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Phenomenological three-parameter nucleon-nucleon potential for symmetric nuclei„NÄZ…
from ZÄ2 to infinity

A. E. Pozamantir and A. W. Overhauser
Department of Physics, Purdue University, West Lafayette, Indiana 47907-1396

~Received 29 July 1999; published 4 June 2001!

In order to study collective instabilities in symmetric nuclear matter, a simple phenomenological nucleon-
nucleon finite-range potential with three adjustable parameters is proposed. The three parameters are the
attractive strength, the attractive range, and the~zero range! repulsive strength. The potential reproduces the
binding energy, equilibrium density, compressibility modulus, and the effective mass of nuclear matter, as well
as the binding energies of4He, 16O, and 40Ca. The latter conditions are crucial for preventing spurious
‘‘quasicrystallization’’ effects in nuclear matter. With this potential and a (211)-D deformed oscillator basis,
variational Hartree-Fock calculations extending over the configuration space of the lowest 55 orbitals were
performed for spin-zero, isospin-zero light nuclei up toA580. Large ground-state deformations and exotic
nuclear shapes were found for many nuclei. Implications for their rotational spectra are discussed.

DOI: 10.1103/PhysRevC.64.014302 PACS number~s!: 21.60.Jz, 21.10.Re, 21.10.Dr, 21.10.Gv
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I. INTRODUCTION

The Hartree-Fock~HF! approximation has proved to be
reasonably good way of describing the ground state and
lective properties of nuclei, especially the heavy ones. Of
this approximation is expressed as a variational principle
the ground-state energy and the one-particle excited stat
a system of fermions. Systematic HF calculations require
effective two-body nuclear potential. Because of the inher
complexity of these calculations, it is desirable for the pot
tial to have as simple a structure as possible. The calculat
described below included evaluation of the energies for m
than 33106 Slater determinants~having dimensions up to
80380). Rather than being derived from a realistic tw
body force~with some additional higher-order phenomen
logical corrections!, such a potential involves direct param
etrization of the effective nuclear force. Its validity relies o
its ability to reproduce the accepted values of the parame
of infinite nuclear matter~binding energy, compressibility
modulus, mean density, etc.! along with the rms radii and
binding energies of light nuclei, for which the surface ener
is the dominant correction.

A popular choice of an effective nuclear interaction is t
Skyrme potential@1# and its many modifications@2–5#. Its
main attractiveness lies in the zero-range radial depend
given by thed functions, which considerably simplifies th
calculation of matrix elements. The three-body force corr
tion also has zero-range and is expressed through a den
dependent term. The physical content of the Skyrme inte
tion, however, suffers from this simplification as there is
natural way to include the surface energy in a finite nucl
system.@Instead the surface energy is modeled by anad hoc
(¹r)2 term.# Many-body effects are expressed by a dens
dependent~repulsive! term that, for properly chosen param
eters, has an unexpectedly high value for nuclear ma
~;22 MeV/nucleon@3# or ;18 MeV/nucleon@5#!, values
that are comparable with the average kinetic energy
nucleon. In contrast, studies by Kasahara, Akaichi, a
Tanaka@6# show that the three-body-force contribution to t
0556-2813/2001/64~1!/014302~26!/$20.00 64 0143
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binding energy of nuclear matter is only 3 or 4 MeV
nucleon.

A more satisfying approach consists in using a fini
range attractive potential@7–14#. The finite range of such an
interaction is a phenomenological substitute for one-p
~long-range! and two-pion ~intermediate-range! exchange
processes. Sometimes@9#, a short-range cutoff parameter
introduced to model the repulsive core of the interactio
instead of an explicit velocity-dependent repulsion. The
semirealistic potentials go one step further than Skyrme
tentials as they are able to reproduce reasonably well
only the ground-state properties of nuclei and nuclear ma
but also the experimental data on nucleon-nucleon lo
energy~<300 MeV! scattering. The finite range gives rise
a natural way to the surface energy of finite nuclei.@Ad hoc
(¹r)2 terms are unnecessary.# Any improvement over the
Skyrme interaction comes at a price. In these potentials,
radial dependence is cast in the Yukawa form@;exp
(2r/a)/(r/a)#, as in the Seyler-Blanchard and the Reid pote
tials @7,8#, in the Gaussian form@;exp(2r2/a2)#, as in the
Gogny potential@10#, or as a combination of the two@9,12#.
Matrix element calculations become a daunting task, in so
cases prohibitively so@15#. An attempt to fit both scattering
data and nuclear ground-state properties necessitates s
or more adjustable parameters.

In this paper, we propose a simple, finite-range effect
nucleon-nucleon potential having only three adjustable
rameters. Applied to even-even,N5Z nuclei, the potential
retains only a central~radial! part and consists of two terms
an attractive and a repulsive one. The attractive term ha
modified Gaussian form with a single range parameters; and
the repulsive term has a zero-range~d-function! radial depen-
dence. Nuclear saturation is achieved by letting the stren
of the repulsive term be proportional to the square root of
‘‘average kinetic energy.’’ The three parameters, the attr
tive strength, the repulsive strength, and the range, are d
mined by fitting simultaneously the binding energy and me
density of nuclear matter as well as the binding energy of
alpha particle. The three parameters are intended only
©2001 The American Physical Society02-1
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many-body phenomenological parameters, and no attem
made to fit two-body scattering data. The potential ha
simple mathematical structure that allows for extended
variational calculations.@In our case we were able to use th
entire configuration space of the (211)-dimensional quan-
tum oscillator with the 2-D main quantum numbern ranging
from 0 to 5, and the 1-D main quantum numberm ranging
from 0 to 7, m and n outside these ranges generate o
highly excited configurations.#

Our primary interest in the potential lies in its subsequ
application to studying collective instabilities in symmetr
nuclear matter. To this end, we completely neglect Coulom
spin-orbit, tensor, and pairing interactions, which play
role in symmetric nuclear matter. At the same time, it
essential that the proposed potential reproduce correctly
nuclear part of the binding energies of finite symmetric n
clei (4He, 16O, 40Ca, etc.!. Satisfying this requiremen
means that the surface energy—the dominant correctio
B` ~the binding energy of nuclear matter!—is automatically
reproduced for light nuclei, where it is relatively most im
portant. For example, too large a value for the binding
ergy of 4He would lead to a spurious ‘‘quasicrystallization.
of symmetric nuclear matter, which would then break up in
a collection of alpha-particle-like clusters.

Within the restricted basis set of a deform
(211)-dimensional linear quantum oscillator model, bin
ing energies were computed and compared with experim
tal values for even-even,N5Z nuclei for A between 4 and
80. The effects of closed oscillator shells on binding ene
is clearly seen for4He, 16O, 40Ca, and80Zr. This qualitative
agreement is gratifying given the oversimplified nature of
model potential. Nevertheless, the potential reproduces
nuclear matter properties as well as the binding energie
4He, 16O, and 40Ca, which lends credibility to our subse
quent studies of collective instabilities in nuclear matter@16#,
since the surface energy is then accounted forab initio.

The (211)-D oscillator model allows us to study shap
excitations of light nuclei in which rearrangement of seve
nucleons occurs simultaneously. Such an excitation would
expected to have a longer half-life than a one-particle e
tation; and it is often accompanied by a significant chang
shape. ‘‘Dot diagrams’’ for the (211)-D oscillator model
are introduced and used in the search for the ground state
shape excitations ofN5Z, even-even nuclei. Collective
nuclear deformations, isomeric~long-lived! states of light
nuclei, and low-lying transitions are discussed. Although
what follows more than 4000 Slater determinants are o
mized, this number is but a small fraction of the numera
energy levels.

II. THE POTENTIAL AND THE STATISTICAL
APPROXIMATION

The proposed nucleon-nucleon potential has the form

V~r1 ,r2!52aC~r12r2!2e2~r12r2!2/s2
1bA^T&d~r12r2!,

~1!
01430
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where^T& is the@center-of-mass~c.m.! motion corrected# av-
erage kinetic energy given by

^T&5
121/A

A (
i 51

A

t i , ~2!

with t i being the kinetic energy of thei th nucleon, andA
52N52Z, the total number of nucleons. Equation~2! is
exact for a Slater determinant of localized orbitals, i.e., in
HF approximation.C is the normalization coefficient of the
modified Gaussian

C5~ 3
2 p3/2s5!21. ~3!

Saturation of the nuclear density is achieved by letting
n-n repulsion increase with increasing^T&. Compared with a
two-nucleon velocity-dependent Skyrme repulsion toget
with a density-dependent Skyrme repulsion, the repuls
term of Eq. ~1! provides a simpler way to represent co
penetration of nucleon pairs. It would not be appropriate
calculate^T& by means of a Thomas-Fermi approximatio
involving the densityr. Such an approach leads to a nucleo
effective mass~in nuclear matter! given by m* /m51. We
find instead that, by calculatinĝT& accurately, m* /m
50.41, similar to values obtained by other workers.

A simpler form of the potential would have been,

V~r1 ,r2!52a8C8 exp@2~r12r2!2/s2#1b8^T&d~r12r2!,
~4!

and it was also studied. This potential can fit the bindi
energy and density of nuclear matter as well as the bind
energy of4He. However, the binding energy of16O is then
found to be too large by about 2 MeV/nucleon, which mea
its surface energy is too small. Inclusion of the (r12r2)2

factor in the attractive part of Eq.~1! solves this problem.
Multiplying the repulsive term bŷT& instead ofA^T& leads
to a compressibility modulus for nuclear matter substantia
higher than 300 MeV. Recent experimental studies indica
modulus nearer to 200 MeV, and we obtain below a value
225 MeV.

By confining our attention to even-even,N5Z nuclei we
avoid the necessity of having a tensor force. Each spa
orbital is filled with four nucleons, so the average of t
tensor operator

S1253~s1• r̂ !~s2• r̂ !2~s1•s2! ~5!

is zero regardless of the nuclear shape.
The three adjustable parameters,a, b, ands, are fixed by

the three following conditions:

B~4He!57.3 MeV; B`515 MeV;
]B`

]r U
R051.1 fm

50.

~6!

Here B(4He) is the Coulomb-corrected binding energy p
nucleon of the alpha particle,B` is the binding energy pe
nucleon in nuclear matter, andR0 is the radius of a sphere
that contains one nucleon at the equilibrium density
2-2
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nuclear matter. The reason whyB` has been taken to be 1
MeV is explained in Ref.@16#. An additional;1 MeV of
binding arises from a density instability in nuclear matt
On account of the normalizing factorC in Eq. ~1!, the range
parameters does not enter the calculation ofB` ~for uniform
nuclear matter!. The last two equations of Eq.~6! are there-
fore decoupled from the first one.a and b can then be de-
termined as follows. We may write

B`5u^T&1^Va&1^Vb&u. ~7!

^Va& is the average expectation value of thea-term in the
potential. It includes both direct and exchange terms.
account of complications that arise when calculating
change integrals of a finite-range potential, we evaluate th
here in a statistical approximation, which is the exact res
for uniform matter. We first calculate the exchange ene
between two nucleons described by plane waves~normalized
in the volume,V ! with wave vectorsk andk8:

ga~k,k8!5aC
1

V2 E d3r d3r 8 ei ~r2r8!~k82k!~r2r 8!2

3exp@2~r2r 8!2/s2#. ~8!

Upon substitutingr5r2r 8 andq5k2k8, we find,

ga~q!5aC
1

V E d3r ei ~r•q!r2e2r2/s2

5a
1

V
e2~1/4!q2s2

~12 1
6 q2s2!. ~9!

Following Overhauser and co-workers@17,18#, we average
ga(q) over the Fermi sphere of occupied states using g
metric probability techniques. With four different species
particles (p↑,p↓,n↑,n↓), we obtain

^ga~q!&5
1

4 E
0

2kF
dq P~q!ga~q!, ~10!

where

P~q!53
q2

kF
3 2

9

4

q3

kF
4 1

3

16

q5

kF
6 ~11!

is the geometric probability of two randomly chosen poin
in a sphere of radiuskF having a separationq. Obviously,
q<2kF . Combining Eqs.~9!, ~10! and ~11!, one finds

^ga~q!&5a
1

V
gs~kF!, ~12!

with

gs~kF![
1

2s6kF
6 @2613s2kF

213~21s2kF
2 !e2s2kF

2
#.

~13!

This dimensionless exchange function can be rewritten u
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^T&5
3

5

\2kF
2

2m
, m[ 1

2 ~mp1mn!, a[
10m

3\2 , b[as2,

~14!

as

gs~^T&!5
1

2b3^T&3 @2613b^T&13e2b^T&~21b^T&!#.

~15!

The exchange functiongs is shown in Fig. 1 for different
values of the range parameters. As expected, in the limits
→0, the exchange function becomes 1/4, the exact res
independent of̂ T&. For practical applications, it is conve
nient to approximate the exchange function~15! with a para-
bolic fit having the form

gs
appr~^T&!5 1

4 1c1^T&1c2^T&2. ~16!

If one plots this approximate functiongs
appr with c1 and c2

obtained from the exact values ofgs(^T&) at two points,
^T&510 and 20 MeV, fors50.54 ~our actual interaction
range!, Eq. ~16! is indistinguishable from the exact curv
g0.54(^T&) of Fig. 1.

Consider now the first term of Eq.~1! and the pure plane
wave states,wk(r )5eikr /AV, of nuclear matter. The direc
term of Eq.~7! is

^Va&direct5
1

A S 2
1

2
a

A2

V D52
1

2
ar, r[

A

V
. ~17!

Accordingly, the sum of the direct and exchange contrib
tions is

^Va&52 1
2 ar@12gs~^T&!#. ~18!

In evaluating the expectation value of the repulsive te
^Vb&, the exchange term for parallel spin and parallel isos
will cancel exactly its corresponding direct term, owing

FIG. 1. The exchange functiongs(^T&) for different values of
the range parameters.
2-3
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the zero range of the repulsived function. The average re
pulsive energy is therefore the direct term multiplied by t
factor 3/4,

^Vb&5 3
4 ~ 1

2 brA^T&!5 3
8 brA^T&. ~19!

The average binding energy in nuclear matter is there

B`5u^T&2 1
2 ar@12gs~^T&!#1 3

8 brA^T&u, ~20!

where

r5~ 4
3 pR0

3!21, ^T&5~ 9
8 p!2/3

1

aR0
2 , ~21!

so the last two relations of Eq.~6! determine the strength o
the attractive and repulsive terms of Eq.~1!:

a51690 MeV fm3, b5255 MeV1/2 fm3. ~22!

Now we can verify that other characteristics of nucle
matter are reproduced correctly. The compressibility mo
lus K, defined in terms of the mean nuclear radius is

K[UR0
2 ]2B`

]R0
2 U

R051.1 fm

5225 MeV, ~23!

very close to values 210–220 MeV determined by Blai
et al. @19# or 23165 MeV reported recently by Youngblood
Clark, and Lui@20#. The ratio of the effective nucleon mas
to the free-nucleon mass,m* /m, applicable to single-particle
excitations near the Fermi surface, is readily obtained:

m*

m
5S 11 1

2 ar
]gs~^T&!

]^T&
1 3

16 br^T&21/2D 21

'0.41.

~24!

This effective mass is similar to values found in Refs.@7,10#.
Finally, the range parameters is determined by fitting the

binding energy of thea-particle. We take the one-particl
orbitals to be the wave function for the ground state of a 3
oscillator of frequencyv:

w~r !5S g

p D 3/2

e2~1/2!gr 2
, g[

mv

\
. ~25!

The center-of-mass-corrected average kinetic energy
~9/16!\v. The four orbitals are identical, therefore the e
change energy is canceled exactly by the corresponding
rect terms. The average interaction energy then becomes@see
the Appendix, Eqs.~A38! and ~A39!#

^V&5
1

4 (
i . j

^ i j uVi j u i j &5 3
2 ~Wa1Wb!, ~26!

with

Wa52aS g

2p D 3/2

~11 1
2 gs2!25/2 ~27!

and
01430
re
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Wb5 3
4 bS g

2p D 3/2

~\v!1/2. ~28!

Using the notation of Eqs.~14! and ~25!, we put \v
5 10

3 g/a. The binding energy per nucleon of thea-particle,
with the parametersa andb given by Eq.~22!, now depends
on only two unknown parameters,g ands:

B~4He!5U15

8

g

a
2

3

2
aS g

2p D 3/2

~11 1
2 gs2!25/2

1
9

8
bS g

2p D 3/2S 10

3

g

aD 1/2U. ~29!

For a givens, B(4He)min is obtained by maximizing Eq.~29!
with respect tog. After straight-forward numerical calcula
tions, the two conditions

]B~4He!

]g
50 and B~4He!57.3 MeV ~30!

are satisfied with\v(5\2g/m)517.4 MeV and

s50.54 fm. ~31!

Equations~1!, ~22!, and~31! completely specify the interac
tion potential.

III. VARIATIONAL PROCEDURE AND ‘‘DOT
DIAGRAMS’’

All calculations below are made using a restricted H
variational procedure. We take the wave function of
nucleus to be a single Slater determinant of nucleonic o
particle states. These one-particle states are chosen t
eigenfunctions of a three-dimensional harmonic oscillat
We assume the nucleus to have axial symmetry, so it is c
venient to separate the axial coordinate from the other
~in-plane! coordinates. In this (211)-D coordinate system
the nucleonic one-particle wave functions become

cnl,m~r !5wnl~r!xm~z!. ~32!

Herewnl(r) are normalized eigenfunctions of a 2-D oscill
tor in the plane perpendicular to the intrinsic axis. They a
described by the quantum numbersn and l referring to the
state’s energy and orbital angular momentum, respectiv
The normalized eigenstates of a 1-D oscillatorxm(z) are
labeled with the energy quantum numberm. Our model in-
teraction, Eq.~1!, has no spin variables. Therefore the spa
parts of the wave functions do not depend on spin. C
structed in this fashion, the one-particle wave functions
pend on two parameters: the imputed ‘‘spring constants’’
the one- and two-dimensional oscillators,\vz and\v' . A
convenient parameter choice is

h[
mvz

\
and j[

mv'

\
. ~33!
2-4
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In even-even,N5Z nuclei ~including nuclear matter!, we
take each spatial orbital~nl, m! to be occupied by four nucle
ons~proton, spin up and down, neutron, spin up and dow!.
If we specify the set of all such occupied orbitals~nl, m! in a
nucleus withA nucleons, we have defined a ‘‘nuclear co
figuration.’’ The binding energy of this configuration is ca
culated by minimizing the expectation value of the poten
~1! plus the kinetic energy operator with respect to the va
tional parametersh and j of the Slater determinan
ch,j(r1 ,...,rA). The configuration with the largest bindin
energy will of course be the ground state while the ot
configurations will describe a subset of possible exci
states.

It is convenient to visualize these nuclear configuratio
by using ‘‘dot diagrams.’’ We will call ‘‘a dot’’ a set of
quantum numbers~nl, m!. A fully occupied orbital contain-
ing two ~spin-up and spin-down! protons and two neutrons i
referred to as ‘‘a full dot.’’ An unoccupied orbital is calle
‘‘an empty dot.’’ The nuclear configurations we entertain a
represented by a certain number of full dots arranged in
following order. We place vertical ‘‘trees’’ of dots along th
horizontal direction from left to right. All dots in a tree hav
the same quantum numberm. The first tree corresponds t
m50, the second tree tom51, and so on. The bottom of
tree contains a dot withn50 andl 50. On going up the tree
the value ofn is incremented by one. For evenn, the value of
l remains 0 on the vertical line of the tree, and changes
22 or 12 to the left or right of the vertical, respectively. Fo
odd n, all l’s are odd, so there is no dot on the vertical lin
Each tree represents a two-dimensional oscillator with
given quantum numberm. Owing to the condition2n< l
<n, D l 52, the dots arrange themselves in a treelike regu
pattern. The number of trees in a diagram we call ‘‘mod
ity’’ and denote it byM.

To illustrate the foregoing description, let us consider
dot diagram of the ground state of16O in Fig. 2. This dia-
gram has modalityM52. The first tree has four nucleons
the state~0, 0, 0!, ~bottom dot!, four nucleons in the state~1,
21, 0!, ~upper left dot!, and four nucleons in the state~1, 1,
0!, ~upper right dot!. The remaining four nucleons belong
the second tree and are in the state~0, 0, 1!. As it turns out
~not unexpectedly!, the two spring parameters,h and j, ac-
quire equal values upon minimization.~This will be the case
for all closed-shell nuclei:4He, 16O, 40Ca, 80Zr.) It follows
that 16O has a spherically symmetric shape. In this case,
ground-state configuration could be represented by a 3-D

FIG. 2. The dot diagram of the ground state of16O in (2
11)-D ~a! and 3-D~b! models. The two diagrams are equivale
when the two ‘‘spring constants’’ in the (211)-D model are equal.
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diagram, as in Fig. 2~b!, with the upper middle dot equiva
lent to the second tree dot of Fig. 2~a!. The (211)-D dot
diagrams can be viewed as a generalization of the 3-D
diagrams, the latter being applicable to spherically symm
ric nuclei only.

Without anya priori knowledge about which configura
tion corresponds to a ground state and relative energie
different configurations, all reasonably possible configu
tions must be considered. This involves calculating and m
mizing the energy for each configuration. Due to the sim
structure of our potential, we are able to entertain a v
large number of configurations. Nevertheless, special c
has to be taken to avoid redundant or unrealistic configu
tions. For 4He the dot diagram is trivial. For3Be there are
two possible dot diagrams to consider. By80Zr, with some
reasonable constraints on the number of possible diagra
we have minimized 1575 different configurations~see Fig.
3!. The algorithm of the calculations is as follows.

First, we choose a nucleus withA52N52Z and decide
on its maximum possible modalityMmax. Clearly,Mmax can-
not exceedA/4. On the other hand, calculations show that
the largest nucleus studied,80Zr ~which has only 20 full
dots!, the number of trees, or modality, can be safely cho
not to exceed seven. All other configurations would repres
highly excited shapes. In every tree, the dots are filled fr
the bottom up. If the top level in a tree is not entirely full, a
possible permutations of full dots in this level are cons
ered. However, one should recognize that the states~n, l, m!
and (n,2 l ,m) are degenerate. In addition, two other restr
tions are applied:

~i! Configurations with the last three trees occupied
dots withn50, l 50 only are highly excited, so they are no
considered.

~ii ! For givenn and l, full dots will first occupy the tree
with the smallest availablem. Otherwise, the energy of th
configuration can be lowered by the permutation (nl,m)
→(nl,m21);

Examples of these rules are shown in Figs. 4~a! and 4~b!,
which are configurations ignored by constraints~i! and ~ii !
for 64Ge. With these restrictions in mind and the fact that t

FIG. 3. The number of minimized configurationsN as a function
of the atomic numberA on a logarithmic scale~to the basee!.
2-5
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states~n, l, m! and (n,2 l ,m) are degenerate, the total ava
able ‘‘dot space’’ for 4<A<80 includes 34 different dots
( l<0), as shown in Fig. 5.

For a givenA and Mmax, we generate all possible con
figurations of dots subject to the above constraints. For e
configuration, we calculate its kinetic energy and interact
energy. The expression for the kinetic energy is readily
tained by enumerating the occupied states of a (211)-D
harmonic oscillator. The interaction energy is the sum of
pairwise nuclear interactions that can be conveniently
vided into ‘‘self-dot’’ interactions~interactions between two
nucleons belonging to the same dot! and ‘‘cross-dot’’ inter-
actions ~for any two nucleons belonging to two differen
dots!. An important simplification arises from the fact th
we can separate the one- and two-dimensional parts of
interaction. The corresponding 1-D and 2-D integrals are
culated separately~see the Appendix! and tabulated numeri
cally for thed-function repulsion, or as analytical function
of the two parameters,h andj, for the finite-range attraction
~the range parameters enters these functions explicitly!. The
exchange part of the entire repulsion energy and the self
portion of the attraction energy is responsible for the fac
3/4 in front of the direct term~the two nucleons have th
same orbitals in both these cases!. The attractive-energy ex
change term for the cross-dot interactions is calculated in
statistical approximation, described above.

Minimization in h andj ~which are, of course, the sam
for all orbitals! gives the binding energy of each configur
tion and is performed numerically using a simple Zeidel-ty
algorithm. This algorithm, generalized for a large number
variables~up to ;100!, will be discussed in more detail in
Ref. @16#.

FIG. 4. Two examples of diagrams excluded by our select
rules ~i! and ~ii ! for 64Ge.

FIG. 5. The set of dots havingl<0 needed for even-even,N
5Z nuclei up to80Zr. The dots on the right-hand side of the tre
have been omitted because they generate the same integrals a
partners on the left.
01430
ch
n
-

ll
i-

he
l-

ot
r

e

e
f

It is important to emphasize here that we study a sm
class of all possible nuclear excitations, namely, the ‘‘do
excitations, by which a full dot, or two protons and tw
neutrons, simultaneously go into a higher (211)-D oscilla-
tor orbital. Such transitions are accompanied by signific
changes in nuclear shape. Therefore, the excitations stu
are, in essence, shape excitations, and the classificatio
excited states given below is a classification of nuclear sh
excitations.

IV. RESULTS

In this section, we present the results of our calculatio
for even-even, light symmetric nuclei: their ground states
few excited states, corresponding binding energies and
formations. We assume ellipsoidal deformations charac
ized by the deformation parameterb:

R~u,f!5Rav@11bY20~u,f!# or b5A4p

5 S ^z2&1/2

Rav
21D .

~34!

Here Rav is the geometric average of the three rms radii
the x, y, andz directions~two of them being equal!:

Rav5~^z2&1/2^x2&!1/3, ^x2&5 1
2 ^r2&. ~35!

The rms radii for a nucleus are calculated as ‘‘dot averag
over a given configuration withN ~full ! dots:

^z2&5
1

N (
n

^z2&n , ^r2&5
1

N (
n

^r2&n , n5$n,l ,m%.

~36!

In deciding on the ground state of a nucleus, due to
degeneracy of the states~n, l, m! and (n,2 l ,m), an addi-
tional condition that the resultant configuration has t
smallest possible total orbital momentum,L, was imposed.
Identical configurations with higherL would exhibit a larger

n

their

FIG. 6. The dot diagram of4He.

FIG. 7. The dot diagrams of8Be.
2-6



it

n

s
61
b

on

te
s
c

o
s
e
3

, a
e
i

of
of

an

as
ost
w

her
and
an-
-
ital
of
-
see

he
he
but
if-
ne.

uld
ec-
arge
arp
gs.

ame

e

lin

tri

PHENOMENOLOGICAL THREE-PARAMETER NUCLEON- . . . PHYSICAL REVIEW C 64 014302
value of the orbital momentum component associated w
rotation around the axis perpendicular to the intrinsicz axis.
~L is, of course, the projection of the total angular mome
tum on thez axis.!

4He. The dot diagram~Fig. 6! is trivial. Both oscillator
parameters come out to be equal:\vz5\v'517.43 MeV,
making the nucleus spherically symmetric. The rms radiu
1.89 fm, slightly larger than the experimental value of 1.
fm. The binding energy~neglecting, of course, the Coulom
interaction! is, B57.27 MeV per nucleon.

8Be. Two possible dot diagrams are shown in Fig. 7. C
figuration 1 ~the ground state! has B55.49, \vz59.43,
\v'516.21 MeV, b50.81. Observe that the ground sta
has a large prolate deformation. The corresponding den
profile ~Fig. 8! makes it easy to explain the experimental fa
that 8Be is unstable and breaks up into twoa particles. The
first excited-dot diagram~configuration 2! is oblate withB
53.94,\vz516.00,\v'512.06 MeV, andb520.32.

12C. The dot diagrams are shown in Fig. 9, and the c
responding data are given in Table I. The ground state ha
oblate deformation. The nearest shape excitation has an
citation energy of about 1 MeV per nucleon. Configuration
adds another 1 MeV/nucleon in excitation energy and is
expected from the dot diagram, highly deformed along thz
axis. The nuclear density profile for the ground state
shown in Fig. 10.

FIG. 8. Nucleon density profile for the ground state of8Be.
Here, and in the subsequent density profile pictures, the solid
corresponds to the radial density distribution (z50), and the
dashed line corresponds to the density distribution along the in
sic z axis.

FIG. 9. The dot diagrams of12C.
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16O. This is a closed-shell nucleus. The binding energy
the ground state is close to the experimental value
8.8 MeV/nucleon and the rms radius is slightly smaller th
the experimental one~2.58 vs 2.67 fm!. The ground state is
spherically symmetric with a nucleon density distribution
shown in Fig. 11. An interesting feature here is the alm
identical binding energies of configurations 2 and 3, in vie
of their disparate deformations, as shown in Fig. 12. Anot
feature is the energy difference between configuration 2
configuration 4. The two have identical sets of energy qu
tum numbers,n andm. The higher binding energy for con
figuration 2 can be explained by larger overlap of the orb
~2, 0, 0! with the rest of the orbitals compared with that
the orbital~2, 62, 0! of configuration 4. Such splitting oc
curs frequently. The dot diagrams are shown in Fig. 13;
also Table II.

20Ne. The ground state has a prolate deformation. T
first excited configuration has an oblate deformation. T
binding energies of the two states are 0.25 MeV apart,
inclusion of the Coulomb repulsion might enhance this d
ference as it favors a prolate deformation over an oblate o
See Figs. 14 and 15; see also Table III.

24Mg. Configurations 1, 2, and 3 for24Mg have essen-
tially the same binding energy. The true ground state wo
depend on the competition of the Coulomb energy corr
tions. Configurations 1 and 2 are degenerate and have l
opposite deformations that could lead potentially to sh
~backbending! features in the rotational spectrum. See Fi
16–18; see also Table IV.

28Si. The ground state has an oblate deformation~Fig.
19!. The spherically symmetric state~configuration 4! lies 1
MeV/nucleon higher than the ground state and has the s
binding energy as the extremely deformed~prolate! state of
configuration 5~Fig. 20!. See dot diagrams in Fig. 21, se
also Table V.

e

n-

FIG. 10. Nucleon density profile for the ground state of12C.

TABLE I. Minimization results for12C.

Configuration B ~MeV! \vz ~MeV! \v' ~MeV! b

1 6.60 17.10 11.98 20.40
2 5.61 11.88 14.19 0.23
3 4.95 6.38 15.98 1.52
2-7
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32S. The first two configurations are essentially degen
ate ~Figs. 22 and 23!, so the true ground state would b
determined by the Coulomb contribution to the binding e
ergy. The configurations have opposite deformations
could lead to backbending in the rotational spectrum. S
Table VI.

36Ar. The ground state is oblate (b520.21), while the
next three excited states are essentially spherically sym
ric ~Figs. 24 and 25; see also Table VII!.

40Ca. This is the case of a closed shell for the (211)-D
oscillator. As expected, the ground state is spherically s

FIG. 11. Nucleon density profile for the ground state of16O.
The nucleus is spherically symmetric.

FIG. 12. Nucleon density profile for configurations 2 and 3
16O.
01430
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metric ~Fig. 26!. It is very stable against excitations, and
separated from the first shape excitation by more tha
MeV/nucleon. The binding energy, by design, is essentia
the same as the experimental value of 10.6 MeV/nucle
Dot diagrams are shown in Fig. 27; see also Table VIII.

44Ti. The ground state has a prolate deformation ofb
50.27. The next two excited shapes are practically symm
ric. See Figs. 28 and 29, and Table IX.

48Cr. The ground state has an oblate shape withb5
20.22. The first excited shape is prolate and is separate
a small amount,DB50.13 MeV/nucleon. See Figs. 30 an
31, and Table X.

52Fe. The ground state has a large prolate deformat
b50.44, and is separated from the first shape excitation b
very small gap,DB50.09 MeV/nucleon. This state is oblat
with b520.29. See Figs. 32 and 33, and Table XI.

56Ni. The ground state is oblate withb520.35. The first
shape excitation is strongly prolate (b50.68). The two are
separated byDB50.21 MeV/nucleon. See Figs. 34 and 3
and Table XII.

60Zn. The first two configurations are practically identic
(b520.32) except for the upper dot in the second tr
which for the ground state prefers orbital~2,0,1! over orbital
~2,62,1!. The reason for this is the smaller overlap with t
rest of the orbitals in the latter case, leading to an ene
penalty of 0.16 MeV/nucleon. The next shape excitation l
within 0.2 MeV/nucleon and has a large opposite deform
tion, b50.61. See Figs. 36 and 37, and Table XIII.

64Ge. As in the case of Zn, the first configurations a
essentially identical with an oblate deformation ofb5
20.30 ~Fig. 38!. The interesting feature is the existence
four low-lying shape excitations~with opposite deforma-
tions! that range fromb50.16 tob50.56~see Fig. 39!. This
may lead to an unusual behavior of its rotational spectru
See Table XIV and dot diagrams in Figs. 40 and 41.

f

FIG. 13. The dot diagrams of16O.

TABLE II. Minimization results for16O.

Configuration B ~MeV! \vz ~MeV! \v' ~MeV! b

1 8.59 14.07 14.05 0.00
2 5.58 16.94 10.17 20.52
3 5.56 8.26 14.85 0.84
4 5.14 16.67 9.88 20.53
5 3.56 9.48 12.45 0.33
2-8
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68Se. In addition to the oblate ground state (b520.28),
the nucleus of Se exhibits four essentially degenerate l
lying configurations with quite different shapes ranging fro
b50.52 to b520.21. An interesting rotational spectru
could be expected. See Figs. 42–45, and Table XV.

72Kr. The ground state and the first four-excited config
rations are essentially spherically symmetric and nearly
generate. This is the only case in our study where we ha
apply the minimum total angular momentum rule and po
late orbital~2,12,1! instead of orbital~2,22,1! in the second
tree ~given the dot distribution of the first tree! in order to
obtain an orbital momentum ofL521, instead ofL525.
See Figs. 46–48, and Table XVI.

76Sr. The first three configurations are virtually identic
in binding energy and deformation~spherically symmetric!
~Figs. 49 and 50!. This is the case when the excitations a
one-dot excitations, as seen from the tree diagrams of
51. See Table XVII.

80Zr. This is the last closed-shell nucleus studied, j
beyond the experimental proton drip line. The closed-sh
effects are seen in the sharp peak in the binding energy c
pared to neighboring nuclei, as well as in the large gap
tween the ground state and the first shape excitation.
ground state is symmetric, as shown in Fig. 52. The next f
configurations are nearly degenerate with small deformat
of both signs. See dot diagrams in Figs. 53 and 54 and
responding data in Table XVIII.

FIG. 14. Nucleon density profile for the ground state of20Ne.

FIG. 15. The dot diagrams of20Ne.
01430
-

-
e-
to
-

l

g.

t
ll
m-
e-
he
r
s
r-

V. DISCUSSION

The calculated binding energies of the ground states
even-even,N5Z nuclei are shown in Fig. 55. They are com
pared with the Coulomb-corrected experimental values
Möller et al. @21#. For 68Se, 72Kr, 76Sr, and 80Zr ~as we
approach the proton drip line! there is no experimental dat
available. Therefore, extrapolations from the nearest av
able experimental data, tabulated in Ref.@21# are used for
comparison. A few comments are appropriate here.

The interaction parameters~a, b, ands! were chosen to
give exactly the binding energy of4He and the best possibl
fit for both 16O and 40Ca. In their ground state, these thre
nuclei, together with80Zr, turn out to be closed-shell con
figurations of the (211)-D oscillator for modalitiesM51,
2, 3, and 4, respectively. These four nuclei are the only o
that are spherically symmetric in their ground state, each
being a complete shell of an isotropic 3-D oscillator. Th
are very stable against deformations, and their binding e
gies have pronounced peaks, as shown in Fig. 55.

The remainder of the calculated binding energy curve
below the experimental data. For smallA (8<A<36) the
calculated values are significantly underbound. For largA
the calculated values follow the experimental curve rat
well. It is reasonable to expect that light nuclei~with their
large surface-to-volume ratio! would acquire a larger fraction
of their binding energy~compared to heavy nuclei! from
many-body corrections beyond the Hartree-Fock approxim
tion, i.e., the correlation energy arising from configurati
interaction.

The ground-state shapes~in the ellipsoidal deformation
approximation! are summarized in Fig. 56. It is interesting
compare our results with those obtained by Mo¨ller et al.

FIG. 16. Nucleon density profile for the ground state of24Mg.

TABLE III. Minimization results for20Ne.

Configuration B ~MeV! \vz ~MeV! \v' ~MeV! b

1 8.20 10.15 14.75 0.50
2 7.95 14.90 12.07 20.23
3 7.14 14.56 11.93 20.22
4 6.96 11.82 13.07 0.12
5 5.71 16.95 9.27 20.59
2-9
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FIG. 17. Nucleon density profile for the first two shape exci
tions of 24Mg.

FIG. 18. The dot diagrams of24Mg.

TABLE IV. Minimization results for24Mg.

Configuration B ~MeV! \vz ~MeV! \v' ~MeV! b

1 7.93 9.78 14.16 0.49
2 7.92 15.48 11.16 20.34
3 7.86 11.15 12.92 0.18
4 7.53 15.22 11.00 20.34
5 7.24 12.98 12.03 20.09
01430
@21#. An important difference is that we ignored the Co
lomb repulsion. As expected, for closed-shell nuclei~with
the surprising exception of80Zr), both approaches yield
spherically symmetric shapes. We found that all other nu
are deformed in their ground state.

For light nuclei, where the energy difference betwe
ground and excited states is larger than or comparable to
Coulomb energy, our calculations generally agree with R
@21#. However, forA between 32 and 58, spherically sym
metric nuclear shapes are predicted in Ref.@21#. Instead, we
find that these nuclei are deformed~excepting, of course
40Ca). Inclusion of the Coulomb energy should enhance p

-

FIG. 19. Nucleon density profile for the ground state of28Si.

FIG. 20. Density profile for two degenerate excited states
28Si, configurations 4 and 5.
2-10
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PHENOMENOLOGICAL THREE-PARAMETER NUCLEON- . . . PHYSICAL REVIEW C 64 014302
late deformations. Such is likely the case for36Ar, 48Cr, and
56Ni. Interestingly, two rotational bands in the doubly mag
nucleus56Ni have been recently identified@22#. Including the
Coulomb repulsion would likely reverse the sign of the d
formations for60Zn, 64Ge, and68Se. These nuclei, found t
be oblate, have prolate ‘‘excited’’ states lying within 0
MeV/nucleon of their ground states. The only other nucle
for which the two methods lead to opposite deformations
72Kr. We found its ground state to be prolate, but its fir
excited configuration is oblate~configurations 1 and 2, re
spectively, in Fig. 47!.

It is interesting to consider qualitatively high-spin rot
tions of light nuclei ~about an axis perpendicular to the
intrinsic z axis!. Such an excitation would lead to a larg
deformation in those nuclei already prolate in their grou
state, such as20Ne, 24Mg, etc. For high-spin excitations
nuclei such as28Si, 36Ar, 48Cr, 56Ni, 60Zn, 64Ge, and68Se
may change their deformations from oblate to prolate,
accordance with their first-excited configuration. The res
ing abrupt change in moment of inertia would exhibit a ba
bending feature in their rotational spectra. This would p
vide an explanation for the backbending phenomen
alternative to that discussed in Ref.@23# for the case of48Cr.
Transitions involving many dots~often with a change of mo
dality of the dot diagram! could result in rotational state
having far longer half-lives than one-particle excitations; i.
long-lived isomeric states could occur.

FIG. 21. The dot diagrams of28Si.

TABLE V. Minimization results for24Si.

Configuration B ~MeV! \vz ~MeV! \v' ~MeV! b

1 8.86 16.11 10.77 20.42
2 8.56 9.56 13.87 0.49
3 8.15 10.82 12.98 0.23
4 7.85 11.99 12.04 0.00
5 7.84 7.74 14.62 0.92
01430
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The dot diagram technique lends itself naturally to t
study of exotic molecular states in light nuclei.~See, for
example Ref.@24#, for a discussion of some experiment
results in 12Be.) For example, wave functions of full dot

FIG. 22. Nucleon density profile for the ground state and
first collective excited state of32S.

FIG. 23. The dot diagrams of32S.
2-11
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A. E. POZAMANTIR AND A. W. OVERHAUSER PHYSICAL REVIEW C64 014302
with quantum numbers,m and n, at the top level of a tree
can mix with those of empty dots (m8,n8) from another tree.
Such mixing can lead to a density profile with a higher pe
to-trough ratio than that shown for the deformed ground s
of 8Be in Fig. 8. Any generalization of the restricted-bas
set Hartree-Fock scheme employed here should be e
tained in future work.

Finally, we emphasize once again that we have evalua
only the energies of those configurations for which each
bital basis state is either empty or fully occupied~with four
nucleons!. Obviously, this subset of all possible configur
tions is a very small fraction of the totality. One convenie
attribute of this subset is that tensor forces and spin-o
forces do not contribute to the energy.~It should also be
noted that a Bardeen-Cooper-Schrieffer pairing energy c
not arise for a single Slater determinant.! If we were to con-
sider even-even nuclei withNÞZ, there would be separat

FIG. 24. Nucleon density profile for the ground state and
first collective excited state of36Ar.

TABLE VI. Minimization results for32S.

Configuration B ~MeV! \vz ~MeV! \v' ~MeV! b

1 9.06 10.57 13.09 0.27
2 9.01 14.70 11.08 20.30
3 8.79 7.94 14.39 0.85
4 8.71 12.79 11.58 20.12
5 8.53 10.41 12.88 0.27
01430
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dot diagrams for neutrons and protons, andvz

j ,v'
j , j

5n,p, would be distinct wave-function parameters for ea
species.~The full generality of the HF Hilbert space ca
occur only if half-filled dots were also admitted, but the
spin-orbit and tensor forces would need to be included.!

A perusal of the dot diagrams~and their associated table
in Sec. IV! reveals the large variations ofvz , v' , and b
from configuration to configuration. This behavior prov
that Koopmans’ theorem@25# is severely violated in nuclea
physics. The reason for this violation is that a one-nucle
orbital energy depends critically on how other orbitals a
occupied as well as onvz andv' . ~There is no large centra
potential analogous to the Coulomb potential of an atom
nucleus, which enforces a nominal ordering of electronic
ergy levels.! The corresponding large variations in dens
profiles, which reveal the anisotropy of the nuclear rad
and, also, the anisotropy of the surface thickness, contrib
to the failure of an elementary ordering scheme. Therefo
the collection of dot diagrams cannot be replaced by a s
plified model that ~implicitly ! assumes near validity fo
Koopmans’ theorem.

Of the 20 even-even,N5Z nuclei studied here,4He, 16O,
and 40Ca are surely spherical. Twelve predicted intrinsic d

e

FIG. 25. The dot diagrams of36Ar.

TABLE VII. Minimization results for36Ar.

Configuration B ~MeV! \vz ~MeV! \v' ~MeV! b

1 9.76 13.75 11.35 20.21
2 9.63 11.42 12.58 0.11
3 9.56 12.50 11.93 20.05
4 9.31 11.27 12.31 0.11
5 9.18 8.71 13.62 0.59
2-12
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FIG. 26. Nucleon density profile for the ground state~spheri-
cally symmetric! and the first shape excitation of40Co.

FIG. 27. The dot diagrams of40Co.
01430
formations of the remaining 17, shown in Fig. 56, from t
present work and from the tabulation of Ref.@21#, are seri-
ously discrepant. With the advent of new detectors, such
the gammasphere, it may be possible to measureb ~includ-
ing its sign! for some of these contested cases.

Note added. The ground-state deformation of68Se has
recently been measured by Fischeret al. @26# and found to be
oblate. Resolution of the remaining 11 discrepancies wo
be of considerable interest.

VI. CONCLUSIONS

In order to study instabilities in symmetric nuclear matt
we have proposed a simple phenomenological nucle
nucleon potential having three adjustable parameters: at
tive strength, attractive range, and repulsive strength~zero
range!. This potential reproduces four properties of nucle
matter: the binding energy, equilibrium density, compre

FIG. 28. Nucleon density profile for the ground state and
first shape excitation of44Ti.

TABLE VIII. Minimization results for 40Ca.

Configuration B ~MeV! \vz ~MeV! \v' ~MeV! b

1 10.76 12.21 12.21 0.00
2 9.61 9.50 13.06 0.41
3 9.50 14.29 10.62 20.31
4 9.25 9.39 12.86 0.40
5 9.19 13.02 11.02 20.18
2-13
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A. E. POZAMANTIR AND A. W. OVERHAUSER PHYSICAL REVIEW C64 014302
ibility modulus, and the nucleon effective mass. To prev
spurious ‘‘quasicrystallization’’ effects, it is also necessa
that the potential reproduces the nuclear part of the bind
energies of the even-even,N5Z nuclei: 4He, 16O, and40Ca.

The dot diagram technique and the statistical approxim
tion for exchange integrals were employed to calculate pr
erties of finite nuclei in a (211)-D deformed oscillator ba-
sis. In this basis, variational Hartree-Fock calculatio
extending over the configuration space defined by the low
55 orbitals were performed. Our attention was focused
spin-zero, isospin-zero nuclei. Therefore, spin-orbit, tens
and pairing interactions were omitted. In addition, the Co
lomb interaction was neglected. Nevertheless, the bind
energies and nuclear density profiles of closed-shell,A54,
16 and 40, nuclei were close to the~Coulomb corrected!
experimental values. Comparisons with experimental bi
ing energies were made for all even-even,N5Z nuclei up to
A580. Large ground-state deformations and exotic nuc
shapes were found for some nuclei. Shape excitations,
shape isomers with diverse deformations, occur frequen
~See Tables I–XVIII.! This phenomenon is well known@27#.
We believe that the nucleon-nucleon potential develo
here is appropriate for investigating collective instabilities
nuclear matter@16#.

FIG. 29. The dot diagrams of44Ti.

TABLE IX. Minimization results for44Ti.

Configuration B ~MeV! \vz ~MeV! \v' ~MeV! b

1 10.57 10.22 12.70 0.27
2 10.45 12.75 11.40 20.12
3 10.09 11.68 11.67 0.00
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FIG. 30. Nucleon density profile for the ground state and
first shape excitation of48Cr.

FIG. 31. The dot diagrams of48Cr.
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APPENDIX: EVALUATION OF THE INTERACTION
INTEGRALS WITH THE „2¿1…-D

HARMONIC-OSCILLATOR WAVE FUNCTIONS

In the notation of Eq.~33!, the first seven normalized
one-dimensional oscillator wave functions are

x0~z!5S h

p D 1/4

e2~1/2!hz2

x1~z!5S h

p D 1/4

A2hze2~1/2!hz2

x2~z!5S h

p D 1/4 1

&
~2hz221!e2~1/2!hz2

x3~z!5S h

p D 1/4 1

)
~2h3/2z323h1/2z!e2~1/2!hz2

FIG. 32. Nucleon density profile for the ground state and
first shape excitation of52Fe.

TABLE X. Minimization results for48Cr.

Configuration B ~MeV! \vz ~MeV! \v' ~MeV! b

1 10.57 13.24 10.77 20.22
2 10.44 9.53 12.69 0.36
3 10.25 10.73 11.85 0.12
01430
x4~z!5S h

p D 1/4 1

A24
~4h2z4212hz213!e2~1/2!hz2

x5~z!5S h

p D 1/4 1

A60
~4h5/2z5220h3/2z3115h1/2z!e2~1/2!hz2

x6~z!5S h

p D 1/4 1

A720
~8h3z6260h2z4190hz2

215!e2~1/2!hz2
.

The two-dimensional oscillator states forn50,...,5 are

c00~r,q!5S j

p D 1/2

e2~1/2!jr2

c161~r,q!5S j

p D 1/2

j1/2re2~1/2!jr2
e6iq

c20~r,q!5S j

p D 1/2

~12jr2!e2~1/2!jr2

e

FIG. 33. The dot diagrams of52Fe.

TABLE XI. Minimization results for52Fe.

Configuration B ~MeV! \vz ~MeV! \v' ~MeV! b

1 10.65 8.99 12.66 0.44
2 10.56 13.64 10.31 20.29
3 10.42 12.79 10.60 20.20
2-15
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FIG. 34. Nucleon density profile for the ground state and
first shape excitation of56Ni.

FIG. 35. The dot diagrams of56Ni.
01430
c262~r,q!5S j

p D 1/2 1

&
jr2e2~1/2!jr2

e62iq

c361~r,q!5S j

p D 1/2 1

&
~2j1/2r2j3/2r3!e2~1/2!jr2

e6iq

c363~r,q!5S j

p D 1/2 1

A6
j3/2r3e2~1/2!jr2

e63iq

c40~r,q!5S j

p D 1/2 1

A4
~224jr21j2r4!e2~1/2!jr2

c462~r,q!5S j

p D 1/2 1

A6
~3jr22j2r4!e2~1/2!jr2

e62iq

e

FIG. 36. Nucleon density profile for the ground state~configu-
ration 1! and configuration 3 of60Zn.

TABLE XII. Minimization results for56Ni.

Configuration B ~MeV! \vz ~MeV! \v' ~MeV! b

1 10.90 14.01 9.97 20.35
2 10.69 7.89 12.98 0.68
3 10.68 9.04 12.34 0.40
2-16
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c464~r,q!5S j

p D 1/2 1

A24
j2r4e2~1/2!jr2

e64iq

c561~r,q!5S j

p D 1/2 1

A12
~6j1/2r26j3/2r3

1j5/2r5!e2~1/2!jr2
e6iq

c563~r,q!5S j

p D 1/2 1

A24
~4j3/2r32j5/2r5!e2~1/2!jr2

e63iq

c565~r,q!5S j

p D 1/2 1

A120
j5/2r5e2~1/2!jr2

e65iq.

The interaction potential is given by Eq.~1!.
For the integrals involving the repulsive part of the pote

tial, it is convenient to define

~nlm,n8l 8m8!b
2[E E d3r d3r 8uwnl,m~r !u2

3d~r2r 8!uwn8 l 8,m8~r 8!u2 ~A1!

5E d3r uwnl,m~r !u2uwn8 l 8,m8~r !u2,

~A2!

FIG. 37. The dot diagrams of60Zn.

TABLE XIII. Minimization results for 60Zn.

Configuration B ~MeV! \vz ~MeV! \v' ~MeV! b

1 10.99 13.58 9.94 20.32
2 10.83 13.56 9.92 20.32
3 10.80 8.00 12.65 0.61
01430
-

~nlm!b
4[E d3r uwnl,m~r !u4. ~A3!

Clearly, the 1-D and 2-D parts of the integrals are separa
and the integrals may be represented as~in the subsequen
notation the asterisk stands for any value of quantum nu
bersn, l, or m, from their entire range, in the order of the
appearance!

~nlm,n8l 8m8!b
25~nl* ,n8l 8* !b

2 ~** m,** m8!b
2, ~A4!

~nlm!b
45~nl* !b

4 ~** m!b
4, ~A5!

with

~** m,** m8!b
2[E

2`

`

dzuxm~z!u2uxm8~z!u2, ~A6!

~** m!b
4[E

2`

`

dzuxm~z!u4, ~A7!

~nl* ,n8l 8* !b
2[E d2rucnl~r,q!u2ucn8 l 8~r,q!u2,

~A8!

FIG. 38. Nucleon density profile for the ground state of64Ge.
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~nl* !b
4[E d2rucnl~r,q!u4. ~A9!

Integrals~A6!, ~A7!, ~A8!, and ~A9! are readily calculated
and we present their values in Tables XIX and XX. Su
ming up all the interacting pairs, we arrive at the final e
pression for the average repulsive energy. In this express
in order to simplify the combinatorics, it is convenient
‘‘expand’’ the entire repulsive energy in terms of the 1-
integrals:

^Vb&5
1

A
bA^T&S h

2p D 1/2S j

2p D @K00~** 0!b
4

1K01~** 0,** 1!b
21¯1K0M~** 0,** M !b

2

1K11~** 1!b
41¯1KMM~** M !b

4 #. ~A10!

FIG. 39. Nucleon density profile for prolate excited states
64Ge.

TABLE XIV. Minimization results for64Ge.

Configuration B ~MeV! \vz ~MeV! \v' ~MeV! b

1 11.08 13.20 9.91 20.30
2 10.98 13.17 9.88 20.30
3 10.97 9.93 11.37 0.16
4 10.92 9.05 11.80 0.33
5 10.84 8.08 12.32 0.56
6 10.84 9.51 11.62 0.24
01430
-
-
n,

The terms in the brackets are taken to be dimensionl
whereKi j are numerical coefficients that include all the 2-
interaction integrals between different dots in thei th and j th
trees. If i 5 j , they include the ‘‘self-dot’’ interaction, i.e.
interaction between nucleons belonging to the same dot.
interacting pairs have the same spatial orbitals owing to thd
function, and the exchange integrals cancel exactly the di
integrals. Therefore, the coefficientsKi j , as defined here, do

f

FIG. 40. The first three dot diagrams of64Ge.

FIG. 41. The next three dot diagrams of64Ge.
2-18



l

la
na
at

th ed

PHENOMENOLOGICAL THREE-PARAMETER NUCLEON- . . . PHYSICAL REVIEW C 64 014302
not include interactions between like particles (p↑ with p↑,
etc.! in both cases,i 5 j and iÞ j , which results in six iden-
tical integrals for ‘‘self-dot’’ interactions and in 12 identica
integrals for interactions between two different dots.

We treat the attractive interaction integrals in a simi
way. First, let us show that the one- and two-dimensio
integrals are separable. For a pair of nucleons in the st
~nl, m! and (n8l 8,m8), respectively, we define

~nlm,n8l 8m8!a
2[E E d3r d3r 8uwnl,m~r !u2

3~r2r 8!2e2~r2r8!2/s2
uwn8 l 8,m8~r 8!u2

~A11!

and

~nlm!a
4[E E d3r d3r 8uwnl,m~r !u2

3~r2r 8!2e2~r2r8!2/s2
uwnl,m~r 8!u2. ~A12!

To separate the variables, we notice that

~r2r 8!25~r2r8!21~z2z8!2. ~A13!

Now we may rewrite Eqs.~A11! and ~A12! as

FIG. 42. Nucleon density profile for the ground state and
first shape excitation of68Se.
01430
r
l
es

e FIG. 43. Nucleon density profile for two degenerate excit
states of68Se. Configuration 4 has a large prolate deformationb
50.52 and configuration 5 has an oblate deformation withb
520.21.

FIG. 44. The first three dot diagrams of68Se.
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FIG. 45. The next two dot diagrams of68Se.

FIG. 46. Nucleon density profile for the ground state and
first shape excitation of72Kr.

TABLE XV. Minimization results for68Se.

Configuration B ~MeV! \vz ~MeV! \v' ~MeV! b

1 11.34 12.85 9.88 20.28
2 11.20 9.93 11.27 0.15
3 11.16 9.50 11.47 0.23
4 11.09 8.15 12.07 0.52
5 11.08 12.28 10.09 20.21
01430
~nlm,n8l 8m8!a
25~nl* ,n8l 8* !a

2 ~** m,** m8!a
2

1~nl* ,n8l 8* !a
2 ~** m,** m8!a

2

~A14!

and

~nlm!a
45~nl* !a

4 ~** m!a
41~nl* !a

4~** m!a
4, ~A15!

where

~** m,** m8!a
2[E

2`

` E
2`

`

dz dz8uxm~z!u2e2~z2z8!2/s2

3uxm8~z8!u2, ~A16!

~** m!a
4[~** m,** m!a

2, ~A17!

e

FIG. 47. The first three dot diagrams of72Kr.

FIG. 48. The next two dot diagrams of72Kr.
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~** m,** m8!a
2[E

2`

` E
2`

`

dz dz8uxm~z!u2~z2z8!2

3e2~z2z8!2/s2
uxm8~z8!u2, ~A18!

~** m!a
4[~** m,** m!a

2, ~A19!

~nl* ,n8l 8* !a
2[E E d2r d2r8ucnl~r,q!u2e2~r2r8!2

u

3cn8 l 8~r8,q8!u2, ~A20!

~nl* !a
4[~nl* ,nl* !a

2, ~A21!

~nl* ,n8l 8* !a
2[E E d2r d2r8ucnl~r,q!u2~r2r8!2

3e2~r2r8!2
ucn8 l 8~r8,q8!u2, ~A22!

~nl* !a
4[~nl* ,nl* !a

2. ~A23!

The integrals~A16! through~A23! are calculated and tabu
lated in the same way as the repulsion integrals, only n
the integrals are functions of the three parameters:h, j, and
s. The resultant expressions are rather cumbersome an
do not show them here.

FIG. 49. Nucleon density profile for the ground state of76Sr.

TABLE XVI. Minimization results for72Kr.

Configuration B ~MeV! \vz ~MeV! \v' ~MeV! b

1 11.58 9.93 11.17 0.14
2 11.49 12.09 10.08 20.20
3 11.41 10.31 10.94 0.07
4 11.41 10.67 10.69 0.00
5 11.40 11.52 10.24 20.13
01430
w

we

FIG. 50. Nucleon density profile for the first two shape exci
tions of 76Sr. In the upper picture, the two curves completely ov
lap.

FIG. 51. The first three dot diagrams of76Sr.
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The average attractive energy per nucleon can be wri
now as

^Va&52
1

A
aCF (

m50

M

Vm
~s.d.!1 (

m8>m51

M

Vmm8
~d.d.!G , ~A24!

where in the first term,

Vm
~s.d.![6(

n,l
~nl,m!a

4, ~A25!

the summation is performed over all occupied dots in
mth tree. This term represents the attraction between all p
of nucleons belonging to the same dot~nl, m!. The exact
cancelation of the direct and exchange terms reduces
number of terms contributing from one full dot~four nucle-

FIG. 52. Nucleon density profile for the ground state and
first shape excitation of80Zr. In the upper picture, the two curve
completely overlap.

TABLE XVII. Minimization results for 76Sr.

Configuration B ~MeV! \vz ~MeV! \v' ~MeV! b

1 11.87 10.31 10.90 0.06
2 11.83 10.68 10.67 0.00
3 11.83 11.47 10.26 20.12
01430
n

e
irs

he
ons! to C2

456. The contribution from pairs where the tw
nucleons belong to two different dots is given by

Vmm8
~d.d.![@12gs~^T&!#(

n,l
(

n8,l 8
~nlm,n8l 8m8!a

2,

~A26!

where the summation is extended over all occupied dot
the mth andm8th trees, respectively. It is here that we u
the statistical approximation to the exchange energy
cussed in Sec. II. Combination of equations~A10! and~A24!
gives the entire interaction energy per nucleon for anN5Z
51/2A, even-even nucleus.

Let us show how this procedure applies to4He, the sim-
plest of our nuclei. Its c.m.-corrected average kinetic ene
is

e

FIG. 53. The first three dot diagrams of80Zr.

FIG. 54. The next two dot diagrams of80Zr.
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FIG. 55. Calculated ground-state binding energies~full circles!
vs the atomic numberA, compared with corresponding experime
tal values from Mo¨ller et al. The last four points of the experimen
tal curve~empty circles with dots! are extrapolated values from th
nearest isotope of known mass.

TABLE XVIII. Minimization results for 80Zr.

Configuration B ~MeV! \vz ~MeV! \v' ~MeV! b

1 12.36 10.67 10.67 0.00
2 11.85 9.27 11.17 0.22
3 11.75 11.73 9.87 20.19
4 11.71 9.55 10.96 0.16
5 11.71 11.36 10.05 20.13
01430
^T&5

12
1

4

4
343 1

2 ~01 3
2 !\v5 9

16 \v. ~A27!

The average attraction is

^Va&52 1
4 aCV0

~s.d.! , ~A28!

with

V0
~s.d.!56~00,0!a

456@~00* !a
4~** 0!a

41~00* !a
4~** 0!a

4 #.

~A29!

Let us calculate the integrals:

FIG. 56. Calculated ground-state ellipsoidal deformationsb
~full squares! atomic numberA. The corresponding calculated va
ues from Möller et al. are the empty squares.
units
TABLE XIX. Values of the one-dimensional integrals for the repulsive part of the interaction in the
of (h/2p)1/2.

Orbitals (** 0)2 (** 1)2 (** 2)2 (** 3)2 (** 4)2 (** 5)2 (** 6)2

(** 0)2 1 1

2

3

8

5

16

35

128

63

256

231

1024
(** 1)2

3

4

7

16

11

32

75

256

133

512

483

2048
(** 2)2

41

64

51

128

329

1024

569

2048

2037

8192
(** 3)2

147

256

759

2048

1245

4096

4351

16 384
(** 4)2

8649

16 384

11 445

32 768

38 005

131 072
(** 5)2

32 307

65 536

87 069

262 144
(** 6)2

487 889

1 048 576
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TABLE XX. Values of the two-dimensional integrals for the repulsive part of the interaction in the units of (j/2p).

Orbitals (00* )2 (161* )2 (20* )2 (262* )2 (361* )2 (363* )2

(00* )2 1 1

2

1

2

1

4

3

8

1

8
(161* )2

1

2

1

4

3

8

1

4

1

4
(20* )2

1

2

1

4

1

4

1

4
(262* )2

3

8

3

16

5

16
(361* )2

5

16

3

16
(361* )2

5

16

Orbitals (40* )2 (462* )2 (464* )2 (561* )2 (563* )2 (565* )2

(00* )2
3

8

1

4

1

16

5

16

5

32

1

32
(161* )2

3

16

1

4

5

32

3

16

7

32

3

32
(20* )2

5

16

1

8

7

32

7

32

7

64

11

64
(262* )2

5

32

3

16

15

64

9

64

25

128

21

128
(361* )2

11

64

7

32

25

128

3

16

1

8

3

16
(363* )2

9

64

5

32

35

128

1

12

5

32

7

32

Orbitals (40* )2 (462* )2 (464* )2 (561* )2 (563* )2 (565* )2

(40* )2
11

32

3

16

9

64

11

64

23

128

19

128
(462* )2

1

4

5

32

9

64

25

128

21

128
(464* )2

35

128

15

128

35

256

63

256
(561* )2

15

64

19

128

15

128
(563* )2

55

256

35

256
(565* )2

63

256
~** 0!a
45E

2`

`

dz dz8@x0~z!#u2ux0~z8!u2 exp@2~z2z8!2/s2#

5S h

p D E
2`

`

dz dz8 e2h~z21z82!exp@2~z2z8!2/s2#.

~A30!
01430
With the new variablesz andZ:

z[Z1 1
2 z, z8[Z2 1

2 z, ~A31!

Eq. ~A30! becomes
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~** 0!a
45S h

p
D E

2`

`

dz dZ expF2hS 2Z21
1

2
z2D Ge2z2/s2

5S h

2
D 1/2 s

A11
1

2
hs2

. ~A32!

Similarly,

~** 0!a
45E

2`

`

dz dz8ux0~z!u2ux0~z8!u2~z2z8!2e2~z2z8!2/s2

5S h

p D E
2`

`

dz dz8 e2h~z21z82!~z2z8!2e2~z2z8!2/s2

5S h

p D E
2`

`

dz dZ z2 expF2hS 2Z21
1

2
z2D Ge2z2/s2

5
1

2 S h

2 D 1/2 s3

S 11
1

2
hs2D 3/2. ~A33!

For the two-dimensional integrals, we use the substitutio

r[R1 1
2 r , r8[R2 1

2 r . ~A34!

Then

~00* !a
45E d2r d2r8uc00~r,q!u2uc00~r8,q8!u2e2~r2r8!2/s2

5S j

p D 2E d2r d2r8 e2j~r21r82!e2~r2r8!2/s2

5~2p!2S j

p D 2E
0

`

dr r expF2S 1

2
j1

1

s2D r 2G
3E

0

`

dR R e22jR2

5S j

2D s2

11
1

2
js2

, ~A35!

and
o

01430
~00* !a
45E d2r d2r8uc00~r,q!u2uc00~r8,q8!u2~r2r8!2

3e2~r2r8!2/s2

5S j

p D 2E d2r d2r8e2j~r21r82!~r2r8!2

3e2~r2r8!2/s2

5~2p!2S j

p D 2E
0

`

dr r 3

3expF2S 1

2
j1

1

s2D r 2G E
0

`

dR R e22jR2

5S j

2D s4

S 11
1

2
js2D 2 . ~A36!

Now we have

V0
~s.d.!56s5S h

2 D 1/2S j

2D F 1

S 11
1

2
hs2D 1/2

1

S 11
1

2
js2D 2

1
1

2

1

S 11
1

2
js2D

1

S 11
1

2
hs2D 3/2G . ~A37!

For 4He, the two parameters,h andj, are equal:h5j[g.
Therefore

^Va&52
3

2
aS g

2p D 3/2 1

S 11
1

2
gs2D 3/2. ~A38!

~Here, in the limits→0, we regain thed-function result.!
The repulsive energy is

^Vb&5 1
4 bA^T&S g

2p D 3/2

365
9

8
bS g

2p D 3/2

~\v!1/2.

~A39!

Combining equations~A27!, ~A38!, and~A39!, we arrive at
the final result, Eq.~29! of Sec. II.
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