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We examine the effects that a confining boundary together with hydrodynamical expansion play on two-pion
distributions in relativistic heavy-ion collisions. We show that the effects arise from the introduction of further
correlations due both to collective motion and the system’s finite size. As is well known, the former leads to
a reduction in the apparent source radius with increasing average pair monténtlowever, for smalK, the
presence of the boundary leads to a decrease of the apparent source radius with delredkese two
competing effects produce a maximum for the effective source radius as a function of
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[. INTRODUCTION phase transition from a gas phase to a more dense phase as
the temperature rises close to the temperatures expected to be
In recent years, much experimental effort has been deachieved in relativistic heavy-ion collisions, thus introducing
voted to the production of a state of matter under the extremhe concept of ot pion liquid
conditions of high baryonic densities and/or temperatures in From a phenomenological point of view and disregarding
relativistic heavy-ion collisions. The main drive for such ef- the details of the reflection processesich presumably de-
forts is the expectation to produce the so-called quark-gluoRend on the energy of the incident partictihe development
plasma(QGP where the fundamental QCD degrees of free-Of a surface tension can be incorporated by imposing a sharp

dom are not confined within a single nucleon but rather ovefoundary for the pion wave functions to evolve just before

a larger volume of the order of the dimensions of a nucleusf.reeze'om' As a consequence of the finite size of the system

While the properties of the QGP have been the subject Og_urlng this stage of its evolution, the energy states form a
. : . glscrete set.

intense theoretical study and debate, much less attention h S AN important difference between statistical systems with

been p‘.”“d o the hadr_onization process, or o the _p_roperties %fnd without a boundary is the different density of states at

hadronlc.matter at h|gh temperatures and dgn3|t|es. An U creasing energies being larger in the case of the former, as
derstanding of these is needed for a correct interpretation af

) L X flustrated in Fig. 1. The density of states of a finite system
the signals originating from the different stages of the CO”"approaches that of an unbound one as the size of the system

sion, both for a clear distinction of a possible QGP formationjs increased. The above characteristic implies that the trans-
and also as an interesting subject of study on its own. yerse inclusive spectrum calculated within a boundary model

The most abundantly produced hadrons in relativisticyill exhibit a concave shape at high transverse momentum
heavy-ion collisions are pions. Typically, the number of and could potentially explain the increase of the pion trans-
pions produced one unit around central rapidity in centralverse distributior{4] in this kinematical regio5]. The in-
Au+Au collisions at energies of order A@GeV is crease of the pion distribution at low transverse momentum
dN,/dy~300[1]. Under the assumption that the transversecould also be explained within the same context by consid-
dimensions of the system formed at freeze-out are of order of
the transverse size of an Au nucleus and that the typical pion 199 L
formation time is of order 1 fm, this multiplicity implies that
the average pion separati@hat freeze-out in the central 1000 - 7
rapidity region is of orded~0.6 fm which is less than the
average range of the pion strong interactidgy-1.4 fm.

Some of the possible consequences of this large pion den-
sity produced in relativistic heavy-ion collisions were first
studied by Shuryak2] who coined the ternpion liquid to
refer to the situation where the pion system could not be
thought of as existing as a hadron gas but rather that its
properties resembled more those of a liquid of quasipions. In 0 =L L : ' . :
particular, as one of the main characteristics of liquids is the 400600 8001000 1;20& V“OO 1600 1800 2000 2200
appearance of a surface tension, such state of hadron matter (MeV)
could give rise to a confining boundary that acted as a re- FIG. 1. Number of states for a spherically symmetric system
flecting surface that could affect the pion distributions justwith a sharp boundary &=6 fm (solid line) compared to a sys-
before freeze-out. More recent[\8], it has been proposed tem without boundarydotted ling. Notice how the presence of the
that the equation of state of pion matter could give rise to @oundary makes the number of states grow faster at large energies.
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ering the finite chemical potential associated with the meaackward peaked, particularly at energies of the Super Pro-
pion multiplicity per even{6]. ton Synchrotrorf11], even in the case of central collisions.

More recently, it was realized that an important missingNevertheless, for the sake of simplicity and concreteness,
ingredient in the description of the transverse pion spectraere we will assume that the confining volume is spherical.
within a boundary model was the proper inclusion of hydro-Comparison of the model with data will become better in the
dynamical expansion. The phenomenological description ircentral rapidity region where an asymmetry between longi-
terms of a bound, expanding pion system has been named the&dinal and transverse expansion is less important than in the
expanding pion liquidnodel and was developed in Refg]  fragmentation region. Let us emphasize that an spherically
and successfully applied to the description of the experimensymmetric model is not essential to the basic physics dis-
tal midrapidity, transverse pion spectra in central4AAu cussed here and can thus be relaxed at the expense of addi-
collisions at11.6A GeV/c [1]. A further natural test ground tional computing time. This could, however, be necessary
for the model is the study of multiparticle correlations, in when comparing to data away from midrapidity.
particular two-pion correlations. To incorporate the effects of an hydrodynamical flow, we

A step in this direction has been taken in Rgf] where  notice that this ordered motion can be represented by a four-
the effects of a pure boundary modee., without collective  velocity field u*= y(r)[1v(r)], where vy is the Lorentz-
expansiofn have been introduced in the description of thegamma factor and(r) is the velocity vector. This field rep-
two-pion correlation function. In this work, we incorporate resents a redistribution of momentum in each of the fluid
also the effects of hydrodynamical expansion in the calculaeells, as viewed from a given reference fraftiee center of
tion of the two-pion correlation function. mass in this cagebecoming centered around the momentum

It is well known that in the study of two-particle correla- associated with the velocity of the fluid element. This behav-
tion functions, the effective size of a system without aior can be described by the substitutig— p*—mu*,
boundary decreases as the average pair momentum is iwhere m is the pion mass. The termu* represents the
creased9] when considering the effects of hydrodynamical collective momentum of the given pion fluid element.
expansion. Physically, this effect is due to the fact that as the The eigenfunctions of the confined, expanding system of
average pair momentum increases, the particles in the papions are thus obtained as the solutions to the equation
are more likely to be emitted from points close in space. This
can also be regarded as the introduction of a further correlg- [. J 2 : 2. 2
tion in phase space for the emitted particles that effectively | ' 5z ~M¥(") +[—IV=my(n)v(r)]7+m?)y(r,1)=0,
reduces the size of the emission regid®]. On the other (1)
hand, as emphasized in R¢8], for emission volumes of
order of a few average pair wavelengths it is imperative tovhere we look for the stationary states subject to the bound-
consider a full quantum density matrix in the description ofary condition
particle distributions since as the average pair momentum
decreases, the correlation region as a function of relative #(Ir|[=R,1)=0. )
momentum increases thus effectively reducing the appare
size of the system. As we will show in this work, these two
competing effects produce a maximum in the effective sizé
of the system at a finite value of the average pair momentum. r

This paper is organized as follows: Sec. Il is devoted to a v(r)=,8—F, ®)
recollection of the description of a bound, expanding pion R
system at freeze-out. In Sec. lll, we write the two-pion cor-
relation function in terms of the discrete set of eigenfunc-
tions for this kind of system. In Sec. IV we perform a sys-
tematic analysis of the two-pion correlation function in terms
of the different parameters involved. We pay particular at-
tention to the behavior of the effective system'’s radius as a y(r)= _
function of the average pair momentum comparing the re- V1-pB%r?IR?
sults to what would be expected in the case of an expanding
and unbound system and a pure boundary model. Finally w8ince Eq.(1), with the gamma factor given by E¢), can
conclude and discuss our results in Sec. V. only be solved numerically, we resort to approximating the

function vy by the first terms of its Taylor expansion,

n ) . .
\/E/e consider a parametrization of the velocity vectr)
hat scales with the distance from the center of the fireball

where the parameter<08<1 represents the surface fireball
hydrodynamical velocity. Correspondingly, the explicit ex-
pression fory(r) becomes

4

Il. THE EXPANDING PION LIQUID B r2

When the system of pions can be considered as confined, y(r)=1+ 2 R?’ ®

its wave functions satisfy a given condition a the boundary.

In order to compare the results with the observed particlevhich is valid for not too large values ¢@8. With this ap-
distributions, the shape of the assumed confining volumgroximation, Eq(1) becomes an equation for particles mov-
could play an important role. It has long been known that theng in a spherical harmonic well with rigid boundaries and

particle momentum distributions are somewhat forward-can be solved analytically. The stationary states are
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Anl i ; 2 1o~ 2.2 — 3 a—ipr
(rt) = —=e EntHImBrICRYYM (r)g=anr /2! m(p)—f d°re Py (r). (12
‘r//nlm( ) \/fm | ( )
| +3/2 2 With the normalization adopted in E¢f), the one-pion mo-
X ,Fy ( ) _ En 1+3/2;a2r2|, (6)  mentum distribution can be written as
N1 > .
where ;F is a confluent hypergeometric function avid is P1(p)= ﬁ_ (2m)?3 & 2E\N\¥x (P)¥(p). (13)
a spherical harmonic. The quantiti®g, are the normaliza-
tion constants and are found from the condition Similarly, and under the assumption of a complete factoriza-
tion of the two-particle density matrix, the two pion momen-
; tum distribution can be written as
f d3l'l/1:|m,(l’,t)ﬁlﬂmmr(l’,t):l. (7) d®N
Pa(p1,p2)= n. o,
The parameters, ande,, are related to the energy eigen- P107P2
valuesE,, by =P1(p1)P1(p2)
ap=m(Ey—m)B%RE, 1 . 2
+ = 2 2E\NA (P (P2
(2m)° X

ep1=Eqi(Eqy—2m), ®
(14

with E,, given as the solutions to
from where the two-pion correlation functi@y can be writ-

(1+32) &2 ) ten, in terms o, andP,, as
Fil = — J+3/2;a5R? | =0. 9
4ay, Pa2(p1,p2)
Ca(p1,p2) = P1(p)P(p,)

Equation(6), along with the energy eigenvalues and defini- 1P F1(P2
tions in Egs.(8) and(9), constitute the set dfproperly nor- 2
malized eigenfunctions in terms of which the various mul- 2 E\N (p) ¥ (p2)
tiparticle distributions can be expressed. The system’s finite =1+ »

size and the strength of the collective expansion are given in
terms of the parameteiR and 83, respectively. In order to

further proceed, it is necessary to specify the kind of en-
semble that describes the statistical properties of the pion
system.

; ExNx|%(p1)|2§Q E\NA| 4 (p2)|?
(15

Notice that as a consequence of the factorization assumption,
the correlation function is such th&,(p,p) =2. This is usu-

lll. TWO-PION CORRELATION FUNCTION ally referred to as the completely chaotic pion production
scenario[12], which is the situation expected to occur in a
sheavy ion collision, given the considerable rescattering ex-
erienced by pions in the production region. In contrast, if
he particles were produced completely coherently, they
would occupy a pure quantum state and the two-pion mo-
mentum distribution would be simply the product of two
single-pion momentum distributions, leading to the absence

of the Hanbury Brown—Twiss effect.

In order to describe the situation where equilibrium ha
been attainedwhich we assume hergethe proper statistical
distribution for the ensemble is thermal. For the purposes o
this section, we closely follow Ref8] to which we refer the
reader for details. Lek represent the set of quantum num-
bers{nim’}. The corresponding occupation numidbgy for a
given state is written as

1

Ny = X B — ) T—1"

(10 IV. THE EFFECTIVE RADIUS

_ _ Armed with the eigenfunctions describing the confined
Where_T is the system’s temperature ar)q the chemical  and expanding pion system, E¢6) and with the explicit
potential, related to the average total multiplichyby expression for the two-pion correlation function in Eg5),

it is possible to perform an analysis to describe the behavior
NZE 1 . (11) _of C, as a function of the several vari_ables and parameters
x eXpE\—u)/T—1 involved. For the spherically symmetric problem described
here, the correlation function depends on the angle between
Let #,(p) represent the Fourier transformed wave functionthe pion pair momenta. For the sake of simplicity, let us
for the state with quantum numbexs namely consider the case in which both momeptaandp, are par-
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FIG. 2. (a): C,(q) for a fixed value ofK=500 MeV and for
R=6 fm (solid line) andR=10 fm (dotted ling. The width ofC,
decreases aR is increased(b): C,(q) for a fixed value ofR
=6 fm and forK=300 MeV (solid line), K=500 MeV (dotted
line) andK=700 MeV (thick solid line. For the chosen values of
K the width ofC, increases aK is increased(c): C,(q) for a fixed
value of R=6 fm and for K=50 MeV (solid line, K
=100 MeV (dotted ling andK=200 MeV (thick solid line. For
the chosen values & the width of C, decreases as is increased.
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FIG. 3. C,(q) for a fixed valueR=6 fm and different values of
the ground state population fraction. Far=0 (solid line the
ground state population is negligible and- 1. However, when the
ground state population becomes a significant fraction of the total
multiplicity, e.g., for u=315 MeV, Ng/N=0.37, andA~0.62
(dotted ling. When almost all of the particles occupy the ground
state, e.g., forp=317.5 MeV,Ny/N=0.77, A ~0.23 (thick solid
line), and the correlation function becomes flatter.

magnitude of the pair momentum differenge p,—p; . Fig-
ure Aa) showsC,(q) for a fixed value of the magnitud¢
=500 MeV of the average pair momenturk =(K,
+Ky)/2 for two values of the system radil®&=6, 10 fm.
Notice that for a fixedK the width of the correlation function
decreases aR is increased. Figure(B) showsC,(q) for a
fixed value ofR=6 fm and three values df =300, 500,
and 700 MeV. For the chosen valueskifthe width of the
correlation function increases #sis increased. Figure(@)
showsC,(q) for a fixed value oR=6 fm and three values
of K=50, 100, and 200 MeV. Notice that in this case, the
width of the correlation functiodecreasessK is increased.
In all these figures, the temperature and surface expansion
velocity have been held fixed td=120 MeV and 8
=0.5c. These values fof andB are chosen in accordance to
the analysis in Ref[13] where a correlation between the
transverse flow velocity and the freeze-out temperature is
found in such a way that higher temperatures imply lower
expansion velocities and vice versa. Since, at least for
Alternating-Gradient Synchrotron energies, not too high tem-
peratures are reached during the collision, the above value
for T implies that for g, thus, the free parameters for the
model can be taken either &and T or R and 3.

It is also worth mentioning that in both of the above fig-
ures, the value of the chemical potentialappearing in Eq.

In all cases, the temperature, surface expansion velocity and chemid5) has been fixed tqu=0. The behavior ofC,(q) for

cal potential have been held fixed Te=120 MeV, 8=0.5, and
=0 respectively.

different values of the chemical potential is shown in Fig. 3.
Notice that varying the chemical potential up to values below
the onset of Bose-Einstein condensati&itC) [6] does not

allel. In this case, the summation in the numerator of th@ntroduce changes in the shape of the correlation function.

second term in Eq15) can be simplified, with the aid of the
addition theorem for the spherical harmonics

-
2 YRV (p = (16)

Figure 2 shows the behavior 6f,(q) as a function ofj, the

This can be understood by noticing that even when we in-
crease the system’s density and thus the valug,ofve are
not introducing any further correlation among the bound but
otherwise noninteracting set of particles. This situation
changes when, for a given temperature and system’s gize,
is beyond the value to allow for the ground state to accom-
modate a significant fraction of the particle populat{@n.
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This is also shown in Fig. 3. In this case, the ground state 5 T . . ' T
population has to be treated separately from the pions com- R=61m
ing from the excited states, since the former originates from 4t .
a pure quantum state, as opposed to the assumption leading

to Eq. (14). The weight assigned to the pions coming from 3
the ground state is equal to the ratio of the ground state &
populationNg to the total number of pions of the given spe- 2
ciesN. Correspondingly, the correlation functi@y(q) be-

comes flatter and the intercept with the vertical axis occurs 1k

bound expanding

for values smaller than 2, that is=1—Ng4/N. Thus, as the unbound expanding
density increases, this behavior signals that for the given . . | bound non-expanding —
temperature and volume, pions are predominantly emitted 0 200 400 600 800 1000
from the ground state. This is in agreement with the analysis K (MeV)

in Ref.[14].

. FIG. 4. Ry for a fixed valueR=6 fm as a function oK for an
Another property of the bound and expanding system of,nanding and bound systetsolid line), an expanding and un-

pions that can be extracted from the correlation functior,oung systenidotted ling, and a bound and nonexpanding system
C»(q) is the behavior of the system’s effective radRigr as  (thick solid line. Notice that in the first cas®e reaches a maxi-

a function ofK. The relevant quantity to pay attention to iS mum at a value oK ~ 5T, whereas for the second casey; de-

the ration=T/y(R)mg of the energy scale associated with creases with increasin§, and in the third cas®.; grows with
random motion, i.e.T, to the energy scale associated with increasingK. Also, for the expanding and unbound system, the
ordered motion, i.e.;y(R)ymB. For K small compared to parameteRg,,sshas been chosen in such a way as to give the same
nT—that is, when the average pair momentum is mostly dugms radius than a rigid sphere wik=6 fm.

to random motion—-R is an increasing function df. This

can be understood by notici@] that increasingK corre-  with Ey= Jp?+m? andv and y(x) given by Egs.(3) and
sponds to increasing both of the momenta in the pion pair(5), respectively. The correlation function is given in terms
Correspondingly, the quantum states that contribute to thef G(x,p) by [9]
momentum distribution®, and P, are those with increas-

ingly larger quantum numbers. But, according to ELD),

these states are suppressed by their statistical weight and

therefore only those other states with smaller quantum Ca2(p1,p2)=1+ :
numbers—and consequently with a larger spread in coordi- U d3x G(x,pl)Hf d3x G(x,pz)}
nate space—can contribute significantly to the correlation

function, which in turn drops faster as a functiongfvith

increasingK, leading to an increase in size of the apparenizqr the hound and nonexpanding system, the eigenfunctions
region of particle emission. However, f&r> 7T, the collec-  gre given in terms of Bessel functions of the first ki

tive motion dommates over the thfarmal componerit?land (see also Ref8]). The corresponding expression Mg is

the relevant physical effect that dictates the behavidRgf  gptained from that of,(q) by also fitting Gaussians of the

is the correlation _between the s_patlal region of emission oform given by Eq.(17). Notice that the curve representing
pions a_nd t_he pair momentum mtrodgced by the coI_Iectlve[he effective radius as a function &f for a bound but non-
expansion, in such_a way tha_t faster pions are more likely t%xpanding system grows witK, in agreement with the

be emitted from points close in spa@ leading to a reduc-  gnaiysis of Ref[8]. In contrast, the curve representing the
tion in size of the apparent region of particle emission. effective radius for an unbound but expanding system de-

The behavior oR;; as a function oK is shown in Fig. 4 - creases monotonically a6 is increased, also in agreement
(solid line). Notice that the curve shows a maximum for a ith the analysis of Ref[9].

value of K~ #T. The curve is obtained by fitting the corre-
lation functionsC,(q) to Gaussians of the form

2
d3X G( X, %pz> efi(plf P2)-X

(19

V. CONCLUSIONS

9(q)=1+exp —q°R%). (17) In this work, we have studied the effects that a confining
boundary together with hydrodynamical expansion at freeze-
out, play on the two-pion correlation function, in the context
of relativistic heavy-ion collisions. We have argued that the
confining boundary could be produced as a consequence of

comparison, also shown in Fig. 4 is the behavioRgf for . . . . i .
an expanding system without a boundddptted ling and ::Z?]t?;?réoﬁ;;?oggnsny that can be achieved at freeze-out in

for a bound system without the effects hydrodynamical ex- We have shown that for a given system's volume and
pansion(thick $O“d ling. For the forme_:rwe_ch_oos_e asphen- temperature, varying the multiplicity, and therefore the
cally symmetric phase space Gaussian distribution given b%hemical po,tential does not introduc’e any changes in the

- correlation function whernu is below the values for BEC.
G(x,p)=e X"Rcause™ Y (Ep=v-P)/T (18  However, the intercept of the functi occurs for val-
p q

Equation(17) is a good description for correlation functions
with largeK. For small values oK, the fit is not as good. For
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ues less than 2 when the chemical potential is beyond the valueK~ 5T, wheren=T/y(R)mg. The physical origins
value to allow for BEC. A similar behavior can be expectedof this behavior are the combined effects of the confining
for a given pion density if the freeze-out temperature is beboundary and hydrodynamical expansion. In the regime
low the critical temperature for BEC. However, this is a lesswhere K is basically due to random motion, the boundary
likely scenario in this kind of collisions. effects are the most important aRgy grows as a function of
We have found the behavior @,(q) when varying ei- K. However, in the regime wherié is basically due to col-
ther R or K keeping the other variable fixed. Since the im-|ective expansion, the effective size of the system is dictated
portance of correlation analyses rests basically on the inforby the correlation between the points of emission and the

mation tha.t |t can prOVide about the phySical Size Of thepa”‘ momentum anmeﬁ decreases as a function Nf
system produced during the collision, a main result of the

present work is the functional dependence of the effective
system radiuRy with the magnitude of the average pair
momentumK. We have shown that the interplay of the en-
ergy scales associated with collective and random motion, Support for this work has been received in part from
y(R)mp andT, respectively, produce a maximum f@gz at ~ CONACyT-Mexico under Grant Nos. 29273-E and 32279-E.
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