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In the last several years new experimental data have become available on alpha-decay chains starting in the
predicted deformed superheavy region n#at10. This has promoted new interest in nuclear mass formulas
and how well they extrapolate to regions far beyond where experimental masses were previously known. We
here focus on two such mass models, nhamely the fermion dynamical symmetry model and the finite-range
droplet model. We have chosen these models since they both reproduce previously known actinide masses with
good accuracy, but rapidly diverge from each other in the region of the recently observed new elements.
Furthermore, the two models have been the subject of animated discussions concerning which one gives the
most reliable predictions of nuclear masses in the superheavy region and in the terminating region of the
process. The new data support the predictions of the finite-range droplet model. We discuss the fermion
dynamical symmetry model and its applicatidtanet al, Phys. Rev. Gi5, 1127(1992] to the calculation of
trans-Pb nuclear masses. As will be shown, the model contains unphysical features and has many more free
constants than claimed. The values obtained for the constants and the model agreement with data in the region
of adjustment are therefore of no particular significance and severe divergences occur for recently discovered
nuclei outside the region of adjustment.
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[. INTRODUCTION known masses and in a 1996 papél, the proponents for
the FDSM model stated

In microscopic nuclear-structure calculations one cannot
solve the full many-body problem with the true nucleon- The picture presented here (i.e., the FDSM model) sug-
nucleon force. Instead, the problem is always considerablgests trends for the heaviest nuclei that are rather different
reduced to some type ahodel with effectiveforces. Al-  relative to those expected in traditional mass models (one of
though both the model and the force used are always drastighich is FRDM). These could be tested by further observa-
simplifications of reality, the aim in constructing these mod-tions of isotopes in the Z110-114 region, by a continued
els is that they both be solvable and retain the ability tofailure to find superheavy elements at their historically ex-
describe and predict, at a useful level of accuracy, some sgected location, and by observables associated with
of nuclear-structure properties. We here discuss two impler-process element production.
mentations of microscopic nuclear-structure models, in par-
ticular as applied to the calculation of nuclear masses. On&€oday, some years later, several new elements and isotopes
model is the FDSM(fermion dynamical-symmetry model intheZ=110-112 region have been observed. Thus some of
[1,2], the other the FRDMfinite-range droplet modg[3—-5]  the necessary experimental observations, needed to perform
version of the macroscopic-microscopic method as implethe test asked for in the 1996 FDSM paper, are now avail-
mented in a series of mass calculations. able. The test is carried out in this paper. Since the FRLDM

In the early 1990s the constants of both models were deand FDSM give very different masses in the new region, at
termined, partly from least-squares adjustments to nucledeast one of the models will have to fail this test, and we
masses. For the FDSM model, which was adjusted to Pb angresent here a detailed analysis of the reasons for this failure.
trans-Pb masses only, the rms error obtained was 0.22 MeV It could be argued that a model which fails does not de-
for this restricted region. For the FRDM, which was adjustedserve a detailed study. We are, however, of a different opin-
to all known masses with proton numh&e 8, and neutron ion. The approaches used in the development of the FRDM
numberN=8, the model error was 0.669 MeV for this entire and FDSM models are very different in the strategies used to
region of nuclei. However, the two models predicted quitereproduce known data, in the way in which the models are
different masses for unknown nuclei already a few nucleisimplified, in the way in which model constants are allowed
away from the known region. For nuclei further away, nota-to be adjusted, and finally in the approach to establish the
bly in the superheavy region and along the upper part of theredictive power of the models. It is therefore well justified
r-process path, the predictions of the two models divergdo tell the story of these models. A detailed comparison be-
even more. tween the FRDM and FDSM will illuminate all the points

In the first half of the 1990s it was often debated whichmentioned above. We are convinced that such an analysis
one of the models is the most reliable for predicting un-will provide essential insights for the future.
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Since an important feature of this paper is to discussors do not occur. This observation demonstrates that the
model constants and how to determine their values, includingesults of the FDSM model lack important physical features.
how to adjust some model constants to data by use of the To be able to elaborate on the above points we have to
method of least squares, a detailed, complete description @utline those features of the FDSM that are necessary for our
both models is required. To follow many of the argumentsdiSCUSSiOl’l. However, we shall start with a brief discussion of
presented in this paper, such a detailed knowledge of the rof@€ macroscopic-microscopic method used in the FRDM and
of each constant and the place at which it appears in th#S application to nuclear mass calculations.
equations is necessary. For the FRDM we are able to refer to
earlier work[5,7] for such a description and complete ac- !l THE MACROSCOPIC-MICROSCOPIC METHOD

count and counting of the constants; for the FDSM we need gy after the advent of the deformed single-particle

to perf.orm. a similar accounting of the model constants ang,,qdels in the mid 1950KL0], the energy of a nucleus as a
their significance here. function of deformation was often calculated as a sum of
We mentioned that nuclear-structure calculations are pefhree contributions: a sum of the energies of occupied single-
formed with modelsand effectiveforces that are severe ap- particle levels, a Coulomb energy, and a pairing en¢tdy-
proximations of reality but that retain “essential features” of 13]. The shape of the nucleus in its ground-state configura-
the real physical system. How can one know if models suchion was obtained by minimizing the energy with respect to
as the FDSM or the macroscopic-microscopic method asleformation.
implemented in the FRDM retain essential features? There Although the above method was used for calculating the
are several approaches that should be pursued in parallgluclear potential energy versus deformation in the vicinity of
The models must be used in a large number of calculations ithe ground state, it was observed at the time that it was in
a consistent manner to test the models and to give experiengginciple incorrect to relate the total energy of the nucleus to
with the models. One should use general, model-independefite sum of single-particle level energies. However, the ap-
arguments to analyze and judge the models. For example, aRéoach was used because it worked in practice.
the constants few enough and of a type that can be reliably After the initial successful applications of the above
determined from available data points? Do the models cormethod to calculations of the potential energy in the vicinity
rectly predict new data that become available? And, théf the ground state, attempts were made to apply the proce-
model features should be critically studied and challenged b ure to distortions somewnhat beyond the ground state. How-

the scientific community. It is from the interplay of such V?Art’ t?]?sre'}cir::]ee rr?oetr}gg;ﬁrl:ﬁglg:rtanigsogzgaclt)l/étions based on
activities that useful models will evolve. It is in this spirit we 'nog

o microscopic models had been made. However, global mass
qﬁer our cr!t|C|sm of the FDSM gnd the mass formulas de calculations based on liquid-drop models were carried out,
rived from it. The latter appear in two versiohs,2,6] of

: ) . . i . for example, by Ref[14]. In these calculations the mass was
which we are T“a'”'y going to discuss version Il presen_ted "bbtained as a sum of a macroscopic term plus a microscopic
Refs.[1,6], which the authors of the FDSM papers claim to correction obtained from a postulated, parameterized expres-

be the S\';I(E‘,‘)I?S?(;)I’l; (I)Iniz g]brloeut%hpsr?éi?eegf éI)I:ceellent it of 3ap SION- It was not known if single-particle models could at all
R be utilized to obtain the microscopic corrections.
nuclei with a better rms error of 0.22 MeV (vs the 0.34 MeV P

of version |) and parameters that are fewer in number .”
“Thus we have reduced the number of adjustable param-
eters in the FDSM-Strutinsky mass formula from 16 in ver- It was Strutinsky[8,9] who simultaneously resolved the
sion | to 13 in version I1.” difficulties that were associated with using sums of single-
Here we comment on the above statements and on sonparticle level energies and proposed a method for obtaining
other aspects of the FDSM model. Specifically, our discusmicroscopic shell and pairing corrections from calculated

A. The conventional Strutinsky shell-correction method

sion will address the following points: single-particle energies of both spherical and deformed nu-
(1) We show that the number of adjustable constants iglei. Strutinsky observed that the sum of single-particle level
grossly misrepresented; it is much larger than 13. energies is often very large, in heavy nuclei much more than

(2) The Strutinsky-like shell-correction method used in1000 MeV in a Nilsson modified-oscillator model, but that
the FDSM work is unphysical. It is still plagued by many of the change with deformation in this sum is often only a few
the same deficiencies as occur when the nuclear energy MeV, that is, a few parts in 1000. Since the energy of the
calculated as a sum of single-particle energies; deficienciesucleus is certainly not correctly given to such an accuracy
that Strutinsky removed withis method[8,9]. by the sum of single-particle level energies another method

(3) It is rather trivial to achieve an error of about 0.22 had to be found. Strutinsky observed that the stability of the
MeV in a fit of a multiparameter expression to a limited nucleus was clearly correlated with the magnitude of the
region such as the “actinide” region the authors considergaps in the single-particle levels, or more precisely to the
Such results are therefore of no physical significance, thelevel density, close to the Fermi surface. He therefore pro-
are simply a parametrization of the data. posed that one use a macroscopic-microscopic method to

(4) Since octupole interactions are not considered in thealculate the nuclear potential energy of deformation in
FDSM model one would expect larger errors in the FDSMwhich the microscopic correction is obtained as a sum of
masses where octupole deformations are important. Such esalculated single-particle level energies minus the energy
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from a smoothed-out level spectrum occupied with the sameompletely defined in Ref{5], where a well-defined enu-
number of particles. The crucial point in Strutinsky’s methodmeration of all the constants of the model is also made. We
is thatthe smoothed-out level spectrum is obtained from thetherefore refer to that publication for a complete discussion
calculated single-particle levels themselves of the model. However, in the FDSNL992 paper[1] fre-
Thus the smooth level density is generated from the shargjuent references are made to the FRDM in its 1988 version.
delta-function single-particle level density by folding with & To be able to comment on the discussion in Héf. we
Gaussian so that the new level density is a sum of Gaussiangnumerate in the next section the constants in the FRDM in

each of which is centered around an original level. Becausgs 1988 form. which in terms of model constants and other
the large systematic errors that are present in the sum of tr}%pects differs only slightly from the FRDK1992.
single-particle level energies will also be present in the

Gaussian level spectrum they will be subtracted out when the
microscopic correction is calculated as the difference be-

tween these two terms. It is always of interest to have a clear picture of exactly
what constants enter a model. Naturally, anyone who sets out

B. Implementations of the macroscopic-microscopic method ~ to verify a calculation by others or uses a model for new
In a macroscopic-microscopic model the nuclear energy?ppl'cat'ons needs a complete specification of the model, for
which is calculated as a function of shape, proton nuraber which a full account of the model constants and their values
and neutron numbeX, is the sum of a macroscopic term and IS @n essential part. Also, when different models are com-

a microscopic term. Thus the total nuclear potential energy@'ed it is highly valuable to fully understand exactly what

D. Constants of the FRDM model

can be written as constants enter the models. Unfortunately, discussions of
model constants are often incomplete, misleading, and/or er-
Epol(Z,N,shap@=E,¢(Z,N,shape+ E.(Z,N,shape, roneous. For example, in Table A of R¢#] the number of

1) constants of the mass model of Spanier and Johari$&pis

where the microscopic term in addition to the StrutinskyléSted. as 13.JHﬁwever, mh Tabl?] A mhthe alrtlc[eis] b:!o
shell-correction energy also contains a pairing-energy contri= panier and Johansson the authors themselves list con-
bution. stants plus five magic numbers that are not calculated within

After Strutinsky had proposed his method, several group%he mass model and must therefore be considered constants,
applied it to a large number of nuclear-structure problemsfor a total of at least 35 constants.
The calculations could differ in the choice of macroscopic We specify in Table Bl the constants that enter the 1988
liquid-drop, microscopic single-particle, and microscopicVersion of the FRDM model, rather than just those that in the
pairing models. Several choices exist for all of these modeldinal step are adjusted to experimental data by a least-squares
However, common aspects of these calculations are that procedure. We also include fundamental constants like the
large number of nuclear-structure properties are describeelectronic charge and Planck’s constant.
with relatively few constants from systems as light8® to The discussions in Ref§5,7] allow us to enumerate the
the heaviest elements. constants in the FRDM model in Table I. From this list we

The first step in a macroscopic-microscopic calculation issee that the macroscopic-microscopic method requires rela-
to select a nuclear shape of interest. Next, the macroscopifvely few constants. One feature of the model gives rise to a
energy is calculated for this shape, and the levels in a singlesmall complication when counting the number of constants.
particle potential with the same shape are determined. Themroplet-model constants occur also in the determination of
the microscopic_ shell and pairing corrections are calculate@he single-particle potential. However, the six droplet-model
by use of Strutinsky’s method and the potential energy is:onstants used in the microscopic expressions are obtained
obtained as the sum of the macroscopic term and the shelfzom four primary constantgl6], one of which is the nuclear
plus-pairing corrections. Finally, the ground-state mass is dergiys constant,. Since this constant has the same value as
termined by minimizing the potential energy with respect toye use in our macroscopic model only three remain that
deformation, that is the calculation is carried out for a grid of .o ,1d be considered as additional FRDM constants. Alterna-
deformation points and the minimum energy on this grid isgyely we could in principle employ an iterative procedure
determined. and obtain the same values for the macroscopic and micro-

Apart from the ground-state mass a large number ofcqpic droplet-model constants. In that case the total number

nuclear-structure quantities may be determined without thgf FRDM constants would be 36 and the number of con-
introduction of any additional constants. Examples of suchyants adjusted to masslike quantities 15.

guantities are the quadrupole moment and higher moments
of the ground-state shape, the fission-barrier saddle points
and secondary minima, the energy of shape-isomeric states,
and band-head energies.

IIl. FERMION DYNAMICAL SYMMETRY MODEL
MASS FORMULA

A. Model features and constants

C. The FRDM model Here we present the principal terms that enter in the
The macroscopic-microscopic FRDM992 model is the  FDSM Strutinsky atomic mass formufaur purpose with the
latest version of the “Mber-Nix mass model”[5]. It is  brief outline is only that we later be able to identify where in
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TABLE I. Constants in the FRDM1988. The third column gives the number of constants adjusted to
nuclear masses or masslike quantities such as odd-even mass differences or fission-barrier heights. The fourth
column gives the number of constants determined from other considerations. Appropriate numerical values of
the macroscopic constants are given in Réf.and of the microscopic constants in RE5].

Constants Comment Masslike Other

My, M, € Macroscopic fundamental constants 0 3

Qels Moy Mps Macroscopic constants from considerations 0 6

a, agen: K other than masslike data

L, as, r,sth Macroscopic constants obtained 6 0
in prior adjustments to masslike data

a;, a,, J,Q,ay, W Macroscopic constants determined by 9 0

C, v, Cy current least-squares adjustments

hiC, Mpyc Microscopic fundamental constants 0 2

Vs, Va, Agens Baens Ceurs Microscopic constants 0 10

Kps lps Kny Ins @pot _

a;, ay, K, L, Q Droplet-model constants that enter the single- a3 0@

particle potential
Subtotals 18 21
Total 39

aSee the discussion of the droplet-model constants in the text.

the mass model various constants enter. For a more extensiwéth B, andB; given by their values in the spherical limit as
presentation we refer to the original wolrk]. given by Eq.(13) below. The average neutron pairing gap
In the FDSM the nuclear mass is given Mgpsw(Z,N and the average proton pairing gAp are given by{17,18

with

Mepsm(Z,N) =My o tMah + VB (Vepsw), 2 A= Bs _qi_u2 (@)

N3
where MIq is the spherical liquid-drop energy and the re- N
maining three terms account for the shell-plus-pairing o4 nd
rections.
1. Spherical liquid-drop model K rBS gtsi— 112 (5)
Zl/3 '

Only the spherical liquid-drop energy is needed in the
FDSM model, since other terms are assumed to generate t
macroscopic deformation effects that in the macroscopic
microscopic finite-range liquid-drop model are described by

I:I%e average neutron- pl’OtOﬂ interaction eneﬂgyls glven
by [17,18

a deformed macroscopic energy expression. For generallty h
we give the expression for the deformed case and then spe- 5np:_2/3_ (6)
cialize to the spherical casédj; of the FDSM model is BA

identical to the macroscopic FRLDM enerf#] in its spheri-

cal limit. Thus In the above expressions the quantitigsandc, are de-

fined in terms of the electronic chargeand the nuclear-

Mi=MuZ+MN-a,(1-«?)A+ayl—«d?)BA?> radius constant, by
0 2 Z4/3 ZZ 3 3 e2
+CoA +ClA_1lsB3_C4A_1/3+f(kfrP)K_Ca(N_z) Cl—g E’
1/A, Z andN odd and equal 5/ 3 )2’3
W ||+ . =C15| 75— 7
Il 0, otherwise C=Cglon 0
+A,+A,— 8y, ZandN odd The proton form factof is given by
R Z odd andN even C1rge’f145 327 27
+A,, Z even andN odd flkirp) = rg 48 2880(kfrp) * 1209600(kfrp)
+0, Z andN even (8
—agZ?%® (3)  where the Fermi wave number is
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9rz\131 Agen, = 0.99/22  fm range of Yukawa function
f:(ﬁ) o ©) used to generate nuclear
charge distribution,
The relative neutron excesss ag = 1.433 MeV electronic-binding
x107° constant,
I N-Z 1 = 57 MeV pre-exponential pairing
N+Z° constant,
) o . S = 0.118 linear exponential pairing
The relative surface enerdys, which is the ratio of the constant,
surface area of the nucleus at the actual shape to the surface  _ g 45 quadratic exponential

area of the nucleus at the spherical shape, is given by pairing constant

o3 h = 6.82 MeV neutron-proton interaction
B= zf ds (1D constant,
Amryts r., = 080 fm proton root-mean-square
radius.

which in the spherical limit is 1. The quanti, represents

the relative generalized surface or nuclear energy in a model

that accounts for the effect of the finite range of the nuclear The second category, representing those constants whose
force andBs; is the relative Coulomb energy, including dif- values were determined from considerations other than
fuseness corrections to all orders. For spherical shapes omeiclear ground-state masses, inclufie3,20

can calculate the quantitids; and B analytically. With

U3 U3 ro = 116 fm nuclear-radius constant,
A roA — i
Xo= and y,= 0 12 a = 068 fm range.of Yukawa-plus-exponential
Aden potential,
biai a; = 2113 MeV surface-energy constant,
one obtains ks = 2.3 surface-asymmetry constant.
By=1— —+(1+xp)| 2+ i + iz e 2o The third_ category represents five constants whose values
Xy X0 Xp are determined from a least-squares adjustment to nuclear
ground-state masses by RET]. Their values are
5 15 21 3
Bs=1l-—|l-g—+——~ a, = 16.000 MeV volume-energy constant,
Yo 8 8y; 4 = -
Ky 1911 volume-asymmetry constant,
9 7 w = 35 MeV  Wigner constant,
R Vv e ol (13 ¢ = 58 MeV  A° constant,
0 Yo 2¥o c, = 0.145 MeV  charge-asymmetry constant.

The expressioB; for the relative Coulomb energy yields
the energy for a homogeneously charged, diffuse-surface 3. Spherical shell correction
nucleus to all orders in the diffuseness paramatgf. The

. s, .
constants in front oB; andB; have been chosen so tH2y The spherical shell correctio ", term two in Eq.(2),

andBj; are 1 for a sphere in the limit in which the range is given by

and diffusenesaye,go to zero, in analogy with the definition

of the quantitiesBg and B¢ in the standard liquid-drop MEP=MEP(Z)+ MEP(N)

model. .
2. Values of the constants of spherical liquid-drop energy 2233 ei N —[Epe(Z) —Epe(82)]+ Npep
The constants appearing in the expression for the FRLDM N

macroscopic model fall into three categorig®,20. The
first category, which represents constants that were taken
from previous work with no adjustment whatsoever, includes

+i:2msrnr—[EFG<N)—EFG<126)]+nnsn,

[18-20 (14)

My = 7.289034  MeV hydrogen-atom mass wheree™ and e are the proton and neutron single-particle
excess, energies and where, in this cas¢,=1 andn{=1. Further-

M, = 8071431 MeV neutron mass excess, more, Ecg(n) represents the Fermi-gas energy fonucle-

e?> = 1.4399764 MeV fm electronic charge squared,ons:
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325/3C 2000 -IIII\IIII|IIII||\II|||||-
Erg(Z)= -, [ FDSM .
SRp : Spherical shell-correction terms 4:

3N5/3Cn 1500 |- N=126 /3
Erc(N)= ———, (195 i ]
5R,2 s . ]
and ~§; 1000 [ -
& L i
1+] s 2 I ]

Rn,p=r0A1’3 — = (16 w - 4
(1-3¢)(1%96) 500 4

with i i
= 3¢ Z /l+9J1 an o ‘ | | | 1

16 Q A3 4Q A3 80 90 100 110 120 130
Proton Number 2
and

FIG. 1. Terms entering the expression for the spherical proton
shell-correction energ$’(Z). Curve 1 showE? g.s™n7 . Curve

K. (18 2 showsnye,. Curve 3 shows,(2837%- 28259 C,/R2=n,(e,
—ep). Curve 4 is the sum of the curves 1, 2, and 3. Curve 5 shows

The calculation of the spherical shell corrections uses &ralZ) ~Ere(82). The spherical proton shell correctibtEy(Z) is

set of spherical single-particle levels. Thus these levels ang " by the difference between the curves 4 and 5.

their associatetl andj quantum numbers, which are needed ibution f the first t in the sinal ticl .
to provide the parity and degeneracy of the levels constitytdPution from the first term In the single-particle energy Is
all, corresponding to the long-dashed curve. The main

constants of the model, as do the spherical magic numbers A ) . .
the beginning and end of the region. The proton magic num(_:ontnbutlon to the sum of single-particle energies comes

bers are 82 and 126, and the neutron magic numbers are 198m Npep, with e, defined in Eq(19). Fore,=0 this term
and 184. Between these magic numbers there are six sphe Ives a contribution to the energy corresponding to the dot-

cal proton and seven spherical neutron levels. Some co __ashed curve in Fig. 1. Addlng to this curve the sum of
stants of the model depend on the particular set of single§'m~:]|e.'partlde energies given by the long-dashed curve re-
ults in an energy which is consistently lower than the

particle levels used. We give below the set of constant . . by th lid Thi I it
appropriate for the Woods-Saxon single-particle level. ermi-gas energy given by the sofid curve. 1his would resu

scheme, used in RefkL,6]. in a spherical shell-correction energy which is negative for

The quantitiese, and ¢, in Eq. (14) represent approxi- f”‘” proton ”“mbefs- To avoid this, a honzero 'valueefpis
mately the differeﬁces between the Fermi-gas and the mopatroduced, resulting in an additional contribution to the total

exact single-particle level schemes represented by the en um gf smglbe-t[?]a;tr:cle de?te;glesge% szjovtvr(; b%\ tf&e dotted
giese{” ande;. The number of valence nucleons andn, IN€. >ince bo ¢ dotted an € dol-dashed curves are

. N _ . smooth functions of the proton number, the only true shell
z;eﬁ’nﬁ%gongg%genSf;agigl_ _N 126. The following correction must be contained in the long-dashed curve. The
P n: other two terms are only introduced to have the total sum of

3 3 single-particle energie@he short-dashed curve, correspond-
sp=(§835’3— 5825’3)Cp/Rp2+ ep, ing to the sum of the long-dashed, dotted and dot-dashed

curves fluctuate around the Fermi-gas ener@ihe solid

3 3 curve. However, the difference between the short-dashed
8n=(—1275/3— —1265/3)Cn/Rn2+en- (190  and solid curves, defined to represent the “spherical shell-
5 5 correction energy,” does not correspond to what is normally

» ) . called the shell-correction energy. This will be shown in Sec.
The quantitiese, and e, are determined by requiring the |\/ g pelow.

maximum cancellations in E@l4), or equivalently by mini-
mizing 332 M3P(2)]1? and 3%, MZP(N) 2.

The various terms entering in E@.4) are shown in Fig. 1 ) )
as functions of the proton number for neutron numbker The constants of the spherical shell correction are
=126. The solid curve represents the Fermi-gas energg

Erc(Z) — Erg(82) with Eg(Z) defined by Eq(15) and the

— 1 — 2
| _ 2
6—( 2a2_1/3+ Lo +Cl 23

4. Values of the constants of the spherical shell correction

38.2 MeV symmetry-energy constant,

short-dashed curve the total sum of single-particle energies = 100.0 MeV density-energy constant,
SZ e+ npep. The difference between the two curvesc; = 0.7403 MeV Coulomb-energy constant,
defines the spherical shell-correction enekgg’. The con- K = 300 MeV nuclear compressibility constant,

014308-6



WHY THE FERMION DYNAMICAL SYMMETRY MODEL . .. PHYSICAL REVIEW C 64 014308

TABLE Il. Woods-Saxon single-particle level energies and 2 I L T o A B N B A B B A SR
guantum numbers used in the FDSM. - FDSM .
6 — Spherical pairing-correction terms —
Protons Neutrons - V=126 .
Energy(MeV) | j Energy(MeV) | j 4r 7
5.099 p 1/2 3.808 d 3/2 % 2 - \ .
3.880 f 5/2 3.452 s 1/2 = r 1
3.850 p 32 2.950 g 72 = 0 P \
1.684 i 132 2.355 d 52 e NN o 2]
0.921 f 72 1.201 i 15/2 -2 L AN N’ 7]
0.000 h o 0.665 i 112 I RN S
0.000 g 92 L 2 ]
-6 L pRETUREag -
a, = 20.85 MeV surface-energy constant, —glbrr b beren bc bee
Q = 177 MeV effective surface-stiffness con- 80 90 p rolgr? Nu:nLc; ; 2120 180
stant,
C, = 72 MeV proton Fermi-energy constant, FIG. 2. Terms appearing in the spherical pairing correction en-
C, = 71 MeV neutron Fermi-energy constant, ©rdy VEi - Curve 1 shows/Z¥(BCS). _C“ré‘f 2 showy/*(deg).
e — 3212 MeV proton scaling constant The spherical proton pairing correctioffy"(Z) is given by the
p . ' difference between curve 1 and curve 2 and shown by curve 3.
e, = 3.477 MeV neutron scaling constant.

6. Values of the constants of the spherical pairing correction
The spherical Woods-Saxon proton and neutron single- The constants of the spherical pairing correction are, for
particle levels and quantum numbers used in the FDSM arge case of Woods-Saxon levels
shown in Table II.

_ » i GE’;”‘" = —0.094 MeV pairing strength constant
5. Spherical pairing correction for protons, WS levels,
The spherical pairing correctiowi®2", term three in Eq.  GP&" = —0.052 MeV pairing strength constant
(2), is given by for neutrons, WS levels,
. . . . ‘ G, = —0.047 MeV pairing strength constant
Ven =V (BCS) — Vi*(deg ]+ [ VI*(BCS) — Vi*(deg ]. for protons, deg. levels,
(20) G, = —0.023 MeV pairing strength constant

air ) . ) for neutrons, deg. levels.
In Eq. (20) VP¥(BCS) is the pairing energy obtained

from a given single-particle level scheme by solving the 7. The FDSM shell-correction term(V gpsw)

standard BCS equationso € m,v). The pairing energy In Ref.[1] it is shown that in the symmetry limits

VvPa(deg) for a degenerate level scheme may be determined

analytically: (Vepsw) = g+ DNy + CuNp2+d Not e,Ny2+ F NN,
VP deg =G, N7(Q7—N7+N/Q%) (c=m,v). (21) +BZ (V3" ot GI(ACEe o+ G (ACE e o

The symbolQ) denotes the shell degeneracy. In the presen- +G(ACE2)a T Io(ACs2)at (G5~ G7)

tation of the FDSM model it is stated that the BCS approxi- « TN (GG v

mation is used here only to calculate the corrections due to (ACSuD T (Go~ G2l (ACsu2a

the spherical single-particle splitting and that the principle +(BI—GI)(ACZ 9.+ (Bs—Gh)

part of the pairing in the FDSM is treated below as a two-

body interaction. X(ACg, o (a=SU,,SUs). (22

It should be observed that the BCS pairing energy,
VPA(BCS) does not fluctuate around the pairing energy fon Eq. (22) N, andN, are the pair numbers of valence pro-
the degenerate level schem&?(deg. Both energies are tons and neutrons respectively; the expectation values of the
negative, but for nearly all nucIéi/E’Ta"(de@ has a much operators insid€) are discussed in Refl]. The remaining
larger negative value thaﬂf,a"(BCS), resulting in positive quantities are constants whose values are given below.

values ofVE2" for the large majority of nuclei. The situation

is illustrated for the N=126 isotones in Fig. 2. The 8. Values of the constants ofVepsw)
downsloping trend o¥/5" is the result of having included a  The constants of the FDSM shell correction fall into two
term —GEivi“ in the pairing energy. categories. The constants of the first category, which repre-
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TABLE Ill. Constants of the FDSM. Constants that have not been obtained from adjustments to masslike
data, such as nuclear masses, fission barriers, or odd-even mass differences are enclosed in brackets. The
number in() in the comment column refers to the more extensive comments in the text. The third column
gives the number of constants adjusted to nuclear masses or masslike quantities such as odd-even mass
differences. The fourth column gives the number of constants determined from other considerations.

Constants Comment Masslike Other
(82),(126),(126),(184 Spherical magic numberq) 0 4°
J,L,(cy),(K),az,Q, Fermi-gas par(2) 4 4
e % €% (Cp)i(Cp)

G .GP G2 G, ? Spherical pairing constant8) 2 0
(My),(Mp),ay,as, (agen s M, spher. lig.-drop par(4) 8 7
Ky1Ks,Co v(a) ,Ca,W,

(@e) h,(ro).(rp)

G¢.G§.G3,G5, B, BS Vepsw pairing par., norm(5) 6 0
Gg.G¢ Vepsy pairing par., abnorm(6) 2 0
a,,b,.c,,d, e, f, Vepsm par., a=SU2(7) 6 0
a,,b,.c,,d, e, f, Vepsm par., a=SU3(8) 6 0
B3” Vepsm Par. (9) 1 0
(e, (&) 13 spherical levels, assdcandj (10) 0 37
Subtotals 35 5%
Total g7

&These constants are determined from a least-squares minimization and are therefore not counted as constants
of the model.

®The number given is appropriate when experimental level energies are used. When Woods-Saxon levels are
used the 39 level energies and spins are determined from an underlying model whose number of constants is
smaller, perhaps about 15, as in the FRDM microscopic model. Because the lowest single-particle level is
renormalized to 0.0 for both neutrons and protons in the FDSM we reduce the number of level energies and
spins from 39 to 37 in the table.

sents the nonpairing part, were determined directly from aairing part of(Vgpsy) and were determined from adjust-
least-squares adjustment to nuclear masses.a=o8U(2)  ments to odd-even mass differences:
the constant values are:

GJ = —0.142 MeV,
a, = —13.7500 MeV, GJ = —0.064 MeV,
b, = —4.5720 MeV, Br ~ 0 MeV,
C, = 0.4293 MeV, Gy = —0.082 MeV,
do = —4.8890 MeV, GJ = —0.044 MeV,
€. = 0.3306 MeV, By ~ 0 MeV,
f, = —0.2915 MeV, GT — —0.200 MeV,
B;" = —0.0912 MeV, g = ~0.150 MeV.
and fora=SU(3) B. Constants of the FDSM
a, = —5.5700 MeV, The constants that enter in the FDSM are listed in Table
b, - —5.7900 Mev, ll. By constants we mean numbers used in the mass for-
c, _ 0.3713 MeV, mula, that canr_lot béor have not beenderived from the
d _ — 6.8060 MeV FDSM model |t§elf. Instead, .they are taken from oth_er
“ ' sources or obtained from adjustments to data, including
Ca - 0.3587 MeV, nuclear masses. In addition to the very brief comments in the
fa = —0.1095 MeV,  table one should observe the following:
BZ" = —0.0912 MeV. (1) The magic numbers used in the FDSM have been

obtained from a single-particle model.
(2) Most of the Fermi-gas constants are droplet model
The second category consists of constants that enter into tleenstants. Most of the constants of the droplet mfa&]22

014308-8



WHY THE FERMION DYNAMICAL SYMMETRY MODEL . .. PHYSICAL REVIEW C 64 014308

are determined from least-squares adjustment to masses andSince there were only 246 measured masses available for

fission barriers. Z=82, in the latest compilation at about the time the FDSM
(3) The spherical pairing constants are deduced from oddeonstants were fitted, namely in the 1989 Audi interim table
even mass differences. [24], it is clear that the authors have made the mistake of

(4) The spherical liquid-drop constants have been takemncluding masses given by “Wapstra systematics.” These
from the work of Mdler and Nix[7,23]. These authors ob- are masses that have not been measured. Instead, they have
tained the constants from adjustments to masses, fission bdreen calculated by Wapstfa5] by means of extrapolation
riers, and other considerations. from known masses. Thus the authors have, partially, ad-

(5) These constants enter the pairing part of the FDSMusted their model to another model. We have investigated
shell-correction ternVepgy and have been determined from the error associated with the “Wapstra systematics” model.
considerations of odd-even mass differences. The constantsom a 1977 mass tabl@6,27] we have selected the masses
are valid if the odd nucleon is in a normal parity level. given by the Wapstra systematics for which real measure-

(6) These constants enter the pairing part of the FDSMMents were given in the 1989 Audi interim talpet]. There
shell-correction termVgpsy and have been determined from were in all 253 such masses in all regions of nuclei. These
considerations of odd-even mass differences. The constan®®3 new measurements were usually close to previously
are valid if the odd nucleon is in an abnormal parity level. known masses. The rms error between the systematics

(7) Constants of the FDSM shell-correction telgpsy  Masses and these new masses was 0.45 MeV.
for «=SU(2). The constants have been determined from
adjustments to experimental nuclear masses. B. FDSM “Strutinsky-like shell correction”

(8) Constants of the FDSM shell-correction teWDSM The method used in the FDSM for calculating the
for «a=SU(3). The constants have been determined from‘Strutinsky-Iike shell correction” is definitely not

adjustments to experimental nuclear Masses. Strutinsky-like. In fact, it is contrary to all the ideas intro-
(9) Constant of the FDSM shell-correction teMipsw.  quced by Strutinsky and is actually more similar to the pre-
The constant has been determined from adjustments t0 &Xitinsky method of just summing single-particle level en-

perimental nuclear masses. _ , _ergies. The method is therefore fraught with all the problems
(10) Spherical single-particle level energies with associ-yqsqociated with that. now abandoned. method.
ated spins and angular momentum values have to be avail- |, order to mai<e a physical i’nterpretation of the

able as input to the FDSM mass calculation. This Corre'Strutinsky-Iike shell correctioM P used in the FDSM we

sponds to X 13= 39 constants. : : ; .
The above list of the constants should be compared to threewrlte Eq.(14) in the following way:

claim of the authors of the FDSM papéfThus we have
reduced the number of adjustable parameters in the FDSM- MgP=
Strutinsky mass formula from 16 in version | to 13 in version
1.
+{Esmd Z) —Era(Z)} —{Esmd 82) — Erg(82
This statement is only correct in the sense thahifinal {Esmd Z) ~Ere(Z)} ~{Esnd 82) ~Erc(82)}
step of parameter adjustmeanly 13 constantgcorrespond- [ 82 ]

Z 82
,283 <sr’+ep>nr+21 (e7+epnT— Esm&Z)]

ing to (7), (8), and(9) in Table Ill] were varied. However, at > (e +ep)N—Egnd 82
that point the authors had already adjusted the value of the =1

constants on |ine€3), (5), and(G) in Table 11l and still other +Corresponding terms for neutrons. (23)
constants are fitted to masslike data, although the authors of

the FDSM paper did not themselves specifically adjust those

values for their mass calculations but took them from otheMe have here introduced the true smooth Strutinsky energy
sources. Finally, it should be mentioned that the number oEsmo, Which has to be calculated from the full set of single-
mass-related constantas well as the total number of con- particle energies through the Strutinsky smearing procedure.
stant$ is considerably smaller in version | of the FDSM In the FDSM mass formula, these energies are only defined
mass formula. In version | of the FDSM there are in total 19for 82<Z<126 (and for neutrons for 126N<184), but
constants of which seven are @YJconstants, nine are $8)  this has no consequence for the above formula, since each
constants and three are common constants for the two syrterm which depends on the single-particle energies outside
metries, namely the mass 6¥%Pb, the proton mass and the these intervals and are added in the formula is also subtracted
neutron mass. The seven @YJand nine SIB) constants are out. Therefore the expression ot given in Eqs(14) and

all fitted in the FDSM version 1. (23) are identical. In Eq(23), the various terms have been
ordered into groups enclosed by brackets. The first group of
IV. AN EVALUATION OF THE FDSM MASS FORMULA terms is identical to the true Strutinsky shell-correction en-

ergy Eqhei(Z2), provided thateg,,Z) is calculated from the
renormalized single-particle energie§+¢,. The value of
The FDSM discussed here has been applied only to the, does then not effecEg,e(Z), since it will cancel out
calculation of actinide masses. The authors of Refstate  exactly. The second group of terms gives the difference be-
“These 13 parameters are determined by adjustment to 338veen the smooth Strutinsky energy and the Fermi-gas en-
known actinide-region masses.” ergy for proton numbeZ. From now on we will use the

A. “Experimental” data set used in adjustment
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30 T the other hand it is very disturbing to see that also
Proton shell-correction energies Esmo-rdZ,N) is contained inMgP, since this term is the
N=126 difference between two macroscopic energies, namely the

sociated with the pre-Strutinsky era sums of single-particle

energies. This cannot be cured by the subtraction of the drop-

80 90 100 110 120 130 letlike, and therefore in principle physically correct, Fermi-
Proton Number Z gas energy. On the contrary, by doing so, it is guaranteed

FIG. 3. The true Strutinsky shell-correction energy for protons,that parts of the smooth Strutinsky energy that have an in-
EZ..(Z), calculated from the Woods-Saxon single-particle level en-correct mass number dependence remaikl if. However,
ergies is shown by curve 1. A constant term, shown by curve 4, hathe FDSM mass formula offers other terms to compensate
been added t&Z .(Z) in order to normalize the energy to zero for for this mistake, as we will see later. Finally, to renormalize
Z=82. The proton part of the spherical shell-correction energy ofthe shell energy to zero foi’®Pb seems very strange, since
the FDSM,MZP(Z), is shown by curve 2. Curve 3 shows the dif- this is one of the most strongly bound nuclei and therefore
ference between curve 2 and curve 1. It represents a smooth energiaditionally associated with a large negative shell energy,
of macroscopic originEgn..rdZ) — Edno.rd82), contained in the j.e., it has a much lower energy than predicted by the liquid-
FDSM spherical shell-correction energy, cf. E84). drop formula. However, also in this case, the FDSM mass

formula offers means for compensation as we will discuss in
notationEgy,..rd Z) for this term. The third group of terms is Sec. IV C.
defined in the same way as the second group but for proton
numberZ=282 and can therefore be written Bg,,,.rd82).
Finally, the fourth group of terms is identical to the true
Strutinsky shell-correction energy for proton number 82, i.e., It is now possible to make a direct comparison between

20 C ] smooth Strutinsky energy and the Fermi-gas energy, and
- . therefore macroscopic in character. It will therefore vary
< 10 . smoothly withN andZ and not have the oscillating behavior
2 L ] that we associate with a shell energy. Furthermore, the term
5 F ] will become very large at some distance froffPb, the
3 or i nucleus for which it is renormalized to zero by the subtrac-
uw C ] tion of Eqmo.cd 2°%b). Even more serious is that it contains
_10F ] the smooth Strutinsky energy, which is nothing but the
C ] smoothed out version of the unphysical sum of single-
C ] particle energies. Therefoid 3> has all the deficiencies as-
—-20 -

C. FDSM masses for spherical nuclei

Ehel(82). We can now rewrite Eq14) as the macroscopic-microscopic model and the FDSM for
spherical nuclei. In the FDSM the nuclear mass is given by
M3 =Edef(Z) + Eqnord Z) — Ednord 82) Eq. (2). By using the expression fov 5P given in Eq.(25),

m v Y Eq. (2) can be rewritten as
- Eshel( 82) + Eshel‘ N) + Esmo—FCg N)

M eos(Z,N) = Mg+ Egnei( Z,N) + VEE'(Z,N)
+ Esmo-FC—(Za N) - Eshel(zogpb)

—Efmord 126 —Ef o 126), (24

where we have written out explicitly also the neutron terms.

By adding the proton and neutron terms we finally get ~ Esmord 2%Pb) +(Vepsw)- (26)
o =Eshei(Z,N) + Esmord Z,N) The corresponding expression in the macroscopic-
microscopic model is
- Esmo—FC( 208Pb) - Eshel(208pb)- (25) P

We can now make a precise interpretation of the “spherical Mmm(Z,N)= ME(Z,N)'FEshe|(Z,N)+VR1ari[:(Z,N).
Strutinsky-like shell-correction energy.” It is identical to the (27
normal Strutinsky shell energy to which has been added the

energy difference between the smooth Strutinsky energy anfrgyided that the same macroscopic energy and the same
the Fern;g)—gas energy, the whole expression normalized tQjngje-particle energies are used in both modlg, and
zero fo_r %Db. In Fig. 3 the sph_erlcal_Strutmsky-hke shell- E.o(Z,N) are identical in Eqs(26) and (27).
correction energy has been split up into these two compo- By introducing
nents. It can then be seen that the normal Strutinsky shell-
correction energy and the component corresponding to the
energy difference between the smooth Strutinsky energy and OEir(Z,N)=Mepsm(Z,N) =M y(Z,N) (28
the Fermi-gas energy are of the same magnitude.
It is very satisfactory to observe thst3> indeed contains  we get by subtracting E427) from Eq.(26) and rearranging
the true Strutinsky shell-correction ener@sne(Z,N). On  the terms
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V :E 208Pb +E . 208Pb_E | Z,N 8 TT T T [T T VT [T T T T [T T T T[T T TT
< FDSM> shel(l ) sm(:,v FC-( ) smo FC-( ) | FDSM and FRDM )
+ Vﬁﬂlar;l]’(z’ N)— Vgﬁ"(z' N)+ 5Ediff(z’ N). (29) 6 — Pairing-correction terms -

F N=126 4

Provided thatdEyx(Z,N) is small enough to be ne-
glected, as it in fact is for most nuclei included in the fit, it is
straightforward to interpret the meaning @fgpsp)- It con-
sists of two terms related to the nuclet®Pb, namely the
true Strutinsky shell energy and the difference between the
smooth Strutinsky energy and the Fermi-gas energy. From
this is subtracted two terms related to the nucleus under con- _4
sideration: the difference between the smooth Strutinsky en- L T8 i
ergy and the Fermi-gas energy and the difference between -6 _
the spherical pairing correction term of the FDSM mass for- - .
mula and the pairing correction of the macroscopic- - I R
microscopic model, taken at the actual deformation. This in- 80 90 100 110 120 130
terpretation is correct to the order of 1 MeV, which is the Proton Number 2
size of 6Ei(Z,N). FIG. 4. Curve 1 shows the FDSM spherical proton pairing cor-

The implication of Eq(26) is very interesting. Since the rection energyVP3(Z). Curve 2 shows the proton pairing correc-
nuclear mass is already given to a very good approximatiofion energy of the microscopic-macroscopic mod&E(z). It has
by the three first termk/lf:pL Eshe(Z,N) +VE(Z,N) of Eq.  in this case been calculated from the same Woods-Saxon level en-
(26), the sum of the remaining terms must add up to only gergies as used in the FDSM, but with the standard pairing strength
couple of MeV. However, for nuclei at some distance from[39], which is somewhat larger than the one used in the FDSM. No
20%p, the  expression EgmordZ,N)—Ege(2°®Pb)  term —GZv} is included inVP3(Z). A smooth energy of-1.2
— Eqmord 2°8Pb) constituting terms four to six of E26) is MeV has been subtracted. Curve 3 shows the difference between
much larger than that. Correct masses can only be obtained§#rve 2 and curve 1.
the termsEgmo.rd Z,N) — Eghei(2°%b)— Eqmo.rd 2°%®Pb) are
nearly exactly canceled out By/psy) in Eq.(26). That this ~ constants which are used for fitting the “experimental”
near cancellation occurs is more clearly seen in the expregnasses.
sion for (Vepsw given in Eq.(29). In addition to the three In Fig. 5(Vepsw is plotted for theN =126 isotonegthe
terms already mentioned(Vepsy) contains three more solid curve. According to the predictions of Eq(29)
terms. The first two ar&/P2(Z,N)—VPa(Z,N), implying it §hould very clozséely follow thze0 long-dashed curve,
thatVP(Z,N) in Eq. (26) de facto is replaced by the pairing Which shows Egpel( Pb)+ Esmo.rd 8F_)b)__ Esmo-rdZ;N)
energy of the macroscopic-microscopic model. This replace® Vinm(Z:N) =V '(Z,N). However, this is only true for
ment is essential, sincé®¥’(z,N) —VE3(Z,N) may amount ~ Proton numbers up to 91, which is the range in which the
to several MeV, as illustrated in Fig. 4. The main contribu-FDSM constants have been fitted to masses folNhel26
tion to the discrepancy comes frdmiair(deg’, cf. Fig. 2. The |sot9nes. For larger proton numbers, fqr which no masses are
only remaining term in Eq(29) is 6Eqq(Z,N), which is avallable,_the two curves start to deviate. Asapproaches
typically of the order 1 MeV for nuclei with known masses. 126 thezodlscrepanmes become very large.

It is the only FDSM-related term in which an improvement For **%b Eq.(29) reduces to
over the macroscopic-microscopic model can be incorpo-

Energy (MeV)

rated in the FDSM mass formula. (Vepsw) 2065 Esneil 2°%Pb) + Vi 2°%Ph) — VER'(2%%Pb)
In the FDSM paper(Vepsyw is characterized as the 20
FDSM shell correction. Furthermore, it is stated that it can + OB gir(2°%Pby). (30)

be obtained by computing the expectation value of the

FDSM effective interaction. In reality this is not done, since For this nucleus the pairing terms are small and to the extent
this term is determined by parameter adjustment to data. Eghat the difference between the two models can be neglected,

(29), however, leads to a totally different interpretation of (\v/_ ¢\ 20ey is simply the Strutinsky shell-correction energy.
(Vepsw- The bulk part of this term serves the single purpose

of cancelling out the inappropriate terms in the mass formula
of Eq. (26). Its value depends crucially on the microscopic
model, mainly througtEg,,,, and on the Fermi-gas model. For deformed nuclei, the total mass can be written as the
Any change in the choice of these models or their constantass of the nucleus at spherical shape plus a correction due
values will therefore alter the value @Vgpgy). Conse- to deformation. This correction must lower the mass, since
quently, (Vepsw is not reflecting properties of the FDSM otherwise the nucleus would be spherical. In the
model and its value cannot be independently calculated frormacroscopic-microscopic model the separation into a
the FDSM effective interaction. In the FDSM mass formuladeformation-independent part and a deformation-dependent
it serves the mere purpose of providing a set of adjustablpart can be written

D. FDSM masses for deformed nuclei
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S0 prevrrr e (29), we obtain(Vepsy) in the deformed case by subtracting
- FDSM ] Eqg. (32 from Eq. (26) and rearranging the terms, with the
40 L Mass model terms e result
30 I_ N=126 _:
g ] (Vepsw) = Egef *Pb) + Egmo.rd *Pb) — Egmord Z,N)
S 20F - . _ _
é g ' +VPA(0,Z,N) = VE(Z,N) + Eged B,Z,N)
10 | .
5 - ] + 0Eqi(Z,N) (33
G O0r 1
E 1 implying that the full deformation-dependent part of the
-10F . nuclear mass is contained (N -psy), Which is also what the
. p authors of Ref[1] claim is the case. Note that E(J) is
-20 ¢ . E identical to Eg. (29), except E)r the inclusion of the
-30 _I TR :I T T AT T AN T AR | |: deformatlon-dependent terEHef(BlZJN)'
80 90 100 110 120 130 In most macroscopic-microscopic calculations, the energy

Proton Number Z is not divided as in Eq32), but is instead split into a spheri-
FIG. 5. The FDSM shell correctiofVgpsy is shown by curve c?al “qUId_ErOp energ_y and a .so-called mlcr9§cop|c correcs

1. Curve 2 shows the energiEq ol ’Pb)+Eqnerd 22%Pb) tion, Egorr(/s’,Z,N), which contains all shell, pairing, and de-
— Eqnord Z,N)+VPI(Z N)—VP¥(Z N), where VP¥(Z N) has formation effects. Thus
been calculated in the same way as in Fig. 4. When the FDSM gives _ _
the same mass as the microscopic-macroscopic model, the two Mmm(/i’,Z,N)=ME(Z,N)+ECOH(,8,Z,N) (34
curves coincide. This is well fulfilled for proton numbers below 92
(i.e., to the left of the vertical solid linewhere the FDSM constants and therefore
have been fitted to known masses. The inclusion of the pairing
terms,.\/%a'n{(Z,N)—VQﬁ”(Z,N), is essential. Putting these terms to E (8,7 N)=E o ( 8,Z,N) —ES.o( Z,N) — VP30 Z N).
zero gives the result shown by curve 3. In the FDSM(3Wym- (35)
metry is used to the right and $2) symmetry to the left of the

vertical dotted line. By inserting this expression fds.(8,Z,N) in Eq. (33) we

can expresgVepsy in terms of the more commonly used
M e B, Z,N) = M|q(E,Z,N)+Eshe|(E.Z,N)+VPnarir§(EZ,N) microscopic correction energy, which is the energy usually
- plotted as potential-energy surfaces. We then get
=M(Z.N)+[Mg(B.Z.N) = Mg(Z,N)] . .
S _ (Vepsw) = Eghel( °%PD) — ESe Z,N) + Egmo.rd 2%%Pb)
+ Eghe(Z;N) +[Egpei( 8,Z,N) . _
- Esmo-FC-(Za N) - Vgﬁlr(zv N) + Ecorr(ﬂaza N)

+ 8Egi(Z,N). (36)

—ESe(Z,N)]+VE&(0,Z,N)

+[VEm(B.Z,N) = VITi(0.Z,N)]. (3D
This expression differs from the one in E§3) in that the

_ . ) spherical shell correctioE;Q’he|(Z,N) now appears explicitly
HerepB den_otes a general nons_pherlcal deformatlo'n', whereggstead of the spherical pairing ener‘gﬁﬂ(O,Z,N). The five
a superscript S denotes spherical shape. The pairing energys; terms in Eq(36) can be calculated independently of the
calculated at spherical shape is denoW}}(0Z,N). The  Fpgm since they depend only on the spherical single-
spherical terms are identical to those in ER7), although  paricle energies and on the Fermi-gas model. The difference
the notation differs slightly. The sum of the terms in squareyatween the sum of (Vepsy)  and these terms  is

brackets gives the deformation enerBye(,Z,N). Equa- Ecord 8,Z,N) + 8E4it(Z,N). In the region where the FDSM

tion (31) can then be simplified to parameters were adjusted to nuclear mast&g(Z,N) is
small. Thus what is in the FRDM the microscopic correction
Mmm(E,Z,N)=ME(Z,N)JFEshemZ,N)ﬂLVﬁqaniqr(OZ,N) to the spherical liquid-drop energ¥..{8,Z,N), is in the
B FDSM given solely by the polynomial parameter fit of
+Egef( 8,Z,N) (Vepsw) - Such a description can hardly be considered a solid

o microscopic foundation of a model.
=Man(ZN) +Eged B,Z,N), (32

E. A comparison between the FDSM versions | and Il

whereM?, (Z,N) is the mass calculated for spherical shape. Finally we shall make a brief comparison of version | and
The FDSM mass formula has the same form for sphericabersion Il of the FDSM mass formula. In versior{2] the
and deformed nuclei. Consequently, in analogy with Egnuclear mass was given by
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M, =M (?°%Pb) + NpM p+NpMp+ (Hepsw)- (37 Eq. (40) is a polynomial expression. This implies that only if

the right-hand side of Eq40), with 5E;;(Z,N)=0, can be

In this equation(Hgpsy) is the expectation value of the written as a polynomial expression, can the two versions of

FDSM Hamiltonian. Its value is given relative to the mass ofthe FDSM mass formula give the same masses. As it turns

208pp and it does not include the mass excess of the addbut, this is not possible. Only over a limited rangeNrand

tional n,=Z—82 protons andh,=N—126 neutrons, which Z can it be approximated by a polynomial expression. As a

are therefore added explicitly together with the mas&’#b  consequencegE,;(Z,N)=0 will grow rapidly outside the

in Eq. (37). The expectation value of the FDSM Hamil- local region of parameter adjustment. That this actually is the

tonian,{Hgpsyy, Must not be confused with the FDSM shell case is shown in Sec. V A.

correction (Vgpsw. According to the FDSM papef1],

(Hepsw incorporates the spherical liquid-drop energy and

the spherical s.pland presumably also pairingorrections, F. Octupole effects
which are not contained i{Vepsw)- In their first global mass calculation in 19819] Moller

We now introduce the difference between the masses premd Nix showed that the large deviation obtained between
dicted by versions | and Il as calculated and measured masses in the vicinity?8Ra

would disappear if the energy were minimized also with re-
OB =M=My (38) spect to octupole shape degrees of freedom. However, al-
and subtract Eq(37) from Eq. (2). This gives after rear- though the source o_f the deviations in tF?éRa reg_ion were
rangement of the terms understopd at the time, no global calculat!on with oqtupole
deformations taken into account were carried out until 1992
(Hepsm — (Vepsw = Mg (Z,N) + MZP(Z,N) + VE(Z,N) [28]. In the 1981 calculation only symmetrie; and Py,
were considered whereas in 1992 both symme®icand
—M(*®Ph —nM,—n M, mass-asymmetri®; distortions were taken into account in
addition to theP, and P, deformations considered in 1981.
OB(Z,N). (39 Eor 222R4 it was found that the inclusion &%, deformations
This expression simply verifies the difference betweerlowered the energy by about 0.7 MeV and that the subse-
(Hepswy and (Vepsw) described above, provided that the quent inclusion ofP; deformations lowered the ground-state

spherical s.p. correction is defined MS;"(Z,N). energy by an additional 1 MeV. _

By introducing the proper expressions fofS*(Z,N) The results of the above study suggests that if octupole
given by Eq.(25), n,=Z—82, andn,=N—126, we obtain shape degrees of freedoane nottaken into account in a
for Eq. (39) nP ’ " ’ mass calculation, then one would expect in the region around

222Ra correlated errors in the calculated masses of up to
(Hepsw) — (Vepsw) = Eghel(z,N)+vgﬁ'f(z,N)+ ME(ZvN) apout 1 MeV. One may of course argue that the results_ ob-
s tained in 1992[28] and earlier by use of the macroscopic-
— Eghei( *°°Pb) — Egmo-rd 2°%Pb) microscopic method are incorrect and that there are no octu-
np .20 pole effect on the nuclear masses. However, Leander and
Egmord Z,N) ~M(**Pb) co-workers have in their series of papg29-31 shown that

—(Z-82M,— (N-126)M,, there is a large body of nuclear-structure features of nuclei in
P the vicinity of 2’Ra that are most convincingly and consis-
+ 0E1(Z,N) (400 tently explained only through the mechanism of a sizable,

) ] ) ) ) permanent octupole deformation in the ground state.
in which the true spherical Strutinsky shell-correction energy |n addition, similar octupole effects on nuclear masses
ESe(Z,N) appears explicitly together with the undesirable were observed both in Woods-Sax@®] calculations and in
terms that are present in E@5). It should be observed that g calculation with an extended Thomas-Fermi model with a
these terms are introduced throu@fepsy) and not through  skyrme interaction(ETFSI-1) [32]. Although the Woods-
(Hepswm), Which therefore is physically more appealing. In Saxon calculations are also based on the macroscopic-
spite of the undesirable terms, the expression(fégps)  microscopic model they are based on a single-particle poten-
—(Vepsw) has some interesting properties. Since the pretial that has been developed quite independently from the
dicted masses are similar to within about 1 MeV for the twofolded-Yukawa model. The ETFSI-1 model which is quite
models, at least for nuclei with known masses, we may fogifferent from the FRDM and Woods-Saxon models, has
such nuclei neglect the terdE, (Z,N). All the other terms  been independently developed and employs a different effec-
are either constants or smooth functionsNofind Z except  tive force. The observation of an octupole effect of a magni-
EShei(Z,N) and VB2(Z,N) but they are all independent of tude of 1 MeV on nuclear masses also in this model shows
the FDSM itself. The energy resulting from these terms doeshat this effect occurs quite generally in nuclear-structure
therefore not depend on the fitted FDSM constants, nor omodels that have been developed over the years and tested
whether the S(2) or SU3) version of the FDSM is used.  successfully in comparisons to a large number of low-energy
Since both{Hrpsy) and(Vepsyy are described by poly- nuclear properties.
nomial expressions, also the difference between the two In the FDSM mass calculation there is no octupole inter-
terms is a polynomial expression, i.e., the left-hand side ofction. One would therefore expect that the calculated
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masses would exhibit large, correlated deviations in the vi- 1
cinity of 2??Ra, deviations that would only be removed if an

octupole interaction were specifically included in the calcu-

lations. The absence of any characteristic deviation between

0

8 Z=84

6
the calculated FDSM masses and measured masses in this 4

2

0

* Experimental masses used
in fit for these isotopes

region is a clear indication that the model is overparameter-
ized, so that it is able to fit any reasonable data set. Conse-
guently, we are again led to the conclusion that the results of
the FDSM model calculations are fortuitous and without any

Energy (MeV)

. . i -2 -

particular significance. L _

_4 | _

V. PARAMETER DETERMINATIONS 6L i

AND EXTRAPOLATABILITY 8 - sue

We illustrate by a few examples how details of model ol
parameter determination procedures strongly influence 130 140 150 160

model properties. In particular we show that adjustments to Neutron Number N

data sets that are too small or limited for the type of model )
investigated will lead to an unphysical set of constants and a FIG. 6. Difference between calculated masses for the even-even

model that diverges when applied outside the region WherEO isotopes in version | and version Il of the FDSM. Both versions
the parameters were adjusted ave been fitted to experimental masses for the neutron numbers

indicated by black dots. For these neutron numbers the difference
between the two versions is very small. The vertical solid lines
A. Extrapolation of the two versions of the FDSM indicate where the symmetry is assumed to change frorf2)Sto
SU(3) in version Il. The solid curve shows the difference between

It may_be q!“te meaningless to compare different m"?‘S%ersion I masses and masses calculated with th@S&tdnstants of
.fo.rm.ulas ln'reglons Wher,e therg are no known Masses, SIiNGfarsion | and the masses of version II. The dashed curve shows the
itis impossible to determine which model provides the bettefierence between masses calculated with thé2sdonstants of
extrapolation. We clearly see from Fig. 5 that the FDSM and,ersjon | and the masses of version II. The curves have been ex-
the FRDM predict quite different masses as we go awayended a few neutron numbers beyond the symmetry transition
from nuclei with known masses. The authors of the FDSMpoint of version II.
paper claim that their extrapolations should be superior. It _ _ _ _ _
may therefore be of particular interest to compare the predicthat in the region of adjustment we obtain, with only nine
tions of the two versions of the FDSM mass formula for Parameters readjusted to this particular region an error that is
nuclei with unknown masses. If the predictions of the twoVery close to the error 0.22 MeV obtained in the FDSM

versions diverge, the authors of the FDSM paper obviousl)yvork' In addition we clearly observe that the model strongly

have a problem in extrapolating their models. If so, Whichfj'verges outside the region where its parameters were ad-

version gives the better extrapolation? And they do divergeJUSted' From this observation and from other studies one may

as illustrated in Figs. 6, 7, and 8. Only a few nucleons awa)(r‘onclude C’:h?t :‘0 blg Ehyfsmall;g [[ntgrest;r;]g tand S|g|n|f|c§nt_ al
from the fitted masses differences of several MeV appear. mass model should be formulated so that several spherica
and deformed regions are described with a single set of con-

stants.
B. Inadequacy of limited adjustments

To demonstrate that it is fairly trivial to obtain an rms
deviation of about 0.2 MeV between calculated and mea-
sured masses when the study is restricted to a single region
between magic numbers we perform the following exercise.
We adjust nine macroscopic model parameters to obtain the
best fit between calculated and measured masses. However,
instead of using 1654 measured masses between oxygen and
the heaviest masses as we normally do, we consider only 246
known masses in the regiofi=82 and N=126. This is
fewer than the 332 masses considered in the FDSM work,
because we do not include as data the masses given by Wap-
stra systematics as discussed above. We use the finite-range -6
liquid drop mass model, a folded-Yukawa single particle po-
tential and a Lipkin-Nogami pairing interaction. This model
represents a newer version of the mof#|l quoted in the -10
FDSM work. In Fig. 9 we show the resulting deviations be-
tween calculated masses and measured masses for nuclei be-
tween oxygen and the heaviest elements. We first observe FIG. 7. Same as Fig. 6, but for the U isotopes.

Z=92 * Experimental masses used

in fit for these isotopes

o N~ O O O

Energy (MeV)

130 140 150 160
Neutron Number N

014308-14



WHY THE FERMION DYNAMICAL SYMMETRY MODEL . .. PHYSICAL REVIEW C 64 014308

10 LN B s s B B B ey B 130 LN L L L B
8 | Z=104 o wapstra syst. masses used C ]
- in fit for these isotopes E 120 - N
6 ® Experimental masses used N F 4
- in fit for these isotopes e — C ]
41 . Snor .
I sU@) T E y
- AN 1 Z100 | .
> 0 = NS s ]
S L N . 2 .k ]
2 S L s N _ 0 g0 N —_
w - ' 1 r suz ]
_4 __ __ 80 Lo 0 e i le i by by by by g ol
-6 _ 120 130 140 150 160 170 180 190
- E Neutron Number N
-8 —
r | | | 7 FIG. 10. Nuclear chart in the region where the FDSM mass
_10 1 1 1 1 1 1 1 1 1 1 1 1 1 1

130 140 150 160 formula is applicable. Large dots represent those masses for which

measured values are given in the Audi 1989 mass evalug2iin

Small dots represent nuclei for which Wapstra systematics was
FIG. 8. Same as Fig. 6, but for the Rf isotopes. In this case onlyiven in that evaluation. Squares show recently discovereécay

one experimental mass was available, when the FDSM parameteehains. Regions with FDSM SB) and SU3) symmetry are also

were fitted, but two masses extrapolated by Wapstra were also useshown.

Neutron number

C. Extrapolatability of mass models pared to 0.669 MeV when all nuclei were included in the fit

We have shown above that macroscopic-microscopié2): AlSO, very significantly, it was found that the masses
models with constants that were determined by adjustmen{@Pt@ined for nuclei in or close to the superheavy region did
to too limited regions of nuclei are strongly divergent whennOt depend critically on the data region used in the adjust-
applied to studies outside the region where its constants wefgent procedure. As representative example we choose
determined. Is there any reason to believe that models with .+10 in the center of the deformed super-heavy region of
constants that were determined from more extended regioff§/atively neutron-deficient nuclei an@©110 which is ob-
of nuclei are less divergent or not divergent at all? Yes, ther&fined as the center of the spherical superheavy island in the
are several convincing studies that show that this is the casERPM (1992. For these two nuclei we obtained mass ex-

The original Mdler-Nix mass model results published in C€SS€s of 133.82 and 165.68 MeV in th_e calculation based on
1981[20] have been compared to 354 masses that were n&@diusting the parameters to all nuclei from oxygen to the
known when the model results were published. For thesB€aviest elemen.ts. In the limited adjustment to nuclei with
new nuclei the error is just 10% larger than in the originalA=208 we obtained mass excesses of 133.65 and 166.79
region. A more modern version of the mod&] exhibits MeV, respectively, fqr these two nuclei. In the more limited
only a 2% increase in the same case, which was now simidjustment the heaviest nucleus was 80 nucleons away from
lated by limiting the model adjustment to the old 1981 datathe heaviest nucleus included in the adjustment.
set.

An investigation of the extrapolatability towards the VI. TESTING THE FRDM AND FDSM WITH NEW DATA
heavy region has also been carried out. In this case the model
parameters were adjusted only to nuclei wikk<208. The
error for this region plus all heavier known nucléat were
not included in this adjustmemvas about 0.745 MeV, com-

Some time after the parameters of the FRDM and FDSM
were determined new experimental data became available at
significant distances from previously known data, as shown
in Figs. 10 and 11.

The data consist of fou decay sequences originating in

1o - 269110, 2110, 2"2111, and?’7112, which were observed at
10 F FRDM Limited Adjustment E GSI[33-35. All these decay chains terminate in previously
5 g AMSae— 0,246 (MeV) E known « decays, which makes the identification of new nu-
g o ] clei unambiguous. These decay chains contain 17 different
0F ~] alpha decays for which the mother and daughter masses were
s E E not both known in 1992 when the FRDM and FDSM were
E e adjusted.
10 ¢ S =357 (Met) E The experimenta@, values are compared to the theoret-
15 Bunnnhuliliialenlio i ical predictions of the FDSM and FRDM models in Fig. 11.
0O 20 40 60 80 100 120 140 160

It should be observed that there are some ambiguities in this
comparison. It is not proven that the experimentally observed
FIG. 9. Calculated model error for the case when macroscopiélecays correspond to ground-state to ground-state transi-
model parameters were adjusted only to the 246 available mass&&ns. In particular in odd and odd-odd nuclei it is not un-
for nuclei withZ=82 andN=126. likely that the transition goes from the ground state to an

Neutron Number N

014308-15



RAGNAR BENGTSSON AND PETER MOLER PHYSICAL REVIEW C 64 014308

Neutron Number N Neutron Number N
150 152 154 156 158 160 i 152 154 156 158 160 162
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FIG. 11. Comparison between
measured and calculated energy
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g1 v b1 g e 1 1 releases inx decay of four heavy
100 102 104 106 108 110 112 100 102 104 106 108 110 112 nuclei. The experimental data are
Proton Number Z Proton Number Z taken from Refs.[33,34, and
[40]. The arrows indicate the
Neutron Number N Neutron Number N heaviest nucleus included in the
150 152 154 156 158 160 162 154 156 158 160 162 164 166 FDSM parameter fit. Circles show
12 T 13 SR L the transitions which involve an
- a-decay of #2111 . E a-decay of 77112 P SU(2) mother nucleus and an SU3
- /] 12 E 4 GSlexp. (1996) 1 I3 daughter nucleus.
< [ e GSlexp. (1994) /] =~ F e  GSlexp. (1996) c2 /a3
3 1F FRDM (1992) = v FRDM (1992) e 3
= [ — — FRLDM(1992) y ] = E — — FRLDM (1992) 3
~ b ---- FDSM(1992) : ] ~ F ---- FDSM(1992) e/ 3
2. : &k :
S1oF 108 E
[} - B QO - .
o F . 10 b =
> - 4 > - =
o . o 3
2 9 - ] 2 - ]
wi - m i} o 1
g : i3 E
8 - I | I | I | 1 | 1 ! I ] 8 E I t E
100 102 104 106 108 110 112 100 102 104 106 108 110 112 114

Proton Number Z Proton Number Z

excited state due to selection rulgg6,37. It is less likely  state transitions but the experimen) values may corre-

that a transition starts from an excited state, since ¢he spond to other transitions, the following can nevertheless be

lifetimes are long enough to allow, at least in most cases, theoncluded: Within each experimental decay cha&n, in-

mother nucleus to deexcite to the ground state before emitreases without any exception with increasing masspro-

ting an « particle. ton) number. At proton number 10Q, has a value close to
For the above reasons it can be assumed that the expef-MeV. At proton number 110, the value is close to 11 MeV.

mentalQ, values in many cases may be slightly smaller than For the decay chains starting 2110 andZ=111, the

the ones for the ground-state—to—ground-state transitiorQ, values of the FRDM show the same increasing trend as

which is the theoretically calculated quantity. In general, thethe experimental data. The slope, however, is smaller than in

experimental),, values vary by at most a couple of hundred the data. In the decay chain startingZat 112, the FRDM

keV between different event chains. We then plot only oneQ, value decreases slightly frodd=104 to Z=106. The

set of experimental , values, namely the highest observed. experimental values vary very little betwe&s=102 andZ

In the case where large differences were observed between106, although they do increase. The overall agreement be-

different decay chains namely for the decay starting atween the FRDM and experiment is very good for the chain

217112 where the variation exceeds one MeVZat110 we  starting at proton number 112. The rms error between the

plot both of the observed decay chains. Although the calcuealculated FRDMQ,, values and the highest experimental

lated Q, values are obtained as ground-state—to—ground®, values is 0.49 MeV for the 17 decays in Fig. 11 for
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20— T 7T T 265Rf), N—Z=49 (transition point?®*Hs), and N—Z=45
i FDSM SU2 — SU3 ] (transition point?®°112). In all cases the obvious irregularity
i Transition Region i in the middle of the curves coincides with the transition be-
L P tween the S(R) and SU3) regions as can be seen from Fig.
15 = O Transition decay . - 10. The fact that the transition between the two symmetries
. R | : L : -
\ appears at this location is a result of the Fermi blocking of
I 265g N | the FDSM, which apparently can be associated with a clear
I 2 ] downbend in the&, curves. The experiment&), values in

_ Fig. 11 show no sign of a downbend, thus giving no support
- for a Fermi blocking in operation.
T In Fig. 11 we have included also the results of the
FRLDM model. It differs from the FRDM in using for the
macroscopic energy the finite-range liquid-drop model in-
k i stead of the finite-range droplet model. The FRLDM had a
- 265N o . model error of 0.779 MeV in the fitted region, in contrast to
- T the FRDM for which the model error is 0.669 MeNb].
Bt ooy i vwa v lag g However, the FRLDM has two fewer adjustable parameters
90 100 110 120 than does the FRDM.
Proton Number Z Although the FRLDM has a higher model error taken
over all known masses than does the FRDM, it seems to

FIG. 12. a-decay chains in the FDSM model fii—Z=45, 49, agree better with data for the higha-decay chains, perhaps
57, and 61.. The figure |IIustrate§ the irregularities that oceur vyhen Hecause models with fewer parameters often extrapolate bet-
decay chain passes from nuclei with @Jsymmetry to nuclei with o ‘However, it is not for this purpose it is included in Fig.
SU3) symmetry. The transition point in each chain is indicated 1y ¢ is rather for illustrating that although the top end of the
with a shaded circle. chains lies about eight or more nucleons away from the last

fitted one, the two versions of the macroscopic-microscopic
which not both mother and daughter masses were known imodel both extrapolate very well, givinQ, values which
1992. Thus the FRDM extrapolates to this region withoutdiffer only by a few hundred keV. This should be compared
divergence since in the known region where the model pawith the two versions of the FDSM, for which the calculated
rameters were fitted to known masses, the rms error for 145masses differ by several MeV, just a few nucleons away
Q, values is 0.65 Me\[38]. from the last fitted nucleus as illustrated in Figs. 6-8.

The Q, values calculated with the FDSM show a very  The heaviest experimental mass, used in the fit of the
different behavior compared to those of the FRDM and theRDM and FRLDM constants, is that 6f°Sg. The heaviest
experimental data. In the lower end of eaefdecay chain, nucleus in the GSI chains &7112, which thus is eight neu-
the FDSM results agree with data about as well as th&rons and six protons away from the heaviest nucleus in-
FRDM. This is for nuclei which were included in the fit of cluded in the parameter fit. It is evident from Fig. 11 that the
the FDSM parameters. However, immediately above the ladtRDM and FRLDM masses, and hence Qg values, can
fitted nucleus th&), values start to deviate strongly from the be extrapolated over such distances without deviating much
experimental data. In all four chains the FDIB, curve from each other. On the other hand, the extrapolation of the
bends down strongly one or twe decays beyond the last FDSM gives masses ar@, values, which deviate signifi-
fitted nucleus. In theZ=112 decay chain, which extends cantly from the other two models and from the experimental
higher above the last fitted nucleus than the three othedata. It therefore becomes evident that the FDSM fails com-
chains, the FDSM chain resumes its increasing trend aboweletely to describe the new experimental data in the heavy
the downbend but does not catch up with the experimentadU(2) region whereas the FRDM achieves similar accuracy
points. here as in the region of known nuclei where its parameters

In order to understand ho®, can deviate so strongly were determined.
from data immediately above the last fitted nucleus, it should
be observed that the FDSM changes from(3Uo SU?2)
symmetry in close vicinity to the last fitted nucleus in the
four new decay chains, see Figs. 10 and 11. Qhevalue Counting the number of model constants and trying to
corresponding to the decay from the last(8lnucleus in a  relate it to the quality of a model and to how well a model
chain to the first S(B) nucleus is indicated with a circle in can be extrapolated to unknown regions is not a straightfor-
Fig. 11, whereas the heaviest nucleus included in the FDSMvard task. Parameters are of many different kinds, but all
parameter fit is shown by an arrow. A comparison with Fig.must be given numerical values in order to calculate a value
12 shows that it indeed is the transition between thé€2pU for an observable quantity, e.g., the mass of a nucleus. Some
and SUS3) regions that causes the downbend and not the faatonstants have since long well-established values and may
that we are passing beyond the region of fitted masses. Figrot even be thought of as parameters. On the other end of the
ure 12 shows four extended chains, corresponding ti scale are completely “free” parameters, whose values are
—Z =61 (transition point?®No), N— Z=57 (transition point  determined by a least-squares fit to some of the experimental

Energy Release Q, (MeV)
o
T

(6]
I

VII. CONCLUSIONS
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guantities a model is supposed to describe. In the FRDM alinagic nucleus aZ =126 andN=184. Experimental masses
of these free parameters and the values obtained havefar SU(2) nuclei were only available in the region around
straightforward physical interpretation. 208h when the FDSM masses were fitted. In the superheavy
Since the number of model parameters has been made onegion only two Wapstra systematics masses were available.
of the main issues by the proponents of the FDSM model, w&xcept for the guidance given by these two masses, the
have in this paper described the model at a level of detail thaEDSM masses in the superheavy (8Uregion are the result
allows every single model parameter to be identified and wef a long-range extrapolation from the &) region near
have made a consistent count of the number of parameters #%b. The FDSM masses in the superheavy(BUegion
the model. In our opinion it is clear that the claim in Rgf]  can therefore be expected to have particularly large errors,
that “Thus we have reduced the number of adjustable pawhich has now been confirmed by the recently avail&dle
rameters in the FDSM-Strutinsky mass formula from 16 invalues in this region.
version | to 13 in version II"is a gross misrepresentation of ~ The second parameter set should be used for nuclei with
the number of adjustable parameters in the FDSM, by angU(3) symmetry, located in between the two regions with
criteria for labelling a parameter “adjustable.” However, SU(2) symmetry. SW3) nuclei with known masses lie in a
considering also what is said in the previous paragraph, weompact region. Only eight new masses with($Lsymme-
leave it open to the reader to draw further conclusions. Intry have become available since the parameters were fitted.
stead, we shall concentrate on the conclusions that can I®ecause they are just next to the region of previously known
drawn from the experimental data which recently have bemasses it is not possible to evaluate the quality of thé35U
come available. constants and the extrapolative reliability of the FDSM by
The new experimental data @, values, and thus differ- comparing with this limited data set.
ences between nuclear masses, in the superheavy region(4) The (Vepsy term in the FDSM mass formula con-
show that the mass formula derived from the FDSM cannotains a complete second-order expressioh irandN,, with
be extrapolated to describe those masses. Several reasonsdajustable coefficients in front of each term, which should be
this failure could be identified. an appropriate expression in the symmetry limits. However,
(1) The specific formulation of the model, used for deriv- when inserted in the mass formula and used for fitting
ing the mass formula, is restricted to nuclei in the regionnuclear masses, the second-order expression does not only
with proton numbers between=82 andZ=126 and neu- contain the proper FDSM energy but must also compensate
tron numbers betweeN=126 andN=184. To fit the free for the difference between the smooth Strutinsky energy and
model parameters only experimental masses of nuclei in thithe Fermi-gas energy. This energy difference can only lo-
region can be used. There were, when the parameters wecelly be described with high accuracy using a second-order
fitted, only 246 experimental masses available. The distancexpansion inN, and N,. The ranges between the magic
from the heaviest nucleus for which an experimental masgroton numbers 82 and 126 and the magic neutron numbers
was available Z=106, N=157) to the center of the histori- 126 and 184 are too long to qualify as local. On the other
cal superheavy region &t=114 andN=184 is 8 units in hand, the region covered by experimental data, can be con-
proton number and 27 units in neutron number and to thaidered as local, at least when divided into one(3lAnd
doubly magic nucleusZ=126 andN=184 (the heaviest one SU3) region with a separate parameter set for each re-
nucleus covered by the FDSM mass formuk20 units in  gion. This explains why the FDSM mass formula reproduces
proton number and 27 units in neutron number. The extrapothe experimental masses with high accurdaithough no
lation needed to reach these nuclei is therefore very londhigher than a locally adjusted FRDWMbut also why it can-
considering that the experimental masses used in the fit onlyot, not even in principle, be used for long-range extrapola-
covers 24 units in proton number and 31 units in neutrortions, which are needed to, e.g., predict masses in the histori-
number. The FDSM mass predictions for the heaviest nucletal superheavy region.
can therefore be expected to be very uncertain. We have shown that the FRDM mass model agrees much
(2) In addition to the experimental masses another 8@etter with the new experimental data than does the FDSM
masses, estimate@xtrapolatefl according to Wapstra sys- mass formula. The reason for this is best understood by not-
tematics[24], were used in the fit of the FDSM parameters.ing four corresponding criteria which governed the develop-
The reliability of these masses is hard to judge, but experiment of the FRDM:
ence shows that the error is considerably larger than the error (1) The FRDM mass model was fitted to all experimental
claimed for the FDSM masses. Including these “Wapstramasses frol@=N=8 toZ=106,N= 157 known at the time
systematics” masses in the parameter fit implies that uncoref the fit. In total 1654 experimental masses were available.
trollable errors are built into the FDSM mass formula. SincePredicting masses in the superheavy region requires an ex-
the Wapstra systematics masses typically lie at the border afapolation over the same number of additional protons and
the region of the experimentally known masses, they willneutrons as in the FDSM case. However, a very long range
have a particularly bad influence on how the FDSM mas®f proton numbersin total 99 and neutron numbel# total
formula extrapolates to unknown mass regions. 150 were included in the fit. Extrapolation to the superheavy
(3) The FDSM parameters are divided into two sets. Onaegion, 20 to 30 protons and neutrons above the heaviest
for nuclei with SU2) symmetry, including nuclei in the vi- nucleus considered in the fit, can therefore be made with
cinity of the doubly magic nucleud®®b as well as a large some degree of confidence, which has now been confirmed
number of nuclei in the superheavy region below the doublyby the new data.
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(2) Only experimentally measured masses were includedivergences outside the region covered by the fit.
in the fit.

(3) A single §et of constants were used for all nuclc_ai. ACKNOWLEDGMENT

(4) All terms in the FRDM mass model have a physically
derived and well justified functional dependence on the pro- This work was supported by the U. S. Department of En-
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