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Why the fermion dynamical symmetry model fails to predict nuclear masses:
A comprehensive assessment
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In the last several years new experimental data have become available on alpha-decay chains starting in the
predicted deformed superheavy region near272110. This has promoted new interest in nuclear mass formulas
and how well they extrapolate to regions far beyond where experimental masses were previously known. We
here focus on two such mass models, namely the fermion dynamical symmetry model and the finite-range
droplet model. We have chosen these models since they both reproduce previously known actinide masses with
good accuracy, but rapidly diverge from each other in the region of the recently observed new elements.
Furthermore, the two models have been the subject of animated discussions concerning which one gives the
most reliable predictions of nuclear masses in the superheavy region and in the terminating region of ther
process. The new data support the predictions of the finite-range droplet model. We discuss the fermion
dynamical symmetry model and its application@Hanet al., Phys. Rev. C45, 1127~1992!# to the calculation of
trans-Pb nuclear masses. As will be shown, the model contains unphysical features and has many more free
constants than claimed. The values obtained for the constants and the model agreement with data in the region
of adjustment are therefore of no particular significance and severe divergences occur for recently discovered
nuclei outside the region of adjustment.
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I. INTRODUCTION

In microscopic nuclear-structure calculations one can
solve the full many-body problem with the true nucleo
nucleon force. Instead, the problem is always considera
reduced to some type ofmodel with effective forces. Al-
though both the model and the force used are always dra
simplifications of reality, the aim in constructing these mo
els is that they both be solvable and retain the ability
describe and predict, at a useful level of accuracy, some
of nuclear-structure properties. We here discuss two im
mentations of microscopic nuclear-structure models, in p
ticular as applied to the calculation of nuclear masses. O
model is the FDSM~fermion dynamical-symmetry mode!
@1,2#, the other the FRDM~finite-range droplet model! @3–5#
version of the macroscopic-microscopic method as imp
mented in a series of mass calculations.

In the early 1990s the constants of both models were
termined, partly from least-squares adjustments to nuc
masses. For the FDSM model, which was adjusted to Pb
trans-Pb masses only, the rms error obtained was 0.22 M
for this restricted region. For the FRDM, which was adjus
to all known masses with proton numberZ>8, and neutron
numberN>8, the model error was 0.669 MeV for this enti
region of nuclei. However, the two models predicted qu
different masses for unknown nuclei already a few nuc
away from the known region. For nuclei further away, no
bly in the superheavy region and along the upper part of
r-process path, the predictions of the two models dive
even more.

In the first half of the 1990s it was often debated whi
one of the models is the most reliable for predicting u
0556-2813/2001/64~1!/014308~19!/$20.00 64 0143
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known masses and in a 1996 paper@6#, the proponents for
the FDSM model stated

The picture presented here (i.e., the FDSM model) s
gests trends for the heaviest nuclei that are rather differ
relative to those expected in traditional mass models (one
which is FRDM). These could be tested by further obser
tions of isotopes in the Z5110–114 region, by a continued
failure to find superheavy elements at their historically e
pected location, and by observables associated w
r-process element production.

Today, some years later, several new elements and isot
in theZ5110–112 region have been observed. Thus som
the necessary experimental observations, needed to per
the test asked for in the 1996 FDSM paper, are now av
able. The test is carried out in this paper. Since the FRLD
and FDSM give very different masses in the new region
least one of the models will have to fail this test, and w
present here a detailed analysis of the reasons for this fai

It could be argued that a model which fails does not d
serve a detailed study. We are, however, of a different op
ion. The approaches used in the development of the FR
and FDSM models are very different in the strategies use
reproduce known data, in the way in which the models
simplified, in the way in which model constants are allow
to be adjusted, and finally in the approach to establish
predictive power of the models. It is therefore well justifie
to tell the story of these models. A detailed comparison
tween the FRDM and FDSM will illuminate all the point
mentioned above. We are convinced that such an ana
will provide essential insights for the future.
©2001 The American Physical Society08-1
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Since an important feature of this paper is to disc
model constants and how to determine their values, includ
how to adjust some model constants to data by use of
method of least squares, a detailed, complete descriptio
both models is required. To follow many of the argume
presented in this paper, such a detailed knowledge of the
of each constant and the place at which it appears in
equations is necessary. For the FRDM we are able to refe
earlier work @5,7# for such a description and complete a
count and counting of the constants; for the FDSM we n
to perform a similar accounting of the model constants a
their significance here.

We mentioned that nuclear-structure calculations are
formed with modelsand effectiveforces that are severe ap
proximations of reality but that retain ‘‘essential features’’
the real physical system. How can one know if models s
as the FDSM or the macroscopic-microscopic method
implemented in the FRDM retain essential features? Th
are several approaches that should be pursued in par
The models must be used in a large number of calculation
a consistent manner to test the models and to give experi
with the models. One should use general, model-indepen
arguments to analyze and judge the models. For example
the constants few enough and of a type that can be reli
determined from available data points? Do the models c
rectly predict new data that become available? And,
model features should be critically studied and challenged
the scientific community. It is from the interplay of suc
activities that useful models will evolve. It is in this spirit w
offer our criticism of the FDSM and the mass formulas d
rived from it. The latter appear in two versions@1,2,6# of
which we are mainly going to discuss version II presented
Refs.@1,6#, which the authors of the FDSM papers claim
be the superior one through statements like

‘‘ . . . version II is able to produce an excellent fit of 33
nuclei with a better rms error of 0.22 MeV (vs the 0.34 M
of version I) and parameters that are fewer in number. . . .’’

‘‘Thus we have reduced the number of adjustable para
eters in the FDSM-Strutinsky mass formula from 16 in v
sion I to 13 in version II.’’
Here we comment on the above statements and on s
other aspects of the FDSM model. Specifically, our disc
sion will address the following points:

~1! We show that the number of adjustable constants
grossly misrepresented; it is much larger than 13.

~2! The Strutinsky-like shell-correction method used
the FDSM work is unphysical. It is still plagued by many
the same deficiencies as occur when the nuclear energ
calculated as a sum of single-particle energies; deficien
that Strutinsky removed withhis method@8,9#.

~3! It is rather trivial to achieve an error of about 0.2
MeV in a fit of a multiparameter expression to a limite
region such as the ‘‘actinide’’ region the authors consid
Such results are therefore of no physical significance, t
are simply a parametrization of the data.

~4! Since octupole interactions are not considered in
FDSM model one would expect larger errors in the FDS
masses where octupole deformations are important. Suc
01430
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rors do not occur. This observation demonstrates that
results of the FDSM model lack important physical featur

To be able to elaborate on the above points we have
outline those features of the FDSM that are necessary for
discussion. However, we shall start with a brief discussion
the macroscopic-microscopic method used in the FRDM
its application to nuclear mass calculations.

II. THE MACROSCOPIC-MICROSCOPIC METHOD

Shortly after the advent of the deformed single-parti
models in the mid 1950s@10#, the energy of a nucleus as
function of deformation was often calculated as a sum
three contributions: a sum of the energies of occupied sin
particle levels, a Coulomb energy, and a pairing energy@11–
13#. The shape of the nucleus in its ground-state configu
tion was obtained by minimizing the energy with respect
deformation.

Although the above method was used for calculating
nuclear potential energy versus deformation in the vicinity
the ground state, it was observed at the time that it was
principle incorrect to relate the total energy of the nucleus
the sum of single-particle level energies. However, the
proach was used because it worked in practice.

After the initial successful applications of the abo
method to calculations of the potential energy in the vicin
of the ground state, attempts were made to apply the pro
dure to distortions somewhat beyond the ground state. H
ever, here the method failed catastrophically.

At this time, no global nuclear mass calculations based
microscopic models had been made. However, global m
calculations based on liquid-drop models were carried o
for example, by Ref.@14#. In these calculations the mass w
obtained as a sum of a macroscopic term plus a microsc
correction obtained from a postulated, parameterized exp
sion. It was not known if single-particle models could at
be utilized to obtain the microscopic corrections.

A. The conventional Strutinsky shell-correction method

It was Strutinsky@8,9# who simultaneously resolved th
difficulties that were associated with using sums of sing
particle level energies and proposed a method for obtain
microscopic shell and pairing corrections from calculat
single-particle energies of both spherical and deformed
clei. Strutinsky observed that the sum of single-particle le
energies is often very large, in heavy nuclei much more th
1000 MeV in a Nilsson modified-oscillator model, but th
the change with deformation in this sum is often only a fe
MeV, that is, a few parts in 1000. Since the energy of t
nucleus is certainly not correctly given to such an accur
by the sum of single-particle level energies another met
had to be found. Strutinsky observed that the stability of
nucleus was clearly correlated with the magnitude of
gaps in the single-particle levels, or more precisely to
level density, close to the Fermi surface. He therefore p
posed that one use a macroscopic-microscopic metho
calculate the nuclear potential energy of deformation
which the microscopic correction is obtained as a sum
calculated single-particle level energies minus the ene
8-2
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WHY THE FERMION DYNAMICAL SYMMETRY MODEL . . . PHYSICAL REVIEW C 64 014308
from a smoothed-out level spectrum occupied with the sa
number of particles. The crucial point in Strutinsky’s meth
is thatthe smoothed-out level spectrum is obtained from t
calculated single-particle levels themselves.

Thus the smooth level density is generated from the sh
delta-function single-particle level density by folding with
Gaussian so that the new level density is a sum of Gauss
each of which is centered around an original level. Beca
the large systematic errors that are present in the sum o
single-particle level energies will also be present in
Gaussian level spectrum they will be subtracted out when
microscopic correction is calculated as the difference
tween these two terms.

B. Implementations of the macroscopic-microscopic method

In a macroscopic-microscopic model the nuclear ener
which is calculated as a function of shape, proton numbeZ,
and neutron numberN, is the sum of a macroscopic term an
a microscopic term. Thus the total nuclear potential ene
can be written as

Epot~Z,N,shape!5Emacr~Z,N,shape!1Emicr~Z,N,shape!,
~1!

where the microscopic term in addition to the Strutins
shell-correction energy also contains a pairing-energy con
bution.

After Strutinsky had proposed his method, several gro
applied it to a large number of nuclear-structure problem
The calculations could differ in the choice of macrosco
liquid-drop, microscopic single-particle, and microscop
pairing models. Several choices exist for all of these mod
However, common aspects of these calculations are th
large number of nuclear-structure properties are descr
with relatively few constants from systems as light as16O to
the heaviest elements.

The first step in a macroscopic-microscopic calculation
to select a nuclear shape of interest. Next, the macrosc
energy is calculated for this shape, and the levels in a sin
particle potential with the same shape are determined. T
the microscopic shell and pairing corrections are calcula
by use of Strutinsky’s method and the potential energy
obtained as the sum of the macroscopic term and the s
plus-pairing corrections. Finally, the ground-state mass is
termined by minimizing the potential energy with respect
deformation, that is the calculation is carried out for a grid
deformation points and the minimum energy on this grid
determined.

Apart from the ground-state mass a large number
nuclear-structure quantities may be determined without
introduction of any additional constants. Examples of su
quantities are the quadrupole moment and higher mom
of the ground-state shape, the fission-barrier saddle po
and secondary minima, the energy of shape-isomeric st
and band-head energies.

C. The FRDM model

The macroscopic-microscopic FRDM~1992! model is the
latest version of the ‘‘Mo¨ller-Nix mass model’’ @5#. It is
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completely defined in Ref.@5#, where a well-defined enu
meration of all the constants of the model is also made.
therefore refer to that publication for a complete discuss
of the model. However, in the FDSM~1992! paper@1# fre-
quent references are made to the FRDM in its 1988 vers
To be able to comment on the discussion in Ref.@1# we
enumerate in the next section the constants in the FRDM
its 1988 form, which in terms of model constants and oth
aspects differs only slightly from the FRDM~1992!.

D. Constants of the FRDM model

It is always of interest to have a clear picture of exac
what constants enter a model. Naturally, anyone who sets
to verify a calculation by others or uses a model for n
applications needs a complete specification of the model,
which a full account of the model constants and their valu
is an essential part. Also, when different models are co
pared it is highly valuable to fully understand exactly wh
constants enter the models. Unfortunately, discussions
model constants are often incomplete, misleading, and/or
roneous. For example, in Table A of Ref.@4# the number of
constants of the mass model of Spanier and Johansson@15# is
listed as 12. However, in Table A in the article@15# by
Spanier and Johansson the authors themselves list 30
stants plus five magic numbers that are not calculated wi
the mass model and must therefore be considered const
for a total of at least 35 constants.

We specify in Table Iall the constants that enter the 198
version of the FRDM model, rather than just those that in
final step are adjusted to experimental data by a least-squ
procedure. We also include fundamental constants like
electronic charge and Planck’s constant.

The discussions in Refs.@5,7# allow us to enumerate the
constants in the FRDM model in Table I. From this list w
see that the macroscopic-microscopic method requires r
tively few constants. One feature of the model gives rise t
small complication when counting the number of constan
Droplet-model constants occur also in the determination
the single-particle potential. However, the six droplet-mo
constants used in the microscopic expressions are obta
from four primary constants@16#, one of which is the nuclea
radius constantr 0. Since this constant has the same value
we use in our macroscopic model only three remain t
could be considered as additional FRDM constants. Alter
tively we could in principle employ an iterative procedu
and obtain the same values for the macroscopic and mi
scopic droplet-model constants. In that case the total num
of FRDM constants would be 36 and the number of co
stants adjusted to masslike quantities 15.

III. FERMION DYNAMICAL SYMMETRY MODEL
MASS FORMULA

A. Model features and constants

Here we present the principal terms that enter in
FDSM Strutinsky atomic mass formula. Our purpose with the
brief outline is only that we later be able to identify where
8-3
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TABLE I. Constants in the FRDM~1988!. The third column gives the number of constants adjusted
nuclear masses or masslike quantities such as odd-even mass differences or fission-barrier heights. T
column gives the number of constants determined from other considerations. Appropriate numerical va
the macroscopic constants are given in Ref.@7# and of the microscopic constants in Ref.@5#.

Constants Comment Masslike Other

MH , Mn , e2 Macroscopic fundamental constants 0 3
ael , r 0 , r p , Macroscopic constants from considerations 0 6
a, aden, K other than masslike data
L, a3 , r, s, t, h Macroscopic constants obtained 6 0

in prior adjustments to masslike data
a1 , a2 , J, Q, a0 , W Macroscopic constants determined by 9 0
C, g, ca current least-squares adjustments
\c, mnuc Microscopic fundamental constants 0 2
Vs, Va, Aden, Bden, Ccur , Microscopic constants 0 10
kp , l p , kn , l n , apot
a1 , a2 , J, K, L, Q Droplet-model constants that enter the single- 3a 0 a

particle potential

Subtotals 18 21

Total 39

aSee the discussion of the droplet-model constants in the text.
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the mass model various constants enter. For a more exten
presentation we refer to the original work@1#.

In the FDSM the nuclear mass is given byMFDSM(Z,N)
with

MFDSM~Z,N!5M lq
S1M sh

s.p.1Vsh
pair1^VFDSM&, ~2!

where M lq
S is the spherical liquid-drop energy and the r

maining three terms account for the shell-plus-pairing c
rections.

1. Spherical liquid-drop model

Only the spherical liquid-drop energy is needed in t
FDSM model, since other terms are assumed to generat
macroscopic deformation effects that in the macrosco
microscopic finite-range liquid-drop model are described
a deformed macroscopic energy expression. For gener
we give the expression for the deformed case and then
cialize to the spherical case.M lq

S of the FDSM model is
identical to the macroscopic FRLDM energy@7# in its spheri-
cal limit. Thus

M lq
S5MHZ1MnN2av~12kvI

2!A1as~12ksI
2!B1A2/3

1c0A01c1

Z2

A1/3
B32c4

Z4/3

A1/3
1 f ~kfr p!

Z2

A
2ca~N2Z!

1WS uI u1H 1/A, Z andN odd and equal

0, otherwise D

15
1D̄p1D̄n2dnp, Z andN odd

1D̄p , Z odd andN even

1D̄n , Z even andN odd

10, Z andN even

2aelZ
2.39 ~3!
01430
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with B1 andB3 given by their values in the spherical limit a
given by Eq.~13! below. The average neutron pairing gapD̄n

and the average proton pairing gapD̄p are given by@17,18#

D̄n5
rBs

N1/3
e2sI2tI 2

~4!

and

D̄p5
rBs

Z1/3
e1sI2tI 2

. ~5!

The average neutron-proton interaction energydnp is given
by @17,18#

dnp5
h

BsA
2/3

. ~6!

In the above expressions the quantitiesc1 andc4 are de-
fined in terms of the electronic chargee and the nuclear-
radius constantr 0 by

c15
3

5

e2

r 0
,

c45c1

5

4 S 3

2p D 2/3

. ~7!

The proton form factorf is given by

f ~kfr p!52
1

8

r p
2e2

r 0
3 F145

48
2

327

2880
~kfr p!

21
1527

1209600
~kfr p!

4G ,
~8!

where the Fermi wave number is
8-4
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kf5S 9pZ

4A D 1/3 1

r 0
. ~9!

The relative neutron excessI is

I 5
N2Z

N1Z
. ~10!

The relative surface energyBs, which is the ratio of the
surface area of the nucleus at the actual shape to the su
area of the nucleus at the spherical shape, is given by

Bs5
A22/3

4pr 0
2ES

dS ~11!

which in the spherical limit is 1. The quantityB1 represents
the relative generalized surface or nuclear energy in a m
that accounts for the effect of the finite range of the nucl
force andB3 is the relative Coulomb energy, including di
fuseness corrections to all orders. For spherical shapes
can calculate the quantitiesB1 andB3 analytically. With

x05
r 0A1/3

a
and y05

r 0A1/3

aden
~12!

one obtains

B1512
3

x0
2

1~11x0!S 21
3

x0
1

3

x0
2D e22x0,

B3512
5

y0
2 F12

15

8y0
1

21

8y0
3

2
3

4

3S 11
9

2y0
1

7

y0
2

1
7

2y0
3D e22y0G . ~13!

The expressionB3 for the relative Coulomb energy yield
the energy for a homogeneously charged, diffuse-surf
nucleus to all orders in the diffuseness parameteraden. The
constants in front ofB1 andB3 have been chosen so thatB1
andB3 are 1 for a sphere in the limit in which the rangea
and diffusenessadengo to zero, in analogy with the definitio
of the quantitiesBs and BC in the standard liquid-drop
model.

2. Values of the constants of spherical liquid-drop energy

The constants appearing in the expression for the FRL
macroscopic model fall into three categories@19,20#. The
first category, which represents constants that were ta
from previous work with no adjustment whatsoever, includ
@18–20#

MH 5 7.289034 MeV hydrogen-atom mass
excess,

Mn 5 8.071431 MeV neutron mass excess,
e2 5 1.439 976 4 MeV fm electronic charge square
01430
ace

el
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,

aden 5 0.99/21/2 fm range of Yukawa function
used to generate nuclear
charge distribution,

ael 5 1.433
31025

MeV electronic-binding
constant,

r 5 5.72 MeV pre-exponential pairing
constant,

s 5 0.118 linear exponential pairing
constant,

t 5 8.12 quadratic exponential
pairing constant,

h 5 6.82 MeV neutron-proton interaction
constant,

r p 5 0.80 fm proton root-mean-square
radius.

The second category, representing those constants w
values were determined from considerations other t
nuclear ground-state masses, includes@19,20#

r 0 5 1.16 fm nuclear-radius constant,
a 5 0.68 fm range of Yukawa-plus-exponenti

potential,
as 5 21.13 MeV surface-energy constant,
ks 5 2.3 surface-asymmetry constant.

The third category represents five constants whose va
are determined from a least-squares adjustment to nuc
ground-state masses by Ref.@7#. Their values are

av 5 16.000 MeV volume-energy constant,
kv 5 1.911 volume-asymmetry constan
W 5 35 MeV Wigner constant,
c0 5 5.8 MeV A0 constant,
ca 5 0.145 MeV charge-asymmetry constan

3. Spherical shell correction

The spherical shell correctionM sh
s.p., term two in Eq.~2!,

is given by

M sh
s.p.5M sh

s.p.~Z!1M sh
s.p.~N!

5 (
i 583

Z

« i
pni

p2@EFG~Z!2EFG~82!#1np«p

1 (
i 5127

N

« i
nni

n2@EFG~N!2EFG~126!#1nn«n ,

~14!

where« i
p and « i

n are the proton and neutron single-partic
energies and where, in this case,ni

p51 andni
n51. Further-

more,EFG(n) represents the Fermi-gas energy forn nucle-
ons:
8-5
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RAGNAR BENGTSSON AND PETER MO¨ LLER PHYSICAL REVIEW C 64 014308
EFG~Z!5
3Z5/3Cp

5Rp
2

,

EFG~N!5
3N5/3Cn

5Rn
2

, ~15!

and

Rn,p5r 0A1/3F 16I

~123ē !~16 d̄ !
G 1/3

~16!

with

d̄5S I 1
3

16

c1

Q

Z

A2/3D Y S 11
9

4

J

Q

1

A1/3D ~17!

and

ē5S 22a2

1

A1/3
1L d̄21c1

Z2

A4/3D /K . ~18!

The calculation of the spherical shell corrections use
set of spherical single-particle levels. Thus these levels
their associatedl and j quantum numbers, which are need
to provide the parity and degeneracy of the levels consti
constants of the model, as do the spherical magic numbe
the beginning and end of the region. The proton magic nu
bers are 82 and 126, and the neutron magic numbers are
and 184. Between these magic numbers there are six sp
cal proton and seven spherical neutron levels. Some c
stants of the model depend on the particular set of sin
particle levels used. We give below the set of consta
appropriate for the Woods-Saxon single-particle le
scheme, used in Refs.@1,6#.

The quantities«p and «n in Eq. ~14! represent approxi-
mately the differences between the Fermi-gas and the m
exact single-particle level schemes represented by the e
gies« i

p and« i
n . The number of valence nucleonsnp andnn

are, obviouslynp5Z282 andnn5N2126. The following
definition was chosen for«p and«n :

«p5S 3

5
835/32

3

5
825/3DCp /Rp

21ep ,

«n5S 3

5
1275/32

3

5
1265/3DCn /Rn

21en . ~19!

The quantitiesep and en are determined by requiring th
maximum cancellations in Eq.~14!, or equivalently by mini-
mizing (Z583

126 @M sh
s.p.(Z)#2 and(N5127

184 @M sh
s.p.(N)#2.

The various terms entering in Eq.~14! are shown in Fig. 1
as functions of the proton number for neutron numberN
5126. The solid curve represents the Fermi-gas ene
EFG(Z)2EFG(82) with EFG(Z) defined by Eq.~15! and the
short-dashed curve the total sum of single-particle ener
( i 583

Z « i
pni

p1np«p . The difference between the two curve
defines the spherical shell-correction energyM sh

s.p.. The con-
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tribution from the first term in the single-particle energy
small, corresponding to the long-dashed curve. The m
contribution to the sum of single-particle energies com
from np«p , with «p defined in Eq.~19!. For ep50 this term
gives a contribution to the energy corresponding to the d
dashed curve in Fig. 1. Adding to this curve the sum
single-particle energies given by the long-dashed curve
sults in an energy which is consistently lower than t
Fermi-gas energy given by the solid curve. This would res
in a spherical shell-correction energy which is negative
all proton numbers. To avoid this, a nonzero value forep is
introduced, resulting in an additional contribution to the to
sum of single-particle energies,npep , shown by the dotted
line. Since both the dotted and the dot-dashed curves
smooth functions of the proton number, the only true sh
correction must be contained in the long-dashed curve.
other two terms are only introduced to have the total sum
single-particle energies~the short-dashed curve, correspon
ing to the sum of the long-dashed, dotted and dot-das
curves! fluctuate around the Fermi-gas energy~the solid
curve!. However, the difference between the short-dash
and solid curves, defined to represent the ‘‘spherical sh
correction energy,’’ does not correspond to what is norma
called the shell-correction energy. This will be shown in S
IV B below.

4. Values of the constants of the spherical shell correction

The constants of the spherical shell correction are

J 5 38.2 MeV symmetry-energy constant,
L 5 100.0 MeV density-energy constant,
c1 5 0.7403 MeV Coulomb-energy constant,
K 5 300 MeV nuclear compressibility constan

FIG. 1. Terms entering the expression for the spherical pro
shell-correction energyM sh

s.p.(Z). Curve 1 shows( i 583
Z « i

pni
p . Curve

2 showsnpep . Curve 3 showsnp(
3
5 835/32

3
5 825/3)Cp /Rp

25np(«p

2ep). Curve 4 is the sum of the curves 1, 2, and 3. Curve 5 sho
EFG(Z)2EFG(82). The spherical proton shell correctionM sh

s.p.(Z) is
given by the difference between the curves 4 and 5.
8-6
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a2 5 20.85 MeV surface-energy constant,

Q 5 17.7 MeV effective surface-stiffness con
stant,

Cp 5 72 MeV proton Fermi-energy constant,
Cn 5 71 MeV neutron Fermi-energy constant
ep 5 3.212 MeV proton scaling constant,
en 5 3.477 MeV neutron scaling constant.

The spherical Woods-Saxon proton and neutron sin
particle levels and quantum numbers used in the FDSM
shown in Table II.

5. Spherical pairing correction

The spherical pairing correctionVsh
pair, term three in Eq.

~2!, is given by

Vsh
pair5@Vp

pair~BCS!2Vp
pair~deg!#1@Vn

pair~BCS!2Vn
pair~deg!#.

~20!

In Eq. ~20! Vs
pair(BCS) is the pairing energy obtaine

from a given single-particle level scheme by solving t
standard BCS equations (s5p,n). The pairing energy
Vs

pair(deg) for a degenerate level scheme may be determ
analytically:

Vs
pair~deg!5GsNs~Vs2Ns1Ns/Vs!~s5p,n!. ~21!

The symbolV denotes the shell degeneracy. In the pres
tation of the FDSM model it is stated that the BCS appro
mation is used here only to calculate the corrections du
the spherical single-particle splitting and that the princi
part of the pairing in the FDSM is treated below as a tw
body interaction.

It should be observed that the BCS pairing ener
Vp

pair(BCS) does not fluctuate around the pairing energy
the degenerate level scheme,Vp

pair~deg!. Both energies are
negative, but for nearly all nucleiVp

pair~deg! has a much
larger negative value thanVp

pair(BCS), resulting in positive
values ofVsh

pair for the large majority of nuclei. The situatio
is illustrated for the N5126 isotones in Fig. 2. The
downsloping trend ofVsh

pair is the result of having included
term 2G( iv i

4 in the pairing energy.

TABLE II. Woods-Saxon single-particle level energies a
quantum numbers used in the FDSM.

Protons Neutrons
Energy~MeV! l j Energy~MeV! l j

5.099 p 1/2 3.808 d 3/2
3.880 f 5/2 3.452 s 1/2
3.850 p 3/2 2.950 g 7/2
1.684 i 13/2 2.355 d 5/2
0.921 f 7/2 1.201 j 15/2
0.000 h 9/2 0.665 i 11/2

0.000 g 9/2
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6. Values of the constants of the spherical pairing correction

The constants of the spherical pairing correction are,
the case of Woods-Saxon levels

Gp
pair 5 20.094 MeV pairing strength constan

for protons, WS levels,
Gn

pair 5 20.052 MeV pairing strength constan
for neutrons, WS levels,

Gp 5 20.047 MeV pairing strength constan
for protons, deg. levels,

Gn 5 20.023 MeV pairing strength constan
for neutrons, deg. levels

7. The FDSM shell-correction termŠVFDSM‹

In Ref. @1# it is shown that in the symmetry limits

^VFDSM&5aa1baNp1caNp
21daNn1eaNn

21 f aNpNn

1B2
pn^VQ

pn&a1G2
p^DCSp6

p &a1G2
n^DCSp6

n &a

1G 0
p^DCSU2

p &a1G 0
n^DCSU2

n &a1~G0
p2G2

p!

3^DCSU2
p &a1~G0

n2G2
n!^DCSU2

n &a

1~B2
p2G2

p!^DCSU3
p &a1~B2

n2G2
n!

3^DCSU3
n &a ~a5SU2,SU3!. ~22!

In Eq. ~22! Np andNn are the pair numbers of valence pr
tons and neutrons respectively; the expectation values of
operators insidê& are discussed in Ref.@1#. The remaining
quantities are constants whose values are given below.

8. Values of the constants ofŠVFDSM‹

The constants of the FDSM shell correction fall into tw
categories. The constants of the first category, which re

FIG. 2. Terms appearing in the spherical pairing correction
ergy Vsh

pair . Curve 1 showsVp
pair(BCS). Curve 2 showsVp

pair(deg).
The spherical proton pairing correctionVsh

pair(Z) is given by the
difference between curve 1 and curve 2 and shown by curve 3
8-7
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TABLE III. Constants of the FDSM. Constants that have not been obtained from adjustments to ma
data, such as nuclear masses, fission barriers, or odd-even mass differences are enclosed in brac
number in~! in the comment column refers to the more extensive comments in the text. The third co
gives the number of constants adjusted to nuclear masses or masslike quantities such as odd-ev
differences. The fourth column gives the number of constants determined from other considerations

Constants Comment Masslike Other

~82!,~126!,~126!,~184! Spherical magic numbers~1! 0 4 b

J,L,(c1),(K),a2 ,Q, Fermi-gas par.~2! 4 4
ep

a, en
a, (Cp),(Cn)

Gp
pair ,Gn

pair ,Gp
a, Gn

a Spherical pairing constants~3! 2 0
(MH),(Mn),av ,as,(aden), M lq

S spher. liq.-drop par.~4! 8 7
kv ,ks,c0 ,(a),ca,W,
(ael),h,(r 0),(r p)
G0

p ,G0
n ,G2

p ,G2
n , B2

p , B2
n VFDSM pairing par., norm.~5! 6 0

G 0
p ,G 0

n VFDSM pairing par., abnorm.~6! 2 0
aa ,ba ,ca ,da ,ea , f a VFDSM par.,a5SU2 ~7! 6 0
aa ,ba ,ca ,da ,ea , f a VFDSM par.,a5SU3 ~8! 6 0
B2

pn VFDSM par. ~9! 1 0
(« i

p), (« i
n) 13 spherical levels, assoc.l and j ~10! 0 37b

Subtotals 35 54b

Total 87b

aThese constants are determined from a least-squares minimization and are therefore not counted as
of the model.
bThe number given is appropriate when experimental level energies are used. When Woods-Saxon le
used the 39 level energies and spins are determined from an underlying model whose number of con
smaller, perhaps about 15, as in the FRDM microscopic model. Because the lowest single-particle
renormalized to 0.0 for both neutrons and protons in the FDSM we reduce the number of level energ
spins from 39 to 37 in the table.
t

t-

ble
for-
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ing
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en

del
sents the nonpairing part, were determined directly from
least-squares adjustment to nuclear masses. Fora5SU(2)
the constant values are:

aa 5 213.7500 MeV,
ba 5 24.5720 MeV,
ca 5 0.4293 MeV,
da 5 24.8890 MeV,
ea 5 0.3306 MeV,
f a 5 20.2915 MeV,
B2

pn 5 20.0912 MeV,

and fora5SU(3)

aa 5 25.5700 MeV,
ba 5 25.7900 MeV,
ca 5 0.3713 MeV,
da 5 26.8060 MeV,
ea 5 0.3587 MeV,
f a 5 20.1095 MeV,
B2

pn 5 20.0912 MeV.

The second category consists of constants that enter into
01430
a

he

pairing part of^VFDSM& and were determined from adjus
ments to odd-even mass differences:

G0
p 5 20.142 MeV,

G2
p 5 20.064 MeV,

B2
p ' 0 MeV,

G0
n 5 20.082 MeV,

G2
n 5 20.044 MeV,

B2
n ' 0 MeV,

G 0
p 5 20.200 MeV,

G 2
n 5 20.150 MeV.

B. Constants of the FDSM

The constants that enter in the FDSM are listed in Ta
III. By constants we mean numbers used in the mass
mula, that cannot be~or have not been! derived from the
FDSM model itself. Instead, they are taken from oth
sources or obtained from adjustments to data, includ
nuclear masses. In addition to the very brief comments in
table one should observe the following:

~1! The magic numbers used in the FDSM have be
obtained from a single-particle model.

~2! Most of the Fermi-gas constants are droplet mo
constants. Most of the constants of the droplet model@21,22#
8-8
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are determined from least-squares adjustment to masse
fission barriers.

~3! The spherical pairing constants are deduced from o
even mass differences.

~4! The spherical liquid-drop constants have been ta
from the work of Möller and Nix @7,23#. These authors ob
tained the constants from adjustments to masses, fission
riers, and other considerations.

~5! These constants enter the pairing part of the FD
shell-correction termVFDSM and have been determined fro
considerations of odd-even mass differences. The cons
are valid if the odd nucleon is in a normal parity level.

~6! These constants enter the pairing part of the FD
shell-correction termVFDSM and have been determined fro
considerations of odd-even mass differences. The cons
are valid if the odd nucleon is in an abnormal parity leve

~7! Constants of the FDSM shell-correction termVFDSM
for a5SU(2). The constants have been determined fr
adjustments to experimental nuclear masses.

~8! Constants of the FDSM shell-correction termVFDSM
for a5SU(3). The constants have been determined fr
adjustments to experimental nuclear masses.

~9! Constant of the FDSM shell-correction termVFDSM.
The constant has been determined from adjustments to
perimental nuclear masses.

~10! Spherical single-particle level energies with asso
ated spins and angular momentum values have to be a
able as input to the FDSM mass calculation. This cor
sponds to 3313539 constants.

The above list of the constants should be compared to
claim of the authors of the FDSM paper:‘‘Thus we have
reduced the number of adjustable parameters in the FDS
Strutinsky mass formula from 16 in version I to 13 in vers
II.’’

This statement is only correct in the sense that inthe final
step of parameter adjustmentonly 13 constants@correspond-
ing to ~7!, ~8!, and~9! in Table III# were varied. However, a
that point the authors had already adjusted the value of
constants on lines~3!, ~5!, and~6! in Table III and still other
constants are fitted to masslike data, although the autho
the FDSM paper did not themselves specifically adjust th
values for their mass calculations but took them from ot
sources. Finally, it should be mentioned that the numbe
mass-related constants~as well as the total number of con
stants! is considerably smaller in version I of the FDS
mass formula. In version I of the FDSM there are in total
constants of which seven are SU~2! constants, nine are SU~3!
constants and three are common constants for the two s
metries, namely the mass of208Pb, the proton mass and th
neutron mass. The seven SU~2! and nine SU~3! constants are
all fitted in the FDSM version I.

IV. AN EVALUATION OF THE FDSM MASS FORMULA

A. ‘‘Experimental’’ data set used in adjustment

The FDSM discussed here has been applied only to
calculation of actinide masses. The authors of Ref.@1# state
‘‘These 13 parameters are determined by adjustment to
known actinide-region masses.’’
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Since there were only 246 measured masses available
Z>82, in the latest compilation at about the time the FDS
constants were fitted, namely in the 1989 Audi interim ta
@24#, it is clear that the authors have made the mistake
including masses given by ‘‘Wapstra systematics.’’ The
are masses that have not been measured. Instead, they
been calculated by Wapstra@25# by means of extrapolation
from known masses. Thus the authors have, partially,
justed their model to another model. We have investiga
the error associated with the ‘‘Wapstra systematics’’ mod
From a 1977 mass table@26,27# we have selected the mass
given by the Wapstra systematics for which real measu
ments were given in the 1989 Audi interim table@24#. There
were in all 253 such masses in all regions of nuclei. Th
253 new measurements were usually close to previou
known masses. The rms error between the systema
masses and these new masses was 0.45 MeV.

B. FDSM ‘‘Strutinsky-like shell correction’’

The method used in the FDSM for calculating th
‘‘Strutinsky-like shell correction’’ is definitely not
Strutinsky-like. In fact, it is contrary to all the ideas intro
duced by Strutinsky and is actually more similar to the p
Strutinsky method of just summing single-particle level e
ergies. The method is therefore fraught with all the proble
associated with that, now abandoned, method.

In order to make a physical interpretation of th
Strutinsky-like shell correctionM sh

s.p. used in the FDSM we
rewrite Eq.~14! in the following way:

M sh
s.p.5H (

i 583

Z

~« i
p1«p!ni

p1(
i 51

82

~« i
p1«p!ni

p2Esmo~Z!J
1$Esmo~Z!2EFG~Z!%2$Esmo~82!2EFG~82!%

2H (
i 51

82

~« i
p1«p!ni

p2Esmo~82!J
1corresponding terms for neutrons. ~23!

We have here introduced the true smooth Strutinsky ene
Esmo, which has to be calculated from the full set of singl
particle energies through the Strutinsky smearing proced
In the FDSM mass formula, these energies are only defi
for 82,Z<126 ~and for neutrons for 126,N<184), but
this has no consequence for the above formula, since e
term which depends on the single-particle energies out
these intervals and are added in the formula is also subtra
out. Therefore the expression forM sh

s.p.given in Eqs.~14! and
~23! are identical. In Eq.~23!, the various terms have bee
ordered into groups enclosed by brackets. The first group
terms is identical to the true Strutinsky shell-correction e
ergy Eshell(Z), provided thatEsmo(Z) is calculated from the
renormalized single-particle energies« i

p1«p . The value of
«p does then not effectEshell(Z), since it will cancel out
exactly. The second group of terms gives the difference
tween the smooth Strutinsky energy and the Fermi-gas
ergy for proton numberZ. From now on we will use the
8-9



s
to

e
.e

s

ica
e
th
a

ll-
p
e
th
a

lso

the
and
ry
r

erm

c-
s

he
le-
-
icle
rop-
i-

eed
in-

ate
ze
e

ore
gy,
id-
ss
in

en
for
by

ic-

ame

ns
en
h
r
o

if-
ne
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notationEsmo-FG(Z) for this term. The third group of terms i
defined in the same way as the second group but for pro
numberZ582 and can therefore be written asEsmo-FG(82).
Finally, the fourth group of terms is identical to the tru
Strutinsky shell-correction energy for proton number 82, i
Eshell(82). We can now rewrite Eq.~14! as

M sh
s.p.5Eshell

p ~Z!1Esmo-FG
p ~Z!2Esmo-FG

p ~82!

2Eshell
p ~82!1Eshell

n ~N!1Esmo-FG
n ~N!

2Esmo-FG
n ~126!2Eshell

n ~126!, ~24!

where we have written out explicitly also the neutron term
By adding the proton and neutron terms we finally get

M sh
s.p.5Eshell~Z,N!1Esmo-FG~Z,N!

2Esmo-FG~
208Pb!2Eshell~

208Pb!. ~25!

We can now make a precise interpretation of the ‘‘spher
Strutinsky-like shell-correction energy.’’ It is identical to th
normal Strutinsky shell energy to which has been added
energy difference between the smooth Strutinsky energy
the Fermi-gas energy, the whole expression normalized
zero for 208Pb. In Fig. 3 the spherical Strutinsky-like she
correction energy has been split up into these two com
nents. It can then be seen that the normal Strutinsky sh
correction energy and the component corresponding to
energy difference between the smooth Strutinsky energy
the Fermi-gas energy are of the same magnitude.

It is very satisfactory to observe thatM sh
s.p. indeed contains

the true Strutinsky shell-correction energy,Eshell(Z,N). On

FIG. 3. The true Strutinsky shell-correction energy for proto
Eshell

p (Z), calculated from the Woods-Saxon single-particle level
ergies is shown by curve 1. A constant term, shown by curve 4,
been added toEshell

p (Z) in order to normalize the energy to zero fo
Z582. The proton part of the spherical shell-correction energy
the FDSM,M sh

s.p.(Z), is shown by curve 2. Curve 3 shows the d
ference between curve 2 and curve 1. It represents a smooth e
of macroscopic origin,Esmo-FG

p (Z)2Esmo-FG
p (82), contained in the

FDSM spherical shell-correction energy, cf. Eq.~24!.
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the other hand it is very disturbing to see that a
Esmo-FG(Z,N) is contained inM sh

s.p., since this term is the
difference between two macroscopic energies, namely
smooth Strutinsky energy and the Fermi-gas energy,
therefore macroscopic in character. It will therefore va
smoothly withN andZ and not have the oscillating behavio
that we associate with a shell energy. Furthermore, the t
will become very large at some distance from208Pb, the
nucleus for which it is renormalized to zero by the subtra
tion of Esmo-FG(

208Pb). Even more serious is that it contain
the smooth Strutinsky energy, which is nothing but t
smoothed out version of the unphysical sum of sing
particle energies. ThereforeM sh

s.p. has all the deficiencies as
sociated with the pre-Strutinsky era sums of single-part
energies. This cannot be cured by the subtraction of the d
letlike, and therefore in principle physically correct, Ferm
gas energy. On the contrary, by doing so, it is guarant
that parts of the smooth Strutinsky energy that have an
correct mass number dependence remain inM sh

s.p.. However,
the FDSM mass formula offers other terms to compens
for this mistake, as we will see later. Finally, to renormali
the shell energy to zero for208Pb seems very strange, sinc
this is one of the most strongly bound nuclei and theref
traditionally associated with a large negative shell ener
i.e., it has a much lower energy than predicted by the liqu
drop formula. However, also in this case, the FDSM ma
formula offers means for compensation as we will discuss
Sec. IV C.

C. FDSM masses for spherical nuclei

It is now possible to make a direct comparison betwe
the macroscopic-microscopic model and the FDSM
spherical nuclei. In the FDSM the nuclear mass is given
Eq. ~2!. By using the expression forM sh

s.p. given in Eq.~25!,
Eq. ~2! can be rewritten as

MFDSM~Z,N!5M lq
S1Eshell~Z,N!1Vsh

pair~Z,N!

1Esmo-FG~Z,N!2Eshell~
208Pb!

2Esmo-FG~
208Pb!1^VFDSM&. ~26!

The corresponding expression in the macroscop
microscopic model is

Mmm~Z,N!5M lq
S~Z,N!1Eshell~Z,N!1Vmm

pair~Z,N!.
~27!

Provided that the same macroscopic energy and the s
single-particle energies are used in both models,M lq

S and
Eshell(Z,N) are identical in Eqs.~26! and ~27!.

By introducing

dEdiff~Z,N!5MFDSM~Z,N!2Mmm~Z,N! ~28!

we get by subtracting Eq.~27! from Eq.~26! and rearranging
the terms

,
-
as

f

rgy
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WHY THE FERMION DYNAMICAL SYMMETRY MODEL . . . PHYSICAL REVIEW C 64 014308
^VFDSM&5Eshell~
208Pb!1Esmo-FG~

208Pb!2Esmo-FG~Z,N!

1Vmm
pair~Z,N!2Vsh

pair~Z,N!1dEdiff~Z,N!. ~29!

Provided thatdEdiff(Z,N) is small enough to be ne
glected, as it in fact is for most nuclei included in the fit, it
straightforward to interpret the meaning of^VFDSM&. It con-
sists of two terms related to the nucleus208Pb, namely the
true Strutinsky shell energy and the difference between
smooth Strutinsky energy and the Fermi-gas energy. F
this is subtracted two terms related to the nucleus under
sideration: the difference between the smooth Strutinsky
ergy and the Fermi-gas energy and the difference betw
the spherical pairing correction term of the FDSM mass f
mula and the pairing correction of the macroscop
microscopic model, taken at the actual deformation. This
terpretation is correct to the order of 1 MeV, which is t
size ofdEdiff(Z,N).

The implication of Eq.~26! is very interesting. Since the
nuclear mass is already given to a very good approxima
by the three first termsM lq

S1Eshell(Z,N)1Vsh
pair(Z,N) of Eq.

~26!, the sum of the remaining terms must add up to onl
couple of MeV. However, for nuclei at some distance fro
208Pb, the expression Esmo-FG(Z,N)2Eshell(

208Pb)
2Esmo-FG(

208Pb) constituting terms four to six of Eq.~26! is
much larger than that. Correct masses can only be obtain
the termsEsmo-FG(Z,N)2Eshell(

208Pb)2Esmo-FG(
208Pb) are

nearly exactly canceled out by^VFDSM& in Eq. ~26!. That this
near cancellation occurs is more clearly seen in the exp
sion for ^VFDSM& given in Eq.~29!. In addition to the three
terms already mentioned,̂VFDSM& contains three more
terms. The first two areVmm

pair(Z,N)2Vsh
pair(Z,N), implying

thatVsh
pair(Z,N) in Eq. ~26! de facto is replaced by the pairin

energy of the macroscopic-microscopic model. This repla
ment is essential, sinceVmm

pair(Z,N)2Vsh
pair(Z,N) may amount

to several MeV, as illustrated in Fig. 4. The main contrib
tion to the discrepancy comes fromVp

pair~deg!, cf. Fig. 2. The
only remaining term in Eq.~29! is dEdiff(Z,N), which is
typically of the order 1 MeV for nuclei with known masse
It is the only FDSM-related term in which an improveme
over the macroscopic-microscopic model can be incor
rated in the FDSM mass formula.

In the FDSM paper,̂ VFDSM& is characterized as th
FDSM shell correction. Furthermore, it is stated that it c
be obtained by computing the expectation value of
FDSM effective interaction. In reality this is not done, sin
this term is determined by parameter adjustment to data.
~29!, however, leads to a totally different interpretation
^VFDSM&. The bulk part of this term serves the single purpo
of cancelling out the inappropriate terms in the mass form
of Eq. ~26!. Its value depends crucially on the microscop
model, mainly throughEsmo, and on the Fermi-gas mode
Any change in the choice of these models or their cons
values will therefore alter the value of^VFDSM&. Conse-
quently, ^VFDSM& is not reflecting properties of the FDSM
model and its value cannot be independently calculated f
the FDSM effective interaction. In the FDSM mass formu
it serves the mere purpose of providing a set of adjusta
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constants which are used for fitting the ‘‘experimenta
masses.

In Fig. 5 ^VFDSM& is plotted for theN5126 isotones~the
solid curve!. According to the predictions of Eq.~29!
it should very closely follow the long-dashed curv
which shows Eshell(

208Pb)1Esmo-FG(
208Pb)2Esmo-FG(Z,N)

1Vmm
pair(Z,N)2Vsh

pair(Z,N). However, this is only true for
proton numbers up to 91, which is the range in which t
FDSM constants have been fitted to masses for theN5126
isotones. For larger proton numbers, for which no masses
available, the two curves start to deviate. AsZ approaches
126 the discrepancies become very large.

For 208Pb Eq.~29! reduces to

^VFDSM&208Pb
5Eshell~

208Pb!1Vmm
pair~208Pb!2Vsh

pair~208Pb!

1dEdiff~
208Pb!. ~30!

For this nucleus the pairing terms are small and to the ex
that the difference between the two models can be neglec
^VFDSM& 208Pb is simply the Strutinsky shell-correction energ

D. FDSM masses for deformed nuclei

For deformed nuclei, the total mass can be written as
mass of the nucleus at spherical shape plus a correction
to deformation. This correction must lower the mass, sin
otherwise the nucleus would be spherical. In t
macroscopic-microscopic model the separation into
deformation-independent part and a deformation-depen
part can be written

FIG. 4. Curve 1 shows the FDSM spherical proton pairing c
rection energy,Vsh

pair(Z). Curve 2 shows the proton pairing corre
tion energy of the microscopic-macroscopic model,Vmm

pair(Z). It has
in this case been calculated from the same Woods-Saxon leve
ergies as used in the FDSM, but with the standard pairing stren
@39#, which is somewhat larger than the one used in the FDSM.
term 2G( iv i

4 is included inVmm
pair(Z). A smooth energy of21.2

MeV has been subtracted. Curve 3 shows the difference betw
curve 2 and curve 1.
8-11
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Mmm~ b̄,Z,N!5M lq~ b̄,Z,N!1Eshell~ b̄,Z,N!1Vmm
pair~ b̄,Z,N!

5M lq
S~Z,N!1@M lq~ b̄,Z,N!2M lq

S~Z,N!#

1Eshell
S ~Z,N!1@Eshell~ b̄,Z,N!

2Eshell
S ~Z,N!#1Vmm

pair~0,Z,N!

1@Vmm
pair~ b̄,Z,N!2Vmm

pair~0,Z,N!#. ~31!

Hereb̄ denotes a general nonspherical deformation, whe
a superscript S denotes spherical shape. The pairing en
calculated at spherical shape is denotedVmm

pair(0,Z,N). The
spherical terms are identical to those in Eq.~27!, although
the notation differs slightly. The sum of the terms in squa
brackets gives the deformation energyEdef(b̄,Z,N). Equa-
tion ~31! can then be simplified to

Mmm~ b̄,Z,N!5M lq
S~Z,N!1Eshell

S ~Z,N!1Vmm
pair~0,Z,N!

1Edef~ b̄,Z,N!

5Mmm
S ~Z,N!1Edef~ b̄,Z,N!, ~32!

whereMmm
S (Z,N) is the mass calculated for spherical sha

The FDSM mass formula has the same form for spher
and deformed nuclei. Consequently, in analogy with E

FIG. 5. The FDSM shell correction̂VFDSM& is shown by curve
1. Curve 2 shows the energyEshell(

208Pb)1Esmo-FG(
208Pb)

2Esmo-FG(Z,N)1Vmm
pair(Z,N)2Vsh

pair(Z,N), where Vmm
pair(Z,N) has

been calculated in the same way as in Fig. 4. When the FDSM g
the same mass as the microscopic-macroscopic model, the
curves coincide. This is well fulfilled for proton numbers below
~i.e., to the left of the vertical solid line!, where the FDSM constant
have been fitted to known masses. The inclusion of the pai
terms,Vmm

pair(Z,N)2Vsh
pair(Z,N), is essential. Putting these terms

zero gives the result shown by curve 3. In the FDSM, SU~3! sym-
metry is used to the right and SU~2! symmetry to the left of the
vertical dotted line.
01430
as
rgy

e

.
al
.

~29!, we obtain^VFDSM& in the deformed case by subtractin
Eq. ~32! from Eq. ~26! and rearranging the terms, with th
result

^VFDSM&5Eshell
S ~208Pb!1Esmo-FG~

208Pb!2Esmo-FG~Z,N!

1Vmm
pair~0,Z,N!2Vsh

pair~Z,N!1Edef~ b̄,Z,N!

1dEdiff~Z,N! ~33!

implying that the full deformation-dependent part of th
nuclear mass is contained in^VFDSM&, which is also what the
authors of Ref.@1# claim is the case. Note that Eq.~33! is
identical to Eq. ~29!, except for the inclusion of the
deformation-dependent termEdef(b̄,Z,N).

In most macroscopic-microscopic calculations, the ene
is not divided as in Eq.~32!, but is instead split into a spheri
cal liquid-drop energy and a so-called microscopic corr
tion, Ecorr(b̄,Z,N), which contains all shell, pairing, and de-
formation effects. Thus

Mmm~ b̄,Z,N!5M lq
S~Z,N!1Ecorr~ b̄,Z,N! ~34!

and therefore

Edef~ b̄,Z,N!5Ecorr~ b̄,Z,N!2Eshell
S ~Z,N!2Vmm

pair~0,Z,N!.
~35!

By inserting this expression forEdef(b̄,Z,N) in Eq. ~33! we
can expresŝVFDSM& in terms of the more commonly use
microscopic correction energy, which is the energy usua
plotted as potential-energy surfaces. We then get

^VFDSM&5Eshell
S ~208Pb!2Eshell

S ~Z,N!1Esmo-FG~
208Pb!

2Esmo-FG~Z,N!2Vsh
pair~Z,N!1Ecorr~ b̄,Z,N!

1dEdiff~Z,N!. ~36!

This expression differs from the one in Eq.~33! in that the
spherical shell correctionEshell

S (Z,N) now appears explicitly
instead of the spherical pairing energyVmm

pair(0,Z,N). The five
first terms in Eq.~36! can be calculated independently of th
FDSM since they depend only on the spherical sing
particle energies and on the Fermi-gas model. The differe
between the sum of ^VFDSM& and these terms is
Ecorr(b̄,Z,N)1dEdiff(Z,N). In the region where the FDSM
parameters were adjusted to nuclear massesdEdiff(Z,N) is
small. Thus what is in the FRDM the microscopic correcti
to the spherical liquid-drop energy,Ecorr(b̄,Z,N), is in the
FDSM given solely by the polynomial parameter fit
^VFDSM&. Such a description can hardly be considered a s
microscopic foundation of a model.

E. A comparison between the FDSM versions I and II

Finally we shall make a brief comparison of version I a
version II of the FDSM mass formula. In version I@2# the
nuclear mass was given by

es
wo

g
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M I5M ~208Pb!1npMp1nnMn1^HFDSM&. ~37!

In this equation^HFDSM& is the expectation value of th
FDSM Hamiltonian. Its value is given relative to the mass
208Pb and it does not include the mass excess of the a
tional np5Z282 protons andnn5N2126 neutrons, which
are therefore added explicitly together with the mass of208Pb
in Eq. ~37!. The expectation value of the FDSM Hami
tonian,^HFDSM&, must not be confused with the FDSM she
correction ^VFDSM&. According to the FDSM paper@1#,
^HFDSM& incorporates the spherical liquid-drop energy a
the spherical s.p.~and presumably also pairing! corrections,
which are not contained in̂VFDSM&.

We now introduce the difference between the masses
dicted by versions I and II as

dEI-II 5M I2M II ~38!

and subtract Eq.~37! from Eq. ~2!. This gives after rear-
rangement of the terms

^HFDSM&2^VFDSM&5M lq
S~Z,N!1M sh

s.p.~Z,N!1Vsh
pair~Z,N!

2M ~208Pb!2npMp2nnMn

1dEI-II ~Z,N!. ~39!

This expression simply verifies the difference betwe
^HFDSM& and ^VFDSM& described above, provided that th
spherical s.p. correction is defined asM sh

s.p.(Z,N).
By introducing the proper expressions forM sh

s.p.(Z,N)
given by Eq.~25!, np5Z282, andnn5N2126, we obtain
for Eq. ~39!

^HFDSM&2^VFDSM&5Eshell
S ~Z,N!1Vsh

pair~Z,N!1M lq
S~Z,N!

2Eshell
S ~208Pb!2Esmo-FG~

208Pb!

1Esmo-FG~Z,N!2M ~208Pb!

2~Z282!Mp2~N2126!Mn

1dEI-II ~Z,N! ~40!

in which the true spherical Strutinsky shell-correction ene
Eshell

S (Z,N) appears explicitly together with the undesirab
terms that are present in Eq.~25!. It should be observed tha
these terms are introduced through^VFDSM& and not through
^HFDSM&, which therefore is physically more appealing.
spite of the undesirable terms, the expression for^HFDSM&
2^VFDSM& has some interesting properties. Since the p
dicted masses are similar to within about 1 MeV for the t
models, at least for nuclei with known masses, we may
such nuclei neglect the termdEI-II (Z,N). All the other terms
are either constants or smooth functions ofN and Z except
Eshell

S (Z,N) and Vsh
pair(Z,N) but they are all independent o

the FDSM itself. The energy resulting from these terms d
therefore not depend on the fitted FDSM constants, nor
whether the SU~2! or SU~3! version of the FDSM is used.

Since botĥ HFDSM& and ^VFDSM& are described by poly
nomial expressions, also the difference between the
terms is a polynomial expression, i.e., the left-hand side
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Eq. ~40! is a polynomial expression. This implies that only
the right-hand side of Eq.~40!, with dEI-II (Z,N)50, can be
written as a polynomial expression, can the two versions
the FDSM mass formula give the same masses. As it tu
out, this is not possible. Only over a limited range inN and
Z can it be approximated by a polynomial expression. A
consequence,dEI-II (Z,N)50 will grow rapidly outside the
local region of parameter adjustment. That this actually is
case is shown in Sec. V A.

F. Octupole effects

In their first global mass calculation in 1981@19# Möller
and Nix showed that the large deviation obtained betw
calculated and measured masses in the vicinity of222Ra
would disappear if the energy were minimized also with
spect to octupole shape degrees of freedom. However
though the source of the deviations in the222Ra region were
understood at the time, no global calculation with octup
deformations taken into account were carried out until 19
@28#. In the 1981 calculation only symmetricP2 and P4,
were considered whereas in 1992 both symmetricP6 and
mass-asymmetricP3 distortions were taken into account i
addition to theP2 andP4 deformations considered in 1981
For 222Ra it was found that the inclusion ofP6 deformations
lowered the energy by about 0.7 MeV and that the sub
quent inclusion ofP3 deformations lowered the ground-sta
energy by an additional 1 MeV.

The results of the above study suggests that if octup
shape degrees of freedomare not taken into account in a
mass calculation, then one would expect in the region aro
222Ra correlated errors in the calculated masses of up
about 1 MeV. One may of course argue that the results
tained in 1992@28# and earlier by use of the macroscopi
microscopic method are incorrect and that there are no o
pole effect on the nuclear masses. However, Leander
co-workers have in their series of papers@29–31# shown that
there is a large body of nuclear-structure features of nucle
the vicinity of 222Ra that are most convincingly and consi
tently explained only through the mechanism of a sizab
permanent octupole deformation in the ground state.

In addition, similar octupole effects on nuclear mass
were observed both in Woods-Saxon@30# calculations and in
a calculation with an extended Thomas-Fermi model wit
Skyrme interaction~ETFSI-1! @32#. Although the Woods-
Saxon calculations are also based on the macrosco
microscopic model they are based on a single-particle po
tial that has been developed quite independently from
folded-Yukawa model. The ETFSI-1 model which is qui
different from the FRDM and Woods-Saxon models, h
been independently developed and employs a different ef
tive force. The observation of an octupole effect of a mag
tude of 1 MeV on nuclear masses also in this model sho
that this effect occurs quite generally in nuclear-struct
models that have been developed over the years and te
successfully in comparisons to a large number of low-ene
nuclear properties.

In the FDSM mass calculation there is no octupole int
action. One would therefore expect that the calcula
8-13
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masses would exhibit large, correlated deviations in the
cinity of 222Ra, deviations that would only be removed if a
octupole interaction were specifically included in the calc
lations. The absence of any characteristic deviation betw
the calculated FDSM masses and measured masses in
region is a clear indication that the model is overparame
ized, so that it is able to fit any reasonable data set. Co
quently, we are again led to the conclusion that the result
the FDSM model calculations are fortuitous and without a
particular significance.

V. PARAMETER DETERMINATIONS
AND EXTRAPOLATABILITY

We illustrate by a few examples how details of mod
parameter determination procedures strongly influe
model properties. In particular we show that adjustments
data sets that are too small or limited for the type of mo
investigated will lead to an unphysical set of constants an
model that diverges when applied outside the region wh
the parameters were adjusted.

A. Extrapolation of the two versions of the FDSM

It may be quite meaningless to compare different m
formulas in regions where there are no known masses, s
it is impossible to determine which model provides the be
extrapolation. We clearly see from Fig. 5 that the FDSM a
the FRDM predict quite different masses as we go aw
from nuclei with known masses. The authors of the FDS
paper claim that their extrapolations should be superior
may therefore be of particular interest to compare the pre
tions of the two versions of the FDSM mass formula f
nuclei with unknown masses. If the predictions of the tw
versions diverge, the authors of the FDSM paper obviou
have a problem in extrapolating their models. If so, wh
version gives the better extrapolation? And they do diver
as illustrated in Figs. 6, 7, and 8. Only a few nucleons aw
from the fitted masses differences of several MeV appea

B. Inadequacy of limited adjustments

To demonstrate that it is fairly trivial to obtain an rm
deviation of about 0.2 MeV between calculated and m
sured masses when the study is restricted to a single re
between magic numbers we perform the following exerc
We adjust nine macroscopic model parameters to obtain
best fit between calculated and measured masses. How
instead of using 1654 measured masses between oxyge
the heaviest masses as we normally do, we consider only
known masses in the regionZ>82 and N>126. This is
fewer than the 332 masses considered in the FDSM w
because we do not include as data the masses given by W
stra systematics as discussed above. We use the finite-r
liquid drop mass model, a folded-Yukawa single particle p
tential and a Lipkin-Nogami pairing interaction. This mod
represents a newer version of the model@7# quoted in the
FDSM work. In Fig. 9 we show the resulting deviations b
tween calculated masses and measured masses for nucl
tween oxygen and the heaviest elements. We first obs
01430
i-

-
en
this
r-
e-
of
y

l
e

to
l
a

re

s
ce
r

d
y

It
c-

ly

e,
y

-
on
.

he
er,

and
46

k,
ap-
nge
-
l

-
be-
ve

that in the region of adjustment we obtain, with only nin
parameters readjusted to this particular region an error th
very close to the error 0.22 MeV obtained in the FDS
work. In addition we clearly observe that the model strong
diverges outside the region where its parameters were
justed. From this observation and from other studies one m
conclude that to be physically interesting and significan
mass model should be formulated so that several sphe
and deformed regions are described with a single set of c
stants.

FIG. 6. Difference between calculated masses for the even-e
Po isotopes in version I and version II of the FDSM. Both versio
have been fitted to experimental masses for the neutron num
indicated by black dots. For these neutron numbers the differe
between the two versions is very small. The vertical solid lin
indicate where the symmetry is assumed to change from SU~2! to
SU~3! in version II. The solid curve shows the difference betwe
version II masses and masses calculated with the SU~3! constants of
version I and the masses of version II. The dashed curve show
difference between masses calculated with the SU~2! constants of
version I and the masses of version II. The curves have been
tended a few neutron numbers beyond the symmetry trans
point of version II.

FIG. 7. Same as Fig. 6, but for the U isotopes.
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C. Extrapolatability of mass models

We have shown above that macroscopic-microsco
models with constants that were determined by adjustm
to too limited regions of nuclei are strongly divergent wh
applied to studies outside the region where its constants w
determined. Is there any reason to believe that models
constants that were determined from more extended reg
of nuclei are less divergent or not divergent at all? Yes, th
are several convincing studies that show that this is the c

The original Möller-Nix mass model results published
1981 @20# have been compared to 354 masses that were
known when the model results were published. For th
new nuclei the error is just 10% larger than in the origin
region. A more modern version of the model@5# exhibits
only a 2% increase in the same case, which was now si
lated by limiting the model adjustment to the old 1981 d
set.

An investigation of the extrapolatability towards th
heavy region has also been carried out. In this case the m
parameters were adjusted only to nuclei withA<208. The
error for this region plus all heavier known nuclei~that were
not included in this adjustment! was about 0.745 MeV, com

FIG. 8. Same as Fig. 6, but for the Rf isotopes. In this case o
one experimental mass was available, when the FDSM param
were fitted, but two masses extrapolated by Wapstra were also u

FIG. 9. Calculated model error for the case when macrosco
model parameters were adjusted only to the 246 available ma
for nuclei with Z>82 andN>126.
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pared to 0.669 MeV when all nuclei were included in the
@5#. Also, very significantly, it was found that the mass
obtained for nuclei in or close to the superheavy region
not depend critically on the data region used in the adju
ment procedure. As representative example we cho
272110 in the center of the deformed super-heavy region
relatively neutron-deficient nuclei and288110 which is ob-
tained as the center of the spherical superheavy island in
FRDM ~1992!. For these two nuclei we obtained mass e
cesses of 133.82 and 165.68 MeV in the calculation base
adjusting the parameters to all nuclei from oxygen to
heaviest elements. In the limited adjustment to nuclei w
A<208 we obtained mass excesses of 133.65 and 16
MeV, respectively, for these two nuclei. In the more limite
adjustment the heaviest nucleus was 80 nucleons away
the heaviest nucleus included in the adjustment.

VI. TESTING THE FRDM AND FDSM WITH NEW DATA

Some time after the parameters of the FRDM and FDS
were determined new experimental data became availab
significant distances from previously known data, as sho
in Figs. 10 and 11.

The data consist of foura decay sequences originating
269110, 271110, 272111, and277112, which were observed a
GSI @33–35#. All these decay chains terminate in previous
known a decays, which makes the identification of new n
clei unambiguous. These decay chains contain 17 diffe
alpha decays for which the mother and daughter masses
not both known in 1992 when the FRDM and FDSM we
adjusted.

The experimentalQa values are compared to the theore
ical predictions of the FDSM and FRDM models in Fig. 1
It should be observed that there are some ambiguities in
comparison. It is not proven that the experimentally obser
decays correspond to ground-state to ground-state tra
tions. In particular in odd and odd-odd nuclei it is not u
likely that the transition goes from the ground state to

ly
ers
ed.

ic
es

FIG. 10. Nuclear chart in the region where the FDSM ma
formula is applicable. Large dots represent those masses for w
measured values are given in the Audi 1989 mass evaluation@24#.
Small dots represent nuclei for which Wapstra systematics
given in that evaluation. Squares show recently discovereda-decay
chains. Regions with FDSM SU~2! and SU~3! symmetry are also
shown.
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FIG. 11. Comparison betwee
measured and calculated energ
releases ina decay of four heavy
nuclei. The experimental data ar
taken from Refs. @33,34#, and
@40#. The arrows indicate the
heaviest nucleus included in th
FDSM parameter fit. Circles show
the transitions which involve an
SU~2! mother nucleus and an SU
daughter nucleus.
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excited state due to selection rules@36,37#. It is less likely
that a transition starts from an excited state, since thea
lifetimes are long enough to allow, at least in most cases,
mother nucleus to deexcite to the ground state before e
ting ana particle.

For the above reasons it can be assumed that the ex
mentalQa values in many cases may be slightly smaller th
the ones for the ground-state–to–ground-state transit
which is the theoretically calculated quantity. In general,
experimentalQa values vary by at most a couple of hundr
keV between different event chains. We then plot only o
set of experimentalQa values, namely the highest observe
In the case where large differences were observed betw
different decay chains namely for the decay starting
277112 where the variation exceeds one MeV atZ5110 we
plot both of the observed decay chains. Although the ca
lated Qa values are obtained as ground-state–to–grou
01430
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state transitions but the experimentalQa values may corre-
spond to other transitions, the following can nevertheless
concluded: Within each experimental decay chain,Qa in-
creases without any exception with increasing mass~or pro-
ton! number. At proton number 102Qa has a value close to
8 MeV. At proton number 110, the value is close to 11 Me

For the decay chains starting atZ5110 andZ5111, the
Qa values of the FRDM show the same increasing trend
the experimental data. The slope, however, is smaller tha
the data. In the decay chain starting atZ5112, the FRDM
Qa value decreases slightly fromZ5104 to Z5106. The
experimental values vary very little betweenZ5102 andZ
5106, although they do increase. The overall agreement
tween the FRDM and experiment is very good for the ch
starting at proton number 112. The rms error between
calculated FRDMQa values and the highest experiment
Qa values is 0.49 MeV for the 17 decays in Fig. 11 f
8-16
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which not both mother and daughter masses were know
1992. Thus the FRDM extrapolates to this region witho
divergence since in the known region where the model
rameters were fitted to known masses, the rms error for 1
Qa values is 0.65 MeV@38#.

The Qa values calculated with the FDSM show a ve
different behavior compared to those of the FRDM and
experimental data. In the lower end of eacha-decay chain,
the FDSM results agree with data about as well as
FRDM. This is for nuclei which were included in the fit o
the FDSM parameters. However, immediately above the
fitted nucleus theQa values start to deviate strongly from th
experimental data. In all four chains the FDSMQa curve
bends down strongly one or twoa decays beyond the las
fitted nucleus. In theZ5112 decay chain, which extend
higher above the last fitted nucleus than the three o
chains, the FDSM chain resumes its increasing trend ab
the downbend but does not catch up with the experime
points.

In order to understand howQa can deviate so strongly
from data immediately above the last fitted nucleus, it sho
be observed that the FDSM changes from SU~3! to SU~2!
symmetry in close vicinity to the last fitted nucleus in t
four new decay chains, see Figs. 10 and 11. TheQa value
corresponding to the decay from the last SU~2! nucleus in a
chain to the first SU~3! nucleus is indicated with a circle in
Fig. 11, whereas the heaviest nucleus included in the FD
parameter fit is shown by an arrow. A comparison with F
12 shows that it indeed is the transition between the SU~2!
and SU~3! regions that causes the downbend and not the
that we are passing beyond the region of fitted masses.
ure 12 shows four extendeda chains, corresponding toN
2Z561 ~transition point265No!, N2Z557 ~transition point

FIG. 12. a-decay chains in the FDSM model forN2Z545, 49,
57, and 61. The figure illustrates the irregularities that occur whe
decay chain passes from nuclei with SU~2! symmetry to nuclei with
SU~3! symmetry. The transition point in each chain is indicat
with a shaded circle.
01430
in
t
-

50

e

e

st

er
ve
al

ld

M
.

ct
ig-

265Rf!, N2Z549 ~transition point 265Hs!, and N2Z545
~transition point269112!. In all cases the obvious irregularit
in the middle of the curves coincides with the transition b
tween the SU~2! and SU~3! regions as can be seen from Fi
10. The fact that the transition between the two symmet
appears at this location is a result of the Fermi blocking
the FDSM, which apparently can be associated with a c
downbend in theQa curves. The experimentalQa values in
Fig. 11 show no sign of a downbend, thus giving no supp
for a Fermi blocking in operation.

In Fig. 11 we have included also the results of t
FRLDM model. It differs from the FRDM in using for the
macroscopic energy the finite-range liquid-drop model
stead of the finite-range droplet model. The FRLDM had
model error of 0.779 MeV in the fitted region, in contrast
the FRDM for which the model error is 0.669 MeV@5#.
However, the FRLDM has two fewer adjustable paramet
than does the FRDM.

Although the FRLDM has a higher model error take
over all known masses than does the FRDM, it seems
agree better with data for the highZ a-decay chains, perhap
because models with fewer parameters often extrapolate
ter. However, it is not for this purpose it is included in Fi
11. It is rather for illustrating that although the top end of t
chains lies about eight or more nucleons away from the
fitted one, the two versions of the macroscopic-microsco
model both extrapolate very well, givingQa values which
differ only by a few hundred keV. This should be compar
with the two versions of the FDSM, for which the calculate
masses differ by several MeV, just a few nucleons aw
from the last fitted nucleus as illustrated in Figs. 6–8.

The heaviest experimental mass, used in the fit of
FRDM and FRLDM constants, is that of263Sg. The heaviest
nucleus in the GSI chains is277112, which thus is eight neu
trons and six protons away from the heaviest nucleus
cluded in the parameter fit. It is evident from Fig. 11 that t
FRDM and FRLDM masses, and hence theQa values, can
be extrapolated over such distances without deviating m
from each other. On the other hand, the extrapolation of
FDSM gives masses andQa values, which deviate signifi-
cantly from the other two models and from the experimen
data. It therefore becomes evident that the FDSM fails co
pletely to describe the new experimental data in the he
SU~2! region whereas the FRDM achieves similar accura
here as in the region of known nuclei where its parame
were determined.

VII. CONCLUSIONS

Counting the number of model constants and trying
relate it to the quality of a model and to how well a mod
can be extrapolated to unknown regions is not a straight
ward task. Parameters are of many different kinds, but
must be given numerical values in order to calculate a va
for an observable quantity, e.g., the mass of a nucleus. S
constants have since long well-established values and
not even be thought of as parameters. On the other end o
scale are completely ‘‘free’’ parameters, whose values
determined by a least-squares fit to some of the experime

a
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quantities a model is supposed to describe. In the FRDM
of these free parameters and the values obtained ha
straightforward physical interpretation.

Since the number of model parameters has been made
of the main issues by the proponents of the FDSM model,
have in this paper described the model at a level of detail
allows every single model parameter to be identified and
have made a consistent count of the number of paramete
the model. In our opinion it is clear that the claim in Ref.@1#
that ‘‘Thus we have reduced the number of adjustable
rameters in the FDSM-Strutinsky mass formula from 16
version I to 13 in version II’’is a gross misrepresentation
the number of adjustable parameters in the FDSM, by
criteria for labelling a parameter ‘‘adjustable.’’ Howeve
considering also what is said in the previous paragraph,
leave it open to the reader to draw further conclusions.
stead, we shall concentrate on the conclusions that ca
drawn from the experimental data which recently have
come available.

The new experimental data onQa values, and thus differ-
ences between nuclear masses, in the superheavy re
show that the mass formula derived from the FDSM can
be extrapolated to describe those masses. Several reaso
this failure could be identified.

~1! The specific formulation of the model, used for deri
ing the mass formula, is restricted to nuclei in the reg
with proton numbers betweenZ582 andZ5126 and neu-
tron numbers betweenN5126 andN5184. To fit the free
model parameters only experimental masses of nuclei in
region can be used. There were, when the parameters
fitted, only 246 experimental masses available. The dista
from the heaviest nucleus for which an experimental m
was available (Z5106, N5157) to the center of the histori
cal superheavy region atZ5114 andN5184 is 8 units in
proton number and 27 units in neutron number and to
doubly magic nucleusZ5126 and N5184 ~the heaviest
nucleus covered by the FDSM mass formula! is 20 units in
proton number and 27 units in neutron number. The extra
lation needed to reach these nuclei is therefore very lo
considering that the experimental masses used in the fit
covers 24 units in proton number and 31 units in neut
number. The FDSM mass predictions for the heaviest nu
can therefore be expected to be very uncertain.

~2! In addition to the experimental masses another
masses, estimated~extrapolated! according to Wapstra sys
tematics@24#, were used in the fit of the FDSM paramete
The reliability of these masses is hard to judge, but exp
ence shows that the error is considerably larger than the e
claimed for the FDSM masses. Including these ‘‘Waps
systematics’’ masses in the parameter fit implies that unc
trollable errors are built into the FDSM mass formula. Sin
the Wapstra systematics masses typically lie at the borde
the region of the experimentally known masses, they w
have a particularly bad influence on how the FDSM m
formula extrapolates to unknown mass regions.

~3! The FDSM parameters are divided into two sets. O
for nuclei with SU~2! symmetry, including nuclei in the vi-
cinity of the doubly magic nucleus208Pb as well as a large
number of nuclei in the superheavy region below the dou
01430
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magic nucleus atZ5126 andN5184. Experimental masse
for SU~2! nuclei were only available in the region aroun
208Pb when the FDSM masses were fitted. In the superhe
region only two Wapstra systematics masses were availa
Except for the guidance given by these two masses,
FDSM masses in the superheavy SU~2! region are the resul
of a long-range extrapolation from the SU~2! region near
208Pb. The FDSM masses in the superheavy SU~2! region
can therefore be expected to have particularly large err
which has now been confirmed by the recently availableQa
values in this region.

The second parameter set should be used for nuclei
SU~3! symmetry, located in between the two regions w
SU~2! symmetry. SU~3! nuclei with known masses lie in a
compact region. Only eight new masses with SU~3! symme-
try have become available since the parameters were fi
Because they are just next to the region of previously kno
masses it is not possible to evaluate the quality of the SU~3!
constants and the extrapolative reliability of the FDSM
comparing with this limited data set.

~4! The ^VFDSM& term in the FDSM mass formula con
tains a complete second-order expression inNp andNn with
adjustable coefficients in front of each term, which should
an appropriate expression in the symmetry limits. Howev
when inserted in the mass formula and used for fitt
nuclear masses, the second-order expression does not
contain the proper FDSM energy but must also compen
for the difference between the smooth Strutinsky energy
the Fermi-gas energy. This energy difference can only
cally be described with high accuracy using a second-or
expansion inNp and Nn . The ranges between the mag
proton numbers 82 and 126 and the magic neutron num
126 and 184 are too long to qualify as local. On the oth
hand, the region covered by experimental data, can be
sidered as local, at least when divided into one SU~2! and
one SU~3! region with a separate parameter set for each
gion. This explains why the FDSM mass formula reproduc
the experimental masses with high accuracy~although no
higher than a locally adjusted FRDM!, but also why it can-
not, not even in principle, be used for long-range extrapo
tions, which are needed to, e.g., predict masses in the his
cal superheavy region.

We have shown that the FRDM mass model agrees m
better with the new experimental data than does the FD
mass formula. The reason for this is best understood by
ing four corresponding criteria which governed the develo
ment of the FRDM:

~1! The FRDM mass model was fitted to all experimen
masses fromZ5N58 to Z5106,N5157 known at the time
of the fit. In total 1654 experimental masses were availa
Predicting masses in the superheavy region requires an
trapolation over the same number of additional protons
neutrons as in the FDSM case. However, a very long ra
of proton numbers~in total 99! and neutron numbers~in total
150! were included in the fit. Extrapolation to the superhea
region, 20 to 30 protons and neutrons above the heav
nucleus considered in the fit, can therefore be made w
some degree of confidence, which has now been confirm
by the new data.
8-18
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~2! Only experimentally measured masses were inclu
in the fit.

~3! A single set of constants were used for all nuclei.
~4! All terms in the FRDM mass model have a physica

derived and well justified functional dependence on the p
ton and neutron numbers. This prevents rapid uncontrolla
.
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divergences outside the region covered by the fit.
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