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Three different cluster expansions for the evaluation of correlated one-body propewigsasfds-d shell
nuclei are compared. Harmonic oscillator wave functions and Jastrow-type correlations are used, while ana-
lytical expressions are obtained for the charge form factor, density distribution, and momentum distribution by
truncating the expansions and using a standard Jastrow correlation fu¢tloe harmonic oscillator param-
eterb and the correlation parametgrhave been determined by a least-squares fit to the experimental charge
form factors in each case. The information entropy of nuclei in position sg&ge(d momentum spac&y)
according to the three methods are also calculated. It is found that the larger the entroB~sBm,S, (the
net information content of the systenthe smaller the values . This indicates that maxim&is a criterion
of the quality of a given nuclear model, according to the maximum entropy principle. Only two exceptions to
this rule, out of many cases examined, were found. Finally an analytic expression for the so-called “healing”
or “wound” integrals is derived with the functiofi considered, for any state of the relative two-nucleon
motion, and their values in certain cases are computed and compared.
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I. INTRODUCTION In the present work we consider central correlations of
Jastrow typd 9] while three different cluster expansions are

The effect of short-range correlatiofSRQO on the one- considered. The first two types of expansions, named FIY
body properties of nuclei is an old but challenging and ap<{factor Iwvamoto and Yamagf10] and FAHT (factor Aviles,
pealing problem. In general, the account of SRC is importantartogh, and Tolhogk 11] respectively, were developed by
for the description of the mean values of some two-bodyClark and Westhau$12], Westhaus and Clark12], and
operators, such as the ground-state energy of nuclei, but it fseenberd 13] while the third one named LOAlow order
also of interest to investigate the SRC contribution to simple@pproximation was derived by Gaudin, Gillespie, and Ripka
nuclear quantities related to one-body operators such as tfhé4], and Bohigas and Stringdrl].
form factor (FF), density distributionDD), and momentum The FIY expansion, truncated at the two-body terms was
distribution(MD). It has been shown that mean-field theoriesused for the calculation of the charge FF and Qi3] and
cannot correctly describe MD and DD simultaneoydly?] ~ MD [16] in s-p ands-d shell nuclei while the LOA, trun-
and the main features of MD depend little on the effectivecated at the two-body terms and including a part of the three-
mean field considerel®]. The reason is that MD is sensitive body term was used for the calculation of the above one-
to short-range and tensor nucleon-nucleon correlations thaxody quantities in the closed shell nucféie, 160, and“*°Ca
are not included in the mean-field theories. We note howevdrl7] as well as of the bound-state overlap functions, separa-
that the choice of a single-particle potential having a shorttion energies, and spectroscopic factors fi0 and “°Ca
range repulsion could play a role in improving somehow the[18]. The FAHT expansion, truncated at the two-body terms,
values of MD[4]. was used for the evaluation of the charge[E®] and nuclear

The experimental evidence obtained from inclusive andground-state energy ofHe and °O [20]. In the present
exclusive electron scattering on nuclei established the exigpaper the FAHT expansion is used in addition for the evalu-
tence of a high-momentum component for momehkta ation of the FF, DD, and MD irs-p ands-d shell nuclei.
>2 fm ! [5-8]. It is well known, that the independent- The present work is, in a way, a generalization of Ref.
particle modekIPM) fails to reproduce the high-momentum [21] where a comparison of various cluster expansions for
transfer data from electron scattering in nuclei. That is, théhe calculation of the charge FF dtHe was made. In this
IPM is inadequate to reproduce satisfactorily the diffractiongeneralization, the above mentioned three types of expan-
minima of the charge FF for high values of momentum transsions are applied and compared for one-body characteristics
fer. Therefore, theoretical approaches, which take into acef s-p ands-d shell nuclei.
count SRC due to the character of the nucleon-nucleon The comparison of the three truncated expansions can be
forces at small distances, are necessary to be developed. made, as usual, by comparing (in computing the FF, i.e.,

In this effort, two main problems appear. The first one isthe smaller the?, the better the quality of the corresponding
the type of SRC that must be incorporated to the mean-fieléxpansion. In the present work we use also an information-
nucleon wave function and the second one is the type ofheoretical criterion in addition tg?. Information-theoretical
cluster expansion to be used that is connected with the nunmethodq22—-32 play an important role in the study of quan-
ber of simultaneously correlated nucleons. tum many-body systems, mainly through the application of
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the maximum entropy principleMEP) [33,34]. This is done A
by employing a suitably defined information entropy. A defi- psp(r,r')= Z oF(r)i(r"). 2
nition of information entropy was given in Rdi35] based =1

on phase-space considerations. In a previous W&k this . .

definition was used and it was found that the larger the valuezhe d'agof‘a' e'eme'.“s of the QBDM give the .Dﬂ,r,r)
of that entropy the better the quality of the nuclear model._p(r)’ while the FF is the Fourier transform of it

Another definition inspired by Shannon’s information theory

[36] and studied in atomic systenj@3—25 is the entropy F(q)zf exdigr]p(r)dr, 3
S=S,+ S (whereS; is the information entropy in position

space andS, the corresponding one in momentum space and the MD is given by a particular Fourier transform of the
which is a measure of the net information content of theggpm

system. Note also that this sum is scale invariant, i.e., it is

independent of the units adopted in measuring positiand 1
momentumk. It was demonstrated in atori24,25 that the n(k)= 3f exdik(r—r")]p(r,r")drdr’. (4
entropy sumS increases with the quality of atomic distribu- (27m)

tions. Furthermore, it has been found in Ré&f1] that inter-
esting properties of the information entroi®/hold for a
variety of systems. For instance, it was shown tBata
+bIn N whereN is the number of particles in nuclei, atomic
clusters[31], and atomg$24,25. Although a rigorous justifi-
cation of the use of the maxim®&=S,+ S, as a quality S=S+S,, (5)
criterion does not exist to our knowledge, the work so far
suggests the need to explore further its empirical basis. Herghere
we use this criterion in connection with the study of cluster
expansions. We find further support for the contention that
the larger theS the smaller the values of?, for various S':_f p(n)Inp(rydr 6)
nuclei and expansions, with only two exceptions.

The paper is organized as follows. In Sec. Il the generals the information entropy in position space and
expressions of the one-body density mat®@BDM) for the
three types of expansions are given. Numerical results are Sk:_f n(k)Inn(k)dk 7
reported and discussed in Sec. Ill, while the summary of the
present work is given in Sec. IV. Finally, some details of the, . . .
FAHT expansion as well as for the calculation of healingIS the information entropy in momentum space.

integrals are given in Appendices A and B, respectively. S is a measure of quantum-mechanical uncertainty and
represents the information content of a probability distribu-

tion, in our case of the nuclear density and momentum dis-
tributions. In the present work, we employ in calculating
S a normalization to the number of particlagor p(r) and
n(k).

The second moment of the DD is the mean square radius
of the nucleus while the second moment of the MD is related
to the mean kinetic energy.

We also define the information entropy sum

Il. CORRELATED ONE-BODY PROPERTIES

A. General definitions B. The cluster expansions of the one-body density matrix

The key descriptor of the one-body properties of nucleiis The trial wave functiorl?, which describes a correlated
the OBDM p(r,r"), which for a system of identical par-  nuclear system, can be written @sg., Ref[39])
ticles is defined37,38 in terms of the complete wave func-

tion W(ry,rp, ... ra) by V=F0, (8)
p(r,r") where ® is a model wave function that is adequate to de-
scribe the uncorrelatef-particle nuclear system arf#lis the
:f WH(r gy AW Ty o g ) g . dla operator that introduces SR@ is chosen to be a Slater
et et A determinant wave function, constructed by single-particle

(1) wave functions. Several restrictions can be made on the
model operatotF [40,41. In the present workF is taken to
be of the Jastrow typ9]

where the integration is carried out over the radius vectors

A
and summation over spin and isospin variables is implied. =TT ) 9)
In the case where the nuclear wave function i<y
W(rq,ro, ...,ra) can be expressed as a single-Slater deter-
minant depending on the single-particle wave functions wewheref(r;;) is the state-independent correlation function of
have the form
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f(rij)=1—exd —B(ri—r))>?. (10

1. Factor cluster expansion of Iwamoto Yamada
In FIY the OBDM takes the fornj16]

Priv (1) =Ng[{Op 1)1 = Oa(r,r",g) —Ox(r,r',gp)
+02(r1rI193)]1

whereNg is the normalization factor, and the terq®,, /),
andO,(r,r',g) (1=1,2,3) have the general forms

(On)1=psp(r.,r")

11

1
= 2 2+ D (1) foi(r)Py(coswr),

12

and

Oz(r,r’,g|)=J gi(r,r',ro)pso(r,r')psp(ra,ro)

—pso(r,r2)psp(ra,r’)dry, (13

where the various uncorrelated OBDFs(X,Y), associated
with the Slater determinant can be written as in Egsand
(12). The factors dr,r',r,) (1=1,2,3) come from the
rearrangement  of the  operator f(r5)O(2)f(ry,)
=f(|ry—r,|)O(2)f(|r;—r5]) as described in Ref[16].
These factors have the forms

au(r,r',r2) = exd — B(r2+r3)lexd 28rr 5],
Oa(r,r',ro)=04(r',r,ry),
ga(r,r',r2) = exd — B(r2+r'2)]exy —28r3]

xXexd28(r+r")r,]. (14
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Op(rr ) =4 X 70 70, (21 +1)(21j+1)

nili,njj
nilinjlj,O ’
X 4Anilinjlj (r,r',g)
I+

- 3, ion0lkoy AT ) .

(15
where
ANslanala kg o 9)=i¢* (1) ny,(r')
milangly 200 ST g7 Pl gl
Xexq—ﬁrz]P|3(Coswrr’)
% Jo ¢:2|2(r2)¢”4|4(r2)
x exp] — Braliu(2Brr »)ridr,,
(16)

and the matrix elemenA® ™4 ¥(r .1’ ) can be found
1'1'2'2

from Eq.(16) replacingr<—r’ andn4l ;< nsl; while the ma-
trix element corresponding to the factoy gan be found
from Eq.(16) replacing the factors ekp Br?], P|3(c05w,,,),
andi(2rr ) by the factors exjp- B(r>+r'?)], erls(wrr,),
andi (28|r+r'|r,), respectively{ 16]. In the expressions of
the matrix elemenm;i:iz‘z‘:‘z"k(r,r’,g,), i(2) is the modified
spherical Bessel function and the facmi‘lls(w”/) depends

on the directions of andr’.

2. Factor cluster expansion of Aviles, Hartogh, and Tolhoek
In FAHT, truncated at the two-body terms, the OBDM

Performing the spin-isospin summation and the angulatakes the form(details of the calculations are given in Ap-

integration, the tern®,(r,r’,g) takes the general form

pendix A

(A_ 1)<Orr’>l_02(rvrrigl)_OZ(rir,1g2)+02(r1r’193) 1

1
PrART(I,I') = K(Orr’>1+(A_l)

where{(O,, /), andO,(r,r’,g) are given again by Eq$12) and(13), respectively. The FAHT expansion has the advantage

that the normalization is preserved term by term.

A(A- 1)—f [Oa(r,r,G1) +Ox(r,r,Gp) — Ox(r,r,gs) dr

_K<Orr'>1 ) (17)

3. Low order approximation

In LOA of Gaudinet al. [14] the one- and the two-body density matrices of the nucleus were expanded in terms of the

functions§=f2(rij)—1 andh=f(r;)—1 and were truncated up to the second ordehand the first order ofy. This

expansion contains one- and two-body terms and a part of the three-body term that leads to the normalization of the wave

function. In LOA the OBDM takes the forrfil, 14,17
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1
pLOA(r1r/):K[<Orr’>l_02(rrr/1gl)_Oz(rarI-QZ)
+O,(r,r',g3) +203(r,r’,8)—O4(r,r',28)1,
(18)
where(O,,.); andO,(r,r',g) are given again by Eq$12)
and (13), respectively, and the three-body te@y(r,r’,z)
(z=B,2B) has the form
03(r,r’,z)=J 9(ra,r3,2)psp(r,r2)[pspra,r')psplrs,rs)
—pspll2,r3)psp(rs,r’)jdrydrs, (19

where

z=p8, 2B.
(20

9(ra.r3,2)= ex —z(r5+r3—2r,r3)],

It should be noted that, in Reffl,14,17 the three-body
term is written

Os(r,r")= _f [f2(r ) —1]lpsp(r.ra)

X[psp(r2,r")psp(rs,ra)
—pspll2,r3)psp(rs,r’)jdrydrs.  (21)
If we expand the factof?(r,g)—1,

f2(rp9) — 1= exy —2B(r,—r3)?]—2 exg — B(r,—r3)?],
(22)
and insert the right-hand side of this equation into &£1),
the three-body term is separated in two terms
Os(r,r")y=205(r,r',B)—04(r,r',28), (23

where the ternO4(r,r’,z) (z=,2B) is given by Eq.(19).
The two-body term®,(r,r’,g) (I1=1,2,3) of Eq.(18) were

PHYSICAL REVIEW C64 014314

ATk (1 g e (1 (11)P) (COSwy )
n1linalongls . 47 "Ml Nal4 1 "

X fo b1, (F2) P (12)

xexd —zra]radr,

X fo P11, (13) Pt (1)

X exd — zr3lig (2zr,r3)radrs.
(25

Expressions(12), (15), and (24) were derived for the
closed shell nuclei witiN=Z where 7, is 0 or 1. For the
open shell nucle{with N=2Z) we use the same expressions
where now G< 7, <1. The normalization is preserved for
the closed shell nuclei in all the expansions. In the case of
the open shell nuclei the normalization is preserviedthe
above formalismfor FIY and FAHT expansions. In the case
of LOA, in which the number of particles is also conserved
[42], particular attention has to be paid in each open shell
nucleus.

It is noted that the general expressions of the two- and
three-body terms of the density matrix given by E¢E5)
and(24) are also valid for the expansions of the DD, FF, and
MD. The only difference is in the expressions of the matrix
elementsA that have to be used. The matrix elemeAtsf
the DD are found from Eq$16) and(25) puttingr’=r. The
corresponding ones of the FF are the Fourier transf¢ass
defined by Eq(3)] of A(r,r). Finally, the matrix elements of
the MD are the Fourier transfornfias defined by Eq4)] of
A(r,r").

In the case when the model wave functidn is con-
structed from harmonic oscillatgHO) wave functions, ana-
lytical expressions of the various terms of the DD, FF, and
MD for any N=2, s-p ands-d shell nuclei can be found for
FIY and FAHT while in the case of LOA analytical expres-
sions of the closed shell nuclei in the same region can be

calculated from the expression of the two-body term in LOAfound. These expressions that depend on the HO paraimeter

of Refs.[1,14,17 making similar rearrangements.

and the correlation parametgrare given in Refs[15—17

Performing the spin-isospin summation and the angulafor FIY and LOA while the ones for FAHT can be found

integration, the ternO5(r,r’,z) takes the general form

Os(r,r',2)=4 2

nili ,njlj ,nklk

Tt gt Mg, (21i+ 1)

X[ 4(21+ 1) 8, AR 2)

il

—(2+1)8,
li+1]
, Lenilinili k! ,
x >, (1,01,0[k 0>2A2ik,ikn“i,jn”¢,i (rr',2)|,
k'=0

(29)

where

easily from the other expansions.

Ill. RESULTS AND DISCUSSION

The three expansions, mentioned in Sec. Il, have been
used for the analytical calculations of the DD, MD, and
charge FF as well as for the calculation of the information
entropy sum defined by E¢). The HO parametds and the
SRC parametep in the three cases have been determined,
for each nucleus separately, by a least-squares fit to the ex-
perimental charge FF as in R¢L5] (using the same expres-
sion for x?). The choice to determine the parameters in the
correlated wave function by fitting the expressions of the FF
to the experimental results, which is a customary procedure
in phenomenological approaches like the present one, ap-
pears to be advisable, in view of also the large amount of the
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20 —e—FIY
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—e—FIY al number A for the expansions FIY, FAHT, and
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LoA squares, respectivelycorrespond to the case
e when the occupation probability, is treated as
o FIY” a free parameter.
o FAHT* 2t
a
%7
o 10 20 30 40 o 10 20 30 40
A A

existing experimental data. Of course, it would be desirable In this work we compare different expansions in the ex-
to determine those parameters also by fitting the expressiorsmple of MD for closed and open shell nuclei. The reason
of the MD to the corresponding experimental results. Thesgor this is that the high-momentum component k) is

results are, however, very limited and in addition are modelery sensitive to the extent to which nucleon correlations are
dependent and thus not so reliable. The center-of-mass cogrcounted for in a given correlation method and in various
rection has been taken into account by a Tassie-Barker fact@fpproximations. The effect of different expansions on the

[43] while that for the finite proton size and the Darwin- f5m factors can be seen comparing the valueg?for the
Foldy relativistic correction have been treated by the Changaious expansions and nuclei.

dra and Sauer approximati¢a4]. These corrections are not The MD for the closed shell nucldiHe. 0. and “°Ca
taken into account in the calculations of DD and MD to ’ ' '
obtain the information entropy sufand in the plots of MD.

The variation with the mass numbaArof the best fit val-
ues of the parametetsand B for each of the three expan-
sions is shown in Fig. 1 whefleand 8 vs the mass number
A have been plotted for variossp ands-d shell nuclei. It is

calculated with the best fit values of the parameters and for
the three expansions as well as for the HO case, that is, when
the SRC are not included, are shown in Fig. 2. It is seen that
the inclusion of SRC increases considerably the high-

momentum component af(k). It has the same slope up to

seen that these parameters have the same behavior in Ffy M ' fo[lthe three expansions. In the region, 2 “fin
and FAHT expansions. In the case of LOA expansion, which=k<5 fm 7, the slope seems to be a little different. FIY
has been used only fdtHe, €0, and “°Ca the dependence 9iVes a larger contribution in thg high-momentum compo-
of the parameters on the mass number seems to have simi3@nt than FAHT and LOA that give about the same contri-
behavior. From Fig. (b) it is seen also that the SRC param- bution in this region. The same behavior fk) has been
eter8 has larger values in the open shell nucféQ, Mg,  observed in the open shell nuclei as can be seen from Fig. 3.
285j, and 3?S) than in the closed shell ones, indicating thatHere we would like to note that in general, a more realistic

there should be a shell effect in the case of closed sheflescription of MD requires the inclusion of tensor correla-

nuclei. tions in the theoretical scheme.
~“\_ """" 16 0
\ ‘He 10" o ok Ca
-1
10 o HO ———— HO o HO
——FIY el —FIY B —FIY
o ---- ~ 107} .
S 10°t -—-- FAHT £ FAHT & FAHT
£ - E
5 '''''' g 10°+ .
T 107t < 2 10°h
-4
10° Bl 10%r
-5
10° R 10 10°}
i . L . N L \
o 1 2 3 4 5 o 1 0o 1
k [fm "] K [fm™] K [fm”']

FIG. 2. The momentum distribution of the closed shell nuclei in the three expansions, FIY, FAHT, and LOA as well as of the HO case.

The normalization ig'n(k)dk=1.
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10" 10"
MMg
- 10-2 2 10_2 i ———FIY
£ RV E ---- FAHT
. ---- FAHT = .
c 107 = 10°F
1071 107}
10°+ 10°F
0o 1 2 3 4 5 0o 1 2 3 4 5 C
K [fm™] K [fm™] FIG. 3. The momentum distribution of the
open shell nuclei in the two expansions, FIY and
y , FAHT. The normalization is as in Fig. 2.
10 10°
32
S
&= 107 i 4107 FIY
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= — = ---- FAHT
= ---- FAHT X
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10%F 107 F
10°F 10°F
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k [fm™] k [fm™]

In the previous analysis, the nucléiMg, #Si, and3?S  expansion gives smalley? value and one casé Q) when
were treated asd shell nuclei, that is, the occupation prob- | o gives smallery? value.
ability of the 2s state was taken to be zero. The formalism of

g In addition, we verify the information-theoretic criterion
the expansions FIY and FAHT has the advantage that tr€1§

r comparing the quality of the three expansions. It is seen
Table | that almost in all the cases, the smaller yAehe
rIarger theS. Both methods of comparisors(and x?) show
ﬁ'iat the FIY (or FIY*) expansion is better than the FAHT
and LOA for “He, ?*Mg, %S, and*°Ca. For'®O the LOA is
the nuclei?’Mg, 28Si, and®2S was taken to be a free param- tlhe best. There are only two excgptipns to this rule, i.e., in
eter together with the parametdrand 8. We found that in °C for cases FI\Z(.and FAHT and iffSi for cases FIY and
both expansions thg? values become smaller, compared to FAHT*. In _2C XIS s_ma_lller In FAHT and we expe&tto be
those of cases FIY and FAHT and the A dependence of thirger than in FIY while in’°Si x? is smaller in FI¥* and we
parametel3, as can be seen from F|g(m’ is not so strong expectS to be Iarger than in FAHY. These are two excep-
as before. Also the values of,s found in the fit and the tions to our rule. It should also be noted that in these two
values of 5,4 found through the relationy,q=[(Z—8) exceptions the difference in the values for the two expan-
—27,6]/10, are very close for both expansions in eachsions in both nuclei is less than 1%.
nucleus. We consider also the so-called “healing” or “wound”
Our best fit values of the parameters and the valuggof integrals, denoted here &g, [41,45 for the various states
for the various nuclei under consideration and for the threef the relative two-nucleon motion, pertinent to the closed
expansions as well as for the HO case are shown in Table shell nuclei of Table | and in each case, that is, in each of the
From the values of? we conclude that the three expansionscluster expansions FIY, FAHT, and LOA. The values of
give similar values ofy?. The FIY and FAHT expansions these integrals express in a way the “amount of correla-
have almost the sam¢ values. They differ less than 2% in tions” introduced to each state of the relative two-nucleon
the two expansions in each nucleus. In most casesyfhe motion. The healing integra[$or a state-independent corre-
values corresponding to FIYor FIY*) are smaller. There lation functionf(r), such as the one given by EA.0)] are
are two casesfC and %8Si) when the FAHT or FAHT  defined as follows:

occupation probabilities of the various states can be treat
as free parameters in the fitting procedure of the charge F
Thus, the analysis can be made with more free paramete
For that reason we considered, as in Rdf], the cases
FIY* and FAHT* in which the occupation probability, of
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TABLE I. The values of the parametels(fm) and 8 (fm™~?), the x?, the rms charge radiir2,)*/? (fm),
the mean kinetic energy per nucle¢h) (MeV), and the nuclear information entropy in position spagg (
and momentum spac&() and their sunsfor variouss-p ands-d shell nuclei. The various cases have been
ordered according to increasing valuesydf For the various cases see the text.

Nucleus Case b B x° (rZp¥z (1) S S S
‘He FIY 11732 2.3127 3.50 1.623  29.904 9.978 5.985 15.963
FAHT  1.1661 1.9092 3.70 1.621  29.048 9.943 6.013 15.955
LOA 1.1605 1.6584 3.88 1.620  28.543 9.917 6.034 15.951
HO 1.4320 % 30.94 1.765 15.166  11.632 3.014 14.646
zc FAHT 15204 2.4683  90.19 2.427 24779  31.455 1.989 33.444
FIY 15190 2.7468  90.87 2.426 25.580 31.436 2.142 33.578
HO 1.6251 e 176.54 2.490 17.010 32.714  -2.2484 30.465
%0 LOA 1.6387 1.8825 11550 2.674  23.006 42.083 -4.393  37.690
FIY 1.6507 2.4747 120.19 2.680 23.614  42.237 -4.557  37.680
FAHT  1.6554 2.2097 122.49 2.684 22.518  42.313 -4939  37.374
HO 1.7610 el 19945 2738  15.044  43.655 -10.667 32.988
Mg FIY* 1.7473 2.4992  140.37 3.064 24614 63.532  -14.334 49.198
FAHT* 17468 2.1833 140.40 3.064 23.742 63.536  -14.603 48.933
FIY 18103 4.2275 17751 3.095 21.109 64.452  -19.228 45.224
FAHT 18120 4.1322 177.91 3.096 20.818 64.483  -19.410 45.073
HO 1.8496 %© 188.01  3.117  16.162 65.124  -23.429 41.695
g FAHT*  1.7773 21193 103.39 3.184 24184 72901 -20.844 52.057
FIY* 17774 24440 103.47 3.184 25.205 72.888  -20.438 52.450
FlY 1.8236 3.0020 126.33 3.216 22933 73.889  -24.115 49.774
FAHT 18279 2.8372 127.84  3.219 22.110 73.987  -24.645 49.342
HO 1.8941 © 148.28 3.257 16.099 75.288  -32.022 43.266
33 FIY* 18121 2.6398 166.11 3.282 24916  82.100 -28.343 53.758
FAHT* 18131 2.3358 166.31 3.283  23.961 82129 -28.827 53.302
FIY 1.9368 3.0659 304.96 3.443 20.867 86.921 -36.707 50.214
FAHT 19417 29585 306.46 3.446 20.252 87.045  -37.316 49.729
HO 2.0016 el 320.45 3483 14.878 88.361 -44.881 43.480
40ca FlY 1.8660 2.1127 160.44 3.516 26.617 101501 -42.710 58.791
FAHT 18685 1.7397 161.13 3.517 24.643 101558 -44.172 57.387
LOA 1.8164 1.7404 188.36 3.397 25586 97.611  -42.121 55.490
HO 1.9453 0 229.32 3.467 16.437 100.987 -58.709 42.278
5 ° ) every statel. Some details are given in Appendix B. As one
Wi = JO | hni(1) = (1) |*dIr, (26)  expects, these integrals depend on both, the HO paraineter

and the correlation parametgr We may note, however, that
their dependence on them is only through the dimensionless
producty=28b? [see expressiofB6) of Appendix BJ.

In Table Il the values of the parametebs 3, andy
=pb? for each closed shell nucleus and cluster expansion
considered are displayed along with the corresponding val-
ues ofw?, for certain relative states in theep ands-d closed
shell nuclei. It is seen from the results in this table that the
values ofw?, for each of the relative statesl) involved in

It is interesting to note that with the correlation function each nucleus are smaller whesd, is obtained with the FIY
(10) the healing integrals can be calculated analytically forexpansion and larger when obtained with the LOA. Further-

where g, (r) is the(normalized to unity uncorrelatedHO)
radial relative wave function and(r) the corresponding,
normalized to unity, correlated onéy, (r) =N f(r) dn(r),
whereN,,, the normalization factor of,,(r), is given by

o —1/2
Npy= fo f2<r>¢ﬁ|<r>dr} : (27)
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TABLE II. The values of the parametets(fm), 8 (fm~2), andy=8b? and the values of the healing
integralw?, for various states and for the closed shell nuélde, *°0, and*°Ca and the three expansions
FIY, FAHT, and LOA.

Nucleus Case b B y=pb2 Wi w3, W3, w3, Wis

“He FIy  1.1732 2.3127 3.1832 0.01874
FAHT 1.1661 1.9092 2.5961 0.02450
LOA 1.1605 1.6584 2.2335 0.02971

%0 FIY 1.6507 2.4747 6.7431 0.00664 0.00024 816 ° 0.00925
FAHT 1.6554 2.2097 6.0554 0.00773 0.00031 X1®»° 0.01069
LOA 1.6387 1.8825 5.0552 0.00996 0.00048 21® ° 0.01359

“Cca FIY 1.8660 2.1127 7.3563 0.00586 0.00020 618 ¢ 0.00821 2.Kx10°
FAHT 1.8685 1.7397 6.0738 0.00770 0.00031 X1®» ° 0.01065 4.&%10 '
LOA 1.8164 1.7404 5.7421 0.00833 0.00035 XI® > 0.01148 6.X10° 7

more, for each nucleus and expansion the valuewfpfof at the associated eigenvaluesalled natural occupation num-
the nodelesén=0) states decrease as the valu¢ increases, bers n,. The natural occupation numbers satisfy the general
the correlations having less effect to these highstates, conditions[38]

because of the existing centrifug@epulsive term of the

HO potential. The values of3, ir21crease whem=1 orn 0=7.=1. S n.=A 29

=2 in comparison with those afrg,. a

From the analysis in Sec. Il we may observe that the three
truncated expansions have common basic ingredients in thelihe A-representability problem has been solved for the one-
structure. Their main difference is in the way one takes intdody density matrix. It turns out that the ensemBleepre-
account the normalization. In the FIY this is done by thesentability for fermions is ensured by the relati@@s) [47],
overall normalization factoN,. In the FAHT, the normal- which are only a necessary condition for the
ization is preserved term by term, while in LOA is done by A-representability of the OBDM in the case of pure fermion
taking into account, suitably, a part of the three-body termstates. The first investigation of terepresentability prob-
The close agreement of the numerical results obtained witlem with respect to the variational Jastrow correlation
the three expansions suggests that the way of performing tHeethod(JCM) in LOA has been performed by Stoitsev al.
normalization does not influence much these results. The eXx17]. They showed that thé-representability conditio29)
isting small differences, however, indicate that there shoulds violated in LOA of JCM leading to negative valuegery
be some difference in the magnitude of the higher-ordegmall in absolute valyeof some of the occupation numbers.
terms. More specifically, we note that the values of the healSuch values ofy, appear for the states with a given multi-
ing integral Wﬁl are smaller in FIY than in the other two polarityl that lie just above the states belonging to the Fermi
expansions indicating that the magnitude of the higher-orde$€@ and have the same multipolarity. Stoitsshal. sug-
terms is smaller in this expansion. gested an approach to restore theepresentability by omit-

A final comment is appropriate. The problem of finding ting the negative values and then diagonalizing the remain-
the proper trial density matrices for @aparticle system at ing reduced OBDM[17]. The LOA A-representability
given symmetry is known as therepresentability problem Violation has been also noted in Ref42]. The
[46]. It includes the determination of general necessary and-representability problem with respect to the variational
sufficient conditions ensuring that a trial density matrix isJCM in FIY and FAHT(as well as in FIY* and FAHTY is
derivable from a fullA-particle density matrixthe so-called Not investigated in the present work, e.g., it is not clear that
ensembleA-representability or from an existingA-particle ~ the OBDM used in the present work, especially for FIY* and
state¥ (the so-calledA-representability by pure stafe§he FAHT*, corresponds to an existing wave function. Calcula-

one-body density matrig(r,r') has the simplest form in the tions of the natural orbitals and the natural occupation num-
natural orbital representatid8], bers, with the imposed conditions concerning the violation of

the A representability, are in progress. This analysis could be
another comparison test of the three expansions examined in
, , the present work.
p(r1) =2 naxa(Nxa(r), (28) P
a
IV. SUMMARY

where {x,(r)} are single-particle wave functiongalled In the present work, a systematic study of the effect of
natural orbitalsthat diagonalize the one-body density matrix SRC on one-body properties sfp ands-d shell nuclei has
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been made evaluating three different cluster expansions. The A

HO parameteb and the SRC paramet@ have been deter- Ol(A)=H S(ri—r{),

mined by a least-squares fit to the experimental charge FF. =1
The comparison of the three expansions in the example of

the MD and the FF shows that they can be considered

equivalent expansions. It is found that, when the calculation e

are made with the best fit values of the parameters, these H S(ri—r{)

expansions reproduce the diffraction minima of the FF in the -

correct place and they give similar MD for all the nuclei we

have considered. The inclusion of SRC increases conside

ably the high-momentum component k).

A A
2 5(ri—r)5(ri’—r’)jl;[i s(rj—r))

(A3)

The OBDM pranT(r,r’"), normalized taA, is defined as

The FIY and FAHT expansions have been used for both dind,(\)
closed and open shell nuclei while the occupation probabili- PEAnT(r,I) = i (A4)
ties can be treated as free parameters together with the pa- A=0

rameters and B in the fitting procedure of the FF. In LOA, ) i .
calculations for open shell nuclei are in progress. We introduce the-body integralsl,(1) defined as

In addition, the information entropy sum has been calcu-

lated according to the three methods compared in the present, (V)= 1
work. It was found almost in all of the numerous caégit A(A-1)---(A—n+1)
ferent expansions and nudleithat the larger theS the n
smaller they?. That is maximalS could be used as a crite- % ) ) O, (n)e%(m
rion for the quality of a given nuclear model. We found only i 2 bi, - b Il;[] f(ri,rj)O.(n)
two exceptions to this rule. In these two exceptions the dif-
ference of they? values is less than 1%.
Finally, attention was paid to the “healing” or “wound” XIHJ flrir J ¢| - n> ' (A5)
a

integralsw?, of the relative two-nucleon states. A convenient

analytic expression of2, with correlation function10) was  The cluster integral§,(n=1,2, . .. A) are defined through

derived for any relative statel. Their values were computed the successive application of the equation

in a number of states with that expression and were also

discussed. n ™ MO (n)
JE=3137---3, n=12,...A. (A6)

APPENDIX A

In this appendix, we give some details about the FAHTFor example, fon=1 andn=2 it gives

expansion. We define the correlated wave function as
31:\]1, 32:_. (A7)

A
=[] f(r;,r)®, (A1)
1<) The last of Egs.(A6), which corresponds tm=A is the

_ _ _ _ quantity we are interested in
wheref(r;,r;) is the Jastrow correlation function addis a

Slater determinant wave function. To buildup the cluster ex- A A B
pansion, we start, following Ref20], from the A-body inte- Ia=11 JV=34373% - Ta. (A8)
gralsJA(\) defined as n=1

If the factor-cluster expansion is limited to the two-body
JaN) = 1 term (assuming that the remaining cluster integrals are equal
A AA-1)---1 to unity [20]), then
A (D ~(5)
IT f(ri,r)Os(A)€X02 =TT (A9)

A
><i EI <¢i1'”¢i’* i<

From Egs.(A4) and(A9) we have
><Hf rr) ¢.1...¢.>, (A2)
<] a A\l1 dJ,
PFAHT(r,"'):( 1) [J— a}
where the sum over the statesi,, ... ,in has no restric- ! A=0
tions and extends over all one-particle statesasthnds for 1 dJ, 1 dJ,
the antisymmetrization. The operato@;(A) and O,(A) + [———2— } (A10)
have the forms 2/132 dn Jq di o
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where

1 A
=7 2 (¢,(r)[0x(1)e" Vg (D)),

(A11)
and
1 A
2N= a2 (Gl
X|04(2)e2f(r] ,rb)|
X i (1) bi(15))a- (A12)

After some algebra we obtain

J1(0)=1,

PHYSICAL REVIEW C64 014314

1
J,(0)= m[A(A— 1)—f [Ox(r,r,g1)+0y(r,r,g92)

—Oz(r.r,gs)]dr},

[dJl} 1<O >
= =200, )0,
v, AT

d,] 2 |
dn A:o_m[(A_1)<O”'>1_02(r,r 90

_OZ(rir,!g2)+02(rvr,193)]! (A13)

where the termgO,,,); andO,(r,r',g) have been defined
in Sec. Il.
Finally, the pgapt(r,r’), normalized to unity, becomes

1
PEAHT(T.T) = K(Orr’>1+(A_ 1)

APPENDIX B

The healing integral defined by E®6) is written as fol-
lows [47]:

W2, =2[1+ Ny (In(b,8)—1)], (B1)

where
Im(b,ﬂ):f; ex — Br?]¢a(r)dr, (B2)

and the normalization factdW,,, is given by Eq.(27). This

factor can be easily expressed in terms of the integrals

I,(b,B) andl,(b,28) by means of expressiai0)

Np=[1=21y(b,8)+1n(b,28)]7 2 (B3)

Thus, the analytical calculation of any healing integral
wy, is reduced to the calculation of two integrals of type
(B2). The expression df,,(b,28) follows immediately from

2

the expression off (b, ).

(A_1)<Orr’>1_OZ(rvr,vgl)_OZ(r!rI192)+OZ(r!rIIQS) 1
_K<Orr’>1 .
AA=1)= [ [0u(1,1,00)+ Osl1.1,82) - Os(r. 1,03 0
(Al14)
[
2n! 1/2
ni(r)=
F(n+|+§ b,
I+1 | , r2 _r2
x| —| L2 —|exg—5|, (B4
b/ " (b?) e

whereb, is the HO parameter of the relative motion, which
is related to the usual HO parameterby b,=+2b [b
=(h/mw)*?].

Substituting expressio(B4) into Eq. (B2) and using the
transformatiorrzlbr2=§, Iy is written as

n! Cam@ + +
|n|(b,ﬁ):mfo e  IINELATUT) FUZ £)]2dg,
(B5)

wherey= Bb?=2b?.
Using formula(13) of § 7.414 of Ref[48] |, takes the
form

y2+1
y’-1

(B6)

I(b,B)=(y—1)"(y+ 1)n|3/2PL|+1/2,01(

We use the general expression of the radial HO wavervherePf]al'az)(z) are the Jacobi polymomials. These may be

function (normalized to one afg ¢2,dr=1) in the form

easily expressed in terms of the hypergeometric function

014314-10
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(see, e.g., § 8.962 of Ref48)). In the case of the nodeless lows immediately and therefore the analytic expression of

states[becausde)al'aZ)(z)z 1] 1,, takes the simple form the w2, by means of the formula81) and (B6). It is thus
clear that the healing integral?, for any state depends on

(B7) the correlation parametgg and the HO one, only through

the producty=28b?. The expressions aflﬁ, for the lowern
states follow also very easily.

lo(b,B)=(y+1)"'"%2
By substituting8— 28, the expression of,(b,28) fol-
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