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Eikonal approximation in heavy-ion fragmentation reactions
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Projectile fragmentation reactions are well suited to structure studies of weakly bound nuclei, but an accurate
reaction theory is necessary to extract quantitative spectroscopic properties. We examine here the accuracy of
the commonly used eikonal approximation for the nuclear-induced breakup of halo nuclei. Comparing to
numerical solutions of the full time-dependent Schro¨dinger equation, we find that the eikonal remains fairly
accurate for calculating breakup probabilities of halo nuclei even down to 20 MeV/nucleon, reproducing
relative spectroscopic strengths to within a few percent. Absolute reaction probabilities tend to be underpre-
dicted by the eikonal, which would make extracted spectroscopic strengths somewhat too high. We discuss
other features that are seen in the full calculation but are missing in the eikonal approximation such as the
‘‘towing’’ mode.
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I. INTRODUCTION

A wide variety of reaction models have been develop
and applied to analyze breakup reactions of halo nucle
popular model is the eikonal approximation@1–5#, which is
very convenient from a computational point of view but
only justified at higher beam energies. Since many fragm
tation experiments have been performed in the energy ra
of 20–60 MeV/nucleon and the data are often analyzed u
the eikonal approximation~see for example Refs.@6–10#! it
is of interest to assess its accuracy and determine the r
of beam energies for which it is reliable.

In this work we test the eikonal approximation by com
paring it to numerical solutions of the full time-depende
Schrödinger equation for a halo neutron in a projectile inte
acting with a nuclear target as well as the core of the pro
tile. For given interactions, the only approximation is a cla
sical treatment of the projectile-target coordinate, which
quite safe for the heavy-ion reactions considered. We pr
ously used the time-dependent Schro¨dinger method to study
higher-order effects in Coulomb dissociation@11–13#. For
our tests here, we calculate the nuclear-induced breaku
the halo nucleus11Be. The time-dependent Schro¨dinger
equation has also been applied to halo breakup by other
thors @14–16#. They use numerical techniques that are d
ferent from the one we have used to solve the equation
any case, it is now computationally feasible to solve
time-dependent Schro¨dinger equation by several methods
sufficient accuracy that the numerical aspect is not a
limitation on the applicability.

Besides the eikonal and time-dependent Schro¨dinger
equation, a number of other approaches have been use
describe heavy-ion breakup reactions. The transfer
continuum model@17# is as convenient as the eikonal and
in some ways more accurate. However, it is not applica
with standard-range optical potentials such as those u
here, and so we do not attempt to include it in our comp
son. Another approach that avoids the approximations of
0556-2813/2001/64~1!/014608~6!/$20.00 64 0146
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eikonal is the continuum discretized coupled chann
method@18–20#. In principle, the equations solved by th
method are exact, but the computational demands are se
Many continuum states must be included in the basis. A
coupling between the continuum states cannot be neglec
as is sometimes done, and still have reliable results@21#.

II. HAMILTONIAN AND DYNAMIC EQUATIONS

We consider a model in which the only coordinates a
the neutron’s and the projectile-target coordinateR. The lat-
ter is treated classically, and for simplicity we assume
straight-line trajectoryR(t)5b1vt. This leaves the neutron
core and neutron-target potentials to be specified, whe
the core-target interaction is set to zero. Again for simplic
we ignore spin-orbit interactions, taking the neutron-core
tential Unc to have a simple Woods-Saxon form,

Unc~r !52Vcf S r 2Rc

ac
D , ~1!

wheref (x)5(11ex)21. The initial state of the neutronu0& is
an eigenstate of the potential; for11Be we choose the param
eters so that the eigenenergy of the seconds-wave bound
state equals the empirical separation energy of 0.5 MeV.
use Vc561.1 MeV, Rc'2.7 fm, andac50.52 fm the pre-
cise value ofRc depends on the coordinate space mesh u
to solve the Schro¨dinger equation.

The neutron-target interaction is parametrized as a c
ventional optical potential

Unt~r nt!52V0f S r nt2R0

a0
D2 i FWv0f S r nt2Rw

aw
D

24Ws0f 8S r nt2Rw

aw
D G , ~2!
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where f 8(x)5d f(x)/dx. Here we have employed th
energy-dependent parameters determined in Ref.@23#. The
interaction~2! acts on the coordinatesr for the relative mo-
tion of the neutron and the10Be core through the neutron
target distancer nt5uR(t)2ar u, wherea5Ac /(Ac11) and
Ac510 is the core mass.

The immediate object of the reaction calculation is t
neutron wave function in the final state. In the eikonal a
proximation, which assumes that the target interaction ha
very short duration, the final state wave is obtained b
simple multiplicative factor. In the present model, this is

C f~r !5Snt~ ub2ar'u!u0&

5expS E
2`

` dz

i\v
Unt~Aub2ar'u21z2! D u0&, ~3!

whereu0& is the initial ground state wave function, andv is
the projectile velocity.

For the full dynamics we integrate the time-depend
Schrödinger equation over a time interval2T,t,T where
t50 at closest approach andT is chosen large enough t
cover the duration of the interaction with the target. Nume
cally, we represent the neutron-core wave function in
spherical basis centered on the core of the projectile,

C~r ,t !5
1

r (
lm

ulm~r ,t !Ylm~ r̂ !. ~4!

This gives the following set of coupled equations,

i\
d

dt
ulm~r ,t !5F \2

2m0
S 2

d2

dr2 1
l ~ l 11!

r 2 D1Unc~r !Gulm~r ,t !

1Clm~r ,t !, ~5!

wherem0 is the neutron-core reduced mass. The last term
the coupling generated by the neutron-target interaction,

Clm~r ,t !5 (
l 8m8

^YlmuUnt@ uR~ t !2ar u#uYl 8m8&ul 8m8~r ,t !.

~6!

The coupling is calculated by a multipole expansion of
interactionUnt .

It is convenient to take thez axis ~or m-quantization axis!
perpendicular to the scattering plane, thex axis in the direc-
tion of the impact parameterb, and they axis in the direction
of v. We exploit the reflection symmetry with respect to t
scattering plane, which permits us to restrict the sum in
~4! to terms with even or odd values ofl 1m depending on
whetherl 1m is even or odd in the initial state.

We now discuss purely numerical aspects of solving
equations. We use the finite difference method to integ
Eq. ~5!, which was described in connection with Eq.~6! of
Ref. @11#. An important parameter in this method is

t5
\Dt

4m0~Dr !2 , ~7!
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where Dr is the radial step, andDt is the time step. This
parameter should be of the order of one in order to achi
a reasonably converged result. We have chosen the ra
stepDr 50.2 fm, and a maximumr between 50 and 100 fm
To calculate breakup probabilities, it is sufficient to u
r max550 fm but to get realistic momentum distribution
one needs a largerr max. The integration is started with
the projectile-targety separation specified at some valuey0
52vT, and the time integration is performed up to a tim
1T. Since there is no Coulomb interaction, one do
not have to cover a large range of spatial separations
the present case the range240,y,40 fm gives ample
accuracy.

Concerning the decomposition intol andm, we find that it
is adequate to limit the channels tol< l max512 as will be
seen below. For thes-wave halo orbital, the number of (lm)
channels is 91 taking the scattering plane symmetry into
count. This is about the most we are able to handle withi
reasonable computation time. For consistency, we include
contributing terms in the multipole expansion ofUnt in Eq.
~6!, i.e., l<2l max.

III. OBSERVABLES

Once the final state halo wave functionC f(r )5C(r ,T)
has been calculated, one can obtain the total one-neu
removal probability as

P21n512u^0uC f&u2. ~8!

The one-neutron stripping probability is calculated from t
norm of the wave function after the collision according to

Pstr~b!512^C f uC f&. ~9!

The diffraction dissociation probability is determined as t
norm of the continuum part of the wave function after t
collision. If the ground state is the only bound state, then
continuum part of the wave function is

C f
cont5C f2u0&^0uC f&. ~10!

The diffraction norm is

Pdiff~b!5^C f uC f&2u^0uC f&u2. ~11!

The two probabilities, Eqs.~9! and ~11!, add up to Eq.~8!.
Besides the integrated diffraction probability, differenti

probability distributions in the final state are measured a
provide important information. To compute momentum d
tributions, we project the final state wave function onto sc
tering states of the neutron-core Hamiltonian. We define a
plitudesSklm so that the wave function in momentum spa
is

C f~k!5
1

k (
lm

Ylm~ k̂!Sklm~b!. ~12!

Thus the complete final state momentum distribution will
given by
8-2
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dP~b,k!

dk
5uC f~k!u25

1

k2 U(
lm

Ylm~ k̂!Sklm~b!U2

. ~13!

The amplitudesSklm are calculated as overlaps of the fin
state wave function with the scattering statesuklm&
5(1/r )fkl(r )Ylm( r̂ ). We normalize the radial wave functio
to

fkl~r !→A2

p
sin@kr1d l~k!2 lp/2#, for r→`,

whered l(k) is the nuclear phase shift. With this normaliz
tion, the amplitudes in Eqs.~12! and ~13! are given by

Sklm~b!5ei [d l (k)2 lp/2]E drfkl~r !ulm~r ,T!. ~14!

The expressions~9! and~11! are also applied to the eiko
nal final state wave function Eq.~3!. To calculate the mo-
mentum distribution~13!, we need to make an angular m
mentum decomposition of the eikonal factor. Here it
convenient to expandS(b,r')21 rather thanS(b,r') itself,
because the integral can then be limited to a cylinder al
the target trajectory. The subtraction by one is, in princip
harmless because the continuum states are orthogonal t
ground state. The same procedure can be applied in the t
dependent description, i.e., we use the continuum part of
wave function, Eq.~10!, instead of the full solution, when
calculating the radial matrix elements Eq.~14!.

In our comparative study here we will only consider tw
components of the momentum distribution, namely,
angle-averaged distribution and the longitudinal moment
distribution. The angle-integrated distribution is closely
lated to the decay-energy spectrum and it is given by

dP~b,k!

dk
5(

lm
uSklm~b!u2. ~15!

The longitudinal momentum distribution is the projection
the beam direction. This is most conveniently evaluated
coordinate system with thez axis along the beam direction
The full distribution is again given by Eq.~13! but the am-
plitudes are replaced byS̃klm5(m8Sklm8Dm8m

l (v), wherev
is the rotation that brings the old coordinate system~with the
y axis in the beam direction! into the new coordinate system
~with the z axis in the beam direction!. The integration over
transverse momenta is much simpler in the new coordin
system because the integration over the transversef angle
gives an expression that is diagonal inm. The resulting dis-
tribution is

dP~kz!

dkz
52pE

ukzu

` dk

k (
m

U (
l>umu

Ylm~uk!S̃klmU2

, ~16!

whereuk is given by cosuk5kz/k.
01460
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IV. RESULTS

In this section we apply the above theory to the11Be
→10Be1n breakup reaction. We will consider a variety o
reaction conditions, particularly examining the beam ene
dependence and the dependence on properties of the i
bound state wave function. We first investigated the num
cal accuracy of the dynamic calculations, varying the n
merical parametersDr , the time step, andl max. Taking val-
ues given in Sec. II, we estimate that the accuracy of
diffraction dissociation probability is of the order of 2%
20 MeV/nucleon and an impact parameterb58 fm. We
have also calculated the breakup of11Be at 400 MeV/
nucleon. Here we have used a purely imaginary optical
tential, which was determined from nucleon-nucleon cro
sections and the target density as described in Ref.@4#. At
this high energy we would expect a perfect agreement
tween the eikonal and dynamic calculations. We find that
results agree within 1% which gives us additional confiden
in the numerical accuracy of our calculations.

A. Breakup probabilities

We now examine the probabilities for stripping and d
fraction dissociation for11Be, starting with a12C target and
a beam energy of 20 MeV/nucleon. The calculated brea
probabilities are shown in Fig. 1 as functions of the impa
parameter. The solid curve is the result from the eiko
approximation, Eq.~3!. The dashed curve is the eikonal r
sult, which includes an additional absorption from a co
target interaction~obtained with a folding model!. The re-
sulting core profile function causes a strong reduction in
one-neutron removal probability at smaller impact para
eters. It is seen that the impact parameter range of ab
5–15 fm is responsible for practically the entire cross s
tion. It should also be noted that the absolute cross sect
will have a significant uncertainty associated with the co
target profile function.

FIG. 1. Stripping and diffraction dissociation probabilities
functions of the impact parameterb for 10Be→10Be1n fragmenta-
tion on a 12C target at 20 MeV/nucleon. The solid curves show t
probabilities from the eikonal model. The circles show the pro
abilities calculated with the time-dependent Schro¨dinger equation.
The dashed curves show the eikonal result obtained with an a
tional absorption from an empirical core-target interaction.
8-3
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H. ESBENSEN AND G. F. BERTSCH PHYSICAL REVIEW C64 014608
The dynamic calculation using the time-dependent Sch¨-
dinger equation is shown with open circles in Fig. 1. Sin
the core-target interaction is set to zero in the dynamic
culation, the results should be compared to the solid cur
For both the stripping and diffraction, the eikonal undere
mates the probabilities by about 25%, but reproduces
dependence onb quite well. The underprediction of the strip
ping is easy to understand qualitatively. In the eikonal
proximation, the absorptive potential of the target acts o
on the halo density in the immediate path. In the full dyna
ics, there is also a flux from the halo wave function into t
target region in response to earlier absorption and diffract

The three probabilities~stripping, diffraction, and total!
are shown as functions of the beam energy in Fig. 2 fo
typical impact parameterb58 fm. One sees the expecte
trend that the eikonal becomes increasingly accurate as
beam energy increases. The same results are plotted a
ratio of the eikonal to dynamic probabilities in Fig. 3. Fro

FIG. 2. Breakup probabilities as a function of beam energy
the 11Be reaction on a12C target at ab58 fm impact parameter
Solid curves show the eikonal result, and circles connected w
dashed lines are the results of the full dynamic calculation.

FIG. 3. Comparison of eikonal and dynamic results, presen
the results of Fig. 2 as a ratio of eikonal to dynamic probabiliti
The solid curve is the result for the total one-neutron removal pr
ability. The dashed curves are the results for stripping~crosses! and
diffraction dissociation~circles!.
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perturbation theory, one would expect the eikonal to co
verge to the full dynamics as 1/v;Ebeam

21/2 for real potentials
and 1/v2;1/Ebeam for absorptive potentials. We note tha
the energy dependence of the optical potential we have u
@23# will also affect this behavior. The calculated strippin
probabilities follow the expected dependence aboveEbeam
520 MeV/nucleon; the ratio of probabilities is quite we
fit by the function Peik /Pdyn512Ex /Ebeam with Ex
54.5 MeV. The diffraction probability has a similar tren
but it fluctuates erratically below 20 MeV/nucleon.

In Figs. 4 and 5 we show the corresponding quantities
the breakup reaction on a heavy target208Pb. The results are
similar; there is a consistent underprediction of the stripp
probability in the eikonal approximation, which becom
larger at a lower beam energy. Interestingly, the error in
diffraction does not vary smoothly as a function of bea
energy; by accident the eikonal result at 20 MeV/nucleon
quite good. From these results we consider 20 MeV/nucl

r

th

g
.
-

FIG. 4. Breakup probabilities for11Be as in Fig. 1, but for a
208Pb target at 20 MeV/nucleon.

FIG. 5. Ratio of eikonal to dynamic probabilities for a11Be
breakup on a208Pb target as functions of beam energy, at the imp
parameterb513 fm. The solid curve is the result for the total on
neutron removal probability. The dashed curves are the results
stripping ~crosses! and diffraction dissociation~circles!.
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EIKONAL APPROXIMATION IN HEAVY-ION . . . PHYSICAL REVIEW C 64 014608
a lower boundary for the reliable use of the eikonal appro
mation.

As mentioned above, the determination of absolute sp
troscopic strengths from nuclear breakup is hardly feas
due to the uncertainty in the core-target interaction. A l
ambitious use of reaction theory is to apply it only to relati
spectroscopic strengths when several final states are pos
To assess the validity of the eikonal for such purposes,
present in Table I the ratio of eikonal and dynamic on
neutron removal probabilities as a function of bound st
angular momenta and binding energies. We see that th
konal is an excellent approximation when used this way.
example, at a beam energy of 40 MeV/nucleon, the diff
ence in the probability ratios is only a few percent over
range of bound state angular momenta from 0 to 2 and b
ing energies of 0.5 to 3.0 MeV.

B. Angular momentum distributions

The angular momentum distribution of the final state
illustrated in Fig. 6 for a12C target at three beam energie
again at the impact parameterb58 fm. The solid curves are
the eikonal predictions, and the dashed curves are the re
of dynamic calculations withl max512. We find that the dy-
namic calculations have converged quite well at smaller fi

TABLE I. Ratio of eikonal to dynamically calculated one
neutron removal probabilities in11Be. The table shows differen
bound state angular momental, separation energiesSn , and beam
energiesEbeam for breakup on a12C target at an impact paramete
b58 fm.

Ebeam l Sn50.5 MeV Sn53.0 MeV

20 MeV/nucleon 0 0.77 0.75
1 0.77 0.78
2 0.79 0.82

40 MeV/nucleon 0 0.86 0.84
1 0.86 0.85
2 0.86 0.88

FIG. 6. Angular momentum decomposition of diffraction diss
ciation probability in the final state. Reaction conditions are
same as in Fig. 2. Results are shown at three beam energies, b
the eikonal approximation~solid curves! and from the dynamic cal-
culation ~dashed curves!.
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state angular momental f , but not so well at the largerl f .
The sum overl f is the diffraction dissociation probability
which is rather insensitive tol max.

The differences between the dynamic calculations and
eikonal approximation are most dramatic at 10 Me
nucleon. The dynamic calculation has a local minimum n
l f'5. The position of this minimum increases to largerl f if
we increase the impact parameterb or the velocity v,
roughly according to the classical formulal class5mvb. The
local minimum may reflect the absorption of the valen
neutron when it hits the target. We believe that the shoul
beyond the minimum represents neutrons at very low ene
in the target frame. We discuss below the linear moment
distributions in order to get more physical insight into th
phenomenon.

C. Momentum distributions

The angle-integrated momentum distribution of the ne
tron with respect to the projectile frame is shown in Fig. 7~a!.
It shows a broad peak at about 80 MeV/c with a very narrow
peak superimposed. The narrow peak is due to ad-wave
resonance of the projectile potential, Eq.~1!. In actuality
there is no such resonance in the11Be spectrum. This simply
shows the limitation of the simple potential model we ha
used to describe11Be. It may be seen in comparing the e
konal to the dynamic calculation that the eikonal is rema
ably accurate in describing the angle-integrated momen
distribution. It should be noted that models that neglect
final state core-particle interaction will miss resonance pe
such as those found here. The broad peak is rather insens
to beam energy and the details of the target interaction.

The longitudinal momentum distribution is of conside
able interest for several reasons. Of all the momentum
tributions, it is least sensitive to the details of the neutro
target interaction. In fact, to some approximation it ju
reflects the longitudinal momentum content of the init
bound state. However, one feature of the longitudinal m
mentum distribution, its asymmetry in the projectile frame,
due to the finite duration of the collision and is complete

e
h in

FIG. 7. Momentum distributions of neutrons in the11Be projec-
tile frame, produced in diffraction dissociation on a12C target at 20
MeV/nucleon and an impact parameterb58 fm. The angle-
integrated distribution is shown in~a!, and ~b! shows the momen-
tum distribution projected onto the beam direction. The solid a
dashed curves are the eikonal and dynamic results, respectively
distributions have been normalized to one.
8-5
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beyond the scope of the eikonal approximation. This is ill
trated in Fig. 7~b! for the diffractive breakup of11Be on a
12C target at 20 MeV/nucleon andb58 fm. The true distri-
bution is 10% broader than the eikonal, and it has a p
nounced tail going to lower momenta with respect to
target.

We saw in Fig. 6 that the angular momentum distributi
at 10 MeV/nucleon has a pronounced shoulder forl f.5.
This may be related to a phenomenon seen in the ti
dependent Schro¨dinger dynamics reported in Ref.@22#. The
authors found that the neutron can be transferred to a

FIG. 8. Longitudinal momentum distribution of neutrons in t
rest frame of11Be produced in diffraction dissociation on a12C
target at 10 MeV/nucleon and an impact parameterb58 fm. The
distribution has been separated into two contributions, namely, f
low-angular momental f<5 ~long-dashed curve! and high-angular
momental f.5 ~short-dashed curve!. The total distribution~solid
curve! includes the interference between the two components.
. C

. C

ys
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tinuum state moving with a velocity close to the target
calling this the ‘‘towing mode.’’ We can examine this i
more detail by dividing the neutron wave function into low
and high-angular momentum parts, calculating the longitu
nal momentum distribution of each part. The result is sho
in Fig. 8. We see that the low-l part is rather symmetric in
the projectile frame, but the high-l part has a shifted distri-
bution centered at about2140 MeV/c. This corresponds
well to the momentum of neutrons that move slowly wi
respect to the target nucleus. Thus, we confirm with
model and methods the existence of the towing mode fo
in Ref. @22#.

V. CONCLUSION

Comparing the eikonal to exact dynamics in a model
heavy-ion projectile fragmentation reactions, we find that
eikonal is quite a robust approximation for halo breakup
beam energies as low as 20 MeV/nucleon. Spectrosc
studies using removal cross sections can use the eikonal
a reliability of a few percent for relative cross sections an
few tens of percent for absolute cross sections.

Other reaction phenomena, such as the towing mode
puts the neutron into low energies states with respect to
target, arise in the time development of the reaction and
not accessible in the eikonal. The time-dependent Sch¨-
dinger equation seems to offer a good way to calculate s
phenomena.
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