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Boundary and expansion effects on two-pion correlation functions
in relativistic heavy-ion collisions

Alejandro Ayala and Angel Sa´nchez
Instituto de Ciencias Nucleares, Universidad Nacional Auto´noma de Me´xico, Apartado Postal 70-543,

México Distrito Federal 04510, Me´xico
~Received 9 January 2001; published 26 April 2001!

We examine the effects that a confining boundary together with hydrodynamical expansion play on two-pion
distributions in relativistic heavy-ion collisions. We show that the effects arise from the introduction of further
correlations due both to collective motion and the system’s finite size. As is well known, the former leads to
a reduction in the apparent source radius with increasing average pair momentumK. However, for smallK, the
presence of the boundary leads to a decrease of the apparent source radius with decreasingK. These two
competing effects produce a maximum for the effective source radius as a function ofK.
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I. INTRODUCTION

In recent years, much experimental effort has been
voted to the production of a state of matter under the extre
conditions of high baryonic densities and/or temperature
relativistic heavy-ion collisions. The main drive for such e
forts is the expectation to produce the so-called quark-gl
plasma~QGP! where the fundamental QCD degrees of fre
dom are not confined within a single nucleon but rather o
a larger volume of the order of the dimensions of a nucle
While the properties of the QGP have been the subjec
intense theoretical study and debate, much less attention
been paid to the hadronization process, or to the propertie
hadronic matter at high temperatures and densities. An
derstanding of these is needed for a correct interpretatio
the signals originating from the different stages of the co
sion, both for a clear distinction of a possible QGP format
and also as an interesting subject of study on its own.

The most abundantly produced hadrons in relativis
heavy-ion collisions are pions. Typically, the number
pions produced one unit around central rapidity in cen
Au1Au collisions at energies of order 10A GeV is
dNp /dy;300 @1#. Under the assumption that the transve
dimensions of the system formed at freeze-out are of orde
the transverse size of an Au nucleus and that the typical p
formation time is of order 1 fm, this multiplicity implies tha
the average pion separationd at freeze-out in the centra
rapidity region is of orderd;0.6 fm which is less than the
average range of the pion strong interaction,ds;1.4 fm.

Some of the possible consequences of this large pion
sity produced in relativistic heavy-ion collisions were fir
studied by Shuryak@2# who coined the termpion liquid to
refer to the situation where the pion system could not
thought of as existing as a hadron gas but rather tha
properties resembled more those of a liquid of quasipions
particular, as one of the main characteristics of liquids is
appearance of a surface tension, such state of hadron m
could give rise to a confining boundary that acted as a
flecting surface that could affect the pion distributions ju
before freeze-out. More recently@3#, it has been propose
that the equation of state of pion matter could give rise t
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phase transition from a gas phase to a more dense pha
the temperature rises close to the temperatures expected
achieved in relativistic heavy-ion collisions, thus introduci
the concept of ahot pion liquid.

From a phenomenological point of view and disregard
the details of the reflection processes~which presumably de-
pend on the energy of the incident particle!, the development
of a surface tension can be incorporated by imposing a sh
boundary for the pion wave functions to evolve just befo
freeze-out. As a consequence of the finite size of the sys
during this stage of its evolution, the energy states form
discrete set.

An important difference between statistical systems w
and without a boundary is the different density of states
increasing energies being larger in the case of the forme
illustrated in Fig. 1. The density of states of a finite syste
approaches that of an unbound one as the size of the sy
is increased. The above characteristic implies that the tra
verse inclusive spectrum calculated within a boundary mo
will exhibit a concave shape at high transverse momen
and could potentially explain the increase of the pion tra
verse distribution@4# in this kinematical region@5#. The in-
crease of the pion distribution at low transverse moment
could also be explained within the same context by cons

FIG. 1. Number of states for a spherically symmetric syst
with a sharp boundary atR56 fm ~solid line! compared to a sys-
tem without boundary~dotted line!. Notice how the presence of th
boundary makes the number of states grow faster at large ener
©2001 The American Physical Society01-1
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ering the finite chemical potential associated with the m
pion multiplicity per event@6#.

More recently, it was realized that an important missi
ingredient in the description of the transverse pion spe
within a boundary model was the proper inclusion of hyd
dynamical expansion. The phenomenological description
terms of a bound, expanding pion system has been name
expanding pion liquidmodel and was developed in Refs.@7#
and successfully applied to the description of the experim
tal midrapidity, transverse pion spectra in central Au1Au
collisions at11.6A GeV/c @1#. A further natural test ground
for the model is the study of multiparticle correlations,
particular two-pion correlations.

A step in this direction has been taken in Ref.@8# where
the effects of a pure boundary model~i.e., without collective
expansion! have been introduced in the description of t
two-pion correlation function. In this work, we incorpora
also the effects of hydrodynamical expansion in the calcu
tion of the two-pion correlation function.

It is well known that in the study of two-particle correla
tion functions, the effective size of a system without
boundary decreases as the average pair momentum i
creased@9# when considering the effects of hydrodynamic
expansion. Physically, this effect is due to the fact that as
average pair momentum increases, the particles in the
are more likely to be emitted from points close in space. T
can also be regarded as the introduction of a further corr
tion in phase space for the emitted particles that effectiv
reduces the size of the emission region@10#. On the other
hand, as emphasized in Ref.@8#, for emission volumes of
order of a few average pair wavelengths it is imperative
consider a full quantum density matrix in the description
particle distributions since as the average pair momen
decreases, the correlation region as a function of rela
momentum increases thus effectively reducing the appa
size of the system. As we will show in this work, these tw
competing effects produce a maximum in the effective s
of the system at a finite value of the average pair moment

This paper is organized as follows: Sec. II is devoted t
recollection of the description of a bound, expanding p
system at freeze-out. In Sec. III, we write the two-pion c
relation function in terms of the discrete set of eigenfun
tions for this kind of system. In Sec. IV we perform a sy
tematic analysis of the two-pion correlation function in term
of the different parameters involved. We pay particular
tention to the behavior of the effective system’s radius a
function of the average pair momentum comparing the
sults to what would be expected in the case of an expan
and unbound system and a pure boundary model. Finally
conclude and discuss our results in Sec. V.

II. THE EXPANDING PION LIQUID

When the system of pions can be considered as confi
its wave functions satisfy a given condition a the bounda
In order to compare the results with the observed part
distributions, the shape of the assumed confining volu
could play an important role. It has long been known that
particle momentum distributions are somewhat forwa
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backward peaked, particularly at energies of the Super P
ton Synchrotron@11#, even in the case of central collision
Nevertheless, for the sake of simplicity and concretene
here we will assume that the confining volume is spheric
Comparison of the model with data will become better in t
central rapidity region where an asymmetry between lon
tudinal and transverse expansion is less important than in
fragmentation region. Let us emphasize that an spheric
symmetric model is not essential to the basic physics
cussed here and can thus be relaxed at the expense of
tional computing time. This could, however, be necess
when comparing to data away from midrapidity.

To incorporate the effects of an hydrodynamical flow, w
notice that this ordered motion can be represented by a f
velocity field um5g(r )@1,v(r )#, where g is the Lorentz-
gamma factor andv(r ) is the velocity vector. This field rep
resents a redistribution of momentum in each of the fl
cells, as viewed from a given reference frame~the center of
mass in this case!, becoming centered around the momentu
associated with the velocity of the fluid element. This beh
ior can be described by the substitutionpm→pm2mum,
where m is the pion mass. The termmum represents the
collective momentum of the given pion fluid element.

The eigenfunctions of the confined, expanding system
pions are thus obtained as the solutions to the equation

F2S i
]

]t
2mg~r ! D 2

1@2 i¹2mg~r !v~r !#21m2Gc~r ,t !50,

~1!

where we look for the stationary states subject to the bou
ary condition

c~ ur u5R,t !50. ~2!

We consider a parametrization of the velocity vectorv(r )
that scales with the distance from the center of the fireba

v~r !5b
r

R
r̂ , ~3!

where the parameter 0,b,1 represents the surface fireba
hydrodynamical velocity. Correspondingly, the explicit e
pression forg(r ) becomes

g~r !5
1

A12b2r 2/R2
. ~4!

Since Eq.~1!, with the gamma factor given by Eq.~4!, can
only be solved numerically, we resort to approximating t
function g by the first terms of its Taylor expansion,

g~r !.11
b

2

r 2

R2
, ~5!

which is valid for not too large values ofb. With this ap-
proximation, Eq.~1! becomes an equation for particles mo
ing in a spherical harmonic well with rigid boundaries a
can be solved analytically. The stationary states are
1-2
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cnlm8~r ,t !5
Anl

A2Enl

e2 iEnlt1 imbr 2/(2R)Yl
m8~ r̂ !e2anl

2 r 2/2r l

31F1S ~ l 13/2!

2
2

«nl
2

4anl
2

,l 13/2;anl
2 r 2D , ~6!

where1F1 is a confluent hypergeometric function andYl
m8 is

a spherical harmonic. The quantitiesAnl are the normaliza-
tion constants and are found from the condition

E d3rcnlm8
* ~r ,t !

]
↔

]t
cnlm8~r ,t !51. ~7!

The parametersanl and«nl are related to the energy eige
valuesEnl by

anl
4 5m~Enl2m!b2/R2,

«nl
2 5Enl~Enl22m!, ~8!

with Enl given as the solutions to

1F1S ~ l 13/2!

2
2

«nl
2

4anl
2

,l 13/2;anl
2 R2D 50. ~9!

Equation~6!, along with the energy eigenvalues and defi
tions in Eqs.~8! and ~9!, constitute the set of~properly nor-
malized! eigenfunctions in terms of which the various mu
tiparticle distributions can be expressed. The system’s fi
size and the strength of the collective expansion are give
terms of the parametersR and b, respectively. In order to
further proceed, it is necessary to specify the kind of
semble that describes the statistical properties of the p
system.

III. TWO-PION CORRELATION FUNCTION

In order to describe the situation where equilibrium h
been attained~which we assume here!, the proper statistica
distribution for the ensemble is thermal. For the purpose
this section, we closely follow Ref.@8# to which we refer the
reader for details. Letl represent the set of quantum num
bers$nlm8%. The corresponding occupation numberNl for a
given state is written as

Nl5
1

exp~El2m!/T21
, ~10!

where T is the system’s temperature andm the chemical
potential, related to the average total multiplicityN by

N5(
l

1

exp~El2m!/T21
. ~11!

Let cl(p) represent the Fourier transformed wave funct
for the state with quantum numbersl, namely
06490
-

te
in

-
n

s

of

cl~p!5E d3r e2 ip•rcl~r !. ~12!

With the normalization adopted in Eq.~6!, the one-pion mo-
mentum distribution can be written as

P1~p![
d3N

d3p
5

1

~2p!3 (
l

2ElNlcl* ~p!cl~p!. ~13!

Similarly, and under the assumption of a complete factori
tion of the two-particle density matrix, the two pion mome
tum distribution can be written as

P2~p1 ,p2![
d6N

d3p1d3p2

5P1~p1!P1~p2!

1U 1

~2p!3 (
l

2ElNlcl* ~p1!cl~p2!U2

,

~14!

from where the two-pion correlation functionC2 can be writ-
ten, in terms ofP1 andP2, as

C2~p1 ,p2!5
P2~p1 ,p2!

P1~p1!P1~p2!

511

U(
l

ElNlcl* ~p1!cl~p2!U2

(
l

ElNlucl~p1!u2(
l

ElNlucl~p2!u2
.

~15!

Notice that as a consequence of the factorization assump
the correlation function is such thatC2(p,p)52. This is usu-
ally referred to as the completely chaotic pion producti
scenario@12#, which is the situation expected to occur in
heavy ion collision, given the considerable rescattering
perienced by pions in the production region. In contrast
the particles were produced completely coherently, th
would occupy a pure quantum state and the two-pion m
mentum distribution would be simply the product of tw
single-pion momentum distributions, leading to the abse
of the Hanbury Brown–Twiss effect.

IV. THE EFFECTIVE RADIUS

Armed with the eigenfunctions describing the confin
and expanding pion system, Eq.~6! and with the explicit
expression for the two-pion correlation function in Eq.~15!,
it is possible to perform an analysis to describe the beha
of C2 as a function of the several variables and parame
involved. For the spherically symmetric problem describ
here, the correlation function depends on the angle betw
the pion pair momenta. For the sake of simplicity, let
consider the case in which both momentap1 andp2 are par-
1-3
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ALEJANDRO AYALA AND ANGEL SÁ NCHEZ PHYSICAL REVIEW C63 064901
allel. In this case, the summation in the numerator of
second term in Eq.~15! can be simplified, with the aid of the
addition theorem for the spherical harmonics

(
m852 l

l

Yl
m8~ p̂1!Yl

m8* ~ p̂2!5
2l 11

4p
. ~16!

Figure 2 shows the behavior ofC2(q) as a function ofq, the

FIG. 2. ~a!: C2(q) for a fixed value ofK5500 MeV and for
R56 fm ~solid line! andR510 fm ~dotted line!. The width ofC2

decreases asR is increased.~b!: C2(q) for a fixed value ofR
56 fm and forK5300 MeV ~solid line!, K5500 MeV ~dotted
line! andK5700 MeV ~thick solid line!. For the chosen values o
K the width ofC2 increases asK is increased.~c!: C2(q) for a fixed
value of R56 fm and for K550 MeV ~solid line!, K
5100 MeV ~dotted line! andK5200 MeV ~thick solid line!. For
the chosen values ofK the width ofC2 decreases asK is increased.
In all cases, the temperature, surface expansion velocity and ch
cal potential have been held fixed toT5120 MeV, b50.5c, and
m50 respectively.
06490
e

magnitude of the pair momentum differenceq5p22p1 . Fig-
ure 2~a! showsC2(q) for a fixed value of the magnitudeK
5500 MeV of the average pair momentumK5(K2
1K1)/2 for two values of the system radiusR56, 10 fm.
Notice that for a fixedK the width of the correlation function
decreases asR is increased. Figure 2~b! showsC2(q) for a
fixed value ofR56 fm and three values ofK5300, 500,
and 700 MeV. For the chosen values ofK, the width of the
correlation function increases asK is increased. Figure 2~c!
showsC2(q) for a fixed value ofR56 fm and three values
of K550, 100, and 200 MeV. Notice that in this case, t
width of the correlation functiondecreasesasK is increased.
In all these figures, the temperature and surface expan
velocity have been held fixed toT5120 MeV and b
50.5c. These values forT andb are chosen in accordance
the analysis in Ref.@13# where a correlation between th
transverse flow velocity and the freeze-out temperature
found in such a way that higher temperatures imply low
expansion velocities and vice versa. Since, at least
Alternating-Gradient Synchrotron energies, not too high te
peratures are reached during the collision, the above v
for T implies that forb, thus, the free parameters for th
model can be taken either asR andT or R andb.

It is also worth mentioning that in both of the above fi
ures, the value of the chemical potentialm appearing in Eq.
~15! has been fixed tom50. The behavior ofC2(q) for
different values of the chemical potential is shown in Fig.
Notice that varying the chemical potential up to values bel
the onset of Bose-Einstein condensation~BEC! @6# does not
introduce changes in the shape of the correlation funct
This can be understood by noticing that even when we
crease the system’s density and thus the value ofm, we are
not introducing any further correlation among the bound
otherwise noninteracting set of particles. This situati
changes when, for a given temperature and system’s sizm
is beyond the value to allow for the ground state to acco
modate a significant fraction of the particle population@6#.

i-

FIG. 3. C2(q) for a fixed valueR56 fm and different values of
the ground state population fraction. Form50 ~solid line! the
ground state population is negligible andl;1. However, when the
ground state population becomes a significant fraction of the t
multiplicity, e.g., for m5315 MeV, Ng /N50.37, andl;0.62
~dotted line!. When almost all of the particles occupy the grou
state, e.g., form5317.5 MeV, Ng /N50.77, l;0.23 ~thick solid
line!, and the correlation function becomes flatter.
1-4
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This is also shown in Fig. 3. In this case, the ground st
population has to be treated separately from the pions c
ing from the excited states, since the former originates fr
a pure quantum state, as opposed to the assumption lea
to Eq. ~14!. The weight assigned to the pions coming fro
the ground state is equal to the ratio of the ground s
populationNg to the total number of pions of the given sp
ciesN. Correspondingly, the correlation functionC2(q) be-
comes flatter and the intercept with the vertical axis occ
for values smaller than 2, that is,l512Ng /N. Thus, as the
density increases, this behavior signals that for the gi
temperature and volume, pions are predominantly emi
from the ground state. This is in agreement with the analy
in Ref. @14#.

Another property of the bound and expanding system
pions that can be extracted from the correlation funct
C2(q) is the behavior of the system’s effective radiusReff as
a function ofK. The relevant quantity to pay attention to
the ratioh5T/g(R)mb of the energy scale associated wi
random motion, i.e.,T, to the energy scale associated w
ordered motion, i.e.,g(R)mb. For K small compared to
hT—that is, when the average pair momentum is mostly d
to random motion—Reff is an increasing function ofK. This
can be understood by noticing@8# that increasingK corre-
sponds to increasing both of the momenta in the pion p
Correspondingly, the quantum states that contribute to
momentum distributionsP1 and P2 are those with increas
ingly larger quantum numbers. But, according to Eq.~10!,
these states are suppressed by their statistical weight
therefore only those other states with smaller quant
numbers—and consequently with a larger spread in coo
nate space—can contribute significantly to the correlat
function, which in turn drops faster as a function ofq with
increasingK, leading to an increase in size of the appar
region of particle emission. However, forK.hT, the collec-
tive motion dominates over the thermal component inK and
the relevant physical effect that dictates the behavior ofReff
is the correlation between the spatial region of emission
pions and the pair momentum introduced by the collect
expansion, in such a way that faster pions are more likel
be emitted from points close in space@9# leading to a reduc-
tion in size of the apparent region of particle emission.

The behavior ofReff as a function ofK is shown in Fig. 4
~solid line!. Notice that the curve shows a maximum for
value ofK;hT. The curve is obtained by fitting the corre
lation functionsC2(q) to Gaussians of the form

g~q!511exp~2q2Reff
2 !. ~17!

Equation~17! is a good description for correlation function
with largeK. For small values ofK, the fit is not as good. Fo
comparison, also shown in Fig. 4 is the behavior ofReff for
an expanding system without a boundary~dotted line! and
for a bound system without the effects hydrodynamical
pansion~thick solid line!. For the former we choose a sphe
cally symmetric phase space Gaussian distribution given

G~x,p!5e2x2/2RGauss
2

e2g(x)(Ep2v•p)/T, ~18!
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with Ep5Ap21m2 and v and g(x) given by Eqs.~3! and
~5!, respectively. The correlation function is given in term
of G(x,p) by @9#

C2~p1 ,p2!511

U E d3x GS x,
p11p2

2 De2 i (p12p2)•xU2

F E d3x G~x,p1!GF E d3x G~x,p2!G .

~19!

For the bound and nonexpanding system, the eigenfunct
are given in terms of Bessel functions of the first kind@6#
~see also Ref.@8#!. The corresponding expression forReff is
obtained from that ofC2(q) by also fitting Gaussians of th
form given by Eq.~17!. Notice that the curve representin
the effective radius as a function ofK for a bound but non-
expanding system grows withK, in agreement with the
analysis of Ref.@8#. In contrast, the curve representing th
effective radius for an unbound but expanding system
creases monotonically asK is increased, also in agreeme
with the analysis of Ref.@9#.

V. CONCLUSIONS

In this work, we have studied the effects that a confini
boundary together with hydrodynamical expansion at free
out, play on the two-pion correlation function, in the conte
of relativistic heavy-ion collisions. We have argued that t
confining boundary could be produced as a consequenc
the high pion density that can be achieved at freeze-ou
central collisions.

We have shown that for a given system’s volume a
temperature, varying the multiplicity, and therefore t
chemical potential, does not introduce any changes in
correlation function whenm is below the values for BEC
However, the intercept of the functionC2(q) occurs for val-

FIG. 4. Reff for a fixed valueR56 fm as a function ofK for an
expanding and bound system~solid line!, an expanding and un
bound system~dotted line!, and a bound and nonexpanding syste
~thick solid line!. Notice that in the first case,Reff reaches a maxi-
mum at a value ofK;hT, whereas for the second case,Reff de-
creases with increasingK, and in the third caseReff grows with
increasingK. Also, for the expanding and unbound system, t
parameterRGausshas been chosen in such a way as to give the sa
rms radius than a rigid sphere withR56 fm.
1-5
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ALEJANDRO AYALA AND ANGEL SÁ NCHEZ PHYSICAL REVIEW C63 064901
ues less than 2 when the chemical potential is beyond
value to allow for BEC. A similar behavior can be expect
for a given pion density if the freeze-out temperature is
low the critical temperature for BEC. However, this is a le
likely scenario in this kind of collisions.

We have found the behavior ofC2(q) when varying ei-
ther R or K keeping the other variable fixed. Since the im
portance of correlation analyses rests basically on the in
mation that it can provide about the physical size of
system produced during the collision, a main result of
present work is the functional dependence of the effec
system radiusReff with the magnitude of the average pa
momentumK. We have shown that the interplay of the e
ergy scales associated with collective and random mot
g(R)mb andT, respectively, produce a maximum forReff at
06490
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a valueK;hT, whereh5T/g(R)mb. The physical origins
of this behavior are the combined effects of the confin
boundary and hydrodynamical expansion. In the regi
where K is basically due to random motion, the bounda
effects are the most important andReff grows as a function of
K. However, in the regime whereK is basically due to col-
lective expansion, the effective size of the system is dicta
by the correlation between the points of emission and
pair momentum andReff decreases as a function ofK.
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