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Theory of a density-wave instability in symmetric nuclear matter
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Symmetric nuclear matter is found to have a spontaneously broken translational symmetry. This collective
instability creates a one-dimensional nucleon density wave of periodicity 15—-27 fm, with a peak-to-trough
density ratio~6. As a result, the binding energy of the system increases by 0.5—-1.5 MeV per nucleon relative
to that for uniform nuclear matter. The latter must therefore be regarded as a highly excited metastable state.
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I. INTRODUCTION 1
A(V)~—yzln<—). (5)
The possibility that symmetric nuclear matteiqual pro- 4
ton and neutron densitiemay develop a spontaneously bro- Sincey, and therefore In(%3/), can always be chosen so that
ken translational symmetry was introduced in 196D The  Eq. (5) dominates Eq(4), a cylindrical Fermi surface will
simplest example is a single nucleon density wéNBW).  always support an NDW. The original estimate &{T)

If the wave vector of the modulation 9%, the nucleon +A(V) was~—1.3 MeV per nucleoj1], a value that ex-

density variation will be ceeds the 1.0 MeV kinetic energy increase required to re-
populatek space. Consequently it seemed reasonable to sup-
p=po(1l+ycosQz), (1) pose that infinite nuclear matter might support a broken
symmetry.
where p, is the (optimum) mean density of nuclear matter ~ However, there is a flaw in the foregoing argument. The
and, of coursey<1, energy increase required to repopulate momentum space

(from a sphere to a cylinders considerably more than the
A _, -1 5 1.0 MeV already mentioned. Consider the repulsive core of
po=| 3 Ro| =0.179fm™, (2)  the nucleon-nucleon interactigwhich is responsible for the
saturation of nuclear forcgsGreater penetration of the re-
the value obtained if the nuclear radius for masis RyAY3 pulsive core occurs whenever the kinetic energy of pairwise

and if, as is frequently choseR,=1.10fm. It follows that relative motion increases. Consequently there will be an in-

. d ; . crease in(V) resulting from the initiak-space repopulation.
t:i gge]rcmllsphere radius of the degenerate Fermi séq is The outcome of the competition between the repulsive and

The simplest path for understanding the origin of anattractive terms becomes less certain.
. o . To study the situation in more detail, one has to adopt a
NDW, Eg. (1), is to redistribute the nucleons that fill the y P

. ) i ; nucleon-nucleoriphenomenologicalinteraction. A basic re-
Fermi sphere so that, instead, they fill a cylindef equal ¢ irement for the potential is not only to reproduce the es-
volume h.avmg diameteb gnd lengthQ. [The C|rcula-r fapes sential properties of symmetric nuclear matteinding en-
of the cylinder cut the, axis atk,= *(1/2)Q.] The kinetic-  grgy, equilibrium density, etchut also the binding energies
energy increase caused by this repopulatieth,0 MeV per  of finite symmetric nuclei {He, %0, 4°Ca, etc). Clearly, if
nucleon, is a minimum wheb =2Q/v3. An NDW can now finite symmetric nuclei acquire more binding energy per
arise spontaneously if the nucleon wave functions are alnucleon than symmetric nuclear matter, the latter will inevi-

lowed to acquire momentum componerks; Q, whereQ  tably break up into finite nuclei. The binding energy of the

=Q%z Fork,>0, resulting configuration can be increased further by bringing
these nuclei closer to each other, so that their nucleon den-
|K)—|K) + c(kp) [K— Q) +d(k,) |k + Q). (3)  Ssities partially overlap. Studies show that even in the case of

slightly overbound finite nuclei, the tendency to form this
(For k,<0, the coefficients andd are interchangefiOne fictitious “quasicrystallization™ is present. o
should note that the filled statd&), are admixed only with In the present study we use a recently proposed finite-

S : range phenomenological nucleon-nucleon potengalthat
empty stateslk+ Q). The Hartree-FockHF) energy of this has the form
many-nucleon configuration can be optimized by an appro-
priate choice ot(k,) andd(k,) [1]. These admixtures cause V(r, r,)=—aC(r;—r,)%e 1~ rp)%/s? +ﬂ\/_5(r1—r2)
an additional increase in kinetic energy, proportional to the

square of the resulting NDW amplitu
q g plitude where(T) is the (center-of-mass-motion correciedverage

A(T)~ 2. (4) kinetic energy given by
1 1A

In contrast, the expectation valu¢y), of the nucleon-
nucleon interaction becomes more negative,

A
A2 )
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with t; being the kinetic energy of theh nucleon, andA (FBZ) of an fcc lattice has eight faces with orientation indi-
=2N=2Z, the total number of nucleong€ is the normal- ces{111}, and six faces with orientation indic¢200.. The

ization coefficient of the modified Gaussian existence of flat boundaries between occupied and empty
states is conducive to a large wave-vecter2kg) instability
C=(3m%%%"1. (8)  that mixes filled states inside the boundaries with empty

states outside, but across the Fermi sea. The “penalty” in
Saturation of nuclear forces is achieved by letting the kinetic energy increase is then a minimum. The one-particle
repulsion increase with increasif@). The three parameters orbital wave functions are
of the potential are chosen as

a=1690 MeV fn?, B=255 MeV? fm?, s=0.54 fm. i) =N, fiege e, (10)
©)

For the case of symmetric nuclear mattér¢ ), the aver- ™= 7 Y . | lati . —
age kinetic energy per nucleon is calculated by integratiofion is over all reciprocal lattice vectorgi.e., G=0, G

over the occupied modes in the Fermi sea, as explained iﬁ(f—hiilil)’ ,G,:(iZQO)' etc}. We Wi” treat f.k!G as
the following section. variational coefficientsN is a normalization coefficient.

The determination of the nucleon-nucleon potentBil If only the {111} and {200} families of the mixing wave
and its properties are discussed in Rgfl. The potential vgctorG (mclqdmg G=0) are considered, the nucleon den-
gives satisfactory values for binding energies of light sym-Sity can be written as
metric nuclei. For uniform symmetric nuclear matter it yields 16
the binding energy per nucleoBy,=15MeV, the mean p=—3 > GimnCoIGX+MGy+nG2),
nuclear densityp,=0.179 fm 3, the compressibility modu- a’imn
lus, K=225MeV/fn? and the nucleon effective mass, o
w*lp=0.41. Whgre the summation indice§,,m,n}, range over the fol-

The reason for our decision to choose the paraméggrs OWing values: (0,00, (+1,1,9, (2,0,0, (£2,2,0, (+3,
so thatB, (for uniform nuclear mattéris ~1 MeV less than *+1.1, (+2,2,9, and(4,0,0 with all possible permutations
a commonly accepted value;16 MeV/nucleon, is the sub- W|th|n the paren'thesmghm,n are the strengths of the d!fferent
ject of this study. It will be shown that symmetric nuclear Fourier harmonics, and are expressed through various com-
matter does support an NDW. This broken-symmetry stat®inations of the coefficientt ¢ of Eq. (10). The coefficients
gives rise to an additionat1 MeV/nucleon of binding en- 91,mn @ré symmetric with respect to the sign and index per-
ergy, compared with uniform nuclear matter. pre”minarymutatlons;a is the fcc lattice constant. The HF interaction
studies(Sec. 1) show that, instead of a large-wave-vector €N€rgy per nucleon calculated from the potenfilis (with
(small wavelength NDW (Q~ 2k), that one might have Y9000=1):
expected, nuclear matter favors a small-wave-vector NDW, 4
Q<(1/Akg. The theory of a smalRQ NDW in three- U=— —a[1-g(T))1X[2+4g2,(1—1x)
dimensional symmetric nuclear matter is presented in Sec. a
[ll. The variational technique employed in the HF calcula- a3/ 2 2\ —x 2 4o 2%
tions is elaborated in Sec. IV. Results are presented in Sec. xe " 3020d 1~ 3X)€ 60559 1-5x)e
V. Implications for finite nuclei are discussed in Sec. VI. +1295,(1- ¥ x)e” ¥+ 495, (1 2x)e >

The indices{ijk}, describe the wave vectér The summa-

Il. PRELIMINARY STUDIES - 3
+3giod 1~ 38 ]+ 5 BV(T)(2+ 49711+ 3550

A three-dimensional periodic nuclear density could arise
as the result of a periodic arrangement of nucleons in athree-  +6g2,+ 1292, .+ 4g2,,+ 3920 (1D
dimensional lattice. Of all possible spatial lattices, the
ground state of such a nucleon crystal would correspond t@he term in the first square brackets is the exchange energy
the one that maximizes the binding energy of the system. I€orrection calculated in the statistical approximafigh The
symmetric nuclear matter were to exhibit a three-dimensionless parameteris defined as
dimensional3-D) density instability, a natural choice would
be an arrangement of nucleons in a face-centered-¢tdmc
lattice. Each lattice cell would contain four nucleons: two
protons, spin-up and spin-down, and two neutrons, spin-up
and spin-down(For comparison, the average kinetic energywheres is the range parameter of the potenti@l. Numeri-
per nucleon in the filled Brillouin zone of fcc, bce, and cal studies show that, in order to overcome the additional
simple cubic lattices is 1.020, 1.023, and 1.083, respectivelyrepulsion and to obtain an increase in binding energy, the
in units of the average kinetic energy of a filled Fermi sphereform factor for the attractive potential at the first Fourier
having equalk-space volume.One can adjust the lattice component;;; has to be larger tharn0.7:
constanta so that the occupied states fill entirely the first
Brillouin zone(in momentum spageThe first Brillouin zone (1-3x)e ¥*~0.7.

2
: (12)

27S

a

X=
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FIG. 1. The calculated Fermi radii of the 2-D nucleon seas for a 1L ‘ L L . L !
Gaussian slab of modality seven with no mixing of oscillator wave 2 8 4 5 6 7 8 9
functions. The largest radiuke =1.47fm*, and the smallest, M’

kFo=0.62 fm L. It turns out tham=6 is the highest occupied 1-D

oscillator mode for the ground state of the slab. FIG. 3. The binding energyabsolute valugper nucleon vs

modality M’ in a Gaussian slab of symmetric nuclear matter for
This relation requirex~0.3, ora~6 fm. One has to com- Pure one-dimensional oscillator stateslid line) and for mixed
pare this value of with the corresponding lattice constants ©scillator stategdashed ling Both curves saturate &1’ =7.

of face-centered, body-centered, and simple cubic lattices
(having four nucleons in each primitive unit gell lem with a short-range attractive potential is that the binding

energy per nucleon diHe then exceeds that of nuclear mat-
13 s ter, which could then spontaneously break up into individual
) =4.47fm, ap.= ( ) =3.55fm, a particles.
Po Po . . . - .
If one examines a 3-D density-wave instability with a
112 smallQ, Q=2m/a<2kg, the Fermi surface becomes a mul-
) =2.82fm. tifaceted polyhedron. Furthermore, the nucleon orbitals be-
Po come linear combinations of an extraordinarily large number
: : : : of plane waves. The following study will, for simplicity, be
An NDW is possible only if the lattice parameter of the confined to a single NDW(in 3-D nuclear matter As a

periodic nuclear structure is much larger than these antici- reparation. we will consider first a slab of nuclear matter
pated values. If the range of the attractive potential is muci®"eP ' '

smaller than 0.5 fm, a short-period density-wave instability
can occur. However, such an instability is spurious; the prob 03 — —_—— —

Aicc™

Agc™

Xy

p (fm)

0 1 2 3 4 5 6 7 8 m(K,)

FIG. 2. The calculated Fermi radii of the 2-D Fermi seas for a
Gaussian slab of modality seven. The mixing involves states fo z (fm)
which k, is larger tharkpmﬂ. These states are black. The empty
states utilized in the mixing are shown in white. The last two occu- FIG. 4. Density profile along the axis of a Gaussian slab of
pied modesm=5,6, are mixed with mode®= 7,8, without restric-  nuclear matter for modalitim’ =7 with no wave-function mixing.
tion onk,,,. The mixing preserves the parity of each mode. The dashed line indicates the equilibrium density of nuclear matter.
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uniform in the(x, y) plane, but localized in th& direction.

PHYSICAL REVIEW C64 014303

Let us assume the nucleon orbitals will be products of 2-D

plane wavegin the X andy directiong and harmonic oscil-
lator wave functiongin the z direction):

Ue (P 2)=NEXPo (2). (13

Here N is a normalization constant for the plane wave; the

one-dimensional oscillator wave functions,,(z), are nor-
malized;p is the(x, y) plane coordinate, ankl is the wave
vector associated with motion in tHg, y) plane. Assume
that the oscillator states witm=0,1,...M are occupied,
while the states withm>M are empty. The numbeiM’
=M+1, we call modality, and is the number of oscillator

‘pg,m_’ l/fk,m
UR if Kn=<ke
B —1 0 0 if k,>k
W(¢k,m+cm¢k,m+2)! I m~ B e
m
(16)
for m=0,1,...M—2, and
0 1 0 0
wk,m_’ wk,m:—z(l/lk,m+cmwk,m+2)i for any km
Vi+cy,
17

whenm=M —1, M. The availability of empty states in the

levels involved in occupied states. We define the fractionam’th mode required for this mixing follows from E¢15),

occupancyA,, of each oscillator moden as the ratio of the

while mixing of the last two modesM —1 and M, with

number of particles in this mode to the total number ofunoccupied modedyl +1 andM +2, has no restriction on

nucleons
Ao, Aq,...

in the system. The fractional
/Ay obey the obvious constraint

> A

m=0

(14

When the nuclear slab is in its ground stafge>A;>

>Apy - Therefore, the Fermi momenﬂa,;m, of theM’ two-
dimensional Fermi seas satisfy
kF0> kFl>- * ‘>k|:M, (15)

as shown in Fig. 1 for the casd’ =7.

We now introduce greater variational freedom for the os-

cillator modes by the mixing illustrated in Fig. 2. If a
nucleon in themth mode has a wave vectdér such thatk
>kg__ ., its wave function is taken to be the sum of two
components of typél3), namely, those fom andm’=m

+2, both of the sam&. The resulting wave function has the
same parity as its components.

occupancieX, .

The mixing coefficients,c,,, are variables in the
Hartree-Fock procedure. The energy functiofmhding en-
ergy per nucleon in the slabB, is calculated in the Appen-
dix and depends onM’ +1 variables:
B=B(7,p5;A1,A2,....Au;C0,C1,---,Cpm)- (19

The density parametep, is defined in the Appendix, Eq.
(A4). 5 is the exponential decay parameter that appears in
the harmonic oscillator wave functions. Its value determines
the thickness of the slab.

If the mixing coefficientsg,,, are set to zero in Eq18),
the binding energyB versus modalityM’ saturates aM’
=7 with B=15.4 MeV/nucleon. This behavior is shown in
Fig. 3. Allowing the next modem=7, to be occupied does
not lead to a new resquF7 turns out to be zero, so the

nucleon distribution among the first seven modes remains
identical to theM'=7 case(There is, of course, no further
increase irB.) The density profile along theaxis of the slab
(without mixing) for M’ =7 is shown in Fig. 4.

The binding energy increases when one introduces the
mixing coefficients as variational parameters. Variation of
Eq. (18) with respect to all 21’ +1 variables leads to non-
zero values for alt,,,. The binding energy is enhanced rela-
tive to the pure Gaussmn slab, as shown in Fig. 3. The lim-
iting case is againM’'=7, andB=15.9 MeV/nucleon. The
nuclear density along the axis, expressed in terms of the
one-dimensional oscillator states, is

2 1/ A _ —
p(2)=pc %) Z[AzQDO(Z) + 1tc 2 [‘PO(Z)+CO<P2(Z)]2+A3<P1(Z) 1tc 2 [(pl(Z)+C1<p3(Z)]2+A4cp2(Z)
A,— , As—Ag , A Ag ,
+ T [‘Pz(z)+Cz<P4(Z)] +As03(2)? +1—2_[<P3(Z)+C3<P5(Z)] +Asp4(2) +1—2_[‘P4(Z)+C4‘P6(Z)]
2, Ag
1+Cz[905(2)+C5€D7(Z)] Trc 2[906(2)"'(76908(2)] (19
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FIG. 6. The number of nucleons in each madehat undergo

mixing is proportional to the difference in areas of the Fermi disks
corresponding to thenth and (m+2)th modes.

z (fm) Uy (2)=2 h;e'®?, (22)
J

FIG. 5. Density profile along the axis of a Gaussian slab of
nuclear matter for modaliti1’ = 7 with wave-function mixing. The WhereGj are reciprocal lattice vectors. Here, however,
dashed line indicates the equilibrium density of nuclear matter. =2mjla, and all are parallel t@.
For computational convenience we introduce discrete val-

and is shown in Fig. 5. The appearance of the factdig ( ues fork,, distributed symmetrically arourii,=0:
—A+2) in this formula can be readily understood by observ-

ing that the number of nucleons involved in the mixing for 1 3 5 -1

each modem, is proportional to the difference in Fermi disk kem g Q, m=x5, 5, =5, 2——. (23
areas for thenth and (n+2)th modes, as illustrated in Fig.

6. Herel" (an even numbeiis the number ok, values in each

These results already show that uniforfsymmetri¢  Brillouin zone(BZ). (We found thatl” =14, is a sufficiently
nuclear matter is unstable. It can break up into Gaussiafine net for our purposesThe reciprocal lattice vectofsca-
slabs withM’=7 and gain 0.9 MeV extra binding. Obvi- lars her¢ are
ously, the binding energy could be increased further by
bringing these slabs close to each other such that the adjacent G;=0,£Q,£2Q,*=3Q,..., (24)
densities slightly overlap. An infinite array of such overlap-
ping slabs would form a periodic structure having a lowerwhereQ is the size of th¢one-dimensionalBZ,
energy than that of uniform nuclear matter. The theory of a
single NDW is presented in the following section. 0= 2_77

a (25

[l. NDW IN NUCLEAR MATTER: THEORY . - . :
In practice, to limit the computational load, we restrict our

In view of the result of the previous section, one would beattention to
tempted to build three-dimensional nuclear matter from a
collection of two-dimensional Gaussian slabs having a peri- 4Q<|Gj mad <7Q. (26)
odicity a. Such an approach would be very cumbersome. We .
will continue to assume that the wave functions in tkey) e Bloch functiong21) become
plane are pure plane waves. However, theomponents of
the basis functions must be Bloch functions instead of har-
monic oscillator ones: +fel2Q74 .., (27)

om(2)=emOZ (... + g e 1207+ p e Q%+ ¢ +de'?

— ik, -
P, k(P2)=Ne“ Py (7). (20 Each of the state€27) is an admixture of as many as 15

) , ) ) . (Gjmax=7Q) plane waves. The mixing coefficients:
According to Bloch’s theorem, one-dimensional pe”Od'C...,am,bm,dm,fm, .. aswell as the BZ sizeQ are varia-

wave functionsey (z), have the form tional parameters in the Hartree-Fock procedure.
s A simple approach to generate orthonormal one-particle
ek (2)=€"7Uy (2). (2)  states, such as E€R7), is to perturb the free-nuclegiplane

o . ] ~wave states by a periodic potential of periodici§y. The
The periodic functionyy (z), can be expanded in a Fourier new nucleon orbitals are then eigenvectors of the following
series, guasidiagonalsymmetrig pseudo-Hamiltonian:

014303-5
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(k=2Q)*>  G(k)  H(k)
G(k)  (k=Q)? G(k) H(k)
— H(k) G(k) k? G(k) H(k)
. HK G (k+Q?  G(K)
Hk) Gk) (k+2Q)?

written in a truncated plane-wave basis of free nucleons. Thaith Eq. (26), the dimension of the Hamiltonian matrix in
only nonzero off-diagonal term andH, simulate the first —our calculations was chosen betweer ® and 15<15. The
and second harmonics of a periodic pseudopotential. Theyave vectork [see Eq.(23)] is limited to the first Brillouin
mix states having wave vectors that differ By and 20 zone. This situation is illustrated in Fig. 7 for the ca¥e,

respectively(Calculations show that, while the second har-EUGCZ\gtgéhsriﬁ ezrgggz:glghggvﬁ%eed?eoéﬂ Cee)ge;; ighaer:gée'

monic plays an important role in the subsequent density inangH cause “vertical” mixing(shown by vertical arrows in
stability, inclusion of higher harmonic terms in the Hamil- the reduced BZ scheme in Fig) Between the plane-wave
tonian does not change the results drasticaltyaccordance states. The effective Hamiltonian, if truncated at 5, is

(m—2T")2 Gn Hpm 0 0
G (m-T1)? G H 0
hZ Q 2 Hm G mr; Gm H _135
ﬂ T m m m m ) m—zaiyz-
0 Hn Gn (m+I)? Gn
0 0 Hpm G, (m+2T)?

Upon diagonalization, witlm= 1/2, the new(orthogonal 0 (2)=L YK Q¥ (g e Q%+ p e Q%+ ¢ +d, eQ?
wave functions will have wave-vector indicesgiven bym,

m=+6, m+12: +f,e9%), (32)
K,=(a2+b2+c2+d?+f2)"12 a=1; ... (33
a=-F-HERE (m=h. @9 (@utbirea it 0 amaim, (39
with
Only three of these values will correspond to occupied states 11,

(see Fig. T- m=3 for |a|=3;%;%, (34)

3 3.9.15
m=3 for |a|=3;3;%, (35

a=-%:33 (M=3). (29) ] o
m=3 for |a|=3;5;%. (36)

are obtained by diagonalizing the matrix for each of the re-here apply only to the casE=6, i.e., the first BZ is de-

mainingm values, scribed by six wave vectors. All numerical work described in
later sections employed the finer net sike; 14. The analo-
a=—%3% (m=3), (30)  gous relations for this case are easily found.
Compared with Eq(27), the wave functiong32) have
and less variational freedom, as the coefficieatsb,,c,.d,,f,

(determined by diagonalizing the Hamiltonian makraxe
now not independent variational parameters but functions of

— 7.5.17 _5
==z327 (M=3). 3D the first- and second-harmonic potenti@g andH,,, which
are two of the variational parametdifsr eachm).
Making use of time-reversal symmetry;_.(2)=¢3(2), The wave function of nuclear matter built with Bloch
one obtains a full set of orthonormal one-dimensional Blochfunctions, normalized in a box of volumeD?, is a single
functions, normalized in an interval of length, Slater determinant of one-particle states

014303-6
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E(k,) whereo is the total number of Bloch statésut of the 1-D
continuum that have been assigned to madand —«, i.e.,
the number of states in the FBZ divided Gy2)I',

QL
o= 2(2771“) (42

The factor 2 is required becauge, in Eq. (39) includes the
nucleons from botlw and —«. [Equation(41) includes both
spin and isospin degenerafylpon introducing the average
nucleon densityin the volumeLD?),

A
Pe={p2’ (43
one finds from Eqgs(41) and(42),
k A, 44
e— —)\
~ so that,
FIG. 7. The extended- and reduced-zone schemes for the nearly 1712
free-nucleon model with the first three BZ's fully occupiédll K2 z 2
dot9 and the rest of the states empgmpty dots. The periodic (kD)=m"pe| 55 2Q) S Ag- (45

mixing potential connects states that differ byQ and =2Q as

shown with arrows for the state= 3/2 for both the extended- and The z component of kinetic energy can be obtained from
reduced-zone schemes. This potential opens up energy gaps at @q (32):

boundaries, shown by the vertical dashed lines. ,
17/2

1 (K)y= 2 Ak
_ Tk, -p a=1/2 a
Ui, a(P2)= 585 Pe,(2). (37

2
=(§) 2 Afal(m=2r)?

+b23(m-T)%+c?2m?+d3(m+T)2+f2(m+2I')?

It is convenient to introduce fractional occupancies of each
mode,A,, defined by

N, +41, (46)
Aa: W! (38) 12

with the help of Eqs(32)—(36). The additional term 1/12 in

whereA is the total number of nucleons in the volumB?, j[he sum repzresents the correction optained by comparing the
and, sinceA,=A_,, N, is the total number of nucleons in integral ofk; from —1/2Q to 1/Q with the sum of thel

mode a and —a. We can take the normalization condition diScrete valueskga. The average total kinetic energy per

(for three occupied bang$o be nucleon is, of course, the sum of E¢45) and (46).
2
17/2
(M=5~ <k2>+<k2> (47)
A,=1. 39
aZZlIZ “ 39

The wave functiong32) must be used to compute the
The expression for the binding energy of the system igwcleon density,

derived as follows. The kinetic energy can be divided into 17/2 172

the (x, y) plane andz components. The average value for the _ 2_ 2
: . . = N Z)|“=A A z

(X, y)-plane component is that for any two-dimensional de- p a=217/2 “W/‘& «(p2)] 2‘1/2 al i (2]

generate Fermi gas:

1712 :PBE gncognQ2), (48)
()= > ALK ), (40) e
a=1/2 @ Wlth
1 - N 17/2
0 )=3l g, @ Go= 3, AKaErbircirdie 2=l (49
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1712 which is the attractive energy; and
gl:2 E AaKa(aaba+baca+cada+dafa)v
a=1/2
(50) VE=3B(T) f p(r1)p(ry) 8(ri—ra)drad’ry, (55
1712 which is the repulsive energy. Substituting E48) for the
92=2 Z AKa(aaCotbod,tCofs), (51)  density, and observing that only the same harmonics in inte-
a=12 grals of Eqgs.(54) and (55) survive, we find expressions for
1772 the attractive and repulsive energiger nucleon
0s=2 2, AK,(a.d,+b,f,), (52 ve
a=1/2 <Va>E _
A
17/2 —_1 —
g4=2 E AaKaaafa- (53) - zaPB[l gS(<T>)]
a=1/2

4
. . . X[“% 2, gﬁ[l—%(an)z]e—”‘“S“Q)z],

The number of Fourier components in the density depends n=1
on the dimension of the Hamiltonian matrix. For the case we (56)
have been considering,=6 and a 5<5 Hamiltonian, each
state is mixed with four other statek,+=Q and k,*2Q.
Equation(48) then exhibits four(nontrivial) density compo- \VZ 14
nents:g;, g,, gs, andg,. In Sec. V, where we consider a (VB>EK=%B\/mpB 1+ > gﬁ) (57)
15X 15 Hamiltonian, we find 14 density harmonics. n=1

The potential(6) is employed to calculate the interaction  ginally, the total energy per nucleon is
energy,

—B=(T)+ (V) +(VF). (58
V= _%ac[l_ga(<T>)]f p(r)p(ra)(ri—ry)? The energy functionaB for the case considered her& (
=6 and three energy bands occupiel@pends on 16 inde-
X exf (r;—r,)?/s?1d%r,d%r,, (54)  pendent variablegafter recognizing the constraif®9)]:
|
B=B(ps,Q;Az2,As/2,..- A1712;G1/2,G312, G2, Hai2, Ha , Hapo) - (59

In general, if the firsM energy bands are occupied, the num-increased, the new value is kept. Bf is decreasedy; is

ber of independent variational parameter®iis changed taw;+1/26v; ; the sign of the(subsequentincre-
. . . ment is then reversed and its magnitude reduced by half.
2+ (MXzI=1)+2X3I=I(1+zM)+1. Special care is required when increment{g} on account

of the constraint, Eq.(39). This requirement is easily
achieved: wher; is changed tdA + 6A;, all {A;} are then
divided by 1+ 5A; . (Since allA; must remain positived; is
set to zero if it becomes negative; the subsequent increment
7M + 15. (60) is reduced by half anql is positive. _

The program was first tested by setting @|}, andH, to

Therefore, forM =10, the maximum number of OCCUpied zero. The InltlalQ was taken to bela:/M . In less then 100
bands considered, there are 85 variational parameters.  iterations, involving (M+1) variables,B converged to

If, upon minimization, the optimum values &, andH,,  Bo(=15MeV/nucleon), andA,} converged to values ex-
differ from zero, the nuclear matter exhibits a broken transpected for a Fermi sphere. If the 14 coupling potentials
lational symmetry. Occurrence of such an NDW is indeed{G,,Hn} were allowed to deviate incrementally from zero,
found in Sec. V. B converged toB, and{G,,,H,} converged back to zero.
The HF solution for uniform nuclear matter is therefore a
robust metastable staféJnless initial parameters already de-
scribe a significant NDW modulation, the iterative procedure

The minimization procedure begins with assumed startingeturns to the uniform solution. Indeed one must incorporate
values for all (™ +15) variablesy,, and initial increments, at the onset the discontinuities ki (k,) at the Brillouin-
év; . (M is the number of occupied energy bandsachv; in zone energy gaps, as shown in Fig. 8; otherwise the instabil-
turn is changed tw;+ év;, and B is recomputed. IfB is ity does not arisg.

Throughout the study that follows, we uFe=14. Thus the
number of independent parameters for the cas# dilled
energy bands is

IV. VARIATIONAL PROCEDURE
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FIG. 8. The fractional occupancies, for M=9(15x15). « M

=Tk, /Q, (I'=14).
‘ FIG. 9. The extra binding energy per nucle¢elative to B,

=15 MeV) caused by an NDW in nuclear matter vs the nuniMer

The global maximum foB was found by iterating all of allowed occupied bands,

(7M + 15) variables with starting's andH’s corresponding
to 10 and 4 MeV, respectively. The starti{wy,} were taken

. . 4 this case has 78 variables. Their final values are
to be constant in each energy baptut with a common IS cas s revarl S " finat vaiues

difference,A;—A;_,, between(adjacent bands. We found pp=0.116 fm 3,

(by trial and erroy that this prescription always produces

convergence to the global maximum after 550 iterations. Q=0.234 fm!,

(Starting increments were typically 1-5 % of expected final

ValueS) Gl/2: G3/2: = G13/2: 102MeV/(ﬁ2/2,LL),

— — _ 2
V. NDW IN NUCLEAR MATTER, RESULTS Huz=Hzg=H72=3.8 MeVI(77/2u),
The HF ground state of symmetric nuclear matter is ob- Hs;=Hgp=H11p=H13,=4.0 MeV/(#i%/2u).
tained by optimizing the energy functional, e.g., E§9),
with respect to all (¥ + 15) independent variables. As men-
tioned above, in our calculations the size of the mixing
Hamiltonian varied from %9 to 15x15. Even though the
number of variational parameters remains the same, the N
larger dimension of the Hamiltonian matrix allows greater ke, = mVpeALQ.

variational freedom for the Bloch functions because more

extra density harmonics in E¢48) and always lead to an are caused by the energy gaps at the BZ boundaries. The

increase in binding energy per nucleon. A discrete parametémplitudes of the density harmonics are
at our disposal is the allowed number of occupied Brillouin -~ B _ 5
zones,M. A larger M corresponds to a small€ since Q 9:=1.032, g,=0.454, g,=6.171x10°%,

The distribution of the 63 fractional occupancies,, is
shown in Fig. 8. The fractional occupancy determines the
Fermi radius of the 2-D nucleon gas for eak;ha:

~2ke /M. _ 4

The results of our variational calculations are presented in g4=—1.255¢10°7,
Fig. 9. The binding energy per nucleon in the absence of an _ -3 _ —4
NDW is 15 MeV in all cases. On introducing nonze®s 05=—4.254< 1077 ge=—1.412¢10°7,
and H’s the optimumB first exceeds 15 MeV a1=5 (Q __ —4 _ —4
=0.42fm Y. Then, depending on the size of the Hamil- 07=—4.538<10°%,  gs=—4.064<10°7,
tonian, the excess binding saturateshat6 for 9x9, M go=—1.782<107%, gyo=—1.727x10°%,
=7 for 11X 11, M=8 for 13X 13, andM =9 for 15X 15.
Saturation in binding occurs when the extra band, included gp= —1.263¢ 1074,
in the variational scheme, nevertheless remains unoccupied.
For example, théVl =7(9X9) configuration has essentially g1o= —6.60310°°%, gqa= —2.243<10°°,
no nucleons in the seventh band; the distribution of nucleons
in the first six bands is virtually identical to that obtained for g14= —4.456x 107,

the M =6(9x9) configuration.
The extra binding caused by the NDW fén=9(15 The solution forM =10(15x 15) is the same as that fou
X 15) is AB=1.51 MeV/nucleon. The energy functional in =9, since the tenth band remains unoccupied.
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L L FIG. 12. The wavelength of an NDW vs the numbérof oc-
| cupied energy band§All points correspond to a (2615) mixing
-0« Hamiltonian]

FIG. 10. The 3-D Fermi surface corresponding to Fig. 9. Thepridge between adjacent slabs increases the binding energy
horizontal line is the axis of symmetry. The dashed sphere is th%y ~0.6 MeV/nucleon compared to that for an isolated
Fermi sphere of equal volume. Gaussian slab.

. i L L The wavelengtta of an NDW depends on the numbier

The nucleon density profile along the intrinsic axis is ot qccupied Bloch bands, as shown in Fig. 12. This result is

shown in Fig. 11. The NDW has a large peak-to-trough ratioexpected at the outset sin@~2k:/M anda=2m/Q. A

of sz'bThf] vquvelength isaderE]S.gfm. The profile :33 domi-f stable NDW first occurs foM =5. The corresponding den-
nated Dy the first and second harmonics, as can be seen frafpy,  qfile is shown in Fig. 13. The peak-to-trough ratio is

Fig. 11. Apart from increasing the density at the peaks, an 1.6. The effective mixing potentials are
thus facilitating the instability, the large second harmonic is

necessary to prevent the density from going negative. The G_,,=9.3 MeV/(%2%/2u) and H,,=2.1MeV/(#2/2u).
average nucleon density is smaller than that for uniform

nuclear matter. The wavelength ig=15.2 fm.
Also shown in Fig. 11 is the density profile of a Gaussian
slab(modality 7. The NDW solution is similar to a periodic V1. DISCUSSION

array of Gaussian slabs. The nuclear density that forms a ) _
The results of the previous section show that the HF

ground state of symmetric nuclear matter has a broken trans-

03 lational symmetry, namely, on@r more NDW’s. Whether
there is more than one is a subject for future research. An
0.25
0.3 [ —r o e
&~ 02 i
= 0.25 |
S o5 r
N g~ 02
E o1 'E [
[ = o5 i
0.05 | N :
i & o]
ok
- 0.05
oLt [ NS ISR SR B
FIG. 11. The nucleon density profile along theaxis for M -20 -10 0 10 20
=9(15% 15) (solid line) and the density profile of a Gaussian slab z (fm)

(modality 7 of nuclear matte(thick dashed ling The two horizon-

tal lines indicate the equilibrium density of uniform nuclear matter  FIG. 13. The nucleon density profile along theaxis for M
(long-dash ling and the average nucleon density for the NDW =5(15%X15). The average nucleon density is shown by the dashed
(short-dash ling line.
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NDW arises when a periodic self-consistent potential mixesuch a peak to be enhanced. Consequently the extra binding
orbitals having a wave-vector componekt with k,=Q, energy generated in the peak can more than compensate for
(Q<2kg/5). The wavelengta of the instability (inversely — the loss that occurs whep(z) <po. The p(z) profiles of
proportional toQ) can vary from 15 to 27 fm. The NDW is Figs. 4 and 5 illustrate this phenomenon. Clearly, the fall in
strongly modulated with a peak-to-trough ratio of 6 to 7. ThesSurface energy, especially a change in sign, can occur only in
lower average densityg~0.65—0.7pb,, is a likely result of ~ Very heavy, or superheavy nuclei where opposite surfaces are
the higher kinetic pressure caused by the kinetic energy in="12 fm apart. Unexpected stability of fissionable or super-
crease associated with the modulation. This increase, hoWl€avy species may result.
ever, is offset by a larger increase in attractive energy. The
net result is an extra 0.5-1.5 MeV/nucleon of bi.nd.ing energy VIl. CONCLUSIONS
(compared with that of uniform nuclear maitelt is impor-
tant to emphasize the collective nature of the instability. It This study shows that symmetrithree-dimensional
probably could not be discovered in a routine HF procedurenuclear matter exhibits a spontaneously broken translational
(Uniform nuclear matter is a robust metastable state. symmetry. This collective instability creates a one-
A possible application of the method developed here is talimensional nucleon density wave of periodicity 15-27 fm,
neutron-star matter. The search for new phases of denseéth a peak-to-trough density ratio 6f6. A result of the
nuclear matter but, on average, below saturation density mapstability is that the binding energy of the system is in-
benefit from our finding that the uniform nuclegqmapoy  creased by 0.5-1.5 MeV per nucleon relative to that for uni-
phase and, possibly, the bubble phéasecleon vapor filing form nuclear matter, which must now be considered a highly
cavities in dense nuclear maifteare highly excited states excited metastable state.

relative to an NDW. Other(nonspherical geometries for Such collective instabilities may be important in the
nuclear matter may result within the Bloch-function frame-search for an island of stability in superheavy nuclei and to
work developed here. new understanding of the mechanism of fission.

Another possible application is the search for an island of The validity of the foregoing conclusions may be judged
stability in superheavy elements. We can entertain the idetn light of the following considerations. In formulatin@]
of performing calculations similar to those completed herethe three-parameter potential, E¢(6), we always chose
but with localized wave functions in th@, y) plane. Instead (when there was an optiprthe alternative that was least
of plane waves, one might take basis functions from a twofavorable for generating a broken symmetry. In other words,
dimensional harmonic oscillator. Bloch functions, introducedwe “stacked the deck” against the possible occurrence of an
here, would be retained for the direction. The infinite NDW by underestimating the strength of the instability in the
nucleon system would then resemble a chain of beads.  following ways. [This strength depends primarily on the

A superdeformed heavy nucleus might resemble twanagnitude of the Fourier component \6fr) atq=Q, i.e.,
beads linked together. The density profile along the intrinsion V(q=Q).]
axis can be imagined from Fig. 13, but terminatedzat (1) An attractive Gaussian instead I9fx Gaussian would
—20 andz=5 fm. It would be very interesting to compare have been more convenient. However, we adopted the latter
the potential barrier against spontaneous fissimaiculated in order to obtain a better fit to the binding energy'6®.
in this way) to the current estimates derived from shell- The Fourier transform of the latter potential falls off faster
model-type calculation$3]. A shape excitation from two than that for a simple Gaussian. Consequentlig=Q) is
beads(one trough to three beadstwo trough$ might de-  smaller(in magnitude and the NDW instability is weaker.
scribe fission isomerism as well as the dichotomy of sym- (2) A finite-range repulsion is, of course, more realistic
metric and asymmetric fission. than aé function. Had we employed such a repulsion, its

The insight that supports the foregoing suggestions stemBourier transform would fall off withg, in contrast to that of
from Sec. Il, where we found that symmetiicharge-free a & function (which does ngt Consequently,V(q=Q)
nuclear matter of optimum density is unstable for fission intowould be largerin magnitude because there would be less
isolated nucleon slabs having a thickness~df2 fm. This  cancellation of the attractive contribution. By retaining the
result implies that the surface energy for each face of a slafunction repulsive core, we have again underestimated the
is ~—1 MeV/fm?, instead of~1.1 MeV/fn?, a value based NDW instability.
on the surface term of the semiempirical mass formula. Al- (3) The nucleon effective mass* =0.41m, for the ef-
though a surface energy that depends on surface curvatufective interaction derived in Ref2] is somewhat smaller
has been entertained from time to time, we are unaware dhan values, 0.6-0.8, found by other workers. Had we
any prior suggestion that it might in fact change sign. fiddled with the repulsion to bringn* up to, say 0.6, the

A negative surface energy seems counterintuitive at firsNDW instability would be even more robust. The reason is
sight. Indeed, such would be the case if the nucleon densitthat the excitation energy to convert pure plane waves to
(of a semi-infinite systeinwere to fall monotonically to zero Bloch functions and the repopulation energy to change a
from its interior value,pyo. However, monotonic behavior Fermi sphere into the faceted shape shown in Fig. 10 are
does not occur, even for a noninteracting Fermi gas, near both inversely proportional ts*. A largerm* reduces the
boundary wherep(z) must be zero. Az approaches the energy increase that needs to be compensated by the attrac-
surface(say atz=0), p(z) rises to a peak before it falls to tive term.
zero[4]. Attractive nucleon-nucleon interactions will cause  (4) The uniform-density state is described by a Slater de-
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exact solution of the Hartree-Fock scheme. Its energy canna,(z) =
be lowered by any of an infinite number of small modifica-
tions. In contrast, the shape of each Bloch function depends
on only two parameter$;(k) andH(k), in the off-diagonal
lines of the matrix following Eq(27). We could have in- @5(2)2(
cluded up to 12 additional off-diagonal linéor a 15< 15
matrix). Each additional parametef(k), L(k), M(k), etc. i q
would lead incrementally to an even lower energy for the
NDW phase. Since the NDW instability is 1.5 MeV/nucleon #6(2) = _) @(8”326_6077224+907722_ 19
when using only two parameters, there is no need to embel-
lish the demonstration of the NDW phase with exteaer- e 1272
getically favorablé complications.

Even though we have shown that the variatiofirddrtree- |n a slab of modalityM +1 (m=0,1,...M) we introduce
Fock state for an NDW has lower energy than ttexacl  wave-function mixing between two modes; and m’=m

Hartree-Fock state with uniform density, one may inquire 2 according to the following scheme. For=0,1,...M
about many-body corrections beyond the Hartree-Fock-p

scheme. Such an investigatigh] indicates that density-
wave modulations enhance the matrix elements for virtua[ﬂgm
scattering and so increase the magnitude of (tregative ’
correlation energy. Since the “correct” nucleon-nucleon in- 0o _
teraction in nuclear matter is unknown, and since the many- Pem=Im),
body problem is insoluable, the usual caveat applies here as

terminant of pure plane waves. This wave function is an 1/4 "
( ) 477224—127722+ 3)e V22

ez

33

33

1/4
) 4 775/225 _ 20773/223 + 15771/22) e~ 1129722

760

I

3

—Pem

it km=Ke

elsewhere. e (Y et o) =|m*), O K>ke
2 ,m m¥k,m+2 ’ m+2
Nevertheless, we believe that any effective interaction vitcn
that reproduces the binding energy, saturation density, com- (A2)

pressibility modulus, and effective mass in nuclear matter

and is also consistent with the surface energy of light nucleiror m=M—1 andM,
e.g.,“He, %0, “°Ca, will also exhibit the collective instabili-

ties we have found using our potential, E6), which fulfills

0 _ 0 0
these seven requisites. This broken translational symmetry is Pem= Pm= M+c2 (m+ Conicm+2)

not revealed by small variational excursions near uniform m

nuclear matter, which is instead a robubtt metastable =|m*) for any kp,. (A3)

highly excited state.
The last two occupied modes| —1 andM, are treated dif-
APPENDIX: BINDING ENERGY IN A SLAB ferently because they are mixed with completely empty
OF SYMMETRIC NUCLEAR MATTER modes,M +1 andM + 2, while the firstM —1 modes are
mixed with partially occupied modes 2,3M., The mixing-

We begin with the one-particle nucleon wave functions ofgyength coefficients,, are independent variables in the

Eq. (13): variational Hartree-Fock procedure.
lﬂg (p,2)=Ne¥Pg (7). (A1) We define a density parameter,
With the notation, p=uw/fi, p=1/2(m,+my), the first po= A (Ad)
seven normalized one-dimensional oscillator wave functions 72 2wy’
are
14 whereA is the total number of nucleons ahd is the area of
0o(2) = (2) o~ V207 each surface of the slab. The two-dimensional Fermi sea cor-
™ responding to each mode is a disk of area
1/4
7 _ 2 ALA 2qr\ 12
QDl(Z):(;) V2nz e 12 7Tk|2:m= m? Lmz = 772<—) AmpPe - (A5)
NE ) 1222 A, is the fractional occupancy of thath mode(so that the
¢2(2)=| — _2(2’72 —1e number of nucleons in theith mode isN,,=AA). In the
mixing scheme of EqA2) and(A3), the number of states in
14 the mth mode that undergo mixing with then(+2)th mode
¢3(2)2(2> — (29¥%% - 3pY%z)e 12 722 is proportional to the difference in areas of tmth and (n
T V3 +2)th Fermi disks.
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Consider a generic real two-particle operdtbriWe want
to calculate its expectation valug,,,, for two nucleons in
two different oscillator modesmn and m’, (m<m’). We
have to distinguish three situations:

(1) m'<M—2. The four mixing possibilities in this case
are

(a) kmskpm+2 and km,ska,ﬂ,
(b)  kn=kg ) and km,>ka,+2,
(¢ km>k,:m+2 and km,ska,+2,
(d) kn>Kke , and Ky >Ke .

The relative weights of these possibilities are

2 2

(a) ka+2 ka’+2 _ Am+2Am’+2
k2 ke AvAm
ke 2 A A
m+2 m'+2 m+2 m’+2
——X| 1 = 1-
(b) ka ( k'2:m, Am ( Am/ )1

k ké Amia| A
c 1— m+2 % m’+2:(1_ m+2) m’+2'
© ( k2 ) k2 An | An
k2 k2
2 "+2
(d) (1— kg*)x 1- ké“
m m
_ 1_Am+2 1_Am’+2
An Ay

(2) m=sM -2, m'>M—2. The two possibilities are
@ kmskg_ . for all ky,

(B) kn>ke_ . for all Ky,

with relative weights

U**

mm’

E<m*,m’*|U|m*,m’*>

1

PHYSICAL REVIEW C64 014303

2
Fms2 _ Am+2

(1) k'2:m - Am,
K A
2) | 1- 52 =( - m*z).
”( kém) An

(3 m>M—-2, m">M—2. In this case mixing occurs in-
dependent of the size &, andk,, .
The expectation valud ,,y in these three cases is

=—2—)(<m,m’|U|m,m’>+20m<m+2,m’|U|m,m’)+cﬁq(m+2,m’|U|m+2,m’>

(1+c3)(1+c;,

+2C(m,m’ +2|U|m,m’)+cr2n,<m,m’ +2|U|m,m’ +2) +4c Cr(m+2,m’ +2|U|m,m’>+20mcfn,

X(m+2,m’+2[U|m,m’ +2)+ 2¢,y c2(m+2,m’ + 2|U|m+2m’ )+ c2c> (m+2m' +2|U|m+2m’ +2)).

A Ay A Any
(1) Upypy = —2mE2 joo | T2 T2 ) ok
AcAn ™AL Ay | mm
+ 1_Am+2 Am’+2U*0,+ 1_Am+2
A, | A, —mm A
Am’+2
x| 1- A )U::;n,, (A6)
A A
(2 ummf=—;\“*2U°m°m/+(1— ,’;’”)U;i’nu (A7)
m m
(3) Umm,=U?n°m,, (A8)
where, in the notation of EA2) and (A3),
00 __ ! !
U y=(mm’|Ulmm’), (A9)
o — ! !
U =(m,m’*|U|m,m’*)
1 /|U| r+2 ’
= m,m’|U|m,m Cy(m,m
mg(( ) mr{
! 2 ! !
+2/Ulm,m’) +c; ,(m,m’'+2[U|m,m’ +2)),
(A10)
o __ ’ !
uro =(m*,m’'[Ujm*,m’)
= ! ! + + ’ ’
1+cr2n(<m’m [U|m,m’)+2c(m+2,m'|U|m,m’)
+c2(m+2m’[U|m+2m’)), (A11)
(A12)

For a one-particle real operatdrits expectation valud ,, is calculated in a similar way. Here the two distinct cases are

(1) m=M —2. The two possibilities,
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kmSka+2 and km>ka+2v Am+2 Am+2
<Tm>_ An _<k >+2(m+2)ﬁw 1- A,
have relative probabilities 1
X]_TZ (1+Cm) <k >+[ (m+ )
m
Am+2 Am+2
A and |1-— A
" " +%(m+2+%)c2m]hw], (A18)

(2) m=M—1,M. In this case all the nucleons in tineh
mode undergo mixing. The corresponding expectation value®r m=0,..M—2; and
for the two cases are

1
(Th= Tz | (1F© >—<k )3 (m+ )

Am+2 Am+2 * *

(D) Tw=—p— <m|'|'|m>Jr — | (m*[T[m*)
" +%(m+2+%)cﬁ,]hw], (A19)
A A
- ““”<m|T|m>+(1— ™ 2[<m|T|m> _ _
An A, /1+c for m=M—1M. According to Eq.(A5), the average value
f k2 i
+c2(m+2|T|m+2)], (A13) O Kim 1S

T 1/2
(2) Ty=(m*[T|m*) (k) = (E) AnPo- e

Using wh =#27/ 1, the above equations may be rewritten as

1+02 [<m|T|m>+cm(m+2|T|m+2>]

T e 7 1IZA g Bz
(A14) ( m>_2’u ™\ 2, AmPet A (m+3)7
Finally, if a two-particle operatot) acts upon two states Am+1
belonging to the same modh, its expectation value fom 1= A, J1+c2 [(m+ )+ (m+3)clng,
=0,..M—-2is
(A21)
A A = —92-
U= m+2<m m|Um,m)+ | 1— m+2) form=1,..M—-2; and
Am hZ 1/2
X(m* ,m*|U|m* ,m*), (A15) <Tm>:ﬂ(w(ﬂ AmpG+[(m+%)+(m+%)Cr2n]77],
(A22)
and form=M—-1M, o
form=M—1M. The average kinetic energy per nucleon for
U = (M 0¥ | UM%, ™), (A16) the entire slab is
with (T)= ZO An(Tr). (A23)
m=
(m*,m*[U[m*,m*) The average interaction energy per nucleon in the slab

1 may be written as
= (1+Cz)2(<m,m|U|m,m)+4Cm(m+2,m|U|m,m>
m (V)= 1AE ArAm ([1—ge(THIVE L +3VE ),

2 2
+ 2¢;(m+2,mU|m+2,m)+4cs(m+2,m+2|U|mm) (A24)

+(4cy m(Mm+2m-+2|U|m+2m) where the interaction potentiéb) is broken up in two parts:

+ep(m+2m+2|U|m+2m+2)). (A7) i aC(r— )26l T (A25)
Now we can calculate the matrix elements of the kineticg,q
energy operator and the nucleon-nucleon poteri@al Due
to the separability of théx, y) andz parts of the wave func- Vﬁzlgﬁg(r —r"). (A26)
tions (A1), the average kinetic energy of a nucleon in the
mth mode is The factor,[1—g4((T))], with
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1
9s((T) = 3p3ryal ~6+3b(T)+3e D2+ b(T))],

(A27)
~ 10us?
b=—27" (A28)
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and

2 e (7:9)= [ 02 0 002, Dy (2.0

Xem(Z,8) emm(Z,{) é’ze_ 52/52.
(A34)

appears as a statistical approximation to the HF exchange . .
energyVg,., (see[2] for detail9, and is replaced by the fac- The integral§A33) and(A34) involve the Gaussians and the

tor 3/4, exact result, for the zero-range repulsive tevif,

Hermite polynomials. They are readily calculated analyti-

In order to evaluate matrix elements of the repulsive pocally (we used a procedure written MAPLE languagée and

tential V¢, we separate variables in EGA25) by letting

(r=r")?=(p—p")?+(z-2')% (A29)
With new variables,
R=p-p/, (A30)
and
7=2+3(, 7'=72-%¢, (A31)

a generic matrix elementm,m’|V*m”,m”), calculated
with wave functiongAl) becomes

<m,m/|va|m/r,m//r>
aC
=57 [ 4202 [ dpan en(@)0m (@) (2162
K[(p—p)?+ (22 lexif — (22 I57)
xexp —(p—p')%s%]

m,m’,m”,m"”

aC
— TZ j dR[ RZe—R2/52| (1)

—~R%/s?|(2)
+e Im’mr’mu’mm]
aC
2r <21 (1) (2)
= ?’ﬂ's [S Im,m’,m”,m”'+Im,m”,m”,m”’]' (A32)
where

e 1.9)= [ 02 0 2O (2,0)

X omi(Z,0) mn(Z,)e™ 1%,
(A33)

tabulated for all values,m’,m”,m”=0,1,...M. Having ex-
pressed the matrix elemerftn,m’|V*/m”,m”), as an ana-
lytic function of the parameter, we use equation§A6)—
(A12) and equationgAl5)—(Al7) to calculate the terms
Vﬁmm’ in equation(A24) and obtain the average attractive
energy per nucleon in the slgv®).
In a similar way, we calculate the matrix elements

(m,m’|VAm",m"”):

(m,m’|VA|m",m"” ='8|\{—<4?> dz dzf dpdp’ on(2)

X om(Z") orr(Z) erm(Z") S(r —r1")

BV(T)

= _Lz_\]m,mr’mulmm f (A35)

with

Jm,m/ ,m”,m”’( n)= f dz em(2) em (2) @y (Z) @y (2).
(A36)

These integrals were also calculated analytically and tabu-
lated. With the matrix elementém,m’|VA|m”,m"”) avail-
able, the average repulsive energy per nucléwt), is cal-
culated in the same way 4¥¢).

Adding equationgA23) and(A24), one obtains the bind-
ing energy per nucleon in the slab,

B=|(T)+(V)|, (A37)
which is function of (2V +3) variables:
B:B(n!pG;A]JAZv'--yAM;COICla'--ch)' (A38)

A, is not an independent variable due to constréld.
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