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Evaluation of cluster expansions and correlated one-body properties of nuclei
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Three different cluster expansions for the evaluation of correlated one-body properties ofs-p ands-d shell
nuclei are compared. Harmonic oscillator wave functions and Jastrow-type correlations are used, while ana-
lytical expressions are obtained for the charge form factor, density distribution, and momentum distribution by
truncating the expansions and using a standard Jastrow correlation functionf. The harmonic oscillator param-
eterb and the correlation parameterb have been determined by a least-squares fit to the experimental charge
form factors in each case. The information entropy of nuclei in position space (Sr) and momentum space (Sk)
according to the three methods are also calculated. It is found that the larger the entropy sum,S5Sr1Sk ~the
net information content of the system!, the smaller the values ofx2. This indicates that maximalS is a criterion
of the quality of a given nuclear model, according to the maximum entropy principle. Only two exceptions to
this rule, out of many cases examined, were found. Finally an analytic expression for the so-called ‘‘healing’’
or ‘‘wound’’ integrals is derived with the functionf considered, for any state of the relative two-nucleon
motion, and their values in certain cases are computed and compared.
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I. INTRODUCTION

The effect of short-range correlations~SRC! on the one-
body properties of nuclei is an old but challenging and
pealing problem. In general, the account of SRC is import
for the description of the mean values of some two-bo
operators, such as the ground-state energy of nuclei, but
also of interest to investigate the SRC contribution to simp
nuclear quantities related to one-body operators such as
form factor ~FF!, density distribution~DD!, and momentum
distribution~MD!. It has been shown that mean-field theor
cannot correctly describe MD and DD simultaneously@1,2#
and the main features of MD depend little on the effect
mean field considered@3#. The reason is that MD is sensitiv
to short-range and tensor nucleon-nucleon correlations
are not included in the mean-field theories. We note howe
that the choice of a single-particle potential having a sh
range repulsion could play a role in improving somehow
values of MD@4#.

The experimental evidence obtained from inclusive a
exclusive electron scattering on nuclei established the e
tence of a high-momentum component for momentak
.2 fm21 @5–8#. It is well known, that the independen
particle model~IPM! fails to reproduce the high-momentu
transfer data from electron scattering in nuclei. That is,
IPM is inadequate to reproduce satisfactorily the diffract
minima of the charge FF for high values of momentum tra
fer. Therefore, theoretical approaches, which take into
count SRC due to the character of the nucleon-nucl
forces at small distances, are necessary to be developed

In this effort, two main problems appear. The first one
the type of SRC that must be incorporated to the mean-fi
nucleon wave function and the second one is the type
cluster expansion to be used that is connected with the n
ber of simultaneously correlated nucleons.
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In the present work we consider central correlations
Jastrow type@9# while three different cluster expansions a
considered. The first two types of expansions, named
~factor Iwamoto and Yamada! @10# and FAHT~factor Aviles,
Hartogh, and Tolhoek! @11# respectively, were developed b
Clark and Westhaus@12#, Westhaus and Clark@12#, and
Feenberg@13# while the third one named LOA~low order
approximation! was derived by Gaudin, Gillespie, and Ripk
@14#, and Bohigas and Stringari@1#.

The FIY expansion, truncated at the two-body terms w
used for the calculation of the charge FF and DD@15# and
MD @16# in s-p and s-d shell nuclei while the LOA, trun-
cated at the two-body terms and including a part of the thr
body term was used for the calculation of the above o
body quantities in the closed shell nuclei4He, 16O, and40Ca
@17# as well as of the bound-state overlap functions, sepa
tion energies, and spectroscopic factors in16O and 40Ca
@18#. The FAHT expansion, truncated at the two-body term
was used for the evaluation of the charge FF@19# and nuclear
ground-state energy of4He and 16O @20#. In the present
paper the FAHT expansion is used in addition for the eva
ation of the FF, DD, and MD ins-p ands-d shell nuclei.

The present work is, in a way, a generalization of R
@21# where a comparison of various cluster expansions
the calculation of the charge FF of4He was made. In this
generalization, the above mentioned three types of exp
sions are applied and compared for one-body characteri
of s-p ands-d shell nuclei.

The comparison of the three truncated expansions ca
made, as usual, by comparingx2 ~in computing the FF!, i.e.,
the smaller thex2, the better the quality of the correspondin
expansion. In the present work we use also an informati
theoretical criterion in addition tox2. Information-theoretical
methods@22–32# play an important role in the study of quan
tum many-body systems, mainly through the application
©2001 The American Physical Society14-1
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CH. C. MOUSTAKIDIS et al. PHYSICAL REVIEW C 64 014314
the maximum entropy principle~MEP! @33,34#. This is done
by employing a suitably defined information entropy. A de
nition of information entropy was given in Ref.@35# based
on phase-space considerations. In a previous work@30# this
definition was used and it was found that the larger the va
of that entropy the better the quality of the nuclear mod
Another definition inspired by Shannon’s information theo
@36# and studied in atomic systems@23–25# is the entropy
S5Sr1Sk ~whereSr is the information entropy in position
space andSk the corresponding one in momentum spac!,
which is a measure of the net information content of
system. Note also that this sum is scale invariant, i.e., i
independent of the units adopted in measuring positionr and
momentumk. It was demonstrated in atoms@24,25# that the
entropy sumS increases with the quality of atomic distribu
tions. Furthermore, it has been found in Ref.@31# that inter-
esting properties of the information entropyS hold for a
variety of systems. For instance, it was shown thatS5a
1b ln N whereN is the number of particles in nuclei, atom
clusters@31#, and atoms@24,25#. Although a rigorous justifi-
cation of the use of the maximalS5Sr1Sk as a quality
criterion does not exist to our knowledge, the work so
suggests the need to explore further its empirical basis. H
we use this criterion in connection with the study of clus
expansions. We find further support for the contention t
the larger theS the smaller the values ofx2, for various
nuclei and expansions, with only two exceptions.

The paper is organized as follows. In Sec. II the gene
expressions of the one-body density matrix~OBDM! for the
three types of expansions are given. Numerical results
reported and discussed in Sec. III, while the summary of
present work is given in Sec. IV. Finally, some details of t
FAHT expansion as well as for the calculation of heali
integrals are given in Appendices A and B, respectively.

II. CORRELATED ONE-BODY PROPERTIES

A. General definitions

The key descriptor of the one-body properties of nucle
the OBDM r(r ,r 8), which for a system ofA identical par-
ticles is defined@37,38# in terms of the complete wave func
tion C(r1 ,r2 , . . . ,rA) by

r~r ,r 8!

5E C* ~r ,r2 , . . . ,rA!C~r 8,r2 , . . . ,rA!dr2, . . . ,drA ,

~1!

where the integration is carried out over the radius vec
and summation over spin and isospin variables is implie

In the case where the nuclear wave functi
C(r1 ,r2 , . . . ,rA) can be expressed as a single-Slater de
minant depending on the single-particle wave functions
have
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i 51

A

f i* ~r !f i~r 8!. ~2!

The diagonal elements of the OBDM give the DD,r(r ,r )
5r(r ), while the FF is the Fourier transform of it

F~q!5E exp@ iqr #r~r !dr , ~3!

and the MD is given by a particular Fourier transform of t
OBDM

n~k!5
1

~2p!3E exp@ ik~r2r 8!#r~r ,r 8!drdr 8. ~4!

The second moment of the DD is the mean square ra
of the nucleus while the second moment of the MD is rela
to the mean kinetic energy.

We also define the information entropy sum

S5Sr1Sk , ~5!

where

Sr52E r~r !ln r~r !dr ~6!

is the information entropy in position space and

Sk52E n~k!ln n~k!dk ~7!

is the information entropy in momentum space.
S is a measure of quantum-mechanical uncertainty

represents the information content of a probability distrib
tion, in our case of the nuclear density and momentum d
tributions. In the present work, we employ in calculatin
S, a normalization to the number of particlesA for r(r ) and
n(k).

B. The cluster expansions of the one-body density matrix

The trial wave functionC, which describes a correlate
nuclear system, can be written as~e.g., Ref.@39#!

C5FF, ~8!

whereF is a model wave function that is adequate to d
scribe the uncorrelatedA-particle nuclear system andF is the
operator that introduces SRC.F is chosen to be a Slate
determinant wave function, constructed by single-parti
wave functions. Several restrictions can be made on
model operatorF @40,41#. In the present workF is taken to
be of the Jastrow type@9#

F5)
i , j

A

f ~r i j !, ~9!

where f (r i j ) is the state-independent correlation function
the form
4-2
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f ~r i j !512 exp@2b~r i2r j !
2#. ~10!

1. Factor cluster expansion of Iwamoto Yamada

In FIY the OBDM takes the form@16#

rFIY~r ,r 8!5N0@^Orr 8&12O2~r ,r 8,g1!2O2~r ,r 8,g2!

1O2~r ,r 8,g3!#, ~11!

whereN0 is the normalization factor, and the terms^Orr 8&1
andO2(r ,r 8,gl) ( l 51,2,3) have the general forms

^Orr 8&15rSD~r ,r 8!

5
1

p (
nl

hnl~2l 11!fnl* ~r !fnl~r 8!Pl~cosv rr 8!,

~12!

and

O2~r ,r 8,gl !5E gl~r ,r 8,r2!@rSD~r ,r 8!rSD~r2 ,r2!

2rSD~r ,r2!rSD~r2 ,r 8!#dr2 , ~13!

where the various uncorrelated OBDM,rSD(x,y), associated
with the Slater determinant can be written as in Eqs.~2! and
~12!. The factors gl(r ,r 8,r2) ( l 51,2,3) come from the
rearrangement of the operator f (r 12)O(2) f (r 128 )
5 f (ur12r2u)O(2) f (ur182r28u) as described in Ref.@16#.
These factors have the forms

g1~r ,r 8,r2!5 exp@2b~r 21r 2
2!#exp@2brr 2#,

g2~r ,r 8,r2!5g1~r 8,r ,r2!,

g3~r ,r 8,r2!5 exp@2b~r 21r 82!#exp@22br 2
2#

3exp@2b~r1r 8!r2#. ~14!

Performing the spin-isospin summation and the angu
integration, the termO2(r ,r 8,gl) takes the general form
01431
r

O2~r ,r 8,gl !54 (
ni l i ,nj l j

hni l i
hnj l j

~2l i11!~2l j11!

3F4Ani l inj l j

ni l inj l j ,0~r ,r 8,gl !

2 (
k50

l i1 l j

^ l i0l j0uk0&2Ani l inj l j

nj l j ni l i ,k
~r ,r 8,gl !G ,

~15!

where

An1l 1n2l 2

n3l 3n4l 4 ,k
~r ,r 8,g1!5

1

4p
fn1l 1

* ~r !fn3l 3
~r 8!

3exp@2br 2#Pl 3
~cosv rr 8!

3E
0

`

fn2l 2
* ~r 2!fn4l 4

~r 2!

3exp@2br 2
2# i k~2brr 2!r 2

2dr2 ,

~16!

and the matrix elementAn1l 1n2l 2

n3l 3n4l 4 ,k(r ,r 8,g2) can be found

from Eq.~16! replacingr↔r 8 andn1l 1↔n3l 3 while the ma-
trix element corresponding to the factor g3 can be found
from Eq. ~16! replacing the factors exp@2br2#, Pl 3

(cosvrr8),

and i k(2brr 2) by the factors exp@2b(r21r82)#, V l 1l 3
k (v rr 8),

and i k(2bur1r 8ur 2), respectively@16#. In the expressions o
the matrix elementsAn1l 1n2l 2

n3l 3n4l 4 ,k(r ,r 8,gl), i k(z) is the modified

spherical Bessel function and the factorV l 1l 3
k (v rr 8) depends

on the directions ofr and r 8.

2. Factor cluster expansion of Aviles, Hartogh, and Tolhoek

In FAHT, truncated at the two-body terms, the OBD
takes the form~details of the calculations are given in Ap
pendix A!
age

of the

he wave
rFAHT~r ,r 8!5
1

A
^Orr 8&11~A21!F ~A21!^Orr 8&12O2~r ,r 8,g1!2O2~r ,r 8,g2!1O2~r ,r 8,g3!

A~A21!2E @O2~r ,r ,g1!1O2~r ,r ,g2!2O2~r ,r ,g3!#dr
2

1

A
^Orr 8&1G , ~17!

where^Orr 8&1 andO2(r ,r 8,gl) are given again by Eqs.~12! and ~13!, respectively. The FAHT expansion has the advant
that the normalization is preserved term by term.

3. Low order approximation

In LOA of Gaudinet al. @14# the one- and the two-body density matrices of the nucleus were expanded in terms
functions g̃5 f 2(r i j )21 and h5 f (r i j )21 and were truncated up to the second order ofh and the first order ofg̃. This
expansion contains one- and two-body terms and a part of the three-body term that leads to the normalization of t
function. In LOA the OBDM takes the form@1,14,17#
4-3
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rLOA~r ,r 8!5
1

A
@^Orr 8&12O2~r ,r 8,g1!2O2~r ,r 8,g2!

1O2~r ,r 8,g3!12O3~r ,r 8,b!2O3~r ,r 8,2b!#,

~18!

where^Orr 8&1 andO2(r ,r 8,gl) are given again by Eqs.~12!
and ~13!, respectively, and the three-body termO3(r ,r 8,z)
(z5b,2b) has the form

O3~r ,r 8,z!5E g~r2 ,r3 ,z!rSD~r ,r2!@rSD~r2 ,r 8!rSD~r3 ,r3!

2rSD~r2 ,r3!rSD~r3 ,r 8!#dr2dr3 , ~19!

where

g~r2 ,r3 ,z!5 exp@2z~r 2
21r 3

222r2r3!#, z5b, 2b.
~20!

It should be noted that, in Refs.@1,14,17# the three-body
term is written

O3~r ,r 8!52E @ f 2~r 23!21#rSD~r ,r2!

3@rSD~r2 ,r 8!rSD~r3 ,r3!

2rSD~r2 ,r3!rSD~r3 ,r 8!#dr2dr3 . ~21!

If we expand the factorf 2(r 23)21,

f 2~r 23!215 exp@22b~r22r3!2#22 exp@2b~r22r3!2#,
~22!

and insert the right-hand side of this equation into Eq.~21!,
the three-body term is separated in two terms

O3~r ,r 8!52O3~r ,r 8,b!2O3~r ,r 8,2b!, ~23!

where the termO3(r ,r 8,z) (z5b,2b) is given by Eq.~19!.
The two-body termsO2(r ,r 8,gl) ( l 51,2,3) of Eq.~18! were
calculated from the expression of the two-body term in LO
of Refs.@1,14,17# making similar rearrangements.

Performing the spin-isospin summation and the angu
integration, the termO3(r ,r 8,z) takes the general form

O3~r ,r 8,z!54 (
ni l i ,nj l j ,nkl k

hni l i
hnj l j

hnkl k
~2l i11!

3F4~2l k11!d l i l j
Ani l inj l j nkl k

nj l j ni l inkl k,0
~r ,r 8,z!

2~2l j11!d l i l k

3 (
k850

l i1 l j

^ l i0l j0uk80&2Ani l inj l j nkl k

nkl kni l inj l j ,k8~r ,r 8,z!G ,

~24!

where
01431
r

An1l 1n2l 2n3l 3

n4l 4n5l 5n6l 6 ,k8~r ,r 8,z!5
1

4p
fn1l 1

* ~r !fn4l 4
~r 8!Pl 1

~cosv rr 8!

3E
0

`

fn2l 2
* ~r 2!fn5l 5

~r 2!

3exp@2zr2
2#r 2

2dr2

3E
0

`

fn3l 3
* ~r 3!fn6l 6

~r 3!

3exp@2zr3
2# i k8~2zr2r 3!r 3

2dr3 .

~25!

Expressions~12!, ~15!, and ~24! were derived for the
closed shell nuclei withN5Z wherehnl is 0 or 1. For the
open shell nuclei~with N5Z) we use the same expressio
where now 0<hnl<1. The normalization is preserved fo
the closed shell nuclei in all the expansions. In the case
the open shell nuclei the normalization is preserved~in the
above formalism! for FIY and FAHT expansions. In the cas
of LOA, in which the number of particles is also conserv
@42#, particular attention has to be paid in each open sh
nucleus.

It is noted that the general expressions of the two- a
three-body terms of the density matrix given by Eqs.~15!
and~24! are also valid for the expansions of the DD, FF, a
MD. The only difference is in the expressions of the mat
elementsA that have to be used. The matrix elementsA of
the DD are found from Eqs.~16! and~25! putting r 85r . The
corresponding ones of the FF are the Fourier transforms@as
defined by Eq.~3!# of A(r ,r ). Finally, the matrix elements o
the MD are the Fourier transforms@as defined by Eq.~4!# of
A(r ,r 8).

In the case when the model wave functionF is con-
structed from harmonic oscillator~HO! wave functions, ana-
lytical expressions of the various terms of the DD, FF, a
MD for any N5Z, s-p ands-d shell nuclei can be found fo
FIY and FAHT while in the case of LOA analytical expre
sions of the closed shell nuclei in the same region can
found. These expressions that depend on the HO parameb
and the correlation parameterb are given in Refs.@15–17#
for FIY and LOA while the ones for FAHT can be foun
easily from the other expansions.

III. RESULTS AND DISCUSSION

The three expansions, mentioned in Sec. II, have b
used for the analytical calculations of the DD, MD, an
charge FF as well as for the calculation of the informati
entropy sum defined by Eq.~5!. The HO parameterb and the
SRC parameterb in the three cases have been determin
for each nucleus separately, by a least-squares fit to the
perimental charge FF as in Ref.@15# ~using the same expres
sion for x2). The choice to determine the parameters in
correlated wave function by fitting the expressions of the
to the experimental results, which is a customary proced
in phenomenological approaches like the present one,
pears to be advisable, in view of also the large amount of
4-4
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FIG. 1. The harmonic oscillator parameterb
~a! and correlation parameterb ~b! vs the mass
number A for the expansions FIY, FAHT, and
LOA. Cases FIY* and FAHT* ~open circles and
squares, respectively! correspond to the cas
when the occupation probabilityh2s is treated as
a free parameter.
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existing experimental data. Of course, it would be desira
to determine those parameters also by fitting the express
of the MD to the corresponding experimental results. Th
results are, however, very limited and in addition are mo
dependent and thus not so reliable. The center-of-mass
rection has been taken into account by a Tassie-Barker fa
@43# while that for the finite proton size and the Darwi
Foldy relativistic correction have been treated by the Ch
dra and Sauer approximation@44#. These corrections are no
taken into account in the calculations of DD and MD
obtain the information entropy sum~and in the plots of MD!.

The variation with the mass numberA of the best fit val-
ues of the parametersb and b for each of the three expan
sions is shown in Fig. 1 whereb andb vs the mass numbe
A have been plotted for variouss-p ands-d shell nuclei. It is
seen that these parameters have the same behavior in
and FAHT expansions. In the case of LOA expansion, wh
has been used only for4He, 16O, and 40Ca the dependenc
of the parameters on the mass number seems to have si
behavior. From Fig. 1~b! it is seen also that the SRC param
eterb has larger values in the open shell nuclei (12C, 24Mg,
28Si, and 32S) than in the closed shell ones, indicating th
there should be a shell effect in the case of closed s
nuclei.
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In this work we compare different expansions in the e
ample of MD for closed and open shell nuclei. The reas
for this is that the high-momentum component ofn(k) is
very sensitive to the extent to which nucleon correlations
accounted for in a given correlation method and in vario
approximations. The effect of different expansions on
form factors can be seen comparing the values ofx2 for the
various expansions and nuclei.

The MD for the closed shell nuclei4He, 16O, and 40Ca,
calculated with the best fit values of the parameters and
the three expansions as well as for the HO case, that is, w
the SRC are not included, are shown in Fig. 2. It is seen
the inclusion of SRC increases considerably the hi
momentum component ofn(k). It has the same slope up t
2 fm21 for the three expansions. In the region, 2 fm21

,k,5 fm21, the slope seems to be a little different. FI
gives a larger contribution in the high-momentum comp
nent than FAHT and LOA that give about the same con
bution in this region. The same behavior ofn(k) has been
observed in the open shell nuclei as can be seen from Fi
Here we would like to note that in general, a more realis
description of MD requires the inclusion of tensor corre
tions in the theoretical scheme.
O case.
FIG. 2. The momentum distribution of the closed shell nuclei in the three expansions, FIY, FAHT, and LOA as well as of the H
The normalization is*n(k)dk51.
4-5
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FIG. 3. The momentum distribution of th
open shell nuclei in the two expansions, FIY an
FAHT. The normalization is as in Fig. 2.
b-
o
th

at
F
te

-

to
th

c

f
re
le
ns

n

n
en

T

, in

-
wo
-

’

ed
the
of
la-
on
-

In the previous analysis, the nuclei24Mg, 28Si, and 32S
were treated as 1d shell nuclei, that is, the occupation pro
ability of the 2s state was taken to be zero. The formalism
the expansions FIY and FAHT has the advantage that
occupation probabilities of the various states can be tre
as free parameters in the fitting procedure of the charge
Thus, the analysis can be made with more free parame
For that reason we considered, as in Ref.@16#, the cases
FIY* and FAHT* in which the occupation probabilityh2s of
the nuclei24Mg, 28Si, and32S was taken to be a free param
eter together with the parametersb andb. We found that in
both expansions thex2 values become smaller, compared
those of cases FIY and FAHT and the A dependence of
parameterb, as can be seen from Fig. 1~b!, is not so strong
as before. Also the values ofh2s found in the fit and the
values of h1d found through the relationh1d5@(Z28)
22h2s#/10, are very close for both expansions in ea
nucleus.

Our best fit values of the parameters and the values ox2

for the various nuclei under consideration and for the th
expansions as well as for the HO case are shown in Tab
From the values ofx2 we conclude that the three expansio
give similar values ofx2. The FIY and FAHT expansions
have almost the samex2 values. They differ less than 2% i
the two expansions in each nucleus. In most cases thex2

values corresponding to FIY~or FIY* ) are smaller. There
are two cases (12C and 28Si) when the FAHT or FAHT*
01431
f
e

ed
F.
rs.
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h

e
I.

expansion gives smallerx2 value and one case (16O) when
LOA gives smallerx2 value.

In addition, we verify the information-theoretic criterio
for comparing the quality of the three expansions. It is se
in Table I that almost in all the cases, the smaller thex2 the
larger theS. Both methods of comparison (S andx2) show
that the FIY ~or FIY* ) expansion is better than the FAH
and LOA for 4He, 24Mg, 32S, and40Ca. For16O the LOA is
the best. There are only two exceptions to this rule, i.e.
12C for cases FIY and FAHT and in28Si for cases FIY* and
FAHT* . In 12C x2 is smaller in FAHT and we expectS to be
larger than in FIY while in28Si x2 is smaller in FIY* and we
expectS to be larger than in FAHT* . These are two excep
tions to our rule. It should also be noted that in these t
exceptions the difference in thex2 values for the two expan
sions in both nuclei is less than 1%.

We consider also the so-called ‘‘healing’’ or ‘‘wound’
integrals, denoted here aswnl

2 @41,45# for the various states
of the relative two-nucleon motion, pertinent to the clos
shell nuclei of Table I and in each case, that is, in each of
cluster expansions FIY, FAHT, and LOA. The values
these integrals express in a way the ‘‘amount of corre
tions’’ introduced to each state of the relative two-nucle
motion. The healing integrals@for a state-independent corre
lation function f (r ), such as the one given by Eq.~10!# are
defined as follows:
4-6
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TABLE I. The values of the parametersb ~fm! andb ~fm22), thex2, the rms charge radiîr ch
2 &1/2 ~fm!,

the mean kinetic energy per nucleon^T& ~MeV!, and the nuclear information entropy in position space (Sr)
and momentum space (Sk) and their sumS for variouss-p ands-d shell nuclei. The various cases have be
ordered according to increasing values ofx2. For the various cases see the text.

Nucleus Case b b x2 ^r ch
2 &1/2 ^T& Sr Sk S

4He FIY 1.1732 2.3127 3.50 1.623 29.904 9.978 5.985 15.9
FAHT 1.1661 1.9092 3.70 1.621 29.048 9.943 6.013 15.9
LOA 1.1605 1.6584 3.88 1.620 28.543 9.917 6.034 15.95
HO 1.4320 ` 30.94 1.765 15.166 11.632 3.014 14.64

12C FAHT 1.5204 2.4683 90.19 2.427 24.779 31.455 1.989 33.4
FIY 1.5190 2.7468 90.87 2.426 25.580 31.436 2.142 33.5
HO 1.6251 ` 176.54 2.490 17.010 32.714 -2.2484 30.46

16O LOA 1.6387 1.8825 115.50 2.674 23.006 42.083 -4.393 37.6
FIY 1.6507 2.4747 120.19 2.680 23.614 42.237 -4.557 37.6

FAHT 1.6554 2.2097 122.49 2.684 22.518 42.313 -4.939 37.3
HO 1.7610 ` 199.45 2.738 15.044 43.655 -10.667 32.98

24Mg FIY* 1.7473 2.4992 140.37 3.064 24.614 63.532 -14.334 49.1
FAHT* 1.7468 2.1833 140.40 3.064 23.742 63.536 -14.603 48.9

FIY 1.8103 4.2275 177.51 3.095 21.109 64.452 -19.228 45.2
FAHT 1.8120 4.1322 177.91 3.096 20.818 64.483 -19.410 45.0

HO 1.8496 ` 188.01 3.117 16.162 65.124 -23.429 41.69

28Si FAHT* 1.7773 2.1193 103.39 3.184 24.184 72.901 -20.844 52.0
FIY* 1.7774 2.4440 103.47 3.184 25.205 72.888 -20.438 52.4
FIY 1.8236 3.0020 126.33 3.216 22.933 73.889 -24.115 49.7

FAHT 1.8279 2.8372 127.84 3.219 22.110 73.987 -24.645 49.3
HO 1.8941 ` 148.28 3.257 16.099 75.288 -32.022 43.26

32S FIY* 1.8121 2.6398 166.11 3.282 24.916 82.100 -28.343 53.7
FAHT* 1.8131 2.3358 166.31 3.283 23.961 82.129 -28.827 53.3

FIY 1.9368 3.0659 304.96 3.443 20.867 86.921 -36.707 50.2
FAHT 1.9417 2.9585 306.46 3.446 20.252 87.045 -37.316 49.7

HO 2.0016 ` 320.45 3.483 14.878 88.361 -44.881 43.48

40Ca FIY 1.8660 2.1127 160.44 3.516 26.617 101.501 -42.710 58.7
FAHT 1.8685 1.7397 161.13 3.517 24.643 101.558 -44.172 57.3
LOA 1.8164 1.7404 188.36 3.397 25.586 97.611 -42.121 55.4
HO 1.9453 ` 229.32 3.467 16.437 100.987 -58.709 42.27
,

n
fo

e
ter
t
less

ion
val-

the

er-
wnl
2 5E

0

`

ucnl~r !2fnl~r !u2dr, ~26!

wherefnl(r ) is the~normalized to unity! uncorrelated~HO!
radial relative wave function andcnl(r ) the corresponding
normalized to unity, correlated one:cnl(r )5Nnl f (r )fnl(r ),
whereNnl , the normalization factor ofcnl(r ), is given by

Nnl5F E
0

`

f 2~r !fnl
2 ~r !drG21/2

. ~27!

It is interesting to note that with the correlation functio
~10! the healing integrals can be calculated analytically
01431
r

every statenl. Some details are given in Appendix B. As on
expects, these integrals depend on both, the HO parameb
and the correlation parameterb. We may note, however, tha
their dependence on them is only through the dimension
producty52bb2 @see expression~B6! of Appendix B#.

In Table II the values of the parametersb, b, and ỹ
5bb2 for each closed shell nucleus and cluster expans
considered are displayed along with the corresponding
ues ofwnl

2 for certain relative states in thes-p ands-d closed
shell nuclei. It is seen from the results in this table that
values ofwnl

2 for each of the relative states (nl) involved in
each nucleus are smaller whenwnl

2 is obtained with the FIY
expansion and larger when obtained with the LOA. Furth
4-7
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TABLE II. The values of the parametersb ~fm!, b ~fm22), and ỹ5bb2 and the values of the healin
integralwnl

2 for various states and for the closed shell nuclei4He, 16O, and 40Ca and the three expansion
FIY, FAHT, and LOA.

Nucleus Case b b ỹ5bb2 w00
2 w01

2 w02
2 w10

2 w03
2

4He FIY 1.1732 2.3127 3.1832 0.01874
FAHT 1.1661 1.9092 2.5961 0.02450
LOA 1.1605 1.6584 2.2335 0.02971

16O FIY 1.6507 2.4747 6.7431 0.00664 0.00024 8.631026 0.00925
FAHT 1.6554 2.2097 6.0554 0.00773 0.00031 1.231025 0.01069
LOA 1.6387 1.8825 5.0552 0.00996 0.00048 2.331025 0.01359

40Ca FIY 1.8660 2.1127 7.3563 0.00586 0.00020 6.431026 0.00821 2.131027

FAHT 1.8685 1.7397 6.0738 0.00770 0.00031 1.231025 0.01065 4.831027

LOA 1.8164 1.7404 5.7421 0.00833 0.00035 1.531025 0.01148 6.231027
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more, for each nucleus and expansion the values ofwnl
2 of

the nodeless~n50! states decrease as the value ofl increases,
the correlations having less effect to these higherl states,
because of the existing centrifugal~repulsive! term of the
HO potential. The values ofwn0

2 increase whenn51 or n
52 in comparison with those ofw00

2 .
From the analysis in Sec. II we may observe that the th

truncated expansions have common basic ingredients in
structure. Their main difference is in the way one takes i
account the normalization. In the FIY this is done by t
overall normalization factorN0. In the FAHT, the normal-
ization is preserved term by term, while in LOA is done
taking into account, suitably, a part of the three-body te
The close agreement of the numerical results obtained
the three expansions suggests that the way of performing
normalization does not influence much these results. The
isting small differences, however, indicate that there sho
be some difference in the magnitude of the higher-or
terms. More specifically, we note that the values of the he
ing integral wnl

2 are smaller in FIY than in the other tw
expansions indicating that the magnitude of the higher-or
terms is smaller in this expansion.

A final comment is appropriate. The problem of findin
the proper trial density matrices for anA-particle system at
given symmetry is known as theA-representability problem
@46#. It includes the determination of general necessary
sufficient conditions ensuring that a trial density matrix
derivable from a fullA-particle density matrix~the so-called
ensembleA-representability! or from an existingA-particle
stateC ~the so-calledA-representability by pure states!. The
one-body density matrixr(r ,r 8) has the simplest form in the
natural orbital representation@38#,

r~r ,r 8!5(
a

haxa* ~r !xa~r 8!, ~28!

where $xa(r )% are single-particle wave functions~called
natural orbitals! that diagonalize the one-body density mat
01431
e
eir
o

.
th
he
x-
ld
r
l-

er

d

at the associated eigenvalues~called natural occupation num
bers! ha . The natural occupation numbers satisfy the gene
conditions@38#

0<ha<1, (
a

ha5A. ~29!

The A-representability problem has been solved for the o
body density matrix. It turns out that the ensembleA repre-
sentability for fermions is ensured by the relations~29! @47#,
which are only a necessary condition for th
A-representability of the OBDM in the case of pure fermi
states. The first investigation of theA-representability prob-
lem with respect to the variational Jastrow correlati
method~JCM! in LOA has been performed by Stoitsovet al.
@17#. They showed that theA-representability condition~29!
is violated in LOA of JCM leading to negative values~very
small in absolute value! of some of the occupation number
Such values ofha appear for the states with a given mult
polarity l that lie just above the states belonging to the Fe
sea and have the same multipolarity. Stoitsovet al. sug-
gested an approach to restore theA representability by omit-
ting the negative values and then diagonalizing the rem
ing reduced OBDM @17#. The LOA A-representability
violation has been also noted in Ref.@42#. The
A-representability problem with respect to the variation
JCM in FIY and FAHT~as well as in FIY* and FAHT*! is
not investigated in the present work, e.g., it is not clear t
the OBDM used in the present work, especially for FIY* an
FAHT*, corresponds to an existing wave function. Calcu
tions of the natural orbitals and the natural occupation nu
bers, with the imposed conditions concerning the violation
theA representability, are in progress. This analysis could
another comparison test of the three expansions examine
the present work.

IV. SUMMARY

In the present work, a systematic study of the effect
SRC on one-body properties ofs-p ands-d shell nuclei has
4-8
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been made evaluating three different cluster expansions.
HO parameterb and the SRC parameterb have been deter
mined by a least-squares fit to the experimental charge

The comparison of the three expansions in the exampl
the MD and the FF shows that they can be considered
equivalent expansions. It is found that, when the calculati
are made with the best fit values of the parameters, th
expansions reproduce the diffraction minima of the FF in
correct place and they give similar MD for all the nuclei w
have considered. The inclusion of SRC increases consi
ably the high-momentum component ofn(k).

The FIY and FAHT expansions have been used for b
closed and open shell nuclei while the occupation probab
ties can be treated as free parameters together with the
rametersb andb in the fitting procedure of the FF. In LOA
calculations for open shell nuclei are in progress.

In addition, the information entropy sum has been cal
lated according to the three methods compared in the pre
work. It was found almost in all of the numerous cases~dif-
ferent expansions and nuclei!, that the larger theS, the
smaller thex2. That is maximalS could be used as a crite
rion for the quality of a given nuclear model. We found on
two exceptions to this rule. In these two exceptions the
ference of thex2 values is less than 1%.

Finally, attention was paid to the ‘‘healing’’ or ‘‘wound’’
integralswnl

2 of the relative two-nucleon states. A convenie
analytic expression ofwnl

2 with correlation function~10! was
derived for any relative statenl. Their values were compute
in a number of states with that expression and were a
discussed.

APPENDIX A

In this appendix, we give some details about the FAH
expansion. We define the correlated wave function as

C5)
i , j

A

f ~r i ,r j !F, ~A1!

wheref (r i ,r j ) is the Jastrow correlation function andF is a
Slater determinant wave function. To buildup the cluster
pansion, we start, following Ref.@20#, from theA-body inte-
gralsJA(l) defined as

JA~l!5
1

A~A21!•••1

3 (
i 1 . . . i A

A K f i 1
. . . f i AU)i , j

A

f ~r i ,r j !O1~A!elO2(A)

3)
i , j

A

f ~r i8 ,r j8!Uf i 1
8 . . . f i A

8 L
a

, ~A2!

where the sum over the statesi 1 ,i 2 , . . . ,i A has no restric-
tions and extends over all one-particle states anda stands for
the antisymmetrization. The operatorsO1(A) and O2(A)
have the forms
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O1~A!5)
i 51

A

d~r i2r i8!,

O2~A!5
1

)
i 5 i

A

d~r i2r i8!

(
i 51

A

d~r i2r !d~r i82r 8!)
j Þ i

A

d~r j2r j8!.

~A3!

The OBDM rFAHT(r ,r 8), normalized toA, is defined as

rFAHT~r ,r 8!5Fd lnJA~l!

dl G
l50

. ~A4!

We introduce then-body integralsJn(l) defined as

Jn~l!5
1

A~A21!•••~A2n11!

3 (
i 1 . . . i n

A K f i 1
. . . f i nU)i , j

n

f ~r i ,r j !O1~n!elO2(n)

3)
i , j

n

f ~r i8 ,r j8!Uf i 1
8 . . . f i n

8 L
a

. ~A5!

The cluster integralsIn(n51,2, . . . ,A) are defined through
the successive application of the equation

Jn5)
k51

n

I
k
~k
n
!
5I

1
~1
n
!
I

2
(2
n)
•••I

n
~n
n
!
, n51,2, . . . ,A. ~A6!

For example, forn51 andn52 it gives

I15J1 , I25
J2

J1
2

. ~A7!

The last of Eqs.~A6!, which corresponds ton5A is the
quantity we are interested in

JA5 )
n51

A

I
n
~n
A

!
[I

1
~1
A

!
I

2
~2
A

!
I

3
~3
A

!
•••IA . ~A8!

If the factor-cluster expansion is limited to the two-bod
term ~assuming that the remaining cluster integrals are eq
to unity @20#!, then

JA'I
1
~1
A

!
I

2
~2
A

!
. ~A9!

From Eqs.~A4! and ~A9! we have

rFAHT~r ,r 8!5S A

1 D F 1

J1

dJ1

dl G
l50

1S A

2 D F 1

J2

dJ2

dl
22

1

J1

dJ1

dl G
l50

, ~A10!
4-9
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where

J1~l!5
1

A (
i 151

A

^f i 1
~r1!uO1~1!elO2(1)uf i 1

~r18!&,

~A11!

and

J2~l!5
1

A~A21! (
i 1 ,i 2

A

^f i 1
~r1!f i 2

~r2!u f ~r1 ,r2!

3uO1~2!elO2(2)f ~r18 ,r28!u

3f i 1
~r18!f i 2

~r28!&a . ~A12!

After some algebra we obtain

J1~0!51,
ra

ra
pe

av

01431
J2~0!5
1

A~A21!
FA~A21!2E @O2~r ,r ,g1!1O2~r ,r ,g2!

2O2~r ,r ,g3!#dr G ,
FdJ1

dl G
l50

5
1

A
^Orr 8&1 ,

FdJ2

dl G
l50

5
2

A~A21!
@~A21!^Orr 8&12O2~r ,r 8,g1!

2O2~r ,r 8,g2!1O2~r ,r 8,g3!#, ~A13!

where the termŝOrr 8&1 andO2(r ,r 8,gl) have been defined
in Sec. II.

Finally, therFAHT(r ,r 8), normalized to unity, becomes
rFAHT~r ,r 8!5
1

A
^Orr 8&11~A21!F ~A21!^Orr 8&12O2~r ,r 8,g1!2O2~r ,r 8,g2!1O2~r ,r 8,g3!

A~A21!2E @O2~r ,r ,g1!1O2~r ,r ,g2!2O2~r ,r ,g3!#dr
2

1

A
^Orr 8&1G .

~A14!
h

be
ion
APPENDIX B

The healing integral defined by Eq.~26! is written as fol-
lows @47#:

wnl
2 52@11Nnl~ I nl~b,b!21!#, ~B1!

where

I nl~b,b!5E
0

`

exp@2br 2#fnl
2 ~r !dr, ~B2!

and the normalization factorNnl is given by Eq.~27!. This
factor can be easily expressed in terms of the integ
I nl(b,b) and I nl(b,2b) by means of expression~10!

Nnl5@122I nl~b,b!1I nl~b,2b!#21/2. ~B3!

Thus, the analytical calculation of any healing integ
wnl

2 is reduced to the calculation of two integrals of ty
~B2!. The expression ofI nl(b,2b) follows immediately from
the expression ofI nl(b,b).

We use the general expression of the radial HO w
function ~normalized to one as*0

`fnl
2 dr51) in the form
ls

l

e

fnl~r !5S 2n!

GS n1 l 1
3

2Dbr
D 1/2

3S r

br
D l 11

Ln
l 11/2 S r 2

br
2D expF2r 2

2br
2 G , ~B4!

wherebr is the HO parameter of the relative motion, whic
is related to the usual HO parameterb by br5A2b @b
5(\/mv)1/2#.

Substituting expression~B4! into Eq. ~B2! and using the
transformationr 2/br

25j, I nl is written as

I nl~b,b!5
n!

G@n1 l 13/2#
E

0

`

e2(11y)jj l 11/2@Ln
l 11/2~j!#2dj,

~B5!

wherey5bbr
252bb2.

Using formula~13! of § 7.414 of Ref.@48# I nl takes the
form

I nl~b,b!5~y21!n~y11!2n2 l 23/2Pn
[ l 11/2,0]S y211

y221
D ,

~B6!

wherePn
(a1 ,a2)(z) are the Jacobi polymomials. These may

easily expressed in terms of the hypergeometric funct
4-10
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~see, e.g., § 8.962 of Ref.@48#!. In the case of the nodeles
states@becauseP0

(a1 ,a2)(z)51# I nl takes the simple form

I 0l~b,b!5~y11!2 l 23/2. ~B7!

By substitutingb→2b, the expression ofI nl(b,2b) fol-
e

v,

.
e

a-

s.

s.

is

01431
lows immediately and therefore the analytic expression
the wnl

2 by means of the formulas~B1! and ~B6!. It is thus
clear that the healing integralwnl

2 for any state depends o
the correlation parameterb and the HO one, only through
the producty52bb2. The expressions ofwnl

2 for the lowern
states follow also very easily.
.
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