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Phenomenological three-parameter nucleon-nucleon potential for symmetric nucl¢iN=2)
from Z=2 to infinity

A. E. Pozamantir and A. W. Overhauser
Department of Physics, Purdue University, West Lafayette, Indiana 47907-1396
(Received 29 July 1999; published 4 June 2001

In order to study collective instabilities in symmetric nuclear matter, a simple phenomenological nucleon-
nucleon finite-range potential with three adjustable parameters is proposed. The three parameters are the
attractive strength, the attractive range, and (#e¥o rangg repulsive strength. The potential reproduces the
binding energy, equilibrium density, compressibility modulus, and the effective mass of nuclear matter, as well
as the binding energies dHe, %0, and“°Ca. The latter conditions are crucial for preventing spurious
“quasicrystallization” effects in nuclear matter. With this potential and & (9-D deformed oscillator basis,
variational Hartree-Fock calculations extending over the configuration space of the lowest 55 orbitals were
performed for spin-zero, isospin-zero light nuclei upAe-80. Large ground-state deformations and exotic
nuclear shapes were found for many nuclei. Implications for their rotational spectra are discussed.
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I. INTRODUCTION binding energy of nuclear matter is only 3 or 4 MeV/
nucleon.

The Hartree-FockHF) approximation has proved to be a A more satisfying approach consists in using a finite-
reasonably good way of describing the ground state and colange attractive potentigf—14|. The finite range of such an
lective properties of nuclei, especially the heavy ones. Ofteninteraction is a phenomenological substitute for one-pion
this approximation is expressed as a variational principle foflong-rangé and two-pion (intermediate-range exchange
the ground-state energy and the one-particle excited states pfocesses. Sometim8], a short-range cutoff parameter is
a system of fermions. Systematic HF calculations require aimtroduced to model the repulsive core of the interaction,
effective two-body nuclear potential. Because of the inhereninstead of an explicit velocity-dependent repulsion. These
complexity of these calculations, it is desirable for the potensemirealistic potentials go one step further than Skyrme po-
tial to have as simple a structure as possible. The calculatiortentials as they are able to reproduce reasonably well not
described below included evaluation of the energies for morenly the ground-state properties of nuclei and nuclear matter,
than 3x10° Slater determinantshaving dimensions up to but also the experimental data on nucleon-nucleon low-
80x 80). Rather than being derived from a realistic two-energy(<300 MeV) scattering. The finite range gives rise in
body force(with some additional higher-order phenomeno-a natural way to the surface energy of finite nudi@id hoc
logical corrections such a potential involves direct param- (Vp)? terms are unnecessapyAny improvement over the
etrization of the effective nuclear force. Its validity relies on Skyrme interaction comes at a price. In these potentials, the
its ability to reproduce the accepted values of the parametersdial dependence is cast in the Yukawa fofrrexp
of infinite nuclear matter(binding energy, compressibility (—r/a)/(r/a)], as in the Seyler-Blanchard and the Reid poten-
modulus, mean density, etcalong with the rms radii and tials [7,8], in the Gaussian formi~exp(—r%a?)], as in the
binding energies of light nuclei, for which the surface energyGogny potentia[10], or as a combination of the twi@®,12).
is the dominant correction. Matrix element calculations become a daunting task, in some

A popular choice of an effective nuclear interaction is thecases prohibitively sp15]. An attempt to fit both scattering
Skyrme potentia[1] and its many modificationf2—5]. Its  data and nuclear ground-state properties necessitates seven
main attractiveness lies in the zero-range radial dependenag more adjustable parameters.
given by theé functions, which considerably simplifies the  In this paper, we propose a simple, finite-range effective
calculation of matrix elements. The three-body force correcnucleon-nucleon potential having only three adjustable pa-
tion also has zero-range and is expressed through a densitsameters. Applied to even-eveN,=Z nuclei, the potential
dependent term. The physical content of the Skyrme interaaetains only a centrdkadia) part and consists of two terms:
tion, however, suffers from this simplification as there is noan attractive and a repulsive one. The attractive term has a
natural way to include the surface energy in a finite nucleamodified Gaussian form with a single range paramstand
system/[Instead the surface energy is modeled byadrhoc  the repulsive term has a zero-rar{@function) radial depen-
(Vp)? term] Many-body effects are expressed by a density-dence. Nuclear saturation is achieved by letting the strength
dependentrepulsivg term that, for properly chosen param- of the repulsive term be proportional to the square root of the
eters, has an unexpectedly high value for nuclear matteéfaverage kinetic energy.” The three parameters, the attrac-
(~22 MeV/nucleon[3] or ~18 MeV/nucleon[5]), values tive strength, the repulsive strength, and the range, are deter-
that are comparable with the average kinetic energy pemined by fitting simultaneously the binding energy and mean
nucleon. In contrast, studies by Kasahara, Akaichi, andlensity of nuclear matter as well as the binding energy of the
Tanakd 6] show that the three-body-force contribution to thealpha particle. The three parameters are intended only as
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many-body phenomenological parameters, and no attempt i8here(T) is the[center-of-maséc.m, motion correcteflav-

made to fit two-body scattering data. The potential has a@&rage kinetic energy given by

simple mathematical structure that allows for extended HF A

variational calculationdIn our case we were able to use the 1-1/A

entire configuration space of the {2.)-dimensional quan- (T)= A Zl ti )

tum oscillator with the 2-D main quantum numberanging

from O to 5, and the 1-D main quantum numbmeranging  with t; being the kinetic energy of thigh nucleon, andA

from O to 7, m and n outside these ranges generate only=2N=2Z, the total number of nucleons. Equati¢®) is

highly excited configurations. exact for a Slater determinant of localized orbitals, i.e., in the
Our primary interest in the potential lies in its subsequenHHF approximationC is the normalization coefficient of the

application to studying collective instabilities in symmetric modified Gaussian

nuclear matter. To this end, we completely neglect Coulomb,

spin-orbit, tensor, and pairing interactions, which play no C=(3m%%%"1. ©)

role in symmetric nuclear matter. At the same time, it is

essential that the proposed potential reproduce correctly the Saturation of the nuclear density is achieved by letting the

nuclear part of the binding energies of finite symmetric nu-n-n repulsion increase with increasiki). Compared with a

clei (“He, %0, “°Ca, etc). Satisfying this requirement two-nucleon velocity-dependent Skyrme repulsion together

means that the surface energy—the dominant correction toith a density-dependent Skyrme repulsion, the repulsive

B.. (the binding energy of nuclear matteris automatically —term of Eq.(1) provides a simpler way to represent core

reproduced for light nuclei, where it is relatively most im- penetration of nucleon pairs. It would not be appropriate to

portant. For example, too large a value for the binding encalculate(T) by means of a Thomas-Fermi approximation

ergy of “He would lead to a spurious “quasicrystallization.” involving the density. Such an approach leads to a nucleon-

of symmetric nuclear matter, which would then break up intoeffective mass(in nuclear matter given by u*/u=1. We

a collection of alpha-particle-like clusters. find instead that, by calculatingT) accurately, u*/u
Within the restricted basis set of a deformed=0.41, similar to values obtained by other workers.

(2+1)-dimensional linear quantum oscillator model, bind- A simpler form of the potential would have been,

ing energies were computed and compared with experimen- . 2, 2 ,

tal values for even-eveN=Z nuclei for A between 4 and ~ V(1.12)=—a’C’exf{ —(ry—rp)%/s]+ B(T)&(r1—ro),

80. The effects of closed oscillator shells on binding energy (4)

; 160y 4Q 80 ; itati ) . . . . -
is clearly seen fofHe, *%0, “Ca, and™Zr. This qualitative  ang it was also studied. This potential can fit the binding
agreement is gratifying given the oversimplified nature of théanergy and density of nuclear matter as well as the binding
model potential. Nevertheless, the potential reproduces a@nergy of*He. However, the binding energy &fO is then
Q“Cle?g matter properties as well as the binding energies g nd to be too large by about 2 MeV/nucleon, which means
He, O, and™Ca, which lends credibility to our subse- j1s syrface energy is too small. Inclusion of the £ r;)?
quent studies of coIIectlve_lnstablhtles in nuclea_r _rr)aliﬂfﬁ*], factor in the attractive part of Ed1) solves this problem.
smccre] the surface en1<e|rgy is thenI aclzlcounte(htmmtlo. A Multiplying the repulsive term byT) instead ofﬁ leads

The (2+1)-D oscillator model allows us to study shape \, 5 compressibility modulus for nuclear matter substantially
excitations of light nuclei in which rearrangement of Severalhigher than 300 MeV. Recent experimental studies indicate a

nucleons occurs simultaneously. Such an excitation would bg,y4,1us nearer to 200 MeV. and we obtain below a value of
expected to have a longer half-life than a one-particle exci225 MeV. '

tation; and it is often accompanied by a significant change in By confining our attention to even-eveN=Z nuclei we

shape. “Dot diagrams” for the (2 1)-D oscillator model  ,\4iq the necessity of having a tensor force. Each spatial

are introduced and used in the search for the ground state a'&ﬁjbital is filled with four nucleons, so the average of the

shape excitations oN=Z, even-even nuclei. Collective onqqr operator

nuclear deformations, isomerigdong-lived) states of light

nuclei, and low-lying transitions are discussed. Although in S;,=3(0;-F) (05 F)— (07 0) (5

what follows more than 4000 Slater determinants are opti-

mized, this number is but a small fraction of the numerablés zero regardless of the nuclear shape.

energy levels. The three adjustable parametets 3, ands, are fixed by
the three following conditions:

ll. THE POTENTIAL AND THE STATISTICAL 4 _ - JB,
Ro=1.1fm
The proposed nucleon-nucleon potential has the form (6)

Here B(*He) is the Coulomb-corrected binding energy per
V(ry,rp) = —aC(r—ry)%e 1 2% 4 g [Ty 8(r,—1,), nucleon of the alpha particl®.. is the binding energy per
nucleon in nuclear matter, arig, is the radius of a sphere

(1) that contains one nucleon at the equilibrium density of
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nuclear matter. The reason wBy, has been taken to be 15 0.3 ; 7

MeV is explained in Ref[16]. An additional~1 MeV of s=0.10
binding arises from a density instability in nuclear matter. 0.25 .
On account of the normalizing fact@ in Eq. (1), the range

parametes does not enter the calculation Bf, (for uniform 02 $=0.54 -

nuclear matter The last two equations of E@6) are there-  »
fore decoupled from the first one. and 8 can then be de- &  o.15 .

termined as follows. We may write o 52100
01t ' §
B.= () + (Vo) + (V). ™ T
(V,) is the average expectation value of th¢erm in the 005 1 1
potential. It includes both direct and exchange terms. On | , ; ] ‘ ‘
account of complications that arise when calculating ex- 0
0 5 10 15 20 25 30 35

change integrals of a finite-range potential, we evaluate them > (MeVN
here in a statistical approximation, which is the exact result <T> (MeVIN)

for uniform matter. We first calculate the exchange energy g, 1. The exchange functiogy((T)) for different values of
between two nucleons described by plane wanesmalized e range parameter

in the volume,V) with wave vectork andk’:

21,2
' 1 3, 43¢ 1 @i(r—1")(K' —K) "2 <T>=§ﬁ i =3(m,+m,) aE& b=as’
ga(k,k)zac\ﬁ d°rd°r’e (r—r") 5 24 p=2Mp™ M), 372" '
(14

[

xexd —(r—r")%/s]. (8)
as
Upon substitutingp=r—r" andq=k—k’, we find,

1
9s(T)) = gp3yal —6+30(T)+ 3e "M(2+b(T))].

1 . 2/2

o )=aC—Jd3 gllpa) y2e=p s

9.(q v P P (15

=ale‘(1’4>q252(1—%q232). (99  The exchange functiogs is shown in Fig. 1 for different
\ values of the range parameterAs expected, in the limis

. —0, the exchange function becomes 1/4, the exact result,
Following Overhauser and co-workef$7,1§, we average independent ofT). For practical applications, it is conve-

9,(q) over the Fermi sphere of occupied states using gedgient to approximate the exchange functias) with a para-

metric probability techniques. With four different species of p /i it having the form
particles p71,pl,nT,n]), we obtain

1 2k 9T =5 +c(T)+cx(T)2 (16)
(9a(@)=7 | daP(a)g.(a), (10
0 If one plots this approximate functiogi® with ¢, andc,
where obtained from the exact values gf((T)) at two points,
(T)=10 and 20 MeV, fors=0.54 (our actual interaction
o _3q2 9¢° 3¢° » range,TEq.f(}:E_S) isl indistinguishable from the exact curve
()= K2 Zk_éJrl_Gk_E (1) dosd(T)) of Fig. 1.

Consider now the first term of E¢L) and the pure plane-
wave statesg,(r)=€'"/\V, of nuclear matter. The direct

is the geometric probability of two randomly chosen pomts,[erm of Eq.(7) is

in a sphere of radiug: having a separatioq. Obviously,
g=<2kg. Combining Eqs(9), (10) and(11), one finds

direct_l 1 A2 1 A
1 (Va) Al T4V T e PEY (17)
(9a(a))=a;9s(ke), (12)
Accordingly, the sum of the direct and exchange contribu-
with tions is

1 V) =—3ap[1—g((T)]. 18

9s(Ke)= 5518 [—6+35%k2+3(2+s2%k2)e~KF]. (Ve ==2apl1=94(T))] 18
F (13) In evaluating the expectation value of the repulsive term

(Vg), the exchange term for parallel spin and parallel isospin
This dimensionless exchange function can be rewritten usingill cancel exactly its corresponding direct term, owing to
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the zero range of the repulsiv@function. The average re- , y |32 s
pulsive energy is therefore the direct term multiplied by the Wg= zﬁ(z) (hw)™™ (28
factor 3/4,

Using the notation of Eqgs(14) and (25), we putZw
=% y/a. The binding energy per nucleon of taeparticle,
gvith the parametera and g given by Eq.(22), now depends
on only two unknown parameterg,ands:

(Va)=3(zBp(T)) =3 Bp\(T). (19
The average binding energy in nuclear matter is therefor

B.=|T)—3ap[1-g((TH1+EBp(T). (20

where B(4He) = § a— E a(z) (1+ % ’)/Sz) 5/2
1 9 3/2 10 1/2]
=(4aR3"L (TV=(2m)?3=,, 21 el L =7
p=(37Rp) (M=) ARz (21) +8B . 3 a (29
so the Iast. two relations 'of E@6) determine the strength of Fq, givens, B(*He),,;, is obtained by maximizing Eq29)
the attractive and repulsive terms of E@): with respect toy. After straight-forward numerical calcula-

«=1690 MeVfn?, B=255 MeWW?fm3. (22  UonS, the two conditions

. .. 4
Now we can verify that other characteristics of nuclear dB("He)
matter are reproduced correctly. The compressibility modu- dy
lus K, defined in terms of the mean nuclear radius is

=0 and B(*He)=7.3 MeV (30)

are satisfied witth w(=#2y/u)=17.4MeV and

=225 MeV, (23 s=054 fm (32)

very close to values 210-220 MeV determined by BlaizotEquations(1), (22), and(31) completely specify the interac-
et al.[19] or 231+ 5 MeV reported recently by Youngblood, tion potential.
Clark, and Lui[20]. The ratio of the effective nucleon mass

to the free-nucleon masg,*/ u, applicable to single-particle . VARIATIONAL PROCEDURE AND “DOT

excitations near the Fermi surface, is readily obtained: DIAGRAMS”
u* L 99T 1 -1 All calculations below are made using a restricted HF
72 1 509W+EBP<T> ~0.41. variational procedure. We take the wave function of a

(24)  hucleus to be a single Slater determinant of nucleonic one-
particle states. These one-particle states are chosen to be
This effective mass is similar to values found in R¢%10]. eigenfunctions of a three-dimensional harmonic oscillator.
Finally, the range parametsiis determined by fitting the We assume the nucleus to have axial symmetry, so it is con-
binding energy of thex-particle. We take the one-particle venient to separate the axial coordinate from the other two
orbitals to be the wave function for the ground state of a 3-I(in-plang coordinates. In this (2 1)-D coordinate system,
oscillator of frequencyw: the nucleonic one-particle wave functions become

o(r)= yzl%_w_ (25) Pal,m(1) = @ni(P) Xm(2)- (32)

312
Z) o (122
ko

Here ¢, (p) are normalized eigenfunctions of a 2-D oscilla-

The center-of-mass-corrected average kinetic energy ig, i the plane perpendicular to the intrinsic axis. They are
(9/16Aw. The four orbitals are identical, therefore the ex- described by the quantum numbersand| referring to the

change energy is canceled exactly by the corresponding diiate's energy and orbital angular momentum, respectively.
rect terms. The average interaction energy then bec@sees The normalized eigenstates of a 1-D oscillajgr(z) are
the Appendix, Eqs(A38) and (A39)] labeled with the energy quantum numbrer Our model in-

1 teraction, Eq(1), has no spin variables. Therefore the spatial

<V>:£_1 E (ij |Vij|ij>:§(Wa+W5)y (26) parts of the wave functions do not depend on spin. Con-

1> structed in this fashion, the one-particle wave functions de-

pend on two parameters: the imputed “spring constants” of

with the one- and two-dimensional oscillatofay, andzw, . A
y |32 convenient parameter choice is
Wa:_a(z) (14398972 (27)
My _ Koy
and =7 and = P (33
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(2+1)-D oscillator 3-D oscillator 8 R RN I B B T — T
7L e - E
oF et ;

n=1 F .
5 = . L] —
n=0 = 4 ; - - A

m=0 m=1 = 3 .
3 L - |
(a) (b) : .

2 g » |
FIG. 2. The dot diagram of the ground state 60 in (2  E . - E
+1)-D (a) and 3-D(b) models. The two diagrams are equivalent Eow ]
when the two “spring constants” in the (21)-D model are equal. 0 Fa b b b L e SEEE— .

10 20 30 40 50 60 70 80 90

In even-evenN=Z nuclei(including nuclear matterwe

take each spatial orbitahl, m) to be occupied by four nucle- FIG. 3. The number of minimized configuratioNsas a function
ons(proton, spin up and down, neutron, spin up and down of the atomic numbeA on a logarithmic scaléto the base).
If we specify the set of all such occupied orbitéaté, m) in a

nucleus withA nucleons, we have defined a “nuclear con- . in Fia. ®). with th iddle dot .
figuration.” The binding energy of this configuration is cal- lagram, as in Fig. ®), wi € Upper middie dot equiva
culated by minimizing the expectation value of the potential€Nt t0 the second tree dot of Fig(a The (2+1)-D dot
(1) plus the kinetic energy operator with respect to the variadiagrams can be viewed as a generalization of the 3-D dot
tional parametersy and ¢ of the Slater determinant d@gramg the latter being applicable to spherically symmet-
,£(r1,...ra). The configuration with the largest binding MC nuclei only. o . _
energy will of course be the ground state while the other Without anya priori knowledge about which configura-
configurations will describe a subset of possible excitedion corresponds to a ground state and relative energies of
states. different configurations, all reasonably possible configura-
It is convenient to visualize these nuclear configurationgions must be considered. This involves calculating and mini-
by using “dot diagrams.” We will call “a dot” a set of mizing the energy for each configuration. Due to the simple
guantum numbergnl, m). A fully occupied orbital contain- structure of our potential, we are able to entertain a very
ing two (spin-up and spin-dowrprotons and two neutrons is large number of configurations. Nevertheless, special care
referred to as “a full dot.” An unoccupied orbital is called has to be taken to avoid redundant or unrealistic configura-
“an empty dot.” The nuclear configurations we entertain aretions. For“He the dot diagram is trivial. FotBe there are
represented by a certain number of full dots arranged in th@yo possible dot diagrams to consider. B3Zr, with some
following order. We place vertical “trees” of dots along the reasonable constraints on the number of possible diagrams,

horizontal direction from left to right. All dots in a tree have e have minimized 1575 different configuratiofeee Fig.
the same quantum number. The first tree corresponds to 3). The algorithm of the calculations is as follows.

m=0, the second tree u_m=1, an_d so on. The bOttr?m of @ First, we choose a nucleus with=2N=2Z and decide
tree contains a dot with=0 andl =0. On going up the tree, on its maximum possible modalitf .. Clearly, M., can-

the valpe ohis mcremepted by one. For eventhe value of not exceed\/4. On the other hand, calculations show that for
| remains 0 on the ver'qcal line of thg tree, and qhanges b)(he largest nucleus studied®Zr (which has only 20 full
—2 or +2 to the left or right of the vertical, respectively. For dots, the number of trees or, modality, can be safely chosen

oddn, all I's are odd, so there is no dot on the vertical line. . s
Each tree represents a two-dimensional oscillator with Jot to exceed seven. All other configurations would represent

given quantum numbem. Owing to the condition—n<I highly excited shapes. In every tree, the dots are filled from
<n, Al=2, the dots arrange themselves in a treelike regulal"€ Pottom up. If the top level in a tree is not entirely full, all
pattern. The number of trees in a diagram we call “modal-Possible permutations of full dots in this level are consid-
ity” and denote it byM. ered. However, one should recognize that the staigk m)

To illustrate the foregoing description, let us consider theand (0, —1,m) are degenerate. In addition, two other restric-
dot diagram of the ground state 8O in Fig. 2. This dia- tions are applied:
gram has modalitj¥l = 2. The first tree has four nucleons in (i) Configurations with the last three trees occupied by
the statg0, 0, 0, (bottom do}, four nucleons in the staié, dots withn=0, | =0 only are highly excited, so they are not
—1, 0), (upper left dot, and four nucleons in the staté, 1,  considered.
0), (upper right dot. The remaining four nucleons belong to (i) For givenn andl, full dots will first occupy the tree
the second tree and are in the st@@e0, 1. As it turns out  with the smallest availablen. Otherwise, the energy of the
(not unexpectedly the two spring parameterg, and ¢, ac-  configuration can be lowered by the permutatiam,n)
quire equal values upon minimizatiofT.his will be the case —(nl,m—1);
for all closed-shell nuclei‘He, %0, “°Ca, 8%Zr.) It follows Examples of these rules are shown in Figs) 4nd 4b),
that %0 has a spherically symmetric shape. In this case, thevhich are configurations ignored by constraifitsand (ii)
ground-state configuration could be represented by a 3-D ddbr ®‘Ge. With these restrictions in mind and the fact that the
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Ge

L AVAVRVAVARY,

(a)

Y

(b)

FIG. 6. The dot diagram ofHe.

FIG. 4. Two examples of diagrams excluded by our selection It is |mportant_ to emphasize her? that we study a“smzill
rules (i) and (i) for %Ge. class of all possible nuclear excitations, namely, the “dot

excitations, by which a full dot, or two protons and two
neutrons, simultaneously go into a higher{(2)-D oscilla-

tor orbital. Such transitions are accompanied by significant

changes in nuclear shape. Therefore, the excitations studied

are, in essence, shape excitations, and the classification of
xcited states given below is a classification of nuclear shape
Xcitations.

states(n, I, m and (h,—1,m) are degenerate, the total avail-
able “dot space” for 4<A<280 includes 34 different dots
(I=<0), as shown in Fig. 5.

For a givenA and M,,.x, We generate all possible con-
figurations of dots subject to the above constraints. For eac
configuration, we calculate its kinetic energy and interaction
energy. The expression for the kinetic energy is readily ob-
tained by enumerating the occupied states of & {2-D
harmonic oscillator. The interaction energy is the sum of all  |n this section, we present the results of our calculations
pairwise nuclear interactions that can be conveniently difor even-even, light symmetric nuclei: their ground states, a
vided into “self-dot” interactions(interactions between two few excited states, corresponding binding energies and de-
nucleons belonging to the same xahd “cross-dot” inter-  formations. We assume ellipsoidal deformations character-
actions (for any two nucleons belonging to two different jzed by the deformation parametgr
dotg. An important simplification arises from the fact that
we can separate the one- and two-dimensional parts of the A [(Z2)1?
interaction. The corresponding 1-D and 2-D integrals are calR(8,¢)=Ral 1+ BY2(0,¢)] or B= ?< R 1) :
culated separatelisee the Appendixand tabulated numeri- a
cally for the &-function repulsion, or as analytical functions (34
of the two parametersy andé, for the finite-range attraction Here R,, is the geometric average of the three rms radii in
(the range parametsrenters these functions explicilyThe  thex, y, andz directions(two of them being equal
exchange part of the entire repulsion energy and the self-dot
portion of the attraction energy is responsible for the factor Ra=((Z2YAx2)B (x?)=1(p?). (35)

3/4 in front of the direct ternm(the two nucleons have the

same orbitals in both these Cabeﬁ]e attractive-energy ex- The rms radii for a nucleus are calculated as “dot averageS”
change term for the cross-dot interactions is calculated in thever a given configuration witN (full) dots:

statistical approximation, described above. 1 1

Minimization in 7 and ¢ (which are, of course, the same 2~ 2 2 _ 2 _
for all orbital9 gives the binding energy of each configura- () N EV (2w {7 N EV (P50, w={n.l,mj.

IV. RESULTS

tion and is performed numerically using a simple Zeidel-type (36
algorithm. This algorithm, generalized for a large number of o

variables(up to ~100), will be discussed in more detail in [N deciding on the ground state of a nucleus, due to the
Ref. [16]. degeneracy of the statém, I, m and (,—I,m), an addi-

tional condition that the resultant configuration has the
smallest possible total orbital momentuin, was imposed.
Identical configurations with highdr would exhibit a larger

/ % A x{/ SR _4/ \V \V M

=Z nuclei up to®Zr. The dots on the right-hand side of the trees
have been omitted because they generate the same integrals as their
partners on the left. FIG. 7. The dot diagrams dBe.
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02 T ) TABLE I. Minimization results for*?C.

Configuration B (MeV) 7w, (MeV) #Aow, (MeV) B

015 - 4

% : 1 6.60 17.10 11.98  —0.40
= i 2 5.61 11.88 14.19 0.23
> %7 7 3 4.95 6.38 15.98 1.52
2 A

q') -

o 0.05 _

160. This is a closed-shell nucleus. The binding energy of
] the ground state is close to the experimental value of
N R L ] 8.8 MeV/nucleon and the rms radius is slightly smaller than
0 1 2 3 4 5 6 the experimental oné.58 vs 2.67 fm The ground state is
X,z (fm) spherically symmetric with a nucleon density distribution as
FIG. 8. Nucleon density profile for the ground state %gfe. _Shovv_n In '.:Igi 11. An |_nterest|ng .feat”'fe here is the.almost
Here, and in the subsequent density profile pictures, the solid Iint'ad(:"rm(.:aI .blndlng energies .Of conflguratlon_s 2 gnd 3, In view
corresponds to the radial density distribution=0), and the of their dISparate deforr_nathﬂS, as shown in Fl.g' 12'. Another
dashed line corresponds to the density distribution along the intrinfeau_Jre IS _the energy dlfferencg bet\_/veen configuration 2 and
sic 7 axis. configuration 4. The two have identical sets of energy quan-
tum numbersn and m. The higher binding energy for con-
value of the orbital momentum component associated withiguration 2 can be explained by larger overlap of the orbital
rotation around the axis perpendicular to the intrirsaxis. (2, 0, O with the rest of the orbitals compared with that of

(L is, of course, the projection of the total angular momen-the orbital (2, =2, 0) of configuration 4. Such splitting oc-

tum on thez axis) curs frequently. The dot diagrams are shown in Fig. 13; see
“He. The dot diagrantFig. 6) is trivial. Both oscillator ~also Table II.
parameters come out to be equaty,=%w, =17.43 MeV, 20Ne. The ground state has a prolate deformation. The

making the nucleus spherically symmetric. The rms radius idirst excited configuration has an oblate deformation. The
1.89 fm, slightly larger than the experimental value of 1.61binding energies of the two states are 0.25 MeV apart, but
fm. The binding energyneglecting, of course, the Coulomb inclusion of the Coulomb repulsion might enhance this dif-

interaction is, B=7.27 MeV per nucleon. ference as it favors a prolate deformation over an oblate one.
®Be. Two possible dot diagrams are shown in Fig. 7. ConSee Figs. 14 and 15; see also Table Il.
figuration 1 (the ground statehas B=5.49, fiw,=9.43, 2"Mg. Configurations 1, 2, and 3 fo¥*Mg have essen-

fiw, =16.21 MeV, B=0.81. Observe that the ground state tially the same binding energy. The true ground state would
has a large prolate deformation. The corresponding densitfepend on the competition of the Coulomb energy correc-
profile (Fig. 8 makes it easy to explain the experimental facttions. Configurations 1 and 2 are degenerate and have large
that ®Be is unstable and breaks up into twaparticles. The opposite deformations that could lead potentially to sharp
first excited-dot diagraniconfiguration 2 is oblate withB  (backbendingfeatures in the rotational spectrum. See Figs.
=3.94,w,=16.00,iw, =12.06 MeV, and3= —0.32. 16-18; see also Table IV.

12C. The dot diagrams are shown in Fig. 9, and the cor- °Si. The ground state has an oblate deformatiBiy.
responding data are given in Table I. The ground state has akP)- The spherically symmetric stateonfiguration 4 lies 1
oblate deformation. The nearest shape excitation has an elleV/nucleon higher than the ground state and has the same
citation energy of about 1 MeV per nucleon. Configuration 3binding energy as the extremely deform@uolatg state of
adds another 1 MeV/nucleon in excitation energy and is, asonfiguration 5(Fig. 20. See dot diagrams in Fig. 21, see
expected from the dot diagram, highly deformed alongzthe also Table V.
axis. The nuclear density profile for the ground state is

shown in Fig. 10. oo
2C (conf. 1) ]
AL ]
&
E
- 0.1 -
’é 1 1
M [ 1 1
j / \ / \ / 0 o.0s -
0 3 i N N ! n I i ! i 1 3 N L N )
4] 1 2 3 4 5 6
()] 3) X, z (fm)
FIG. 9. The dot diagrams dfC. FIG. 10. Nucleon density profile for the ground state'4.
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0.25‘”.“'"“‘“ ‘‘‘‘ 1I‘*O(conf1)?

-\ Y Y YVY
: \ ;

\ é

N Hé \W

\ !

X, z (frm) FIG. 13. The dot diagrams dfO.

Density (fm®)

FIG. 11. Nucleon density profile for the ground state'®®.  metric (Fig. 26). It is very stable against excitations, and is
The nucleus is spherically symmetric. separated from the first shape excitation by more than 1
MeV/nucleon. The binding energy, by design, is essentially
323. The first two configurations are essentially degenerthe same as the experimental value of 10.6 MeV/nucleon.
ate (Figs. 22 and 2B so the true ground state would be Dot diagrams are shown in Fig. 27; see also Table VIII.
determined by the Coulomb contribution to the binding en- *Ti. The ground state has a prolate deformationgof
ergy. The configurations have opposite deformations that 0.27. The next two excited shapes are practically symmet-
could lead to backbending in the rotational spectrum. Seéc. See Figs. 28 and 29, and Table IX.
Table VI. 48Cr. The ground state has an oblate shape v@ta
36Ar. The ground state is oblate3& —0.21), while the  —0.22. The first excited shape is prolate and is separated by
next three excited states are essentially spherically symme& small amountAB=0.13 MeV/nucleon. See Figs. 30 and
ric (Figs. 24 and 25; see also Table VII 31, and Table X.
40ca. This is the case of a closed shell for ther(R)-D %2Fe. The ground state has a large prolate deformation,
oscillator. As expected, the ground state is spherically symB=0.44, and is separated from the first shape excitation by a
very small gapAB=0.09 MeV/nucleon. This state is oblate
025 T ] with 8= —0.29. See Figs. 32 and 33, and Table XI.
0 (conf. 2) 1 %8Ni. The ground state is oblate wifp= —0.35. The first
02 L N ] shape excitation is strongly prolat@+£ 0.68). The two are
\ AN ] separated byAB=0.21 MeV/nucleon. See Figs. 34 and 35,

osh \° 4 and Table XII
r \\ ] 80Zn. The first two configurations are practically identical
o1 3 . 3 (B=—0.32) except for the upper dot in the second tree,
T \ \ ] which for the ground state prefers orhit2l0,1) over orbital
L \ AN ] (2,£2,1). The reason for this is the smaller overlap with the
0.05 1 ~ ] rest of the orbitals in the latter case, leading to an energy
f N - \\ ] penalty of 0.16 MeV/nucleon. The next shape excitation lies
0 A ' within 0.2 MeV/nucleon and has a large opposite deforma-
tion, 8=0.61. See Figs. 36 and 37, and Table XIII.
%4Ge. As in the case of Zn, the first configurations are
02 ———T—————— — T essentially identical with an oblate deformation Bf=
60 (cont. 3) 1 —0.30 (Fig. 38. The interesting feature is the existence of
X : four low-lying shape excitationgwith opposite deforma-
015 1 N — 7™ 7 tions that range fron3=0.16 to3=0.56(see Fig. 39 This
i AN ] may lead to an unusual behavior of its rotational spectrum.
o1 L \ \ ] See Table XIV and dot diagrams in Figs. 40 and 41.

Density (fm™®)

\ \ TABLE Il. Minimization results for¢O.

Density (fm™)

0.05 |- \ ] Configuration B (MeV) 7w, (MeV) #Aow, (MeV) B

[ _ ™~ - ] 1 8.59 14.07 14.05 0.00
0 - I PN S | P, S - P PR I _
o ] 2 3 s 5 6 7 2 5.58 16.94 10.17 0.52
x, z (fm) 3 5.56 8.26 14.85 0.84
4 5.14 16.67 9.88 —0.53
5 3.56 9.48 12.45 0.33

FIG. 12. Nucleon density profile for configurations 2 and 3 of

0.
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0.2 ———=r— e AT amey TABLE lIl. Minimization results for?*Ne.
:\ N \\ 2Ne (conf. 1)1
s b \_\/ \ ] Configuration B (MeV) 7w, (MeV) #how, (MeV) B
A N \ : 1 8.20 10.15 14.75 0.50
=2 i ] 2 7.95 14.90 12.07 -0.23
> o' \ \ ] 3 7.14 14.56 11.93  -0.22
% ; \ \ ] 4 6.96 11.82 13.07 0.12
O o005l N\ \ 3 5 5.71 16.95 927  -059
i AN N j
or\T\ L e ] V. DISCUSSION
0 1 2 3 4 5 6 7
X, z (fm) The calculated binding energies of the ground states for
even-evenN=Z nuclei are shown in Fig. 55. They are com-
FIG. 14. Nucleon density profile for the ground state’dfe. pared with the Coulomb-corrected experimental values of

. - Moller et al. [21]. For %8se, "%Kr, "®Sr, and®%Zr (as we

Se. In addition to the oblate ground stafg<—0.28),  approach the proton drip linghere is no experimental data
the nucleus of Se exhibits four essentially degenerate lowayailable. Therefore, extrapolations from the nearest avail-
lying configurations with quite different shapes ranging fromgp|e experimental data, tabulated in Rgf1] are used for
B=0.52 to B=—0.21. An_ interesting rotational spectrum comparison. A few comments are appropriate here.
could be expected. See Figs. 4245, and Table XV. The interaction parametefs, 8, ands) were chosen to

Kr. The ground state and the first four-excited conflgu—gi\,e exactly the binding energy dHe and the best possible
rations are essentially spherically symmetric and nearly defit for poth °0 and“°Ca. In their ground state, these three
generate. This is the only case in our study where we had tgycjej, together withf%r, turn out to be closed-shell con-
apply the minimum total angular momentum rule and poputigyrations of the (2 1)-D oscillator for modalitiesm = 1,
late orbital(2,+2,1) instead of orbita(2,~2,1) in the second "3 and 4, respectively. These four nuclei are the only ones
tree (given the dot distribution of the first trgén order 10 nat are spherically symmetric in their ground state, each one
obtain an orbital momentum df=—1, instead of.=-5.  peing a complete shell of an isotropic 3-D oscillator. They

Se(YaBFigs. 46-48, and Table XVI. _ ~are very stable against deformations, and their binding ener-
in binding energy and deformatioispherically symmetric The remainder of the calculated binding energy curve lies

(Figs. 49 and 50 This is the case when the excitations arepg|ow the experimental data. For smal(8<A<36) the
one-dot excitations, as seen from the tree diagrams of Figg|culated values are significantly underbound. For lakge
51. See Table XVII. __the calculated values follow the experimental curve rather
Zr. This is the last closed-shell nucleus studied, jusiyell. It is reasonable to expect that light nucl@iith their
beyond the experimental proton drip line. The closed-shellarge surface-to-volume ratiovould acquire a larger fraction
effects are seen in the sharp peak in the.bmdmg energy Congst their binding energy(compared to heavy nuclefrom
pared to neighboring nuclei, as well as in the large gap bemany-body corrections beyond the Hartree-Fock approxima-
tween the ground state and the first shape excitation. Thion, 'i.e., the correlation energy arising from configuration
ground state is symmetric, as shown in Fig. 52. The next foujteraction.
configurations are nearly degenerate with small deformations Tpe ground-state shapém the ellipsoidal deformation
of both signs. See dot diagrams in Figs. 53 and 54 and coipproximatiof are summarized in Fig. 56. It is interesting to

responding data in Table XVIII. compare our results with those obtained by Ilgo et al.
0.2 L R T 7 Ty T ﬁ

:x/’\\ Mg (conf. 1) |

_. o5 L ™~ N N 1

e i \ :

= L ‘\\‘ \ ]

¢) @ > o1f ]
3 : \ \ :

2 oos: \ \ ]

.05 -~ \ |

: \ AN ]

} \\\ ™~ — ]

0 PRI T S PRI | M | - P 12 P i

4] 1 2 3 4 5 6 7

3) @ X, z (fm)

FIG. 15. The dot diagrams &fNe. FIG. 16. Nucleon density profile for the ground state?#flg.
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0.25 v ; S — ]
AN 2Mg (conf. 2) ]
o2 [ ~ \ ]
A : AN
= 015 - N
- i \
"E 01 - \ \\\ ]
8 NN
0.05 [ N AN .
\\\
° 0 1 2 ‘ 3 I 4 o 54 " 6 ‘ 7
X, Z (fm)
03 T T ™ T
0.25 -\\\ 4Mg  (conf. 3) ]
A ANS ;
g °2 \ ~ ]
= N\ \ ]
- 015 [ N .
7 AN N ]
§ 0.1 - A \ 1
v \ \
0.05 |- \
o ; Il PR ST S Y i : :ﬁ:*r} 1
0 1 2 3 4 5 6 7
X, z (fm)
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0.25 T ]
AN 28gj (conf. 1) 1
o2k N\ .
g 0.15 \ \ ]
AN
z AN
(] - \ \\ ]
0.05 - ]
L \ 4
AN “
0 N R L ﬁ R R e S
0 1 2 3 4 5 6 7
X, z (fm)

FIG. 19. Nucleon density profile for the ground state’%Si.

[21]. An important difference is that we ignored the Cou-
lomb repulsion. As expected, for closed-shell nudleith

the surprising exception of‘Zr), both approaches yield
spherically symmetric shapes. We found that all other nuclei
are deformed in their ground state.

For light nuclei, where the energy difference between
ground and excited states is larger than or comparable to the
Coulomb energy, our calculations generally agree with Ref.
[21]. However, forA between 32 and 58, spherically sym-
metric nuclear shapes are predicted in R2L)]. Instead, we
find that these nuclei are deformédxcepting, of course,
4%Ca). Inclusion of the Coulomb energy should enhance pro-

FIG. 17. Nucleon density profile for the first two shape excita-

tions of 2“Mg.

M

3

2

@

FIG. 18. The dot diagrams 6fMg.

TABLE IV. Minimization results for?*Mg.

Configuration B (MeV) #Aw, (MeV) #fwo, (MeV) B
1 7.93 9.78 14.16 0.49
2 7.92 15.48 11.16 -0.34
3 7.86 11.15 12.92 0.18
4 7.53 15.22 11.00 —-0.34
5 7.24 12.98 12.03 —0.09

03 e ey
F 28a: ]
0.25 \ Si (coni. 4) ]
—~ C N\
? L N ]
é 0.2 - \\\\
- 015 & \T .
g A :
01 - ]
& - \\ ]
0.05 - \‘\\ -
L . ]
o J S SN S Cda o P by
0 1 2 3 4 5 6 7
X, z (fm)
0.2 — , — .
- 285; (conf. 5) 1
RN AN P ]
- 0.15 - N~ N -
g \ \
\
> 0.1 \ \ 4
i I \ )
L \ ]
a i \ \ 4
0.05 - \ \ 1
[ \ AN ]
0 I Y PR N eSSl S 2
0 2 4 6 8 10
X, z (fm)
FIG. 20. Density profile for two degenerate excited states of

285j, configurations 4 and 5.
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(Y- J N ————S .
N 32 ]
025 [ \\ S (conf. 1) ]
\ :
(?E 0.2 - \\ - .
= - \ ~ :
M @ > 015 ¢ N\ AN .
" g : \ ]
S 041G N AN ]
(o] 3 AN \ ]
0.05 - " :
0 :n PRI B S | EEPTRTTET TN SPE SO T Mg, w0 | L n:
3) @) 0 1 2 3 4 5 6 7
X, z (fm)
0'25 _' e L B L L AL L L LA L B T ]
N 325 (cont. 2) |
N . \\ ( ) ]
® Eost YN ;
_ . ]
FIG. 21. The dot diagrams dFfSi. > : \ N\ ]
z o NN :
. . . 48 0 " \\ 1
late deformations. Such is likely the case f8ar, “Cr, and O i \ \ 1
56Ni. Interestingly, two rotational bands in the doubly magic 0.05 - N AN -
nucleus®®Ni have been recently identifid@2]. Including the : - ]
Coulomb repulsion would likely reverse the sign of the de- 1Y) SN SR R I -
formations for®%zn, ®Ge, and®Se. These nuclei, found to ° ! 2 )3( , (fr:\) 3 6 7

be oblate, have prolate “excited” states lying within 0.2
MeV/nucleon of their ground states. The only other nucleus g 22 Nucleon density profile for the ground state and the
for which the two methods lead to opposite deformations iS;st collective excited state GES.
"Kr. We found its ground state to be prolate, but its first-
excited configuration is oblatéconfigurations 1 and 2, re-  The dot diagram technique lends itself naturally to the
spectively, in Fig. 4Y. study of exotic molecular states in light nucléSee, for

It is interesting to consider qualitatively high-spin rota- example Ref[24], for a discussion of some experimental

tions of light nuclei(about an axis perpendicular to their resylts in12Be.) For example, wave functions of full dots
intrinsic z axis). Such an excitation would lead to a larger

deformation in those nuclei already prolate in their ground
state, such ag%Ne, ?*Mg, etc. For high-spin excitations,
nuclei such ag8si, *°Ar, %8Cr, °®Ni, ®%zn, %Ge, and®®se
may change their deformations from oblate to prolate, in
accordance with their first-excited configuration. The result-
ing abrupt change in moment of inertia would exhibit a back-

m @
bending feature in their rotational spectra. This would pro-
vide an explanation for the backbending phenomenon
alternative to that discussed in RE23] for the case ofCr.
Transitions involving many dot®ften with a change of mo-
()

dality of the dot diagramcould result in rotational states
having far longer half-lives than one-particle excitations; i.e.,
long-lived isomeric states could occur. T

TABLE V. Minimization results for?*Si.

Configuration B (MeV) #Aw, (MeV) #fwo, (MeV) B

@
1 8.86 16.11 1077  -0.42
8.56 9.56 13.87 0.49
8.15 10.82 12.98 0.23
©)

7.85 11.99 12.04 0.00
7.84 7.74 14.62 0.92

a b wWN

FIG. 23. The dot diagrams JfS.
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TABLE VI. Minimization results for®?S.

Configuration B (MeV) #Aw,(MeV) fw, (MeV) B
1 9.06 10.57 13.09 0.27
2 9.01 14.70 11.08 —0.30
3 8.79 7.94 14.39 0.85
4 8.71 12.79 11.58 —-0.12
5 8.53 10.41 12.88 0.27

with quantum numberan andn, at the top level of a tree,
can mix with those of empty dots1(’,n") from another tree.

Such mixing can lead to a density profile with a higher peak-
to-trough ratio than that shown for the deformed ground state
of 8Be in Fig. 8. Any generalization of the restricted-basis-

set Hartree-Fock scheme employed here should be enter

tained in future work.

Finally, we emphasize once again that we have evaluatec
only the energies of those configurations for which each or-

bital basis state is either empty or fully occupigudth four

nucleon$. Obviously, this subset of all possible configura-
tions is a very small fraction of the totality. One convenient
attribute of this subset is that tensor forces and spin-orbit

forces do not contribute to the energyt should also be

noted that a Bardeen-Cooper-Schrieffer pairing energy can-

not arise for a single Slater determinanf.we were to con-

sider even-even nuclei witN#Z, there would be separate

025 —

02l
& L
E o5
= [
- [
: |-
@ 0.1
c .
[1h]
(]

0.05 |

03 ;

0.25 |
0.2t

0.15 [

Density (fm™®)

0.1 L

0.05 |

FIG. 24. Nucleon density profile for the ground state and the

first collective excited state ofAr.
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®

1 )

Py

FIG. 25. The dot diagrams GfAr.

dot diagrams for neutrons and protons, and,w! , |
=n,p, would be distinct wave-function parameters for each
species.(The full generality of the HF Hilbert space can
occur only if half-filled dots were also admitted, but then
spin-orbit and tensor forces would need to be included.

A perusal of the dot diagram{@nd their associated tables
in Sec. IV) reveals the large variations @f,, o, , and 8
from configuration to configuration. This behavior proves
that Koopmans’ theorerf25] is severely violated in nuclear
physics. The reason for this violation is that a one-nucleon
orbital energy depends critically on how other orbitals are
occupied as well as on, andw, . (There is no large central
potential analogous to the Coulomb potential of an atomic
nucleus, which enforces a nominal ordering of electronic en-
ergy levels) The corresponding large variations in density
profiles, which reveal the anisotropy of the nuclear radius
and, also, the anisotropy of the surface thickness, contribute
to the failure of an elementary ordering scheme. Therefore,
the collection of dot diagrams cannot be replaced by a sim-
plified model that(implicitly) assumes near validity for
Koopmans’ theorem.

Of the 20 even-ever\ = Z nuclei studied heré’He, 1°0,
and“*°Ca are surely spherical. Twelve predicted intrinsic de-

TABLE VII. Minimization results for3Ar.

Configuration B (MeV) #w, (MeV) Ao, (MeV) B

1 9.76 13.75 11.35 -0.21
2 9.63 11.42 12.58 0.11
3 9.56 12.50 11.93 —0.05
4 9.31 11.27 12.31 0.11
5 9.18 8.71 13.62 0.59

014302-12
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03 T T TABLE VIII. Minimization results for*°Ca.
: 4%Ca (conf. 1)1 _ _
0.25 ] Configuration B (MeV) 7w, (MeV) #Aow, (MeV) B
“-’E 02| 1 10.76 12.21 12.21 0.00
= 5 2 9.61 9.50 13.06 0.41
> %0 3 9.50 14.29 10.62  —0.31
2 o1 [ 4 9.25 9.39 12.86 0.40
o 5 9.19 13.02 11.02  —0.18
0.05 |
ol formations of the remaining 17, shown in Fig. 56, from the
present work and from the tabulation of RE21], are seri-
ously discrepant. With the advent of new detectors, such as
08 the gammasphere, it may be possible to meagufi@eclud-
L ing its sign for some of these contested cases.
0.25 [ Note added The ground-state deformation 8fSe has
— r recently been measured by Fisckéal.[26] and found to be
‘e 02} oblate. Resolution of the remaining 11 discrepancies would
= - be of considerable interest.
> 015 ¢
g i VI. CONCLUSIONS
2 r
005 In order to study instabilities in symmetric nuclear matter,
T we have proposed a simple phenomenological nucleon-
ol nucleon potential having three adjustable parameters: attrac-

0 1 2 s 4 5 s 7 s tive strength, attractive range, and repulsive streng#ro
X, z (fm) range. This potential reproduces four properties of nuclear

_ ) _ matter: the binding energy, equilibrium density, compress-
FIG. 26. Nucleon density profile for the ground stéspheri-

cally symmetrig and the first shape excitation #iCo. 0.3

RISt e e s e B S T T

~ “4Ti (conf. 1)
0.25 -

02 [

0.15

Density (fm™3)

01 [

0.05 |-

PYVY

0.25 |

1)

L e e A

“Ti (conf. 2) ]

(2)

®
®

02 -

Density (fm™)
o

0.1 F
&)
0.05

)
0’> | ST BRI e b .\rﬁ_ \..A-
. 0 1 2 3 4 5 6 7 8
X, z (fm)
)

FIG. 28. Nucleon density profile for the ground state and the
FIG. 27. The dot diagrams dfCo. first shape excitation df*Ti.

“
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FIG. 29. The dot diagrams dfTi.

ibility modulus, and the nucleon effective mass. To prevent
spurious ‘“quasicrystallization” effects, it is also necessary

PHYSICAL REVIEW C64 014302

0.2 -
0.15 -
0.1 -

0.05 -

L e LA N e o e e e e o

“8Cr (conf. 1):

0.3 v

0.25

0.2

0.15

c.1

0.05

X, z (fm)

that the potential reproduces the nuclear part of the binding FIG. 30. Nucleon density profile for the ground state and the
energies of the even-eveN=2Z nuclei: *He, 10, and*°Ca. first shape excitation oféCr.

The dot diagram technique and the statistical approxima-
tion for exchange integrals were employed to calculate prop-
erties of finite nuclei in a (2 1)-D deformed oscillator ba-
sis. In this basis, variational Hartree-Fock calculations
extending over the configuration space defined by the lowest
55 orbitals were performed. Our attention was focused on
spin-zero, isospin-zero nuclei. Therefore, spin-orbit, tensor,
and pairing interactions were omitted. In addition, the Cou-
lomb interaction was neglected. Nevertheless, the binding
energies and nuclear density profiles of closed-siie#4,

16 and 40, nuclei were close to tf€oulomb corrected
experimental values. Comparisons with experimental bind-
ing energies were made for all even-evilss Z nuclei up to
A=280. Large ground-state deformations and exotic nuclear
shapes were found for some nuclei. Shape excitations, i.e.,
shape isomers with diverse deformations, occur frequently.
(See Tables I-XVII\. This phenomenon is well knowi27].

We believe that the nucleon-nucleon potential developed
here is appropriate for investigating collective instabilities of
nuclear mattef16].

TABLE IX. Minimization results for**Ti.

Configuration B (MeV) #w,(MeV) #fw, (MeV) B

1 10.57 10.22 12.70 0.27
2 10.45 12.75 11.40 -0.12
3 10.09 11.68 11.67 0.00
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TABLE X. Minimization results for*Cr.

Configuration B (MeV) #Aw, (MeV) fw, (MeV) B
1 10.57 13.24 10.77 —-0.22
2 10.44 9.53 12.69
3 10.25 10.73 11.85

0.36
0.12

APPENDIX: EVALUATION OF THE INTERACTION

INTEGRALS WITH THE (2+1)-D

HARMONIC-OSCILLATOR WAVE FUNCTIONS

In the notation of EQ.(33), the first seven normalized

one-dimensional oscillator wave functions are

V2
7\ V4 ,
|7V 5. 32,3 _a 12— (1292
X3(Z)—< ) (27*%2°-37"%2)e
T V3
0.3 L B LA B B AL N
025 & °%Fe (conf. 1)
— i ]
‘e ozf ]
- o.15§ ‘
‘« [ 1
< r ]
o 01 3
o ; ]
0.05 | .
" ~
[+ J PR el S
0 1 2 3 4 5 6 7 8
X, z (fm)
0.3 — AL B R T T T T
0.25 _ 52Fe (cont. 2)_
T b \ _
= L .
> 015 ¢ ™~ 4
I% 01 & h
o ot \
0.05 AN
r N
0 TP T B Ly s L | P —— T ]
0 1 2 3 4 5 6 7 8
X, z (fm)

1/4
e (12 nz?

Xo(2)= (g)
” 1/4 5
x1<z>=(;) V2ryze V22

7 1/4 )
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Fy
Yoy

FIG. 33. The dot diagrams &fFe.

1/4 1 5
Xa(2)= ( —) — (49?24 — 1292+ 3)e 127z

XS(Z):(W

xo(2)= (%)

™

24

7 1/4 1
) (4 775/225_ 207]3/223 + 15771/22) e~ (12 nz2

/60
1/4

V720

— 15" W27,

(87°2%—6092*+ 909 7?

The two-dimensional oscillator states fo=0,...,5 are

g 1/2 W2
=|— - P
oo p, ) (ﬂ_) e
g 1/2
¢1:1(P-79):(;) £Y2pe(V2E g ed

1/2
oo p, D)= (;) (1—£p?)e~(W2e?

TABLE XI. Minimization results for>%Fe.

Configuration B (MeV) 7w, (MeV) #ho, (MeV) B
1 10.65 8.99 12.66 0.44
2 10.56 13.64 10.31 -0.29
10.42 12.79 10.60 -0.20

FIG. 32. Nucleon density profile for the ground state and the 3
first shape excitation of’Fe.
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0.3 [T TABLE XII. Minimization results for>Ni.

0.25 *Ni  (conf. 1) Configuration B (MeV) 7w, (MeV) #w, (MeV) B
‘TE o2 b\ ] 1 10.90 14.01 997 -035
= N ] 2 10.69 7.89 12.98 0.68
Zost ™~ 1 3 10.68 9.04 12.34 0.40
- AN E
8 ot r \ h

r ] 112
0.05 i AN ] lﬁg:z(p,’a):(é:) inge*(l/Z)gpzeiZLﬁ
0';(|‘x‘.‘i|1 wwwww ‘x..\s. HNYs i : 7T Vz
0 1 2 3 4 5 6 7 8
X,z (fm) £1172 )
. 113 —| = —(2 1/2  _ £3/2_.3 e*(l/2)§p eibﬁ
0.3 [ 3+1(p, D) (77) ‘/i(fp &)
025 © i (conf. 2)_:
— L : \ 112 )
'E 0.2 — l//3+3(p,19)—() 753/2p3e*(l/2)§p eiSnﬂ
= = T \/6
> 0.15 B
8 0.1 [ 3 1/2 ,
» : l/f4o(p.13)=() —=(2—4&p*+ Epte” VA%
0.05 | . ) 4
0
8 112 ,
(p )= 2] o (BEp?— 2pt)e (V2P er 20
a+2(p, D) (Tr) \/6( Ep°—§&p")
FIG. 34. Nucleon density profile for the ground state and the
first shape excitation ofNi. 0.3 T
0.25 : 89Zn (conf. 1)
&~ ‘ ]
e 02¢ 7
>, 0.15 S— -é
‘@ r ]
ol & o1l 3
[m] " ]
® 0.05 w -
t
0 (N PR Y
0 1 8
(1
0.3 e ————— SR
o8 ~—_ O %9Zn  (cont. 3):
5. 015 | ]
(2) = - ]
S o1l ]
a r ]
0.05 [ AN .
3 N ]
0 i P I PRI PR 1 N : P | n 0 |
0 1 2 3 4 5 6 7 8
X, z (fm)
(3

FIG. 36. Nucleon density profile for the ground sté&tenfigu-
FIG. 35. The dot diagrams SfNi. ration 1) and configuration 3 of°zn.

014302-16



PHENOMENOLOGICAL THREE-PARAMETER NUCLEON. . . PHYSICAL REVIEW C 64 014302

ele 03 AL S R AL SRS R SR B
0.5 | 4Ge (conf. 1)
& r
'E 0.2 [ —.
0 205 r ]
D
c ]
O 01 ]
o0 (a]
0.05 [ ]
0 L. : .
4] 1 8
0'3'"!""I"";""l""l"“!“"l""_‘
' o025 | (conf. 3)_f
g 0.2 : ]
> 0.15 .
® - z
FIG. 37. The dot diagrams &fZn. 8 ot ]
0.05 | 3
12 ; ]
2 4 L
l/’4+4(P,19):(—> — g2ple (VAéEpTgaLd Y S N S T I W o]
7T \/_4 0 1 2 3 4 5 6 7 8
X, z {fm)
g 1/2
Ys+1(p,9)= (;) \/—2(65” —6&%2p3 FIG. 38. Nucleon density profile for the ground state®t@e.
4 §5l2p5)e7(1/2 fp ei %]
(nlm)ﬁzf d3r|¢nl,m(r)|4- (A3)
g 1/2 1
¢5+3(P,19):(_) 4§3/2 3_§:5/2 S)e (112 £p? g*3ud
m \/—4 Clearly, the 1-D and 2-D parts of the integrals are separable,
and the integrals may be represented(iiasthe subsequent
S 12 52,5 DRt notation the asterisk stgnds.for any vqlue of quantum num-
Ys=s(p, ) =| — \/@f e e bersn, |, or m, from their entire range, in the order of their
appearance
The interaction potential is given by E€).
tiaIFﬁri;hgoi:fZ%rizlr?ti?c\)/cc)jl\elmi‘inngethe repulsive part of the poten- (nim,n’I'm")Z=(nl*,n’I'*)Z (xx mxxm')3, (A4)
nim)%=(nl*)% (** m)% A5
(nlm,n’l’m,)%zf f d3rd3rr|¢n|’m(r)|2 ( ),3 ( )ﬁ( )B’ ( )

X S(r=r")enrm(r)|? (Al With

_ 3 2 2 o
= | ol (o (emesm = [ delin@ P @ (86)
(A2)
TABLE XIII. Minimization results for %°zn. w0
e m= | denial, A7)
Configuration B (MeV) #w, (MeV) #fw, (MeV) B -
1 10.99 13.58 9.94 -0.32
2 10.83 13.56 9.92 —-0.32 e _ 2 2 2
nl*,n |"%)%= d 0 ni(p,9)|%,
5 10.80 800 1265 061 ( )3 f (o, N (p, 3) o
A8
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Yo
FYY

0.3

0.25 [
02

0.15 |

Density (fm™®)

01 |

0.05 |

0.3 —— 2)
0.25 o e
e oz
3 0.15
‘@B r
o L
S 01
() s ®
005 ¢ FIG. 40. The first three dot diagrams YfGe.
4]

The terms in the brackets are taken to be dimensionless,
whereK;; are numerical coefficients that include all the 2-D
FIG. 39. Nucleon density profile for prolate excited states ofinteraction integrals between different dots in ttie andjth
bGe. trees. Ifi=j, they include the “self-dot” interaction, i.e.,
interaction between nucleons belonging to the same dot. All
4 ) 4 interacting pairs have the same spatial orbitals owing tasthe
(”l*)ﬁzf d*plimi(p, )" (A9) " function, and the exchange integrals cancel exactly the direct
integrals. Therefore, the coefficierits; , as defined here, do

x, z (fm)

Integrals(A6), (A7), (A8), and (A9) are readily calculated,
and we present their values in Tables XIX and XX. Sum-
ming up all the interacting pairs, we arrive at the final ex-
pression for the average repulsive energy. In this expression,

in order to simplify the combinatorics, it is convenient to
“expand” the entire repulsive energy in terms of the 1-D
integrals:
1 ” 1/2 § .
(Vp)= ABV<T>(27T) .| [Koo(** 0)g

+ KO]_(** 0,** 1)%‘{‘ ot KOM(** 0,** M)%

+Kyg(0x 1)+ Ky (4% M) 5] (A10)
TABLE XIV. Minimization results for%Ge.

Configuration B (MeV) #fw,(MeV) fo, (MeV) B

1 11.08 13.20 9.91 —0.30
10.98 13.17 9.88 —0.30
10.97 9.93 11.37 0.16
10.92 9.05 11.80 0.33
10.84 8.08 12.32 0.56

10.84 9.51 11.62 0.24

OOk WN

FIG. 41. The next three dot diagrams %6e.
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03 —— T LA DL L B TT T v 0-3>v-".-'| AR R A N T
E ] L 68 ]
025 | *®Se (conf. 1)] 025 TN - Se (conf. 4);
("g 0.2 E b t'_f)-E\ 0.2 E -
> o015 . >, 015 |
@ r 1 S ,
S o1 ] S o[
Q : ] Q ;
0.05 | . 0.05 |
of = ol
8
0.3 ] 0.3
[ 68 ] 3
025 | Se (conf. 2)_: 025 |
"'JE 02 [ . "g 02}
> 015 . -, 0.15
@ , ] B ,
c F ] c L
o 0.1 3 0.1
a : 3 3 :
0.05 [ 9 0.05
0 " 0
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
X, z (fm) X, z {fm)
FIG. 42. Nucleon density profile for the ground state and the FIG. 43. Nucleon density profile for two degenerate excited
first shape excitation dfSe. states of®®Se. Configuration 4 has a large prolate deformajion
=0.52 and configuration 5 has an oblate deformation wath
not include interactions between like particlgs| (with pT, =-0.21.

etc) in both cases,=j andi#j, which results in six iden-
tical integrals for “self-dot” interactions and in 12 identical
integrals for interactions between two different dots.

We treat the attractive interaction integrals in a similar

. . . L L J
way. First, let us show that the one- and two-dimensional
integrals are separable. For a pair of nucleons in the states
(nl, m) and (0'I",m"), respectively, we define
(nIm,n’I’m’)iEf f dr d® '@y m(r)]? "
, Cr_rN\2/2 ’
><(r—r )Ze (r=r’)s |(Pn’l’,m’(r )|2 { 2
(A11) ®
and
2
nimyi= [ [ a gy () @
/ o
X (r—r")2e "I o ()2 (AL2)
®
To separate the variables, we notice that
(r=r")?=(p—p")?+(z-2')° (A13) @
Now we may rewrite Eqs(A11) and(A12) as FIG. 44. The first three dot diagrams 85e.
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VEeLL o ey
iy

(2
FIG. 45. The next two dot diagrams &Se.

)
( X J
TABLE XV. Minimization results for%8se.
Configuration B (MeV) #fw,(MeV) fLo, (MeV) B
1 11.34 12.85 9.88 -0.28 @)

2 11.20 9.93 11.27 0.15
3 11.16 9.50 11.47 0.23 FIG. 47. The first three dot diagrams GKr.
4 11.09 8.15 12.07 0.52
5 11.08 12.28 10.09 -0.21 (nIm,n’1'm")2=(nl*,n'l"*)2 (xx m,xx m')2
+(nlx,n'1"%)2 (s mxx m")?
0.3 = T ——— ] (A14)
05 | 72Kr (conf. 1)] and
% ozl ] (nIM)g=(nl*)3 (= )5+ (nl*)5(x+ m)3,  (AL5)
> 015 ] where
= - ]
S o1: E S 12/2
a ] (%% m,** m’')2= f_ J_ dz dZ|xm(z)|?e” @ 2)7s
0.05 - 4
: : X xm (212, (A16)
0 L
Tt (o M) &= (e m,ex )2, (AL7)
0.3 T T T T T T T T
) ] e
L 7 ]
Kr (conf. 2) 1
0.25 ( ) : ® 1
' r ]
'E 0.2 r -
%, 0.15 : . "
[ L ]
@ 0.1 —
o - y
0.05

)
r 3 e
z ] *
OII 1‘”2“H3Hl4“”5 ‘6l 7 8
X,z (fm)
)

5

FIG. 46. Nucleon density profile for the ground state and the
first shape excitation of’Kr. FIG. 48. The next two dot diagrams &Kr.
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783r (conf. 1)1
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£ - |
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1 i : ]

c 1 c C 3
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o : 8 i

0.05 3
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LN R B S B S S

783r (conf. 2)]

0.05 -

0 1 2 3 4 5 6 7 8 o 1 2 a l4' 5 6 7 8
X, z (fm) X, z (fm)
FIG. 49. Nucleon density profile for the ground state’sr. 0.8 e . — .
0.25 ~ 763r (conf 3)_
(% m,*x m'>§,zf f dz dZ|xm(2)|%(z—2')? N 5
—owJ —x E “r ]
S \
Xef(zfz')2/32|Xm,(Zr)|2, (A18) ‘? 0.15 -~ \ -]
a r ]
8 0.1 — \ —
(%% m)iz(** m, ** m)i, (A19) 0.05 - \ ]
N N 1
[} 1 i | P BT B oee: SO oy
- 0 1 2 3 4 5 6 7 8
(nl*,n’l’*)iff f d?p &%’ ¢hmi(p, 9)]%” 7P X,z (fm)

X (p', 0|, (A20)

FIG. 50. Nucleon density profile for the first two shape excita-

tions of °Sr. In the upper picture, the two curves completely over-
lap.

(nl*)4=(nl* nlx)2, (A21)

(nl*,n’l’*)izffdzpdzp’lwm(p,ﬂ)lz(p—p’)z

—(p—p")? ! ’
xe PP g (p' 95 (A22)

(nl*)2=(nl*,nl*)2, (A23)

The integrals(A16) through(A23) are calculated and tabu-
lated in the same way as the repulsion integrals, only now
the integrals are functions of the three parametgrg, and

s. The resultant expressions are rather cumbersome and we
do not show them here.

TABLE XVI. Minimization results for7?Kr.

Configuration B (MeV) #Aw, (MeV) #fwo, (MeV) B

1 11.58 9.93 11.17 0.14
2 11.49 12.09 10.08 -0.20
3 11.41 10.31 10.94 0.07
4 11.41 10.67 10.69 0.00
5 11.40 11.52 10.24 —-0.13
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TABLE XVII. Minimization results for 7Sr.

Configuration B (MeV) #w, (MeV) fw, (MeV) B
1 11.87 10.31 10.90 0.06
2 11.83 10.68 10.67 0.00
3 11.83 11.47 10.26 —-0.12

The average attractive energy per nucleon can be written

now as
1 M M
_ .d) (d.d)
(Vo)== 71aC mzo Vit X Von'|. (A29)
m=m=1
where in the first term,
VED=6> (nl,m)4, (A25)
n,l

the summation is performed over all occupied dots in the
mth tree. This term represents the attraction between all pairs

of nucleons belonging to the same dot, m). The exact

cancelation of the direct and exchange terms reduces t

number of terms contributing from one full dfour nucle-

03 ————— T LN L BN

]

025 | 80Zr (conf. 1)_?

0.3

0.25 -

0.2 |

0.15 [

Density (fm™)

0.1 [

0.05 [

X, z (fm)

FIG. 52. Nucleon density profile for the ground state and the

first shape excitation oi’Zr. In the upper picture, the two curves
completely overlap.
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Yy

M

(6]

FIG. 53. The first three dot diagrams ¥¥r.

ong to C5=6. The contribution from pairs where the two

r]‘ﬁjcleons belong to two different dots is given by

VeS=[1-g,(TH]X > (nimn'1'm’)2,

n,l n’,I’

(A26)

where the summation is extended over all occupied dots in
the mth andm’th trees, respectively. It is here that we use
the statistical approximation to the exchange energy dis-
cussed in Sec. Il. Combination of equatidAd.0) and(A24)
gives the entire interaction energy per nucleon folNanZ
=1/2A, even-even nucleus.

Let us show how this procedure applies*tée, the sim-
plest of our nuclei. Its c.m.-corrected average kinetic energy

is
o0
(4)
k [ X ,
)

FIG. 54. The next two dot diagrams 8tzr.
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FIG. 55. Calculated ground-state binding enerdfed circles) FIG. 56. Calculated ground-state ellipsoidal deformatighs

vs the atomic numbeh, compared with corresponding experimen- (full square$ atomic numberA. The corresponding calculated val-
tal values from Mdler et al. The last four points of the experimen- ues from Mdler et al. are the empty squares.
tal curve(empty circles with dotsare extrapolated values from the
nearest isotope of known mass. 1
1_ —

4
(T)=—4— X4x5(0+Dho=Fho.  (A27)

TABLE XVIII. Minimization results for 8°Zr. .
The average attraction is

Configuration B (MeV) #w,(MeV) fw, (MeV) B

—_1 (s.d)
1 12.36 10.67 10.67 0.00 (Va) =—2aCVe™, (A28)
2 11.85 9.27 11.17 022
3 11.75 11.73 9.87 —0.19  With
4 11.71 9.55 10.96 0.16
5 11.71 11.36 10.05  -0.13 VE)S-fD:G(OO,O)iZG[(oo*)i(** 0)4+(00%)4(+x 0)47].
(A29)

Let us calculate the integrals:

TABLE XIX. Values of the one-dimensional integrals for the repulsive part of the interaction in the units
of (yl27)*2,

Orbitals (** 0)? (*¥*1)2 (** 2)? (** 3)? (x* 4)2 (** 5)2 (** 6)2
(*+ 0)? 1 1 3 5 35 63 231
2 8 16 128 256 1024
(#+1)2 3 7 11 75 133 483
4 16 32 256 512 2048
(¥+ 2)? 41 51 329 569 2037
64 128 1024 2048 8192
(** 3)? 147 759 1245 4351
256 2048 4096 16 384
(¥* 4)? 8649 11445 38005
16 384 32768 131072
(*+5)? 32307 87069
65 536 262 144
(*+ 6)° 487 889
1048576
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TABLE XX. Values of the two-dimensional integrals for the repulsive part of the interaction in the unitg2af).

Orbitals (00%)? (1+1%)? (20%)? (2£2%)2 (3x1%)2 (3%3%)?
(00+)? 1 1 1 1 3 1
2 2 4 8 8
(1+1%)2 1 1 3 1 1
2 4 8 4 4
(20%)? 1 1 1 1
2 4 4 4
(2+2%)2 3 3 5
8 16 16
(3x1%)2 5 3
16 16
(3x1x)2 5
=

Orbitals (40%)? (4+2%)? (4+4%)? (5+1%)2 (5=3%)? (5+5%)?
(00+)? 3 1 1 5 5 1
8 4 16 16 32 32
(1+1x)2 3 1 5 3 7 3
16 4 32 16 32 32
(20+)2 5 1 7 7 7 11
16 8 32 32 64 64
(2+2%)2 5 3 15 9 25 21
32 16 64 64 128 128
(3x1x)2 11 7 25 3 1 3
64 32 128 16 8 16
(3+3%)2 9 5 35 1 5 7
64 32 128 12 32 32

Orbitals (40%)? (4+2%)? (4+4%)? (5=1%)? (5=3%)? (5%5%)?
(40+)? 11 3 9 11 23 19
32 16 64 64 128 128
(4x2%)? 1 5 9 25 21
4 32 64 128 128
(4+4x)2 35 15 35 63
128 128 256 256
(5+1x)2 15 19 15
64 128 128
(5+3%)? 55 35
256 256
(5+5%)2 63
256

. w ) ) - With the new variableg andZ:
(x* O)fﬁ dz dZ[xo(2)]|%|xo(z")|* ex — (z—2')*/s%]

7 =7+%;, 77=72-1 (A31)

:(;)f dz dZ e 7@ Yex — (z—2')?/s?].

—o0

(A30) Eq. (A30) becomes
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n _ 22
_ e &Is
T

2,1
27+ —
2§

f dgdZex;{—n
7\ 12 s
=3 —1
\/ 1+ = ns?
277

Similarly,

(%% o)i: (

(A32)

(*% 0)%= f dz dZ|xo(2)|2|x0(2)|2(z—2')2e =2’

— o0

_ (2) jw dzdZ e 7;(22+z’2)(z_Z/)Ze—(z—z’)zls2
a

AN 2 T L.
—<;) ﬁwdgdzg exp[—n(zz +§§) e ¢
1(p)\¥2 3
:E(E) ﬁ (A33)
1+§7]52

For the two-dimensional integrals, we use the substitution Vgs'd'):655(

p=R+3r, p'=R—3r. (A34)

Then
(el )\22
(Ook)i:f d%p d%p’ ool p. D) 2| hoolp’, D) |2e™ PP

2
- ( 5) f d2p d2p’ e &% +p g (p=p")?Is?
o

2 ry
=(27r)2<§) drrexp{—(%gnL ! rz}
0

SZ

- (A35)

and

PHYSICAL REVIEW C 64 014302
<00*>i=J d?p d?p’ [thool p, 91| thoop”, 0| ?(p—p')?
X e~ (p—p")%Is?
- é Zf d2pdzp'ef‘f(pzwlz)(p—p')z
ar

X e (p=p")?Is?

£\2 (=
_ 2l & 3
(2m) (77) fo drr
1 1 * 2
N 1,2 2R
xexp{ 2§+82 r }fo dRRe
3 st
=|= 5. (A36)
2 1+1 2
258
Now we have
7 1/2 g 1 1
E E 1 172 1 2
2 T2
1+2ns) (1+2§s>
1 1 1
+§ 1 75| - (A37)
T2 -2
(1+2§s> 1+21;5

For “He, the two parameters; and ¢, are equaly=é=1y.
Therefore

3 ¥ 3/2 1
<Va>= - Ea<Z) ﬁ (A38)
1+ E ’ySZ)

(Here, in the limits— 0, we regain thes-function resuli.
The repulsive energy is

3/2 y 3/2
_> 112
><6—8B<27T) (hew)2
(A39)

Combining equationgA27), (A38), and(A39), we arrive at
the final result, Eq(29) of Sec. II.
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