvement oveimportantly, upon comparing Figs. 5 and 6, we can clearly
a simple box-spline representation of the source is to useell the difference between Gaussian and non-Gaussian
higher degred-splines. source shapes on the logarithmic scale. This is something we
We reimage the proton correlations in Fig. 2. In Figs. 5could not do with the box-spline representation of the source.
and 6, we show the images obtained using lifgpline ex-  The y? for these reconstructions are 95, 94, and 93, respec-

pansion withN,,=7 coefficients and either first, second, or tively. We comment that the cusp in the very fitsspline
third degreeb-splines. Our choice oNy, =7 is somewhat helps us represent the relatively sharp peak in the dipole
arbitrary as we do not know how to extend our Fourier transsource.
form based estimates to owspline basis. However, the fact ~ In all of the images shown so far, we see an unphysical
that the imaging works reasonably well points to the robusttise in the source in the far right of the images. This rise is
ness of the method, despite the possibly suboptimal choice ahost likely a result ofaliasing Chapter 12 ofNumerical
Ny . In all plots,N,+ 1 knots are placed at the end points of Recipes in 26] has a detailed discussion of this problem.
the imaging regior(i.e., atr=0 fm andr =45 fm) and the  Aliasing is a phenomenon that often occurs when approxi-
rest of the knots are equally spaced between the end pointgiating a Fourier transform over an infinite interval with a
In Fig. 5, the images are fairly accurate reconstructions ofinite Fourier transform over a finite interval. Consider a
the source over two orders of magnitude, butthe=3 re-  function f(r) and its Fourier cosine transforr(q):
construction is marginally better, due to the higher degree of

continuity. In all cases, the inversions are better than any of = =fwdrf rcogar %frmaxdrf rcogar). (24
the box-spline results. The correspondiggs are 99 for (@ 0 (reogar) 0 (rycosar). (24

B. Using the basis spline representation

1073

10

E i FIG. 6. In three panels, the true dipole source

Y 1o 3 is the solid curve and the reconstructed source is

= F . given by the points with errors. The knots in both
10-5 panels are represented by carets.
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E  (a) Equally spaced knots (b) "“"Optimal knots” ]
104k = FIG. 7. In both panels, the true Gaussian
— E 3 source is the solid curve and the reconstructed
‘T’E C ] sources are given by the points with errors. In
&10°5 & panel(a) the knots are evenly spaced between the
= g limits of the imaging region and in pangd), the
w C “optimal knots” are used. The knots in both pan-
1076 | | els are represented by carets. Note that the source
E from panel(c) in Fig. 5 is reproduced here as
C || panel(a).
Lo i
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In the first line of this equation, low frequency structure inimprove the imaging dramatically by choosing the size of the
F(qg) corresponds to large distance structurd (n), which  bins inr to minimize the error in the source relative to a test
is neglected in the second line of this equation. Now, imagsource. This technique can be generalized to btspline

ine beginning withF(q) and attempting to infef(r) using a  basis by simply varying the knots. To choose the “optimal
finite rmax. What often happens is that, whatever strengthknots” we proceed as mentioned earlier and detailed in Ap-
f(r) should have out past;,, gets folded into the region pendix A.

r<rmax- In our inversion problem, the integral in E¢f) For the Gaussian source in Fig. 7, we show the inversions
behaves like a Fourier transform. Since statistical quctuaUSing third degreé-splines using seven coefficients for both
tions in the data are artificial high-frequency _structure, Wefixed knots[as in Fig. 6c)] and the “optimal knots.” Sev-
should not be surprised to see features reminiscent of aliagyy) things are apparent in this figure. First, the fixed width
ing when we image. Based on our experience, adjusting  1not reconstruction is markedly better than the lower-degree
or constraining the source ghax can help cure this problem. , ¢yjine reconstructions in the previous section, simply due

However, the rise at the largestis usually preceded by a to the higher degree of continuity. Thé of this reconstruc-

region of the image that is consistent with zero so we Ca%ion is 93, Using the “optimal knot” reconstruction, the

ea'_5|Iy identify th_e gsable part of the image and ignore AMsource is everywhere consistent with the true source except
artifact due to aliasing.
at the lowestr (<=5 fm) where the source drops nearly an
_ order of magnitude. This drop is unphysical for a source that
C. Choosing the knots is the convolution of two single particle sources, each with
For our next refinement, we examine how choosing theédne or more maxima. This drop is due to the close packing of
knots affects the inversion. Were the problem of imaging aghe knots at the lowest and can be remedied by lowering
simple as inverting a Fourier transform, the optimal bins in the number of coefficients in the reconstruction, increasing
would be evenly spaced and given by Et0). However, the the size of the fit region, or by using equality constraias
kernels we are interested in are often distorted by the Couwe will show in the next sectionThe y? of this reconstruc-
lomb repulsion of the pairs as well as other FSI. Furthertion is 90.
more, some regions of the data have large errors and it would In Fig. 8, we show a similar set of inversions for the
be useful if we could combine those bins somehow. Takemlipole shaped source. Both inversions seem to do a reason-
together, we must ask whether keeping equally spaced birable job of representing the source, except at the lowest
in the source is optimal. In R€f12], we found that we could where the cusp of the firdi-spline is a bit higher than the

1078 g e [ T T T T T I I O I I T I
& (a) Equally spaced knots (b) "Optimal knots” ]
1o~ 3 E FIG. 8. In both panels, the true dipole source
w C ] is the solid curve and the reconstructed sources
& Sl i are given by the points with errors. In par(@
- 10 3 E the knots are evenly spaced between the limits of
;’,“-5 u 3 the imaging region and in pané) the “optimal
108 B knots” are used. The knots in both panels are
3 |I||||||||||||| "'"II||||| represented by carets. Note that the source from
C I I(c) in Fig. 6 is reproduced here as parfal
| I Uiy e
10-7 1] I

0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 45
r [fm] r [fm]
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TABLE |. Equality constraints on thb-spline representation of spherically symmetric sources.

Constraint Continuous representation b-spline representation
Flat atr=0 aS 0)=0 Ny
o (r—=0)= > SB/(r—0=0
=1

Normalized tox 4mfgdrr?S(r)=x Ny

> 4w [5drr?B(r)=\

=1
Zero outside of imaged region S(rma =0

N
1_221 SBi('mad=0

Flat atr =r,ay aS —o N
or (Tmad) = > SBl(Fmad =0
=1

true source. The “optimal knot” reconstruction is margin- @veraged sourc&'(r—0)=0. Using constraints amounts to

ally better than the equally spaced knot reconstruction as #dding information, so we imagine that we will be able to
has ay? of 92 compared to &2 of 93 for the equally spaced use more coefficients in the reconstructions. This we will see

knot reconstruction. illustrated below. A list of constraints we could use are

Given the inconsistent performance of the “optimal shown in Table I.

knot” reconstruction, we ask ourselves why this refinement In Fig. 9, we show inversions using t®/(r—0)=0
' y constraint for the Gaussian source. We used the “optimal

does not a'W?‘V.S help. To find the optimal knots, We move thefmots,” third degreeb-splines and seven coefficienfm
knots to minimize the error on the source r.elatlve to a tesbanel(a)] and nine coefficientiin panel(b)] in these inver-
source(which is the same for all of the inversionhe error  gjons \We see that we have solved the pathological behavior
on the source dependsly on the kernel and the error in the qf the imaged source at lomand the agreement with the true
data, so the “optimal knots” do not know anything about the gorce appears good. Upon examining 34107 for panel

true source. If the true source has interesting structure somg) and 93 for panelb)] we see that the seven coefficient
place where we are not sensitive to it, the “optimal knots” source is a lot worse than it appears as it is routinely higher
will be widely spaced there and we will not have the resolu-than the true source in the region from 10—20 fm. In Fig. 10,
tion to see the structure. Conversely, the “optimal knots” we show the results of using the same constraint to image the
may end up giving very high resolution exactly where we dodipole-shaped source. Here we see that, for seven coeffi-
not need it, witness Fig.(B). On the other hand, the “opti- cients[panel(a)], the quality of the image has gone down
mal knots” can give resolution exactly where we need it, asconsiderably: we no longer match the height of the peak and
in Fig. 8b). we cannot resolve any of the tail. Th@ for this inversion is

a comparatively large 108. For nine coefficiefpanel(b)],

the situation is much better. We now get the peak and can
) ] _ resolve the tail. Thee? here is 89.

Now we come to the final refinement, the use of equality e see that this one constraint gave us the ability to add
constraints. As we have mentioned before, a constraint is another two points in the reconstructions without over-
piece of prior information such as knowing that the first de-resolving the source. At a practical level, the first few
rivative atr=0 should vanish for a differentiable angle- b-spline coefficients must be adjusted together in order to

D. Equality constraints

10-3 SRR AR R R R R R RS- R R RN AR R RN AR RN LR RN RRRRE RN AR

(a) S'(r—0) Constraint (b) 8'(r—0) Constraint
N,=7 =

L1

FIG. 9. In both panels, the true Gaussian
source is the solid curve and the reconstructed
sources are the points with errors. In both recon-
structions, the source is constrained to have zero
derivative at the origin. In panéd), we use seven
coefficients and, in pangb), nine coefficients.
The knots in both panels are represented by car-
ets.

0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 45
r [fm] r [fm]
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AL LR R LA R LA LR AR AR AL LAY AR AL LARRY ALAR AR
- (a) 8'(r-0) Constraint (b) $'(r~0) Constraint ]
= = ]
1074 | 4
—_ g 3 FIG. 10. In both panels, the true dipole source
‘T’E L ] is the solid curve and the reconstructed sources
& 1075 & = are the points with errors. In both reconstructions,
= g 3 the source is constrained to have zero derivative
v L 7 at the origin. In pane(a), we use seven coeffi-
10-8 3 e [ cients.and, in pane(b), nine coefficients. The
: |||"i"| ” ||I|||||||||||| knots in both panels are represented by carets.
Il ly
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 45
r [fm] r [fm]

satisfy the constraint, in effect leaving fewer coefficients toof the S-Pb reaction and the implications for the source func-
fit the data. ThUS, we must add more coefficients if we Wantion images_ Fina”y’ we discuss the sources from the NA44
to simultaneously fit the data and satisfy the constraint. Thi)_pp data.

observation leads us to posit a rule of thunt@mount of

information in the data+ (number of constrainjs= (num-

ber of coefficients in expansignAdditionally, one should A. Imaging analysis

pick the number of coefficients somewhere near what one

would estimate based on the Fourier estimates discussed ear- | "€ results of the imaging analysis are presented in Fig.
lier. 12. As a crosscheck, in Fig. 11 we plot the correlations cor-

Finally, by introducing all three refinements of the imag- fesponding to the inverted sources along with the original
ing (b-splines, optimal knots, and equality constrainise data. In these inversions, we used either the noninteracting
are able to reproduce the height of the source=a@ quite ~ Meson kernel in Eq(7) (for the Coulomb corrected pion and
accurately. The value of the sourcerat0 is essential for kaon correlationsor the proton kernel in Eq9). Due to the

extracting the space-averaged phase-space dé€si3g|. differences in kernels, binning, and quality of the various
data sets, each image had to be hand tuned separately. Since
IV. ANALYSIS OF NA44 CORRELATIONS we do know the true sources that correspond to the data, we

used a set of three criteria to decide when we have a good
Since we can reliably image a source from correlationssource.

using the Bayesian approach to imaging ib-apline repre- (1) Is the image stable—i.e., when we tweak a parameter
sentation, we turn to the analysis of NA44 correlations. In &e.g., the number of bins,,.,, number of constraints, ejc.
series of paperis’—9,29, NA44 detail their measurements of does it change much?
angle-averaged pion, kaon, and proton correlations fom  (2) Does the imaged source give a correlation consistent
+ Pb collisions at 458 GeV/c and centralS+ Pb collisions  with the original?
at 200A GeV/c. In two of the earlier papelld,8], they claim (3) Is theX2 as small as we can make it?
to have detected non-Gaussian kaon and pion correlations. |n all cases, we used third degrbesplines. The param-
To bolster their claim, they fit the Coulomb corrected corre-eters of the inversions are collected in Table 1. Only the
lations to Gaussians and to exponentials. In particular, thep-Pb pp source was imaged without tlre=0 smoothness

fit to the following functional forms: constraint. We did not use this constraint because the knot
density is too low at low. Turning on the constraint widens
R(Qiny) =\ eXp(—QiznuRé) (250 the peak artificially as the next few-splines have to be
tuned2 to get the zero slope at the origin, dramatically raising
the x~.

implying the Gaussian source of E@2) and When looking at the images, several things are apparent.

First, each of the sources from thePb reactions are roughly
R(Qiny) =\ exp(—2Qin,Rp) (26) 4 factor of 2 narrower than the corresponding sources from
the S-Pb reaction. This is most likely a result of the different
implying the source with a dipolelike shape of EB3). Here  system sizes. Second, a comparison of the sources from the
Qinu=20in,= V= (P1—P2)? the relative momentum vari- same reaction reveals that the pion sources are wider than the
able traditionally used in the analysis of meson correlationskaon sources and the kaon sources are wider than the proton
The NA44 correlations that we image are collected in Fig.sources. Next, it is apparent that all six of the sources have
11. main peaks that appear Gaussian. However, both the pion
In this section, we first image the NA44 correlations. Sec-and kaon sources in th&-Pb reaction have significant non-
ond, we compare the images to the results of some oBaussian tails. These tails are most likely not due to aliasing
NA44’s fits. Next, we discuss NA44'6RQMD) simulations — asr,axin both plots is at 35 fm, but, in order to show all six

014902-9



D. A. BROWN AND P. DANIELEWICZ PHYSICAL REVIEW C64 014902
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sources on the same scale we truncated the plots at 20 frto aliasing past the region 30—35 fm in the kaon source. No
Unfortunately, this means that we cannot display that thealiasing is apparent in the pion source or any of the proton
kaon and pion sources are consistent with zero in the regiogources. In the pion and kaon sources frompHeb reaction,
from 25—-30 fm nor can one see the rise that is obviously duealiasing is apparent on the far right side of the plots.
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g 0 % 3 FIG. 12. Sources imaged from tt&Pb and
— 10 3 5 "\; E p-Pb reactions. Where applicable, we have also
% : 55 *!l ||||||||||||II|||| I plotted the Gaussian and dipole-shaped sources
1o e lll |!l| | " ||| |lE corresponding to NA44’s fits.
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TABLE Il. Parameters used in the reconstruction of the NA44 sources. The numbers in parentheses in the
number of data points column is our estimate of the number of points which contain usable information.

I max (fM) No. of coeffs r=0 constraint? No. of data pts.  x?
S-Pb atat 35 7 Yes 297) 19.8
KfK™* 35 7 Yes 168) 5.0
pp 26 6 Yes 206) 14.6
p-Pb atat 21 5 Yes 299) 24.8
KFK* 26 8 Yes 299) 23.1
pp 26 8 No 2@8) 7.6
B. NA44 fits dimensional Gaussian correlation corresponds to a three-

Following the imaging analysis of the NA44 correlations,
it is useful to compare those results to the various fits per
formed by NA44. We have in mind two sets of fits: the
one-dimensional fits to Gaussians and exponentials in Refs.
[7,8] and the three-dimensional Gaussian fits in R&@).

dimensional Gaussian source. For the correlation in(Eq,
the corresponding source is

2 2 2
1/rys TI1o IL

S(r)

We first compare the imaged sources to the results of
NA44’'s one-dimensional fits. In addition to the imaged

sources, in Fig. 12 we show the fits as solid cur{fes the
Gaussian fits or dashed curvesfor the exponential fits

= exg —~| >+ +—=
(2\m)°RreRroRL p[ 4(R%s R%, RE)

(28)

Looking at the various transverse fit radii obtained by NA44,
it seems safe to s&;,=R1,=Ry in this source. To convert

NA44's fit parameters are summarized in Tables Il and IV.this three-dimensional source to a one-dimensional source,
In the S-Pb sources in Fig. 12, both the kaon and pionwe only need to angle average §(r)=1/47/dQ,S(r), to
sources seem to be consistent with both the Gaussian and tbbtain
dipole-shaped curves in the range from 4 fm out to about 12

fm. At the lowestr the pion image seems to split the differ-
ence between the two fits and the kaon image is below both
fits. Both sources exhibit long non-Gaussian tails. In the pion

source, this tail is higher than the dipole fit and in the kaon
source, the tail is consistent with the dipole fit. For gi®b
sources in Fig. 12, both the kaon and pion sources appear
very nearly Gaussian. At the lowestthe kaon source is a bit
below the Gaussian fit.
One might ask if the tails in the sources are simply due to

the nonspherical geometry of the full three-dimensionalynere Rei=1/ /| RL—Z_RT—2‘| and erfik) =ierf(—ix). With
source. To answer this question, we compare the imagegis result, we are now able to compare the imaged sources to

sources to sources corresponding to NA44's threeyne angle-averaged three-dimensional fits from NA44. This
dimensional fits in Ref[30]. These correlations were ac- is shown in Fig. 13.

quired as follows: NA44 first measured like-charged pion

A
rN=———exp ——
=r) 167R2R, p( ARZ

r2

2R
effen‘( ) for Ri>R,

2Re ¢ 29
2Rett

r

erfi

for Rt<R, ,
2Reff) Tt

For these fits, we usex andR, as given in Table V and

and kaon correlations in the longitudinal co-moving systemRT was chosen to be the averageRaf, andRy,. Examining
(LCMS), Coulomb corrected their data, and then fit theirgjg 13 it is clear that despite the fact that NA44's three-

correlations to a Gaussian form. The form they fit to is
C(Q)=1+\ expl — QT RT~ QT R~ QRY). (27)

The results of these fits are shown in Table V fof’s and

dimensional sources correspond to non-Gaussian angle-
averaged sources, they are not able to account for the ex-
tended tails we find in the images. There is a caveat with this

conclusion: their fits were performed in the LCMS and our

source is imaged in the pair c.m. frame. Since the two frames

K™s. Now, as in the one-dimensional case, a threecoincide only in the limit thap;— 0, we computed the pion
source using the loy data set only. Only one data set is

TABLE lll. Gaussian fit parameters as obtained by NA44.

TABLE IV. Exponential fit parameters as obtained by NA44.

Ref. A Rg (fm) Y?INDF
Ref. A Rp (fm 2INDF
KTK™ (S-Pb) [7] 0.92+0.08 3.22-0.20 53/31 o () x
atmt (S-Pb) [8] 0.46+0.04 4.50-0.31 18.1/16 K*K™ (S-Pb) [7] 1.80+0.18 2.64-0.22 26/31
KTK™ (p-Pb) [7] 0.68-0.06 1.710.17 65/54 mtmt (S-Pb) [8] 0.77+0.08 3.54-0.33  12.0/16
7" (p-Pb) [8] 0.38-0.03 2.89-0.30 16/25 KTK* (p-Pb) [7] 1.10+0.10 1.04:0.19 55/54
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TABLE V. Three-dimensional Gaussian fit parameters from3keb reaction as obtained by NA44.

(pr) (MeVic) \ Rrs (fm) Rro (fm) Ry (fm)
atat 150 0.56-0.02 4.15-0.27 4.02:0.14 4.73-0.26
atat 450 0.55-0.02 2.95-0.16 2.97-0.16 3.09-0.19
KTK* 240 0.82£0.14 2.55-0.20 2.770.12 3.02:0.20

available for the kaons. Nevertheless, it seems unlikely thagystem. Because this evolution involves longitudinal flow,
the pion or kaon fit parameters would change dramatically ithere are strong position-momentum correlations in the

the fits were performed in the pair c.m. freeze-out positions of the pions. The longitudinal size of the
region where one can find pions with a low relative momen-
C. Discussion ofS-Pb data tum is comparable to the transverse size of the system at

o ) ] ] freeze-out giving a Gaussian core somewhat larger than the
In addition to the various fits to the correlations, membersgitig| system size. In addition to this core, the pions also

of the NA44 Collaboration performed RQMD simulations paye 4 jarge contribution from the decay of various reso-
[7-9,13,29 of the S-Pb andp-Pb collisions. Rather than nances, mainly the, w, 7', and 7°. Now the »'s are not
rep_eat this work, we will summarize it and explain |ts_|mpl|- capable of altering the pion source size or shape agjtsie
cations for the source shape. In all but e case, the simu- lifetimes are much too long. On the other hand, both ghe

lated RQMD correlations compared favorably with the data.(Whose lifetime is~2 fm/c) and thew (whose lifetime is

In the pp case, the simulations overestimate the height ofthe~23 fm/c) both contribute to a non-Gaussian halo in a
correlation peak by roughly 30%.

» ) SR
Sullivan et al. [13] explain that the width of the kaon manner analogous fo the"'s above. Since the’s lifetime

correlation(corresponding to the width of the imaged kaonis smaller thqn the’s, it contributes to Fhe shorter distance
source is determined mainly by the size of the kaon pro- part of the tail and the, to th? longer dlstance part. .
duction region. First, kaons are mainly produced directly in In the case of Fhe protons in tIﬁ_ePb reacﬂon,_the size of

) . ’ : : . the source is mainly set by the size of the region where we
the reaction(either from fragmenting strings or hadronic re-

action3 or from the decay oK* resonances. Now, the re- find protons with low-relative momentum at freeze-out.
. . y oF ’ ’ Looking at the plots of RQMD correlations if29], the
action zone is roughly the size of the sulfur nucle&S,{s

RQMD simulations are somehow unable to reproduce the
o i ) e 8izes of these regions. Since the size of this region is a direct
K S are also p_roduged N aregion of roughly trl's Size. HOW'function of the geometry of the source and the space-
ever, since their lifetime is roughly~4 fm/c, K*'s do not momentum correlations in the sourfteese correlations are

travel far before decaying, giving rise to a non-Gaussian hal P ‘e £ .
surrounding the Gaussian core. This halo is neither exponer%—amsed primarily by flow RQMD's failure here is somewhat

i : _ . of a mystery. Unfortunately, our image is not detailed
tial nor Qaussmn, but ”%thef a copvoluuon of a GaUSSIarénough to give much of a clue where the discrepancy arises.
source with an exponent|@14,1§. Since the kaons have.a A higher resolution measurement of this correlation would
much larger mean-free path in nuclear matter than e|the|r]e|p immensely

pions or nucleongat least in RQMD), they do not rescatter '

as the system evolves. This means that their last interaction
point is very nearly the size of this production zone.

The pion width in theS-Pb reaction is also described well ~ Unlike theS-Pb reaction, RQMD is able to describe all of
by the RQMD calculations. The initially produced pions NA44’s measureg-Pb correlations quite we[l7,9,29. Be-
(produced mainly from hadronic reactions, although there icause the-Pb system is so small, the reaction is most likely
a string componentalso have a source width set by a com-dominated by the formation of a few color strings and/or
bination of the geometrical overlap of the colliding nuclei ropes. RQMD uses the Lund string model to model string
and subsequent dynamics of the system. From their produdermation and fragmentatiof81], so to understand what is
tion until they freeze-out, the pions interact strongly with thehappening in the sources it is useful to understand some of

D. Discussion ofp-Pb data

10-3 LINLIL L L L L L L L L R L L

---- K" Gaussian fit
— KX imaged source

+ .

--—- m Gaussian fit
+ .

— n imaged source

FIG. 13. Pion and kaon sources imaged from
the S-Pb reactions compared to the NA44's
angle-averaged three-dimensional sources.
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The exponential in this expression gives the probability that

hadron \\\\\\\\ the string does not break up before thandq are made at

\\ . .
\\%\\ points 1 and 2 and the theta functions ensure the proper

\\\ \\ ordering of the coordinates. We define the creation point of
\ the hEdron of interest as the mean of the breakoff points of
> & ne e pa
\\\\\\\\ \\\\\\\\\&\\ the qq pair 1
\ Xo==(xP+x?). (33
\\\\\\\ ¢ + =5 R *
s o
\\\\\\\\X X4 We also write
. (1) " Ax. =+ (xP—xP), (34)

In terms of these, we may write E(B2) as
FIG. 14. String fragmentation in the Lund-string model. The

hatched areas indicate regions of nonvanishing color field as well as

the space-time region swept out by the oscillating strings. Points 1~ dP* 6(AX_) 9(AX+)eXF< -P
and 2 indicate the space-time point where the hadron of interest
breaks off of the main string.

1
X X_+ ZAx+Ax,

1
+§(AX,X++AX+X,) ) (35

the features of this type of model. In the Lund model, mo-

mentum and spatial rapidities are tightly correlated. We willFor a hadron at midrapidity, from E¢31) we haveAx,
show that this correlation leads to an approximate scaling of Ax_=m/+2¢. Writing the hadron position back in Carte-
the K andp source radii with mass sian coordinates, we find

mKRK%mpRp . (30)

Pl_, , M
dPxexp — 5| T°—X+—=T
2 o

oT=IXD. (36

As we will point out, this scaling is borne out by the images.__ . ) ) o

We mention that the pion sourstiould notfollow this scal- T NiS last theta function makes causality explicit.

ing because a large fraction of the pions result from reso- SincedP expresses the probability of creating a hadron at

nance decays that distort the shape of the pion source. ~ POsition X and at timeT, it is proportional to the emission
In a Lund-type string moddB2], a meson is viewed as a ate in Eqg.(4). Thus, we can imagine doing the convolution

qapair attached by a string and this pair oscillates back and! Eq. (3) to obtain the source size. Given that the emission

forth in the linear confining potential of the string. This type rates in this case are not Gau55|an, we should not expect the

. . source function itself to be Gaussian. Nevertheless, we can
of model can also describe baryons if one replaces one of thsetiII estimate the width of the source function from &86)
quarks at the end of the string with a diquark. In this d|scus-We take the source width fo be the distance at which the

sion, we ignore the transverse extent of the string and imagrhagnitude of the source function drops by.1From Eq

ine the string lives in 41+ 1)-dimensional space. As g (3¢), we see that the probability of creating a hadron drops
pair oscillates, in one period it sweeps out an invariant aregy 1/e by roughly

given by
Tox- 22 3
. X e 37
AXAX_ = (3D
o This implies that the source function itself will have a width
that is correlated with the mass of the hadron and given by

in light-cone coordinates. Hema is the mass of the hadron \/—
and o is the string tension. A hadron breaking off from a - 2 2(’_ (38)
string is pictured in Fig. 14. mP

To assess any correlations between the mass and the pro- ) o
duction location of a hadron, we examine the distribution ofHere, the factor of/2 arises from the convolution in E¢8).
breakup points of the string that produces the hadron. In Figf we make the reasonable assumption that the string tension
14, points 1 and 2 are the locations wheltqﬁapair separates and breakup probability are both universal, than we have the
from a string. Assuming a constant breakup probability peisqallng refation in Eq(30). Looking at the kaon source in

unit time per unit lengthP the distribution of breakup points .F'g' 12d), the kaon source @/width is Re~6 fm. Follow-
is given by ing the scaling, the proton source should drop bg by

roughly Ry~my /myRx=3 fm. This is roughly borne out in
the image in Fig. 1@). With Eq.(38), we can go further than
dPe exp( — PXIx?) o(x = x@) o(xB—xV). (32 just checking this scaling and try to compute the source
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width directly. Taking typical values for the string breakup Gaussian halos in the source functions from the like-meson
probability, P=1 fm?, and for the string tensiong=1  correlations in th&-Pb reaction. These halos are likely to be
GeV/fm, we find that the proton source radius should bedue to resonances decaying and producing the mesons.
aboutR=2.9 fm and the kaon source radius should be abouRQMD model simulations of the correlations reproduce the
R=5.7 fm, again in rough agreement with the images. Itexperimental data quite well except in the case of the proton
would be very interesting to see if this scaling persists incorrelations from th&-Pb reaction. Unfortunately the source
sources imaged from other like-pair correlationpipA col-  image does not shed much light on the discrepancy. In the
lisions such app, KoKg, or AA. case of thep-Pb reaction, the imaged sources suggest a scal-

In this consideration, we have neglected several thingdnd of the source widths that we should expect on the basis
First, although we have ignored the transverse degrees &f Lund-type string models. This scaling should be tested by
freedom of the strings, the longitudinal length of the produc-examining other like-pair correlation&@.g., pp and AA)
tion region is much larger than the transverse extent so it isvhere these other pairs do not suffer from large resonance
the longitudinal extent that determines the angle-averagedontributions.
source radius. Second, we have ignored the finite mass of the
quarks. Adding finite quark masses would change the trajec- ACKNOWLEDGMENTS
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V. CONCLUSION
APPENDIX A: BASIS SPLINE REPRESENTATION

In this paper, we have investigated the possibility of de- OF SOURCES
tecting non-Gaussian sources in heavy-ion collisions. In ) ) ] )
simple, but realistic, model calculations we have demon- [N this paper and previously ifi2], we write the source
strated that it is possible to distinguish between Gaussian arfkPanded in some basis:
non-Gaussian source shapes using an improved imaging
method and high resolution data. Imaging not only has B
achieved results comparable to Gaussian fits, but has now S(r)—izEl SBi(r).
uncovered deviations from Gaussian behavior.

This improved imaging method has several features thajy [12] this basis was the box-spline basis. In the box-spline
make it superior to the previous methods|ir,12. First,  pasis, the widths of the individual bins could be varied to
this method uses basis splines to represent the source, givifigtrease or decrease the resolution of the kernel to minimize
a continuous representation of the source. The resolution qhe relative error of the source. Unfortunately, in this repre-
the images is controlled by the placement of the krithie  sentation the source is not continuous.
points where the polynomials that make up the spline basis |n this work, we expand our sources in a more general
are matchey Since the knots are analogous to the edges ofasis: that of basis splines, also knownkesplines[22]. b
the bins of a box-spline representation, we may do 482h  splines are piecewise continuous polynomials that can be
and use the “optimal knots” to further improve the image. made arbitrarily smooth by changing the degree of the
In addition to these improvements, equality constraints argpjines; the § degreeb-splines are actually box-splines
now implemented in a simple manner. As in the previous sed before. Thb-splines are characterized by a set of knots
imaging method, imaging is still a least-square problem inthat mark the points where the various polynomials that
which the coefficients of the basis spline representation arghake up theb-spline are matched. In a sense, these knots
chosen to minimize thg? of the data. In other words, the generalize the “edges of the bins” of the box-splines. For
imaging gives the source that has the highest probability ofhis reason, we may vary the locations of the knots to mini-

representing the correlation data. Finally, we mention thapize the relative error of the source, generalizing the method
the amount of information available in the data limits thejn [12].

amount of information we may extract in form of image and
constraints “increase” the amount of information.

Using this improved imaging method, we analyzed the
proton, kaon, and pion correlations fro8Pb andp-Pb re- Now we define theb-splines. AN{)h degreeb-spline is
actions measured by NA44. We find evidence for non-characterized by a set of knot$f,} with t;<t,<---

N
(A1)

1. The basis splines
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<t The number of knots must be chosen so tiat,.s  scheme of Ref{12]. First, the model covariance matfigf.

S

=Ny+Ny+1 for Ny b-splines. ForN,=0, the b-splines  Ed.(B7)] depends on the kernel of the inversion, the error on

are box-splines, i.e., the data and whatever scheme we use to represent the source,
but not on the data or the model itsdffor a given kernel and
1 0f t<r<t; set of data errors, we are free to change our representation of
Bo,(r)=X(r)= (A2)  the source in order to minimize the error of the source. In

0 otherwise. ; _
particular, we may vary the location of the kn¢&t least not

Note, if t;j=t;,, thenBg,;(r)=0. The rest of theb-splines the knots fixed at the end points of the imaging regitm
may be constructed from this first one through a set of recurminimize the error of the source coefficients$; = VAZS;;,

rence relations relative to some dummy source,
N —Np—1
B+ 1, (1) =Wy 4+ 1(r) By, i(1) knots b AS; _
° ® b S——|=min. (A7)
j:Nb+2 S]

F[1-wy, +1j+1(N 1By, i+2(r),  (A3)
The coefficient§}’“mmyare the coefficients of the expansion

of a dummy source irb-splines. In this minimization, the
first and lastN,+ 1 knots are held fixed and the positions of

where the weight factor is

r-t it ti# iy, all of the other knots are varied. The dummy source itself is
WNbH’i(r): tion, ~ti (A4) chosen to be big roughly where one expects the source to be
0 otherwise. big and small where one expects the source to be small.

Since the detailed shape of the dummy source should not be

With these definitions, we may writelaspline of any degree important, in this paper we chose an exponential dummy
back in terms of the box-splines source with radiusR?™™=3.5 fm given by S™™™r)

o exp(—r/RU™MY,

i+Np—1
Bn,.i(r)= ,2. by, i X;(r), (A5) APPENDIX B: BAYESIAN APPROACH TO IMAGING
_ o ) In this appendix, we will explain the technical details of
whereby, ; is a polynomial inr of degreeN,, that we will 1o Bayesian approach to imaging and extend the approach
not write explicitly. We plot samplés-splines of different  of Ref. [12] by implementing constraints in a more consis-
degrees in Fig. 1. tent manner. In the previous works the constraints are imple-
There are three other properties of theplines that are of mented by Monte Carlo sampling the experimental errors,
note. First,b-splines are normalized so that leading to statistical fluctuations in the extracted source. In
that approach, no distinction is made between equality and
o0 Giang+17 1 inequality constraints. By equality constraints we mean con-
f_wdrBi(r)= TN+L (AB)  straints of the form
Second, theth b-spline is zero outside of the regidp<r J drf(r)Ss(r)=constant, (B1)
Stiong 1 Third, the b-splines are not orthogonal but ex-
pressions for their inner product ex[<2]. and by inequality constraints, we mean constraints of the

From the definitions and from the figure, it is not clear ¢5;m,
how to pick the knots. The knots do not have to be equally
spaced and, in many situations, it is bast to space them
equally. In fact, one can even pile upky+1 knots on the f drf(r)Sp(r)=constant. (B2)
same point. One can do this becaudg+ 1=(number of
knots at a point + (number of continuity conditions at that Both of these types of constraints are formspoibr infor-
point). mation meaning information we have in hand before we

If a b-spline hasN,+1 knots at a point then théitspline  began imaging. In this appendix, we will explain how to use
is discontinuous there. Away from these multiple knots, theprior information in an inversion. In particular, we will dis-
b-spline is still continuous up to derivatives of degidg. In cuss two methods for implementing equality constraiits
the main text, we remove all assumptions about the continurectly into the inversion and we will discuss a better way to
ity of the source at the boundaries by keepMigr 1 knots at  implement inequality constraints. We conclude this appendix
the boundaries. We then optionally reinsert continuity condiwith a brief discussion of inequality constraints.
tions using equality constraints.

1. General theory

2. Optimizing resolution Suppose we have adp dimensional vector of observed

Now we come to the point of choosing the best knots fordatad®s with covariance matrixA2d that we wish to repre-
the inversion, generalizing the “optimized discretization” sent by soméy,-dimensional model vectan. In the case of
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source imaging, our model vector is the vector of coefficientslo not need to correspond to the directions corresponding to
of the function expansion of the source and the data are thihe m; components in the model space.

raw correlation functions. We assume the data has a diagonal

covariance matrix. In an ideal measurement of the data, there 2. Equality constraints

would be no experimental uncertainty and the data and the

model would be related through some linear equation Now let us discuss the role of prior information in the

general inversion problem. We concentrate equality con-
d=K-m. (B3) straints such as in EqB1). In a matrix form, equality con-
straints are written as

Here,K is the kernel of an integral equation.

In a real imaging problem, the observed data has errors C-m=c. (B9)
and statistical scatter. To make progress, we adopt the so-
called Bayesian approach to imaging where we seek th
probability density,o(m), for a specific modeim to repre-
sent the dat$23,33. With this density, we take the mean of ! : ) L
the density as an estimator of the true model and the width otPey are listed in Tabl_e . The eq_u_allty constraint in E80)
the density as an estimate of the uncertainty in our modeforresponds to the prior probability density of
Neglec_ting the error in.our _determination of the kerngl and p(M)8(C-m—c). (B10)
assuming the uncertainty in our measurementd®fs is
Gaussian, we can write Bayes theorem as follows: Equality constraints can be cast into a Gaussian prior prob-
ability density simply by writing this density as a Gaussian

1 : e S
O'(m)OCp(m)eX[< _ §X§ata> _ (B4) with vanishing width:

ereC is a matrix of constraint equations ands a constant
vector of constraint values. In the inversion problem in the
main text, there are a variety of constraints we might use and

A
H 2
Here, p(m) encodes all of the prior information we have P(m)“xl'”la EXF{ _EXeQUau)’ (B11)
about the model angl3,,, is -

here
Xata= (K-m—d9)T. (A%d) 1. (K-m—d®9). (BS)

2 2

. . =(C-m—c)2. (B12)
Here the superscript represents a matrix transpose. The Xequar=(
dimension of the model vectdt,, and the dimension of the Finding the most probable model then corresponds to mini-
data vectoNp need not be equal. Indeed, it is better to ha"emizing a modifiedy?:
many more data points than model parameters so that we
may overconstraln the sy§tem. For the time being, assume ;(ZZXczjataH\nguar (B13)
we have no prior information so we may ggim)=1.

We immediately see that the most probable model vectorhe solution is straightforward and corresponds to the most
is the one that maximizes the probability and hence miniprobable model,
mizes thexﬁata. Following Refs.[11,12,23,24,26,33 we ) T o1 o ;
can find both the model vector that minimizes thi,, as (m)=Am-(K"-(A%d)"*-d°*>+\C"-c) (B14

well as the covariance matrix of the model . . .
along with the model covariance matrix,

— A2 T 24— 1. Hobs
(m)=A4%m- K" (A%d)""-d (B6) A2m=[KT.(A2d)"L.K+rCT-C]"L.  (B1S)
and It is clear that to correctly simulate & function prior

A?m=[KT-(A2d)".K]L. (B7) information density, we must choose a largelLooking at
Eq. (B13), we must choose & so thath x5 q,a® Xaata- We
Equation(B6) usually goes by the name of a normal equa-now estimate the sizes Qﬁqua, and x3a:a- A good fit to the
tion. The model covariance matrix is independeni®®and  data should have thei ., nearly at the number of degrees of
depends only on the error of the data and the kernel itself. freedom, i-e-Xgata“ND_ Ny. To estimatexgqual, we fol-
We can write theyj,, directly in terms of the model low Eq. (B12). In the main text, a typical source &1
covariance matrix and thg3,,, minimizing model vector x10 ¢ fm~3 and the constraint matrix and vectors are typi-
[23], cally ~1 fm®, s0xZq,a~Nmx 102 Putting this together,
- we must choose
Xaa=(m=(m)T-(A%m)~*-(m—(m)).  (BY)

X 10%2, (B16)

Np
In other words, if we have &ly-dimensional model space, 7‘>X§ata/)(gqual~<m_l
then thex3,.,=1 hypersurface is aN-dimensional hyper-
ellipsoid with principal axes given by the eigenvectors of theFor example, folNp =83 andN, =8 we need\>10'%. By
covariance matrix of the modeh?m. These principal axes adjusting strength ok, we can adjust strength of various
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definite, the derivative of the source is boundéal ensure

S N > .
2 lo smoothness or the source SatISerS. the Fourier transform _test
from Ref. [10]. Inequality constraints correspond to prior
D 20 probability densities of the form

p(m)cf(C-m—c) (B18)

which cannot be rendered into a Gaussian form.
In Ref. [11], we use a simple Monte Carlo sampling

S
1 scheme to implement inequality constraints. In this scheme,
// one uses the experimental uncertainty to generate an en-
semble of correlations, each consistent with the original. One
then inverts each one to obtain a sample source and discards

any sources that are not consistent with the inequality con-
straints. One then combines the samples that are consistent
FIG. 15. An illustration of an inequality constraint cutting With the constraints to obtain an average source and an esti-
through 1o band of a best-fit region. mate of the errors on the source. The problem with this
scheme is that it pushes the sources away from edges of the
terms, emphasizing stability of inversigne., obeying con- model space defined by the constraints.

straintg over representing the data. Thus,functions as a We llustrate this problem with a simple example. Sup-
trade-off parameter in the jargon of inverse theory. See Refpose we have an inversion problem where the goal is to
[26] Sec. 18.4 for a more complete discussion. determine two pointsS; and S, under the constraint that

A useful alternative to this schenfand a way to do the S,>0. We sketch one possible outcome of the inversion in
A —oo limit exactly) is to use the Householder transformation Fig. 15. In this picture, we see the best-fit valueSpfandS,
to eliminate the constraints from the unmodified normalis consistent with our inequality constraint, but the constraint
equations of Eqs(B6) [26,34. The tradeoff is that the cuts through both thed and 2o contours. Using the Monte
Householder transformation may be somewhat unforgivingCarlo sampling scheme discussed above, we would actually
Due to an unfortunate choice of basis functions, it may nobe finding a false best-fit point which is slightly above and to
be possible to satisfy two constraints simultaneously even ithe left of the true best-fit value because we throw out
they can be satisfied simultaneously in the true answer. Bgamples withS,<<0. The errors on these points would also
keepingA finite, we are never trying to satisfy the constraintsbe symmetrically placed around this point. In fact the correct
exactly so we can do a reasonable job of obeying both conway to solve the problem is just to quote the best-fit values
straints. Nevertheless, schemes based on Householder rede¢-S, andS,, with asymmetrical errors.
tions of the constraints are complementary to ones using the The way inequality constraints are implemented in most

Gaussian prior probability. commercial inversion packages is through so-called “active
set methods[35]. In these methods, one finds the best-fit
3. Inequality constraints solution as one normally would have if there were no in-

equality constraints. If the best-fit solution lies in a region
excluded by the inequality constraints, then the code finds
C-m=c. (B17)  the edge of the included regidthe so-called active seand
searches along it until the code finds the solution that mini-
Such constraints are called inequality constraints and themmizes thex?. Such a scheme is powerful, but likely beyond
are many different ones we could use: the source is positiveshat is needed for our problem.

Now we ask how to use constraints of the form
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