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Observing non-Gaussian sources in heavy-ion reactions
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We examine the possibility of extracting non-Gaussian sources from two-particle correlations in heavy-ion
reactions. Non-Gaussian sources have been predicted in a variety of model calculations and may have been
seen in various like-meson pair correlations. As a tool for this investigation, we have developed an improved
imaging method that relies on a basis spline expansion of the source functions with an improved implemen-
tation of constraints. We examine under what conditions this improved method can distinguish between
Gaussian and non-Gaussian sources. Finally, we investigate pion, kaon, and proton sources from thep-Pb
reaction at 450 GeV/nucleon and from theS-Pb reaction at 200 GeV/nucleon studied by the NA44 experiment.
Both the pion and kaon sources from theS-Pb correlations seem to exhibit a Gaussian core with an extended,
non-Gaussian halo. We also find evidence for a scaling of the source widths with particle mass in the sources
from thep-Pb reaction.
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I. INTRODUCTION

Two-particle correlations have proven to be an import
tool for experimentally accessing the space-time exten
heavy-ion collisions. For like-meson pair correlations~e.g.,
p ’s and K ’s!, the correlation is dominated by the so-call
Hanbury Brown–Twiss~HBT! effect ~in other words, Bose-
Einstein symmetrization of the meson-pair wave functio!
and the Coulomb corrected correlations are usually
equately parametrized by Gaussians@1–6#. Since meson
final-state interactions~FSI! can usually be neglected, th
Coulomb corrected correlation function becomes very ne
the Fourier transform of a source function. Thus, a Gaus
correlation corresponds to a Gaussian source functionIn
general, there is no reason to expect the source to be Ga
ian. In fact, non-Gaussian sources may already have b
observed in data@7–12#.

There are several reasons to expect non-Gaussian sou
contributions from resonance decays should lead to an e
nential halo@13–15#, effects of space-momentum correl
tions ~caused by either flow@2,16# or string fragmentation
@17#! should lead to a focusing of the source@16#, and even
simple geometry should lead to non-Gaussian sources.
perimentally distinguishing between Gaussian and n
Gaussian sources is difficult and may be complicated by
within the pair. Recently it was realized that, by applyi
imaging techniques to the correlation data, we may ext
the two-particle source function directly@11,12#. The imag-
ing has two main advantages over the traditional HBT
proach: it is model independent, meaning that it may rev
non-Gaussian features in the source, and it can clearly s
rate the effects of the FSI and symmetrization from effe
due to the source itself. This last point requires elaborat
imaging extracts source functions that may be directly co
pared using correlations that cannot easily be compa
when they arise from completely different particles. It is th
feature that allows us to compare proton, kaon, and p
sources fromp-Pb andS-Pb reactions from NA44. Indeed,
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direct comparison of the proton and kaon sources from
p-Pb reaction suggests a simple scaling of the source wi
that one should expect based on Lund-type string phen
enology in a fragmenting string.

Extracting the source function,SP(r 8), begins by noting
that SP(r 8) is related to the experimentally measured tw
particle correlation,CP(q8), through a simple linear integra
equation@2,18#:

RP~q8![CP~q8!215E dr 8K~q8,r 8!SP~r 8!. ~1!

Thus, ‘‘imaging the source’’ means somehow inverting th
equation. Here primes denote quantities in the pair center
mass~c.m.! frame. Although for imaging purposes it is sim
plest to write Eq.~1! in the pair c.m., Eq.~1! may be written
in any frame asRP(q8) is a Lorentz invariant observable. I
Eq. ~1!, P5p11p2 is the total momentum of the pair in th
lab frame. TheP subscript indicates the boost from the lab
the pair c.m. frame (P/P0 is the boost velocity between th
frames!. The kernel of Eq.~1! is

K~q8,r 8!5uFq8
(2)

~r 8!u221. ~2!

The wave functionF (2) describes the propagation of th
pair from a relative separation ofr 8 in the pair c.m. to the
detector with relative momentumq85 1

2 (p182p28). The source
function itself is the quasiprobability of emitting the pair
distance ofr 8 apart, in the c.m. frame. We write the source
a convolution of Wigner functions,D(r ,t,P/2),

SP~r 8![E dt8E d3RdTD~R1r /2,T1t/2,P/2!

3D~R2r /2,T2t/2,P/2!, ~3!

where the variables in the lab frame are understood as fu
tions of the variables in the pair c.m. frame. Here the Wign
functions are normalized particle emission rates
©2001 The American Physical Society02-1
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D. A. BROWN AND P. DANIELEWICZ PHYSICAL REVIEW C64 014902
D~r ,t,p!5
Ed7N

d3rdtd3p
Y Ed3N

d3p
, ~4!

and may be computed directly from a transport model
discussed in Refs.@11,12,16#. Due to the time integral in Eq
~3!, we cannot distinguish whether a givenr 8 is associated
with a time separation or a spatial separation.

Inverting Eq.~1! is generally an ill-posed problem. Thi
means that small fluctuations in the data, even if well with
statistical or systematic errors, can lead to large change
the imaged source function. Ill-posedness stems from exp
mental factors~e.g., limited statistics, finite sized momentu
bins, etc.! and the intrinsic resolution of the kernel in Eq.~2!.
In other fields, this stability problem is attacked using a v
riety of tactics including forcing the source function to ob
known constraints or choosing a representation of the p
lem in which the kernel’s resolution may be optimized. Bo
of these techniques were exploited in Ref.@12#. While the
imaging in Ref. @12# was successful, the restored sourc
were represented in a basis that does not exhibit the con
ity that we expect to see in the source. In this paper,
report a dramatic improvement of the imaging by using
representation of the source in which we have direct con
over the continuity of the source. Our choice of represen
tion still allows us to utilize constraints and to optimize t
resolution of the kernel.

This paper is organized as follows. First, we will set
the problem of inverting angle-averaged correlations~i.e.,
expressed in terms ofqinv5Aq22q0

2) and outline the im-
proved imaging method. The details of the imaging meth
and our representation of the source are contained in
appendices. Next, we apply the imaging method to corr
tions corresponding to Gaussian and non-Gaussian sou
This will orient us to some of the issues we will face wh
examining real data. Finally, we will confront like-pion, like
kaon, and two-proton correlation data fromS-Pb collisions at
200 GeV/nucleon from NA44 andp1Pb collisions at 450
GeV/nucleon.

II. STATEMENT OF THE PROBLEM

In this section, we will set up the imaging problem. T
simplify our discussion, we will consider only angle
averaged correlations and sources. First, we will outline
one-dimensional imaging problem and mention some of
expectations based on experience with Fourier transfor
Second, we will outline how we utilize the basis spline re
resentation. Finally, we will describe our solution using
Bayesian approach to imaging. The details of the basis sp
basis and the imaging itself are included in the Appendic

A. The one-dimensional imaging problem

The source function and correlation in Eq.~1! both may
be expanded in spherical harmonics and the relations
tween the angular coefficients are listed in Ref.@11#. With
this expansion, we may image the individual components
the correlation function and compile a full three-dimensio
imaged source. When doing this, one must take care in
01490
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terpreting the results: imaging is formulated in the pair c.
frame as opposed to a frame in which we have more in
ition, e.g., the lab frame. In this paper, we work with only t
first term in the spherical expansions, i.e., the angle-avera
source and correlation. The drawback of performing a o
dimensional analysis is that the angular information is l
and the resulting source function is even more difficult
interpret.

The angle-averaged version of Eq.~1! is

R~q!5C~q!2154pE drr 2K~q,r !S~r !. ~5!

Here q5uq8u. For like pairs in the pair c.m. frame,q0850.
This implies thatuq8u5qinv5Aq22q0

2.
In Eq. ~5!, the kernel is simply the kernel in Eq.~2!, but

averaged over the angle betweenq and r :

K~q,r !5
1

2E21

1

d~cosuqr !K~q,r !. ~6!

For identical spin-zero bosons with no FSI, this kernel is

K~q,r !5 sin~2qr !/2qr, ~7!

while with FSI it is

K~q,r !5 (
l even

ugl~r !u2

~2l 11!
21. ~8!

Here l is the orbital angular momentum quantum numb
Finally, for protons, the spin-averaged kernel is

K~q,r !5
1

2 (
jsl l 8

~2 j 11!@gjs
ll 8~r !#221. ~9!

Here l and l 8 are both orbital angular momentum quantu
numbers andj and s are the total angular momentum an
spin quantum numbers. In the last two cases,g is the relative
final-state radial wave function. For uncorrected meson d
g is the solution of the Klein-Gordon equation including th
Coulomb potential. For protons,g is the solution of the
Schrödinger equation using the Coulomb potential a
REID93 @19# nucleon-nucleon potential.

Given that the identical particle kernels in Eqs.~1! or ~5!
are Fourier transform kernels at large distances, we ex
our transforms to behave like Fourier transforms. If Eq.~5!
were a Fourier transform, then by discretizing Eq.~5!, we
would be converting the imaging problem into a finite Fo
rier transform. In this case, the sampling theorem tells
how the sizes of the bins and the numbers of bins in
appropriate Fourier spaces are related,

Dr 5
\cp

qmax
and Dq5

\cp

r max
, ~10!

whereqmax5NDq, r max5NDr , andN is the number of bins
in both r andq space.

Using these relations, we may get a feeling for how str
ture in the data affect the imaged source. For example,
2-2
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OBSERVING NON-GAUSSIAN SOURCES IN HEAVY-ION . . . PHYSICAL REVIEW C64 014902
low-q structure in the data sets the large length scale be
ior of the source. Conversely, the high-q portion of the data
sets the short length scale behavior of the source and th
fore sets the size of the smallest features we could hop
resolve in the source. For example, if the correlation dies
around aq'80 MeV/c, then we should not expect to re
solve structure smaller thanDr'8 fm. Owing to the fact that
our kernel is not a trigonometric function in general, the
estimates are qualitative at best. Nevertheless, we will o
appeal to Fourier theory for explanations of some of the
fects that we see while imaging.

B. The representation of the problem

In our calculations, we expand the imaged source i
function basis

S~r !5(
i 51

NM

SiBi~r ! ~11!

and, in this basis, the error on the source is

DS~r !5A(
i , j 51

NM

D2Si j Bi~r !Bj~r !. ~12!

HereD2S is the covariance matrix of the source coefficien
Once we average the kernel over momentum bins to acc
for the experimental binning, our inversion problem reduc
to the following matrix equation:

Ri[R~qi !5(
j 51

NM

Ki j Sj , ~13!

where the kernel matrix is

Ki j 5
4p

DqEqi2Dq/2

qi1Dq/2

dqE
0

`

drr 2K~q,r !Bj~r !. ~14!

Here Dq is the momentum bin size. Our source vector
made of the coefficientsSj of the basis function representa
tion of the source and our data vector is made of the co
lation valuesRi .

The function basis that we use to represent our sou
function must have several properties:~1! it must be effi-
cient, i.e., requiring few coefficients to represent a realis
source,~2! it should be continuous, or at least have contin
ity as an option, and~3! it should have an adjustable param
eter that we might use to optimize the resolution in a man
analogous to Ref.@12#. One obvious possibility is to eithe
use a Laguerre expansion@20# ~so that the first term is an
exponential fitted to the source! or an Edgeworth expansio
@20,21# ~so that the leading term is a Gaussian fitted to
source!. The down side of either of these choices is that i
difficult to adjust the terms in one’s expansion to maxim
the resolution of the inversion. Furthermore, one could ar
that if one picks one of these bases and keeps only a
terms in the expansion, then one biases the inversion to g
for example, only Gaussian sources.
01490
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We choose to represent the source function in a b
spline~also known asb-spline! basis@22# as this basis has al
of the features we require for a good representation. Plot
some sampleb-splines are shown in Fig. 1 and this basis
detailed in Appendix A.B-splines are piecewise polynomia
and are continuous up to the degree of these polynom
The 0th degree b-spline is the box-spline, making ou
b-spline expansion a natural generalization of the appro
in Refs.@11,12#. Furthermore, in theb-spline basis the con
cept of the ‘‘edge of a bin’’ in the box-spline basis is r
placed with the concept of a knot@22#. A knot is simply the
place where the polynomials that make up theb-spline are
patched together. In the ‘‘optimized discretization’’ schem
of Ref. @12#, the edges of the box-splines are varied to mi
mize the relative error of the source. We may generalize
idea to theb-splines easily by varying the locations of th
knots. We will give examples of choosing the knots in S
III C and we will explain in detail how to choose the ‘‘opti
mal knots’’ in Appendix A.

C. The reconstruction

Once we have converted the inversion problem into a m
trix inversion by choosing a representation of the source,
proceed as in Refs.@11,12,23,24# and extract the source. Th
details of the Bayesian approach to imaging are discusse
Appendix B and we summarize the main results here.
obtain the coefficients of the source, we seek the source
minimizes thex2:

x25~K•S2R!T
•~D2R!21

•~K•S2R!, ~15!

whereD2R is the covariance matrix of the correlation dat
The source that does this is

S5D2S•KT
•~D2R!21

•R. ~16!

The covariance matrix of this source is

FIG. 1. Sample plots ofNb
th degreeb-splines. In all panels, the

knots are marked by carets and the knots atr 50 are actuallyNb

11 regular knots piled together.
2-3
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FIG. 2. Model proton correlation correspond
ing to ~a! Gaussian proton source function and
~b! dipole proton source.
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D2S5@KT
•~D2R!21

•K#21. ~17!

One should note the dependence on the experimental un
tainty D2R in Eqs.~16! and~17!. In Eq.~16!, the points with
the largest error contribute to the source determination
least. Also, in Eq.~17! the points that are most affected b
the points with the large error also have the largest un
tainty.

In order to stabilize the inversion, we can take advant
of prior information in the form of equality constraints@25#.
An equality constraint is a condition on the vector of sou
coefficients that has the generic formC•S5c. One example
of such a constraint is that the source has slope zero a
origin. Such a situation arises if the normalized parti
emission rates,D @cf. Eq. ~4!#, have a maximum. In this cas
we write

S8~r→0!5(
i 51

NM

SiBi8~r→0!50. ~18!

Thus, this case corresponds toCi5Bi8(r→0) andc50. We
can implement this type of constraint by adding a pena
term to thex2:

x21l~C•S2c!2. ~19!

Herel is a trade-off parameter and we may vary it in ord
to emphasize stability in the inversion~by makingl huge! or
to emphasize goodness of fit~by settingl to zero!. Such an
ability to trade-off stability for goodness of fit is discussed
Ref. @26# in detail. With this modification of thex2, the
imaged source is

S5D2S•@KT
•~D2R!21

•R1lC T
•c#, ~20!

and the covariance matrix of source now is

D2S5@KT
•~D2R!21

•K1lC T
•C#21. ~21!

There is another way in which prior information ente
into the inversion—in the representation we choose for
source. By using, say,Nb52 in a b-spline expansion of the
source, we are really assuming that our source and its
and second derivatives are all continuous.
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The reader should note that, when we image, we are re
finding a probability density for the source given the cor
lation data rather than the source itself. The set of sou
coefficients and the covariance matrix of the source cha
terize the height and width of this probability distribution.
the end, we use the source coefficients as an estimator o
true source.

III. TESTS OF THE IMAGING

We now explore the imaging in theb-spline basis by in-
verting some simple model correlations. We consider t
model sources, a Gaussian source:

S~r !5
l

~2ApRG!3
expS 2

r 2

4RG
2 D ~22!

and a source with a dipole form-factor-like shape:

S~r !5l
2

p2

RD

~r 214RD
2 !2

. ~23!

This second source has a roughly Gaussian peak and a
tended tail that one could imagine corresponds to long-t
emission of particles. We chose this source to facilitate co
parison to the experimental results in the next section.
pick RG54.5 fm, RD53.5 fm, andl51. To generate the
correlations, we convolute the source with the proton ker
in Eq. ~9! and bin the correlation in 6-MeV/c sizedq bins.
To simulate realistic data, we take the error bars from
real data of Ref.@27# and add statistical scatter consiste
with these error bars. The data in@27# are plotted in the same
size momentum bins as in our test, this data is fully correc
for various experimental effects, and these effects are p
erly reflected in their estimates for the experimental unc
tainty. The resulting correlations are shown in Fig. 2. In
of our tests, we confine ourselves to proton correlations
cause the proton FSI are more important than meson FSI
place a more demanding test on the imaging.

Our first test is to examine how the quality of the sour
reconstruction depends on the number of coefficients in
source expansion. In this test we will use only box-splin
In the second test, we will use higher degreeb-splines in the
reconstruction. In this test, we will use a fixed separat
2-4
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FIG. 3. Reconstructions of the Gaussia
source with different numbers of coefficients
the source image. In both panels, the mod
sources are the solid curves and the reconstruc
source is the curve with the error band.
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between the knots~equivalent to using equal width box
splines!. In the third test, we will demonstrate the use of t
‘‘optimal knots’’ in analogy to the ‘‘optimized discretiza
tion’’ method of Ref.@12#. In the final test, we will demon-
strate the practical use of equality constraints.

A. Number of coefficients in the source

Before we begin our imaging tests, we must decide on
size of our imaging region and set the number of coefficie
that we wish to reconstruct. Naively, to setr max we might
use the Fourier estimates from Eqs.~10! giving r max5103
fm. Experience has shown us that the source is usually lo
statistical noise and is consistent with zero to within the
rors long before thisr max. So, we setr max545 fm, roughly
half of what the naive Fourier estimate suggests. If we fi
this is too conservative, we may increase it later.

To set the number of coefficients, we could use the na
Fourier estimate again. Doing so, we find thatDr 54.1 fm
and that we should use 11 coefficients. On the other ha
Eq. ~13! suggests that the imaging problem is really a pro
lem of simultaneously solving a set of linear equatio
Given this, we look at the data and see that there are rou
15–16 points that are different from one and hence con
useful information. This suggests that we try using som
thing like 14 coefficients in the source.

This raises the question of the amount of information i
data set. If a correlation is Gaussian, than one could ar
that it contains only two pieces of information: the heig
and width of the Gaussian. On the other hand if one bins
data, one could argue that there are reallyN pieces of infor-
mation corresponding to the number of bins where ther
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an apparent signal. We adopt the second viewpoint, but c
ment that the ‘‘amount of information’’ in a data set is a
imprecise concept.

Since it is not clear as to which number of coefficients
should use, we will try both. Additionally, we will image
using seven box-splines so that we may compare the re
with the higher-degree results of the next section. In Figs
and 4 we plot the inversions of the proton correlations in F
2.

First we look at the Gaussian source images in Fig. 3
all three panels, the inversions are reasonable representa
of the true source. Only by looking at thex2 is it clear which
image is the ‘‘best’’: for panel~a! x25122, for panel~b!
x2591, and for panel~c! x2576. Since there are only 83
points in the proton correlations, the inversion with 14 co
ficients is ‘‘too good’’ and 11 coefficients seems to be t
best choice. Before moving on to discuss the dipole sour
we mention that the fluctuations in the imaged sources
not independent. If they were, then we would expect t
roughly one-third of the bins would differ from the tru
source by at least a standard deviation.

Now we turn to the dipole sources. Looking at Fig.
none of the images are ideal—all three have large fluct
tions that imply that there is a zero somewhere around 10
In these three plots, thex2 is not much of a guide either. Th
x2’s are 104, 90, and 77, respectively. Finally we comm
that we cannot tell which images in Figs. 3 and 4 correspo
to Gaussian sources or dipole sources.

We have seen that increasing the number of coefficie
in the reconstruction helps to reproduce the source, howe
there is a practical limit as to how many coefficients we m
add. As the number of source coefficients increases, t
e
e
ces
rce
FIG. 4. Reconstructions of the dipole sourc
with different numbers of coefficients in th
source image. In both panels, the model sour
are the solid curves and the reconstructed sou
is the curve with the error band.
2-5
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FIG. 5. In all three panels, the true Gaussi
source is the solid curve and the reconstruc
source is given by the points with errors. Th
knots in both panels are represented by carets
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become less constrained by the data. At some point there
more source coefficients than can be constrained by the
and then the extra coefficients only serve to reproduce
high frequency statistical fluctuations in the correlation da
At this point, the imaged source tends to oscillate about
true source as we have over-resolved the source. In gen
we can never tell when we are over-resolving the source
we do not know the true source.

B. Using the basis spline representation

We expect the source function to be continuous as it is
convolution of two emission rates, yet we represent it
discontinuous box-splines. Thus, our first improvement o
a simple box-spline representation of the source is to
higher degreeb-splines.

We reimage the proton correlations in Fig. 2. In Figs
and 6, we show the images obtained using theb-spline ex-
pansion withNM57 coefficients and either first, second,
third degreeb-splines. Our choice ofNM57 is somewhat
arbitrary as we do not know how to extend our Fourier tra
form based estimates to ourb-spline basis. However, the fac
that the imaging works reasonably well points to the robu
ness of the method, despite the possibly suboptimal choic
NM . In all plots,Nb11 knots are placed at the end points
the imaging region~i.e., at r 50 fm andr 545 fm! and the
rest of the knots are equally spaced between the end po

In Fig. 5, the images are fairly accurate reconstructions
the source over two orders of magnitude, but theNb53 re-
construction is marginally better, due to the higher degree
continuity. In all cases, the inversions are better than an
the box-spline results. The correspondingx2’s are 99 for
01490
re
ta
e
.
e

ral,
as

e
y
r
e

-

t-
of

ts.
f

of
of

degree-1 splines, 94 for degree-2 splines and 93 for degr
splines. In these plots, the region pastr 517 fm is lost in the
noise from the correlation. We notice that all the plots e
hibit the same kind of fluctuations seen in theNb50 images
in the last section, however they are less noticeable bec
theb-splines are so delocalized. Finally, we mention that
unphysical rise out past 40 fm is most likely a result
aliasing. It is more obvious in these plots because the lasb-
spline has a cusp at the edge of the image.

We also image the dipole source in Fig. 2~b!. Using the
same settings as for the Gaussian source, we are ab
reproduce the more complicated behavior of the dip
shaped source over two decades in source intensity. M
importantly, upon comparing Figs. 5 and 6, we can clea
tell the difference between Gaussian and non-Gaus
source shapes on the logarithmic scale. This is something
could not do with the box-spline representation of the sour
The x2 for these reconstructions are 95, 94, and 93, resp
tively. We comment that the cusp in the very firstb-spline
helps us represent the relatively sharp peak in the dip
source.

In all of the images shown so far, we see an unphys
rise in the source in the far right of the images. This rise
most likely a result ofaliasing. Chapter 12 ofNumerical
Recipes in C@26# has a detailed discussion of this problem
Aliasing is a phenomenon that often occurs when appro
mating a Fourier transform over an infinite interval with
finite Fourier transform over a finite interval. Consider
function f (r ) and its Fourier cosine transform,F(q):

F~q!5E
0

`

dr f ~r !cos~qr !'E
0

r max
dr f ~r !cos~qr !. ~24!
ce
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th
FIG. 6. In three panels, the true dipole sour
is the solid curve and the reconstructed source
given by the points with errors. The knots in bo
panels are represented by carets.
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FIG. 7. In both panels, the true Gaussia
source is the solid curve and the reconstruc
sources are given by the points with errors.
panel~a! the knots are evenly spaced between t
limits of the imaging region and in panel~b!, the
‘‘optimal knots’’ are used. The knots in both pan
els are represented by carets. Note that the sou
from panel ~c! in Fig. 5 is reproduced here a
panel~a!.
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In the first line of this equation, low frequency structure
F(q) corresponds to large distance structure inf (r ), which
is neglected in the second line of this equation. Now, im
ine beginning withF(q) and attempting to inferf (r ) using a
finite r max. What often happens is that, whatever stren
f (r ) should have out pastr max gets folded into the region
r ,r max. In our inversion problem, the integral in Eq.~1!
behaves like a Fourier transform. Since statistical fluct
tions in the data are artificial high-frequency structure,
should not be surprised to see features reminiscent of a
ing when we image. Based on our experience, adjustingr max
or constraining the source atr max can help cure this problem
However, the rise at the largestr is usually preceded by a
region of the image that is consistent with zero so we
easily identify the usable part of the image and ignore a
artifact due to aliasing.

C. Choosing the knots

For our next refinement, we examine how choosing
knots affects the inversion. Were the problem of imaging
simple as inverting a Fourier transform, the optimal bins ir
would be evenly spaced and given by Eq.~10!. However, the
kernels we are interested in are often distorted by the C
lomb repulsion of the pairs as well as other FSI. Furth
more, some regions of the data have large errors and it w
be useful if we could combine those bins somehow. Ta
together, we must ask whether keeping equally spaced
in the source is optimal. In Ref.@12#, we found that we could
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improve the imaging dramatically by choosing the size of
bins in r to minimize the error in the source relative to a te
source. This technique can be generalized to theb-spline
basis by simply varying the knots. To choose the ‘‘optim
knots’’ we proceed as mentioned earlier and detailed in A
pendix A.

For the Gaussian source in Fig. 7, we show the inversi
using third degreeb-splines using seven coefficients for bo
fixed knots@as in Fig. 6~c!# and the ‘‘optimal knots.’’ Sev-
eral things are apparent in this figure. First, the fixed wid
knot reconstruction is markedly better than the lower-deg
b-spline reconstructions in the previous section, simply d
to the higher degree of continuity. Thex2 of this reconstruc-
tion is 93. Using the ‘‘optimal knot’’ reconstruction, th
source is everywhere consistent with the true source ex
at the lowestr (&5 fm! where the source drops nearly a
order of magnitude. This drop is unphysical for a source t
is the convolution of two single particle sources, each w
one or more maxima. This drop is due to the close packing
the knots at the lowestr and can be remedied by lowerin
the number of coefficients in the reconstruction, increas
the size of the fit region, or by using equality constraints~as
we will show in the next section!. Thex2 of this reconstruc-
tion is 90.

In Fig. 8, we show a similar set of inversions for th
dipole shaped source. Both inversions seem to do a rea
able job of representing the source, except at the lower
where the cusp of the firstb-spline is a bit higher than the
e
es

of

re
om
FIG. 8. In both panels, the true dipole sourc
is the solid curve and the reconstructed sourc
are given by the points with errors. In panel~a!
the knots are evenly spaced between the limits
the imaging region and in panel~b! the ‘‘optimal
knots’’ are used. The knots in both panels a
represented by carets. Note that the source fr
panel~c! in Fig. 6 is reproduced here as panel~a!.
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TABLE I. Equality constraints on theb-spline representation of spherically symmetric sources.

Constraint Continuous representation b-spline representation

Flat at r 50 ]S

]r
(r→0)50 (

j51

NM

SjBj8~r→0!50

Normalized tol 4p*0
`drr 2S(r )5l

(
j51

NM

4pSj*0
`drr2Bj~r!5l

Zero outside of imaged region S(r max)50

(
j51

NM

SjBj~rmax!50

Flat at r 5r max ]S

]r
(r max)50 (

j51

NM

SjBj8~rmax!50
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true source. The ‘‘optimal knot’’ reconstruction is margi
ally better than the equally spaced knot reconstruction a
has ax2 of 92 compared to ax2 of 93 for the equally spaced
knot reconstruction.

Given the inconsistent performance of the ‘‘optim
knot’’ reconstruction, we ask ourselves why this refinem
does not always help. To find the optimal knots, we move
knots to minimize the error on the source relative to a t
source~which is the same for all of the inversions!. The error
on the source dependsonly on the kernel and the error in th
data, so the ‘‘optimal knots’’ do not know anything about t
true source. If the true source has interesting structure s
place where we are not sensitive to it, the ‘‘optimal knot
will be widely spaced there and we will not have the reso
tion to see the structure. Conversely, the ‘‘optimal knot
may end up giving very high resolution exactly where we
not need it, witness Fig. 7~b!. On the other hand, the ‘‘opti
mal knots’’ can give resolution exactly where we need it,
in Fig. 8~b!.

D. Equality constraints

Now we come to the final refinement, the use of equa
constraints. As we have mentioned before, a constraint
piece of prior information such as knowing that the first d
rivative at r50 should vanish for a differentiable angle
01490
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averaged source,S8(r→0)50. Using constraints amounts t
adding information, so we imagine that we will be able
use more coefficients in the reconstructions. This we will s
illustrated below. A list of constraints we could use a
shown in Table I.

In Fig. 9, we show inversions using theS8(r→0)50
constraint for the Gaussian source. We used the ‘‘optim
knots,’’ third degreeb-splines and seven coefficients@in
panel~a!# and nine coefficients@in panel~b!# in these inver-
sions. We see that we have solved the pathological beha
of the imaged source at lowr and the agreement with the tru
source appears good. Upon examining thex2 @107 for panel
~a! and 93 for panel~b!# we see that the seven coefficie
source is a lot worse than it appears as it is routinely hig
than the true source in the region from 10–20 fm. In Fig. 1
we show the results of using the same constraint to image
dipole-shaped source. Here we see that, for seven co
cients @panel ~a!#, the quality of the image has gone dow
considerably: we no longer match the height of the peak
we cannot resolve any of the tail. Thex2 for this inversion is
a comparatively large 108. For nine coefficients@panel~b!#,
the situation is much better. We now get the peak and
resolve the tail. Thex2 here is 89.

We see that this one constraint gave us the ability to
another two points in the reconstructions without ov
resolving the source. At a practical level, the first fe
b-spline coefficients must be adjusted together in order
n
ted
n-

ero

ar-
FIG. 9. In both panels, the true Gaussia
source is the solid curve and the reconstruc
sources are the points with errors. In both reco
structions, the source is constrained to have z
derivative at the origin. In panel~a!, we use seven
coefficients and, in panel~b!, nine coefficients.
The knots in both panels are represented by c
ets.
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FIG. 10. In both panels, the true dipole sour
is the solid curve and the reconstructed sourc
are the points with errors. In both reconstruction
the source is constrained to have zero derivat
at the origin. In panel~a!, we use seven coeffi-
cients and, in panel~b!, nine coefficients. The
knots in both panels are represented by carets
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satisfy the constraint, in effect leaving fewer coefficients
fit the data. Thus, we must add more coefficients if we w
to simultaneously fit the data and satisfy the constraint. T
observation leads us to posit a rule of thumb:~amount of
information in the data! 1 ~number of constraints! > ~num-
ber of coefficients in expansion!. Additionally, one should
pick the number of coefficients somewhere near what
would estimate based on the Fourier estimates discussed
lier.

Finally, by introducing all three refinements of the ima
ing (b-splines, optimal knots, and equality constraints! we
are able to reproduce the height of the source atr 50 quite
accurately. The value of the source atr 50 is essential for
extracting the space-averaged phase-space density@11,28#.

IV. ANALYSIS OF NA44 CORRELATIONS

Since we can reliably image a source from correlatio
using the Bayesian approach to imaging in ab-spline repre-
sentation, we turn to the analysis of NA44 correlations. I
series of papers@7–9,29#, NA44 detail their measurements o
angle-averaged pion, kaon, and proton correlations fromp
1Pb collisions at 450A GeV/c and centralS1Pb collisions
at 200A GeV/c. In two of the earlier papers@7,8#, they claim
to have detected non-Gaussian kaon and pion correlati
To bolster their claim, they fit the Coulomb corrected cor
lations to Gaussians and to exponentials. In particular, t
fit to the following functional forms:

R~Qinv!5l exp~2Qinv
2 RG

2 ! ~25!

implying the Gaussian source of Eq.~22! and

R~Qinv!5l exp~22QinvRD! ~26!

implying the source with a dipolelike shape of Eq.~23!. Here
Qinv52qinv5A2(p12p2)2, the relative momentum vari
able traditionally used in the analysis of meson correlatio
The NA44 correlations that we image are collected in F
11.

In this section, we first image the NA44 correlations. S
ond, we compare the images to the results of some
NA44’s fits. Next, we discuss NA44’s~RQMD! simulations
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of theS-Pb reaction and the implications for the source fun
tion images. Finally, we discuss the sources from the NA
p-Pb data.

A. Imaging analysis

The results of the imaging analysis are presented in F
12. As a crosscheck, in Fig. 11 we plot the correlations c
responding to the inverted sources along with the origi
data. In these inversions, we used either the noninterac
meson kernel in Eq.~7! ~for the Coulomb corrected pion an
kaon correlations! or the proton kernel in Eq.~9!. Due to the
differences in kernels, binning, and quality of the vario
data sets, each image had to be hand tuned separately.
we do know the true sources that correspond to the data
used a set of three criteria to decide when we have a g
source.

~1! Is the image stable—i.e., when we tweak a parame
~e.g., the number of bins,r max, number of constraints, etc.!
does it change much?

~2! Does the imaged source give a correlation consis
with the original?

~3! Is thex2 as small as we can make it?
In all cases, we used third degreeb-splines. The param-

eters of the inversions are collected in Table II. Only t
p-Pb pp source was imaged without ther 50 smoothness
constraint. We did not use this constraint because the k
density is too low at lowr. Turning on the constraint widen
the peak artificially as the next fewb-splines have to be
tuned to get the zero slope at the origin, dramatically rais
the x2.

When looking at the images, several things are appar
First, each of the sources from thep-Pb reactions are roughly
a factor of 2 narrower than the corresponding sources fr
theS-Pb reaction. This is most likely a result of the differe
system sizes. Second, a comparison of the sources from
same reaction reveals that the pion sources are wider tha
kaon sources and the kaon sources are wider than the pr
sources. Next, it is apparent that all six of the sources h
main peaks that appear Gaussian. However, both the
and kaon sources in theS-Pb reaction have significant non
Gaussian tails. These tails are most likely not due to alias
asr max in both plots is at 35 fm, but, in order to show all s
2-9
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FIG. 11. Pion, kaon and proton correlation
for the S-Pb andp-Pb reactions. The points an
narrow error bars correspond to the experime
tally measured correlations. The histogram a
wide error bars correspond to the restored cor
lations from the imaging analysis. The pion
kaon, and proton correlations are from Refs.@9#,
@7#, and@29#, respectively.
f
th
gio
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No
ton
sources on the same scale we truncated the plots at 20
Unfortunately, this means that we cannot display that
kaon and pion sources are consistent with zero in the re
from 25–30 fm nor can one see the rise that is obviously
01490
m.
e
n
e

to aliasing past the region 30–35 fm in the kaon source.
aliasing is apparent in the pion source or any of the pro
sources. In the pion and kaon sources from thep-Pb reaction,
aliasing is apparent on the far right side of the plots.
lso
ces
FIG. 12. Sources imaged from theS-Pb and
p-Pb reactions. Where applicable, we have a
plotted the Gaussian and dipole-shaped sour
corresponding to NA44’s fits.
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TABLE II. Parameters used in the reconstruction of the NA44 sources. The numbers in parenthese
number of data points column is our estimate of the number of points which contain usable informat

r max ~fm! No. of coeffs r 50 constraint? No. of data pts. x2

S-Pb p1p1 35 7 Yes 29~7! 19.8
K1K1 35 7 Yes 16~8! 5.0

pp 26 6 Yes 20~6! 14.6

p-Pb p1p1 21 5 Yes 29~9! 24.8
K1K1 26 8 Yes 29~9! 23.1

pp 26 8 No 20~8! 7.6
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B. NA44 fits

Following the imaging analysis of the NA44 correlation
it is useful to compare those results to the various fits p
formed by NA44. We have in mind two sets of fits: th
one-dimensional fits to Gaussians and exponentials in R
@7,8# and the three-dimensional Gaussian fits in Ref.@30#.

We first compare the imaged sources to the results
NA44’s one-dimensional fits. In addition to the image
sources, in Fig. 12 we show the fits as solid curves~for the
Gaussian fits! or dashed curves~for the exponential fits!.
NA44’s fit parameters are summarized in Tables III and
In the S-Pb sources in Fig. 12, both the kaon and pi
sources seem to be consistent with both the Gaussian an
dipole-shaped curves in the range from 4 fm out to about
fm. At the lowestr the pion image seems to split the diffe
ence between the two fits and the kaon image is below b
fits. Both sources exhibit long non-Gaussian tails. In the p
source, this tail is higher than the dipole fit and in the ka
source, the tail is consistent with the dipole fit. For thep-Pb
sources in Fig. 12, both the kaon and pion sources ap
very nearly Gaussian. At the lowestr, the kaon source is a bi
below the Gaussian fit.

One might ask if the tails in the sources are simply due
the nonspherical geometry of the full three-dimensio
source. To answer this question, we compare the ima
sources to sources corresponding to NA44’s thr
dimensional fits in Ref.@30#. These correlations were ac
quired as follows: NA44 first measured like-charged pi
and kaon correlations in the longitudinal co-moving syst
~LCMS!, Coulomb corrected their data, and then fit th
correlations to a Gaussian form. The form they fit to is

C~Q!511l exp~2QTs
2 RTs

2 2QTo
2 RTo

2 2QL
2RL

2!. ~27!

The results of these fits are shown in Table V forp1’s and
K1’s. Now, as in the one-dimensional case, a thr

TABLE III. Gaussian fit parameters as obtained by NA44.

Ref. l RG ~fm! x2/NDF

K1K1 (S-Pb) @7# 0.9260.08 3.2260.20 53/31
p1p1 (S-Pb) @8# 0.4660.04 4.5060.31 18.1/16
K1K1 (p-Pb) @7# 0.6860.06 1.7160.17 65/54
p1p1 (p-Pb) @8# 0.3860.03 2.8960.30 16/25
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dimensional Gaussian correlation corresponds to a th
dimensional Gaussian source. For the correlation in Eq.~27!,
the corresponding source is

S~r !5
l

~2Ap!3RTsRToRL

expF2
1

4 S r Ts
2

RTs
2

1
r To

2

RTo
2

1
r L

2

RL
2D G .

~28!

Looking at the various transverse fit radii obtained by NA4
it seems safe to setRTs5RTo[RT in this source. To conver
this three-dimensional source to a one-dimensional sou
we only need to angle average it,S(r )51/4p*dV rS(r ), to
obtain

S~r !5
l

16pRT
2RL

expS 2
r 2

4RT
2D

3H 2Re f f

r
erfS r

2Re f f
D for RT.RL

2Re f f

r
erfiS r

2Re f f
D for RT,RL ,

~29!

whereRe f f51/AuRL
222RT

22u and erfi(x)5 ierf(2 ix). With
this result, we are now able to compare the imaged source
the angle-averaged three-dimensional fits from NA44. T
is shown in Fig. 13.

For these fits, we usedl andRL as given in Table V and
RT was chosen to be the average ofRTs andRTo . Examining
Fig. 13, it is clear that despite the fact that NA44’s thre
dimensional sources correspond to non-Gaussian an
averaged sources, they are not able to account for the
tended tails we find in the images. There is a caveat with
conclusion: their fits were performed in the LCMS and o
source is imaged in the pair c.m. frame. Since the two fram
coincide only in the limit thatpT→0, we computed the pion
source using the low-pT data set only. Only one data set

TABLE IV. Exponential fit parameters as obtained by NA44.

Ref. l RD ~fm! x2/NDF

K1K1 (S-Pb) @7# 1.8060.18 2.6460.22 26/31
p1p1 (S-Pb) @8# 0.7760.08 3.5460.33 12.0/16
K1K1 (p-Pb) @7# 1.1060.10 1.0460.19 55/54
2-11
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TABLE V. Three-dimensional Gaussian fit parameters from theS-Pb reaction as obtained by NA44.

^pT& (MeV/c) l RTs ~fm! RTo ~fm! RL ~fm!

p1p1 150 0.5660.02 4.1560.27 4.0260.14 4.7360.26
p1p1 450 0.5560.02 2.9560.16 2.9760.16 3.0960.19
K1K1 240 0.8260.14 2.5560.20 2.7760.12 3.0260.20
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available for the kaons. Nevertheless, it seems unlikely
the pion or kaon fit parameters would change dramaticall
the fits were performed in the pair c.m.

C. Discussion ofS-Pb data

In addition to the various fits to the correlations, memb
of the NA44 Collaboration performed RQMD simulation
@7–9,13,29# of the S-Pb andp-Pb collisions. Rather than
repeat this work, we will summarize it and explain its imp
cations for the source shape. In all but thepp case, the simu-
lated RQMD correlations compared favorably with the da
In thepp case, the simulations overestimate the height of
correlation peak by roughly 30%.

Sullivan et al. @13# explain that the width of the kaon
correlation~corresponding to the width of the imaged ka
sources! is determined mainly by the size of the kaon pr
duction region. First, kaons are mainly produced directly
the reaction~either from fragmenting strings or hadronic r
actions! or from the decay ofK* resonances. Now, the re
action zone is roughly the size of the sulfur nucleus (Rrms
53.3 fm! and this defines the size of the Gaussian core.
K* ’s are also produced in a region of roughly this size. Ho
ever, since their lifetime is roughlyt'4 fm/c, K* ’s do not
travel far before decaying, giving rise to a non-Gaussian h
surrounding the Gaussian core. This halo is neither expon
tial nor Gaussian, but rather a convolution of a Gauss
source with an exponential@14,15#. Since the kaons have
much larger mean-free path in nuclear matter than ei
pions or nucleons~at least in RQMD!, they do not rescatte
as the system evolves. This means that their last interac
point is very nearly the size of this production zone.

The pion width in theS-Pb reaction is also described we
by the RQMD calculations. The initially produced pion
~produced mainly from hadronic reactions, although there
a string component! also have a source width set by a com
bination of the geometrical overlap of the colliding nuc
and subsequent dynamics of the system. From their pro
tion until they freeze-out, the pions interact strongly with t
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system. Because this evolution involves longitudinal flo
there are strong position-momentum correlations in
freeze-out positions of the pions. The longitudinal size of
region where one can find pions with a low relative mome
tum is comparable to the transverse size of the system
freeze-out giving a Gaussian core somewhat larger than
initial system size. In addition to this core, the pions a
have a large contribution from the decay of various re
nances, mainly ther, v, h8, andh0. Now theh ’s are not
capable of altering the pion source size or shape as theh ’s
lifetimes are much too long. On the other hand, both ther
~whose lifetime is'2 fm/c) and thev ~whose lifetime is
;23 fm/c) both contribute to a non-Gaussian halo in
manner analogous to theK* ’s above. Since ther ’s lifetime
is smaller than thev ’s, it contributes to the shorter distanc
part of the tail and thev to the longer distance part.

In the case of the protons in theS-Pb reaction, the size o
the source is mainly set by the size of the region where
find protons with low-relative momentum at freeze-ou
Looking at the plots of RQMD correlations in@29#, the
RQMD simulations are somehow unable to reproduce
sizes of these regions. Since the size of this region is a di
function of the geometry of the source and the spa
momentum correlations in the source~these correlations are
caused primarily by flow!, RQMD’s failure here is somewha
of a mystery. Unfortunately, our image is not detail
enough to give much of a clue where the discrepancy ari
A higher resolution measurement of this correlation wou
help immensely.

D. Discussion ofp-Pb data

Unlike theS-Pb reaction, RQMD is able to describe all o
NA44’s measuredp-Pb correlations quite well@7,9,29#. Be-
cause thep-Pb system is so small, the reaction is most like
dominated by the formation of a few color strings and
ropes. RQMD uses the Lund string model to model str
formation and fragmentation@31#, so to understand what i
happening in the sources it is useful to understand som
m
’s
FIG. 13. Pion and kaon sources imaged fro
the S-Pb reactions compared to the NA44
angle-averaged three-dimensional sources.
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OBSERVING NON-GAUSSIAN SOURCES IN HEAVY-ION . . . PHYSICAL REVIEW C64 014902
the features of this type of model. In the Lund model, m
mentum and spatial rapidities are tightly correlated. We w
show that this correlation leads to an approximate scaling
the K andp source radii with mass

mKRK'mpRp . ~30!

As we will point out, this scaling is borne out by the image
We mention that the pion sourceshould notfollow this scal-
ing because a large fraction of the pions result from re
nance decays that distort the shape of the pion source.

In a Lund-type string model@32#, a meson is viewed as
qq̄ pair attached by a string and this pair oscillates back
forth in the linear confining potential of the string. This typ
of model can also describe baryons if one replaces one o
quarks at the end of the string with a diquark. In this disc
sion, we ignore the transverse extent of the string and im
ine the string lives in a~111!-dimensional space. As theqq̄
pair oscillates, in one period it sweeps out an invariant a
given by

Dx1Dx25
m2

s2
~31!

in light-cone coordinates. Herem is the mass of the hadro
and s is the string tension. A hadron breaking off from
string is pictured in Fig. 14.

To assess any correlations between the mass and the
duction location of a hadron, we examine the distribution
breakup points of the string that produces the hadron. In
14, points 1 and 2 are the locations where aqq̄ pair separates
from a string. Assuming a constant breakup probability
unit time per unit lengthP the distribution of breakup point
is given by

dP} exp~2Px2
(1)x1

(2)!u~x2
(1)2x2

(2)!u~x1
(2)2x1

(1)!. ~32!

FIG. 14. String fragmentation in the Lund-string model. T
hatched areas indicate regions of nonvanishing color field as we
the space-time region swept out by the oscillating strings. Poin
and 2 indicate the space-time point where the hadron of inte
breaks off of the main string.
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The exponential in this expression gives the probability t
the string does not break up before theq and q̄ are made at
points 1 and 2 and the theta functions ensure the pro
ordering of the coordinates. We define the creation poin
the hadron of interest as the mean of the breakoff points
the qq̄ pair

X65
1

2
~x6

(1)1x6
(2)!. ~33!

We also write

Dx656~x6
(2)2x6

(1)!. ~34!

In terms of these, we may write Eq.~32! as

dP}u~Dx2!u~Dx1!expS 2PFX1X21
1

4
Dx1Dx2

1
1

2
~Dx2X11Dx1X2!G D . ~35!

For a hadron at midrapidity, from Eq.~31! we haveDx1

5Dx25m/A2s. Writing the hadron position back in Carte
sian coordinates, we find

dP} expF2
P

2 S T22X21
m

s
TD Gu~T2uXu!. ~36!

This last theta function makes causality explicit.
SincedP expresses the probability of creating a hadron

position X and at timeT, it is proportional to the emission
rate in Eq.~4!. Thus, we can imagine doing the convolutio
in Eq. ~3! to obtain the source size. Given that the emiss
rates in this case are not Gaussian, we should not expec
source function itself to be Gaussian. Nevertheless, we
still estimate the width of the source function from Eq.~36!.
We take the source width to be the distance at which
magnitude of the source function drops by 1/e. From Eq.
~36!, we see that the probability of creating a hadron dro
by 1/e by roughly

T;X;
2s

mP
. ~37!

This implies that the source function itself will have a wid
that is correlated with the mass of the hadron and given

R;
2A2s

mP
. ~38!

Here, the factor ofA2 arises from the convolution in Eq.~3!.
If we make the reasonable assumption that the string ten
and breakup probability are both universal, than we have
scaling relation in Eq.~30!. Looking at the kaon source in
Fig. 12~d!, the kaon source 1/e width is RK'6 fm. Follow-
ing the scaling, the proton source should drop by 1/e by
roughlyRp'mK /mpRK53 fm. This is roughly borne out in
the image in Fig. 12~f!. With Eq.~38!, we can go further than
just checking this scaling and try to compute the sou

as
1
st
2-13
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width directly. Taking typical values for the string breaku
probability, P51 fm2, and for the string tension,s51
GeV/fm, we find that the proton source radius should
aboutR52.9 fm and the kaon source radius should be ab
R55.7 fm, again in rough agreement with the images
would be very interesting to see if this scaling persists
sources imaged from other like-pair correlation inp-A col-
lisions such asp̄p̄, K0K0, or LL.

In this consideration, we have neglected several thin
First, although we have ignored the transverse degree
freedom of the strings, the longitudinal length of the produ
tion region is much larger than the transverse extent so
the longitudinal extent that determines the angle-avera
source radius. Second, we have ignored the finite mass o
quarks. Adding finite quark masses would change the tra
tories of theqq̄ pair and the shape of the area swept out
the pair, but it should not change our conclusions appre
bly. Third, we have neglected any consideration of ot
strings in thep-Pb interaction zone. Next, if there is mo
than one string produced in the reaction, the possibility
string fusion exists and it is neglected here. Finally, we h
neglected the Bjorken-like position-momentum correlatio
along the string length. These correlations will narrow t
source@16# and possibly account for the minor differenc
between the predicted and measured proton source w
above.

V. CONCLUSION

In this paper, we have investigated the possibility of d
tecting non-Gaussian sources in heavy-ion collisions.
simple, but realistic, model calculations we have dem
strated that it is possible to distinguish between Gaussian
non-Gaussian source shapes using an improved ima
method and high resolution data. Imaging not only h
achieved results comparable to Gaussian fits, but has
uncovered deviations from Gaussian behavior.

This improved imaging method has several features
make it superior to the previous methods in@11,12#. First,
this method uses basis splines to represent the source, g
a continuous representation of the source. The resolutio
the images is controlled by the placement of the knots~the
points where the polynomials that make up the spline b
are matched!. Since the knots are analogous to the edges
the bins of a box-spline representation, we may do as in@12#
and use the ‘‘optimal knots’’ to further improve the imag
In addition to these improvements, equality constraints
now implemented in a simple manner. As in the previo
imaging method, imaging is still a least-square problem
which the coefficients of the basis spline representation
chosen to minimize thex2 of the data. In other words, th
imaging gives the source that has the highest probability
representing the correlation data. Finally, we mention t
the amount of information available in the data limits t
amount of information we may extract in form of image a
constraints ‘‘increase’’ the amount of information.

Using this improved imaging method, we analyzed t
proton, kaon, and pion correlations fromS-Pb andp-Pb re-
actions measured by NA44. We find evidence for no
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Gaussian halos in the source functions from the like-me
correlations in theS-Pb reaction. These halos are likely to b
due to resonances decaying and producing the mes
RQMD model simulations of the correlations reproduce
experimental data quite well except in the case of the pro
correlations from theS-Pb reaction. Unfortunately the sourc
image does not shed much light on the discrepancy. In
case of thep-Pb reaction, the imaged sources suggest a s
ing of the source widths that we should expect on the ba
of Lund-type string models. This scaling should be tested
examining other like-pair correlations~e.g., p̄p̄ and LL)
where these other pairs do not suffer from large resona
contributions.

ACKNOWLEDGMENTS

We wish to thank Dr. G. F. Bertsch, Dr. S. Pratt, Dr. S.
Voloshin, Dr. N. Xu, Dr. G. Verde, and Dr. S. Panitkin fo
their stimulating discussions. We also want to give spec
thanks to Dr. Barbara Jacek for directing us to the NA
correlations and to Dr. Giuseppe Verde for his careful re
ing of the manuscript. This research was supported by
tional Science Foundation Grant No. PHY-0070818 and U
Department of Energy Grant No. DOE-ER-41132. This wo
was performed under the auspices of the U.S. Departmen
Energy by the University of California, Lawrence Livermo
National Laboratory under Contract No. W-7405-Eng-48.

APPENDIX A: BASIS SPLINE REPRESENTATION
OF SOURCES

In this paper and previously in@12#, we write the source
expanded in some basis:

S~r !5(
i 51

NM

SiBi~r !. ~A1!

In @12# this basis was the box-spline basis. In the box-spl
basis, the widths of the individual bins could be varied
increase or decrease the resolution of the kernel to minim
the relative error of the source. Unfortunately, in this rep
sentation the source is not continuous.

In this work, we expand our sources in a more gene
basis: that of basis splines, also known asb-splines@22#. b
splines are piecewise continuous polynomials that can
made arbitrarily smooth by changing the degree of
splines; the 0th degreeb-splines are actually box-spline
used before. Theb-splines are characterized by a set of kno
that mark the points where the various polynomials t
make up theb-spline are matched. In a sense, these kn
generalize the ‘‘edges of the bins’’ of the box-splines. F
this reason, we may vary the locations of the knots to m
mize the relative error of the source, generalizing the met
in @12#.

1. The basis splines

Now we define theb-splines. A Nb
th degreeb-spline is

characterized by a set of knots,$tk% with t1<t2<•••
2-14
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<tNknots
. The number of knots must be chosen so thatNknots

>NM1Nb11 for NM b-splines. ForNb50, the b-splines
are box-splines, i.e.,

B0,i~r !5Xi~r ![H 1 if t i,r ,t i 11

0 otherwise.
~A2!

Note, if t i5t i 11 then B0,i(r )50. The rest of theb-splines
may be constructed from this first one through a set of rec
rence relations

BNb11,i~r !5wNb11,i~r !BNb ,i~r !

1@12wNb11,i 11~r !#BNb ,i 11~r !, ~A3!

where the weight factor is

wNb11,i~r !5H r 2t i

t i 1Nb
2t i

if t iÞt i 1Nb

0 otherwise.

~A4!

With these definitions, we may write ab-spline of any degree
back in terms of the box-splines

BNb ,i~r !5 (
j 5 i

i 1Nb21

bNb , jXj~r !, ~A5!

wherebNb , j is a polynomial inr of degreeNb that we will
not write explicitly. We plot sampleb-splines of different
degrees in Fig. 1.

There are three other properties of theb-splines that are of
note. First,b-splines are normalized so that

E
2`

`

drBi~r !5
t i 1Nb112t i

Nb11
. ~A6!

Second, thei th b-spline is zero outside of the regiont i<r
<t i 1Nb11. Third, the b-splines are not orthogonal but ex
pressions for their inner product exist@22#.

From the definitions and from the figure, it is not cle
how to pick the knots. The knots do not have to be equa
spaced and, in many situations, it is bestnot to space them
equally. In fact, one can even pile up toNb11 knots on the
same point. One can do this becauseNb115~number of
knots at a point! 1 ~number of continuity conditions at tha
point!.

If a b-spline hasNb11 knots at a point then thatb-spline
is discontinuous there. Away from these multiple knots,
b-spline is still continuous up to derivatives of degreeNb . In
the main text, we remove all assumptions about the cont
ity of the source at the boundaries by keepingNb11 knots at
the boundaries. We then optionally reinsert continuity con
tions using equality constraints.

2. Optimizing resolution

Now we come to the point of choosing the best knots
the inversion, generalizing the ‘‘optimized discretization
01490
r-

y

e

u-

i-

r

scheme of Ref.@12#. First, the model covariance matrix@cf.
Eq. ~B7!# depends on the kernel of the inversion, the error
the data and whatever scheme we use to represent the so
but not on the data or the model itself. For a given kernel and
set of data errors, we are free to change our representatio
the source in order to minimize the error of the source.
particular, we may vary the location of the knots~at least not
the knots fixed at the end points of the imaging region! to
minimize the error of the source coefficients,DSj5AD2Sj j ,
relative to some dummy source,

(
j 5Nb12

Nknots2Nb21 U DSj

Sj
dummyU5min. ~A7!

The coefficientsSj
dummyare the coefficients of the expansio

of a dummy source inb-splines. In this minimization, the
first and lastNb11 knots are held fixed and the positions
all of the other knots are varied. The dummy source itsel
chosen to be big roughly where one expects the source t
big and small where one expects the source to be sm
Since the detailed shape of the dummy source should no
important, in this paper we chose an exponential dum
source with radiusRdummy53.5 fm given by Sdummy(r )
} exp(2r/Rdummy).

APPENDIX B: BAYESIAN APPROACH TO IMAGING

In this appendix, we will explain the technical details
the Bayesian approach to imaging and extend the appro
of Ref. @12# by implementing constraints in a more cons
tent manner. In the previous works the constraints are im
mented by Monte Carlo sampling the experimental erro
leading to statistical fluctuations in the extracted source
that approach, no distinction is made between equality
inequality constraints. By equality constraints we mean c
straints of the form

E dr f ~r !SP~r !5constant, ~B1!

and by inequality constraints, we mean constraints of
form

E dr f ~r !SP~r !>constant. ~B2!

Both of these types of constraints are forms ofprior infor-
mation, meaning information we have in hand before w
began imaging. In this appendix, we will explain how to u
prior information in an inversion. In particular, we will dis
cuss two methods for implementing equality constraintsdi-
rectly into the inversion and we will discuss a better way
implement inequality constraints. We conclude this appen
with a brief discussion of inequality constraints.

1. General theory

Suppose we have anND dimensional vector of observe
datadobs with covariance matrixD2d that we wish to repre-
sent by someNM-dimensional model vectorm. In the case of
2-15
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source imaging, our model vector is the vector of coefficie
of the function expansion of the source and the data are
raw correlation functions. We assume the data has a diag
covariance matrix. In an ideal measurement of the data, t
would be no experimental uncertainty and the data and
model would be related through some linear equation

d5K•m. ~B3!

Here,K is the kernel of an integral equation.
In a real imaging problem, the observed data has er

and statistical scatter. To make progress, we adopt the
called Bayesian approach to imaging where we seek
probability density,s(m), for a specific modelm to repre-
sent the data@23,33#. With this density, we take the mean o
the density as an estimator of the true model and the widt
the density as an estimate of the uncertainty in our mo
Neglecting the error in our determination of the kernel a
assuming the uncertainty in our measurement ofdobs is
Gaussian, we can write Bayes theorem as follows:

s~m!}r~m!expS 2
1

2
xdata

2 D . ~B4!

Here, r(m) encodes all of the prior information we hav
about the model andxdata

2 is

xdata
2 5~K•m2dobs!T

•~D2d!21
•~K•m2dobs!. ~B5!

Here the superscriptT represents a matrix transpose. T
dimension of the model vectorNM and the dimension of the
data vectorND need not be equal. Indeed, it is better to ha
many more data points than model parameters so tha
may overconstrain the system. For the time being, ass
we have no prior information so we may setr(m)51.

We immediately see that the most probable model ve
is the one that maximizes the probability and hence m
mizes thexdata

2 . Following Refs. @11,12,23,24,26,33#, we
can find both the model vector that minimizes thisxdata

2 as
well as the covariance matrix of the model

^m&5D2m•KT
•~D2d!21

•dobs ~B6!

and

D2m5@KT
•~D2d!21

•K#21. ~B7!

Equation~B6! usually goes by the name of a normal equ
tion. The model covariance matrix is independent ofdobs and
depends only on the error of the data and the kernel itse

We can write thexdata
2 directly in terms of the mode

covariance matrix and thexdata
2 minimizing model vector

@23#,

xdata
2 5~m2^m&!T

•~D2m!21
•~m2^m&!. ~B8!

In other words, if we have aNM-dimensional model space
then thexdata

2 51 hypersurface is anNM-dimensional hyper-
ellipsoid with principal axes given by the eigenvectors of t
covariance matrix of the model,D2m. These principal axes
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do not need to correspond to the directions correspondin
the mj components in the model space.

2. Equality constraints

Now let us discuss the role of prior information in th
general inversion problem. We concentrate equality c
straints such as in Eq.~B1!. In a matrix form, equality con-
straints are written as

C•m5c. ~B9!

HereC is a matrix of constraint equations andc is a constant
vector of constraint values. In the inversion problem in t
main text, there are a variety of constraints we might use
they are listed in Table I. The equality constraint in Eq.~B9!
corresponds to the prior probability density of

r~m!}d~C•m2c!. ~B10!

Equality constraints can be cast into a Gaussian prior pr
ability density simply by writing this density as a Gaussi
with vanishing width:

r~m!} lim
l→`

expS 2
l

2
xequal

2 D , ~B11!

where

xequal
2 5~C•m2c!2. ~B12!

Finding the most probable model then corresponds to m
mizing a modifiedx̃2:

x̃25xdata
2 1lxequal

2 . ~B13!

The solution is straightforward and corresponds to the m
probable model,

^m&5D2m•~KT
•~D2d!21

•dobs1lC T
•c! ~B14!

along with the model covariance matrix,

D2m5@KT
•~D2d!21

•K1lC T
•C#21. ~B15!

It is clear that to correctly simulate ad function prior
information density, we must choose a largel. Looking at
Eq. ~B13!, we must choose al so thatlxequal

2 @xdata
2 . We

now estimate the sizes ofxequal
2 andxdata

2 . A good fit to the
data should have thexdata

2 nearly at the number of degrees
freedom, i.e.xdata

2 'ND2NM . To estimatexequal
2 , we fol-

low Eq. ~B12!. In the main text, a typical source is*1
31026 fm23 and the constraint matrix and vectors are ty
cally ;1 fm3, soxequal

2 ;NM310212. Putting this together,
we must choose

l@xdata
2 /xequal

2 ;S ND

NM
21D31012. ~B16!

For example, forND583 andNM58 we needl@1011. By
adjusting strength ofl, we can adjust strength of variou
2-16
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terms, emphasizing stability of inversion~i.e., obeying con-
straints! over representing the data. Thus,l functions as a
trade-off parameter in the jargon of inverse theory. See R
@26# Sec. 18.4 for a more complete discussion.

A useful alternative to this scheme~and a way to do the
l→` limit exactly! is to use the Householder transformati
to eliminate the constraints from the unmodified norm
equations of Eqs.~B6! @26,34#. The tradeoff is that the
Householder transformation may be somewhat unforgivi
Due to an unfortunate choice of basis functions, it may
be possible to satisfy two constraints simultaneously eve
they can be satisfied simultaneously in the true answer.
keepingl finite, we are never trying to satisfy the constrain
exactly so we can do a reasonable job of obeying both c
straints. Nevertheless, schemes based on Householder r
tions of the constraints are complementary to ones using
Gaussian prior probability.

3. Inequality constraints

Now we ask how to use constraints of the form

C•m>c. ~B17!

Such constraints are called inequality constraints and th
are many different ones we could use: the source is pos

FIG. 15. An illustration of an inequality constraint cuttin
through 1s band of a best-fit region.
J.
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definite, the derivative of the source is bounded~to ensure
smoothness!, or the source satisfies the Fourier transform t
from Ref. @10#. Inequality constraints correspond to prio
probability densities of the form

r~m!}u~C•m2c! ~B18!

which cannot be rendered into a Gaussian form.
In Ref. @11#, we use a simple Monte Carlo samplin

scheme to implement inequality constraints. In this sche
one uses the experimental uncertainty to generate an
semble of correlations, each consistent with the original. O
then inverts each one to obtain a sample source and disc
any sources that are not consistent with the inequality c
straints. One then combines the samples that are consi
with the constraints to obtain an average source and an
mate of the errors on the source. The problem with t
scheme is that it pushes the sources away from edges o
model space defined by the constraints.

We illustrate this problem with a simple example. Su
pose we have an inversion problem where the goal is
determine two pointsS1 and S2 under the constraint tha
S2.0. We sketch one possible outcome of the inversion
Fig. 15. In this picture, we see the best-fit value ofS1 andS2
is consistent with our inequality constraint, but the constra
cuts through both the 1s and 2s contours. Using the Monte
Carlo sampling scheme discussed above, we would actu
be finding a false best-fit point which is slightly above and
the left of the true best-fit value because we throw o
samples withS2,0. The errors on these points would als
be symmetrically placed around this point. In fact the corr
way to solve the problem is just to quote the best-fit valu
of S1 andS2, with asymmetrical errors.

The way inequality constraints are implemented in m
commercial inversion packages is through so-called ‘‘act
set methods’’@35#. In these methods, one finds the best
solution as one normally would have if there were no
equality constraints. If the best-fit solution lies in a regi
excluded by the inequality constraints, then the code fi
the edge of the included region~the so-called active set! and
searches along it until the code finds the solution that m
mizes thex2. Such a scheme is powerful, but likely beyon
what is needed for our problem.
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