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S factor of the 3H„

3H,2n…4He and 3He„3He,2p…4He reactions using a three-cluster exit channel

V. Vasilevsky, A. V. Nesterov, F. Arickx, and J. Broeckhove
Bogolyubov Institute for Theoretical Physics, Kiev, Ukraine
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The reactions3H(3H,2n)4He and3He(3He,2p)4He are investigated within a fully microscopic cluster model
featuring a three-cluster exit channel. A hyperspherical harmonics basis is used to describe the three-cluster
continuum. The resulting astrophysicalS factor of both reactions is in good agreement with experimental data.
Analysis of the low-energy scattering parameters reveals no evidence for a hidden resonance state that would
increase the cross section of the reactions, and would help to resolve the solar neutrino problem.
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I. INTRODUCTION

The problem of the solar neutrino has led to a critic
discussion on a number of fundamental principles in mod
physics. The problem involves three main aspects: e
troweak interactions, nuclear physics, and a model of
sun. In Refs.@1–5# the current status of the solar neutrin
problem can be consulted.

The solar energy and the solar neutrino flux are gener
by a set of important nuclear reactions. The current statu
nuclear astrophysics and some key reactions have bee
viewed in Ref. @6#. Those reactions, especially at ener
ranges which are typical for the sun, are being intensiv
studied from both the experimental and theoretical point
view in order to obtain and analyze the cross sections
major focus of these investigations is the discrepancy
tween predicted and observed neutrino fluxes.

The reaction3He(3He,2p)4He contributes for 89% to the
pp chain of nuclear synthesis. A specific experimental c
laboration ~LUNA ! was set up to measure this reaction
cross section around the Gamow peak (;20 keV!, the most
probable energy at which the reaction occurs in the sun.
progress of the LUNA group was reported in Refs.@7–10#.
The cross section has been measured down to the lower
of the Gamow peak, but there still is a large uncertainty
the cross-section determination and there are important e
tron screening effects.

The theoretical analysis of the3He(3He,2p)4He reaction
is usually linked to its mirror companion3H(3H,2n)4He. A
comparison of both leads to a better understanding of
underlying dynamics and of the Coulomb effects of reactio
with three-cluster exit channels. A first microscopic calcu
tion for these reactions was presented in Ref.@11#. A two-
cluster approach was used for both the entrance and
channels. The nucleon-nucleon fragment cluster~denoted
NN for either pp or nn) carried a simple shell-model de
scription, thus featuring a pseudobound state with posi
energy. The experimental cross section orS factor at rela-
tively high energy (;1 MeV! was reproduced by adjustin
the Majorana exchange parameter of the effectiveNN poten-
tial. The available experimental data at the~small! energy
range relevant in astrophysical reactions were fairly well
produced. In this model no resonance state appears
would sufficiently amplify theS factor in the appropriate
0556-2813/2001/63~6!/064604~8!/$20.00 63 0646
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energy range, and thus would constitute an explanation
the solar neutrino problem.

The previous model was further improved or enhanced
Refs. @12–14# by using a more elaborate description of t
NN channel, or by simulating the exit channel descripti
using both the (4He1N)1N and the 4He1(N1N) two-
cluster configurations. The relative motion of the two clu
ters was described by a discrete superposition of transl
Gaussian functions. In all cases one obtained the same s
for the S factor as a function of energy and there were on
limited variations in absolute magnitude.

In this paper we study both the3H(3H,2n)4He and
3He(3He,2p)4He reactions and use a correct treatment of
corresponding three-cluster exit channels. This will be do
in the framework of the microscopic algebraic model~AM !
for scattering@15#. A three-cluster version of that model ha
been introduced in Ref.@16#.

The feasibility of the three-cluster AM approach w
demonstrated in a calculation of resonance states embe
in the continuum of6He and6Be @17#. The energy and width
of the 21-resonance state in6He and the 01 and 21 reso-
nances in6Be were shown to be in fair agreement with e
periment, as shown in Fig. 1 for6Be. We have also per
formed a calculation of the bound state energy of6He in the
same model space and have compared it to the results
tained for the three-cluster calculation with the stochas
variational method~SVM! @18,19#. We have used the Min-
nesota potential without spin-orbit components, and an os

FIG. 1. Energy and width of the 01- and 21- resonance states in
6Be, calculated in Ref.@17# and compared to experiment (E).
©2001 The American Physical Society04-1
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lator parameterb51.285 fm which minimizes thea-particle
energy as in Ref.@19#. In Fig. 2 we compare our bound-sta
energy of 6He as a function of number of oscillator she
Nsh to the SVM value. We took all hyperspherical harmon
up to Kmax510 into account, i.e., considered the same ba
that was used in Ref.@17#. One notices convergence fo
Nsh>25 towardsE520.8038 MeV ~relative to thea1n
1n threshold! within this subspace. This is to be compar
to E521.016 MeV for the full SVM calculation; full con-
vergence towards the SVM result would require additionaK
values, but this is beyond the scope of this paper. The res
reported here have encouraged us to combine the two-
three-cluster AM models to obtain an advanced descrip
of the fusion reactions3H(3H,2n)4He and3He(3He,2p)4He.

The organization of the paper is as follows. We fi
present our description of6He and 6Be in terms of the rel-
evant two- and three-cluster configurations, and discuss
appropriate boundary conditions. We then elaborate on s
aspects of the method. Finally we present the results for
astrophysicalS factors of both reactions, discuss the dyna
ics of the system, and compare with the available experim
tal data.

II. MODEL SPECIFICS

In the following subsections we will rely heavily on Ref
@11,16# for details concerning the microscopic model. Deta
concerning the specific cluster configurations used to
scribe the six-nucleon systems6He and6Be can be found in
Ref. @17#.

A. A combined cluster model

The six-nucleon wave functions will be built up by usin
both two- and three-cluster configurations, each one fu
antisymmetrized:

CL5A$F3NF3N f L~q0!%1A$FaFNFN gL~q1 ,q2!%,
~1!

FIG. 2. Ground state of6He as a function of the number o
oscillator shellsN in the AM three-cluster model compared to th
results of Ref.@19#. The energy is relative to thea1n1n thresh-
old.
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where theFA (N stands for either nucleon,a for 4He, and
3N for 3H or 3He) represent cluster component wave fun
tions, f L andgL , respectively, refer to the wave functions
relative motion for the two- and three-cluster system, andqi
are a choice of Jacobi coordinates describing the config
tion of relative position of the clusters.

One of the basic assumptions of the model is@16# that the
cluster state is defined by having all its nucleons in
(0s)-oscillator wave function. Consequently all of the rea
tion dynamics, and in particular the behavior of theS-matrix
elements is concentrated in the functions describing the r
tive motion, i.e.,f L andgL .

The equations forf L and gL are cast in the so-called a
gebraic model~AM ! form @16# using an oscillator basis in
which to expand the states of relative motion. The appro
ate boundary conditions, reflecting the asymptotic behav
of the six-nucleon system, are then expressed in terms o
asymptotic form of the expansion coefficients off L andgL,
respectively. This leads to expressions determining
S-matrix elements and cross sections.

A judicious choice has to be made for the Jacobi coor
natesq and for a classification scheme of the wave functio
to be used in the expansion off L and gL . We follow the
choice made in Ref.@11# for the two-cluster configurations
and the one put forward in Ref.@16# for the three-cluster
configuration.

For the two-cluster configuration~in 3H13H, respec-
tively, 3He13He) we use spherical coordinatesq0

5$q0 ,q̂0% and take the quantum numbersm5$n,L,M % to
classify the basis states. Then is the familiar radial oscillator
quantum number. As we will assume only central comp
nents in the nucleon-nucleon interaction, the angular m
mentumL of relative motion will be an integral of motion fo
the system.

For the three-cluster configurations~in 4He1p1p, re-
spectively, 4He1n1n) we use hyperspherical coordinate

$q1 ,q2%5$r, V%5$r,u,q̂1 ,q̂2% with r5Aq1
21q2

2, q1

5r cosu, and q25r sinu. This choice is consistent with a
set of quantum numbers n5$N,K,(l 1l 2)LM %
5$nr ,K,(l 1l 2)LM %, in whichN52nr1K represents the to
tal number of oscillator quanta, andnr reflects the number o
hyper-radial excitations.K is the hypermomentum, andl 1
and l 2 are the partial angular momenta associated with
choice of Jacobi vectorsq1 andq2. As discussed in Ref.@16#
K is not a good quantum number, and a coupledK-channel
calculation, each channel characterized by the set of quan
numbersn05$K,(l 1l 2)LM %, has to be performed to solv
the dynamical equations. This type of basis is particula
suitable for the so-called Borromean nuclei, and nuclei w
pronounced three-cluster features, when the three-clu
threshold represents the prime~lowest energy! decay chan-
nel.

B. The boundary conditions

The AM boundary conditions are expressed in terms
the expansion coefficients of the wave functions of relat
motion of the cluster configurations. They are directly co
nected to the boundary conditions in coordinate represe
4-2
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tion. For the two-cluster configurations it was shown@16#
that the asymptotic form of the expansion coefficients inf L
5(cn,Lfn,L can be approximated by

cn,L.Ar nf L~r n!, ~2!

where the $fn,L% are oscillator basis functions, andr n

5bA4n12L13 is the classical turning point of the thre
dimensional oscillator with energyEn5\v(2n1L13/2). In
three-cluster configurations the expansion is defined bygL
5(dnr ,Lfnr ,L , where the$fnr ,L% now stand for the oscil-
lator basis for three-cluster relative motion. The expans
coefficients behave asymptotically as@16#

dnr ,L.rn
2gL~rn! ~3!

with rn5bA4nr12K16. For clarity we have indicated in
the preceding discussion only relevant indices. We refe
the original papers for a more elaborate discussion.

In the current study we consider both incoming and o
going waves for the two-cluster configurations

f L~q0!.@cL
(2)~k0q0!2S$m%,$m% cL

(1)~k0q0!#YLM~ q̂0!,
~4!

whereS$m%,$m% is a notation to characterize the elastic tw
cluster scattering matrix element for the3H13H, 3He
13He channels, respectively, andYLM(q̂0) is the spherical
harmonic.

Because we are only interested in reactions with a th
cluster exit-channel, the corresponding asymptotic w
function can be written as@20#

gL~q1 ,q2!5gL~r,V!.(
n0

@2S$m%,$n0% cK
(1)~kr!#Yn0

~V!,

~5!

where S$m%,$n0% is the scattering matrix element describin
the inelastic coupling between the two- and three-clus
channels, andYn0

(V) being the hyperspherical harmon
@16#.

The total cross section is given by the expression

s~E!5
p

k0
2 (

L,S

~2L11!~2S11!

4 (
n0

uS$m%,$n0%u
2 ~6!

with S the total spin of the six-nucleon system.
As shown in Ref.@20#, the asymptotic solutions for in

coming and outgoing waves can be written as

cL
(6)~kR!5

1

Ak
W6 ih,l~62ikR!/R(s21)/2, ~7!

whereW are the Whittaker functions, andh the Sommerfeld
parameter. The parametersL, l, s, andh, which differ for
two- and three-cluster channels, are summarized in Tab

By using the aforementioned correspondence between
cillator and coordinate representations, we can now de
the boundary conditions for the expansion coefficients
06460
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cn,L.Ar n@cL
(2)~k0r n!2S$m%,$m% cL

(1)~k0r n!#

dnr ,n0
.rn

2@2S$m%,$n0% cK
(1)~krn!# ~8!

or, equivalently,

cn,L.cn,L
(2)2S$m%,$m% cn,L

(1)

dnr ,n0
.2S$m%,$n0% dnr ,n0

(1) ~9!

using the notations

cn,L
(6).Ar ncL

(6)~k0r n!

dnr ,n0

(6) .rn
2 cK

(6)~krn!. ~10!

The matching of internal and asymptotic regions
equivalent to the one in the traditional resonating gro
method~RGM!. The correspondence between the match
point in coordinate space for RGM and in function space
AM is easily made~see Ref.@16#! through the value of the
classical oscillator turning pointr n5bA4n12L13 for two-
cluster systems andrn5bA4nr12K16 for three-cluster
systems. An appropriate value for the matching point can
obtained by choosing sufficiently large values for the to
number of oscillator quantaN52n1L52nr1K in the in-
ternal region.

C. Shape analysis

The hyperspherical harmonics could reveal important
formation on the spatial distribution of clusters, and help
understand the dynamics of the system. This could even
veal possible scenarios for the reactions considered.

These harmonics define a probability distribution in fiv
dimensional coordinate~momentum! space for fixed values
of hyper-radius:

dWn0

5 ~V!5uYn0
~V!u2dV, dWn0

5 ~Vk!5uYn0
~Vk!u2dVk .

~11!

By analyzing the probability distribution, one can retrie
the most probable shape of three-cluster configuration
‘‘triangle’’ of clusters. As the full analysis of a function o
five variables is nontrivial, one usually restricts oneself
some specific variable~s!. In this respect, integrating th

TABLE I. Parameters of the asymptotic solutions~7! for two-
and three-cluster channels.

L s l h

Two cluster channel L 3 L1
1
2

Z1Z2e
2

k

m

2\2
A A1A2

A11A2

Three cluster channel K 6 K12
Zef fe

2

k

m

2\2
4-3
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probability distributiondWn0

5 (V) over the unit vectorsq̂1 ,q̂2

( k̂1 ,k̂2)

dWn0
~u!5E uYn0

~V!u2 cos2u sin2 udu dq̂1dq̂2 ,

dWn0
~uk!5E uYn0

~Vk!u2 cos2uk sin2ukduk dk̂1dk̂2

~12!

and introducing the~new! variable~s!

E5
q1

2

r2
5cos2u, E5

k1
2

k2
5cos2 uk

which, in coordinate space, can be interpreted as the squ
distance between the selected pair of clusters or, in mom
tum space, the relative energy of that pair of clusters,
obtain

Wn0
~E!5

dWn0
~u!

du

5uNK
( l 1 ,l 2)cosl 1u sinl 2uPn

( l 211/2,l 111/2)
~cos 2u!u2

3cos2u sin2u

5uNK
( l 1 ,l 2)

~E! l 1/2~12E! l 2/2Pn
( l 211/2,l 111/2)

~2E21!u2

3AE~12E!. ~13!

This function represents the probability distribution for re
tive distance between two selected clusters, respectively
the energy of relative motion of two selected clusters. T
kinematical factor cos2 u sin2u was included to makeWn0

(E)
proportional to the differential cross section in momentu
space, provided the exit channel is described by the sin
hyperspherical harmonicYn0

(V).

In Fig. 3 we displayWn0
(E) for some hyperspherical har

monics involved in our calculations. These figures show t
different hyperspherical harmonics account for different p
sible shapes of the three-cluster systems. For instance
hyperspherical harmonic withK510 andl 15 l 250 prefers
the two selected clusters to move with very small or ve
large relative energy, or, in coordinate space, prefers them
be close to each other, or far apart. If one or few contri
tions appear dominantly in the final results, one could obt
a fair idea of the disintegration shape for the three-clus
exit channel.

III. RESULTS

We use the VolkovNN interaction@21# in our calcula-
tions. It was shown in Refs.@17,22,23# that it provides an
acceptable description for the bound state of6He, as well as
for the low energy range in the three-cluster continuum
6He and 6Be. The Majorana exchange parameterm was set
to be 0.54 which is comparable to the one used in Ref.@13#.
The oscillator radius was set tob51.37 fm ~as in Refs.
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@17,23#! to optimize the ground state energy of thea par-
ticle.

We should stress that our method~AM ! is best suited for
an NN potential with a relatively soft core, and less appr
priate ~but also applicable! to NN interactions with strong
repulsion at short distances between nucleons. This is on
the main reasons for choice of the currentNN potential.

The Volkov potential does not contain spin-orbital or te
sor components so that total angular momentumL and total
spin S are good quantum numbers. Moreover, due to
specific features of the potential, the binary channel is
coupled from the three-cluster channel when the total spS
equals 1; this means that odd parity statesLp512,22, . . . ,
will not contribute to the reactions.

To describe the continuum of the three-cluster configu
tions we considered all hyperspherical harmonics withK
<Kmax510. In Table II we enumerate all contributingK
channels forL50. For each two- and three-cluster chann
we used the same numbern5nr5Nint of basis functions to
describe the internal part of the wave functionCL . Nint then
also defines the matching point between the internal
asymptotic part of the wave function. We usedNint as a
variational parameter and varied it between 20 and 75, wh

FIG. 3. FunctionWn0
(E) for K50, 2, and 10 andl 15 l 250.

TABLE II. Enumeration of all hyperspherical harmonics for to
tal angular momentumL50.

Nch 1 2 3 4 5 6 7 8 9 10 11 12
K 0 2 4 4 6 6 8 8 8 10 10 10
l 15 l 2 0 0 0 2 0 2 0 2 4 0 2 4
4-4
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corresponds to a variation in coordinate space of the R
matching radius approximately between 14 and 25 fm. T
variation showed only small changes in theS-matrix ele-
ments, of the order of one percent or less, and do not in
ence any of the physical conclusions. We have then u
Nint525 for the final calculations as a compromise betwe
convergence and computational effort. We also checked
impact ofNint on the unitarity conditions of theSmatrix, for
instance the relation

uS$m%,$m%u
21(

n0

uS$m%,$n0%u
251.

We have established that fromNint515 on this unitarity re-
quirement is satisfied with a precision of one percent or b
ter. In our calculations, withNint525, unitarity was never a
problem. It should be noted that our results concerning
convergence for the three-cluster system with a restric
basis of oscillator functions agree with those of Pappet al.
@24#, where a different type of square-integrable functio
was used for three-cluster Coulombic systems.

In Fig. 4 we show the totalS factor for the reaction
3H(3H,2n)4He in the energy range 0<E<200 keV. One
notices that the theoretical curve is very close to the exp
mental data. The total S factor for the reaction
3He(3He,2p)4He is displayed in Fig. 5. It is also close to th
available experimental data. TheSfactor for both reactions is
seen to be a monotonic function of energy, and does
manifest any irregularities to be ascribed to a hidden re
nance. Thus no indications are found towards explaining
solar neutrino problem.

The astrophysicalS factor at small energy is usually writ
ten as

S~E!5S01S08E1
1

2
S09E

2. ~14!

We have fitted the calculatedS factor to this formula in the
energy range 0<E<200 keV. For the reaction
3H(3H,2n)4He we obtain the approximate expression

FIG. 4. S factor of the reaction3H(3H,2n)4He. The experimen-
tal data are taken from@26# ~Serov!, @27# ~Govorov!, @28# ~Brown!,
and @29# ~Agnew!.
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S~E!5206.5120.53 E10.001 E2 keV b ~15!

and for 3He(3He,2p)4He we find

S~E!54.8923.99 E12.3 1024 E2 MeV b. ~16!

One notices significant differences in theS factor for the6He
and 6Be systems. TheNN interaction induces the same co
pling between the clusters of entrance and exit channels
both 6He and6Be. It is the Coulomb interaction that distin
guishes both systems, and accounts for the pronounced
ferences in the cross sections andS factors.

We compare the calculatedS factor to fits of experimenta
results for the reaction3He(3He,2p)4He:

S~E!55.222.8 E11.2 E2 MeV b @25#,

S~E!5~5.4060.05!2~4.160.5!E

1~2.360.5!E2 MeV b @8#,

S~E!5~5.3260.08!2~3.760.6!E

1~1.9560.5!E2 MeV b @10#. ~17!

The constant and linear terms of the fit display a good ag
ment. The difference in energy ranges between the calcul
(0<E<200 keV! and experimental (0<E<1000 keV! fits
make it difficult to attribute any significant interpretation
the discrepancy in the quadratic term.

The hyperspherical harmonics method now allows us
study some details of the dynamics of the reactions con
ered. In Figs. 6 and 7 we show the different three-clus
K-channel contributions (Wn0

) to the totalS factor of the
reactions. In Fig. 6 these contributions~in % with respect to
the total S factor! are displayed for some fixed energy~1
keV!, while Fig. 7 shows the dependency ofWn0

~in absolute
value! on the energy of the entrance channel. One noti
that three hyperspherical harmonics dominate the full res
namely, the$K50;l 15 l 250%, $K52;l 15 l 250% and $K
54;l 15 l 252%, and this is true in both reactions. The co

FIG. 5. S factor of the reaction3He(3He,2p)4He. The experi-
mental data are from Refs.@30# ~Krauss!, @9# ~LUNA 99!, and@7#
~LUNA 98!.
4-5
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tribution of these states to theS factor is more than 95%
There also is a small difference between the reacti
3H(3H,2n)4He and 3He(3He,2p)4He, which is completely
due to the Coulomb interaction.

Figures 6 and 7 yield an impression on the convergenc
the results and whether the chosen set of hyperspherical
monics is sufficiently comprehensive. We notice that
contribution of the hyperspherical harmonics withK.6 is
small compared to the dominant ones. This is true for v
small energies as well as for a relatively large energy ra
(200<E<1000 keV!. This is corroborated in Fig. 8 wher
we show the rate of convergence of theS factor in calcula-
tions with Kmax ranging from 0 up to 10. Our fullKmax
510 basis is seen to be sufficiently extensive to account
the proper rearrangement of two-cluster configurations in
three-cluster one, as the differences between results bec
increasingly smaller.

To emphasize the importance for a correct three-clu
exit-channel description, we compare the present calc
tions to those in Ref.@11#, where only two-cluster configu

FIG. 7. Contribution of three-cluster channels to the totalS fac-
tor of the reactions3H(3H,2n)4He in a full calculation withKmax

510 in the energy range 0<E<1000 keV.

FIG. 6. Contribution of three-cluster channels to the totalS fac-
tor of the reactions3H(3H,2n)4He and 3He(3He,2p)4He in a full
calculation withKmax510.
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rations 4He12n, respectively,4He12p were used to mode
the exit channels. In both calculations we used the sa
interaction and value for the oscillator radius. In Fig. 9 w
compare both results for3H(3H,2n)4He. An analogous pic-
ture is obtained for the reaction3He(3He,2p)4He.

IV. CROSS SECTIONS

Having calculated the matrix elements of theS matrix by
solving the AM equations, we can now easily obtain the to
and differential cross sections. In this section we will calc
late and analyze onefold differential cross sections, wh
define the probability for a selected pair of clusters to
detected with a fixed energyE12. To do so we shall conside
a specific choice of Jacobi coordinates in which the first
cobi vectorq1 is connected to the distance between the
clusters, and the modulus of vectork1 is the square root of
relative energyE12. With this definition of variables, the
cross section is

ds~E12!;
1

EE dk̂1dk̂2U(
n0

S$m%$n0%Yn0
~Vk!U2

3sin2uk cos2ukduk. ~18!

FIG. 9. Comparison of theS factor of the reaction
3H(3H,2n)4He in a calculation with a three-cluster exit-channel a
a pure two-cluster model.

FIG. 8. Convergence of theS factor of the reaction
3H(3H,2n)4He for Kmax ranging from 0 to 10.
4-6
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After integration over the unit vectors and substitution
sinuk , cosuk , duk with

cosuk5AE12

E
; sinuk5AE2E12

E

duk5
1

2

1

A~E2E12!E12

dE12 ~19!

one can easily obtainds(E12)/dE12.
In Fig. 10 we display the partial differential cross sectio

of the reactions3H(3H,2n)4He and3He(3He,2p)4He for the
energyE510 keV in the entrance channel. The solid lin
correspond to the case when two neutrons~protons! are de-
tected with relative energyE12, while the dashed lines rep
resent the cross sections when thea particle and one of the
neutrons~protons! are observed with relative energyE12.

We wish to emphasize the ‘‘measurement’’ in which tw
neutrons or two protons are simultaneously detected.
indeed notices a pronounced peak in the cross section ar
E12.0.5 MeV. This peak is even more pronounced for t
reaction 3He(3He,2p)4He. It means that at such energy tw
neutrons or two protons could be detected simultaneo
with large probability. We believe that this peak can expla
the relative success of a two-cluster description for the
channels. The pseudobound states ofnn or pp subsystems

FIG. 10. Partial differential cross sections of the reactio
3H(3H,2n)4He and3He(3He,2p)4He.
06460
f

s

ne
nd

ly

it

used in this type of calculations indeed allowed one to obt
a reasonable shape for the astrophysicalS factor.

Special attention should be paid to the energy range
MeV in the 4He1n and 4He1p subsystems. This region
accommodates 3/22 and 1/22 resonance states of these su
systems with the Volkov potential. As seen in Fig. 1
~dashed lines!, it yields a small contribution to the cross se
tions of the reactions3H(3H,2n)4He and 3He(3He,2p)4He.
This result contradicts the conclusions of Refs.@13,14#. In
the two-cluster calculations of those references the 1/22 state
of the 4He1N subsystem played a dominant role. We su
pect this dominance to be due to the interplay of two facto
the weak coupling between incoming and outgoing chann
and the spin-orbit interaction.

In Fig. 11 we compare our results for the total prot
yield @reaction 3He(3He,2p)4He] to the experimental data
from Ref. @25#. The latter were obtained for incident energ
E(3He)50.19 MeV. One notices a qualitative agreement b
tween the calculated and experimental data.

The cross sections, displayed in Figs. 10 and 11, w
obtained with the maximal number of hyperspherical h
monics (K<10). These figures should now be compared
Fig. 3, which displays some partial differential cross sectio
for a singleK channel. The cross sections, displayed in Fi
10 and 11, differ considerably from those in Figs. 3 a
comparable ones, even for those hyperspherical harmo
which dominate the wave functions of the exit channel.
analysis of the cross section shows that the interference
tween the most dominant hyperspherical harmonics stron
influences the cross-section behavior. To support this st
ment we display the proton cross sections obtained with
permomentaK50, K52, K54 to those obtained with the
full set of most important componentsKmax54 in Fig. 12.
One observes a huge bump around 10 MeV which is enti

s

FIG. 11. Calculated and experimental differential cross sec
for the reaction3He(3He,2p)4He. Experimental data are taken from
Ref. @25#.
4-7
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due the interference of the different hyperspherical harmo
components. We also included the full calculation (Kmax
510) to indicate the rate of convergence for this cross s
tion.

V. CONCLUSION

We have successfully considered the reactio
3H(3H,2n)4He and 3He(3He,2p)4He within the AM micro-

FIG. 12. Partial cross sections for the reaction3He(3He,2p)4He
obtained for individualK50,2, and 4 components, compared to t
coupled calculation withKmax54 and the full calculations with
Kmax510.
s

k-

k-

06460
ic

c-

s

scopic cluster model, which involves both two-cluster (3He
13He and 3He13He) and three-cluster (4He1n1n and
4He1p1p) configurations. A finite set of hyperspheric
harmonics was used to describe the continuum of the th
cluster configurations. We demonstrated that the basis
volved in our calculations was sufficiently large for conve
gent results. It was also demonstrated that only f
hyperspherical harmonics dominate the reactions. Due to
weak coupling between two-cluster and three-cluster ch
nels, the hyperspherical harmonics with the hypermomen
K>6 lead to a negligible small contribution to the cro
sections of the reactions 3H(3H,2n)4He and
3He(3He,2p)4He.

The theoretical results for the astrophysicalS factor of the
reactions are in a good agreement with the available exp
mental data. The analysis of the elastic and inelastic sca
ing parameters at low energy range (0<E<20 keV! re-
vealed no hidden resonance state within the current mo
accounting for the solar neutrino problem.
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