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We present realistic models of pion-exchange three-nucleon interactions obtained by fitting the energies of
all the 17 bound or narrow states o£A=<8 nucleons, calculated with less than 2% error using the Green'’s
function Monte Carlo method. The models contain two-pion-exchange terms dtid szattering inSandP
waves, three-pion-exchange terms due to ring diagrams with\oinethe intermediate states, and a phenom-
enological repulsive term to take into account relativistic effects, the suppression of the two-pion-exchange
two-nucleon interaction by the third nucleon, and other effects. The models have five parameters, consisting of
the strength of the four interactions and the short-range cutoff. The 17 fitted energies are insufficient to
determine all of them uniquely. We consider five models, each having three adjustable parameters and assumed
values for the other two. They reproduce the observed energies with an rms<dr#érwhen used together
with the Argonnev ;g two-nucleon interaction. In one of the models thd Swave scattering interaction is set
to zero; in all others it is assumed to have the strength suggested by chiral effective-field theory. One of the
models also assumes that th®l P-wave scattering interaction has the strength suggested by effective-field
theories, and the cutoff is adjusted to fit the data. In all other models the cutoff is taken to be the same as in
the v g interaction. The effect of relativistic boost correction to the two-nucleon interaction on the strength of
the repulsive three-nucleon interaction is estimated. Many calculated properfies®huclei, including radii,
magnetic dipole, and electric quadrupole moments, isobaric analog energy differences, etc., are tabulated.
Results obtained with only Argonng, andu g interactions are also reported. In addition, we present results
for seven- and eight-body neutron drops in external potential wells.
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[. INTRODUCTION The results for light nuclei are summarized in Fig. 1,
where we compare the calculated and experimental binding
One of the primary goals of nuclear physics is to under-energies for all the ground or narrow, low-lying, excited
stand the stability, structure, and reactions of nuclei as atates of nuclei with up to eight nucleofrseglecting isobaric
consequence of the interactions between individual nucleonsinalog states In addition to the predictions of the AV18/
However, these interactions are not known from first prin-UIX Hamiltonian, we show the resultgnost newly calcu-
ciples; they are modeled with parameters to be determineféted for the present papesf using just the two-body AV18
from data. Significant advances have been made during thateraction by itself. We see that AV18 alone predicts some
last decade in thab initio calculation of nuclear properties key features of nuclear structure correctly, such as the proper
starting from these realistic models of the nuclear forceprdering of excited states and the rapid saturation of the
which allow us to test the predictions of such models withbinding above*He. However, with the exception ofH, it
unprecedented accuracy, and to refine them. With our colunderbinds all nuclei, and this failure grows rapidly with
laborators, we have carried out a series of many-body calcuncreasingA. With just the two-nucleon force acting, the
lations of light nucle{1,2] and nuclear and neutron star mat- Borromean nuclei®He and ®He are not stable and the
ter[3] using a Hamiltonian that contains both two- and three-ithium nuclei are only marginally so.
nucleon potentials. The light nuclei calculations use the The addition of the UIX model o¥;;, fixes the binding
Green’s function Monte CarlGFMC) method and have energy of®H and *He and significantly improves the bind-
been demonstrated to give nuclear binding energies for up timg of the p-shell nuclei. However, AV18/UIX still un-
eight-body nuclei with a precision of better than 2%. Thederbinds a#\ increases, and also &-Z increases. In par-
matter calculations are less accurate but provide importartcular, ®He is more underbound thafBe, indicating a
constraints on the Hamiltonian. These calculations have usegstoblem with the isospin dependence of this interaction
the Argonnev 5 (AV18) model[4] of the two-nucleon inter- model. The relative stability of the lithium nuclei is im-
action,v;; , and the Urbana IXUIX) model[5] of the three-  proved, but the Borromean helium nuclei are still unbound.
nucleon interactiony;jy . Additional calculations of wider, higher-lying, excited states
not shown in Fig. 1, indicate another problem with the
AV18/UIX model: the underprediction of spin-orbit split-

*Electronic address: spieper@anl.gov tings among spin-orbit partners such as the 3&hd 1/2
TElectronic address: vijay@rsm1.physics.uiuc.edu states in°He.

*Electronic address: wiringa@anl.gov In this paper we investigate new models df that
SElectronic address: carlson@paths.lanl.gov largely correct these failings and give a very good descrip-
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FIG. 1. (Color) Energies of ground or low-lying excited states of light nuclei computed with the AV18 and AV18/UIX interactions,
compared to experiment. The light shading shows the Monte Carlo statistical errors. The dashed lines indicate the thresholds against breakup
for each model or experiment.

tion of the spectrum of light nuclei. Studies of nuclear andpromise for testing models af;; in this regime. However,

neutron star matter with these new models will be reported inhe binding energies and excitation spectra of light nuclei

a separate paper. also contain a great deal of information, and are in fact the
The theory of strong interactions has not yet progresse@nly current means to investigale= 3/2 forces.

enough to permit a first-principles determination of the two-  An additional concern is that the;;. obtained by fitting

and three-nucleon interactions with the accuracy required tgclear data may depend strongly on the mode, ptised in

calculate nuclear binding energies. The interactions must bg« Hamiltonian. TheV,j, will naturally depend upon the

determined_phenom_er_wlogically. Modern, realistic mode_ls OEhoservij to some extent. For example, two equivalent mod-
vjj are obtained by fitting the-4300 data below 350 MeVin - vij, related by a unitary transformation, will have

the NijmegenNN-scattering databadé&] with a y>~1 per . __ ) .
degree of freedom. The Nijmegen database is said to be corrcwilfferent but related/; associated with theifb]. However,

plete, i.e., the included data determine all the relevant phas(‘éomb'nat'onS Oby; and Vi, related by unitary transforma-

shifts and mixing parameters. Thug fitted to it are well tons will naturally predict the same ob_servablles. :
determined and generally give very similar predictions of the Models ofVij based on the elimination of field variables
properties of three- and four-body nuclei, as will be dis-daté back to the work of Primakoff and Holstdit0]. The
cussed below. first modern meson-exchange model for nucl®gg was

In contrast it is much more difficult to construct realistic Proposed by Fujita and Miyazaw&M) [11]; it contained
models of Vi, by simply fitting three-nucleon scattering Only the two-pion-exchange three-nucleon interaction
data, which is dominated by the pairwise forces. The numbe¥>™"" due to scattering of the pion being exchanged be-
of operators that can contribute ¥, is very large, and until  tween two nucleons by a third nucleon via tRewave A
recently, the number of observables that could both be obresonance. This interaction is attractive in nuclei and nuclear
served and accurately calculated was small. Recent advancemtter. Later theoretical models, such as Tucson-Melbourne
in three-nucleon scattering calculations, based on correlated@M) [12] and Brazil[13] included theV2™SW due to 7N
hyperspherical harmoni7] and Faddeey8] methods, and Swave scattering and?>™ P from all P-wave scattering. In
in high-precisionNd scattering experiments, hold significant the recent Texas model, these two-pion-exchange contribu-
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tions toV;j have been predicted using chiral symmetrg]. center of mass of thg pair of nucleons in the presence of

The FM and later models have similar forms %™ PW, but  the other nucleons. Initially the boost interaction(P;;) is

the predicted strength of the long-range parvéf-PWinthe neglected in the GFMC calculations. It is subsequently

later models is almost twice that in FM. treated as a first-order perturbation. The contribution of
The main failures of a nuclear Hamiltonian containing 6v(P;;) to the binding energy of light nuclei is nearly pro-

only two-nucleon interactions include the underbinding ofPortional to that oV, The final value of the strength &

light nuclei, as discussed above, and an overestimate of tHe&n be adjusted to reproduce the observed energies when the

equilibrium density of nuclear matter. An attractiv@™ ad- ~ Perturbatively computedsu (P;;) contribution is included

dresses the first failure while making the second wi&g. [16*11 . ) o ) o
The Urbana models o¥/;;, contain only two terms, the A brief review of theNN interaction, including relativis-
V27PW and a phenomeno”IogicaI repulsivB. The stren,gths tic corrections, is given in Sec. Il. The new lllinois models of
of the two interactions in the most recent Urbana model UIx_ ik @r€ presented in Sec. lil. The GFMC calculations of

. . ) light nuclei are briefly described in Sec. IV. The nuclear
were optamed by reprodycmg the energy’f via a GFM(.: energies calculated with AV18 and its approximation AV8
calculation and the density of nuclear matter by approximat

%@s well as those including the new lllinois three-nucleon po-
B B B . R .
variational calculation$5,3]. The repulsive ternV™in Vi yontials are reported in Sec. V. A number of results obtained

is essential to prevent nuclear matter from being t00 densg;iw, the new lllinois models for the light nuclei, including
and overbound. o proton and neutron distribution radii, magnetic and quadru-

The expectation value of th&INN potential is much  npole moments, and isobaric analog energy differences, are
smaller than that of thBIN potential in nuclei. For example, also given in Sec. V. In addition, we report results obtained
the ratio of contributions of the UIX and AV18 potentials in for drops of seven and eight neutrons in an external potential
A<8 nuclei is<0.1[1,2]. However, theV;;, gives a rela- well to provide constraints for energy-density functionals of
tively much larger contribution to nuclear binding energiesneutron-rich nucle[18]. Our conclusions are given in Sec.
due to the significant cancellation between the positive kiv/I.
netic energy and the negatieN potential. It is this feature
that allows us to extract information on;, by studying the II. THE TWO-NUCLEON INTERACTION
spectrum of light nuclei.

In the present paper we fit the energies of 17 states of up We use the Hamiltonian
to eight nucleons, calculated by the GFMC method with 52
<2% error, to construct more realistic models df; . H=> —-—VZ2+>, vy + > Vi 2.0
These models are for use with the AV&§ . In addition to i 2m, i< i<j<k
the already mentionew?™PW v2™SW andVR terms, they S , _
contain three-pion-exchange rings with intermediate cpntammg k|net|c,'two-, and three-nucleon interaction ener-
statesV/3™R_ All the terms are static; their spin-isospin and 91€S- The mass difference betV\_/een the proton and the neu-
spatial dependence is taken from theoretical models, anon iS taken into account by lettimg; be the mass of proton
their strengths are varied to fit the observed energies. or neutron according to the isospin of nucleorand both

The new models are referred to as “lllinois” models: five Strong and electromagnetic isovector and isotensor terms are
versions, lllinois-1 to -5(designated IL1 to IL5 are pre- Included in thevj; . . .
sented in this paper. The Hamiltonians using AV18 and these T1he Argonneuv ;5 two-nucleon potentiaf4] containsv ™,
Vijx are referred to as AV18/IL1, etc. For each model, two tothRe one-pion-exchange potential with a short-range cutoff,
three of the available five parameters were adjusted to fit thé  representing all other strong interaction terms, afida
binding energies of the 17 states assuming plausible value€y complete treatment of the electromagnetic interaction
for the other parameters. The IL1 and IL2 models have short-
range cutoffs taken from AV18, while IL3 uses the strength
predicted by chiral-perturbation theory/4] for Vﬁ}(’ and ad-
justs the cutoff to fit the energies. IL4 and IL5 are further
variations of IL2. The qualities of the fits are good, and the
extracted strength parameters have plausible values. This vij= > vp(rj)Of (2.3
suggests that strengths of additional term&/jp cannot be P

determine_d from the d:?\t_a included ir_l the present paper. It i§, which Oﬁ are operators, andy(r;;) depend only on the
also possible that additional terms Wy, are weaker than jerparticle distance;; . The first six operators are the only

27, SW 37,AR H i . . . . . . .
Vo 2nd VIR, which in trn are weaker than the possible isospin-conserving static ones, i.e., operators inde-
VTP and VT considered in the older Urbana models. Gpendent of the nucleon velocities:

Several relativistic effects are contained in the two- an
three-nucleon potentials fitted to experimental data. How- oﬁzlyﬁz(l,gi.a-j Sje 1z 1), (2.4
ever, the boost correctiodv (P;;), to the two-body interac-
tion is omitted in nonrelativistic Hamiltonians containing ~ whereS;; is the two-nucleon tensor operator. There are only
fitted to the scattering data in the two-nucleon center-of-mastvo isospin-conserving spin-orbit terms linear in the veloci-
frame. This many-body effect arises from the motion of theties, with operators

— R
vij=vitvijto]. (2.2

It can be expressed as a sum
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oﬁ:IBZL.S@(l,ﬂ.Tj), (2.5  are compared in Ref22]. All the local models predict es-
sentially the same wave functions, however, the two nonlo-
whereL andS are the relative angular momentum and thecal models give different wave functions. The main differ-
total spin, respectively. The above eight terms are unique anence is in theD-state wave function of the deuteron; that
able to describe most of the features of bl interaction.  predicted by CD-Bonn is smaller a2 fm, while that of
The long-range parts afy(r;;) andvg(rj;), associated with  Nijmegen-I is close to predictions of local models at all val-
the o-oj7- 7, and S; 7- 7, operators, respectively, are ues ofr. The Sstate wave functions of the boson-exchange
given by the one-pion-exchange potentidl. In addition = models, CD-Bonn and Nijmegen-I, are larger than those of
there are phenomenological parametrizations of the shorthe local models at<1 fm.
and intermediate-range parts of thg(r;;). The deuteron elastic-scattering form factors are sensitive
It is necessary to add several smaller terms to the abov® the wave function. Thé(g?) structure function has been
eight in order to fit the scattering data withy@~ 1. These accurately measured, most recently at Jefferson[R8(24],
include terms dependent quadratically on the velocity, anénd results of the recent measurements of the tensor analyz-
static and spin-orbit terms breaking the isospin symmetry. Inng  power, T,o(q?), at Jefferson Lab [25] and
AV18 the quadratic operators are chosen as NIKHEF [26] are also available. These indicate that the deu-
teron wave functions calculated from the local potentials, are
O *¥=[L% %0 07.(L-9%]®(15-7); (2.6  very realistic. They correctly predict the observed data with
plausible pair currentf27]. In addition, it has been shown
however, in the Parig19] and Nijmeger{20] models,VZis  recently[28] that nonrelativistic calculations using locaf
used in place of the?. give deuteron wave functions close to those predicted with
In addition to the isospin-breaking terms iff, strong-  nonlocalv™ obtained with the pseudovector pion-nucleon
interaction isospin-breaking terms are necessary to reprodug®upling, favored by chiral-perturbation theories, and relativ-
the data. Th@Dﬁ:lE’_” are isotensors with centradr;- oy,  istic kinetic energy. The corrections of ordef/m?, to the
and tensor operators, and the long-range part olmplitudes of states with large momentymcoming from
vp-15-17rij) is determined from the difference of the relativistic nonlocalities of ™ and relativistic kinetic energy,
masses of charged and neutral pions. The isovector term asancel in this case.
sociated witrOi"j:18 is necessary to explain the difference in  The main assumption we make here is that local models
the T=1,S=0, pp andnn scattering length$4]. The inter-  provide an accurate representationvgf. It is supported by
actions associated with the 18 operators listed above contathe observed deuteron form factors mentioned above, and is
all the strong and parts of the electromagnetic interaction. Iwalid for thev ™ as shown in Ref.28]. The local models also
addition, there are four more operators that appear only ipredict essentially the same val@@.63 MeV for Reid-93
the v?. The number of parameters contained in the AV18and 7.62 MeV for AV18 and Nijmegen)llof the binding
model ofv;; is ~40, and all of them are fairly well deter- energy of the triton in nonrelativistic calculations with no
mined by the~4300 data in the Nijmegen database. three-nucleon potentig29]. The difference between these
It is well known that two-nucleon scattering data up tovalues and the observed binding energy of 8.48 MeV is one
350 MeV, cannot determine the potential uniquely. In  of the indications for the presence gf;, in the Hamiltonian
addition to AV18, there are four other modern models: Reid<2.1). The triton energies obtained with the Nijmegen-I and
93, Nijmegen-I and I[20], and CD-Bonr21], all of which  CD-Bonn models, withoubv (P;;), are 7.74 and 8.01 MeV,
fit the Nijmegen database. The five models are different frontespectively{30]. The energies of the alpha particle predicted
each other in detail. The Reid-93, Nijmegen-Il, and AV18by AV18 and Nijmegen-II differ by only 0.28 MeV while
models assume that the interaction in ea& partial wave those predicted by Nijmegen-l and CD-Bonn models are,
can be represented by a local potential in that partial wave; inespectively, 0.7 and 2.0 MeV more bound than the AV18
addition the operator structure of the AV18 model givenvalue[30].
above relates the potentials in all partial waves. In states with Accurate calculations of nuclear matter are not yet prac-
total spin S=1, the local potential inLSJL’'SJ coupled tical. Nevertheless the nuclear matter equation of state has
waves is expressed as a sum of central, tensor, and spin-orbi¢en studied for all five modern potentials with the lowest-
components. On the other hand, the Nijmegen-l and CDerder Brueckner-Hartree-Fock method with continuous
Bonn models include nonlocal interactions based on bosorsingle-particle energieg31], again without relativistic cor-
exchange phenomenology. rections. The local interactions, Nijmegen-Il, Reid-93, and
All the models ofv;; contain one-pion-exchange poten- AV18, give similar results, while the most nonlocal CD-
tials v™, as the long-range part, and phenomenologicaBonn gives the lowest energies. The predicted values of
shorter-range parts. Fortunately #e gives the largest con- equilibrium E, and p, of symmetric nuclear matter are
tribution to nuclear potential energies, and thus the modet-17.6 MeV at 0.27 fm* with Nijmegen-Il, —18.1 at 0.27
dependence of the phenomenological parts has a limitedith AV18, —18.7 at 0.28 with Reid-93;-20.3 at 0.31 with
scope. However, the™ itself is not uniquely predicted by Nijmegen-l, and—22.9 at 0.37 with CD-Bonn, while the
theory. That in the CD-Bonn model is derived assumingempirical values are-16 MeV at 0.16 fm3. The above
pseudoscalar pion-nucleon coupling, and is nonlocal, whil&rueckner results for AV18 are quite close to thg=
that in the other models is essentially local. The deuteron and 18.2 MeV andp,=0.3 fm™ 2 obtained with the variational
1s,-scattering wave functions predicted by the five modelsmethod using chain summation methd8% The triton and
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“He energies obtained with the nonlocal CD-Bonn interac-

tion are closer to experiment than the predictions of local L x T L It
models, but it is predicted that nuclear matter properties are N 4 T .
farther away. T n — =

It has been stressed by Frig82] that the various repre- a b c

sentations ofv™ are related by unitary transformations. It
should be possible to use these transformations to find the FIG. 2. Three-body force Feynman diagrams. The fasts the
appropriate current operators that will explain the deuterorFujita-Miyazawa,(b) is two-pionSwave, (c) and(d) are three-pion
form factors with wave functions predicted by the nonlocalrings with oneA in intermediate states.

models. These transformations will also generate three-body

forces accounting for the difference between energies obaf Eq. (2.8) and that only the first six operator ternithe
tained from local and nonlocal models. Thus the deuterorstatic termgof AV18 give substantial contributions. Accord-
form factors do not exclude nonlocal representations; pf ingly, we ignore the last term of E@2.8) in this paper and

However, it seems that the simplest realistic models of thevaluate the first two for only the static partswfFurther-
nuclear Hamiltonian may be obtained with loeal, and  more, it was shown that the terms arising from the deriva-

fortunately there is much less model dependence in these. |f,og acting on operators in were negligible, so we do not
the present paper we use the AV18 modebgf, however, o\ 5juate them here. '

the other local models will presumably require simi4y; .
The two-nucleon interaction;; depends both on the rela-

tive momentump=(p;—p;)/2 and the total momentur®

=p;+p; of the interacting nucleons. We can express itas  The lllinois V;j are expressed as

[I. ILLINOIS MODELS OF  Vjj

~ _ APWA27,PW SWA27,SW AR~ 3m,AR R
v =0+ 6v(Py), (2.7) Vik=Az2z Ofj" "+ A7 0jjk ™ "+ Az Ofj ™+ ArDjji -
J J J (3 1)

whereév(P=0)=0. The models discussed above g?)\(pin Their four terms represent the?™PW, \2mSW \/3mAR gnq

the P=0, center of momentum frame. In many calculationsy,r interactions with strengthsgw A§W AéR andAg. In

thev;; is used as an approximation #¢ by neglecting the  the following sections we give the spin-isospin and spatial
boost correctionsv (P;;). In fact terms dependent qmin-  operators associated with these interactions and the theoreti-
cluded inZij are of the same order as thosedn(P;;) de-  cal estimates of the strengths. In the older Urbana models
pendent orP [33]. It is essential to include thév(P;) to A% is denoted byA,,, Ag by Uy, and thev2™SW and
obtain the true momentum dependence of the For ex-  V37™4R terms are absent.

ample, the electromagnetic interaction between two charges,

as well as the analogous vector-meson-exchange interaction A, V27 PW

t tw | = (1/4)P?—p2. : : .
between two nucleons depends upen p=(1/4)P"—p The earliest model ofv?™PW is due to Fujita and

~ ., 2 . 2 . .
Theu includes only thep” term, while theP” term is |n251.). Miyazawa[11], who assumed that it is entirely due to the
The év is related tov and its Ieadlng term of ordde” is excitation of theA resonance as shown in F|q_az Neg|ect-

given by ing the nucleon ana kinetic energies we obtain
P2. 1 ~ PW 2 f2un i M
5U(P):_ﬁv+ ﬁ[PJ’P'V,U] Azw__a 4 4w (my—my)’ (3.2

1 ~ ,
+W[(01—0-2)><P-V,v]. (2.8 i2jk szgc X XyH 77,75 Tk}+%1[xij Xii]

X[7 -7 - .
The validity of the above equation, obtained by Ffia4], in (777 7d)s 3.3

classical and quantum relativistic mechanics and in relativis- o e N e

tic field theory has been shown in RE83). Xiy=T(m ) S+ Y(Mo1y) 07 05, 34
The effects of theSv (P;;) on the energies ofH and “He o X

[17] and nuclear mattdi3] have been studied for the AV18 Y(X)=—&y(1), (3.5

model using the variational method. This boost correction X

gives a repulsive contribution in both cases. It increases the

triton energy by~ 0.4 MeV away from experiment, while the

nuclear matter equilibriunk, and pg move to—13.7 MeV

at 0.23 fm 3, which is closer to the empirical density, but

farther from the empirical energy. The variational MonteHere &,(r) and é(r) are short-range cutoff functions. We

Carlo (VMC) studies[17] of év(P;;) also show that the note that the one-pion-exchange two-nucleon interaction

dominant corrections come from the first and second termssed in AV18 is given by

3 3
T(x)= F+;+l Y(x)&4(r). (3.6)
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124N models, as in the FM, therefore their estimate of the strength
Uﬁzg 2y AT 7 Xij (3.7 of V2™PW may be too large in magnitude. Another concern
is that themN scattering amplitude used in these models
with cutoff functions considers only pions of momenta less thap [14]. They
play a much smaller role in nuclear binding than those with
&N =&r(r)=(1—e °), (3.9  Mmomenta~500 MeVic.

The factor of 1/4 in the second term @/ """ [Eq.

and c=2.1fm 2. The contact,s-function part of the one- (3.3)], containing the product of commutators, is due to the
pion exchange potential is not included in th&in Urbana-  spin and isospin of thel being 3/2. In the TM and later
Argonne models since it is difficult to separate it from the models, the strength of this term is proportional to the con-
other short-range parts. These functional forms are used istantd whose values have also been tabulated by ftia.
UIX and all the lllinois models. [14]. The value ofd/b is 0.29 in the latest Texas model,

In all the lllinois models except IL3, the cutofe  however, the ratio of the expectation values of the commu-
=2.1fm 2 is used and tha5" is varied to fit the data, as in tator and anticommutator terms Gf"" is very constant
UIX. This approximation assumes that ta&lA form factor  across all the light nuclei studied in this paper, and hence this
is similar to thewNN form factor. In fact it is likely that the factor cannot be determined from the data considered here.
radius of theA resonance is larger than that of the nucleon,We continue to use the Fujita-Miyazawa value of 0.25 in this
and thus therNA form factor is softer than theNN. In this ~ paper for simplicity.
case use of th&(x) andY(x) functions fromo;; in V27V

would lead to an underestimation A5". In the IL3 model B. V2mSW
we use a value oA} typical of the Tucson, Brazil, and  The form of theV2™SW due to 7N Swave scattering
Texas model§12-14 and vary the cutoff parameterin  justrated in Fig. 2b), in th,e TM model is
Vij to fit the data.

Using the observed values of, and f2,,/47~0.3, Eq. B(rij .1yl 7 7.7 (S + 07 07) (S + 05 0y) }.
(3.2) predicts thai\y ¥~ —0.04 MeV. With the cutoffs from (3.9

vij, the V2™PW of this strength gives a contribution of . o
~—3 MeV to the energy ofH. It is much larger than the TheB(rjj,rj) contains several terms as given in RefS].

—0.9 to —0.6 MeV estimated by the Faddeev calculations'/& OMit the short-range terms containing &g functions,
[35,36 that include explicitA degrees of freedom and Whose validity has been questioned recefily], and retain
NN=NA transition potential§37]. A part of the difference NIy the term with pion-exchange-range functidis These
is probably due to the neglect of kinetic energies of thefunctions are given in EqgA17) and (A18) of Ref. [15].
nucleons and\ in the energy denominator in E(B.2). Ne- The functionZ; is trivially related to the function¥'(x) and
glecting the momenta of the nucleons before the pion emisT(x) in v{] [Egs. (3.4—(3.7)], and theZ; contribution to
sion, the energy denominator in E.2) should bem, V?™SYis expressed as
—my+ qi(l/ZmAJr 1/2my), whereq,. is the momentum of )
the first pion in Fig. 2a). The average momenta of pions Asw:(waN) a’'m2 (3.10
exchanged in interactions between nucleons in nuclei is 2m '
~500 MeV/c [38,39, for which Eq.(3.2) underestimates the
denominator by~40%. It thus appears likely that E¢3.2)
overestimates the strength ¥™PW via the A-resonance
significantly. (3.1
The other models oV, start from the observed pion-
nucleon scattering amplitude, and using current algebra and X
partially conserved axial curre@®CAC) constraints, or chi- Z(x)= §[Y(X)—T(X)]- (3.12
ral symmetry, to extrapolate to the off-mass-shell pions re-
gponsible for th&/2™. In this way they include the contribu- The values of the parametar are listed in Ref[14]; they
gggtsteor];nﬂl ttcr)](tarqlreljz’rfeS;JhneagﬁsfzishgslLZZr:hc?;?ﬁlnStr\:\éaéerm vary from —0.51m_ to — 1.87,. in the recent models. The
. r_ ; SW_ _
of Eq.(3.1) in Ref.[15]. It contains the ternv2™PW with the ™ value a’=—103m, gives Az;~~08 MeV. The

operatoroj\{;’v'PW and the strengtth5 = —0.063 MeV. The

27, SW_ ~ ~
Oijk —gc Z(Mgri) Z(MoT i) O3 T O Ty 73 7

v2™SW gives rather small contributions to nuclear energies,

, , _ and it is difficult to extract its strengti>"’ from nuclear
strengthAy;" is proportional to the parametérin the 7N data. In model IL1 we neglect this term, while in all other

scattering amplitude, and the valuestoin various models  qqels it is assumed to have the theoretically plausible
have been tabulated by Friat al. [14]. The Texas model strength of—1 MeV.

has the largest value df corresponding toA5 "= —0.09.

These strengths are much larger thaf.04 estimated with C y3mAR

the simple Fujita-Miyazawa model presumably because of '

the additional contributions included. However, the nucleon The present model cﬁ)ﬁE*AR is based on the three-pion-
and resonance kinetic energies are neglected in the latexchange ring diagrams shown in Figéc)2and 2d) having
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only oneA at a time in the intermediate states. W& 2R is Al=lir. rXn=—1[5-7,7 7] (3.22

: : 3m AR 3mAR - T J sLAT A A s
approximated with the sum of;™~" and V;™=", which,
respectively, denote the sums of Fig$c)2and 2d). After LI (3.23
neglecting the kinetic energies of the nucleons andAha mijk T 3 e ‘
the intermediate states, Fig(c? gives b

VSW,AR_E 1 T iK)o™(ik - . . . .

Lijk _Cyc (My—m )Z[UANHNN(' JoT(jk) where we have indicated thSt, is a projector onto isospin
A N 3/2 triples(see the discussion at the end of this segtiand
Xvanoan(ii) =Kk, (3.13  that Al has the same structure as the commutator part of

Vv2™PW The spin-space operators have many terms, and are
where vyn_an(i]), for example, denotes the one-pion- listed in the Appendix. In addition to the spin operators, they
exchange transition potentifB7] exciting the nucleon to  contain the functiond (x) andY(x) in thev ™. The interac-
the A-resonance state, arjég=k denotes the term obtained tion VEW'AR has to be symmetric under the exchange, ¢f
by interchanging andk in the previous term. The above andk; therefore products o& andA-type operators are not
Vf”’AR can be reduced to a three-nucleon operator by elimiallowed.
nating theN=A transition spin and isospin operators de- Thevg”*AR, obtained from Fig. @), after neglecting the
noted byS, S', T, andT" using the generalized Pauli iden- kinetic energies, is given by

tities
Th.T=2, 314  VITAR_YS ot
1 cyc (mA_mN)z
TIxT=-2i7, 3.1 ” o o L
° 319 X[ s nn(TK)V I na(JK) VRN Na(i]) Hi=K].
TT.AT-B=2A-B-ii7AXB, (3.16 (3.25

for the transition isospin operators. The transition spin operaafter appropriate reductions it can be cast in the form of
tors also obey the same identities witlreplaced witho. It \3™4R 35 follows:

is useful to reduce the3™2R further by eliminating all the

terms quadratic in either; or oy (I=i,j,k) with the Pauli Vg?ijIAM;TOS}Tj’ﬁR, (3.26
identity
o-Ao-B=A-B+io-AXB, (3.17) f2.A
Aos=Rsn g (3.2

for o and 7 operators. The resulting>™*R contains very 7NN

many terms, which can be organized in the following way:

3m,AR_8al <l 2l Al 4 | <D | oD
mAR= 8 +2 —4 Lo+ N
V?ﬁkAR:AgsoiﬁkAR, (318) OZ,I]k 3STSU' 3ATAG' 9;(: (SU'ST,IJK STSO',Ijk
s [Tfon Vfo 1 FALAS ik 2505k ijk): (3.28
7\3 72 M) 12 (my—my)?’ (319 3mAR 3m AR : o 2
NN LA TN TheVi™=" andV;™>" are combined using; y,~ 47\ to
obtain
Ot R=6(S. S, +ALA) +22, (S, S0, +S.S);
1ijk ( 0 T rr) gc( o “1,ijk T 0,ijk VﬁE,AR:Aés(oiﬁkAR_i_él.ogﬁkAR):AéROi:ijE,AR,(3 29)
+ALAY it S2 ik Soiji) - (3.20 '

The lettersSand A denote operators that are symmetric and  g3mAR=50g
antisymmetric under the exchangejoivith k. Subscriptsr !
and o label operators containing isospin and spin-space
parts, respectively, while superscriptandD indicate opera-
tors that are independent or dependent on the cyclic permu- . )
tation ofijk. TheS' andA' would be more properly written The strengths of the terms, independent of cyclic permuta-
with ijk subscripts, but because they are independent of thions, are larger than those that depend upon them. Therefore

: .. . A . . . A . . .
ordering ofijk, we omit them here for brevity. The isospin We use the S|mple‘r/3 R obtained by neglecting them, i.e.
operators are with the approximate operator

|
T T,

S, +RALAL+ %gc (S, SDijk+ SL-SE,ijk

+ALAD 18825, ST ) (3.30

S,=2+5(7n- 5+ 7- nct 7 1) =4Pr_gp, (3.2 Ofi*F~FS.S,+ FALA,. (3.3)
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The value ofA3R estimated from the observed values of thewave functions generated by a nonrelativistic Hamiltonian

constants, and neglecting the kinetic energies~i8.002 that give_s the same final energy S . In light nuc_lei the

MeV. In all the Illinois models theA3R is determined by —expectation values ofv and V" are nearly proportional to

fitting the nuclear energies. each othel{16,17]. Therefore the energies of light nuclei,
The V3™2R has an interesting dependence on the totaFalculated with the simpleH, can be reproduced with the

isospinT,, of the three interacting nucleons. TBecan be  H™ using

written as ﬁk:Azpyoisz,Pw+A§7\:voi2jE,sw+ AéSOﬁE’AR+A§OiITk ’

Ttot:%(ﬂ"'fj"'fk)a (3.32 (3.39

(3.33 which differs fromVj; only in the strength o¥/R. ForT(r),

' with cutoff c=2.1fm 2 the strengthA in Vi, is smaller
Therefore the first term 0#3™4R is zero in triplets having thanAg by ~0.002 MeV. The proportionality ofv andV®
Twi=1/2, i.e., ind+N channels as well as in tha=3,4 contributions appears only in bound light nuclei. In nuclear
bound states. In contrag,. is zero inT,,=3/2 states. Itis Matter, thedv contribution increases more slowly with den-

. o ai R ; ;
therefore possible to extract the strength of this interactio§ity than that ofV”, and in neutron drops thév gives a

from the data even though it is much weaker than\fR&. relatively larger contribution. Therefore it is necessary to use
the H* [3] in these systems.

Slq-: %thot_l'

D. VR
. . . F. The lllinois model-5
The pion-exchange three-nucleon interactions are attrac-

tive, and lead to significant overbinding and large equilib- This model is meant to test the sensitivity of nuclear en-
rium density of nuclear matter. Therefore there must be othergies to the spatial shape @f'. Here we assume that
three-nucleon interactions to compensate the attraction from

\(2” in nucleqn m{:\tter qt large Qeqsity. In Faddeev calcula- VikaZO-OODikaJrAwH W(ri;), (3.37
tions of the triton, including\ excitationy 35,36, the attrac- cyc

tion from processes included M?™ is more than cancelled
by “dispersion” terms that describe the modification of the
contribution of the two-pion-exchange-box diagrams t@;;
due to the presence of the third nucleknSuch repulsive
terms also occur in the variational theory in whighexcita- W(r)= 1

tions are included via transition correlation operatt8]. 1+ el "w/aw
The VR term in the Urbana models ofjj was designed to

approximate these effects. It is retained in the lllinois modelgvith ry=1.0 fm anday,=0.2 fm. The first term of thi&/® is
with the simple spin-isospin independent operator meant to take into account the contribution &f omitted
from the simplerH, and the second corresponds to the phe-
nomenological three-nucleon repulsion.

where W(r) is a modified Woods-Saxon function that has
zero derivative at the origin:

r/ay

. (3.38

1+e'w/aw

Oﬁkzg;c Tz(mwrij)Tz(mwrjk)_ (3.39

) o G. Potential parameters
The results of the Faddeev calculatid38,36] indicate that . . .
the A effects, not included in th¥’2™, add~1 MeV to the The parameters of the lllinois potentials were determined

energy of the triton. The value of the strendth required to by fitting t.he qbserved energies okA=8 nuclei. The sim-
obtain a contribution of-1 MeV from theV® to the triton ~ P'€" HamiltonianH was used, and a total of 17 ground or
energy is ~0.004 MeV for a T(r) with a cutoff c excited states with widths less than 200 keV were consid-

_ 2 ) ; ; - ered. Table | presents the parameters of the new potentials,
nuzc.é;rpen.elrr;]iggdels IL1-4 theAig is determined by fitting and for comparison those of UIP6]. The properties of light
nuclei calculated from Hamiltonians including the AV.§
£ v and the newv;; are presented below in Sec. V. In addition
ik to the various strengths, Table | gives the vafjeof the
Most calculations of light nuclei use the simpler Hamil- cutoff constant in Eq(3.8) which is used in all the four
tonian obtained by approximating the in Eq.(2.1) by the  terms of V.

}}ij . The more accurate Hamiltonian, As mentioned earlier, this data set cannot determine all
, five parameters of the Illinoi¥;;, . At most three parameters
h ~ were varied for each model, and plausible values are as-
= y2 N . * ’ ;
= Z 2m Vit ,Eq Lo + 5”(Pu)]+i<12<k Vil sumed for the others. These assumed values are marked with

(3.35  an asterisk in Table I. There is a substantial cancellation
between the contributions &f>™PW and VR in the nuclear
contains the boost correction to the two-nucleon interactionbinding energies. Therefore one can make correlated changes
This correctionév (P;;) is of first order inPiZJ- , and therefore in the ASXV andAg, as in models IL2 and IL4, without sig-
its contribution is calculated as a first-order perturbation innificantly spoiling the fit. Presumably nuclear matter calcu-
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TABLE I. Three-body potential parameters used in this paper. Parameters that were not varied in fitting
the data are marked with an asterisk.

Model c ASW AW ASR Ag Aw Ak
fm 2 MeV MeV MeV MeV MeV MeV

UIX 2.1* —0.0293 0.00480 0 0.00291
IL1 2.1* —0.0385 0.6 0.0026 0.00705% 0* 0.004 91
IL2 2.1* —0.037 -1.0¢ 0.0026 0.00705 0 0.004 93
IL3 15 —0.07* -1.0¢ 0.0065 0.032 V) 0.02562
IL4 2.1* —0.028 -1.0¢ 0.0021 0.0039 ji) 0.00196
IL5 2.1* —-0.03 —1.0¢ 0.002F 0.00% 210 0.0

lations with these models can help to further constrain thenately not reducible to two-body operators in spin-isospin
parameters. space, and thus, like?™C, the commutator term o§>™PW,

As will be discussed later, the contributions\SWand it adds a lot of time to the evaluation of a propagation step.
Vv2™PW are in a fairly constant ratio for the light nuclei con- In Ref.[2], we showed tha¥?™C could be replaced with an
sidered here, and thus we cannot uniquely determine botincreased strength &f>™* in the propagator with no loss of
ASWandASW . IL1 assumes thad5"=0, while in all other ~ accuracy. TheV3™2R cannot be similarly completely re-
models A5"=—1 MeV as in modern chiral-perturbation- placed, but one can use two to four steps of propagation with

theory potential§14]. TheAZWin IL2 is less than thatin IL1  just an enhanced®™* and then a correction; see E¢.23
by ~4% to compensate for the2™SW contribution. Al Of Ref. [2]. In general the tests we have made show that

models other than IL3 have the same cumgffas in Av18  Systematic errors in the GFMC calculations are less than 1%

and UIX and haveAb" of the same order of magnitude as for the total energy; howevetHe appears to be a particu-
the Urbana models. Thia?" is approximately half that fa- larly difficult case and the systematic errors for it are prob-
vored by chiral-perturbation theory. We constructed the IL3anyh2%' lculati for th s Wi

to see if light nuclei are sensitive to this difference. In this 1 he GFMC calculations for the models witi; and

modeI,AS’X" was fixed at a typical chiral-perturbation theory p—sh_ell nuclei were _carrled out as described in F{lé]' _In
value and the cutoff parameter and strengths\g andAéR particular, propagations were made t6-0.2 MeV ~ with

. ! o . steps of A7=0.0005 MeV'! (400 steps and expectation
were adjusted to fit the binding energies. The cutoff had tc{/alﬁes were computed ever)g 20 stepes}swith aveprages of the
be made much ;ofter to compensate for the Stmgﬁ' last seven valuesr&0.14 MeV 1) being used. The-shell

The expectation values afv were calculated in a few

) ) calculations for most models and some of thshell calcu-
nuclei for each model, and the valuesAff were estimated |4tions for models without;, were propagated to only

requiring =0.1 MeV 1. In most cases ten unconstrained steps were
o\ used before each energy evaluation=10; see Eq(4.17)
(Vije=Vijio ~ (v (Py)). (339 of Ref.[2]}, but 20 step%ywere usgjnfor some cages.

The “He energy obtained with the Yakubovsky equations
[30] and AV18/UIX Hamiltonian, —28.50(5) MeV, is
within ~0.5% of the latest GFM{2] result, —28.33(2)

IV. QUANTUM MONTE CARLO CALCULATIONS MeV. The GFMC calculations are carried out with an ap-

The GFMC calculations presented below were made usProximation called AV8[1], containing only the first 8 op-

ing essentially the same methods and variational wave func&rators given in Eqs(2.4) and (2.5. The small difference
tions as described in Ref2] for our calculations ofA<8 between the AV18 and AVS8is treated perturbatively. It is

nuclei with the UIX three-nucleon potential. Here we de-therefore likely that the exact results for AV18/UIX are a

scribe only the few enhancements that were necessary fdftle below the present GEMC results. The differences be-

using the lllinois three-nucleon potentials. tween GFMC and other calculations with binding energies of
The new terms in the lllinois potentials are static angthree and four nucleons, will be the subject of another paper.

hence present no formal difficulties for the GFMC propaga-

tor beyond those already encountered for the Wix ; they

are included by expanding exp(1/2)Vj;c A7) to first order,

as in Eq.(4.5) of Ref.[2]. The structure o¥/°™SWis similar This section presents various results fee 8<8 nuclei

to that of the anticommutator part ¥f™"W (V2™4) and can  and neutron drops using the new lllinois models, the AV18/

also be reduced to just two-body operators in spin-isospitJIX model, and Hamiltonians containing just the AV8r

space. Thus it can be combined with ta&/7%” in Eq.  AV18 potentials with noV;j, . All of these results were ob-

(4.21) of Ref. [2] with almost no increase in the required tained from GFMC calculations. With the exception of the

computer time. total energy, which is discussed in the next paragraph, the
The V3™4R involves many operators, which are unfortu- values are perturbatively extrapolated from the mixed esti-

They are listed in Table I.

V. RESULTS—LIGHT NUCLEI

014001-9



PIEPER, PANDHARIPANDE, WIRINGA, AND CARLSON

TABLE Il. Experimental and GFMC energiés MeV) of particle-stable or narrow-width nuclear states and of neutron drops. Monte

PHYSICAL REVIEW ®4 014001

Carlo statistical errors in the last digits are shown in parentheses. The final column gives experimental widths in keV.

AVS' AV18 uIX IL1 IL2 IL3 IL4 IL5 Expt. T

SH(LY) -7.761)  —7.611) -8.461) —8.431) —8.431) —8411) —8.441) -8.411) —8.48
He(dt)  —7.021)  —687) -7.7U1) -7.681) -7.671) -7.661) -7.691) -7.661) -7.72
‘He(0%) —25.142) —24.074) —28.332) -28.382) —28.373) -28.243) —28.352) -28.232) —28.30
®He(0") —25.206) —23.91) -28.11) —29.41) -2941) -29.32) —2931) —29.51) —29.27
SHe(2') —23.186) —21.81) -26.31) —27.21) —27.41) —27.81) —27.41) -27.31) —27.47 113
6Li(1*) —28.195 —26.91) -31.11) —-31.91) -3231) -3221) —32.01) —-32.11) —31.99
6Li(3*)  —24.985 —23.51) -28.11) —30.12) —30.12 —30.02) —29.82) —29.82) —29.80 24
THe(3") —228310 -21.22) -2582) -29.33) -29.23) -29.33) -29.33) -29.22) -28.82 160
Lj(3-) —33566) —31&1) —-37.81) -3942 -39.62 -3932 3952 3932 -39.24
i) 83147 -3112) 3752 3922 3912 3872 3902 3902 3877
Lj(l-) —28416) -2641) -321(1) -3453) -3443) -3402) 3452 -3423) 3461 93
8He(0") —23.81)  —21.62 -27.22) —3053) -31.33) -32.04) -31.94 -31.02) —3141
8Li(2*) —34.21)  —31.83) -38.02 4183 -4222) —41.23) —42.03) —4253) —41.28
8Li(1") -33.91)  —3162 -37.42 —4053) —4053) —40.23) —40.93) —40.93) —40.30
8Li(3*) —-31.41  -2892 —3532 —-39.33) -39.43 —39.54) —39.33 -39.23 -39.02 33
8Li(4*) —2811  —2552) —31.72) —3493) —3503 —-3473 —3523) —3493 —3475 35
8Be(0) -47.91)  —45.63) —5442) —57.24) -56.64) —55.64) —56.53) —5573) —56.50
8Be(1") —32.82) —30.93) -36.33 —37.82 —37.62 —37.33) —38.83 -3894) —38.35 138
Tn(i-)  —33784) 33475 -3321) -3602 -3582 3663 -3523 —3539

n(3-)  —32284) -31835 -3171) -3322 -33.02 -3303 -3293 -33.102

8n(0%)  —39.736) —39.218) -37.91) —41.33) -41.13) —40.12) —40.713) —40.72)

mates, as described in RgL]. Monte Carlo statistical errors because the GFMC propagation is made with the same
are given in parentheses, but no estimate is made for thidamiltonian as is used for the energy expectation values, as
systematic errors associated with the extrapolation of mixediscussed in Refi1]. In all other cases an effectivd’ is
expectation values. The results presented in Secs. VA to V ised for propagation and a small contributih—H") is
are with the simpled without boost interaction, whose con- evaluated perturbatively. In the cases that have a three-

tributions are reported in Sec. VG. nucleon potential, theAg is adjusted inH' to make (H
Most experimental energies and moments are drawn from_H,>~o. however such an ability does not exist for the

the standard compilations of Ajzenberg-Sel¢4é] and the
TUNL nuclear data evaluation projelet2—44], while charge . - o , :
radii are taken from the NIKHEF compilatiof#5]. More turbatively e_‘valugtmgvlg U.8> in the AV8 calculation.
recent data not included in these references are the energy of As described in .the previous section, th‘;WAWS”PLV% and
the ®He(2") state[46], the charge radius ofHe [47], and  AV18/IL2 mc;desl\?v dlff;ar gvrcllylln the values di;, andA;,",

the A=8 magnetic and quadrupole momep4s]. such that(V=™>"+V+™"%) in IL2 is nearly the same as
(V2™PWyin IL1. We made a complete set of calculations for
AV18/IL2 and perturbatively compute@/2™PW) for AV18/

IL1 in the AV18/IL2 wave functions. This result was used to
Table Il shows our GFMC energies fors3A<8 “nar- generate 12 of the 21 AV18/IL1 energies in Table Il. The
row” states for all the Hamiltonians along with the corre- procedure was checked by making a new propagation using
sponding experimental energies. The states are either partidiee AV18/IL1H’, and these explicitly calculated values are
stable, or have experimental widths less than 200 keV, anghown for nine states; they are not significantly different
are used to fit the parameters of the lllinois models. Thefrom the perturbative estimates, i.e., the differences are gen-

AV8’ and AV18 Hamiltonians have no three-nucleon poten-erally smaller than the Monte Carlo errors.
tial; they are presented to show the importance of\the, The five lllinois Hamiltonians give very similar energies.
and to provide results for comparison with those from otherThe predictions for th@-shell nuclei are significantly better
many-body methods. than those obtained with the AV18/UIX model. This is illus-
The AV8 model consists of the Argonng; two-nucleon trated in Fig. 3, where results for the AV18/UIX, AV18/IL2,
potential, which is an eight-operator refit of the AV18, andand AV18/IL4 models are compared to experiment. The rela-
the isoscalar Coulomb potential, as defined in R&f. The  tive stability of the helium and lithium nuclei with the 1lli-
AV8' results should be the most reliable of all our results,nois models is clearly evident, as is the just unbound nature

AV18 with no Vjj.. The AV18 energies are found by per-

A. Energies of “narrow” states
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FIG. 3. (Color) Energies computed with the AV18/UIX, AV18/IL2, and AV18/IL4 Hamiltonians compared to experiment for narrow
states. The light shading shows the Monte Carlo statistical errors. The dashed lines indicate the thresholds against breakup for each model
or experiment.

of 8Be. More quantitatively, Tables Il and IV show various Of the deviations the average of the magnitudes of the de-
averages of the deviations from experiment for the narrowiations, and the rms deviations. The average deviations in
states of Table Il. Table Ill is based on the deviations of theTable Il demonstrate that the Hamiltonians with Mg
total energies of the 17 states, while Table IV is based on théystematically underbind these nuclei by 5 to 7 MeV; AV18/
deviations of the excitation energies of excited states. Boti/IX reduces this to the still large value of 2 MeV underbind-
tables show the average deviatiowhich includes the signs ing. The five lllinois models have no significant systematic
under or overbinding. Because the errors for the AV8

TABLE IIl. Average deviations(in MeV) from experimental AV18, and AV18/UIX cases are so one-sided, their average

energies. For each Hamiltonian, the average signed deviation, aver-

age magnitude of deviation, and rms deviation are shown for the 17 TABLE IV. Average deviations(in MeV) from experimental
“narrow” states given in Table I(only *He energies are used for excitation energies for the eight “narrow” excited states. As in

A=3). Table Ill, but for excitation energies rather than total energies.
Model Average Average rms Model Average Average rms
deviation |deviatior} deviation deviation |deviation deviation

AV’ 5.522) 5.52 5.83 AVE8’ —0.235) 0.83 1.20
AV18 7.325) 7.32 7.72 AV18 —0.2210) 0.90 1.36
AV18/UIX 2.02(4) 2.02 2.34 AV18/UIX 0.17(8) 0.41 0.53
AV18/IL1 —0.096) 0.31 0.38 AV18/IL1 0.29(13) 0.44 0.53
AV18/IL2 —0.106) 0.28 0.36 AV18/IL2 0.53(12 0.53 0.61
AV18/IL3 0.04(7) 0.31 0.44 AV18/IL3 0.03(14) 0.24 0.34
AV18/IL4 —0.216) 0.24 0.33 AV18/IL4 0.09(12 0.20 0.25
AV18/IL5 —0.126) 0.34 0.46 AV18/IL5 0.27(13 0.66 0.79

014001-11



PIEPER, PANDHARIPANDE, WIRINGA, AND CARLSON PHYSICAL REVIEW ®4 014001

TABLE V. Ground-state expectation values of the two-body potential @t v;;) (in MeV) for the
AV8’ , AV18, AV18/UIX, and AV18/IL2 Hamiltonians.

AVS8’ AV18 AV18/UIX AV18/IL2
Ui vij K+uvj; vjj K+vj Ujj K+uj;
*H —54.92) —54.82) —7.6085) —58.12) —7.271) —58.62) —6.971)
*He —53.42) —53.32) —6.8835) —57.1(2) —6.541) —56.12) —6.271)
‘He —1261) —12497) —24.074) —13595 —21.986) —136.45 —19.998)
®He —1551) —1531) —23.898) —164(1) —21.1(2) —171(2) -17.93)
OLi —1741) -1731) —26.91) —1821) —23.82) —1872) —21.23)
“Li —221(2) —2192) —31.61) —2252) —28.12) —2323) —25.1(5)
8He —1933) —191(3) —21.62) —194(1) —19.12) —2183) —15(1)
BLi —2494) —247(3) —31.893) —2552) —27.89) —2782) —21.64)
®Be —2873) —284(3) —45.63) —2972) —39.64) —3033) —35.58)
n —54.97) —5457) —33.475 —54.28) —33.849) —591) —32.24)
®n —69.86) —69.36) —39.218) —65.98) —38.91) —-73(1) —38.25)

absolute and rms errors are comparable to their averadey subtracting(Vj;) from (H); estimates oK) may be
signed errors. The rms error obtained with the AV18/IL1-50btained by subtracting;;) from (K+uvj;).
Hamiltonians is~1%. Table V shows some of the nonperturbative aspects of
Table IV shows that the Hamiltonians with ng; pro-  these calculations. For theshell nuclei, the total binding
duce a spectrum that is too compressed, although it has fanergy steadily increases from AV18 to AV18/UIX to the
smaller deviations than the absolute energies. All of thdllinois models. However the values ¢K+uv;;), which in-
Hamiltonians withV;; produce excitation spectra with sig- volve the same operators in all cases, steadily decrease in
nificantly smaller rms deviations. However some of themmagnitude. This is because the wave function is being tuned
(particularly AV18/IL2) are too expanded. The excitation to the ever strongeY;;, and hence is becoming less favor-
spectra obtained with AV18/IL3 and AV18/IL4 appear to be able for K~|—vij . The net increase in the binding energy

somewhat better than the others. comes from even bigger increases(M;) (see Table V).
Although (K+uv;;) becomes less attractive in this progres-
B. Contributions to the energies sion, (vj;) becomes more negative due to the enhanced

The contributions of the two-body potentialg , includ- tensor-isospin(pion—exchang)e correlat.ions induped in the
ing electromagnetic terms, and the sukiv;;) are shown Wwave function byV;;,; these correlations also increase the
for several Hamiltonians in Table V. As was discussed inkinetic energy.

Ref.[1], the perturbatively extrapolated values(&f), (v;;), Table VI shows the tota{Vjj) for the various models.
and(V;j) do not add up to the total energhi). The latteris  The AV18/IL1 and AV18/IL2 models were constructed to
the most reliably computed quantity. Other studies of GFMChave approximately the san(¥;;,). Although the AV18/IL3
calculations[49] suggest that the perturbative extrapolationmodel has very similar total binding energies as AV18/IL1
of the potential energy is more reliable than that of the ki-and AV18/IL2, there are significant differences in many of
netic energy. Therefore the values(®f+uv;;) are obtained its contributions. This indicates that the correlations induced

TABLE VI. Total three-nucleon potential energiéa MeV) for the AV18/UIX and lllinois Hamiltonians.

AV18/UIX AV18/IL1 AV18/IL2 AV18/IL3 AV18/IL4 AV18/IL5

3H -1.191) —1.461) —1.461) —1.651) —1.251) —1.241)
*He -1.172) —1.441) —1.41(1) —1.641) —1.221) —1.241)
‘He —6.3505) —8.4(1) -8.397) —10.047) —-7.186) —7.245)
He -7.01) -11.32) -11.53) —14.13) -9.82) -9.902)
BLi -7.32) -11.23) —11.13) -13.63) —9.6(2) —-10.22)
L -9.1(2) —13.94) —14.54) -16.94) —12.94) —13.44)
8He -8.02) —15.55) —16.35) —19.76) —16(1) —14.773)
8L -10.22) —19.35) —20.64) —24.96) —18.24) —17.35)
%Be -14.93) —20.97) —21(1) —25.1(8) —19.04) —19.45)
n 0.694) -3.803) -3.603) —4.84) —2.503) —2.5(4)
®n 1.01(6) —3.1(4) —-3.04) -3.703) -2.83) -1.92)
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Hamiltonian.
V27T,A VZﬂ',C VZw,SW VSw,SS VBv,AA VR

3H -1.791) —1.0829) —-0.1191) 0 0.1823) 1.341)
%He -1.721) —1.0458) —0.1151) 0 0.1763) 1.291)
“He —9.768) —5.855) —0.6535) 0 0.631) 7.267)
fHe —12.23) -7.31) —0.742) —1.336) 0.424) 9.6(3)
6Lj -11.92) -7.201) -0.722) —0.81(4) 0.374) 9.1(2)
L —15.44) -9.32) —0.91(3) —1.61(9) 0.51) 12.34)
8He —15.64) -9.1(2) —-0.893) —4.52) 0.447) 13.34)
8Lj —20.703) -12.22) -1.262) —4.41) 0.555) 17.43)
8Be —23.1(6) -14.003) —1.394) —1.6(1) 0.7(2) 18.36)
n —0.155) 0.081) —5.43) 0 1.91)
n 0.139) 0.181) —5.94) 0 2.62)

by IL3 (which is stronger and has a much softer pion form({V2™PW) varies only between 0.62 and 0.63 for the nuclei in
facton in the wave functions make important nonperturba-Table VII, while it is 1.0 for pure neutron systenithe
tive changes in(K+uvj;). The AV18/IL4 and AV18/IL5 [7- 7,7 7] is zero inT=23/2 triples. Very similar ratios
models have weaker strengths than the first three and smallgfe obtained for AV18/UIX and the other Illinois models. A
net(Vij). As expected, theVy) for the lllinois models are  similar ratio has also been found in VMC calculations'é®

all larger than for the AV18/UIX model in thp-shell nuclei; using an older Urbana modgB0]. It is because of this very
they are also larger for theshell nuclei even though all the  gmga)| variation that one cannot improve fits to the energies of

models give_ the same binding energies for these nuclei. light nuclei by changing the factor of 1/4 in E€8.3).
The fraction of the total binding energy represented by The ratio of the contribution 0¥2™SW to that of V2™ PW

(Vijk) increases froms- to p-shell nuclei and a?N—Z in-
creases. For AV18/IL2 it is 17% fofH, 30% for “He, but
then a nearly constant 33—-37 % férLi and ®Be. It then

is also quite independent of nucleus. For AV18/IL2 it ranges
from 3.6% for 8He to 4.2% for3H. This ratio depends upon

jumps to 49% for8Li and 52% for 8He. Expressed as a Tz(ym?grek\;%/ﬁ_ﬁar?ﬂeé Istrr:ZIvlzcr?Z?] fg; va%igfafgd_
fraction of the total potential energy, the AV18/IL&/;jy) 0 - 1hu ) V? 2m = n
ranges from 2.5% foPH to 6.1% for “He up to 7.5% for 'ately compensate large changesAR, r\nNaklng It Impos-
8He. These fractions are typical of the other lllinois modelsSiP/€ to uniquely determine the value Af.Y from the bind-

except that AV18/IL3 has somewhat larger ratios. ing energies of light nuclei. We have made versions of
The individual contributions t¢V;;) are shown in Tables AV18/IL2 and AVI8/IL3 that have the unreasonably large

VIl and VIII for AV18/IL2 and AV18/IL3, respectively. The Value of Az7’=—2.2 MeV; these also gave good fits to the

ratios of the contributions of the anticommutator and com-Pinding energies of light nuclei.

mutator parts of/2™"W [see Eq(3.3)] for the nuclei studied The S,S, and AL A, terms of V3™4R are shown in the

here are remarkably constant for a given model. For Avi8columns labeled/*™SSandV3™AA, respectively. Thé, is a

IL2 the ratio of the anticommutator contribution to the total projector ontoT =3/2 triples and thus thS'T S'(T term of Eq.

TABLE VIII. Contributions of various three-body potential terrtis MeV) evaluated for the AV18/IL3

Hamiltonian.
V277,A VZn—,C V277,SW V37T,SS V37T,AA VR

SH —2.372) —1.471) —0.0921) 0 0.2173) 2.072)
SHe —2.352) —1.461) —0.091(1) 0 0.2123) 2.042)
“He —12.999) —7.955) —0.5254) 0 0.541) 10.91)
fHe —16.43) -9.902) —0.61(1) -1.91) 0.264) 14.53)
8L —16.23) -9.902) —0.591) —1.31(6) 0.255) 14.24)
Li —20.95) -12.93) -0.732) —2.329) 0.397) 19.56)
8He —21.65) —12.63) —0.783) -7.02) 0.1609) 22.27)
8Li —27.96) —16.43) —0.962) -6.22) 0.139) 26.37)
%Be —30.97) —18.94) —1.1293) —2.42) 0.7(2) 27.49)
n —-0.138) 0.071) —8.5(5) 0 3.92)
n 0.528) 0.171) —8.94) 0 4.51)
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TABLE IX. Contributions of two-nucleon and three-nucleon rately from theS S term to reproduce the energies Yfe
pion and remainder potentialgx MeV) for the AV18/IL2 Hamil- . T . . L
and the trinucleons with the desired precision; however,

tonian. agreement with less than 1% error can be obtained assuming

e R V2T V3T VR that the strengths of the. S and AL A! terms of v3™4R
have the theoretical ratio of 50/26 from E&.3D.

°H —-45.02) -1352 —2982) 0.1823) 1.341) Table 1X shows the ™, V27, V3™AR and the remainder

*He  —4442 -1242) -2882) 0.1763) 1.291) contributions to the potential-energy expectation values,

‘He -10544) -30.95 -16.31) 0.631) 7.267) evaluated for AV18/IL2. Note that additional pion-exchange

He —1271)  —44(22) —20.34) —0.916) 9.603) contributions omitted fromv™, V27, and V3™2R are con-

6L —-1501) —382) —19.84) —0.445 9.12) tained in thevR andVR. For example, the two-pion-exchange

Li —178(2) —543) —-25.66) —1.11) 12.34) two-nucleon interaction provides most of the intermediate-

8He —1531) —66(3) —25.66) —4.02 13.34) range part obbR. The total two-pion terms o¥/;; are typi-

8Lj —2111) —-672) —34.25 —3.81) 17.493) cally 11% of the one-pion part of;; for the AV18/UIX,

8Be —2342) -693) —38.59 —0.92) 18.36) AV18/IL4, and AV18/IL5 models, while they are 16% for

' —10.119) -4%1) -0075 -543) 191)  AVI18/L2 and 21% for AV18/IL3. The ratio o3™4R to

8 ~12.01) —611) 0.319) -594) 2.602) V2™ changes sign betweesshell andp-shell nuclei.

The ratio of theV?™ and VR contributions for a given
model does not change by much in the light nuclei. For the
(3.3 vanishes irs-shell nuclei. TheAL_A'U term results in a AV18/IL2 model, the ratio is—2.23 for thes-shell nuclei
repulsive contribution in nuclei and henv8™4R is repul-  and —1.97 for ®Li. The AV18/IL4 model has the largest
sive in s-shell nuclei. Inp-shell nuclei theS. S, term of ~ range, from—2.8 for s-shell nuclei to—2.35 for °Li. When
V3™AR ig attractive and larger in magnitude than #ea!  only °H and *He are included in the fit, as in the case of the

term. Thus theV3™AR changes sign betweesshell and  UIX model, it is not possible to determing, " andAg sepa-

p-shell nuclei and also becomes more attractiveNasZ rately. For this reason the equilibrium density of nuclear

increases. This allowg3™4R to substantially improve the fit Matter was used in Refl] to determineAg even though

to the energies of light nuclei. Its strength is therefore rathe@Xact calculations of nuclear matter properties are not yet

well determined by the data in the context of present modelg?0ssible. _ _ N _

In low-density neutron drops the2” terms become very Even after including alA=<8 nuclei in the fit, we cannot

small, while theV3™3R is attractive and gives the largest determineASY, Az, and A3Y separately. For example, in

contribution toV, . AV18/IL2, decreasingAr and A5Y by factors of 0.5 and
An interesting property of thé!A! term is that it only ~ 0.77, leaves the energies dH and “He unchanged in first

increases by a factor of 3 asA increases from 3 to 4, while order, however, that ofLi decreases by 0.8 MeV, i.e., by

all the otherV,;, terms rise by a factor of 5.5. The factor of ~2%. This change can be compensated for by redusitfy

5.5 can be understood from the simple argument ¢ by ~20%. Thus in first order, multiplyindhg, A5Y, and

has four triples compared to only one triple in the trinucle-A3R by 0.5, 0.77, and 0.8, leaves the energiessshell

ons, and each triple ifHe gives~40% more contribution nuclei and®Li unchanged.

due to the higher density from increased binding. TH& The strengths oAg, A5Y, and ASR in IL4 are, respec-

andV*® have relatively simple spatial dependence given by aively, 0.55, 0.76, and 0.81 times those in IL2. The difference

product two radial functions; in contrast tt has a more between these ratios and those in the preceding paragraph is

complex spatial dependence, given by E46), containing due to nonperturbative effects. The overall fit obtained with

radial functions of all the three pair distances. In principle,IL4 is slightly better than that with ILZsee Tables IIl and

the strength of the!\'TAL term inVj;, can be adjusted sepa- V), especially for excitation energies, suggesting that the

TABLE X. Isovector and isotensor energiasﬁ\'()T in keV) for isomultiplets.

A T n AVI8 AVI8UIX AVIS/IL1 AVIS/IL2 AVIS/L3 AV18/L4 AVIS/IL5 Expt.
3 1 1 7321  7621) 757(2) 757(1) 7521) 76002) 7592) 764
3 1 1 7232 753)) 7482) 747(2) 746(1) 751(2) 7502) 764
3 L 1 7317 75398) 754(7) 7637) 7498) 754(7) 7537) 764
6 1 1 1068) 11029) 11496) 11726) 11415  11476) 11796) 1173
7 1 1 15847) 15657) 16138)  15887) 15549) 16098)  16108) 1644
8 2 1 14517) 14885  15817) 16228) 16319) 16709)  16376) 1659
8 1 1 163690 16747)  17628) 18106) 17598) 18377) 17749) 1770
6 1 2 25118)  27513) 29313 266(16) 28718  28017) 223
8 2 2 1584) 170(4) 180(5) 180(5) 1885 1753) 153
8 1 2 13%7) 13512 1438 9912 148100 15612 145
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TABLE XI. Various contributions to the isovector and isotensor Z= (1/2)A—T nucleus. Table XI gives a breakdown of these
energiegin keV) computed with AV18/IL2. The definitions of the  coefficients into various contributions for the AV18/IL2
contributions are given in the text. model. These includ&“SE, the kinetic-energy contribution
due to the neutron-proton mass differencg,(pp), the

AT n KPP valpp) v v®Pro® Total  Expt proton-proton Coulomb termy 'R, the remaining electro-

3 1 1 1400 6491 290 64(0) 7571) 764 magnetic contributions, such as magnetic moment interac-
6 1 1 160) 10915) 1800) 47(1) 11726) 1173  tions, which are part of Argonne,g, and the strong-

7 1 1 220) 14476) 400) 792  1587) 1644  interaction termsy“S® andv©P. The isotensow“® comes

8 2 1 180) 15287) 17(0) 59(1) 16228) 1659  from components 15-17 of Argonne;g and contributes

8 1 1 230 16865 240) 761 18106 1770  only to thea®, while the isovecton“*® is term 18 and

6 1 2 1661) 190) 10713 20313 223  contributes only ta™. _

8 2 2 1361)  6(0) 38(5) 1805) 153 The_ isovector terms are dominated by, (pp), _the ex-

8 1 2 1411)  40) ~3(8) 1438) 145 pectation value of which is strongly correlated with the rms

radii. The lllinois models generally give better total binding
energies and radiisee below and thus better values for
o .. these coefficients. However, the remaining kinetic and poten-
parameters of IL4 have more realistic values. Preliminaryiy| terms contribute 5-10% of the total isovector energy
better than IL2. agreement with experiment. The isotensor terms are also
dominated by ¢c1(pp), but in this case the increased binding
C. Isobaric analog energies of the lllinois models has not improved the agreement with

Table X gives the total isovectomE1) and isotensor €Xperiment. The c,(pp) alone underestimates thify ; the
(n=2) energy coefficients{"). , defined in Eq(5.3) of Ref. strong interaction contributions have the correct sign, but

AT . .
[2], for energy differences in isobaric multiplets. The first SE€M t0 be too large in magnitude.

three lines of the table show three different evaluations of the . . . o
a3 1, The first two are expectation values of the isovector ~ D- Energies of “wide” states and spin-orbit splittings

operators in separately computédl and *He GFMC wave So far we have presented results for states of nuclei that
functions, respectively. The last is the difference of sepaare either particle stable or have narrow experimental widths.
rately computed GFMC energies; it has a considerably largeDur GFMC calculations, which treat all states as bound sys-
statistical error, but otherwise would be the best calculationems, should be reliable for such states, and the comparison
to compare to experiment. The expectation values computegf the resulting energies to experimental values should be
in the two different wave functions are statistically different, unambiguous. Table XII shows GFMC calculations of addi-
but, due to its larger error, the energy difference is consistenional states that are experimentally broad or experimentally
with both. unknown. An example of the GFMC propagation for broad
The a(A“’)T in multiplets havingA>3 (Table X) have been and narrow states was shown in REf]; the energy of the
computed as expectation values of the isovector and isotetrroad state falls slowly but steadily with imaginary time.
sor parts of the Hamiltonians in the wave function for theThis introduces a certain, but usually small, ambiguity in

TABLE XII. Experimental and computed energigés MeV) of “wide” or experimentally unknown states. The experimental widtims
keV) of the states are also given.

AVE8’ AV18 uIX IL1 IL2 IL3 IL4 IL5 Expt. r

SHe(3") —23.884) -22479) -2691) -27.71) -27.01) -27.41) -27.51) -2741) -27.522) 650
SHe(d) —231739 -21.91) -2581) -2651) -2641) -2631) -2611) -2601) -26.3220) 5500
SHe(1') —21.584) —20.21) —2441) -2471) —2451) -2421) -2412 —24.10)
SLi(2%)  —24.124) —22701) -27.21) -27.91) -27.91) -27.72) -27.91) —27.81) —27.682) 1700
THe(k) —220110) -20.82) -2432 -2662 -2652 -2632) -2612 -2632)
THe(3") 2081100 -19.22) -23.22) -2473) -2443 -2502) -2502 -2502) —259230 2200

L3y  —27535)  -2571) -3131) -3232) -3222) -3202 -3212) -3232) -32565 875
8He(2") —21.398) -19.62) —24.12) —26.83) —26.63) —26.A3) —27.A3) -26.63) -27.825 630
8He(1') —21.21)  —19.62) —2272) -26.03) —2583) —26.23) —25.83) —25.83)

8Li(0*) —-3351)  —31.32) —36.12 -3843) —3843) —37.24) -37.84) —38.34

8Be(2') —45.61)  —42.43) —5152) -53.63) -53.53) -5243) -53.13) -53.23) -53.463) 1500
8Be(4") —38.71)  -36.22) —44.92) —4553) —4543) —45.03) —4543) -4593) -45.1030) 3500
8Be(3') —-31.22) -29.33) —34.93) -37.23) -37.13) —36.93) -—38.04) -37.23) -37.263) 230
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TABLE Xlll. Computed and experimental spin-orbit splittings in MeV.

L S Av8 AVi8 UIX L1 L2 IL3 L4 L5 Expt.
He 3 -2~ 1 1 0685 061 112 122 132 112 142 132 1.20
6Li 2*-3" 2 1 0866 081 091 222 222 242 192 212
i 37 -3 1 1 0399 052 032 023 063 063 043 033) 047
i 3 -1~ 3 1 0898 072 082 223 223 203 243 2.03 205
8 1*-2* 1 1 032 024 062 134 174 115 114 1.64) 098
n $-3- 1 1 1536 1657 1.51) 283) 2.83) 3.64 244 2303

determining the resonance energy from the calculation; we  E. Point nucleon radii and electromagnetic moments

H 1
use the average of the energies for 6:14<0.20MeV . In Table XIV gives the point proton and neutron radii for
addition, the experimental assignment of some resonance egame of these models. The “experimental” point proton ra-
ergies may be difficult. Nonetheless, the rms errors in thgjj were obtained by subtracting a proton mean-square radius
lllinois predictions of the experimentally known states in ;¢ 5 743 fn? andN/Z times a neutron mean-square radius of
Table Xl are only~700 keV. —0.116 fnf from the squares of the measured charge radii.

It has long been known that Hamiltonians containing only ¢ mentioned earlier, the GFMC propagations are carried
realistic two-nucleon potentials often cannot correctly Pre-out for anH' . and the results for the desirétiare obtained

dict the observed spin-orbit splitting of nuclear levels; in facty,y, yreatingH — H' as a first-order perturbation. Therefore the

one of the original motivations for the Fujita-Miyazawa noint radii and electromagnetic moments are computed for

three-nucleon potential was the study of spin-orbit spllttmgsH/ instead ofH. For the models with three-body potentials,

[11]. In Ref.[51] we showed that one of the Urbana family tne H’ has a modifieddg such that(H—H’)~0, and thus

of Vjjx makes a substantial contribution to the spin-orbitthe radii and moments for thel’ should be close to the

splitting in **N. Table XIII shows calculated and experimen- desired ones foH. However the calculations for AV18 with

tal splittings for a number of states that are spin-orbit partno three-body potential use just AV8r H’. In this case

ners in conventional shell-model calculations. The dominan(H—H’> is significantly different from zero, and we can

L andSin the shell-model calculationgnd in the one-body only quote radii and moments for AV8 For the few light

parts of our variational wave functionare shown. p-shell nuclei that have measured radii, those obtained with
The spin-orbit splitting computed with just the two- the lllinois models, which produce good binding energies,

nucleon interactions, AV8or AV18 are generally too small, are in better agreement with the data than those obtained

sometimes by factors of 2 to 3. In some cases AV18/UIXwith either AV8 or AV18/UIX.

makes a significant increase, but in general it also predicts Table XV shows the experimental isoscalar and isovector

too small splittings. The predictions with the lllinois models magnetic moments for the cases that have been measured

are in much better agreement with the experimental valueglong with values calculated using only one-body current

Due to significant statistical errors in the calculated spin-operators. The values in the table are defined in the same

orbit splittings and the fact that some of the spin-orbit part-way as the coefficiens{’} in Table X (see Eq(5.3) of Ref.

ners are wide states, they cannot yet be used to differentiaf&]) and thus the isovectop(®)) values for thel = 1/2 cases

between the various lllinois models. are —2 times those often quoted. The® and uV) are

TABLE XIV. rms point proton and neutron radii in fm.

AV’ AV18/UIX AV18/IL2 AV18/IL3 AV18/IL4 Expt.
p n p n p n p n p n p

34 1.660) 1.820) 1.590) 1.730) 1.590) 1.740) 1.600) 1.740) 1.590) 1.730) 1.60
3He 1.850) 1.680) 1.760) 1.610) 1.760) 1.610) 1.760) 1.610) 1.760) 1.610) 1.77
“He 1.5@0) 1.500) 1.440) 1.440) 1.450) 1.450) 1.460) 1.460) 1.440) 1.440) 1.47
®He 2.061) 3.071) 1.971) 2.941) 1.911) 2.821) 1.991) 2.971) 1.991) 2.961)
6Li 250(1) 2.501) 2.571) 2571 2.391) 2.391) 2.441) 2.441) 2.391) 2.391) 2.43
L 2291) 2471 2.331) 2521 2.251) 2.441) 2.321) 2.521) 2.261) 2.441) 2.27
8He 1.931) 3.222) 1.990) 3.171) 1.891) 2.961) 1.861) 2.921) 1.821) 2.891)
8Li 2.31(1) 2.731) 2.191) 2.651) 2.091) 2.451) 2.111) 2.541) 2.071) 2.431)
8Be 2.421) 2.421) 2.480) 2.480) 2.441) 2.441) 2.481) 2.491) 2.391) 2.391)
n 3.091) 3.091) 2.920) 2.851) 2.851)
n 2.990) 3.031) 2.920) 2.890) 2.8911)
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TABLE XV. Isoscalar and isovector magnetic moments, calculated in impulse approximation, in nuclear

magnetons.
T AV8' UIX IL2 IL3 IL4 Expt.
Isoscalar
*He—°H 3 0.4080) 0.4050) 0.4030) 0.4020) 0.4040) 0.426
oL 0 0.8231) 0.8211) 0.8171) 0.81Q1) 0.8191) 0.822
"Be—Li 3 0.9046) 0.901) 0.8941) 0.8951) 0.8981) 0.929
8B—8Lj 1 1.31(2) 1.3012) 1.2761) 1.2871) 1.2951) 1.345
Isovector

*He—3H z —-4.3541) —4.3401) —4.3301) —4.3141) —4.3311) -5.107
"Be—Li z —-3.921) —3.941) -3.931) —-3.841) —-3.961) —4.654
8B—8Li 1 0.391) 0.402) 0.3699) 0.341) 0.3779)  —0.309

obtained from expectation values of the isoscalar and isove&maller rms radii. The situation fdiLi is very difficult due
tor magnetic-moment operators in the wave function for theg the large cancellation between orbital and intrinsic com-

nucleus having smallest=(1/2)A—T. In this approxima-  ponentg(in an alpha-deuteron picturef the quadrupole mo-
tion the isotensou(®=0, since the one-body magnetic- ment.

moment operator does not have an isotensor term. However,
one may obtain a small(? when the magnetic moments are
separately calculated for each state in the multiplet due to
violation of isospin symmetry in the wave functions. Neutron drops are systems of interacting neutrons con-
For theA=8, T=1 nuclei, the experimental isoscalar and fined in an artificial external well. We have previously re-
isovector moments are obtained from the sum and differencported results for systems of seven and eight neutrons as a
of the values for B and Li, since the magnetic moment of thebasis for comparing Skyrme models of neutron-rich systems
T=1, J7=2" state in Be is not measured. In fact the sumwith microscopic calculations based on realistic interactions
gives 2u®+ @, but in the present approximation®  [18]. The determination of the isospin dependence of the
=0. Skyrme model spin-orbit parameters is of particular interest.

The computed magnetic moments show little dependencghe external one-body well that we use is a Woods-Saxon:
on the three-nucleon interaction. Because pair currents are

not included in the calculated values in Table XV, one can- Vo ‘

not expect good agreement with the experimental values, es- Vl(r)zii: 1+ exd —(r;—rg)/ag]’ (5.9)

pecially for the isovector values. The pair-current corrections

computed for theA=3 system using the AV18/UIX model

are 0.034 and-0.778 for the isoscalar and isovector mo- parameters ard/,=—20 MeV, ry=3.0 fm, and a,

ments, respectlvelysz]_. This isoscalar correction 1S tWi® _q a5 tm Neither the external well nor the total internal

what is needed to achieve agreement with experiment while . U .

the isovector value results in perfect agreement. All the comPotential @i;+ Vi) are individually attractive gnough to

puted magnetic moments differ from the experimental valueé)mdu_Ce t_)ound states of seven or eight neutrons; however the

by amounts comparable to the corrections computedafor cOMPination does produce binding.

ey Many of the tables show results for the neutron drops.
Table XVI shows computefagain using just impulse ap- The T=3/2 nature of theS;S, term of V3™R results in

proximation and experimental quadrupole moments. The Il-large contributions in the neutron drops. As a result the

linois models predict quadrupole moments that are generall§even-neutron drops computed with some of the lllinois po-

smaller than those obtained using AV18/UIX. This is a con-tentials have double the spin-orbit splitting predicted by

sequence of the increased binding energy, and resultingV18/UIX. This strong dependence on the Hamiltonian in-

dicates that the conclusion of Rdfl8], that conventional

TABLE XVI. Quadrupole moments, calculated in impulse ap- Skyrme models overpredict the spin-orbit splitting in

F. Neutron drops

proximation, in fnf. neutron-rich systems, may not be valid. The IL3 model gives
larger spin-orbit splitting in thé& =7 neutron drop than the
AV8  UIX L2 IL3 IL4  EXpt  others.

6Li —0.2718) —0.12) —0.326) —0.356) 0.275) —0.083
i —3.61) -—-451) —361) —341) -3.91) -—4.06
Be —6.41) -7.51) —6.11) -541) -—6.61)

8Li  3.5(3) 3.01) 3.21) 3.2(1) 3.41) 3.197) Table XVII shows the expectation values&f in various

B 7.1(3) 8.21) 6.41) 5.6(1) 6.6(1) 6.82) nuclei for some of the lllinois Hamiltonians along with the
net change in the binding energy due to the boost correction:

G. év contributions

014001-17



PIEPER, PANDHARIPANDE, WIRINGA, AND CARLSON PHYSICAL REVIEW ®4 014001

TABLE XVII. Expectation values ofév and the net change in the binding energy due to the boost
correction(in MeV) for three of the lllinois Hamiltonians.

Sv v+ (Vijk— Vijk)

AV18/IL1  AVi18/IL4  AV18/IL5 AV18/IL1 AV18/IL4 AV18/IL5
3H(1) 0.4064) 0.3944) 0.3954) 0.0008) —0.0018) —0.0128)
IHe(L*) 0.3944) 0.3824) 0.3864) —0.0038) 0.0018) —0.0058)
“He(0™) 2.132) 2.092) 2.082) —0.104) —0.084) —0.104)
SHe(0") 2.81(9) 2.9398) 2.839) 0.1(2) 0.1(1) 0.1(1)
fHe(2") 2.7998) 0.1(1)
BLi(1™) 2.81(8) 2.969) 3.049) 0.2(1) 0.2(1) 0.21)
TLi(27) 3.91) 4.001) 3.8(1) 0.12) 0.42) 0.32)
Li(37) 4.1(1) 0.42)
Li(Z7) 4.1(1) 0.52)
8He(0™) 4.2(1) 4.52) 4.51) 0.52) 0.02) 0.22)
8Li(2™) 5.4(1) 5.92) 5.32) 0.32) 0.32) 0.32)
8Li(1 ™) 5.2(2) 0.1(2)
8Li(3 1) 5.7(2) 0.2(3)
8Li(4™) 5.01) 5.32) 0.7(2) 0.62)
8Be(0") 5.6(2) 5.6(2) 5.83) 0.13) 0.32) 0.34)
8Be(1) 5.32) 0.33)
8n(0™) 1.254) 1.125) 0.61(5) 0.576)
(H* =H)=(8v+ (Vi —Vij))- (5.2)  or °He energy with several modetn; . More recently{30]

they have obtained results f8H, 3He, and*He with AV18

and a revised version of TM27 as well as the UIX model.

In the light nuclei the net change is, at most, comparable t .
1% of the binding energies, and therefore the Hamiltonia%q;hey observe that when the energy Ufie is reproduced

4 ; -
H [Eq. (3.35] gives essentially the same energies as tha2. Of 'He is very close to the observed, b is under-
simpler H [Eq. (2.1] without v correction. However, the ound by=%.5%. Ln the oher hand, Tii energy IS repro-

4
net change is not necessarily small in other nuclear systen%“ced’ bgth3He and“He are overbound by less t.han_l%. In
like nuclear or neutron matter or neutron drops. In fhe order to improve the accuracy of nuclear Hamiltonians be-

=8 drop(Table XVII) the<vijk_vﬁk> is only half as large yond 99%, a more quanti;ative' description of the charge
as(dv). In these systems we must use the Hamiltortn symmetry breaking mtgrgcﬂons IS necessary.
The above results limit the contribution of four-nucleon
interactions in*He to less than 1% of its binding energy. The
VI. CONCLUSIONS AND DISCUSSION (Vijk) contributes approximately a quarter of thele bind-

We find that nonrelativistic Hamiltonians containing two- ng, although the dlffere_nce of the total energies cc_)m_puted
w]gth and without aVj;, is only a seventh of the binding

and three-nucleon interactions can reproduce the energies 0 . . .
all the bound and narrow states of up to eight nucleons witFeray- The ratio of the_ expectatlon_valuegqu( andvj; is
an rms error<1% via GFMC calculations, which have an /% in theA=8 nuclei, and(V;;) gives up to one-half of
estimated error o& 2%. The three-nucleon interactions give their pmdmg energy. If the four-nucleo.n interactions were to
a significant fraction of nuclear binding energy due to a largeFontribute ~6% of Vij, they could influence thé\=8
cancellation between the kinetic and two-nucleon interactio®inding energies by-3%. The present calculations do not
energies. This cancellation is seen even in the deuterotdicate a need to include four-nucleon interactions to fit the
whose kinetic and interaction energies obtained from Avigobserved energies at the 1% level. Thus, either the four-
are, respectively; 19.9 and—22.1 MeV. Since the Av18 nucleon contributions are smaller than 1% of the binding
model is very successful in explaining the observed deuteroanergies, or parts of the present modeld/gf are mocking
form factors, and all realistic models of; also have this up their effects.
feature, it seems to be inherent in nuclei. The energies of light nuclei can be used to determine at
The Bochum group53] obtained a one parameter family most three parameters f;, . We can choose them as either
of Vijx models by choosing the cutoff mass in the TM modelthe strengths!\;‘f’, Aéq'f, andAg, or use a theoretical value

of V27, including P- and Swave terms, to reproduce tiéi  of A5 and fit the short-range cutoff. It is possible to make
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correlated changes in the three strengths, as in models ILthe low-energyNd elastic-scattering observables are well re-
and IL4, which have relatively small effect on the energies ofproduced by realistic models af;; [27]. The expectation
light nuclei. value ofVjj, is only ~2.5% of that ofv;; + v+ vy in 3H,

All the realistic models otV;;,, including the older Ur- thus it is not expected to have a large effect on this scatter-
bana models, have a cancellation between the attraxfife ing. However, all realistic models af;; underestimate the
and repulsiveVR. For example, their contributions in the observed nucleon analyzing pow#y, in low-energy Nd
AV18/IL2 model, to the energy ofHe (Be) are, respec- Scattering; the spin-orbit splitting induced by té™"" of
tively, —2.8 (—37) and 1.3(18) MeV. The contribution of the variousVj;, reduces the error somewhat but the addi-

VR grows faster than that af2™ as eitherA or the density of tional spin-orbit splitting induced by the present lllinois

matter increases, and lowers the saturation density of synmOOIeIS is probably inadequate to completely correct the un-

metric nuclear matter. It is difficult to determine the deﬁi???;ggﬂl' it has also been suagested that minima and
guantitatively from the energies of light nuclei. y 99

: . . .__polarization observables & d elastic scattering at interme-
Such a cancellation was noticed in Faddeev calculation

. ; . : . iate energies are sensitive , and may be used to re-
including A components in the triton wave functi¢g5,36. 9 ol Y

) ) . o fine models ofV;, [59-61. Thus further improvements in
The esm;atga, of P'CkleS'meg al.[36], indicated that thek realistic models o¥/;;; may be possible by a simultaneous fit
part of V™" changes the’H energy by only~—0.75

. . to Nd scattering observables and nuclear binding energies.
MeV, while the processes, which represent the suppressioginceNd scattering is sensitive only to thé, in the total

of the attractive two-nucleon”” by the third nucleon via the  jsospinT=1/2 state, it does not provide information on the

dispersion effect, give-1.1 MeV. TheVR contribution in Vj in the T=3/2 state. This paper shows the need for an

present models is comparable to thairdispersive effect, attractive interaction if = 3/2 states to reproduce the ener-

while the V™" is much more attractive. gies ofp-shell nuclei. It may be possible to access this part of
Studies ofA=3,4 nuclei with relativistic Hamiltonians v, in n-t andp-3He scattering.

[17] indicate that the boost interactiafv gives the largest
relativistic correction of-0.4 MeV, to the triton energy. It is

included in the present relativistiti(*) models. The other ACKNOWLEDGMENTS
corrections included in the relativistic Hamiltonians, but ex- ) ]
cluded here, are only-0.1+0.05 MeV, i.e., of order 1%. The many-body calculations were made possible by gen-

erous grants of time on the parallel computers of the Math-
. S : ematics and Computer Science Division, Argonne National
any, have to be added tc_> M in the reIat|_V|st_|c Hamilto- . Laboratory, and bF))/ early-user time on the IgBM SP at the
nians. Foresf55] has estimated their contribution to the tri- National Energy Research Scientific Computing Center. The
ton, using the scalar and vector parts of A48, obtained o4 of 5.c.p. and R.B.W. was supported by the U.S. De-
with Riska’s method, to be-0.3 MeV. In the present Illinois 5 iment of Energy, Nuclear Physics Division, under Con-
models these are also buried in ¥&* . In the initial Illinois  tract No. W-31-109-ENG-38, that of V.R.P. by the U.S. Na-

models discussed at the International Nuclear Physics CoRpnal Science Foundation via Grant No. PHY 98-00978, and
ference in Paris[56] we attempted to include possible that of J.C. by the U.S. Department of Energy under Contract
Z-diagram contributions iV;;, however, the observed en- No. W-7405-ENG-36.

ergies can be reproduced without them. If these exist, then,

as in the case o¥2™S", we can assume theoretical values

for their strengths and fit the energies, presumably with AppENDIX: THE SPIN-SPACE OPERATORS IN V3™AR
~1% accuracy, by readjusting the streng#ts’, A3F, and

* . Nuclear binding energies seem to require only three Itis convenient to define the functions
components in the/i’]k, an attractive part to provide more

However, three-nucleon interactions dadiagrams[54], if

binding to light nuclei, a repulsive part to make nuclear mat- 3T(m,r;)
ter E(p) saturate at empiricgdy, and an isospin-dependent i =—2”", (A1)
term to provide extra binding to the neutron-rich helium iso- rij
topes.
Preliminary versions of the IL1-IL3 models were also dis-
cussed at the Few-Body Physics Conference in Tdpai Yij=Y(mzarij) = T(mzri), (A2)

The parameters of the lllinois models reported there were
incorrect due to a programming error. The correct values arevith which the spin-space operat¥y; in v{j [Eq. (3.7)] can
as reported here. Since then the IL3 model has been reviselbe expressed as
In the present IL3 model, softer cutoffs are used also in the
VR terms. Results for nuclear and neutron matter with the
lllinois models will be published separately.

As mentioned in the Introduction, additional data neces-
sary to further the study o¥;;, may be obtained from the Evaluating theA-ring diagrams using closure approximation
scattering of nucleons by deuterium. It is known that most otthen gives

Xij:tij()'i'rijﬂj'rij+yij(7i'(fj. (A3)
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| 2 2
Se=2Yi;YjkYkiT %gc (rijti YikYei+ CitijticYei) — 5CiCiCtijtjityi

+

2 2
> Ui'UJH%Yijyj'kykﬁ%gc Fiiti)YikYi +%§C oi- o Citij tikYii

cyc

1
=32 (0710 1YYkt 01 TG0y TtV Yig + 0 1oy TidYig Yea)

cyc
+%§c Cko'i'rjko'j'rkitkitjkyij+%C}y:c o;-aoj- a(tijt Y+t Yiktei T Cutij tieti), (A4)

D 2 2 2 2
Seik= 507 o2y, YikYki+ Ci i Vit Tt VY et ikticYig Yei + FitiiYikYii
+3Ci07- 101 Tt Vit = 305 T 01 Tit YiaYjk— 305 T O Tiitia Yij

— 507 TikOk Tt Y Yi + 5 05 a0 alti tieYii + Vijtikte + Citij tiktii) (A5)

i [
|
As=3l01 o)X 0Wyijyjkyxit 01 a0 aoy- atjjtytiil + 3 2 (07X 0y 10y Tt YikYii + 07 a0 o Cityy Vi)

3 &ye
i 2i
*t3 %:c i Ik Ok Tij oy - alijtyYwi+ = g;c o a(CitijYjrtii = Cjtijtiyii— CuYijtiktii — Cj Ctijtiktii) (A6)
and
[
A k=" 391 aCitijYjitii — Citij Yk — CuYij tiktii = Cj Cucij i) - (A7)

The Cij=rjj-ri anda=r;; Xrj.. A cyclic sum over the indicegk is denoted bycyc.
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