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S factor of the 3H(®H,2n)*He and 3He(3He,2p)*He reactions using a three-cluster exit channel
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The reactionsH(®H,2n)*He and®*He(®He,20)*He are investigated within a fully microscopic cluster model
featuring a three-cluster exit channel. A hyperspherical harmonics basis is used to describe the three-cluster
continuum. The resulting astrophysicfactor of both reactions is in good agreement with experimental data.
Analysis of the low-energy scattering parameters reveals no evidence for a hidden resonance state that would
increase the cross section of the reactions, and would help to resolve the solar neutrino problem.
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[. INTRODUCTION energy range, and thus would constitute an explanation for
the solar neutrino problem.

The problem of the solar neutrino has led to a critical The previous model was further improved or enhanced in
discussion on a number of fundamental principles in moderfrefs.[12—14 by using a more elaborate description of the
physics. The problem involves three main aspects: eledNN channel, or by simulating the exit channel description
troweak interactions, nuclear physics, and a model of théising both the {He+N)+N and the “He+(N+N) two-
sun. In Refs[1-5] the current status of the solar neutrino cluster configurations. The relative motion of the two clus-
problem can be consulted. ters was described by a discrete superposition of translated

The solar energy and the solar neutrino flux are generate@aUSSia” functions. In aII.cases one obtained the same shape
by a set of important nuclear reactions. The current status r_thg Sfactor as a leJ)nct||on of ene_rg)é and there were only
nuclear astrophysics and some key reactions have been Wnited variations in absolute magnitude.

, - , - In this paper we study both théH(®H,2n)*He and
viewed in Ref.[6]. Those reactions, especially at energy 5 ., 4 .
ranges which are typical for the sun, are being intensively He(*He,20)"He reactions and use a correct treatment of the

. . . . orresponding three-cluster exit channels. This will be done
studied from both the experimental and theoretical point ofcn the framework of the microscopic algebraic mod&M)

VIew in order o obtaln and'anglyze'the cross sections. 4or scattering 15]. A three-cluster version of that model has
major focus of these investigations is the discrepancy bebeen introduced in Ref16]
tween pred|gted3 an(; obser\ied neutrino fluxes. . The feasibility of the three-cluster AM approach was
The reaction”He("He,2p)"He contributes for 89% to the gemonstrated in a calculation of resonance states embedded
pp chain of nuclear synthesis. A specific experimental col-ip the continuum ofHe and®Be[17]. The energy and width
laboration (LUNA) was set up to measure this reaction’s gf the 2*-resonance state ifHe and the 0 and 2" reso-
cross section around the Gamow peak20 keV), the most  nances in°Be were shown to be in fair agreement with ex-
probable energy at which the reaction occurs in the sun. Thgeriment, as shown in Fig. 1 fofBe. We have also per-
progress of the LUNA group was reported in Ref8=10.  formed a calculation of the bound state energy’ki in the
The cross section has been measured down to the lower edggme model space and have compared it to the results ob-
of the Gamow peak, but there still is a large uncertainty intained for the three-cluster calculation with the stochastic
the cross-section determination and there are important elegariational methodSVM) [18,19. We have used the Min-

tron screening effects. nesota potential without spin-orbit components, and an oscil-
The theoretical analysis of thtHe(®He,2p)*He reaction

is usually linked to its mirror companiofH(*H,2n)*He. A 4

comparison of both leads to a better understanding of the

underlying dynamics and of the Coulomb effects of reactions | o+ L=L16MeV o+ L =080 MeV |

with three-cluster exit channels. A first microscopic calcula-
tion for these reactions was presented in R&l]. A two-
cluster approach was used for both the entrance and exil~ 2 | _

channels: The nucleon—nucl_eon fragment clug@enoted E L I'= 0092 Mev e 0087 Mev

NN for eitherpp or nn) carried a simple shell-model de- = O ———— 0f———
scription, thus featuring a pseudobound state with positive ! ]
energy. The experimental cross sectionSofactor at rela-

tively high energy 1 MeV) was reproduced by adjusting o _atptp B ey i

the Majorana exchange parameter of the effedtivepoten-
tial. The available experimental data at ttenal) energy Exp. Th.
range relevant in astrophysical reactions were fairly well re-
produced. In this model no resonance state appears that FIG. 1. Energy and width of the'0 and 2" - resonance states in
would sufficiently amplify theS factor in the appropriate ©Be, calculated in Ref17] and compared to experimerie).
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4 - - - - where the®, (N stands for either nucleomn; for “He, and
3N for 3H or *He) represent cluster component wave func-
3 1 tions, f, andg, , respectively, refer to the wave functions of
relative motion for the two- and three-cluster system, gnd
5 ] — - SWM | are a choice of Jacobi coordinates describing the configura-
— AM,K, =10 tion of relative position of the clusters.

One of the basic assumptions of the modélli§] that the
cluster state is defined by having all its nucleons in a
(0s)-oscillator wave function. Consequently all of the reac-
0 1 1 tion dynamics, and in particular the behavior of Benatrix
elements is concentrated in the functions describing the rela-
i  ——— ————— | tive motion, i.e.,f, andg, .

: : : : The equations fof, andg, are cast in the so-called al-
0 10 2 30 40 50 gebraic modelAM) form [16] using an oscillator basis in

N, which to expand the states of relative motion. The appropri-

ate boundary conditions, reflecting the asymptotic behavior

FIG. 2. Ground state ofHe as a function of the number of of the six-nucleon system, are then expressed in terms of the
oscillator shellsN in the AM three-cluster model compared to the asymptotic form of the expansion coefficientsfgofandg,,
results of Ref[19]. The energy is relative to the+n+n thresh-  respectively. This leads to expressions determining the
old. Smatrix elements and cross sections.

A judicious choice has to be made for the Jacobi coordi-
lator parameteb=1.285 fm which minimizes the-particle  natesq and for a classification scheme of the wave functions
energy as in Ref.19)]. In Fig. 2 we compare our bound-state to be used in the expansion 6f andg, . We follow the
energy of °He as a function of number of oscillator shells choice made in Ref.11] for the two-cluster configurations,
Ng,to the SVM value. We took all hyperspherical harmonicsand the one put forward in Ref16] for the three-cluster
up to Kpa=10 into account, i.e., considered the same basigonfiguration.
that was used in Refl17]. One notices convergence for For the two-cluster configuratiofin 3H+°H, respec-
Ng=25 towardsE=—0.8038 MeV (relative to thea+n tively, 3He+3He) we use spherical coordinateg,
+n threshold within this subspace. This is to be comparedz{qoyao} and take the quantum numbess={n,L,M} to
to E=—1.016 MeV for the full SVM calculation; full con-  ¢|assify the basis states. Thés the familiar radial oscillator
vergence towards the SVM result would require additidbal quantum number. As we will assume only central compo-
values, but this is beyond the scope of this paper. The resulfgents in the nucleon-nucleon interaction, the angular mo-
reported here have encouraged us to combine the two- angenwmL of relative motion will be an integral of motion for
three-cluster AM models to obtain an advanced descriptiogne system.
of the fusion r_eac_tionéH(3H,2n)4He z_md3He(3He,ao)4He._ For the three-cluster configuratiori;m “He+p+p, re-

The organization of the paper is as follows. We f'rStspectiver, “He+n+n) we use hyperspherical coordinates

present our description dfHe and®Be in terms of the rel- _ _ ~ . N
evant two- and three-cluster configurations, and discuss th GGz} ={p, }={p,0,01,Qz} With p=Vq+0d3 Qs
= p cosh, andqg,=p siné. This choice is consistent with a

appropriate boundary conditions. We then elaborate on some N
aspects of the method. Finally we present the results for thé_e of ~ quantum numbers  »={N,K, (l1/5)LM}

astrophysicab factors of both reactions, discuss the dynam-._ n,.K,(l 1|2)LM_}' in whichN=2n,+K represents the to-
al number of oscillator quanta, amg reflects the number of

ics of the system, and compare with the available experimer& i o :

tal data. yper-radial excitationsK is the hypermomentum, and
andl, are the partial angular momenta associated with the

choice of Jacobi vectorg; andq,. As discussed in Ref16]

K is not a good quantum number, and a cougtedhannel

In the following subsections we will rely heavily on Refs. calculation, each channel characterized by the set of quantum

[11,16] for details concerning the microscopic model. Detailsnumbersyy={K,(I1l;)LM}, has to be performed to solve

concerning the specific cluster configurations used to dethe dynamical equations. This type of basis is particularly
scribe the six-nucleon systerﬁb{e and®Be can be found in suitable for the so-called Borromean nuclei, and nuclei with

E (MeV)

II. MODEL SPECIFICS

Ref.[17]. pronounced three-cluster features, when the three-cluster
threshold represents the prinflewest energy decay chan-
A. A combined cluster model nel.
The six-nucleon wave function; will pe built up by using B. The boundary conditions
both two- and three-cluster configurations, each one fully - )
antisymmetrized: The AM boundary conditions are expressed in terms of
the expansion coefficients of the wave functions of relative
Y = A{ PPy fL(qe)}+A{P PPy 90(01,00)), motion of the cluster configurations. They are directly con-

(1) nected to the boundary conditions in coordinate representa-
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tion. For the two-cluster configurations it was shoyiré] TABLE |. Parameters of the asymptotic solutiof@® for two-
that the asymptotic form of the expansion coefficient$,in and three-cluster channels.
=2Cp ¢nL Can be approximated by

L o N 7
Cor=FafL(r), 2 o —
1 14,6 M 1A2
where the{¢,,} are oscillator basis functions, and, Two cluster channel L 3 L+3 k -2 VA, +
. . . . 282 VA +A;
=b+4n+2L+3 is the classical turning point of the three-
dimensional oscillator with enerdy,,=#f w(2n+L+3/2). In Zeg€ m

three-cluster configurations the expansion is definedypy T7vee cluster channel K 6 K+2 k 252

=Zdnp,,_q’>np,,_, where the{¢np,,_} now stand for the oscil-
lator basis for three-cluster relative motion. The expansion
coefficients behave asymptotically 6]

Co L=V al (Kol ) = Spup gy 917 (Kor )]
dnp,szﬁgL(pn) () 5 o
dnvo=Pnl = Spupvgy Yk (Kpn) ] )
with p,=b+4n,+2K+6. For clarity we have indicated in
the preceding discussion only relevant indices. We refer tar, equivalently,
the original papers for a more elaborate discussion.

In the current study we consider both incoming and out- CaL=C\ )=S0 Y
going waves for the two-cluster configurations

~_ (+)
drlp,VO_ S{M}v{Vo} dnp,vo (9)

FL(go) =L ¥4 (koMo) = Sy A~ (Koo) 1Y Lm(Go).
() using the notations
where S, 1, is @ notation to characterize the elastic two-

cluster scattering matrix element for théH+°%H, 3He =yl (kor )
+3He channels, respectively, ath((io) is the spherical . .
harmonic. d%;,)yo“—‘Pﬁ U (Kpn). (10

Because we are only interested in reactions with a three-
cluster exit-channel, the corresponding asymptotic wave The matching of internal and asymptotic regions is
function can be written ai20] equivalent to the one in the traditional resonating group
method(RGM). The correspondence between the matching
B _ + point in coordinate space for RGM and in function space for
gL(qlvch)_gL(P’Q)—;O [ =St ive) v )(kp)]YVo(Q)' AM is easily made(see Ref[16]) through the value of the
(5) classical oscillator turning poimt,=b+4n+ 2L + 3 for two-

) ) ] .. Cluster systems ang,=bv4n,+2K+6 for three-cluster
where Sy, 1., is the scattering matrix element describing systems. An appropriate value for the matching point can be
the inelastic coupling between the two- and three-clustepbbtained by choosing sufficiently large values for the total
channels, anoY,,o(Q) being the hyperspherical harmonic number of oscillator quanttl=2n+L=2n,+K in the in-
[16]. ternal region.

The total cross section is given by the expression
C. Shape analysis

o(E)= 12 > w > |S{u},{vo}|2 (6) The hyperspherical harmonics could reveal important in-
ko LS Yo formation on the spatial distribution of clusters, and help to
. . . understand the dynamics of the system. This could even re-
with Sthe total spin of the six-nucleon system. . veal possible scenarios for the reactions considered.
As shown in Ref[20], the asymptotic solutions for in- thege harmonics define a probability distribution in five-
coming and outgoing waves can be written as dimensional coordinatémomentun space for fixed values
1 of hyper-radius:
PEIKR) = =W, (£ 2ikR)/RT D2, )

AW, (Q)=]Y, ()20, dW (D) =Y, (Q]%d€y.
(11

Vk

whereW are the Whittaker functions, anglthe Sommerfeld

parameter. The parametefs A, o, and , which differ for By analyzing the probability distribution, one can retrieve

two- and three-cluster channels, are summarized in Table Ithe most probable shape of three-cluster configuration or
By using the aforementioned correspondence between oStriangle” of clusters. As the full analysis of a function of

cillator and coordinate representations, we can now definéve variables is nontrivial, one usually restricts oneself to

the boundary conditions for the expansion coefficients some specific variab{s). In this respect, integrating the
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probability distributiond W5, (€2) over the unit vectors; ,q, 6 : , . . |
A~ A 0 51 K=10,1,=0,,=0 ]
(kl1k2) g i -
= s
dwyo(a):f |Y,,(Q)|? cos'@sir? 6d6 da,da,, £ L
SRS
- ol
dWVO(Gk)zf IYVO(QK)|2co§0ksinzakdak dk,dk, X |
(12 K21 ~01-0

and introducing thénew) variablds)

qi ki
£=—,=cos0, E=— =coS b,
p k

(]

W, (arb. units)

[

which, in coordinate space, can be interpreted as the square:
distance between the selected pair of clusters or, in momen-

tum space, the relative energy of that pair of clusters, Weﬁg n
obtain e
8
dw, (6) = ol
__ B
W, (&) =—4,
=| Nf<'1 12)codig sin'zapf"ff 211+ 12) ¢ o5 29) 2 0.0 02 0.4 06 08 1.0
&
X cog 0 sirt

FIG. 3. FunctionW, (&) for K=0, 2, and 10 and,=1,=0.
— | N|(<|1r|2)(g)|1/2(1_ g)IZIZPSz*1/211+1/2)(28_ 1)|2 0
[17,23) to optimize the ground state energy of thepar-

XVE(L=E). (13 ticle.

This function represents the probability distribution for rela- we should.stre.ss that our methGlM) is best suited for
n NN potential with a relatively soft core, and less appro-

tive distance between two selected clusters, respectively, fF" . . ) .
the energy of relative motion of two selected clusters. Th riate (but also applicableto NN interactions with strong

kinematical factor cdsfsir?6 was included to makeV, (€) repulspn at short d|stancgs between nucleons. Thls is one of
0 the main reasons for choice of the curréhXl potential.

proportional to the differential cross section in momentum  the volkov potential does not contain spin-orbital or ten-

space, proyided the exit channel is described by the singlg,, components so that total angular momentuand total

hyperspherical harmonMVO(Q). spin S are good quantum numbers. Moreover, due to the
In Fig. 3 we displayw, (£) for some hyperspherical har- specific features of the potential, the binary channel is un-

monics involved in our calculations. These figures show thagoupled from the three-cluster channel when the total Spin
different hyperspherical harmonics account for different posequals 1; this means that odd parity stdtés=1",2"7, .. .,
sible shapes of the three-cluster systems. For instance, théll not contribute to the reactions.

hyperspherical harmonic witK =10 andl,=1,=0 prefers To describe the continuum of the three-cluster configura-
the two selected clusters to move with very small or verytions we considered all hyperspherical harmonics wth
large relative energy, or, in coordinate space, prefers them t&Kna=10. In Table Il we enumerate all contributirig

be close to each other, or far apart. If one or few contribuchannels fol.=0. For each two- and three-cluster channel
tions appear dominantly in the final results, one could obtairwe used the same numbern,= N;, of basis functions to

a fair idea of the disintegration shape for the three-clustedlescribe the internal part of the wave functibnp . N;, then

exit channel. also defines the matching point between the internal and
asymptotic part of the wave function. We usBi},; as a
Il. RESULTS variational parameter and varied it between 20 and 75, which
We use the VolkoWN interaction[21] in our calcula- TABLE II. Enumeration of all hyperspherical harmonics for to-

tions. It was shown in Refd17,22,23 that it provides an (| angular momenturh =0.
acceptable description for the bound stat€lde, as well as

for the low energy range in the three-cluster continuum ofy, 1 2 3 4 5 6 7 8 9 10 11 12
®He and®Be. The Majorana exchange parametewas set g 0 2 4 4 6 6 8 8 8 10 10 10
to be 0.54 which is comparable to the one used in Red]. b=, 0 0 0 2 0 2 0 2 4 0 2 4

The oscillator radius was set to=1.37 fm (as in Refs.
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FIG. 4. Sfactor of the reactior’H(3H,2n)*He. The experimen- FIG. 5. S factor of the reactiorHe(*He,2)*He. The experi-
tal data are taken froff26] (Serov, [27] (Govoroy), [28] (Brown), mental data are from Ref30] (Krauss, [9] (LUNA 99), and[7]
and[29] (Agnew). (LUNA 98).
corresponds to a variation in coordinate space of the RGM S(E)=206.51-0.53 E+0.001 E2 keV b (15

matching radius approximately between 14 and 25 fm. This

variation showed only small changes in tBematrix ele-  and for ®He(®*He,2p)*He we find

ments, of the order of one percent or less, and do not influ-

ence any of the physical conclusions. We have then used S(E)=4.89-3.99 E+2.3 10* E? MeV b. (16)
N;.,.= 25 for the final calculations as a compromise between

convergence and computational effort. We also checked th@ne notices significant differences in tBéactor for the®He

impact ofN;,, on the unitarity conditions of th8 matrix, for ~ and °Be systems. ThalN interaction induces the same cou-
instance the relation pling between the clusters of entrance and exit channels for

both ®He and®Be. It is the Coulomb interaction that distin-
) - guishes both systems, and accounts for the pronounced dif-
|S{M}v{ﬂ}| +§ |S{u},{vo}| =1 ferences in the cross sections @éactors.
0 We compare the calculat&factor to fits of experimental

We have established that fro,,= 15 on this unitarity re- results for the reactioriHe(*He,2) *He:
quirement is satisfied with a precision of one percent or bet- e 2
ter. In our calculations, witiN;,;= 25, unitarity was never a S(B)=5.2-28 E+1.2 E* MeV b[25],

problem. It should be noted that our results concerning the _ _
convergence for the three-cluster system with a restricted S(E)=(5.40:0.09~(4.1=05E
basis of oscillator functions agree with those of Papal. +(2.3=0.5E? MeV b[8],
[24], where a different type of square-integrable functions
was used for three-cluster Coulombic systems. S(E)=(5.32£0.089 — (3.7+ 0.6 E
In Fig. 4 we show the totab factor for the reaction 5
3H(%H,2n)*He in the energy range OE<200 keV. One +(1.95£0.5E° MeV b[10]. (17)

notices that the theoretical curve is very close to the experi_—l_h dli f the fit disol d
mental data. The totalS factor for the reaction e constant and linear terms of the fit display a good agree-

3He(3He,20)*He is displayed in Fig. 5. It is also close to the ment. The difference in energy ranges between the calculated

available experimental data. TBdactor for both reactions is (0$E§2(.)0. key) and gxperimentgl (ﬁ_Eg;OOO ke fjts
seen to be a monotonic function of energy, and does n ake it difficult to attribute any significant interpretation to

manifest any irregularities to be ascribed to a hidden reso” eT?:scrzepancyhln_thel ﬂuadrat!c term.h d "
nance. Thus no indications are found towards explaining the e hyperspherical harmonics method now allows us to
solar neutrino problem. study some details of the dynamics of the reactions consid-

The astrophvsicas factor at small enerav is usually writ- €€d- In Figs. 6. anq 7 we show the different three-cluster
ten as phy 9y y K-channel COI’]'[fIbUtIOI’lSV(/,,O) to the total S factor of the

reactions. In Fig. 6 these contributiofis % with respect to
1 the total S facton are displayed for some fixed energy
S(E):So+365+§5'652- (14 keV), while Fig. 7 shows the dependencyWf, (in absolute
value on the energy of the entrance channel. One notices
We have fitted the calculate®ifactor to this formula in the that three hyperspherical harmonics dominate the full result,
energy range &E<200 keV. For the reaction namely, the{K=0;l,=1,=0}, {K=2;l;=1,=0} and{K
3H(3H,2n)*He we obtain the approximate expression =4;l,=1,=2}, and this is true in both reactions. The con-
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FIG. 8. Convergence of theS factor of the reaction

FIG. 6. Contribution of three-cluster channels to the t&tédc- 3H(3H.2n)*He for K .., ranging from 0 to 10.

tor of the reactions’H(3H,2n)*He and *He(*He,20)*He in a full

calculation WithK = 10. rations *“He+ 2n, respectively*He+2p were used to model
the exit channels. In both calculations we used the same
tribution of these states to the factor is more than 95%. interaction and value for the oscillator radius. In Fig. 9 we
There also is a small difference between the reactionsompare both results fotH(®H,2n)*He. An analogous pic-
3H(®H,2n)*He and *He(®He,2p)*He, which is completely ture is obtained for the reactiotHe(®*He,2p)*He.
due to the Coulomb interaction.
Figures 6 and 7 yield an impression on the convergence of IV. CROSS SECTIONS
the r.esul_ts and_vyhether the chosen_set of hyper;pherical har- Having calculated the matrix elements of tBenatrix by
monics is sufficiently comprehensive. We notice that thegg)ying the AM equations, we can now easily obtain the total
contribution of the hyperspherical harmonics wKi>6 is  anq differential cross sections. In this section we will calcu-
small compared to the dominant ones. This is true for venjate and analyze onefold differential cross sections, which
small energies as well as for a relatively large energy rang@efine the probability for a selected pair of clusters to be
(200<E=1000 keVj. This is corroborated in Fig. 8 where detected with a fixed enerdy;,. To do so we shall consider
we show the rate of convergence of tBéactor in calcula-  a specific choice of Jacobi coordinates in which the first Ja-
tions with Ko« ranging from O up to 10. Our fulK.«  cobi vectorq; is connected to the distance between these
=10 basis is seen to be sufficiently extensive to account foglusters, and the modulus of vectoy is the square root of
the proper rearrangement of two-cluster configurations into gelative energyE,,. With this definition of variables, the
three-cluster one, as the differences between results becomg@®ss section is
increasingly smaller.
To emphasize the importance for a correct three-cluster do(E Z)NEJ di.dik
exit-channel description, we compare the present calcula- 2 E 1=he
tions to those in Refl11], where only two-cluster configu-

2
;0 StutvgrY v i)

X sirf 6, oS 6, d . (18)
100
200 [
80 3cl
——2cl
. 60 _ 10}
-0 0
> >
2 40 <
V} - S
“ o}
20 T ’
N -
T — ———— e — 50 | e ———
—_—— T — —
0 T e T T I Tt SO At ST SO ET £ T
0.0 02 04 0.6 038 10 0.0 02 04 06 038 1.0
E (MeV) E (MeV)
FIG. 7. Contribution of three-cluster channels to the t&édc- FIG. 9. Comparison of theS factor of the reaction
tor of the reactions’H(®H,2n)*He in a full calculation withK ., ~ *H(3H,2n)*He in a calculation with a three-cluster exit-channel and
=10 in the energy rangeOE<1000 keV. a pure two-cluster model.
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~
L FIG. 11. Calculated and experimental differential cross section
for the reactior’He(®*He,20)*He. Experimental data are taken from
ol Ref.[25].
used in this type of calculations indeed allowed one to obtain

0 4 8 12 16 a reasonable shape for the astrophys&gidctor.
E, (MeV) Special attention should be paid to the energy range 1-3
MeV in the “He+n and “He+p subsystems. This region
FIG. 10. Partial differential cross sections of the reactionsyccommodates 372and 1/2 resonance states of these sub-
*H(*H,2n)*He and*He(*He, 2)"He. systems with the Volkov potential. As seen in Fig. 10
) _ ) o (dashed linek it yields a small contribution to the cross sec-
After integration over the unit vectors and substitution oftjgns of the reaction$H(3H,2n)*He and 3He(®He,2)*He.

sin 6, coséy, d oy with This result contradicts the conclusions of Rdf3,14. In
the two-cluster calculations of those references the &tate

oS — [Eiz Sing.— [E—Ei of the *He+N subsystem played a dominant role. We sus-

K E’ k E pect this dominance to be due to the interplay of two factors:

the weak coupling between incoming and outgoing channels,
1 1 and the spin-orbit interaction.
dg=— —— __dE (19 In Fig. 11 we compare our results for the total proton
N 12 : 303 4 :
(E-E1Es, yield [reaction *He(°*He,20)*He] to the experimental data
from Ref.[25]. The latter were obtained for incident energy

one can easily obtaido(Eq5)/dE;>. E(®He)=0.19 MeV. One notices a qualitative agreement be-
In Fig. 10 we display the partial differential cross sectionstween the calculated and experimental data.
of the reactions’H(®H,2n)*He and*He(*He,2)*He for the The cross sections, displayed in Figs. 10 and 11, were

energyE=10 keV in the entrance channel. The solid linesobtained with the maximal number of hyperspherical har-
correspond to the case when two neutrgm®tong are de- monics K<10). These figures should now be compared to
tected with relative energi,,, while the dashed lines rep- Fig. 3, which displays some partial differential cross sections
resent the cross sections when thearticle and one of the for a singleK channel. The cross sections, displayed in Figs.
neutrons(protong are observed with relative ener@y.. 10 and 11, differ considerably from those in Figs. 3 and
We wish to emphasize the “measurement” in which two comparable ones, even for those hyperspherical harmonics
neutrons or two protons are simultaneously detected. Onehich dominate the wave functions of the exit channel. An
indeed notices a pronounced peak in the cross section arouadialysis of the cross section shows that the interference be-
E,»=0.5 MeV. This peak is even more pronounced for thetween the most dominant hyperspherical harmonics strongly
reaction*He(®He,2p)*He. It means that at such energy two influences the cross-section behavior. To support this state-
neutrons or two protons could be detected simultaneouslynent we display the proton cross sections obtained with hy-
with large probability. We believe that this peak can explainpermomenteK=0, K=2, K=4 to those obtained with the
the relative success of a two-cluster description for the exifull set of most important componenk§,.,=4 in Fig. 12.
channels. The pseudobound statesiofor pp subsystems One observes a huge bump around 10 MeV which is entirely
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do/ dE, (arb. units)

£, (MeV)

FIG. 12. Partial cross sections for the reactivte(*He,2p)*He
obtained for individuak =0,2, and 4 components, compared to the
coupled calculation withK,,,=4 and the full calculations with
K max= 10.

due the interference of the different hyperspherical harmonic

components. We also included the full calculatiof Gy

PHYSICAL REVIEW (63 064604

scopic cluster model, which involves both two-clustéé
+3He and 3He+3He) and three-cluster*de+n+n and
“He+p+p) configurations. A finite set of hyperspherical
harmonics was used to describe the continuum of the three-
cluster configurations. We demonstrated that the basis in-
volved in our calculations was sufficiently large for conver-
gent results. It was also demonstrated that only few
hyperspherical harmonics dominate the reactions. Due to the
weak coupling between two-cluster and three-cluster chan-
nels, the hyperspherical harmonics with the hypermomentum
K=6 lead to a negligible small contribution to the cross
sections of the reactions °H(®H,2n)*He and
3He(®He, ) *He.

The theoretical results for the astrophysigdhctor of the
reactions are in a good agreement with the available experi-
mental data. The analysis of the elastic and inelastic scatter-
ing parameters at low energy ranges{B<20 ke\) re-
vealed no hidden resonance state within the current model
accounting for the solar neutrino problem.
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