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Degeneracies whem =0 two body matrix elements are set equal to zero
and Regge’s § symmetry relations
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The effects of setting all=0 two body interaction matrix elements equal to a constanzerg in shell
model calculationgdesignated aéT=0)=0) are investigated. Despite the apparent severity of such a proce-
dure, one gets fairly reasonable spectra. We find that USirg0)=0 in singlej shell calculations degenera-
cies appear, e.g., thb:%’ and ?’ states in“3Sc are at the same excitation energies; likewise Ithe
=37,7,,9/, and 1§ states in**Ti. The above degeneracies involve the vanishing of certqimrél g
symbols. The symmetry relations of Regge are used to explain why these vanishings are not accidental. Thus
for these states the actual deviation from degeneracy are good indicators of the effects efGhmatrix
elements. A further indicator of the effects of thie- 0 interaction in an even-even nucleus is to compare the
energies of states with odd angular momentum with those that are even.
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I. INTRODUCTION two different sets of matrix elements. Following the idea first
In the early 1960's singlg-shell calculations in thd-, championed by Talmf14] and others we take our matrix

region were performed by McCullen, Bayman, and Zamickelements from expfzriment. Ip the first two columns we show
(MBZ) [1,2] and Ginocchio and Frendi8]. In these calcu- (T=0)=0 for the *Sc matrix elements. The last two col-
lations the two body matrix elements were taken from ex-umns consist of matrix elements frofiiSc with theT=0
periment. However théf=0 neutron proton spectrum in matrix elements now included. Also to gain some insight
425¢ was not well determined. Calculations with corr@ct into how configuration mixing affects our results, we present
=0 matrix elements were later performed by Kutscherafull f-p space results fof*Ti and *Ti in Tables Ill and 1V,
Brown, and Ogawa4]. respectively.

In order to see how neutron-proton two body matrix ele- |n the singlej shell calculation for which the matrix ele-
ments with isospint=0 affect the low lying spectra of nu-  ments were taken from the spectrum B6c the values of
clei, we have set them to a constant in a sifjgséell calcu-  nese matrix elements fat=0 to J=7 were 0.000 MeV
lation in the f,, region. We can then Write/T:°=C(1/4 0.6110 MeV, 1.5863 MeV, 1.4904 MeV, 2.8153 Me,\/,
—t1-t;) wherec is a constant. Henc&i;Vjj *=c/8(n(N 15101 MeV, 3.242 MeV, and 0.6163 MeV, respectively.
—1)+6)—c/2T(T+1). This meqns4}h_a_t the spectrum of Thg yrast spectrum is also shown in Fig. 1. Note that with a
states of a given isospin, €.9.~=0 in ™Ti is independent of ;2 .,higuration the eved states hava equal to one and the

whatt thf. cor_lnstaf?t Its. Ilt T;]'ght as Welll_tlta_mro V]Yhf‘tt the 'thOdd J T equal to zero. This is also true experimentally for
constant s will afféct only the energy Splitings of States with ., < 1o\ els. Note that the=1" and 7" are nearly degen-
different isospin. We shall denote this matrix element input

as(T=0)=0. erate near 0.6 MeV and thle=3" and 5" are .nearly deggn—
Although setting allT=0 matrix elements to a constant erate near 1.5 MeV. Thus the act of settilig=0 matrix
may seem like a severe approximation, it will be seen that
one gets a fairly good representation of the spectrum. When .
the T=0 matrix elements are reintroduced, there is some fine TABLE . Spectra ofTi.
tuning which improves the spectrum.
While the problem ofT=1 pairing is better understood

425¢(T=0)=0 interaction 423¢ interaction

and studied, there exists a very extensive literature on thk E (MeV) : E (MeV)
possibility of T=0 pairing, both pro and con. We here in- 7/, 0.0000 712 0.000
clude some of the relevant referen¢gs-13]. 92 1.640 9/2 1.680
In a shell model calculation the effects of botk=0 and 5/, 1.831 11/2 2335
T=1 pairing are automatically included. The problem then is, ;5 2061 3/2 2888
to sort out as much as possible the individual effects. /2 2832 5/2 3.449
In the next sections we will consider calculations in thell2 3.279 13/2 3.500
f4> shell and in the fullf-p space. 13/2 3'_279 15/2 3'_511
Il. RESULTS OF SINGLE- j SHELL CALCULATIONS 15/2 3.425 1972 3.644
17/2 3.919 17/2 4.298

In the following tables we show =T, calculated yrast 19/2 3.919 1/2 4.316

spectra for®®Ti (Table ) and **Ti (Table Il) where we use
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TABLE II. Spectra of *Ti.

43¢ (T=0)=0 interaction

423 interaction

[ E (MeV) | E (MeV)
0 0.000 0 0.000
2 1.303 2 1.163
4 2.741 4 2.790
6 3.500 6 4.062
3 4.716 3 5.786
5 4.998 5 5.871
7 5.356 7 6.043
8 5.656 8 6.084
9 7.200 10 7.384
10 7.200 12 7.702
12 7.840 9 7.984
TABLE Ill. “3Ti full f-p calculation.

FPD6(T=0)=0 FPD6

| E (MeV) | E (MeV)
72 0.000 712 0.000
3/2 1.668 3/2 0.871
9/2 1.970 1/2 1.805
11/2 2.000 11/2 1.889
5/2 2.638 5/2 2.305
1/2 2.940 9/2 2.633
15/2 3.065 15/2 2.948
13/2 3.070 19/2 3.401
17/2 3.325 13/2 3.718
19/2 3.417 17/2 4.429

TABLE IV. *Ti full f-p calculation.

FPD6(T=0)=0 FPD6

| E (MeV) | E (MeV)
0 0.000 0 0.000
2 1.515 2 1.317
4 2.587 4 2.536
6 3.223 6 3.843
3 4.717 3 6.241
5 4.932 8 6.383
8 5.292 5 7.579
7 5.391 10 7.790
10 6.476 7 7.921
9 6.574 12 8.574
1 7.070 9 9.030
12 7.192 1 9.681
11 9.914 11 11.028
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FIG. 1. Spectrum ofSc.

elements to a constant is equivalent to movingxkel * and

7% together up about 0.9 MeV. Or putting it another way, the
act of removing the degeneracy is to lower the energies of
the J=1" and 7" by about the same amount. This is in
contrast to most studies in which only the effects of lowering
theJ=1" state are studied.

We will point out several features to be found in the
tables. We observe many levels that were considerably sepa-
rated in the “normal” interaction become degenerate when
we go to(T=0)=0. We explore this further in the next
section. We find that in general with few exceptions that the
odd| levels of *Ti are at a lower excitation energy when we
go to the(T=0)=0 version of the interactions and that the
“3Ti spectra is lowered in total.

Ill. THE DEGENERACIES THAT OCCUR IN (T=0)=0
AND EXPLANATIONS

As can be seen from Tables | and Il some energy levels
are degenerate when tiie=0 matrix elements are set equal
to a constant. The degenerate pairg, () include
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BT (572 )(F 80, 1= 1=%
4Ti (97,10M). Energy(MeV) 5.4809 3.8477 5.8122
The wave functions for the titanium isotopes are written j
as p n
4 712 1.000 0.9942 -0.1076
l/fZED'“(Jp,Jn)[(jZ)JP(jn)J"]'“, (1) 6 7/2 0.000 0.1076 0.9942

whereD*(J ,Jn) is the probability amplitude that in a state  |n the f7,2 model thel =1~ configuration is uniquéJ,
of total angular momenturhthe protons couple td, and the =4 J, =1]Y?". There are two configurations for thb

neutrons tal,,. The element®' (Jp,Jdn) form a column vec- _ 13- state[4%] and[62].

tor. 2 . .
When we go td T=0)=0 what basically happens is that
Let us first consider ¥ ,27) in *Ti. The 9o td ) y 1app

the eigenvalues and eigenfunctions become
basis states can be written a[st,Jn]' where J, is

the angular momentum of the two protons. The inter- =1 | =1
action matrix element ([J .Jn]'V[Jp,.]n]'>:5J 3 EJ E, E, E,
+23,U(jjli ,I3pd)U(jjlj ,IpI) E; whereE; is the two par- i
ticle matrix eIemen([” ]JV[” 1). For evenJ, T is equal to o In
one while for oddJ, T is equal to zero. 4 712 1.000 1.000 0.000

We next consider™Ti The interaction matrix element 6 712 0.000 0.000 1.000
([35301'V[3301') is given by

In order for this to happen the matrix eleme(jt],
’ 1+ ’ 1+

B 0939, 93,3,% Ba, 09,0300, 4%, =4, j,=5]"""¥[3,=6,j,=7]'"*¥?) must vanish. This

vanishing is carned by the Racah -coefficients
U(£232:40)U(341%81:6J) whered is the angular momen-
tum of a neutron-proton pair.

In generald can be 4,5,6, or 7. However KT=0)=0,

where the unitary recouping coefficients are related to thé)nly the evenJ's contribute, i.e.J=4 or J= §7 Ilr;7e|ther
Wigner 9 symbols

XD GGG )™ G)2)%)
x 'Ej,

case one of the Racah coefficients will b 553 5;46).
This Racah coefficient is zero. This guarantees a decoupling

((ab)s(de)|(ad)*(be))’ of [45] from[6%] but does not in itself lead to a degeneracy

ofthel=3" andl =%~ states. That happens because of this
a b ¢ additional condition
=VJ(2c+1)(2f+1)(2x+1)(2y+1)5d e fr. (2
x v 77137 0 (7717 01 5
V2222473232247 @

For symmetry relations thej%Bymbols are more convenient
than the unitary coefficients.

It is instructive to look at the energies and wave functions
(i.e., column vectonsfor the | = L~ states that We next consider the degeneracylef9; and 1q in

“Tiin (T=0)=0. It is again instructive to write down the

1—
5 and| = >
appear in the NYO Technical reportshich includedT=0

matrix elements

eigenfunctions as they appear in the NYO report

=9 =10
Energy 8.7799 8.8590 11.5951 7.8429 9.8814 10.5110
isospin T=1 T=1 T=1
Jp J n
4 6 -0.7071 0.5636 -0.4270 0.7037 -0.0696 0.7071
6 4 0.7071 0.5636 -0.4270 0.7037 -0.0696 -0.7071
6 6 0.0000 0.6039 0.7971 0.0984 0.9951 0.0000
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Before proceeding, we remind the reader of a general ruléhe only nonvanishing matrix elements &&,6) andD(6,4)
that can clearly be seen in the wave functions above. Fogach with magnitude 42. This is the same as what occurs
even total angular momentuhthe wave functions of evel  for the 9 and 1Q states.
states ofN=Z nuclei do not change sign under the inter- A similar story is written byl =7". The nonvanishing
change of neutrons and protons but e 1 wave functions  components for the ;7 state in the(T=0)=0 case are
do change S|gn.ITFor odt it is thltiToplgosne. This can be p(2,6 andD(6,2) however for the 7 state they ar®(4,6)
sur\rllvminzed bpth((a\']p’(\;n)tzg_lgrh' D (I‘(]n "]lpf)' H sim. @nd D(6,4) each with magnitude {2.

e focus on =0 states. This makes life much sim- + o+ ot
pler. Instead of three states each we need only worry abo tOIhUS a common theme emerges for3, , 7,9, , and
Y ; (all T=0) in that for the(T=0)=0 case the only non-

onel=9" and twol=10" states. Note that for=9" T S .
—0 the state has the simple wave function vanishing components of the wave functions Bxd,6) and
P D(6,4). Visually, the column vectors look the same. And it is
precisely these states that are degenerate.

-1 Let us now show why in the case §f =0) =0 the matrix
J2 element ([J,=4J,=6]'"*V[J,=6Jy=6]'"1% vanishes.
This is a necessary condition for the wave functions to have
i the simple form discussed in this section.
V2 From the expression for the neutron-proton interaction
0 previously given the above matrix element js=(3)
. . b7 4) (1 1 6
What clearly happens for=10" in (T=0)=0 is that - L
there is a decoupling 46,4] and[4,6] from [6,6] so that the  (¢)(13)(9){ J | 6 j i 6 E*
wave functions of the tw@ =0 states become 4 6 10 |4 6 10
1 7 4
NG +(C)(13)3,,(2Ja+1)y 1 ] 6
1 6 Jy 10
2 iio6
0 x{j ] 6}ES, (4)
6 Jn 10
and
where the proportionality constantis 156,13. (Note that
0 E® andE’ are equal to zero because all odithave T=0.)
0 Because the lastj9%bove has two rows identical it is neces-
. sary forJ, to be even ie]y=4 or 6. Thus the coefficient of
ECis

and the eigenvalue of the first one becomes the same as that i i
of the uniquel =9 state. Lo

We further note that aside from the yrast degeneracie(sc)(ls)(g) Il I
there are other degeneracies. For example, fheritl 3/ are 6 4 100 (6 4 10
degenerate with the=9;,10, pair in *Ti. At first this is

i ] 4 6
puzzling because the dimensions are different. There are J J J J
seven basis states for-3* and six forl =7*, whereas for +(0)(13(13y 1 J 6491 1 6. ®)
I=9" and 10 there are only three basis states. However, of 6 6 10) (6 6 10

the severl =3" states, five have isospiong and only two

have isospinT=0. Of the sixl =7 states, four have isospin ~ Using symmetry properties ofj9symbols we note that
one and only two have isospin zero. Since we are focusingvery term in the above expressi¢both for E* and E®)
on T=0 we only show only these wave functions in Table contains the § symbol

V. When theT =0 two particle matrix elements are set equal

to zero the wave functions simplify as shown in the table. i1 6
We now begin to see a connection betweén i 1 6
=3,,7,,9;, and 14 . For the § and 1q the only non- 6 4 10

zero components of the wave function in #ie=0)=0 are

D(4,6) andD(6,4) both having magnitude 2. The 3 state  This 9j symbol is zero and hence we have shown why the
has nonzero componerii¥2,4) andD(4,2). There is no con- above neutron-proton matrix element vanishes. It is by no
nection with the § and 1qQ states. However for the;3state  means obvious why thisj9vanishes. There will be consid-
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TABLE V. Comparison of wave functions of MB#&rom Tech-
nical Report No. NYO 98012]) with those for which{T=0)=0

matrix elements are set equal to zero.

=3
Energy(MeV)
Jp

2

2

6

=7
Energy(MeV)
Jp

2

6

=9
Energy(MeV)
Jp

4

6

1=10
Energy(MeV)
Jp

4

MBZ
6.533

0.0000
0.6968

-0.6968

0.0000
0.1202

-0.1202

0.0000

MBZ
6.5723

0.6965

0.0000
0.1220

-0.6965

-0.1220

0.0000

MBZ
8.7799

-0.7071

0.7071

0.0000

MBZ
7.8429

0.7037

0.7037

0.0084

(T=0)=0

ﬁl" o

BN

o o Wl

o

o

(T=0)=0

ooﬁl"

il

0

0
(T=0)=0

oﬁl” ﬁ“A

(T=0)=0

o%lp Sk

MBZ
10.493

0.0000
-0.1202

0.1202

0.0000
0.6968

-0.6968

0.0000

MBZ
9.6570

0.1220

0.0000
-0.6965

-0.1220

0.6965

0.0000
MBZ

MBZ
9.8814

-0.0696

-0.0696

0.9951

(T=0)=0

o

SIS

0

(T=0)=0

0

0

1
V2
0

1

V2

0

(T=0)=0

(T=0)=0

0

0

1
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erable discussion in the next section of why some of tis 6
and 9's we encounter vanish.

Although in Table V we have only showl=0 wave
functions there are severdl=1 states interspaced amongst
the T=0 states. For example, in the Technical Report No.
NYO-9891[2] for | =37 the lowest state calculated to be at
6.2357 MeV had =1. The calculated energy for this state is
about 300 keV lower than the lowe$t=0 state shown in
Table V. OtherT=1 states are calculated to be at 9.2334,
10.0321, and 10.9022 MeV. Fbe=7" the lowesfT=1 state
is calculated to be at 6.7094 MeV, just above the other the
lowestT=0 state shown in Table V. The oth&r=1 states
for I=7% are calculated to be at 9.0744, 9.5141, and
12.1535 MeV. The closeness ©=0 andT=1 states was
previously discussed by Goode and Zamijitk].

IV. WHY SOME RACAH COEFFICIENTS VANISH —
REGGE SYMMETRIES

Thus far we have explained how degeneracies arise by
matrices that certain Racah off $ymbols vanish. In this
section we look for a deeper meaning. We were aided in this
by many insightful articles collected in Biedenharn and Van
Dam|[16].

For convenience we shall switch from unitary Racah co-
efficients to Wigner § symbols

U(abcdef)=(—1)3*P*Tc+d (2e+1)(2f+1)
a b c
“ld e |

In the previous section we noted that thg €ymbol

(6)

N~ N~
NI NTEN

vanished. We note that this is a particular case of a wider
class of §’s that vanish. All §’s of the form

j j

(ﬁ—3q
I (3i—4)

(2j-1)

vanish for allj, both half integer and integer. Besides the six
j above other examples are

5 5 9 9

- - 2 - — 6

2 2 2 2 4 4 5
, , and .

5 7 9 19 4 8 7

— — 4 - — 8

2 2 2 2

064316-5



SHADOW J. Q. ROBINSON AND LARRY ZAMICK PHYSICAL REVIEW C63 064316

We find we can relate the abovg 8ymbol to a simpler Ae = (iitiotloe] B = (iotint ol
one using one of the six remarkable relations discovered by - 2(11 J2t1i=12), - 2(J2 Jatla=ly),
Regge in 195917]. We follow the notation of Rotenberg

et al.[18] 1 1
CZE(11+J3_|1+|3): DZE(Jl_JZ'Hl—HZ)v

o 1 T
Ji J2 I3 _ A B C EZE(]2_13+|2+|3), FZE(_J1+]3+|1+I3)
[ I, I3 D E F|’

From this Regge symmetry relation we find that

[j j (21—3)}:[ 2
i @i-a @-ull@i-2)

2j-3) (21—2)}

(
(2j-1) (2j-2)
:[(21—2) (2]-3) 2 ] @
(2j=2) (2j-1) (2j=2))

We note that § symbols with a “two” in them have been 7 7
worked out by Biedenharn, Blatt, and Rd46)]. Using their 5 3 6
notation we find from their results that 2

- — 6
l, J; 2 2 2
J, 1, L 4 6 10

is part of a wider class of identically zerg 8ymbols. These

forl,=J;+1 andl;=J;+1 is proportional toX where are of the form
X=[(J1+1)(J1—J)—L(L+1)+3p(1+2)].  (8) J boo@sy
J ] (2j-1)
We havelL=2j-2, J;=2j-3, 1,=2j-2, J,=2j -2, (2j=1) (2j=3) (4j—-4)
andl,=2j—1. With these values we see thatvanishes.
In Regge’s papefl7] he states “although no direct con- Other examples are
nection has been established between these wider symme- 9 9
tries it seems very probably that it will be found in the fu- - - 8
ture.” He also states “We see therefore that there are 144 2 2 4 4 7
identical Racah’s coefficiest.. . It should be pointed out 9 9 and 4 4 7
that this wider 144-group is isomorphic to the direct product 2 2 8 7 5 12
of the permutation group of 3 and 4 objects.” 8 6 14

Following Regge’s work Bargmann presented, amongst
other things, his derivation of the Regge symmetr. He
there stated “While the following analysis does not lead to
deeper understanding of the Regge symmetries it yields,

Following the notation of Rotenberet al. [18] we first
se the well-known expression for 4 s a sum over three

least a fairly transparent derivation of the symmetries.” j symbols:

In Sec. Ill we pointed out that a certairj 8ymbol “un- j j (2j—1)
expectedly” vanished. Perhaps there are some symmetries . . _ 28
involving the 9§ symbols as well. The only comment by J ! (2)=1) ¢ =25(-1)%(2B+1)

Bargmann on thi§20] is “Schwinger has computed the gen- (2j—=1) (2j—3) (4j—4)

erating function for the P symbol. This does not reveal any . . Si— 1 (i i (2i—3

new symmetries — at least none to be obtained by a permu- « | J @=L 1 (223

tation of the relevant quantities,x.” (2j=3) (4j-4) B i B (2j-1)
Nevertheless the Regge symmetries fgr §ymbols do . . .

have some implications forj%. The 9 mentioned in the X((ZJ -1 @-D “4 _4)}_ 9

previous section B ] J
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The parametepB is constrained by triangle relations in Energy MeV) <I=0>=0 Full Interaction
each of the ¢ symbols. In particular first p symbol con- 10~
strainsB as follows:

B=(3j—4), (10)
B=<(3j—3). 1) e, o
12
From these constraing= (3] —3) or (3j —4) or the first 10 5 10
6j symbol is zero. IfB=(3j—4) the second p symbol 7%
becomes the one previously discussed above in(&cand
was there shown to be zero. This leayes (3] —3).
In this case the lastjésymbol becomes 6* s —
8 —3
. . . - 17
‘(21—1) (2j-1) (41—4)] 55 —
. . . — 3
(3j—3) j i
which we now show vanishes. * p ¢
We will use the Regge symmetfi8]
. . . 3*
li J2 3| A B C 4 4
I, 1, I3/ |D E F|’ 9y
. 1 2
A=j1, B=5(2tjs=latls), e 2
1
025(124']3""2_'3)' D=1, ox 0 0
FIG. 2. Single} T=0 “Ti with matrix elements fronf?Sc.
i 1.
E=5(—latistlatls), F=5(i2=jstlatla), 3[—a(a+1)+b(b+1)+c(c+1)]-2(b+1)(c+1),
(13

so that we can now write
which fora=(3j—32), b=(3j—32), andc=(2j—1) is zero.
[(zj —-1) (2j—1) (4] —4)] Thus in the lone remaining case Bf=(3j-3) the final §
symbol in the sum is zero. So for any allowed valug3asne

3=3) : J of the 6 symbols is zero implying that thej Ssymbol above
(. 5 - 5\) is zero.
(2j-1) (31 2) (31 2)
= 3 ( V. FULL f-p CALCULATION FOR “*Ti AND “Ti
L (31=3) (2] 2) 2 ) We have performed full-p calculations for**Ti and *°Ti
. 5 5 \ with the FPDG6 interactiof22]. We shall show these and also
(3] _ _) (3] _ _) (2j—1) compare the*Ti calculations with singlg-results using the
2 2 spectrum of4’Sc as input. The latter is shown in Fig. 1.
=1 (- (12 We first discussT=0 states in the even-even nucleus

(3j—3) 44Ti. In Table Il and Fig. 2 we show the singjeesults. The

’ first two columns show the results when fhie 0 two body
matrix elements are set to zero, i€l,=0)=0. In Fig. 2 we
show the even states of**Ti in the first column and the odd
| in the second column. Note that the=9; and | =10

3 o 3
L 2 172
3

The results of § symbols with a ‘5" are found in Var-
shalovich, Moskalev, and Khersongg1]

a b c states are degenerate as has been previously discussed.
In the last two columns we have the singlshell results

§ e f when the full spectrum of?Sc is introduced including the

2 T=0 matrix elements. We note that there is much more

change in the odd spectrum than in the even The oddl
fore=c—3% andf=b— 1, as we have here, is proportional to spectrum raises considerably. The everspectrum gets
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Energy (MeV) <T=0>=0 Full Interaction
11 * 11
10 * 11
— 1
9* — 9
12
8* — 17
10 5
- 12 '
10 — 9
8 —
6*
8 - 7
5 __ s
— 3
*
4 6
6
3*
4 4
2*
2
2
1*
0* 0 0

FIG. 3. Fullf-p T=0 *Ti with FPD6 interaction.
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even| gets spread out more looking somewhat rotational.
For example thé=10" state increases in energy from 6.476
MeV to 7.790 MeV. In the corresponding singlehell cal-
culation there was hardly any change in thel0" energy.
Likewise thel=12" energy goes up from 7.192 MeV to
8.574 MeV when thd =0 two body matrix elements are put
back into FPD6.

The oddl states experience a substantial upward shift in
the spectrum. Now thé=9" state is considerably higher
than thel = 10" state(9.030 vs 7.790 MeYy/

The full FPD6 fits, as it was designed to do, the even
levels quite well. The evehlevels 2, 4%, 6", 8", 10",
and 12 are measured at 1.083 MeV, 2.454 MeV, 4.015
MeV, 6.509 MeV, 7.671 MeV, and 8.040 MeV, respectively.
What is missing from the experimental picture is ddabsi-
tive parity information. It would be useful for the purpose of
clarifying the importance off =0 matrix elements to have
more oddl, T=0 positive parity states.

In the singlej shell calculation with matrix elements from
423¢ the evenl columns corresponding t6T=0)=0 and
full spectrum(the first and third columns of energy levels
are not that different. It appears that the reintroduction of the
T=0 two body matrix elements does not make much differ-
ence. In Fig. 3 however the third column, again evegets
more spread out relative to the first column going a bit in the
direction of giving a more rotational spectrum. Thus it would
appear that for evehthe T=0 two body matrix elements
will affect the spectrum in a significant way only when con-
figuration mixing is present.

We now consider the odd-even spectrdfi(**Sc). The
results are shown in Tables | and Ill and in Fig. 4. In the
figure we only show a full calculation with FPD6 and com-
pare results when thE=0 two body matrix elements are set
equal to zerdfirst column with those where the full FPD6

spread out a bit but this is tame in comparison to the alterinteraction is includedsecond column

ation in the odd spectrum.
In Table IV and Fig. 3 we show results for a fuilp

The results at first look a bit complicated but a careful
examination shows systematic behavior.

calculation using FPD6. We use the same format as for Table For | less than; ~ the states come down in energgla-

Il. When the two bodyl =0 matrix elements are set equal to tive to thel =%~

zero(first two columng, we find surprisingly that there is not
much difference with the singleshell calculation shown in

Table Il and Fig. 2. Thd=9" and 10 state which were

exactly degenerate in the singleshell calculation are still

nearly degenerate in the fufl-p calculation. The overall

spectra do not look very differerisee first two columns in

Tables Il and IV and Figs. 2 and.3

There is one difference however, the appearance in Tabl

IV and Fig. 3 ofl=1" and 11" T=0 states. In a singlg-
shell calculation thd =17 and 11" states all have isospin
T=1.

We now come to the fulf-p calculation in which all the

ground statg Forl greater tharf ~ there is
another systematic. When the=0 two body matrix ele-
ments are set to zero there are three nearly degenerate dou-
blets 7,3 7) (827,%7) and & 7,1 7). The effect of put-

ting T=0 two body matrix elements back in is to cause the
lower spin member of each doublet to rise in energy by a
substantial amount, while the higher spin member lowers

jtself a small amount, i.el=3", 57, and% ", rise notice-

ably butl=%", 22~ and%~ drop slightly. The difference
in energy with and without the two body=0 matrix ele-
ments is shown in Fig. 5. This spectral staggering should be

good evidence of the importance &0 two body matrix

two body matrix elements of the FPD6 interaction are inelements. The results with FPD6 for the low spin states are
play— bothT=0 andT=1. Now we see major differences not so good. Experientially the excitation energies of ithe

for both the everl and oddl states of*Ti. (See Table IV
and Fig. 3 right hand columns.

If we look at the low spin state$=0", 2*, and 4" they
are largely unaffected when thie=0 two body matrix ele-

=3~ and3 ™~ are 472 and 845 keV while the calculated ones

are 0.871 and 2.305 MeV. This is no fault of the interaction
and is expected due to the presence of intruder states in the
lower part of thef-p shell. Further evidence for this comes

ments are put back in. The main difference comes from thérom the fact that in the cross conjugate nuclédBe thel
higher spin states. With the full FPD6 the spectrum of the=3" and$ excitation energies are higher than4tsc. They
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FIG. 5. E (full)-E(T=0)=0 (MeV) vs total angular momentum

elements equal to zero. The payoff for us is that certain de-
312 generacies appear between states, the deviation of which in
2% 112 the physical spectrum can largely be attributed’te0 two
92 111//22— body matrix elements. Also, we focused on odexcited
states. The deviation in the physical spectrum of the energies
of odd | states from even is also a good indication of the
effects of T=0 matrix elements. We hope our work will
provide stimulation and motivation for the study of odd spin
even parity states.
Let us end by addressing the question of why Thel
two body matrix elements are more important than the
=0 ones for the spectra df*Ti. First of all it should be
noted that we are not considering binding energies. Their
effects have been subtracted out by setting the ground states
to be at zero energy. ThHe=0 two body matrix elementare
important for binding energies. Once however we limit our-
selves to the spectra, Fig. (the spectrum of4’Sc from
which the empirical two body matrix reaction is deduced for
FIG. 4. Fullf-p **Ti (*Sc) with FPD6 interaction. a single} shell calculation provides us a partial answer to
our query. Note that the spread of tiie=1 states is much

are 741 and 1433 keV, respectively. Indeed the interactio§reater than that of tié=0 states. The energy difference of
was built with the assumption that the lowést2 ~ and 3~ the highest energy =0 state and the lowest one is 0.9 MeV.

states in*3Sc are intruder influenced ph). The full FPDe  For T=1 the corresponding difference is 3.24 MeV. This
interaction fits the higher levels= %~ and2~ (experimen- greater spread makes tiie=1 matrix elements much more

tally at 1830 keV and 2987 keV, respectivelyite well. important for setting up the general framework for the spec-

Work on the effect oL=0, T=1 andL=1, T=0 pair- &
ing in thef-p shell has already been performed by Poves and
Martinez-Pinedd 23]. They start with a realistic interaction,
KB3, and study the effects of removing tie=1 pairing This work was supported by the U.S. Department of En-
from the T=0, S=1 pairing. They focused on binding en- ergy under Grant No. DE-FG02-95ER-40940 and one of us
ergies and on the even spin states*#r. Relative to their by GK-12 NSF9979491S.J.Q.R. One of us(L.Z.) would
work, whose conclusions we certainly agree with, we havdike to thank George and Sharon Bertsch for their hospitality
made a more severe approximation of setting’al0 matrix  at the Institute for Nuclear Theory in Seattle.
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