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Eikonal approximation in heavy-ion fragmentation reactions
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Projectile fragmentation reactions are well suited to structure studies of weakly bound nuclei, but an accurate
reaction theory is necessary to extract quantitative spectroscopic properties. We examine here the accuracy of
the commonly used eikonal approximation for the nuclear-induced breakup of halo nuclei. Comparing to
numerical solutions of the full time-dependent Scalinger equation, we find that the eikonal remains fairly
accurate for calculating breakup probabilities of halo nuclei even down to 20 MeV/nucleon, reproducing
relative spectroscopic strengths to within a few percent. Absolute reaction probabilities tend to be underpre-
dicted by the eikonal, which would make extracted spectroscopic strengths somewhat too high. We discuss
other features that are seen in the full calculation but are missing in the eikonal approximation such as the
“towing” mode.
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[. INTRODUCTION eikonal is the continuum discretized coupled channels
method[18-20. In principle, the equations solved by this
A wide variety of reaction models have been developednethod are exact, but the computational demands are severe.
and applied to analyze breakup reactions of halo nuclei. Many continuum states must be included in the basis. Also,
popular model is the eikonal approximatifh-5], which is  coupling between the continuum states cannot be neglected,
very convenient from a computational point of view but is &S is sometimes done, and still have reliable regalts
only justified at higher beam energies. Since many fragmen-
tation experiments have been performed in the energy range

. II. HAMILTONIAN AND DYNAMIC EQUATIONS
of 20—60 MeV/nucleon and the data are often analyzed using Q

the eikonal approximatiofsee for example Ref$6—10Q) it We consider a model in which the only coordinates are
is of interest to assess its accuracy and determine the rangiée neutron’s and the projectile-target coordin@teThe lat-
of beam energies for which it is reliable. ter is treated classically, and for simplicity we assume a

In this work we test the eikonal approximation by com- straight-line trajectonR(t) =b+ vt. This leaves the neutron-
paring it to numerical solutions of the full time-dependentcore and neutron-target potentials to be specified, whereas
Schralinger equation for a halo neutron in a projectile inter-the core-target interaction is set to zero. Again for simplicity
acting with a nuclear target as well as the core of the projecwe ignore spin-orbit interactions, taking the neutron-core po-
tile. For given interactions, the only approximation is a clas-tential U, to have a simple Woods-Saxon form,
sical treatment of the projectile-target coordinate, which is
quite safe for the heavy-ion reactions considered. We previ-
ously used the time-dependent Sainger method to study Upe(r) = —V,f
higher-order effects in Coulomb dissociatiphl—13. For
our tests here, we calculate the nuclear-induced breakup of

the halo nucleus''Be. The time-dependent Schiinger wheref(x)=(1+€*) 1. The initial state of the neutrdf) is

equation has also been applied to halo breakup by other aun eigenstate of the potential; f&tBe we choose the param-

thors[14-16. They use numerical techniques that are dif-eters so that the eigenenergy of the secemdave bound

ferent from the one we have used to solve the equation. I8tate equals the empirical separation energy of 0.5 MeV. We

any case, it is now computationally feasible to solve theysev =61.1 MeV, R,~2.7 fm, anda,=0.52 fm the pre-

time-dependent Schdinger equation by several methods 10 ¢ise value ofR, depends on the coordinate space mesh used

sufficient accuracy that the numerical aspect is not a reap solve the Schiginger equation.

limitation on the applicability. . The neutron-target interaction is parametrized as a con-
Besides the eikonal and time-dependent Sdimger yentional optical potential

equation, a number of other approaches have been used to

describe heavy-ion breakup reactions. The transfer-to-

continuum mode[17] is as convenient as the eikonal and is U= -V f( rnt_RO) —i[W ¢

in some ways more accurate. However, it is not applicable ntont 0 ag v0

with standard-range optical potentials such as those used R

here, and so we do not attempt to include it in our compari- _4W50f'<rnt W)

son. Another approach that avoids the approximations of the

r—-R.
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where f’(x)=df(x)/dx. Here we have employed the whereAr is the radial step, andt is the time step. This
energy-dependent parameters determined in R8]. The  parameter should be of the order of one in order to achieve
interaction(2) acts on the coordinatesfor the relative mo- a reasonably converged result. We have chosen the radial
tion of the neutron and thé°Be core through the neutron- stepAr=0.2 fm, and a maximum between 50 and 100 fm.
target distance ,,=|R(t) — ar|, wherea=A./(A.+1) and To calculate breakup probabilities, it is sufficient to use
A.=10 is the core mass. I'max=50 fm but to get realistic momentum distributions
The immediate object of the reaction calculation is theone needs a larger,,,«. The integration is started with
neutron wave function in the final state. In the eikonal ap-the projectile-targey separation specified at some valyg
proximation, which assumes that the target interaction has & —v T, and the time integration is performed up to a time
very short duration, the final state wave is obtained by a+T. Since there is no Coulomb interaction, one does
simple multiplicative factor. In the present model, thisis  not have to cover a large range of spatial separations; in
the present case the range40<y<40 fm gives ample
Wi(r)=Sy(|b—ar ])[0) accuracy.
d Concerning the decomposition intandm, we find that it
© dz . I i
:exp(f —Un(V]b—ar |2+7?) |0), (3) is adequate to limit the channels kel 4= 12 as will be
—el v seen below. For the-wave halo orbital, the number ofr)
) o . channels is 91 taking the scattering plane symmetry into ac-
where|0) is the initial ground state wave function, ands  count. This is about the most we are able to handle within a
the projectile velocity. reasonable computation time. For consistency, we include all

For the full dynamics we integrate the time-dependentontributing terms in the multipole expansion @, in Eq.
Schralinger equation over a time interval T<t<T where (g je. A<2l,.,.

t=0 at closest approach andis chosen large enough to
cover the duration of the interaction with the target. Numeri-
cally, we represent the neutron-core wave function in a
spherical basis centered on the core of the projectile, Once the final state halo wave functidn:(r)=Y¥(r,T)

has been calculated, one can obtain the total one-neutron
removal probability as

IIl. OBSERVABLES

1 -
W(r0=1 2 Um(r,)Yin(7). (@)
P_1n=1=[{0[¥p)[* ®

This gives the following set of coupled equations, The one-neutron stripping probability is calculated from the

d 72 d2  1(1+1) norm of the wave function after the collision according to
i —um(r,t)y= —(——2+—2 + U (1) [Ujn(r,t)
de 2mo| dr® - r R Pea(b) =1 (W (| Wy). ©
+Clm(r:t)a (5)

The diffraction dissociation probability is determined as the
porm of the continuum part of the wave function after the
collision. If the ground state is the only bound state, then the
continuum part of the wave function is

wheremy is the neutron-core reduced mass. The last term i
the coupling generated by the neutron-target interaction,

Cim(1 D)= (Y Und IR = ar [1]Y ) U (1, 1). W= —|0)(0[Wy). (10)
I'm’
(6)  The diffraction norm is
The coupling is calculated by a multipole expansion of the Pgirr(b) = (W (| W) — (0| W¢)|2. (11)
interactionU ;.
It is convenient to take theaxis (or m-quantization axis ~ The two probabilities, Eqg9) and(11), add up to Eq(8).
perpendicular to the scattering plane, thaxis in the direc- Besides the integrated diffraction probability, differential

tion of the impact parametéx, and they axis in the direction  probability distributions in the final state are measured and

of v. We exploit the reflection symmetry with respect to theprovide important information. To compute momentum dis-

scattering plane, which permits us to restrict the sum in Eqtributions, we project the final state wave function onto scat-

(4) to terms with even or odd values bf m depending on tering states of the neutron-core Hamiltonian. We define am-

whetherl + m is even or odd in the initial state. plitudesS,,, so that the wave function in momentum space
We now discuss purely numerical aspects of solving thds

equations. We use the finite difference method to integrate

Eq. (5), which was described in connection with E§) of 1 N
Ref.[11]. An important parameter in this method is Wi(k)= K % Yim(K) Sim(b). (12
_ hAt Thus the complete final state momentum distribution will be
T= 2 (7) :
Amg(Ar) given by
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dP(b,k)_ \I’ k . 1 2 Y ﬁ b 2 13 1 §| TTT TTTT '||||||||§ TTTT LI B IR
dk =¥ (k)| K2 ™ im(K)Sam(b)| - (13) C Stripping Diffraction 1
-1

The amplitudes,,, are calculated as overlaps of the final 310 E E3 E
state wave function with the scattering statéislm) = y 3
=(1/r) i (r)Y m(F). We normalize the radial wave function & - ! .
to 1(52; ! k3 =
= ] E
2 I ]
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where §,(k) is the nuclear phase shift. With this normaliza-

tion, the amplitudes in Eq€12) and (13) are given by FIG. 1. Stripping and diffraction dissociation probabilities as

functions of the impact parametbrfor °Be— °Be+n fragmenta-

tion on a'?C target at 20 MeV/nucleon. The solid curves show the
probabilities from the eikonal model. The circles show the prob-
abilities calculated with the time-dependent Sclinger equation.
The dashed curves show the eikonal result obtained with an addi-

The expressioné9) and(11) are also applied to the eiko- tional absorption from an empirical core-target interaction.
nal final state wave function Eq3). To calculate the mo-
mentum distribution13), we need to make an angular mo-
mentum decomposition of the eikonal factor. Here it is . _
convenient to expan8(b,r,)—1 rather tharS(b,r, ) itself, lIQ this section we apply the above theory to thBe
because the integral can then be limited to a cylinder along”  Betn breakup reaction. We will consider a variety of
the target trajectory. The subtraction by one is, in principle€action conditions, particularly examining the beam energy
harmless because the continuum states are orthogonal to tHgPendence and the dependence on properties of the initial
ground state. The same procedure can be applied in the tim@ound state wave function. We first investigated the numeri-

dependent description, i.e., we use the continuum part of th§2! accuracy of the dynamic calculations, varying the nu-

wave function, Eq(10), instead of the full solution, when Merical parameterar, the time step, anfj,,,. Taking val-
calculating the radial matrix elements Ed4). ues given in Sec. I, we estimate that the accuracy of the

In our comparative study here we will only consider two diffraction dissociation probability is of the order of 2% at

components of the momentum distribution, namely, the?0 MeV/nucleon and an impact parameter8 fm. We
angle-averaged distribution and the longitudinal momentunfiave also calculated the breakup ofBe at 400 MeV/
distribution. The angle-integrated distribution is closely re-nucleon. Here we have used a purely imaginary optical po-
lated to the decay-energy spectrum and it is given by tential, which was determined from nucleon-nucleon cross

sections and the target density as described in Réf At

this high energy we would expect a perfect agreement be-
tween the eikonal and dynamic calculations. We find that the
results agree within 1% which gives us additional confidence
in the numerical accuracy of our calculations.

The longitudinal momentum distribution is the projection on
the beam direction. This is most conveniently evaluated in a
coordinate system with theaxis along the beam direction.
The full distribution is again given by Eq13) but the am-
plitudes are replaced b m="3  Sam' D' (), Wherew  fraction dissociation for'Be, starting with al’C target and

is the rotation that brings the old coordinate systerith the  a beam energy of 20 MeV/nucleon. The calculated breakup
y axis in the beam directigrinto the new coordinate system probabilities are shown in Fig. 1 as functions of the impact
(with the z axis in the beam directionThe integration over parameter. The solid curve is the result from the eikonal
transverse momenta is much simpler in the new coordinatepproximation, Eq(3). The dashed curve is the eikonal re-
system because the integration over the transversagle  sult, which includes an additional absorption from a core-
gives an expression that is diagonalnm The resulting dis- target interactionobtained with a folding modgl The re-

Sum() =140 [ drgyrun(r.T). (19

IV. RESULTS

dP(b,k)

kK (15

%l&mwn?

A. Breakup probabilities
We now examine the probabilities for stripping and dif-

tribution is sulting core profile function causes a strong reduction in the
one-neutron removal probability at smaller impact param-
o 2 eters. It is seen that the impact parameter range of about
dP(k,) dk < _ : _ _
TZZW ?2 ; Yim(0)Saml »  (16) 5-15 fm is responsible for practically the entire cross sec-
z Ikl & m [1=[m] tion. It should also be noted that the absolute cross sections

will have a significant uncertainty associated with the core-

where 6, is given by cog =k, /k. target profile function.
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FIG. 2. Breakup probabilities as a function of beam energy for
the !!Be reaction on a°C target at &b=8 fm impact parameter. FIG. 4. Breakup probabilities fot!Be as in Fig. 1, but for a
Solid curves show the eikonal result, and circles connected witt?%%ph target at 20 MeV/nucleon.
dashed lines are the results of the full dynamic calculation.

The dynamic calculation using the time-dependent --Schroperturbation theory, one would exﬁpl%:t the eikonal tp con-
dinger equation is shown with open circles in Fig. 1. Since/¢'9¢ tg the full dynamics a51_2L+ Ebeamfpr real potentials
the core-target interaction is set to zero in the dynamic cal@nd 10°~1/Epeqpy for absorptive potentials. We note that

culation, the results should be compared to the solid curvedh® €nergy dependence of the optical potential we have used

For both the stripping and diffraction, the eikonal underesti123] Will also affect this behavior. The calculated stripping
mates the probabilities by about 25%, but reproduces thBrobabilities follow the expected dependence abByg.m
dependence ob quite well. The underprediction of the strip- - 20 MeéV/nucleon; the ratio of probabilities is quite well
ping is easy to understand qualitatively. In the eikonal apfit Py the function Pei/Payn=1~E}/Epeam With E,
proximation, the absorptive potential of the target acts only=4-2 MeV. The diffraction probability has a similar trend
on the halo density in the immediate path. In the full dynam-Put it fluctuates erratically below 20 MeV/nucleon.

ics, there is also a flux from the halo wave function into the N Figs. 4 and 5 we show the corresponding quantities for

target region in response to earlier absorption and diffractiorihe breakup reaction on a heavy targ&Pb. The results are
The three probabilitiegstripping, diffraction, and total similar; there is a consistent underprediction of the stripping

are shown as functions of the beam energy in Fig. 2 for £robability in the eikonal approximation, which becomes
typical impact parameteb==8 fm. One sees the expected Ia}rger ata lower beam energy. Interestingly, th_e error in the
trend that the eikonal becomes increasingly accurate as tffiffraction does not vary smoothly as a function of beam

beam energy increases. The same results are plotted as ey by accident the eikonal result at 20 MeV/nucleon is
ratio of the eikonal to dynamic probabilities in Fig. 3. From guite good. From these results we consider 20 MeV/nucleon
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FIG. 3. Comparison of eikonal and dynamic results, presenting FIG. 5. Ratio of eikonal to dynamic probabilities for ‘aBe
the results of Fig. 2 as a ratio of eikonal to dynamic probabilities.breakup on £°%b target as functions of beam energy, at the impact
The solid curve is the result for the total one-neutron removal probparameteb= 13 fm. The solid curve is the result for the total one-
ability. The dashed curves are the results for stripgargssesand neutron removal probability. The dashed curves are the results for
diffraction dissociatior(circles. stripping (crosses and diffraction dissociatiofcircles.
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TABLE I. Ratio of eikonal to dynamically calculated one- 0.020

0020 T T T T T T T
neutron removal probabilities if*Be. The table shows different - (®) -
bound state angular momeritaseparation energieS,, and beam < 4445 < 0.015 _
energiesE, ., for breakup on &2C target at an impact parameter 2 g | I/ 4
b=8 fm. 2 2 [

= 0.010 = 0010 oA -
® ; o 4
Ebeam I S,=0.5 MeV S,=3.0 MeV 3 3 o \
% 0.005 % o005~ \ .
20 MeV/nucleon 0 0.77 0.75 i i
1 0.77 0.78 0 ol 1
2 0.79 0.82 0 50 100 150 200 <100 50 0 50 100
K o1 (MeV/c) k, (MeV/c)
40 MeV/nucleon 0 0.86 0.84 FIG. 7. Momentum distributions of neutrons in tht#8e projec-
1 0.86 0.85 tile frame, produced in diffraction dissociation o4 target at 20
2 0.86 0.88

MeV/nucleon and an impact parametér=8 fm. The angle-
integrated distribution is shown i), and (b) shows the momen-
tum distribution projected onto the beam direction. The solid and
a lower boundary for the reliable use of the eikonal approxi-daShed curves are the eikonal and dynamic results, respectively. All
mation. distributions have been normalized to one.

As mentioned above, the determination of absolute spec-

troscopic strengths from nuclear breakup is hardly feasiblstate angular momentia, but not so well at the largdr .

due to the uncertainty in the core-target interaction. A lesShe sum ovet; is the diffraction dissociation probability,
ambitious use of reaction theory is to apply it only to relativewhich is rather insensitive th, .

spectroscopic strengths when several final states are possible. The differences between the dynamic calculations and the
To assess the validity of the eikonal for such purposes, weikonal approximation are most dramatic at 10 MeV/
present in Table | the ratio of eikonal and dynamic one-nucleon. The dynamic calculation has a local minimum near
neutron removal probabilities as a function of bound statd;~5. The position of this minimum increases to larggif
angular momenta and binding energies. We see that the aive increase the impact parameteror the velocity v,
konal is an excellent approximation when used this way. Foroughly according to the classical formula,ss=mvb. The
example, at a beam energy of 40 MeV/nucleon, the differfocal minimum may reflect the absorption of the valence
ence in the probability ratios is only a few percent over theneutron when it hits the target. We believe that the shoulder
range of bound state angular momenta from 0 to 2 and bindseyond the minimum represents neutrons at very low energy
ing energies of 0.5 to 3.0 MeV. in the target frame. We discuss below the linear momentum

distributions in order to get more physical insight into this
B. Angular momentum distributions phenomenon.

The angular momentum distribution of the final state is o
illustrated in Fig. 6 for a'?C target at three beam energies, C. Momentum distributions
again at the impact paramete+ 8 fm. The solid curves are The angle-integrated momentum distribution of the neu-
the eikonal predictions, and the dashed curves are the resuli®n with respect to the projectile frame is shown in Fig)7
of dynamic calculations with,,,,,=12. We find that the dy- It shows a broad peak at about 80 MeWith a very narrow
namic calculations have converged quite well at smaller finapeak superimposed. The narrow peak is due td-veave
resonance of the projectile potential, Ed). In actuality
— T2 there is no such resonance in th&e spectrum. This simply
40 MeV/nucleon 7] shows the limitation of the simple potential model we have
‘ used to describé'Be. It may be seen in comparing the ei-
konal to the dynamic calculation that the eikonal is remark-
ably accurate in describing the angle-integrated momentum
distribution. It should be noted that models that neglect the
final state core-particle interaction will miss resonance peaks
such as those found here. The broad peak is rather insensitive
to beam energy and the details of the target interaction.
ot e o e o e 1 The longitudinal momentum distribution is of consider-
p able interest for several reasons. Of all the momentum dis-
f tributions, it is least sensitive to the details of the neutron-
FIG. 6. Angular momentum decomposition of diffraction disso- target interaction. In fact, to some approximation it just
ciation probability in the final state. Reaction conditions are thereflects the longitudinal momentum content of the initial
same as in Fig. 2. Results are shown at three beam energies, bothkeund state. However, one feature of the longitudinal mo-
the eikonal approximatiosolid curve$ and from the dynamic cal- mentum distribution, its asymmetry in the projectile frame, is
culation(dashed curves due to the finite duration of the collision and is completely

T 1 T 1 T
_ 10 MeV/nucleon 1

T
.. 20 MeV/nucleon
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rest frame of''Be produced in diffraction dissociation on &C
target at 10 MeV/nucleon and an impact paraméter8 fm. The
distribution has been separated into two contributions, namely,
low-angular momenté;<5 (long-dashed curyeand high-angular

0.015 T T T T tinuum state moving with a velocity close to the target’s,
calling this the “towing mode.” We can examine this in
more detail by dividing the neutron wave function into low-
and high-angular momentum parts, calculating the longitudi-
nal momentum distribution of each part. The result is shown
in Fig. 8. We see that the lowpart is rather symmetric in
the projectile frame, but the highpart has a shifted distri-
/I bution centered at about 140 MeV/c. This corresponds
well to the momentum of neutrons that move slowly with
| \ respect to the target nucleus. Thus, we confirm with our
0.005 / ! - model and methods the existence of the towing mode found
] in Ref.[22].

0.010

dP/dk, [(MeV/c) ']
1
|

/ V. CONCLUSION

| $ooeo 47 Comparing the eikonal to exact dynamics in a model of
-200 -100 0 100 heavy-ion projectile fragmentation reactions, we find that the
k; (MeVrc) eikonal is quite a robust approximation for halo breakup at
beam energies as low as 20 MeV/nucleon. Spectroscopy
studies using removal cross sections can use the eikonal with
a reliability of a few percent for relative cross sections and a
fronfew tens of percent for absolute cross sections.
Other reaction phenomena, such as the towing mode that
momental;>5 (short-dashed curyeThe total distribution(solid ~ PUtS the neutron into low energies states with respect to the
curve includes the interference between the two components.  target, arise in the time development of the reaction and are
not accessible in the eikonal. The time-dependent Schro
dinger equation seems to offer a good way to calculate such

FIG. 8. Longitudinal momentum distribution of neutrons in the

beyond the scope of the eikonal approximation. This is illus
trated in Fig. Tb) for the diffractive breakup of'Be on a
12C target at 20 MeV/nucleon artw=8 fm. The true distri-
bution is 10% broader than the eikonal, and it has a pro-
nounced tail going to lower momenta with respect to the G.B. acknowledges helpful conversations with A. Bonac-
target. corso, D. Brink, P. G. Hansen, W. G. Lynch, and J. A.
We saw in Fig. 6 that the angular momentum distributionTostevin at the ECYT workshop, “Reaction Mechanisms
at 10 MeV/nucleon has a pronounced shoulder Ifor5.  with Exotic Nuclei.” This work was supported by the U. S.
This may be related to a phenomenon seen in the timeDepartment of Energy, Nuclear Physics Division, under
dependent Schdinger dynamics reported in RgR2]. The  Contract Nos. W-31-109-ENG-38 and E-FG-06-90ER-
authors found that the neutron can be transferred to a co1132.

phenomena.
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