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Theory of a density-wave instability in symmetric nuclear matter

A. E. Pozamantir and A. W. Overhauser
Department of Physics, Purdue University, West Lafayette, Indiana 47907-1396

~Received 29 July 1999; published 4 June 2001!

Symmetric nuclear matter is found to have a spontaneously broken translational symmetry. This collective
instability creates a one-dimensional nucleon density wave of periodicity 15–27 fm, with a peak-to-trough
density ratio;6. As a result, the binding energy of the system increases by 0.5–1.5 MeV per nucleon relative
to that for uniform nuclear matter. The latter must therefore be regarded as a highly excited metastable state.

DOI: 10.1103/PhysRevC.64.014303 PACS number~s!: 21.65.1f, 21.60.Ev, 21.60.Jz, 21.10.Dr
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I. INTRODUCTION

The possibility that symmetric nuclear matter~equal pro-
ton and neutron densities! may develop a spontaneously br
ken translational symmetry was introduced in 1960@1#. The
simplest example is a single nucleon density wave~NDW!.
If the wave vector of the modulation isQẑ, the nucleon
density variation will be

r>r0~11g cosQz!, ~1!

wherer0 is the ~optimum! mean density of nuclear matte
and, of course,g,1,

r05S 4p

3
R0

3D 21

50.179 fm23, ~2!

the value obtained if the nuclear radius for massA is R0A1/3

and if, as is frequently chosen,R051.10 fm. It follows that
the Fermi-sphere radius of the degenerate Fermi sea ikF
51.38 fm21.

The simplest path for understanding the origin of
NDW, Eq. ~1!, is to redistribute the nucleons that fill th
Fermi sphere so that, instead, they fill a cylinder~of equal
volume! having diameterD and lengthQ. @The circular faces
of the cylinder cut thekz axis atkz56(1/2)Q.] The kinetic-
energy increase caused by this repopulation,;1.0 MeV per
nucleon, is a minimum whenD52Q/). An NDW can now
arise spontaneously if the nucleon wave functions are
lowed to acquire momentum components,kW6QW , whereQW
5Qẑ. For kz.0,

ukW &→ukW &1c~kz!ukW2QW &1d~kz!ukW1QW &. ~3!

~For kz,0, the coefficientsc and d are interchanged.! One
should note that the filled states,ukW &, are admixed only with
empty states,ukW6QW &. The Hartree-Fock~HF! energy of this
many-nucleon configuration can be optimized by an app
priate choice ofc(kz) andd(kz) @1#. These admixtures caus
an additional increase in kinetic energy, proportional to
square of the resulting NDW amplitudeg,

D^T&;g2. ~4!

In contrast, the expectation value,^V&, of the nucleon-
nucleon interaction becomes more negative,
0556-2813/2001/64~1!/014303~15!/$20.00 64 0143
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D^V&;2g2 lnS 1

g D . ~5!

Sinceg, and therefore ln(1/g), can always be chosen so th
Eq. ~5! dominates Eq.~4!, a cylindrical Fermi surface will
always support an NDW. The original estimate ofD^T&
1D^V& was '21.3 MeV per nucleon@1#, a value that ex-
ceeds the 1.0 MeV kinetic energy increase required to
populatek space. Consequently it seemed reasonable to
pose that infinite nuclear matter might support a brok
symmetry.

However, there is a flaw in the foregoing argument. T
energy increase required to repopulate momentum sp
~from a sphere to a cylinder! is considerably more than th
1.0 MeV already mentioned. Consider the repulsive core
the nucleon-nucleon interaction~which is responsible for the
saturation of nuclear forces!. Greater penetration of the re
pulsive core occurs whenever the kinetic energy of pairw
relative motion increases. Consequently there will be an
crease in̂ V& resulting from the initialk-space repopulation
The outcome of the competition between the repulsive
attractive terms becomes less certain.

To study the situation in more detail, one has to adop
nucleon-nucleon~phenomenological! interaction. A basic re-
quirement for the potential is not only to reproduce the
sential properties of symmetric nuclear matter~binding en-
ergy, equilibrium density, etc.! but also the binding energie
of finite symmetric nuclei (4He, 16O, 40Ca, etc.!. Clearly, if
finite symmetric nuclei acquire more binding energy p
nucleon than symmetric nuclear matter, the latter will ine
tably break up into finite nuclei. The binding energy of th
resulting configuration can be increased further by bring
these nuclei closer to each other, so that their nucleon d
sities partially overlap. Studies show that even in the cas
slightly overbound finite nuclei, the tendency to form th
fictitious ‘‘quasicrystallization’’ is present.

In the present study we use a recently proposed fin
range phenomenological nucleon-nucleon potential@2# that
has the form

V~r1 ,r2!52aC~r12r2!2e2~r12r2!2/s2
1bA^T&d~r12r2!,

~6!

where ^T& is the ~center-of-mass-motion corrected! average
kinetic energy given by

^T&5
121/A

A (
i 51

A

t i , ~7!
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with t i being the kinetic energy of thei th nucleon, andA
52N52Z, the total number of nucleons:C is the normal-
ization coefficient of the modified Gaussian

C5~ 3
2 p3/2s5!21. ~8!

Saturation of nuclear forces is achieved by letting then-n
repulsion increase with increasing^T&. The three parameter
of the potential are chosen as

a51690 MeV fm3, b5255 MeV1/2 fm3, s50.54 fm.
~9!

For the case of symmetric nuclear matter (A→`), the aver-
age kinetic energy per nucleon is calculated by integra
over the occupied modes in the Fermi sea, as explaine
the following section.

The determination of the nucleon-nucleon potential~6!
and its properties are discussed in Ref.@2#. The potential
gives satisfactory values for binding energies of light sy
metric nuclei. For uniform symmetric nuclear matter it yiel
the binding energy per nucleon,B0515 MeV, the mean
nuclear density,r050.179 fm23, the compressibility modu-
lus, K5225 MeV/fm3 and the nucleon effective mas
m* /m50.41.

The reason for our decision to choose the parameters~9!
so thatB0 ~for uniform nuclear matter! is ;1 MeV less than
a commonly accepted value,;16 MeV/nucleon, is the sub
ject of this study. It will be shown that symmetric nucle
matter does support an NDW. This broken-symmetry s
gives rise to an additional;1 MeV/nucleon of binding en-
ergy, compared with uniform nuclear matter. Prelimina
studies~Sec. II! show that, instead of a large-wave-vect
~small wavelength! NDW (Q;2kF), that one might have
expected, nuclear matter favors a small-wave-vector ND
Q,(1/4)kF. The theory of a small-Q NDW in three-
dimensional symmetric nuclear matter is presented in S
III. The variational technique employed in the HF calcu
tions is elaborated in Sec. IV. Results are presented in
V. Implications for finite nuclei are discussed in Sec. VI.

II. PRELIMINARY STUDIES

A three-dimensional periodic nuclear density could ar
as the result of a periodic arrangement of nucleons in a th
dimensional lattice. Of all possible spatial lattices, t
ground state of such a nucleon crystal would correspon
the one that maximizes the binding energy of the system
symmetric nuclear matter were to exhibit a thre
dimensional~3-D! density instability, a natural choice woul
be an arrangement of nucleons in a face-centered-cubic~fcc!
lattice. Each lattice cell would contain four nucleons: tw
protons, spin-up and spin-down, and two neutrons, spin
and spin-down.~For comparison, the average kinetic ener
per nucleon in the filled Brillouin zone of fcc, bcc, an
simple cubic lattices is 1.020, 1.023, and 1.083, respectiv
in units of the average kinetic energy of a filled Fermi sph
having equalk-space volume.! One can adjust the lattic
constanta so that the occupied states fill entirely the fir
Brillouin zone~in momentum space!. The first Brillouin zone
01430
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~FBZ! of an fcc lattice has eight faces with orientation ind
ces$111%, and six faces with orientation indices$200%. The
existence of flat boundaries between occupied and em
states is conducive to a large wave-vector (;2kF) instability
that mixes filled states inside the boundaries with em
states outside, but across the Fermi sea. The ‘‘penalty’
kinetic energy increase is then a minimum. The one-part
orbital wave functions are

w i jk~r !5N(
G

f k,Gei ~k1G!•r. ~10!

The indices,$ i jk %, describe the wave vectork. The summa-
tion is over all reciprocal lattice vectors@i.e., G50, G
5(616161), G5(6200), etc.#. We will treat f k,G as
variational coefficients.N is a normalization coefficient.

If only the $111% and $200% families of the mixing wave
vectorG ~including G50) are considered, the nucleon de
sity can be written as

r5
16

a3 (
l ,m,n

glmn cos~ lGx1mGy1nGz!,

where the summation indices,$ l ,m,n%, range over the fol-
lowing values: ~0,0,0!, ~61,1,1!, ~2,0,0!, ~62,2,0!, ~63,
61,1!, ~62,2,2!, and ~4,0,0! with all possible permutations
within the parenthesis.gl ,m,n are the strengths of the differen
Fourier harmonics, and are expressed through various c
binations of the coefficientsf k,G of Eq. ~10!. The coefficients
gl ,m,n are symmetric with respect to the sign and index p
mutations;a is the fcc lattice constant. The HF interactio
energy per nucleon calculated from the potential~6! is ~with
g00051):

U52
4

a3 a@12gs~^T&!#3@214g111
2 ~12 1

2 x!

3e23/4x13g200
2 ~12 2

3 x!e2x16g220
2 ~12 4

3 x!e22x

112g311
2 ~12 11

6 x!e211/4x14g222
2 ~122x!e23x

13g400
2 ~12 8

3 x!e24x#1
3

a3 bA^T&~214g111
2 13g200

2

16g220
2 112g311

2 14g222
2 13g400

2 !. ~11!

The term in the first square brackets is the exchange en
correction calculated in the statistical approximation@2#. The
dimensionless parameterx is defined as

x[S 2ps

a D 2

, ~12!

wheres is the range parameter of the potential~6!. Numeri-
cal studies show that, in order to overcome the additio
repulsion and to obtain an increase in binding energy,
form factor for the attractive potential at the first Fouri
componentg111 has to be larger than;0.7:

~12 1
2 x!e23/4x'0.7.
3-2
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THEORY OF DENSITY-WAVE INSTABILITY IN . . . PHYSICAL REVIEW C64 014303
This relation requiresx'0.3, ora'6 fm. One has to com-
pare this value ofa with the corresponding lattice constan
of face-centered, body-centered, and simple cubic latt
~having four nucleons in each primitive unit cell!:

afcc5S 16

r0
D 1/3

54.47 fm, abcc5S 8

r0
D 1/3

53.55 fm,

asc5S 4

r0
D 1/2

52.82 fm.

An NDW is possible only if the lattice parameter of th
periodic nuclear structure is much larger than these an
pated values. If the range of the attractive potential is m
smaller than 0.5 fm, a short-period density-wave instabi
can occur. However, such an instability is spurious; the pr

FIG. 1. The calculated Fermi radii of the 2-D nucleon seas fo
Gaussian slab of modality seven with no mixing of oscillator wa
functions. The largest radius,kF0

51.47 fm21, and the smallest
kF0

50.62 fm21. It turns out thatm56 is the highest occupied 1-D
oscillator mode for the ground state of the slab.

FIG. 2. The calculated Fermi radii of the 2-D Fermi seas fo
Gaussian slab of modality seven. The mixing involves states
which km is larger thankFm12

. These states are black. The emp
states utilized in the mixing are shown in white. The last two oc
pied modes,m55,6, are mixed with modesm57,8, without restric-
tion on km . The mixing preserves the parity of each mode.
01430
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lem with a short-range attractive potential is that the bindi
energy per nucleon of4He then exceeds that of nuclear ma
ter, which could then spontaneously break up into individu
a particles.

If one examines a 3-D density-wave instability with
smallQ, Q52p/a,2kF , the Fermi surface becomes a mu
tifaceted polyhedron. Furthermore, the nucleon orbitals
come linear combinations of an extraordinarily large numb
of plane waves. The following study will, for simplicity, be
confined to a single NDW~in 3-D nuclear matter!. As a
preparation, we will consider first a slab of nuclear matt

a

r

-

FIG. 3. The binding energy~absolute value! per nucleon vs
modality M 8 in a Gaussian slab of symmetric nuclear matter f
pure one-dimensional oscillator states~solid line! and for mixed
oscillator states~dashed line!. Both curves saturate atM 857.

FIG. 4. Density profile along thez axis of a Gaussian slab o
nuclear matter for modalityM 857 with no wave-function mixing.
The dashed line indicates the equilibrium density of nuclear mat
3-3
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A. E. POZAMANTIR AND A. W. OVERHAUSER PHYSICAL REVIEW C64 014303
uniform in the~x, y! plane, but localized in theẑ direction.
Let us assume the nucleon orbitals will be products of 2
plane waves~in the x̂ and ŷ directions! and harmonic oscil-
lator wave functions~in the ẑ direction!:

ck,m
0 ~r,z!5Neik•rwm~z!. ~13!

Here N is a normalization constant for the plane wave; t
one-dimensional oscillator wave functions,wm(z), are nor-
malized;r is the ~x, y! plane coordinate, andk is the wave
vector associated with motion in the~x, y! plane. Assume
that the oscillator states withm50,1,...,M are occupied,
while the states withm.M are empty. The number,M 8
5M11, we call modality, and is the number of oscillat
levels involved in occupied states. We define the fractio
occupancyAm of each oscillator modem as the ratio of the
number of particles in this mode to the total number
nucleons in the system. The fractional occupanc
A0 ,A1 ,...,AM obey the obvious constraint

(
m50

M

Am51. ~14!

When the nuclear slab is in its ground state,A0.A1.¯

.AM . Therefore, the Fermi momenta,kFm
, of the M 8 two-

dimensional Fermi seas satisfy

kF0
.kF1

.¯.kFM
, ~15!

as shown in Fig. 1 for the caseM 857.
We now introduce greater variational freedom for the

cillator modes by the mixing illustrated in Fig. 2. If
nucleon in themth mode has a wave vectork such thatk
.kFm12

, its wave function is taken to be the sum of tw

components of type~13!, namely, those form and m85m
12, both of the samek. The resulting wave function has th
same parity as its components.
01430
l

f
s

-

ck,m
0 →ck,m

5H ck,m
0 , if km<kFm12

1

A11cm
2 ~ck,m

0 1cmck,m12
0 !, if km.kFm12

,

~16!

for m50,1,...,M22, and

ck,m
0 →ck,m5

1

A11cm
2

~ck,m
0 1cmck,m12

0 !, for any km

~17!

when m5M21, M. The availability of empty states in th
m8th mode required for this mixing follows from Eq.~15!,
while mixing of the last two modes,M21 and M, with
unoccupied modes,M11 andM12, has no restriction on
km . The mixing coefficients,cm , are variables in the
Hartree-Fock procedure. The energy functional~binding en-
ergy per nucleon in the slab!, B, is calculated in the Appen
dix and depends on 2M 811 variables:

B5B~h,rG ;A1 ,A2 ,...,AM ;c0 ,c1 ,...,cM !. ~18!

The density parameter,rG , is defined in the Appendix, Eq
~A4!. h is the exponential decay parameter that appear
the harmonic oscillator wave functions. Its value determin
the thickness of the slab.

If the mixing coefficients,cm , are set to zero in Eq.~18!,
the binding energyB versus modalityM 8 saturates atM 8
57 with B515.4 MeV/nucleon. This behavior is shown
Fig. 3. Allowing the next mode,m57, to be occupied does
not lead to a new result.kF7

turns out to be zero, so th
nucleon distribution among the first seven modes rema
identical to theM 857 case.~There is, of course, no furthe
increase inB.! The density profile along thez axis of the slab
~without mixing! for M 857 is shown in Fig. 4.

The binding energy increases when one introduces
mixing coefficients as variational parameters. Variation
Eq. ~18! with respect to all 2M 811 variables leads to non
zero values for allcm . The binding energy is enhanced rel
tive to the pure Gaussian slab, as shown in Fig. 3. The l
iting case is again,M 857, andB515.9 MeV/nucleon. The
nuclear density along thez axis, expressed in terms of th
one-dimensional oscillator stateswm is
r~z!5rGS 2p

h D 1/2FA2w0~z!21
A02A2

11c0
2 @w0~z!1c0w2~z!#21A3w1~z!21

A12A3

11c1
2 @w1~z!1c1w3~z!#21A4w2~z!2

1
A22A4

11c2
2 @w2~z!1c2w4~z!#21A5w3~z!21

A32A5

11c3
2 @w3~z!1c3w5~z!#21A6w4~z!21

A42A6

11c4
2 @w4~z!1c4w6~z!#2

1
A5

11c5
2 @w5~z!1c5w7~z!#21

A6

11c6
2 @w6~z!1c6w8~z!#2G , ~19!
3-4
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THEORY OF DENSITY-WAVE INSTABILITY IN . . . PHYSICAL REVIEW C64 014303
and is shown in Fig. 5. The appearance of the factors (Am
2Am12) in this formula can be readily understood by obse
ing that the number of nucleons involved in the mixing f
each mode,m, is proportional to the difference in Fermi dis
areas for themth and (m12)th modes, as illustrated in Fig
6.

These results already show that uniform~symmetric!
nuclear matter is unstable. It can break up into Gauss
slabs withM 857 and gain 0.9 MeV extra binding. Obv
ously, the binding energy could be increased further
bringing these slabs close to each other such that the adja
densities slightly overlap. An infinite array of such overla
ping slabs would form a periodic structure having a low
energy than that of uniform nuclear matter. The theory o
single NDW is presented in the following section.

III. NDW IN NUCLEAR MATTER: THEORY

In view of the result of the previous section, one would
tempted to build three-dimensional nuclear matter from
collection of two-dimensional Gaussian slabs having a p
odicity a. Such an approach would be very cumbersome.
will continue to assume that the wave functions in the~x, y!
plane are pure plane waves. However, thez components of
the basis functions must be Bloch functions instead of h
monic oscillator ones:

ck' ,kz
~r,z!5Neik'•rwkz

~z!. ~20!

According to Bloch’s theorem, one-dimensional period
wave functions,wkz

(z), have the form

wkz
~z!5eikzzukz

~z!. ~21!

The periodic function,ukz
(z), can be expanded in a Fourie

series,

FIG. 5. Density profile along thez axis of a Gaussian slab o
nuclear matter for modalityM 857 with wave-function mixing. The
dashed line indicates the equilibrium density of nuclear matter.
01430
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ukz
~z!5(

j
hje

iG jz, ~22!

whereGj are reciprocal lattice vectors. Here, however,Gj
52p j /a, and all are parallel toẑ.

For computational convenience we introduce discrete v
ues forkz , distributed symmetrically aroundkz50:

kz→
m

G
Q, m56

1

2
, 6

3

2
, 6

5

2
,..., 6

G21

2
. ~23!

HereG ~an even number! is the number ofkz values in each
Brillouin zone~BZ!. ~We found that,G514, is a sufficiently
fine net for our purposes.! The reciprocal lattice vectors~sca-
lars here! are

Gj50,6Q,62Q,63Q,..., ~24!

whereQ is the size of the~one-dimensional! BZ,

Q5S 2p

a D . ~25!

In practice, to limit the computational load, we restrict o
attention to

4Q<uGj maxu<7Q. ~26!

The Bloch functions~21! become

wm~z!5eimQz/G~¯1ame2 i2Qz1bme2 iQz1cm1dmeiQz

1 f mei2Qz1¯ !. ~27!

Each of the states~27! is an admixture of as many as 1
(Gj max57Q) plane waves. The mixing coefficients
...,am ,bm ,dm , f m ,... aswell as the BZ sizeQ are varia-
tional parameters in the Hartree-Fock procedure.

A simple approach to generate orthonormal one-part
states, such as Eq.~27!, is to perturb the free-nucleon~plane
wave! states by a periodic potential of periodicityQ. The
new nucleon orbitals are then eigenvectors of the follow
quasidiagonal~symmetric! pseudo-Hamiltonian:

FIG. 6. The number of nucleons in each modem that undergo
mixing is proportional to the difference in areas of the Fermi dis
corresponding to themth and (m12)th modes.
3-5
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\2

2m S ¯ ¯ ¯

~k22Q!2 G~k! H~k!

G~k! ~k2Q!2 G~k! H~k!

H~k! G~k! k2 G~k! H~k!

H~k! G~k! ~k1Q!2 G~k!

H~k! G~k! ~k12Q!2

¯ ¯ ¯

D ,
Th

h

r
in

il-

n

-

e

written in a truncated plane-wave basis of free nucleons.
only nonzero off-diagonal terms,G andH, simulate the first
and second harmonics of a periodic pseudopotential. T
mix states having wave vectors that differ byQ and 2Q,
respectively.~Calculations show that, while the second ha
monic plays an important role in the subsequent density
stability, inclusion of higher harmonic terms in the Ham
tonian does not change the results drastically.! In accordance
te

te
re

c

01430
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with Eq. ~26!, the dimension of the Hamiltonian matrix i
our calculations was chosen between 939 and 15315. The
wave vectork @see Eq.~23!# is limited to the first Brillouin
zone. This situation is illustrated in Fig. 7 for the case,G
56 with three zones fully occupied.~Both extended and re
duced BZ schemes are shown.! In the reduced BZ scheme,G
andH cause ‘‘vertical’’ mixing~shown by vertical arrows in
the reduced BZ scheme in Fig. 7! between the plane-wav
states. The effective Hamiltonian, if truncated at 535, is
\2

2m S Q

G D 2S ~m22G!2 Gm Hm 0 0

Gm ~m2G!2 Gm Hm 0

Hm Gm m2 Gm Hm

0 Hm Gm ~m1G!2 Gm

0 0 Hm Gm ~m12G!2

D , m5
1

2
;
3

2
;
5

2
.

in

of

h

Upon diagonalization, withm51/2, the new~orthogonal!
wave functions will have wave-vector indicesa, given bym,
m66, m612:

a52 23
2 ;2 11

2 ; 1
2 ; 13

2 ; 25
2 ~m5 1

2 !. ~28!

Only three of these values will correspond to occupied sta
~see Fig. 7!:

a52 11
2 ; 1

2 ; 13
2 ~m5 1

2 !. ~29!

Similarly, the wave functions for the other occupied sta
are obtained by diagonalizing the matrix for each of the
mainingm values,

a52 9
2 ; 3

2 ; 15
2 ~m5 3

2 !, ~30!

and

a52 7
2 ; 5

2 ; 17
2 ~m5 5

2 !. ~31!

Making use of time-reversal symmetry,w2a(z)5wa* (z),
one obtains a full set of orthonormal one-dimensional Blo
functions, normalized in an interval of length,L:
s

s
-

h

wa~z!5L21/2KaeiaQz/G~aae2i2Qz1bae2iQz1ca1daeiQz

1 f aei2Qz!, ~32!

Ka[~aa
21ba

21ca
21da

21 f a
2 !21/2, a5 1

2 ;...; 17
2 , ~33!

with

m5 1
2 for uau5 1

2 ; 11
2 ; 13

2 , ~34!

m5 3
2 for uau5 3

2 ; 9
2 ; 15

2 , ~35!

m5 5
2 for uau5 5

2 ; 7
2 ; 17

2 . ~36!

We emphasize that~for simplicity! the relations displayed
here apply only to the caseG56, i.e., the first BZ is de-
scribed by six wave vectors. All numerical work described
later sections employed the finer net size,G514. The analo-
gous relations for this case are easily found.

Compared with Eq.~27!, the wave functions~32! have
less variational freedom, as the coefficientsaa ,ba ,ca ,da , f a
~determined by diagonalizing the Hamiltonian matrix! are
now not independent variational parameters but functions
the first- and second-harmonic potentialsGm andHm , which
are two of the variational parameters~for eachm!.

The wave function of nuclear matter built with Bloc
functions, normalized in a box of volumeLD2, is a single
Slater determinant of one-particle states
3-6
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THEORY OF DENSITY-WAVE INSTABILITY IN . . . PHYSICAL REVIEW C64 014303
ck' ,a~r,z!5
1

D
eik'•rwa~z!. ~37!

It is convenient to introduce fractional occupancies of ea
mode,Aa , defined by

Aa[
Na

A
, ~38!

whereA is the total number of nucleons in the volumeLD2,
and, sinceAa5A2a , Na is the total number of nucleons i
modea and 2a. We can take the normalization conditio
~for three occupied bands! to be

(
a51/2

17/2

Aa51. ~39!

The expression for the binding energy of the system
derived as follows. The kinetic energy can be divided in
the ~x, y! plane andz components. The average value for t
~x, y!-plane component is that for any two-dimensional d
generate Fermi gas:

^k'
2 &5 (

a51/2

17/2

Aa^k'a

2 &, ~40!

^k'a

2 &5
1

2 S p

D2

Na

s D , ~41!

FIG. 7. The extended- and reduced-zone schemes for the n
free-nucleon model with the first three BZ’s fully occupied~full
dots! and the rest of the states empty~empty dots!. The periodic
mixing potential connects states that differ by6Q and 62Q as
shown with arrows for the statem53/2 for both the extended- an
reduced-zone schemes. This potential opens up energy gaps
boundaries, shown by the vertical dashed lines.
01430
h
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wheres is the total number of Bloch states~out of the 1-D
continuum! that have been assigned to modea and2a, i.e.,
the number of states in the FBZ divided by~1/2!G,

s52S QL

2pG D . ~42!

The factor 2 is required becauseAa in Eq. ~39! includes the
nucleons from botha and2a. @Equation~41! includes both
spin and isospin degeneracy.# Upon introducing the averag
nucleon density~in the volumeLD2),

rB[
A

LD2 , ~43!

one finds from Eqs.~41! and ~42!,

^k'a

2 &5p2rBAaS G

2QD , ~44!

so that,

^k'
2 &5p2rBS G

2QD (
a51/2

17/2

Aa
2. ~45!

The z component of kinetic energy can be obtained fro
Eq. ~32!:

^kz
2&5 (

a51/2

17/2

Aakza

2

5S Q

G D 2

(
a

Aa$aa
2~m22G!2

1ba
2~m2G!21ca

2m21da
2~m1G!21 f a

2~m12G!2

1 1
12 %, ~46!

with the help of Eqs.~32!–~36!. The additional term 1/12 in
the sum represents the correction obtained by comparing
integral of kz

2 from 21/2Q to 1/2Q with the sum of theG
discrete values,kza

2 . The average total kinetic energy pe

nucleon is, of course, the sum of Eqs.~45! and ~46!.

^T&5
\2

2m
~^k'

2 &1^kz
2&!. ~47!

The wave functions~32! must be used to compute th
nucleon density,

r5 (
a5217/2

17/2

Nauck' ,a~r,z!u25A (
a51/2

17/2

Aauck',a~r,z!u2

5rB(
n50

4

gn cos~nQz!, ~48!

with

g05 (
a51/2

17/2

AaKa~aa
21ba

21ca
21da

21 f a
2 ![1, ~49!

rly

BZ
3-7
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g152 (
a51/2

17/2

AaKa~aaba1baca1cada1da f a!,

~50!

g252 (
a51/2

17/2

AaKa~aaca1bada1ca f a!, ~51!

g352 (
a51/2

17/2

AaKa~aada1ba f a!, ~52!

g452 (
a51/2

17/2

AaKaaa f a . ~53!

The number of Fourier components in the density depe
on the dimension of the Hamiltonian matrix. For the case
have been considering,G56 and a 535 Hamiltonian, each
state is mixed with four other states,kz6Q and kz62Q.
Equation~48! then exhibits four~nontrivial! density compo-
nents:g1 , g2 , g3 , andg4 . In Sec. V, where we consider
15315 Hamiltonian, we find 14 density harmonics.

The potential~6! is employed to calculate the interactio
energy,

Va52 1
2 aC@12ga~^T&!#E r~r1!r~r2!~r12r2!2

3exp@~r12r2!2/s2#d3r1d3r2 , ~54!
m

d

ns
e

tin

01430
s
e

which is the attractive energy; and

Vb5 1
2 bA^T&E r~r1!r~r2!d~r12r2!d3r1d3r2 , ~55!

which is the repulsive energy. Substituting Eq.~48! for the
density, and observing that only the same harmonics in in
grals of Eqs.~54! and ~55! survive, we find expressions fo
the attractive and repulsive energies~per nucleon!,

^Va&[
Va

A

52 1
2 arB@12gs~^T&!#

3H 11
1

2 (
n51

4

gn
2@12 1

6 ~snQ!2#e21/4~snQ!2J ,

~56!

and

^Vb&[
Vb

A
5 3

8 bA^T&rBS 11
1

2 (
n51

4

gn
2D . ~57!

Finally, the total energy per nucleon is

2B5^T&1^Va&1^Vb&. ~58!

The energy functionalB for the case considered here (G
56 and three energy bands occupied! depends on 16 inde
pendent variables@after recognizing the constraint~39!#:
B5B~rB ,Q;A3/2,A5/2,...,A17/2;G1/2,G3/2,G5/2,H1/2,H3/2,H3/2!. ~59!
alf.

ent

-
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.
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In general, if the firstM energy bands are occupied, the nu
ber of independent variational parameters inB is

21~M3 1
2 G21!123 1

2 G5G~11 1
2 M !11.

Throughout the study that follows, we useG514. Thus the
number of independent parameters for the case ofM filled
energy bands is

7M115. ~60!

Therefore, forM510, the maximum number of occupie
bands considered, there are 85 variational parameters.

If, upon minimization, the optimum values ofGm andHm
differ from zero, the nuclear matter exhibits a broken tra
lational symmetry. Occurrence of such an NDW is inde
found in Sec. V.

IV. VARIATIONAL PROCEDURE

The minimization procedure begins with assumed star
values for all (7M115) variables,v i , and initial increments,
dv i . ~M is the number of occupied energy bands.! Eachv i in
turn is changed tov i1dv i , and B is recomputed. IfB is
-

-
d

g

increased, the new value is kept. IfB is decreased,v i is
changed tov i11/2dv i ; the sign of the~subsequent! incre-
ment is then reversed and its magnitude reduced by h
Special care is required when incrementing$Ai% on account
of the constraint, Eq.~39!. This requirement is easily
achieved: whenAi is changed toAi1dAi , all $Aj% are then
divided by 11dAi . ~Since allAi must remain positive,Ai is
set to zero if it becomes negative; the subsequent increm
is reduced by half and is positive.!

The program was first tested by setting allGm andHm to
zero. The initialQ was taken to be 2kF /M . In less then 100
iterations, involving (7M11) variables,B converged to
B0(515 MeV/nucleon), and$Aa% converged to values ex
pected for a Fermi sphere. If the 14 coupling potenti
$Gm ,Hm% were allowed to deviate incrementally from zer
B converged toB0 and $Gm ,Hm% converged back to zero
The HF solution for uniform nuclear matter is therefore
robust metastable state.@Unless initial parameters already d
scribe a significant NDW modulation, the iterative procedu
returns to the uniform solution. Indeed one must incorpor
at the onset the discontinuities inkF (kz) at the Brillouin-
zone energy gaps, as shown in Fig. 8; otherwise the insta
ity does not arise.#
3-8
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THEORY OF DENSITY-WAVE INSTABILITY IN . . . PHYSICAL REVIEW C64 014303
The global maximum forB was found by iterating all
(7M115) variables with startingG’s andH’s corresponding
to 10 and 4 MeV, respectively. The starting$Aa% were taken
to be constant in each energy bandj but with a common
difference,Aj2Aj 21 , between~adjacent! bands. We found
~by trial and error! that this prescription always produce
convergence to the global maximum after 550 iteratio
~Starting increments were typically 1–5 % of expected fi
values.!

V. NDW IN NUCLEAR MATTER, RESULTS

The HF ground state of symmetric nuclear matter is
tained by optimizing the energy functional, e.g., Eq.~59!,
with respect to all (7M115) independent variables. As me
tioned above, in our calculations the size of the mixi
Hamiltonian varied from 939 to 15315. Even though the
number of variational parameters remains the same,
larger dimension of the Hamiltonian matrix allows grea
variational freedom for the Bloch functions because m
momentum space is probed. The larger matrices introd
extra density harmonics in Eq.~48! and always lead to an
increase in binding energy per nucleon. A discrete param
at our disposal is the allowed number of occupied Brillou
zones,M. A larger M corresponds to a smallerQ sinceQ
;2kF /M .

The results of our variational calculations are presente
Fig. 9. The binding energy per nucleon in the absence o
NDW is 15 MeV in all cases. On introducing nonzeroG’s
and H’s the optimumB first exceeds 15 MeV atM55 (Q
50.42 fm21). Then, depending on the size of the Ham
tonian, the excess binding saturates atM56 for 939, M
57 for 11311, M58 for 13313, andM59 for 15315.
Saturation in binding occurs when the extra band, includ
in the variational scheme, nevertheless remains unoccup
For example, theM57(939) configuration has essentiall
no nucleons in the seventh band; the distribution of nucle
in the first six bands is virtually identical to that obtained f
the M56(939) configuration.

The extra binding caused by the NDW forM59(15
315) is DB51.51 MeV/nucleon. The energy functional

FIG. 8. The fractional occupanciesAa for M59(15315). a
5Gkz /Q, (G514).
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this case has 78 variables. Their final values are

rB50.116 fm23,

Q50.234 fm21,

G1/25G3/25¯5G13/2510.2MeV/~\2/2m!,

H1/25H3/25H7/253.8 MeV/~\2/2m!,

H5/25H9/25H11/25H13/254.0 MeV/~\2/2m!.

The distribution of the 63 fractional occupancies,Aa , is
shown in Fig. 8. The fractional occupancy determines
Fermi radius of the 2-D nucleon gas for eachkza

:

kFa

' 5pArBAaG/Q.

The Fermi surface is shown in Fig. 10. The discontinuit
are caused by the energy gaps at the BZ boundaries.
amplitudes of the density harmonics are

g151.032, g250.454, g356.17131022,

g4521.25531024,

g5524.25431023, g6521.41231024,

g7524.53831024, g8524.06431024,

g9521.78231024, g10521.72731024,

g11521.26331024,

g12526.60331025, g13522.24331025,

g14524.45631026.

The solution forM510(15315) is the same as that forM
59, since the tenth band remains unoccupied.

FIG. 9. The extra binding energy per nucleon~relative to B0

515 MeV) caused by an NDW in nuclear matter vs the numberM
of allowed occupied bands.
3-9
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A. E. POZAMANTIR AND A. W. OVERHAUSER PHYSICAL REVIEW C64 014303
The nucleon density profile along the intrinsic axis
shown in Fig. 11. The NDW has a large peak-to-trough ra
of ;7. The wavelength is,a526.9 fm. The profile is domi-
nated by the first and second harmonics, as can be seen
Fig. 11. Apart from increasing the density at the peaks,
thus facilitating the instability, the large second harmonic
necessary to prevent the density from going negative.
average nucleon density is smaller than that for unifo
nuclear matter.

Also shown in Fig. 11 is the density profile of a Gaussi
slab~modality 7!. The NDW solution is similar to a periodic
array of Gaussian slabs. The nuclear density that form

FIG. 10. The 3-D Fermi surface corresponding to Fig. 9. T
horizontal line is the axis of symmetry. The dashed sphere is
Fermi sphere of equal volume.

FIG. 11. The nucleon density profile along thez axis for M
59(15315) ~solid line! and the density profile of a Gaussian sl
~modality 7! of nuclear matter~thick dashed line!. The two horizon-
tal lines indicate the equilibrium density of uniform nuclear mat
~long-dash line!, and the average nucleon density for the ND
~short-dash line!.
01430
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bridge between adjacent slabs increases the binding en
by ;0.6 MeV/nucleon compared to that for an isolat
Gaussian slab.

The wavelengtha of an NDW depends on the numberM
of occupied Bloch bands, as shown in Fig. 12. This resul
expected at the outset sinceQ'2kF /M and a52p/Q. A
stable NDW first occurs forM55. The corresponding den
sity profile is shown in Fig. 13. The peak-to-trough ratio
;6. The effective mixing potentials are

Gm59.3 MeV/~\2/2m! and Hm52.1MeV/~\2/2m!.

The wavelength isa515.2 fm.

VI. DISCUSSION

The results of the previous section show that the
ground state of symmetric nuclear matter has a broken tr
lational symmetry, namely, one~or more! NDW’s. Whether
there is more than one is a subject for future research.

e
e

r

FIG. 12. The wavelength of an NDW vs the numberM of oc-
cupied energy bands.@All points correspond to a (15315) mixing
Hamiltonian.#

FIG. 13. The nucleon density profile along thez axis for M
55(15315). The average nucleon density is shown by the das
line.
3-10
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THEORY OF DENSITY-WAVE INSTABILITY IN . . . PHYSICAL REVIEW C64 014303
NDW arises when a periodic self-consistent potential mi
orbitals having a wave-vector componentkz with kz6Q,
(Q,2kF/5). The wavelengtha of the instability~inversely
proportional toQ! can vary from 15 to 27 fm. The NDW is
strongly modulated with a peak-to-trough ratio of 6 to 7. T
lower average density,rB;0.65– 0.71r0 , is a likely result of
the higher kinetic pressure caused by the kinetic energy
crease associated with the modulation. This increase, h
ever, is offset by a larger increase in attractive energy.
net result is an extra 0.5–1.5 MeV/nucleon of binding ene
~compared with that of uniform nuclear matter!. It is impor-
tant to emphasize the collective nature of the instability
probably could not be discovered in a routine HF procedu
~Uniform nuclear matter is a robust metastable state.!

A possible application of the method developed here is
neutron-star matter. The search for new phases of de
nuclear matter but, on average, below saturation density
benefit from our finding that the uniform nucleon~vapor!
phase and, possibly, the bubble phase~nucleon vapor filling
cavities in dense nuclear matter! are highly excited state
relative to an NDW. Other~nonspherical! geometries for
nuclear matter may result within the Bloch-function fram
work developed here.

Another possible application is the search for an island
stability in superheavy elements. We can entertain the i
of performing calculations similar to those completed h
but with localized wave functions in the~x, y! plane. Instead
of plane waves, one might take basis functions from a tw
dimensional harmonic oscillator. Bloch functions, introduc
here, would be retained for thez direction. The infinite
nucleon system would then resemble a chain of beads.

A superdeformed heavy nucleus might resemble t
beads linked together. The density profile along the intrin
axis can be imagined from Fig. 13, but terminated atz5
220 andz55 fm. It would be very interesting to compar
the potential barrier against spontaneous fission~calculated
in this way! to the current estimates derived from she
model-type calculations@3#. A shape excitation from two
beads~one trough! to three beads~two troughs! might de-
scribe fission isomerism as well as the dichotomy of sy
metric and asymmetric fission.

The insight that supports the foregoing suggestions st
from Sec. II, where we found that symmetric~charge-free!
nuclear matter of optimum density is unstable for fission i
isolated nucleon slabs having a thickness of;12 fm. This
result implies that the surface energy for each face of a
is ;21 MeV/fm2, instead of;1.1 MeV/fm2, a value based
on the surface term of the semiempirical mass formula.
though a surface energy that depends on surface curva
has been entertained from time to time, we are unawar
any prior suggestion that it might in fact change sign.

A negative surface energy seems counterintuitive at
sight. Indeed, such would be the case if the nucleon den
~of a semi-infinite system! were to fall monotonically to zero
from its interior value,r0 . However, monotonic behavio
does not occur, even for a noninteracting Fermi gas, ne
boundary wherer(z) must be zero. Asz approaches the
surface~say atz50), r(z) rises to a peak before it falls t
zero @4#. Attractive nucleon-nucleon interactions will cau
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such a peak to be enhanced. Consequently the extra bin
energy generated in the peak can more than compensat
the loss that occurs whenr(z),r0 . The r(z) profiles of
Figs. 4 and 5 illustrate this phenomenon. Clearly, the fall
surface energy, especially a change in sign, can occur on
very heavy, or superheavy nuclei where opposite surfaces
;12 fm apart. Unexpected stability of fissionable or sup
heavy species may result.

VII. CONCLUSIONS

This study shows that symmetric~three-dimensional!
nuclear matter exhibits a spontaneously broken translatio
symmetry. This collective instability creates a on
dimensional nucleon density wave of periodicity 15–27 f
with a peak-to-trough density ratio of;6. A result of the
instability is that the binding energy of the system is i
creased by 0.5–1.5 MeV per nucleon relative to that for u
form nuclear matter, which must now be considered a hig
excited metastable state.

Such collective instabilities may be important in th
search for an island of stability in superheavy nuclei and
new understanding of the mechanism of fission.

The validity of the foregoing conclusions may be judg
in light of the following considerations. In formulating@2#
the three-parameter potential, Eq.~6!, we always chose
~when there was an option! the alternative that was leas
favorable for generating a broken symmetry. In other wor
we ‘‘stacked the deck’’ against the possible occurrence of
NDW by underestimating the strength of the instability in t
following ways. @This strength depends primarily on th
magnitude of the Fourier component ofV(r ) at q5Q, i.e.,
on V(q5Q).#

~1! An attractive Gaussian instead ofr 23Gaussian would
have been more convenient. However, we adopted the la
in order to obtain a better fit to the binding energy of16O.
The Fourier transform of the latter potential falls off fast
than that for a simple Gaussian. Consequently,V(q5Q) is
smaller~in magnitude! and the NDW instability is weaker.

~2! A finite-range repulsion is, of course, more realis
than ad function. Had we employed such a repulsion,
Fourier transform would fall off withq, in contrast to that of
a d function ~which does not!. Consequently,V(q5Q)
would be larger~in magnitude! because there would be les
cancellation of the attractive contribution. By retaining thed
function repulsive core, we have again underestimated
NDW instability.

~3! The nucleon effective mass,m* 50.41m, for the ef-
fective interaction derived in Ref.@2# is somewhat smaller
than values, 0.6–0.8, found by other workers. Had
fiddled with the repulsion to bringm* up to, say 0.6, the
NDW instability would be even more robust. The reason
that the excitation energy to convert pure plane waves
Bloch functions and the repopulation energy to chang
Fermi sphere into the faceted shape shown in Fig. 10
both inversely proportional tom* . A largerm* reduces the
energy increase that needs to be compensated by the a
tive term.

~4! The uniform-density state is described by a Slater
3-11
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A. E. POZAMANTIR AND A. W. OVERHAUSER PHYSICAL REVIEW C64 014303
terminant of pure plane waves. This wave function is
exact solution of the Hartree-Fock scheme. Its energy can
be lowered by any of an infinite number of small modific
tions. In contrast, the shape of each Bloch function depe
on only two parameters,G(k) andH(k), in the off-diagonal
lines of the matrix following Eq.~27!. We could have in-
cluded up to 12 additional off-diagonal lines~for a 15315
matrix!. Each additional parameter,J(k), L(k), M (k), etc.
would lead incrementally to an even lower energy for t
NDW phase. Since the NDW instability is 1.5 MeV/nucleo
when using only two parameters, there is no need to em
lish the demonstration of the NDW phase with extra~ener-
getically favorable! complications.

Even though we have shown that the variational~Hartree-
Fock! state for an NDW has lower energy than the~exact!
Hartree-Fock state with uniform density, one may inqu
about many-body corrections beyond the Hartree-F
scheme. Such an investigation@5# indicates that density
wave modulations enhance the matrix elements for virt
scattering and so increase the magnitude of the~negative!
correlation energy. Since the ‘‘correct’’ nucleon-nucleon
teraction in nuclear matter is unknown, and since the ma
body problem is insoluable, the usual caveat applies her
elsewhere.

Nevertheless, we believe that any effective interact
that reproduces the binding energy, saturation density, c
pressibility modulus, and effective mass in nuclear mat
and is also consistent with the surface energy of light nuc
e.g.,4He, 16O, 40Ca, will also exhibit the collective instabili
ties we have found using our potential, Eq.~6!, which fulfills
these seven requisites. This broken translational symmet
not revealed by small variational excursions near unifo
nuclear matter, which is instead a robust~but metastable!
highly excited state.

APPENDIX: BINDING ENERGY IN A SLAB
OF SYMMETRIC NUCLEAR MATTER

We begin with the one-particle nucleon wave functions
Eq. ~13!:

ck,m
0 ~r,z!5Neik•rwm~z!. ~A1!

With the notation,h[mv/\, m[1/2(mp1mn), the first
seven normalized one-dimensional oscillator wave functi
are

w0~z!5S h

p D 1/4

e21/2 hz2

w1~z!5S h

p D 1/4

A2hz e21/2 hz2

w2~z!5S h

p D 1/4 1

&
~2hz221!e21/2 hz2

w3~z!5S h

p D 1/4 1

)
~2h3/2z323h1/2z!e21/2 hz2
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w4~z!5S h

p D 1/4 1

A24
~4h2z4212hz213!e21/2hz2

w5~z!5S h

p D 1/4 1

A60
~4h5/2z5220h3/2z3115h1/2z!e21/2hz2

w6~z!5S h

p D 1/4 1

A720
~8h3z6260h2z4190hz2215!

3e21/2 hz2
.

In a slab of modalityM11 (m50,1,...,M ) we introduce
wave-function mixing between two modes,m and m85m
12, according to the following scheme. Form50,1,...,M
22,

ck,m
0 →ck,m

5H ck,m
0 [um&, if km<kFm12

1

A11cm
2 ~ck,m

0 1cmck,m12
0 ![um* &, if km.kFm12

.

~A2!

For m5M21 andM,

ck,m
0 →ck,m5

1

A11cm
2 ~ck,m

0 1cmck,m12
0 !

5um* & for any km . ~A3!

The last two occupied modes,M21 andM, are treated dif-
ferently because they are mixed with completely em
modes,M11 and M12, while the firstM21 modes are
mixed with partially occupied modes 2,3,...,M . The mixing-
strength coefficientscm are independent variables in th
variational Hartree-Fock procedure.

We define a density parameter,

rG[
A

L2A2p/h
, ~A4!

whereA is the total number of nucleons andL2 is the area of
each surface of the slab. The two-dimensional Fermi sea
responding to each modem is a disk of area

pkFm

2 5p2
AmA

L2 5p2S 2p

h D 1/2

AmrG . ~A5!

Am is the fractional occupancy of themth mode~so that the
number of nucleons in themth mode isNm5AmA). In the
mixing scheme of Eq.~A2! and~A3!, the number of states in
the mth mode that undergo mixing with the (m12)th mode
is proportional to the difference in areas of themth and (m
12)th Fermi disks.
3-12
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Consider a generic real two-particle operatorU. We want
to calculate its expectation valueUmm8 for two nucleons in
two different oscillator modes,m and m8, (m,m8). We
have to distinguish three situations:

~1! m8<M22. The four mixing possibilities in this cas
are

~a! km<kFm12
and km8<kFm812

,

~b! km<kFm12
and km8.kFm812

,

~c! km.kFm12
and km8<kFm812

,

~d! km.kFm12
and km8.kFm812

.

The relative weights of these possibilities are

~a!
kFm12

2

kFm

2 3
kFm812

2

kFm8

2 5
Am12Am812

AmAm8
,

~b!
kFm12

2

kFm

2 3S 12
kFm812

2

kFm8

2 D 5
Am12

Am
S 12

Am812

Am8
D ,

~c! S 12
kFm12

2

kFm

2 D 3
kFm812

2

kFm8

2 5S 12
Am12

Am
D Am812

Am8
,

~d! S 12
kFm12

2

kFm

2 D 3S 12
kFm812

2

kFm8

2 D
5S 12

Am12

Am
D S 12

Am812

Am8
D .

~2! m<M22, m8.M22. The two possibilities are

~a! km<kFm12
, for all km8 ,

~b! km.kFm12
, for all km8 ,

with relative weights
01430
~1!
kFm12

2

kFm

2 5
Am12

Am
,

~2! S 12
kFm12

2

kFm

2 D 5S 12
Am12

Am
D .

~3! m.M22, m8.M22. In this case mixing occurs in
dependent of the size ofkm andkm8 .

The expectation valueUmm8 in these three cases is

~1! Umm85
Am12Am812

AmAm8
Umm8

oo
1

Am12

Am
S 12

Am812

Am8
DUmm8

o*

1S 12
Am12

Am
D Am812

Am8
Umm8

* o
1S 12

Am12

Am
D

3S 12
Am812

Am8
DUmm8

** , ~A6!

~2! Umm85
Am12

Am
Umm8

oo
1S 12

Am12

Am
DUmm8

* o , ~A7!

~3! Umm85Umm8
oo , ~A8!

where, in the notation of Eq.~A2! and ~A3!,

Umm8
oo [^m,m8uUum,m8&, ~A9!

Umm8
o* [^m,m8* uUum,m8* &

5
1

11cm8
2 ~^m,m8uUum,m8&12cm8^m,m8

12uUum,m8&1cm8
2 ^m,m812uUum,m812&!,

~A10!

Umm8
* o [^m* ,m8uUum* ,m8&

5
1

11cm
2 ~^m,m8uUum,m8&12cm^m12,m8uUum,m8&

1cm
2 ^m12,m8uUum12,m8&!, ~A11!
re
Umm8
** [^m* ,m8* uUum* ,m8* &

5
1

~11cm
2 !~11cm8

2
!
~^m,m8uUum,m8&12cm^m12,m8uUum,m8&1cm

2 ^m12,m8uUum12,m8&

12cm8^m,m812uUum,m8&1cm8
2 ^m,m812uUum,m812&14cmcm8^m12,m812uUum,m8&12cmcm8

2

3^m12,m812uUum,m812&12cm8cm
2 ^m12,m812uUum12,m8&1cm

2 cm8
2 ^m12,m812uUum12,m812&!. ~A12!

For a one-particle real operatorT its expectation valueTm is calculated in a similar way. Here the two distinct cases a
~1! m<M22. The two possibilities,
3-13
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km<kFm12
and km.kFm12

,

have relative probabilities

Am12

Am
and S 12

Am12

Am
D .

~2! m5M21,M . In this case all the nucleons in themth
mode undergo mixing. The corresponding expectation va
for the two cases are

~1! Tm5
Am12

Am
^muTum&1S 12

Am12

Am
D ^m* uTum* &

5
Am12

Am
^muTum&1S 12

Am12

Am
D 1

11cm
2 @^muTum&

1cm
2 ^m12uTum12&#, ~A13!

~2! Tm5^m* uTum* &

5
1

11cm
2 @^muTum&1cm

2 ^m12uTum12&#.

~A14!

Finally, if a two-particle operatorU acts upon two state
belonging to the same modem, its expectation value form
50,...,M22 is

Umm5
Am12

Am
^m,muUum,m&1S 12

Am12

Am
D

3^m* ,m* uUum* ,m* &, ~A15!

and form5M21,M ,

Umm5^m* ,m* uUum* ,m* &, ~A16!

with

^m* ,m* uUum* ,m* &

5
1

~11cm
2 !2 ~^m,muUum,m&14cm^m12,muUum,m&

12cm
2 ^m12,muUum12,m&14cm

2 ^m12,m12uUum,m&

1~4cm
3 ^m12,m12uUum12,m&

1cm
4 ^m12,m12uUum12,m12&!. ~A17!

Now we can calculate the matrix elements of the kine
energy operator and the nucleon-nucleon potential~6!. Due
to the separability of the~x, y! andz parts of the wave func-
tions ~A1!, the average kinetic energy of a nucleon in t
mth mode is
01430
es

c

^Tm&5
Am12

Am
H \2

2m
^km

2 &1 1
2 ~m1 1

2 !\vJ 1S 12
Am12

Am
D

3
1

11cm
2 H ~11cm

2 !
\2

2m
^km

2 &1@ 1
2 ~m1 1

2 !

1 1
2 ~m121 1

2 !cm
2 #\vJ , ~A18!

for m50,...,M22; and

^Tm&5
1

11cm
2 H ~11cm

2 !
\2

2m
^km

2 &1@ 1
2 ~m1 1

2 !

1 1
2 ~m121 1

2 !cm
2 #\vJ , ~A19!

for m5M21,M . According to Eq.~A5!, the average value
of km

2 is

^km
2 &5 1

2 kF
25pS p

2h D 1/2

AmrG . ~A20!

Usingv\5\2h/m, the above equations may be rewritten

^Tm&5
\2

2m H pS p

2h D 1/2

AmrG1
Am12

Am
~m1 1

2 !h

1S 12
Am11

Am
D 1

11cm
2 @~m1 1

2 !1~m1 5
2 !cm

2 #hJ ,

~A21!

for m51,...,M22; and

^Tm&5
\2

2m H pS p

2h D 1/2

AmrG1@~m1 1
2 !1~m1 5

2 !cm
2 #hJ ,

~A22!

for m5M21,M . The average kinetic energy per nucleon f
the entire slab is

^T&5 (
m50

M

Am^Tm&. ~A23!

The average interaction energy per nucleon in the s
may be written as

^V&5 1
2 A (

m,m8
AmAm8~@12gs~^T&!#Vmm8

a
1 3

4 Vmm8
b

!,

~A24!

where the interaction potential~6! is broken up in two parts:

Va[2aC~r2r 8!2e~r2r8!2/s2
, ~A25!

and

Vb[bA^T&d~r2r 8!. ~A26!

The factor,@12gs(^T&)#, with
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gs~^T&!5
1

2b3^T&3 @2613b^T&13e2b^T&~21b^T&!#,

~A27!

b[
10ms2

3\2 , ~A28!

appears as a statistical approximation to the HF excha
energyVexch

a ~see@2# for details!, and is replaced by the fac
tor 3/4, exact result, for the zero-range repulsive term,Vb.

In order to evaluate matrix elements of the repulsive
tential Va, we separate variables in Eq.~A25! by letting

~r2r 8!25~r2r8!21~z2z8!2. ~A29!

With new variables,

R[r2r8, ~A30!

and

z[Z1 1
2 z, z8[Z2 1

2 z, ~A31!

a generic matrix element,̂m,m8uVaum9,m-&, calculated
with wave functions~A1! becomes

^m,m8uVaum9,m-&

5
aC

L4 E dz dz8E dr dr8wm~z!wm8~z8!wm9~z!wm-~z8!

3@~r2r8!21~z2z8!2#exp@2~z2z8!2/s2#

3exp@2~r2r8!2/s2#

5
aC

L2 E dR@R2e2R2/s2
I m,m8,m9,m-

~1!

1e2R2/s2
I m,m8,m9,m-

~2!
#

5
aC

L2 ps2@s2I m,m8,m9,m-
~1!

1I m,m9,m9,m-
~2!

#, ~A32!

where

I m,m8,m9,m-
~1!

~h,s![E dZ dz wm~Z,z!wm8~Z,z!

3wm9~Z,z!wm-~Z,z!e2z2/s2
,

~A33!
01430
ge

-

and

I m,m8,m9,m-
~2!

~h,s![E dZ dz wm~Z,z!wm8~Z,z!

3wm9~Z,z!wm-~Z,z!z2e2z2/s2
.

~A34!

The integrals~A33! and~A34! involve the Gaussians and th
Hermite polynomials. They are readily calculated analy
cally ~we used a procedure written inMAPLE language! and
tabulated for all valuesm,m8,m9,m-50,1,...,M . Having ex-
pressed the matrix element,^m,m8uVaum9,m-&, as an ana-
lytic function of the parameterh, we use equations~A6!–
~A12! and equations~A15!–~A17! to calculate the terms
Vm,m8

a in equation~A24! and obtain the average attractiv
energy per nucleon in the slab^Va&.

In a similar way, we calculate the matrix elemen
^m,m8uVbum9,m-&:

^m,m8uVbum9,m-&5
bA^T&

L4 E dz dz8E dr dr8wm~z!

3wm8~z8!wm9~z!wm-~z8!d~r2r 8!

5
bA^T&

L2 Jm,m8,m9,m- , ~A35!

with

Jm,m8,m9,m-~h![E dzwm~z!wm8~z!wm9~z!wm-~z!.

~A36!

These integrals were also calculated analytically and ta
lated. With the matrix elementŝm,m8uVbum9,m-& avail-
able, the average repulsive energy per nucleon,^Vb&, is cal-
culated in the same way as^Va&.

Adding equations~A23! and~A24!, one obtains the bind-
ing energy per nucleon in the slab,

B5u^T&1^V&u, ~A37!

which is function of (2M13) variables:

B5B~h,rG ;A1 ,A2 ,...,AM ;c0 ,c1 ,...,cM !. ~A38!

A0 is not an independent variable due to constraint~14!.
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