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A new method to incorporate the Pauli principle into the double folding approach to the nucleus-nucleus
potential is proposed. The description of the exchange terms at the level of the quasiclassical one-body density
matrix is used. It is shown that in order to take into account the Pauli blocking properly, a redefinition of the
density matrices of the free isolated nuclei must be done. A solution to the self-consistent incorporation of the
Pauli blocking effects in the mean-field nucleus-nucleus potential is obtained in the Thomas-Fermi approxi-
mation.
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[. INTRODUCTION change was described by a zero-range pseudopotential, more
accurate methods have been developed If6er,11,17.
For several decades the microscopic calculations of th&/hen one uses a finite range effective nucleon-nucleon force
nucleus-nucleus potential to describe the scattering phenonn the DFM calculation, the one-body density mat(BxM)
ena have been the subject of great interest in heavy ion phy$sr each nucleus is needed. In a simple harmonic oscillator
ics [1-7]. A large variety of different theoretical models model the DM is known explicitly. In a more realistic case it
have been proposed to this aim. The difficulties in solvingcan be obtained numerically from the solution of the Hartree-
this problem are caused by the very complicated connectiorRock (HF) equation§18]. However, this is not suitable for a
between the intrinsic degrees of freedom of the collidingDFM calculation for two reasons. First, the nucleon-nucleon
nuclei and the dynamics of their relative motion. Thereforeforce and the local densities are used as independent inputs
many assumptions to calculate the nucleus-nucleus potentitdr the DFM. If one wants to calculate the DM within the HF
at the numerical level are needed. However, these simplifiethethod, the effective nucleon-nucleon force used for calcu-
approaches have to satisfy the fundamental quantum méating the ground states of the colliding nuclei has also to be
chanical principles, and the Pauli principle is the most im-considered. This force can differ from the one used in the
portant one to be considered in the nucleus-nucleus scatteaetual DFM calculation. Second, to calculate the DFM po-
ing problem. To incorporate the Pauli principle into the tential with a DM that is known numerically is not an easy
standard coupled channel scattering theory, the resonatirtgsk. Following the original DFM idea, approximations to
group methodRGM) [8] was proposed. However, even for express the DM by means of the local density are used. One
the elastic scattering problefone-channel approximation of the most popular approaches to the DM is given by Campi
the microscopic calculation of the effective Hamiltonian thatand Bouyssy(CB) [19]. It consists of a resummation of the
describes the relative motion of the nuclei is very compli-Negele-Vautherin expansid@0] and presents the DM in the
cated for two reasondi) The antisymmetrization operator Slater form with some effective momentum. Recently an-
leads to very complicated nonlocal matrix elements, @nd other approach to the DM based on the extended Thomas-
the RGM equations are not of the Sctiimger type for rela-  Fermi theory(ETF) has been proposd@1]. It allows a very
tive motion due to the nontrivial energy dependence. Thugood description of the exact DFM potentiak., the DFM
the numerical applications of the RGM are restricted to casesbtained with the exact DM 22].
where the intrinsic wave functions can be based on the har- In heavy ion scattering the nuclear rainbow phenomena
monic oscillator. However, these harmonic oscillator solu-are observed in very precise experimefs10,12—15%. In
tions are not very useful to describe the nucleus-nucleus scadrder to explain these phenomena, a strongly attractive
tering because of their unrealistic asymptotic behavior. nucleus-nucleus potential at small distanéiesthe interior
The double folded modéDFM) [1], which is less funda- of nuclej is of primary importance. In particular the system-
mental than RGM but starts from realistic nuclear densitiesatics of the elastic scattering in thé%0+1%0 system
has become one of the most popular methods to calculate th&2,16,23, which has been measured with high precision
real part of the optical potential. Using the DFM detailed fitsover a large region of scattering angles and incident energies
to elastic scattering data for many systems are obtaine(E,,,=75-1120 MeV with 15 individual energigshas
[9-16]. While in earlier publications the one-particle ex- triggered the development of refinements of the DFM. The
phenomenon of the nuclear rainbow scattering has been es-
tablished in this system with the observation of primary Airy
*Email address: vbs@nuclpcl.phys.spbu.ru maxima in the region of energies between 350 MeV-1120
"Email address: oertzen@hmi.de MeV, and the occurrence of the higher order Airy structures
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has been established down to the lowest energy of 75 MeV. The paper is organized as follows. In the first section we
These data have been successfully described by the mosderive the Pauli distorted double folding mod@&@DDFM)
recent version of the DFM, which uses density-dependenstarting from momentum-dependent determinant wave func-
N-N interactions adjusted to reproduce nuclear matter proptions using the orthogonalization procedure first considered
erties[24]. The volume integrals of the corresponding realby Fliessbach3]. In the second section we discuss the semi-
and imaginary parts of the potentials obtained via fits to theclassical content of PDDFM that simplifies the problem sig-
angular distributions have been determined using the DFMificantly and explain the procedure to calculate it. We com-
or a phenomenological Woods-Saxon squared form factor. Raré the PDDFM with the standard DFM and discuss the
constant rise of the volume integrals towards the lowest enfaull dlStOI’tIOfg EﬁgCtS on the nucleus-nucleus potential as
ergies is observed, giving probably a maximum at a rathefPplied to thet _O—_ O glastlc scattering in the third section.
small energy. This fact illustrates the persistence of veryl "€ summary is given in the last section.
deep potentials responsible for the observation of the rain-
bow scattering at low energies. In the description with the Il. PAULI DISTORTED DOUBLE FOLDING MODEL
DFM of Ref.[24] the main part of the energy dependence of
the potential is properly described; it originates from the con-
sistently calculated exchange term. In addition an overal
normalization factor that is smaller than unit.7-0.9 is
needed, which has an additional energy dependence.
There are still questions concerning the theoretical foun- V(D,p)zf drydrypig(ry) pag(ro—D)vg(S)
dations of the DFM. First of all, the DFM potential repre-

The DFM potential for two nuclei consisting ®f; and
, hucleons contains the direct and exchange terms and is
defined as followgsee for exampl§l16]):

sents the interaction energyenergy surface’) [25] of two

nuclei that depends on the distance between the mean fields +f drydrapao(ri,r2) p2o

rather than on the dynamical radial variable. Second, the cor-

rect treatment of the Pauli principle has to take place. X (r,—D,r;—D)vg(s)eP", )

The DFM is used to describe the potential of elastic scat-
tering, thus it reflects the mean-field effects that occur if theHere p1o and p,q are the ground-state local densitigbrect
two nuclei overlap in their ground states. In most of thepar) and DM (exchange partof each nucleusp is the rela-
DFM calculations the “frozen density” approximation tive momentum between two nucleons of different nuclei
(FDA) is used. It implies that the local densities of the col-due to their relative motiofiwe will use P for the relative
liding nuclei do not change during the interaction, which ismomenta of nuclei, whil@ refers to the relative momenta of
valid at large distances and at high enough energy. This apghe corresponding nucleord= up, w=N;N,/(N;+N,)],
proach touches on the questions of the relative values adndD is the separation distance between the two centers that
collision times and the readjustment times of the nucleadefine the nuclear densities. Note that hereorresponds to
wave functiong4-6]. Selecting the purely elastic channel, the reduced mass number. The form facigyés) andv(s)
also for small impact parameters with large density overlapof the direct and exchange effective nucleon-nucleon force
we project from the collision those processes in which thedepend on the nucleon-nucleon distanse=1;—r,). The
ground states of the nuclei are recovered. However, the irBFM in the form (1) corresponds to the case when spin-
trinsic states of the colliding nuclei could neverthelessisospin states are degenerated and each orbital state is occu-
change during the interaction. Due to the Pauli principle, thepied by four nucleons. Throughout the paper we will con-
occupied states in one nucleus are strictly forbidden for thgider this case because it simplifies the presentation. The
nucleons of the second nucleus. This process would lead tofarmula (1) can easily be generalized for asymmetric nuclei.
“Pauli excitation,” provided the momentum distortions are In this latter case both proton and neutron densities for each
transformed into intrinsic excitations of the two fragments. nucleus are neede@ee for example Ref$28,33). How-

In the local nuclear matter approximation the Pauli block-ever, because only the proton density is available from the
ing disturbs the local Fermi distributions of nucleons in theelectron scattering, the symmetrical formut® is widely
colliding nuclei, an effect that can be considered as a virtualjsed.
dynamical excitation and that has been discussed in terms of The direct and exchange parts of the nucleon-nucleon
a contribution to the kinetic energy term in the heavy ionforce in general are defined as follovgee for example Refs.
potential[4,5]. If this virtual excitation is transformed into a 6 27): Da(X1,X2) =0 (X1 ,X0) and 0e(Xq,X2)
real excitation of one of the nuclei, this will lead to a loss of ~ ~ A : . .
flux in the elastic channel and consequently to a contributior_\_U(X_l’XZ)Pl?’ where x consists  of sBatlar and spin-
to the absorption. Such processes are known in atomic phy&0spins,t variables of the nucleons, whifé;, stands for the
ics as Pauli excitations. We also note that nuclear rainbov#xchange operator of the spatial coordinates. As usual we use
scattering is only observed in strongly bound systems involvihe hat to define the operators. Let us consider the central
ing a particles anda-cluster nuclei. This fact implies that force of the standard form that will be used in the following:
the intrinsic excitations of the participating nuclei are sup-
pressed due to the high energy levels of such excitations. - _ _ CLRDO DT Do BT
Thus the backward scattering afparticles ona-cluster nu- v (X1 %) Z 0i(8) (Wi +biP 1~ P~ MiPLP1,),
clei is related to scattering without energy transfer. 2
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whereP{{" is the spin(isospin exchange operator and(s)  E(D)=(®|H|®), one has to define the normalized wave
is the common radial form factor of the force. One can alscfunction ®, which describes two nuclei separated by dis-
use a more general central force with different form factorgsance D in the c.m. system. At infinite separatiof(D

for each exchange term, and the results presented here atex) has to be equal to the sum of the intrinsic energies of

easily generalized for this latter force. However, in this casahe two isolated nuclei and their relative motion in the c.m.
the number of parameters that define the effective force wilkystem:E(D =)= €19+ €59+ E¢ n -

be much larger. One can recddh in terms of Eq.(2) by In order to take into account the Pauli principle we start
substituting from the normalized many-particle wave functigRefs.
[3,29)

(8)— 2 Xqivi(9), . .
Uy : d,iv O= n(D)A[CI)l(Dl)q)z(Dz)e'(PlRﬁPZRZ)HL]v (5)

Ue(s)_)z Xe 0i(S), 3) \ivhereD,(J = 1,2) are Fhe cente_rs qf the nucleon coord_lnates;
i A=2p5pP is the antisymmetrization operatosp the sign
where Xg;=wi+bi/2—hi/2—mi/4, and Xe;=m;+hi/2 of the permutatiorP; ®,(D,) are the wave functions of the

—b;/2—w;/4 are the standard combinations of the exchangénteraCtIng nuclei centere_d arourtd,; Py ,R(1=12) are
parameters that enter into the central nucleon-nucleon forcd'€ Mmomenta and coordinates of the centers of fitie
of Eq. (2). In practice the effective nucleon-nucleon force NUcleus:D=D;—D,, andn(D) is the normalization.
consists of the sum of several terms that represent the short NOW E, Eo, andV become functions ob andP. If one
and long range components of the force. For the sake dfS€S forP(D) its asymptotic valueP,s=v2muEp (the
simplicity we will drop the index in the following and will ~ 9lobal definition of the relative momentahe formula(4)
consider only one term in Eq2). becomesV(D,Pag) =E(D,Pas) —E(D=2=,P,9). At infinite
In Eqg. (1) the direct term depends on the local densities ofSéparation we have(D=)=E;+E,, whereE, contains
each isolated nucleus, while the exchange contribution dgh€ nucleus center of mass motion. Neglecting the spurious
pends on the corresponding density matrices. Using the CB8:M. motion(e.g., the energies of center mass motion in the
expansion of the DM or the ETF DMsee Ref[21]) the single-particle potential of the shell modg29]), one can
exchange term can also be rewritten in terms of the locaiVrite E;~ejo+P{/(2Njm) and E(D=2) becomes ey,
densities. These methods give the rather accurate expressidrezot Ec.m.-
for the DM p,(ry,r,) averaged over the directios=r; Assuming that the center-of-mass momeRtalepend on
—r,. Thus the DFM potentiall) becomes dependent on the D_and tend to their asymptotic valuém the c.m. system
modulusD andp. In order to be used in E1) there are two  Pf=2muE. ) at infinite separation, the wave functi¢s)
possible definitiong22] of the relative momentum of the describes two nuclei moving freely with their relative motion
nucleonsp: the local valugp?=2m[E.,—V(D)]/x and the  perturbed by the nucleus-nucleus potential. In the c.m. sys-
“global,” or asymptotic value withp?=2mE,,/u. Here tem the wave functiod depends on the parametddsand
E.m. is the energy of relative motion in the center-of-massP.
(c.m) system. In the first case the system of coupled equa- If P depends oD it could be chosen so as to ensure the
tions with p=p(V) and V=V(D,p) must be solved self- energy conservatior]3]: E(D,P)=E(D=»,P,y), which
consistently for each separation distaiizeSubscripts “0”  givesP(D) = y2mu[E.,,— V(D,P)] and corresponds to the
for the local densities and the DM indicate that these correlocal definition of the relative momenta. This potential in
spond to the ground states of the isolated nuclei. turn is used to obtain the scattering wave function of the two
The formal foundation of the DFM can be found in the nuclei. Thus an iterative self-consistent procedure is used to
generalized Born-Oppenheimer meth8d where the poten- calculate the scattering solution using the potential obtained

tial between two nuclei is defined as follows: with the plane wave relative motion as the first step.
The calculation ofE(D,P) with arbitrary intrinsic wave
V(D) =E(D) ~Eq(D=2°). (4)  function @, is not an easy task. It becomes simpler if one

. . . . uses single-particle shell model wave functions:
In this equatiorEy(D) is the energy of the two nuclei sepa- gle-p

rated by the distancP without their relative kinetic energy:

- o . 1 . 1 .

Eqo(D)=E(D)— P2(D)/?Mnj, which is the e3<pectat|on value P =— A|H ¢ (X)) =—— AuH b,(x,), (6
of the energy operatdd — T whereH and T are the total VNib el VNI ael

microscopic Hamiltonian and the relative motion kinetic en-

ergy operator, respectively. wherel =1,2; x contains spatiat and spin-isospin variables

Equation(4) defines the “energy surface,” which cannot S,t; x=(r,s,t), and¢/(x") stands for the wave function of
be strictly identified with the microscopic nucleus-nucleusthe shifted spatial argument’=(r—D,,s,t): ¢, ., (x")
potential[25] and depends on the parameierather than on = ¢,(x). The index of each stater contains orbital and
the dynamical variabl®. The DFM potential of Eq(1) also  spin-isospin quantum numbers. It is the standard coordinate
depends on the parametér Therefore to derive the DFM, system that is used in the two-center shell models and in the
we start from anzatz4). In order to calculate the energy DFM [26].
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Using this approximation one can write the total wave
function(5) in the form of a Slater determinant whose matrix
elements can be calculated easily. To this aim one can intro-
duce momentum-dependent single-particle states in the fol-

(V)= 2 (Babelvl By B (G un(G g5

(G a,s(G Yyl (11)

lowing way [3]:

~ P
¢ae|(X)E¢a5|(X)quip|r/ﬁ); (pI:N_||> (7)

Now the wave function(5) can be written as a Slater deter-
minant,

o= detA, s, (8

=A Tl daxa)= J_
whereN=N;+Ny, A, 5= d.(Xg), Gap={(daldp)} and
I'=detG is the Gram determinainas defined for example in
Ref. [30]) of the set{|$,)}. The functions{¢,(r)} are
square integrable and depend on the position ved@ers
and on the momentp,_, ,. Note that the vector{s?ﬁa> are

Heret= —#2/2mV? is the one-body kinetic energy operator

ando the central effective nucleon-nucleon force. The ma-
trix G~ 1 is the inverse matrix o6 defined previously. If the

statesg,, are orthogonal, the matri® becomes diagonal and
one immediately obtains the DFM from E(®).

At intermediate distances and energies the orthogonality
of the single-particle states from different nuclei is violated
in the overlap region, where the potential is quite important
for the description of the experimentally observed nuclear
rainbow scattering. If the nonorthogonality of the single-
particle wave functions is significant enough, the usual DFM
is expected to fail and one should use the full expressions
given in Egs.(9)—(11). Note that these equations are defined

in the momentum-dependent bagis and are thus difficult
to compare directly with the DFM expression.

ordered in the sense that one can distinguish to which We will therefore use another optidi8]. If the set of

nucleus they belong taxrel;1=1,2.

states{¢,} is linearly independentI{+0), it can be or-

These functions are orthonormal if they belong to theyyogonalized and one can consider the corresponding ortho-

same nucleusG, ;= <¢a|d>ﬁ) 6,,p(a,Bel), but they are
not if @ and g are states of different nuclei wits, g
#0458

Due to the fact that the functionsp,} are finite with
respect tar, the functionG, 4(D,p)—0 if D—o and (or)
p—o. Thus the matrixG is strictly diagonal for infinite

normal set{y,}. The orthogonalization can be done by
means of the Gram-Schmidt proced(see for example Ref.
[30]). One can write down the wave functigh) with the

help of this new orthonormal basis. Expandin@a
=25C,, BTpﬁ, where deC#0 and using properties of the

radial separation and for infinite separation in momentunfleterminants, one will geb =exydio]det,(x,)}, where

space p). This statement can also be approximately valid inc=

the region of small radial overlap or at high enough energie
If we have overlap withD#0 or p#0, the Gram deter-

minant does not vanisk =def($,| )} #0. In this case

the single-particle states of both nuclei are linearly indepen-

dent and the vector§¢,)} form a basis in theN dimen-

sional subspace of the Hilbert space. This is due to theiwherer =

separation irr space as well as in momentum space. In th
case of complete overlap, f@—0 andp—0, we havel’
—0, however, the wave functio® remains well defined

and tends towards the ground-state shell model configuration

of the composite systef81]. We will not consider this case
in the present paper because the values of the potential

arg(detC) (see also Ref31)).
s. Using this wave function, the kinetic energy reads

fdrq-,(r)

S ,.a1l(Vi,)|? is the kinetic energy density cor-

eesponding to the momentum-dependent basjs The po-
tential energy is given by

(M= 2 <¢altlwa>— (12)

1 ~ o~ i~ o~ ~ o~ i~ o~
(Vy=3 2, [(Datbplo[Fathg) ~ (Dalplo G511,

zero separation play a negligible role in the elastic scattering

problem. Using the well-known technique of REB1], one
can calculate the potential of E@}) using the nonorthogonal
basis{¢;} which coincides with the DFM potential at large
separation distances where the nonorthogonality vanishes

P?(D)
V(D,P)=<T>+<V>_ 2Mm — €17 €, (9)
where
<T>:a23 (alt|Pp)(G Y0 (10
and

The set{,} is also ordered in the sense that one can distin-
guish to which nucleus each state belongs by considering its
asymptotic behavion),— ¢,, if D—o (at finite p). To
'obtain an expression close to the DFM expression, let us
introduce wave functionsy,=v, exd —ipr/A](1=1,2«
el), which correspond to the nucleus rest frame.

However, contrary top,, these wave functiong, de-
pend on the relative momenturp. Introducing again
Yl (x")=¢,(x) one finally finds another definition of the
DFM potential that we call the Pauli distorted double folding
model (PDDFM). Assuming spin-isospin degenera@s.g.,
each orbital state is occupied by four nucledd]) and
using Eq.(2) the nucleus-nucleus potential reads
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at each separatioD. It is necessary to emphasize that the

V(D'P):XdJ drydropy(ry)po(r2)v(|ry—ro+DJ) considered excitations due to the Pauli principle are not of a
dynamical origin. They are rather kinematic and contribute
to the “total kinetic energy” in the potentidkee alsd4,5])

and will act as a repulsive potential term. In order to describe
the actual excitations of the nuclei involved in the scattering,
one should solve the true dynamical problem, which is an
extremely difficult task.

In order to approach this self-consistent solutisee the

next sectiof one can also define a momentum-dependent

+Xef dridrops(ry,ra)pa
X (r,—D,r;—D)v(s)e'P+¢(D), (14)

where the densitiep,(rq,r,)=2gp(X1,X,) are obtained
with the wave functions),, and we use the definitions;
=ry,S,t, X,=r,,5t, and p,(r)=p(r,r). Notice that . ) ~
pi(r1,1) andp,(r) are related to the DM and the local den- density_matrix for each nucleus as follows;(xy,xz)
sities are calculated with the orthogonal wave functigns ~— >a<1¥a(X2)¥a(X1). The orthogonality of the iirlgle-
throughp,(r1,r.) = p,(r1,r,)ePs andp,(r)=p,(r). The last particIeA sta:[es in differaant rluclei means that we hayp,
term in Eq.(14) represents the excitation energy of the nuclei=0 orp2=p, wherep=p;+p, is the sum of the two DM's.

during the interaction and is given bg(D)=e1(D) Thus the PDDFM potential can be obtained starting from
+e,(D), with SPS¢,; of the isolated nuclei and using the orthogonalization
1 procedure. Note that nothing is implied about the choice of
_ ~ T + ~ o~ these single-particle states. In fact, one can use the single-
8'_2 (Paltlira)+ 2 a%g [Catiplolibatip) particle states of the isolated nuclei that correspond to the
5 frozen density approximatioffFDA). This procedure was
~ o~ A~ o~ Pr(D) used in Ref.[3] using harmonic single-particle states with
—(Yadplv]dpsa)] - 2Nm the density-independent Brink-Boeker force. The shallow
5 nucleus-nucleus potential was obtained within this approach.
_ﬁ_f dr[ (1) = 710(1)]) However, the SPS and the mean field of one nucleus can
2m mi 710 change in the presence of the second nucleus and this com-

X plicates the problem significantly. Another problem in the
d _ application of the described procedure is the use of explicit

+ = ; - .
2 f dradral pi(ra)pi(ra) = pro(r)pro(r2)] single-particle states while the main advantage of the DFM is

to employ the local densities only. It will be shown in the

Xv([ri=ry) next section that these problems can be solved at a semiclas-
Xeo sical level.
+ 7f deS[p|2(R,S)—p,zo(R,S)]v(S), (15 Due to the rotational invariance the nucleus-nucleus po-

tential depends on the scalar produbi®): V=V[(DP)].
This dependence is also contained in the DM entering into

where 7, and 7, are the kinetic energy densities of the ;
ground and excited states, respectively. We have used tth)aDDFM' It was pointed oul3] that the dependence on the

T ) ~ angle betweer and P is very weak and the potential de-
Spin-isospin degeneracy and tzhe fact thalr)=7(r)  pends mainly on the moduli® andP. Thus in Eq.(14) one
+kipi(r), wherer =2, [(V,)|" refers to the rest frame  can yse the DM, (ry,r,) averaged over the directic
of each nucleus.

The nucleus-nucleus potent(D) given by Eq.(14) is I1l. SEMICLASSICAL APPROXIMATION
formally equivalent to those of Eq$9)—(11) but differs

from DFM for three reasons. First, the Pauli distorted DM |t jg possible to simplify the calculations of the potential

[01(X1,%2) =2 e 1 ¥a (X2) Ya(X1)] enters into EQ.(14) in-  in Eq. (14) by using semiclassical approaches based on the
stead of those of the ground state for each isolated nucleushomas-Fermi(TF) method and its extension. In fact, in
[p10(X1.X2) == 415 (X2) do(X1)], Which are used in the most of the recent work on the DFM potential such kinds of
usual DFM as in Refl1]. Second, the direct term in E(L4)  approaches are applied. For example, the CB approximation
depends on the incident energy because the orthogonalizpt9] to the DM is used in many cases. The CB-DM is taken
tion is performed at a given relative momentypnwhich  in the Slater form with an effective momentum that depends
defines the momentum-dependent functigns Finally, an  on the quantal kinetic energy densityand the local density
intrinsic excitation energy term appears in the PDDFM.  p. Thus, the CB-DM corresponds to a truncation of the full
In order to calculate the DMy, one needs to know the quantal DM. Howevery and p at a quantum level are un-
relative momentum of the nucleomgD) explicitly. In the  known and therefore their semiclassical counterparts, which
DFM it is assumed thap?(D)=2m[E.n—V(D,p)]/u. can be written in terms of the local density only, are used. In
Thus, the problem of determining the potential taking intothis case one obtains the semiclassical CB-DM, which cor-
account the dependencemD) on the “final” potential has responds to a truncation of the semiclassical DM in the ex-
to be solved self-consistently. Using Ef) as an anzatz, one tended Thomas-FermiETF) approximation[21]. Thus, a
can calculate a model nucleus-nucleus potential by selfsemiclassical picture is actually included in the DFM.
consistently orthogonalizing the single-particle stai8B3 In coordinate space the semiclassical density matrix is
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given by the inverse Wigner transformatisee for example

Ref. [32]) of the distribution functionf(R,p), which for a
moving nucleus, reads .‘

- g f - i
rr',p)=———=| dp'f|(R,p')e’? "
pi(r.r'.p) (2mh)? p'fi(R.p")

DFM

_ 9
(27h)3

fdp’ﬁ(R,p’)e‘(p'“")“

g

_ ’ ’r_ ip’ 9%
- o] SRR R (19 D ..

whereR=3(r+r’) ands=r—r’ while g stands for the spin

and isospin degeneracy. For the ground state at the Thomas-

Fermi level(the #° order term in the Wigner-Kirkwood ex-

pansion[32]) we have fi(R,p")=0O[pg (R)—p'], where

O (x) is the unit step functior®(x)=1 atx=0 and®(x) FIG. 1. The Fermi spheres that correspond to the different points

: 7 "N — / _ in coordinate space of the interacting nuclei separated by the local

=0 Otherwls_e' Thus,.f|(|'32,p') B f'(R’P ~P)=0[pe,(R) momentump(D? in momentum spaceg. The upp(fr part cor);esponds

:|p' —pi|] is just the distribution function related to the DM 1 the ysual double folding modéDFM), where the Fermi spheres

p, as defined in the previous section. with momentap,, overlap. In the lower part the truncated Fermi
We suggest that during the interaction these Fermbpheres with momentg corresponding to the PDDFM are shown.

spheres can deform so that at each point in coordinate space

one can define for each nucleus an effective Fermi volumé""Trt 9f| Fi?f' 1; this ﬁverl?:p regionhis forbidden by thg Pa(;""
o . N principle. If p—o, these Fermi spheres are separated and no
{4, and a distribution functionf,(R,p")=0Lpr (@pr.R)  (yenan occurs. At a given value B the Fermi momenta of

—p'], where the momenturpg, is related to the local den- gpe of the nuclei i9e 1= Ppe 1 p2(R)], while for the second
sity of the nucleud at the considered point in coordinate nucleus it stands asg ,=pg J p2(R—D)]. If D—« andR
space and depends on its orientatieg, in momentum s finite, the values op,(R—D) andpF2—>O and their over-

space. At a semiclassical level it is not possible to introducgap become zero too. At finitp and D the overlap will ap-

the single-particle states explicitly and the orthogonality conpear, implying that the DFM cannot be applied and the full
dition should be formulated in terms of the SemlC'aSSlcalorthogona|ization procedure has to be used. There is a Sig_
DM. We assume that the quantum orthogonality conditiomjificant difference between the quantal and the semiclassical

1p,=0 has to be fulfilled at the semiclassical level as fol-orthogonality conditions. In the first case the orthogonaliza-
lows: (p;po)w=0, where the subscriptV stands for the tion procedure defines a distorted density matrix of the inter-

: . acting nuclei(up to a unitary transformation of the orthonor-
Wigner trapsfqrmatlon %f the qu_antal operator. .At the TFmaIized basis In the semiclassical approximation the
level (considering onlyz® terms in the Wigner-Kirkwood

expansioh one will get sjngle-particle states are not defined and this orthogonaliza—
tion procedure is not applicable. In order to solve this situa-
o o S S tion, we use the following geometrical anzatz. If there is no
(p1p2)w=(p)w(P2)w overlap of the initial Fermi spheres, the states of the isolated
=f,(R—Dy,p' —p;)fo(R—D,,p’ —p,)=0. nuclei are not perturbed and the Pauli principle will not af-

fect the DFM potential. If there is an overlap, we assume that
(17 the distribution functions of the interacting nuclei are just the

Fermi spheres truncated by the plane going through the curve
along the connection line of the initial Fermi spheres. This
anzatz is displayed in the lower part of Fig. 1. This is not a

By using translational invariance in the c.m. systeRy (
+P,=0) we will get the relation

[pFl(wp’ R—Dy)— p’]®[ppz(wpr R—D,) unigue solution, but is probab_ly the simplest assumption tha_t
has already been used previously to calculate the adiabatic
—|p’ +p|]1=0. (18) nucleus-nucleus potential in the nuclear matter approach

such as in Ref(2].
This means that the Fermi volume of the two interacting In fact the deformation of the Fermi spheres for two
nuclei should not overlap in momentum space. Returning tanteracting nuclei can be very complicated. However,
the case of the standard DFM potential, one can see that atthe nucleus-nucleus potential reflects the global properties of
semiclassical level the nonorthogonality of the single-the colliding nuclei. Therefore, to use truncated Fermi
particle states from different nuclei at finite values of dis-spheres in the present approach can be considered as an av-
tanceD and relative momenturnp means that their Fermi erage over their different excitations and seems to be reason-
spheres overlap in momentum space, as shown in the uppable for our aim.
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Actually, the Thomas-Fermi approximation correspondsthe present version for the PDDFM potential is still valid in
to a local nuclear matter approach. The truncated spheres aseme external region, but cannot be used to describe the
determined by two parameters: the ractiulsand the angl®  potential at the smallest distances. In this situation a com-
as defined in Fig. 1. The angle depends on the relative Ment is needed. The effective nucleon-nucleon forces that
momentap and the Fermi momentag . For the case of are used in the DFM also depend on the total density of the
distortion we have to calculate new valuesmf. To this system, Wh_lch re_flects the in-medium properties of the_force.

, "o In our semiclassical approacdkDA or QAA) the total dis-
aim one can note that the value of the local density of eaclyiption function is just the sum of distribution functions of
nucleus is determined by the distribution function as follows:i,o interacting nuclei and, therefore, the total local density is

simply given by the sum of the local nuclear densitjes

f dp'f (Rp') = g Ve (Pe .p) =p,+p,. Inthe FDA the local densities of the nuclei do not

I (2mh)3 R change during the interaction and the “sudden approxima-

(19  tion” for the total density is used. In contrast, in the QAA
case the densitieg, change due to the minimization of the
where we assume a sharp border distribution functioand  intrinsic energies.
Vg, is the volume in momentum space occupied by nucleons Now we are ready to derive the necessary formulas for the
of a given nucleus after the distortion. To determine thelfuncated Fermi spheres at the TF approximation level. The
value ofpe we have to know the volumég. or the value of DM Of the ground state at the TF level is given by a step
S ! . function in momentum space. This latter case corresponds to

the local densityp, . There are at least three options to de-

) . — the full Fermi sphere in momentum space. If there is overla
terminep, that correspond to three different approximations P P P

Y For fast(l oh | D lisi th ‘we define the truncated Fermi sphelsse Fig. L Some
(i) For fas (Qrggp) or perip erallarge ).CO ISIONS € \yords of caution must be added. The truncated Fermi sphere
overlap of the initial Fermi spheres from different nuclei is

th Il and the total p tion | i corresponds to an excited state of the nucleus, because the
rather smaft and Ihe fotal configuration in momentum Spac&aias that correspond to the forbidden overlap region are
has a well-developed two-piece picture. In this case the FD

. . ; . . | nd new with another Fermi momentum
is often used. In our semiclassical consideration the FDAEeDOpu ated and new states with another Fe omentu

R)=
pi(R) (th)?,

. " . g are occupied. In this case the distribution function for
simply means that the local densities of the nuclei do no ach nucleus is given by
change during the interaction =p, 5. However, to satisfy
the Pauli principle one has to deform the Fermi distributions f(R,p')=0[pg (0, ,R)—P'], (20)
of the colliding nuclei, which means that the corresponding !

DMs change during the interactiop,(r,r")#p;o(r,r").  where the new Fermi momengs = pg (w,,R) depend on
Note, that in our approach the FDA only means that the IOC""Eheir orientation inp space. Thle DI\I/I’s for the truncated

densities are fixed while usually the FDA consists of fixing Fermi-spheres averaged over the directiors afe obtained
the single-particle statgge., the DM. In this case the val-

ues ofpg | are simply determined by the conservation of the

volume in momentum Spacér =V, . gpﬁ
(i) At lower energieior dgep_er penetra_tiQ:rMe adiapatic p(R,s)= —2'3 ]1(pF|s/ﬁ)(1—xo)
process starts to give contributions. In this case the interact- 127h

ing nuclei still keep their individuality but the intrinsic de-

grees of freedom of each nucleus start to change to a new

equilibrium configuration due to the presence of the second (pe.s)®

nucleus[quasiadiabatic approximatioqf@AA)]. In this case !

at each separation distanbeone can find the DMand local (21

densitieg of each nucleus, which minimize their energies R

under the assumption that the phase space available for thghere j;(x)=(3/x)j,(x) is normalized to unity atx

nucleons in one nucleus is restricted by the presence of the 0, j1(x) is the spherical Bessel function of order X,

second due to the Pauli-blocking effect. Continuing along=cos(f) is the cosine of the angle that is determined by the

these lines, one will get new values of the nuclear local denpoint where the new Fermi spheres cr¢sse Fig. 1, andg

sities p; that determine the volumé in momentum space stands for the degeneracy in spin and isospinsAD we

and consequently the value pf . obtain the local densities that correspond to the truncated
: Fermi spheres

ﬁ3
_l’_

[Xo sin( pFIS/h) - Sin(xopﬁS/h)] '

(iii ) Finally, in a very slow collisior{or a total overlap in
D spacg, the fully adiabatic process has to be considered. In 3
this case the total density of the composite system tends to its (R)= 9P, (2— 3%+ %) (22)
equilibrium value to give the minimum energy of the total P 247°h3 0o
system. In this case there is only one Fermi sphere in mo-
mentum space that corresponds to the total density of th®ne can see that if there is no overlap we haye —1.
compound system. Then Egs(21) and(22) give the usual formulas for the full
At finite energy all these considered cases occur at differFermi spheres. By changing the Dfdnd to some extent the
ent points in coordinate space. It means that the FDA used ilocal density we will change the intrinsic energies of the
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nuclei for a given distanc®. The kinetic energy densities been successfully described with the DFM potential using
enter into the intrinsic energy ter5) of the PDDFM po- the BDM3Y1 (Parig effective nucleon-nucleon force. The
tential (14). For the ground state at the TF level the kinetic main conclusion from this analysis is that deep potentials are

energy density reads needed over the full energy range frdm,,= 1150 MeV to
s 75 MeV. Actually, the depth of DFM potentials has to be
9PF,, renormalized by a factoNg(E) that tends to unity at high
7i0o(R)= W energies and approaches a value of 0.7 at lower energies.

This behavior of theNg(E) factor can be considered as an

To calculate the kinetic energy density of the excited statée€xperimental” fact. One part of this renormalization is con-

7,, the integration of the TF distribution functiof20) is  sidered to occur due to the “polarization” potential intro-
taken over the truncated Fermi Sphere of ra(ﬁjHIS duced by inelastic Couplings, which are rather weak in the

present case. It appears now that these renormalizations can

g be understood if we consider the present solution to the prob-

n(R)= ﬁj dpp?f,(R,p), (23)  lem of the Pauli distortion in the DFM. Actually, we expect

(2m)°h that this distortion becomes significaiftermi spheres over-
lap in momentum spaget low energies and consequently

and we obtain reduces the depth of the DFM potential.

gpe In the present analysis we use the density-dependent
_ F _ 5 BDM3Y1 force with both the Paris and the Reid-Elliott form
T(R)= ———=(4—5%p+X3), (249 , g
245 factors. The parameters of these interactions are taken from

Ref.[33]. In Fig. 2 the intrinsic excitation of thé%0 nuclei
where again the sign of is chosen to bey,=—1 if thereis  que to Pauli distortion aE;,,=75 MeV (index a) and
no oyerlap. _ . Ei.b=750 MeV (index b) is plotted as a function of the
It is interesting to note that in both the QAA or the FDA separation distandd. We use the two possible definitions of
cases the proposed model needs no new parameters: all iy relative momenta as discussed in the main text: the glo-
quantities that enter into the final formulas are determineghg| asymptoticiindex 1 in Fig. 2 and the localindex 2 in
within the framework of the present formalism. The differ- F|g 2) values. In the second case the prob'em of the self-
ence between the FDA and the QAA approaches appeatgpnsistency of the equations for the final potential has been
only in the definition of the Fermi momentag: in FDA  solved. One can see that the effect of the Pauli distortion in
they are taken from the condition that the densities of nuclethe global case is stronger then in the local case. This is due
do not changéconservation of the Fermi volume in momen- to the increase of the relative momenta in the inner region,
tum spacg while in QAA they are determined self- where the depth of the potential is more than 100 MeV. One
consistently. In both cases the formalism in calculating thecan see that at high enough enerdies0 MeV) the distor-
distorted Fermi spheres can be used. tion of the intrinsic state is rather weak and gives a small
To this end we would like emphasize the difference be-contribution to the total energy for all distanc@s At small
tween the method proposed in RES] and our semiclassical energy(75 MeV) the situation is different and the intrinsic
PDDFM. First, no explicit shell model is used in our ap- excitations in the local case reach up to 18 MeV at zero
proach in contrast to the harmonic shell model of R&f. separation. However, at these small distances the FDA may
This allows us to use realistic nucleon densities and effectiveot be valid and one must consider the QAA approach.
forces, which is important for the calculation of nucleus- In Figs. 3 and 4 the changes of the PDDFM potential
nucleus potentials. Second, the FDA in Rgf] means that relative to the DFM potential are plotted at different energies
the mean fields of the nuclei do not change during the interfor the Paris and Reid-Elliott M3Y forces. The effect of the
action, while in our approach the FDA implies that the local Pauli distortion would be very strongee Fig. 3 if one uses
densities of nuclei are frozen and the densities overlapthe asymptotic value of the momerfiee., global definition
Third, our semiclassical PDDFM is defined only in the clas-of the relative momentujrresulting in up to a 50% differ-
sically allowed region wherB?(D) >0 and one can separate ence in the potentials &,,=75 MeV. This difference has
Fermi spheres in momentum space. Thus it can be used atrather monotonic dependence that decreases at large sepa-
high enough energies and with effective forces, which giveration distances. Figure 3 also illustrates the result obtained
attractive potentials consistent with the semiclassical contenwith the local(self-consistentdefinition of the relative mo-
of PDDFM. Hence a direct comparison of the results ob-mentap(D): the large difference between the DFM and
tained in Ref[3] and here is not possible. The relation be- PDDFM is now suppressed by the increasep6b) in the
tween these two approaches will be discussed elsewhere. interior. Apart from the trivial result that the Pauli distortion
decreases when the incident energy increases, one can see
IV. DISCUSSION OF THE %0 +'%0 SYSTEM that a prominent maximum for the contribution of the Pauli
blocking appears at some distarRe; (Fig. 4). The position
In order to judge the reliability of the present approach weof this maximum tends to smaller radial distances in the
apply our PDDFM in the FDA to thé®0+1%0 system. In interior for higher energies. In order to understand this be-
these reactions the nuclear rainbow phenomena in the elasti@vior, we look into the local definition of the relative mo-
scattering are observed in a wide energy range. This case haentum p(D). If the potential is deep enough, it will

014601-8



PAULI DISTORTED DOUBLE FOLDED POTENTIAL PHYSICAL REVIEW (54 014601
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—local” p FIG. 2. The intrinsic excitation
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| (8) E,,=75MeV 80 V@ b p of the %0 nuclei due to the Pauli
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\ \ —"local" p effect, calculated for two energies

| (a) E,,=75MeV
60+ \ (b) E_ =750 MoV

Ei.pb=75 MeV (a) and 750 MeV
(b), with the “global” definition
(1) and with the local definition
(2) of the relative momenta of the
nucleons with the BDM3Y1
(Reid and BDMS3Y1 (Parig
nucleon-nucleon forces.
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Separation D [fm] Separation D [fm]

strongly increase the momentup(D). With these large tioned before. One can see that at high enough energy the
relative momenta we will have effectively a “repulsion” of two approaches, PDDFM and DFM, give similar values of
the Fermi spheres at small distances. The smaller overlap ih,, and that they reasonably agree with the “experimental”
momentum space will reduce the Pauli distortion. Still it isvalues. At lower energies a significant difference appears:
interesting to note that the maximum of the Pauli distortionthe DFM gives increasing values df,, while the PDDFM
appears in the range of distances between 3 and 6 fm, whegives a smooth maximum at an energy around 100 MeV. In
the deep potential determines the occurrence of nuclear rairfiact the data from Ref12] exhibit almost constant values of
bow scattering. Jy in the energy range of 75 Me¥E ;<124 MeV,
Another important quantity associated with the nucleuswhich can be considered as in agreement with our PDDFM
nucleus potential is its volume integrd),. We have calcu- results. At small energies they still overestimate the “experi-
lated the volume integrals for both DFM and PDDFM poten-mental” values, a fact that can be a consequence of the FDA
tials at different energies using the BDM3YRarig as well  violation. Two comments may be added hef@®: the “ex-
as the BDM3Y1 (Reid versions of the nucleon-nucleon perimental” absolute values df, may depend on the mini-
force. The results are presented in Fig. 5. The “experimenmization procedurdthe shape of potentials, the imaginary
tal” values of J,, have been obtained by fits of experimental parts, and other details; see for exampie for SW2 and
angular distributions with the optical potential, whose realDFM in Ref.[16]) and(b) our DFM potential slightly differs
part was taken to be of the Woods-Saxon square type or frofiom the one used in Ref§12,16], where the authors have
the DFM with the proper renormalizatiori2,16] as men- used the CB-DM. This last DFM also contains some uncer-

Separation D [fm]

Voo Vo ) IV
it Separation D [fm] VeooruVorw) ! Voru

FIG. 3. The relative deviation
of the PDDFM potential with re-
spect to the DFM potential for the
160—1%0 system calculated at
two energieskE,,=75 MeV (a)
and 750 MeV(b), with the “glo-
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of the PDDFM potential with re-
spect to the DFM potential for the
160—1%0 system with the local
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nucleon-nucleon forces at differ-
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tainties because CB-DM depends on the quantal kinetic ensome preliminary results for the analysis 60+ %0 elastic
ergy density that is unknown. Therefore the empirical ex-scattering data. A systematic analysis of the experimental
pression for the kinetic energy density was used in Refsdata in a wide energy region within the PDDFM approach
[12,16. Our analysis shows that the DFM potential with the will be given in forthcoming publications. Our aim here is to
semiclassical kinetic energy density in CB-DM is systemati-illustrate the Pauli distortion effect in the nucleus-nucleus
cally deeper and can differ locally within 10% from those of potential. It was already shown that the difference between
Refs.[12,16. This difference can be found in the values of the two approaches, DFM and PDDFM, become larger at
volume integrals, where it amounts to approximately@#e  smaller energies. At the same time one can expect that the
below). In contrast we have used in the present work the=DA will not be valid at very small energies. Thus we
semiclassical Thomas-Fermi approximation, which is selfpresent here the analysis of data at “intermediate” energies
consistent with the semiclassical result for the nucleusof E,,=124 MeV and 145 MeV. The imaginary part of the
nucleus potential. optical potential was taken in the standard way as the sum of
The experimental systematics for the volume intedkal the Woods-SaxofWS) volume shapes and the derivative for
confirm our result obtained with the microscopic DFM po- the WS surface terril2]. The parameters of the imaginary
tential. To describe the experimental data with the DFM apart were fitted to minimize thg? value calculated with a
normalization factor smaller than unityr(E)<1 has been uniform 10% error for the data points. The result is shown in
introduced in Refs[12,16. In the PDDFM this reduction is Fig. 6. The solid lines represent the best fit with the optical
understood as a consequence of Pauli blocking. model using the PDDFM potential for the real part together
To illustrate the validity of the approach we present herewith the renormalization constahli as indicated in the fig-

J[MeV fm’] JdMeV fm
- 120 BOMSY1(Paris) [~
4204 BDM3Y1(Reid) —  PDDFM N R DFM
AAAAA e DFM oo o *exp(SW2) FIG. 5. The volume integrals
400 o "exp"(SW2) o "oxp"(DFM) of the PDDFM and DFM poten-
- o ‘"exp'(DFM) a80 tials calculated with BDM3Y1

(Reid and BDM3Y1 (Parig
forces at different energies to-
gether with the “experimental”
results. The open circles corre-
spond to the results obtained with
the real part of optical potential of
the squared Woods-Saxon form,
the closed ones with the renormal-
ized DFM potential. The data at
. energies 124—-704 MeV are taken
from Ref. [16] and at energies
75-124 MeV from Ref[12].
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. o on the choice of the density-dependent effective nucleon-
nucleon force. The DFM as a mean-field approach to the
PDDFM(N,=0.96) nucleus-nucleus potential needs a realistic nucleon-nucleon
o1y e . L DFM(N;=0.86) interaction, which is able to describe nuclear matter proper-
ties (e.g., the saturation pointlt is known that M3Y forces
produce DFM potentials with two parts, the purely repulsive
direct part and the strong attractive exchange part, and the
total DFM potential is very deep and thus reduces the Pauli
distortion effects. In contrast, the Brink-Boeker force gives a
shallower potential. In this case the Pauli distortion is strong.
However, it is deeper in our approach than the one obtained
in Ref.[3], due to differences in the methotlee comments
above. This latter force has no density-dependence and does
¢ op not reproduce the saturation properties of nuclear matter. The
PDDFM(N_=1) density dependent Gogny force gives a deeper potential, but
_______________ DFM(N_=0.9) it is still shallower than that obtained with the M3Y force.
R The Pauli distortion in this case is also stronger than in the
M3Y case. The concept of deep local potentials is confirmed
also by the semiclassical RGM analysis of R&86], where it
has to be deep enough to account for the Pauli forbidden
states into the discrete spectrum of the effective Hamiltonian.

0‘((-))1/0'M0"(e)

0,01
1E-3

E,,=124MeV
1E-4

16, 16
1E:5 0+°0

0,1

0,01
1E-3
E,,=145MeV

1E-4 V. SUMMARY

0 20 40 60 80 100 In the present paper we have proposed the Pauli distorted
o, (deg) double folding mode(PDDFM) for the nucleus-nucleus po-
tential. It coincides with the usual DFM asymptotically, i.e.,
FIG. 6. Angular distributions of the elastiéO—1%0 scattering ~ at high energies angbr) at large distances. In order to com-
at energiesE,;,,=124 MeV and 145 MeV, calculated within the ply with the Pauli principle at lower energies and for larger
optical model with renormalized potentials for the real part of density overlap, one has to modify the Fermi spheres of the
nucleus-nucleus potential with the PDDR¥blid lineg and DFM  interacting nuclei in order to prevent their overlap in momen-
(dotted lineg approaches, respectively, together with the experi-tum space. The corresponding density matrices of the nuclei
mental data from Re{.34]. are defined at the semiclassical Thomas-Fermi level. The pa-
rameters of the new truncated Fermi spheres can be deter-
ure, while dotted lines represent the result for the DFM.mined uniquely within the framework of the frozen density
There are still ambiguities within the parameters of theor the quasiadiabatic approximations. Thus, no new param-
imaginary part, but the factddy is well determined, and can eters are introduced in the PDDFM relative to the original
be determined with high accuracy. We note that at 124 Me\Wsersion of the DFM.
it is necessary to reduce the PDDFM potential by a factor The local definition of the relative momenta of the nucle-
0.96, while for the DFM potential the reduction factor ons that are used in the DFM implies that the Pauli effects in
needed is 0.86. At 145 MeV the best fit was obtained withthe nucleus-nucleus potential have to be calculated self-
the unrenormalized PDDFM potential, while the correspond-consistently in the same way as the exchange term entering
ing DFM potential has to be reduced by a factdg=0.9.  inthe DFM potential as in Ref11]. The potential created by
These results completely agree with our discussion of thene mean-field increases the relative momentum of the nucle-
volume integrals presented in the Fig. 5. Comparing our valens in the region of density overlap, which suppresses the
ues with the those reported in RE16] one can also see that Pauli distortion significantly. In fact, the mean field energy
the present version of the DFM differs from the DFM of Ref. of the two overlapping nuclei obtained in the DFM approach
[16] by approximately 5% with respect to the volume inte- produces a very deep potential already at moderate overlap.
grals (both with renormalization or withoutand gives prac- In the self-consistent approach the contribution from this po-
tically the same angular distributioriwith the proper renor- tential is comparable to the Fermi momenta of the nucleons,
malization). We note that the values for the volume integralsresulting in a “repulsion” of the two Fermi spheres. Such a
Jy corresponding to the fit with the PDDFM shown in Fig. 6 repulsion of the momentum spheres has also been discussed
are 344 and 360 MeV ff respectively. These values differ in a mean-field approach for collisions at much higher ener-
slightly from the values of Ref16] (which are 336 and 340 gies in Ref.[36]. It has been shown in the present approach
MeV fm?, respectively. This illustrates the range of ambi- that the nucleus-nucleus potential remains rather deep down
guities in the determination of the “experimental” values of to the lowest energies of 6—10 MeV/nucleon giving rise to
Jy. refractive scattering, and higher order Airy structures are
At this point the following remark has to be made. Thethus observed down to these low energies. This result can be
calculated nucleus-nucleus potentials may strongly depencbnsidered as an explanation for the success of the widely
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used DFM. We note that in the calculations of potentials inat some intermediate distance, which tends to the interior and
DFM or PDDFM no free parametefgxcept for the imagi- decreases when the energy increases. The analysis of the
nary parj are needed to reproduce the data. volume integrals of the real part of the nucleus-nucleus po-
The Pauli distortion discussed in the present approach cagntials shows that the PDDFM gives flat maxima at low
lead to excitations of the two fragments, inducing a loss ofenergy. In order to check this behavior one has to compare it
flux from the elastic channe(absorption. However, the jith the values obtained from the phenomenological optical
transformation of the distortion in momentum space into reajngde| analysis of data at lower energies. However, low en-
energy excitations of the nuclei depends on their structur@rgy data on rainbow scattering are scarce and their analysis
and excitation energy spectrum. If no energy can be transshows some ambiguities. Therefore, new measurements

ferred the scattering process may remain elastic. Actually thghould be done in order to get a more detailed test of the
partial waveSmatrix elements contributing to the rainbow present model at the lower energies.

angles are of the order of 18 or even below for the'®O
+180 case. Scattering systems with nuclei with closed shells
or with alpha clustering have large energy gaps for particle-
hole excitations, and are therefore particularly suited to ob-
serve refractive scattering, because of the reduced absorp- This work has been partially supported by the German
tion. The PDDFM approach thus also gives insight into theministry (BMFT) under Contract No. Verbundforschung
observation that refractive scatterigyith reduced absorp- 060B472D/4. One of ugX.V.) is also thankful for the sup-
tion in the interioy is mostly observed for heavy ion systems port from Grant Nos. PB98-1247 from DGICY(Bpair and
consisting of strongly bound nuclei. 1998SGR-00011 from DGRCatalonia. The authors are
The Pauli distortion effect gives a maximum contribution grateful to F. Michel for supplying useful information.
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