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Selective bosonization of the many-fermion problem in a model framework
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The higher-order terms of a novel boson-fermion expansion formalism previously introduced by one of the
authors are discussed within the framework of the soluble SU~2! LMG model. A new formulation is provided
to rectify certain undesirable features of the original expansion. In particular, the subsidiary condition that
defines the physical subspace is obtained in a much simpler form. With the new formulation, the infinite
expansion is summed in closed form. A comparison is made with earlier extended Holstein-Primakoff boson-
fermion expansions.
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I. INTRODUCTION

A long-standing problem of conventional shell-model c
culations, especially in heavy nuclei, is the difficulty of d
scribing collective excitations because of the astronomic
large basis required. The boson-mapping approach has
proposed as a possible solution@1#. Taking a cue from the
physical idea that collective excitations are coherent su
positions of fermion pairs that behave approximately l
bosons, the boson-expansion approach employs exact
pings from the many-fermion to a many-boson Hilbert spa
in such a way as to preserve the Pauli principle. In the typ
treatment of an even-even nucleus, the fermion-pair op
tors, which generate a Lie algebra, are mapped onto fu
tions of boson creation and destruction operators in
algebra-preserving way. Correspondingly, the many-ferm
Fock space is injectively mapped onto a subspace of a m
boson Fock space called the physical subspace. This pr
dure formally replicates the fermion system, including t
full effects of the Pauli principle, within the confines of th
physical subspace, whose orthogonal complement, the
physical subspace, is entirely irrelevant to the many-ferm
problem. The bosonization of the nuclear many-body pr
lem affords a number of advantages~see Ref.@1#!, the chief
one being that anharmonic collective states become elem
tary boson excitations, which can be automatically incor
rated in a boson shell-model of reasonable dimensionality
price to be paid, however, is that noncollective excitatio
also become boson states. While this is nonproblematic f
a formal mathematical viewpoint~even a noninteracting
fermion Hamiltonian can be expressed exactly in terms
bosons!, it is possible, as argued below, that the coupli
between the many noncollective and the few collect
modes slows down the convergence in computations of
latter. Other problems also occur in realistic applications
boson expansions. In some treatments, the fermion spa
drastically truncated to operators generating an approxim
closed subalgebra prior to bosonization. The validity of su
approximations is difficult to gauge. Another problem is t
difficulty of distinguishing physical and unphysical eige
vectors, which may become entangled because of tru
tions.

For these reasons, it is important to study methods
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bosonize only the collective degrees of freedom while allo
ing the noncollective ones to retain their fermion nature. W
refer to such methods asselective bosonization, in contrast to
the traditionalpan-bosonization. Selective bosonization of
fers the possibility of a shell model capable of fully descr
ing collective as well as noncollective states. In this pap
we explore such a formalism within the framework of
simple soluble SU~2! model, namely, the model of Lipkin
Meshkov, and Glick~LMG! @2#, although it can be applied
just as well to other SU~2! models. The springboard for th
formalism is the boson-fermion expansion theory~BFET!
developed by Miyanishi and colleagues@3–5#. The formal-
ism presented here significantly improves upon the origi
BFET in the handling of higher-order corrections and t
subsidiary constraints that define the physical subspace
one regards the BFET as version 1.0, then this is version
which is sufficiently different to merit a renaming—these-
lective unitary bosonizationmethod, with associated acro
nyms SUB or SUBM. Here,unitary refers to the use of uni-
tary transformations to effect the mappings. The BFET a
the SUBM are equivalent in the sense that they generate
same 1/N expansions of physical quantities, but the SUBM
much more convenient in practice, especially because of
simplification of the subsidiary conditions.

Before proceeding to the new developments, it is wor
while to point out that boson-fermion expansions have so
early precedents. For example, in 1965, Yamamura@6#
mapped the fermion Fock space into a tensor product of
fermion space with a boson space in order to describe
degrees of freedom of an odd nucleon added to an even-
system. Marshalek@7,8#, with the same purpose in mind
introduced aboson-quasifermionmapping. The quasifermi-
ons, which describe the states of an odd nucleon, obey a
commutation rules that deviate somewhat from ordinary f
mion anticommutation rules. The deviation is required
satisfy the underlying Lie algebra exactly without introdu
ing redundant degrees of freedom. In both of these examp
the paired fermion degrees of freedom are complet
bosonized. A better example of selective bosonization is p
vided by a formalism, developed independently by Ma
shalek@9,10# on the one hand and by Geyer and Hahne@11#
on the other, in which valence particles and holes added
closed shell are treated as quasifermions while particle-h
©2001 The American Physical Society14-1
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excitations of the closed shell itself are treated as boson
special case of this is the extended Holstein-Primak
~EHP! mapping of the LMG model in Ref.@9#, which is
mathematically isomorphic to the EHP mapping of Suz
and Matsuyanagi@12# that had been applied earlier to th
degenerate pairing model. The close relationship of this
lier work with the present work is discussed later. Anoth
closely related work is that of Kuriyamaet al. @13#, who also
use auxiliary variables to map collective coordinates.

Except for the early effort of Yamamura, all of the abo
examples correspond to boson-quasifermion mappings
contrast to the SUBM discussed here, which is a true bos
fermion mapping. It is argued later that quasifermions
required to satisfy the underlying Lie algebra only when re
resented on Hilbert spaces without redundant degrees of
dom, whereas representations on spaces with redundan
grees of freedom permit the luxury of true fermions. T
price for this, the need for constraints, turns out to be v
minor.

This paper is organized as follows. In Sec. II, the gene
concepts of the BFET are reviewed, the LMG model is
viewed, and the BFET is applied to the LMG model. In th
context, the strengths and weaknesses of the BFET are m
transparent. In Sec. III, the SUBM is introduced and form
lated as an expansion theory in the context of the LM
model. In Sec. IV, closed forms, representing the summa
of the expansions, are derived for the elementary operato
the LMG model. These depend critically on the concept
the principal subspace, defined in Sec. IV.

II. THE BFET AND THE LMG MODEL

We begin by reviewing the main ideas of the origin
BFET @3–5# , which will then be applied to the LMG mode

A. Review of the general BFET

Given a fermion Fock space generated by the ferm
creation and annihilation operatorsck

† and ck , respectively,
one may define a complete set of pair operatorsXm

† , Xm , Bm

in the form

Xm
† 5

1

2 (
kl

Cm~kl !ck
†cl

† , Xm5~Xm
† !†,

Bm5(
kl

Fm~kl !ck
†cl . ~2.1!

The pair-excitation operatorsXm
† are commonly calledpho-

non creation operators, in particular when the coefficie
Cm(kl)52Cm( lk) are obtained from a Tamm-Danco
~TD! @14# calculation, while theBm are calledscatteringop-
erators, with the coefficientsFm(kl) scaled so that all gen
erators have the same order of magnitude. The fermion F
space can correspond to particles or quasiparticles, inclu
particle-holes as a special case. As is well known, the op
tors of Eq.~2.1! generate a closed Lie algebra under comm
tation that is equivalent to the algebra of the group SO(2n).
06431
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In particular, consider the commutator of phonon destruct
and creation operators, which takes the form

@Xm ,Xy
†#5dmy1(

l
Gl~mn!Bl. ~2.2!

The sum on the right, which represents the deviation of
phonons from ideal boson behavior, is, of course, a mani
tation of the Pauli principle. In the traditional pan-bosoniz
mappings for even-even systems, all the generators
mapped onto polynomial functions of perfect bosons so a
satisfy the Lie algebra. Infinite boson expansions, in wh
each phononXm

† is replaced by a corresponding bosonbm
† in

leading order, are predicated on the assumption that the
efficientsGl(mn) are all small. In particular, one attempts
identify an expansion parameter«[1/AV, the exact defini-
tion of which depends on the system. For example, if
generators in Eq.~2.1! all carry good angular momentum
then one can make the identificationV52 j 11, wherej is an
average value for thej-subshells of the system@15#. From the
Racah and Clebsch-Gordan coefficients, it then follows t
the coefficientsGl(mn);O(«2) if the fermion-pair opera-
tors are all scaled asO(1). In reality, however, the presenc
of a formal small parameter is insufficient to guarantee
smallness ofall the coefficientsGl(mn), unless all the
phonons are collective, which is never the case. In gene
then, the deviation from boson behavior in Eq.~2.2! is small
only for the subset of phonons that are truly collective. F
an ideally collective phonon, the coefficientsCm(kl) would
all be of the same magnitude, so that for a superposition oV
pairs one would haveuCm(kl)u51/AV5« and @Xm ,Xm

† #
511O(«2). These conditions are well approximated to t
extent that the phonon approaches the ideal collective lim

The philosophy of the BFET is to employ expansions
which in leading order only collective phonons a
bosonized while noncollective excitations remain fermion
The underlying Hilbert spaceH is taken to be the tenso
product of the Fock space of collective bosonsHB with the
many-fermion Fock spaceHF , or H5HB^ HF . Thus, the
BFET is a formalism employing redundant degrees of fr
dom, which, of course, requires subsidiary conditions. Si
the physics of the many-fermion problem originally resid
in the subspaceHF , the physical states ofH, denoted generi-
cally by uphys&, satisfy the set of conditionsbcuphys&50,
wherebc is any collective boson annihilation operator. Th
next step in the BFET is the introduction of a unitary tran
formation onH given by

U0~u!5exp~2uS0!, ~2.3!

where

S0[(
c

~Xc
†bc2bc

†Xc!, ~2.4!

the sum running over all collective operators, denoted by
indexc. Any operatorO defined onH can be transformed a
O→O(u)[U0(u)OU0

†(u) and expanded in powers of
small parameter« whose scale is set by the coefficien
4-2
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SELECTIVE BOSONIZATION OF THE MANY-FERMION . . . PHYSICAL REVIEW C63 064314
Gl(mn) in Eq. ~2.2! applied to collective phonons only. I
particular, in lowest order the transforms of the collecti
phonon and boson annihilation operators are given by

Xc~u!5Xc cosu1bc sinu1O~«!,

bc~u!52Xc sinu1bc cosu1O~«!. ~2.5!

It then clear that for the choiceu5p/2 the collective
phonons and bosons essentially exchange roles in lowes
der, i.e.,

Xc~p/2!5bc1O~«!, bc~p/2!52Xc1O~«!, ~2.6!

while noncollective phonon operators remain totally u
changed to all orders. The higher orders in Eq.~2.6! involve
both boson and fermion operators.

The next essential step is the transformation of opera
O→Ō[O(p/2)5U0(p/2)OU0

†(p/2), which are obtained
as a power series in«. Since in general the transforms coup
boson and fermion states,U0(p/2) maps the fermion sub
spaceHF onto a certain subspace of the boson-ferm
space, which is the physical subspace. The subsidiary co
tion defining the physical statesuphys& after the transforma-
tion is just given byb̄cuphys&50. In the original BFET, this
condition is a complicated one sinceb̄c mixes bosons and
fermions.

In summary, the BFET, by bosonizing only collective d
grees of freedom, provides a true expansion in a small
rameter, which may converge faster than conventional p
bosonized expansions. The BFET also provides a c
criterion for distinguishing the physical subspace, althou
the condition is rather complicated. In order to clearly bri
out the advantages and shortcomings of the BFET, we
ploy the LMG model in the remainder of the paper. Th
model also points the way to overcome the shortcomin
which is the main topic.

B. The LMG model

The simplest exactly soluble models involve Hamilt
nians constructed from SU~2! quasispin operators. This in
cludes thatsine qua nonof nuclear physics—the LMG
model, which we adopt here as a paradigm. However,
boson-fermion mappings of the generators can also be
plied to other SU~2! models such as the single-shell pairin
model. The LMG model describes particles distribut
among two single-particle levels of equal degeneracy spli
an amounte0. Relative to the closed-shell system withV
particles occupying the lower level, one may define creat
and destruction operators for particles in the upper le
am

† , am , and for holes in the lower levelbm
† , bm , m51,

. . . , V. These operators obey the standard fermion antic
mutation rules

$am ,am8
† %5dmm8 , $bm ,bm8

† %5dmm8 ,

$am ,am8%50, $bm ,bm8%50, and H.c. eqs.,
06431
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$am ,bm8
† %50, $am ,bm8%50, and H.c. eqs.~2.7!

The SU~2! generatorsJ6 and J0 obeying the commutation
rules

@J1 ,J2#52J0 , @J0 ,J6#56J6 ~2.8!

are then defined by

J15 (
m51

V

am
† bm

† , J25~J1!†,

J052
1

2
V1

1

2 (
m51

V

~am
† am1bm

† bm!. ~2.9!

The general Hamiltonian for the LMG model is given by

HLMG5e0J01
1

2
V0J1J21

1

2
V1~J1

2 1J2
2 !, ~2.10!

with coupling constantsV0 andV1. We note in passing tha
if e05V150, then this Hamiltonian reduces to that of th
degenerate pairing model, providing thatV0,0 andam

† and
bm

† are reinterpreted as creation operators for time-reve
conjugate orbitals.

For later reference, we also briefly discuss the nature
the eigenvectors ofHLMG . Since this Hamiltonian lies in the
enveloping algebra of SU~2!, the eigenvectors are, of cours
labeled by the total quasispin quantum numberJ. These
eigenvectors are linear combinations of the basis vectors
an irreducible representation given byug;J,M &, whereM is
the eigenvalue ofJ0, andg is a generic marker for additiona
quantum numbers defining the many-body configurati
Most discussions of the LMG model focus on the so-cal
collective subspaceof the closed-shell system withV par-
ticles, which hasJ5 1

2 V, spanned by the normalized vecto

U0;
V

2
,2

V

2
1n L 5F ~V2n!!

V!n! G1/2

J1
n u0&F , n50,1, . . . ,V,

~2.11!

where the fermion vacuumu0&F[u0;V/2,-V/2&, which is the
~uncorrelated! closed-shell ground state, satisfyingamu0&F
50 andbmu0&F50. However, our treatment is not limited t
the collective subspace, but, in principle, encompasses al
eigenstates ofHLMG . The basis vectors for an SU~2! irrep
for such states are obtained by repeated application of
operatorJ1 to a ‘‘base state’’ with a total ofn particles plus
holes and haveJ5(V2n)/2. For example, for theV
-particle system, one has the following SU~2! multiplets with
J5 1

2 V21 built on a particle-hole excitation:

Um1m2
21 ;

1

2
V21,-

1

2
V111n L

5F ~V222n!!

~V22!!n! G1/2

J1
n am1

† bm2

† u0&F ,

n50, . . . ,V22, m1Þm2. ~2.12!
4-3
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In addition to the closed-shell system, one can also desc
systems with one or more particles or holes added to
closed shell.

C. The BFET applied to the LMG model

In order to assess the advantages and disadvantages
original BFET, we apply it now to the Lipkin model. In thi
model, the smallness parameter is given by«5(1/V)1/2 and
the natural choice for the phonon creation operator is
proportional toJ1 . If one defines the scaled operatorsX†, X
andB by

X†[«J1 , X[«J2 , B[2S 1

2«2
1J0D , ~2.13!

then the SU~2! commutation rules of Eq.~2.8! take the form

@X,X†#512«2B, @X,B#52X and H.c. eq..
~2.14!

It is then obvious that in the limit«→0 (V→`), X andX†

become boson operators, which, in the BFET description,
preempted in lowest order by the collective boson opera
b and b†, respectively. It is also important to note that t
scaling of the SU~2! generators in Eq.~2.13! is chosen to
guarantee that the three operatorsX†, X andB are all of the
same order of magnitude, i.e.,O(1). For later reference, we
also note that

B5n̂[ (
m51

V

~am
† am1bm

† bm!, ~2.15!

i.e., B is operator for the total numbern̂ of particles and
holes.

In line with the discussion in Sec. II A, the Lipkin mode
is assumed to be defined on the extended Hilbert spacH
5HB^ HF , whereHB is the boson Hilbert space generat
by the familiar oscillator vectorsun&B 5(n!) 21/2(b†)nu0&B ,
andHF is the fermion Hilbert space of the LMG model. Th
operatorsb, b† obey the usual boson commutation ru
@b,b†#51. It will be implicitly assumed forthwith that all of
the LMG operators are extended to the full Hilbert spaceH;
thus the Hamiltonian is to be understood asHLMG ^ I B and
any purely bosonic functionf (b†,b) as I F ^ f (b†,b), where
I B and I F are the respective identity operators to the pur
bosonic and fermionic subspaces. It is also convenien
introduce the common boson-fermion vacuumu0&[u0&B
^ u0&F (u0&F being the closed-shell configuration!, which sat-
isfiesXu0&50 andbu0&50. Prior to any transformation, th
physical subspace ofH is, of course, the fermion subspac
HF itself, and the physical vectorsuphys& are the fermion
vectors, which must satisfy the conditionbuphys&50.

Given au-dependent unitary operatorU(u)5exp(2uS),
the transform of an arbitrary operatorO on H will be written
as O(u)[U(u)OU†(u), which must obey a differentia
equation of the Heisenberg type; specifically,

dO~u!

du
5@O~u!,S~u!#5@O~u!,S# ~2.16!
06431
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@note: S(u)5S] subject to the ‘‘initial’’ condition O(0)
5O. This equation will play an essential role in the ne
developments of the next section, but for now we apply it
the BFET case whenS5S0, which, in analogy with Eq.
~2.4!, is given by

S0[X†b2b†X. ~2.17!

The Heisenberg equation forb(u) andX(u) is then readily
evaluated with the aid of the commutators~2.14!, with the
result

db~u!

du
52X~u!,

dX~u!

du
5b~u!2«2B~u!b~u!, and H.c. eqs.~2.18!

Now, the functionB(u) on the right can be evaluated in on
of two ways. First, integration of the differential, Eq.~2.16!,
with O5B leads to

B~u!5B12E
0

u

@X†~u8!b~u8!1b†~u8!X~u8!#du8,

~2.19!

which makes Eqs.~2.18! integro-differential equations
However, there is a simpler method to evaluateB(u) follow-
ing from the observation that

@B12b†b,S0#50. ~2.20!

That is, the quantityB12b†b is invariant under the transfor
mationU(u). This immediately leads to the simpler result

B~u!5B12@b†b2b†~u!b~u!#. ~2.21!

In the limit «→0, Eqs.~2.18! have the harmonic solution
b(u)5b0(u), X(u)5X0(u), where

b0~u!5b cosu2X sinu, X0~u!5b sinu1X cosu.
~2.22!

The differential, Eqs.~2.18!, can then be solved perturba
tively as a power series in«2 as follows:

b~u!5b0~u!1 (
n51

`

«2nbn~u!,

X~u!5X0~u!1 (
n51

`

«2nXn~u!,

B~u!5 (
n50

`

«2nBn~u!, ~2.23!

the expansion ofB(u) being induced by the expansions
b(u) andX(u) through Eq.~2.19! or ~2.21!. In practice, it is
convenient to employ the following second-order different
equation derived from Eqs.~2.18!:
4-4
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d2b~u!

du2
1b~u!5«2B~u!b~u![«2R~u!, ~2.24!

with B(u) given by Eq.~2.21!. Separation of orders the
leads to the following driven-oscillator equations forbn(u):

d2bn~u!

du2
1bn~u!5Rn21~u!, n51,2, . . . ,̀ , ~2.25!

where

Rn~u!5 (
m50

n

Bm~u!bn2m~u!. ~2.26!

It should be noted that the right-hand side~rhs! of Eq. ~2.25!
depends only on previously determined lower orders. Th
y

s
o

r

06431
s,

starting with the zeroth-order solution~2.22!, Eq. ~2.25! can
be integrated in each successive order using the well-kn
solution ~for example, see Ref.@16#!:

bn~u!5ImFexp~ iu!E
0

u

du8exp~2 iu8!Rn21~u8!G ,
Xn~u!52dbn~u!/du

52ReFexp~ iu!E
0

u

du8exp~2 iu8!Rn21~u8!G .
~2.27!

Through order«2, the explicit expressions for the quant
ties in Eq.~2.23! are as follows:
b~u!52Xsinu1bcosu1
1

16
«2@~cosu2cos 3u24u sinu!~2X†Xb1b†X22b†b2!

1~9 sinu1sin 3u212u cosu!X†X21~7 sinu2sin 3u24u cosu!X†b2

28~sinu2u cosu!BX18u sinu Bb22~sinu1sin 3u24u cosu!b†Xb#1O~«4!, ~2.28!

X~u!5Xcosu1bsinu1
1

16
«2@~5 sinu23 sin 3u14u cosu!~2X†Xb1b†X22b†b2!

13~cosu2cos 3u24u sinu!X†X22~3 cosu23 cos 3u14u sinu!X†b2

28~sinu1u cosu!Bb18u sinu BX22~3 cosu23 cos 3u24u sinu!b†Xb#1O~«4!, ~2.29!

B~u!5B1~12cos 2u!~b†b2X†X!1sin 2u~X†b1b†X!

1«2F ~211cos 2u1u sin 2u!X†BX1
1

2
~sin 2u22u cos 2u!~X†Bb1b†BX!2u sin 2ub†Bb

1
1

8
~12cos 4u24u sin 2u!b†2b21

1

8
~928 cos 2u2cos 4u212u sin 2u!X†2X2

2
1

2
~12cos 4u24u sin 2u!X†b†bX2

1

4
~sin 2u1sin 4u26u cos 2u!~X†b†X21X†2bX!

2
1

4
~sin 2u2sin 4u12u cos 2u!~X†b†b21b†2bX!1

1

8
~324 cos 2u1cos 4u!~X†2b21b†2X2!G1O~«4!.

~2.30!
s-
The operatorsb†(u) and X†(u) are, of course, obtained b
Hermitian conjugation of Eqs.~2.28! and~2.29!, respectively
@B(u) is Hermitian#. It should be noted that these expre
sions donot correspond to a Fourier expansion because
the presence of aperiodic terms of the formum sinnu or
um cosnu. This becomes important when operators a
evaluated for the physical valueu5p/2. From now on, we
-
f

e

use the ‘‘bar notation’’ in which the physical unitary tran
form of any operatorO is denoted byŌ as follows:

Ō[O~p/2!5U~p/2!OU†~p/2!. ~2.31!

Thus the operators of Eqs.~2.30! evaluated atu5p/2 are
given by
4-5
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b̄52X1«2F1

2
~2BX1X†X21X†b2!

1
p

8
~2Bb2b†X222X†Xb1b†b2!G1O~«4!,

~2.32!

X̄5b1«2F1

2
~b†X22b†b22Bb12X†Xb!

1
p

8
~2BX2X†b223X†X212b†bX!G1O~«4!,

~2.33!

B̄5B12b†b22X†X1«2S 22X†BX12X†2X21X†2b2

1b†2X21
p

2
~X†Bb1b†BX!1

p

4
~X†b†b21b†2bX!

2
3p

4
~b†X†X21X†2Xb! D1O~«4!. ~2.34!

The numerous terms in Eqs.~2.32!–~2.34! are required to
satisfy the commutation relations

@X̄,X̄†#512«2B̄,@X̄,B̄#52X̄ and H.c. eqs.,

@ b̄,b̄†#51,@ b̄,X̄#5@ b̄,X̄†#5@ b̄,B#50 and H.c. eqs.
~2.35!

through order«2. One observes that some terms are prop
tional to p. In higher orders, one finds powers ofp which
arise from the aperiodic termsum sinnu for odd values ofn
andum cosnu for even values ofn. These ‘‘p terms’’ must
then occur in all transformed operators, including the Ham
tonian, which at first sight may appear a little disturbing, a
p itself were a fundamental coupling constant. However,
physical basis vectors also havep terms that conspire with
the transformed Hamiltonian to guarantee that the eigen
ues and other physical observables are independent op.
This must obviously be the case since a unitary transfor
tion cannot change the eigenvalues.

If one denotes the physical vectors after the transform
tion by uphys&[U(p/2)uphys&, then the condition defining
the physical subspace after the transformation is just

b̄uphys&50. ~2.36!

It is clear from Eq.~2.32! that this condition, which inter-
twines bosons and fermions and depends on«2, is actually
rather complicated. However, we can proceed as follows

Let Pphys be the projection operator to the transform
physical subspace, which is spanned by the statesuphys&. Let
ŌPphys

denote the projection of an arbitrary operator onto t
subspace, i.e.,
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[PphysŌPphys. ~2.37!

From Eqs.~2.32! and ~2.36!, it is readily seen that

Xuphys&5«2S p

8
b†b21

1

2
X†b21

p

4
BbD uphys&1O~«4!.

~2.38!

Thus, the operatorsX annihilate all physical states throug
order«, but not higher orders. From Eq.~2.38! and its H.c.,
it follows that in the projection of the operatorsX̄ and B̄
given above, all terms involvingX andX† may be dropped
through order«2. Therefore,

X̄Pphys
5PphysFb2

1

2
«2~b†b21Bb!GPphys1O~«4!,

B̄Pphys
5Pphys~B12b†b!Pphys1O~«4!. ~2.39!

We note that the ‘‘p terms’’ are automatically eliminated in
the physical subspace throughO(«2). Explicitly including
the next order gives the result

X̄Pphys
5PphysFb2

1

2
«2~b†b21Bb!2

1

8
«4H S 12

p2

16Db†2b3

2
p2

8
b†b21S 12

p2

4 DbB2

1S 22
p2

4 Db†b2BJ GPphys1O~«6!,

B̄Pphys
5Pphys~B12b†b!Pphys1O~«6!. ~2.40!

One observes that the ‘‘p terms’’ arise again inO(«4) of
X̄phys , the boson part of which is obviously different from
the corresponding expansion of the Holstein-Primakoff~HP!
boson map@17# beyondO(«2):

XHP5~12«2b†b!1/2b5b2
1

2
«2b†b2

2
1

8
«4~b†2b31b†b2!1O~«6!,

BHP52b†b. ~2.41!

Note that the boson part ofB̄phys, however, happens to co
incide withBHP .The discrepancy betweenX̄physandXHP, of
course, does not mean Eq.~2.40! is incorrect. Instead, it
should be attributed to the fact that the physical vectors
the BFET deviate from pure boson states in higher ord
Indeed, the physical states in general are complicated su
positions of boson-fermion states.

Now, we can proceed as follows. Letun&
[(n!) 21/2b†nu0&5un&B^ u0&F be the orthonormal set ofpur
boson states defined onH. With the aid of Eq.~2.32!, one
then obtains
4-6
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b̄un&5
1

2
«2S X†b21

p

4
b†b2D un&1O~«4!, ~2.42!

where the rhs expresses the deviation of the vectorun& from
physicality. Althoughun& is not a purely physical state, it ca
be employed to construct a corresponding physical stateun&
by means of a unitary transformation. Thus,un& is defined
through order«2 by an infinitesimal unitary transformatio
as follows:

un&[exp~«2F !un& ,b̄un&5O~«4!, ~2.43!

where F is a suitable anti-Hermitian operator ofO(«0).
From Eqs.~2.32! and~2.43!, the explicit form ofF is readily
found to be

F5
1

4
~X†2b22b†2X2!1

p

8
~X†b†b22b†2bX!.

~2.44!

The calculation of matrix elements between the phys
states is straightforward with the help of the relationsXun&
5Bun&50 and their Hermitian conjugates, yielding the r
sults

^n8uX̄Pphys
un&5^n8ub2

1

2
«2b†b22

1

8
«4~b†2b31b†b2!un&

1O~«6!,

^n8uB̄Pphys
un&5^n8u2b†bun&1O~«6!, ~2.45!

which are identical to the HP matrix elements between p
boson states to the given order. This demonstrates for a
tain subspace of states the possibility of going from
BFET to the HP expansion via a unitary transformation. W
also note that the second of Eqs.~2.45! follows from the
invariance implied by@B12b†b,F#50.

In summary, the BFET does provide a well-defined e
pansion in the small parameter«, as long as the subsidiar
condition defining the physical states is properly taken i
account. However, there are some significant drawba
First, the constraint defining the physical subspace is gi
in the form of an expansion in«2, and the pure boson state
are not automatically physical states except for the low
order. According to the general argument given in Ref.@3#, if
the states are physical inO(«n) then the matrix elements o
any transformed fermion operator between these states
correctly given inO(«n12). Therefore BFET gives the cor
rect matrix elements for any transformed fermion opera
automatically up toO(«2). However if one goes on to highe
order thanO(«2) it is necessary to manipulate both the o
erator and the subsidiary condition in expansion form.
avoid this complexity, we have to seek an expansion
which the physical states are« independent. Another relate
drawback is the existence of thep terms in the expansion
Since these are canceled by the associatedp terms in the
physical basis vectors, one must deal with a surfeit of se
ingly unnecessary terms. Since thesep terms arise from the
06431
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aperiodic coefficients, they would disappear if a purely pe
odic expansion could be found. The argument in the prec
ing paragraph points the way to overcoming both drawbac
Namely, by using successive infinitesimal unitary transf
mation, one may attempt to generate a modified BFET tra
formation in which the physical states are« independent and
the p terms are absent. However, since a product of unit
transformations is equivalent to a single unitary transform
tion, it is reasonable to seek an extended unitary transfor
tion generated by an operator of the form

S5S01DS, ~2.46!

where DS is O(«2). Can DS be chosen to remove all th
drawbacks of the original BFET? Furthermore, can one fi
an operatorS that allows a closed summation of the expa
sions? As demonstrated in the next two sections, the ans
to these rhetorical questions are, of course, both affirma
~otherwise, we would not have much of a paper!.

III. THE SUBM: « EXPANSIONS

In this section we present the solution to the proble
discussed at the end of the previous section. This modifi
tion of the BFET will be called theselective unitary
bosonization methodor SUBM. The SUBM can be devel
oped along two lines: either as an expansion formalism
powers of« as was done for the BFET, or in terms of clos
forms, which represent the summations of the expansions
this section, we develop the expansion formalism. In ap
cations to realistic cases, it is the expansions that are of m
practical use while closed forms may not always be achi
able. However, since in the SU~2! model it is possible to
obtain exact closed forms, these are discussed in the su
quent section. The closed forms are important for asses
the global validity of the mappings on the Hilbert space
question and also to make contact with previous work
SU~2! models.

A. General formulation of the SUBM

The SUBM is formulated on the same boson-fermion H
bert space as the BFET and the notations are all the sam
is not our intention to provide the most general solution
the ‘‘p problem’’ but rather the simplest solution. To th
end, we introduce the unitary transformation

U~u!5exp~2uS!, ~3.1!

with the generatorS having the form

S5Y†b2b†Y, ~3.2!

whereY and its Hermitian conjugateY† are assumed to be
pure fermionic operators, which, of course, commute wi
the boson operatorsb andb†. Furthermore, it is assumed tha
in zeroth orderY andX coincide, i.e.,
4-7
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Y5X1DY, ~3.3!

whereDY is O(«). Therefore,

S5S01DS, ~3.4!

where S0 is given by Eq. ~2.17! while DS5(DY)†b
2b†DY is O(«) . Thus the BFET and the SUBM coincide i
zeroth order.

We continue to use the notationO(u)[U(u)OU†(u) for
the unitary transform of a generic operatorO. From Eq.
~2.16! applied to the operatorsb and Y, one readily obtains
the pair of differential equations

db~u!

du
52Y~u!,

dY~u!

du
5@Y~u!,Y†~u!#b~u! ~and H.c. eqs.! ~3.5!

which also implies the second-order equation

d2b~u!

du2
52@Y~u!,Y~u!†#b~u!. ~3.6!

It is immediately obvious thatb(u) would be a simple har-
monic function ofu if the commutator@Y(u),Y(u)†# were a
positive constant, which would also makeY(u) a harmonic
function. If one takes into account the zero-order requ
ments

lim
«→0

b~u!5b0~u!5b cosu2X sinu,

lim
«→0

X~u!5X0~u!5b sinu1X cosu, ~3.7!

as well as the initial valuesb(0)5b, Y(0)5Y, one finds in
fact that the condition making these functions harmonic
@Y(u),Y(u)†#51 , which is equivalent to theu-independent
condition

@Y,Y†#51. ~3.8!

But this means thatY andY† would have to be, respectively
boson destruction and creation operators.

Is it possible to construct boson operators on a ma
fermion space? Since it is certainly possible to construct
mionic operators on a boson space, which is just the u
boson mapping, why not the reverse? There is just one g
eral obstacle we are aware of, namely, the dimensionalit
the Hilbert space. As is well known~see, for example, Ref
@18#!, a pair of boson operators satisfying Eq.~3.8! can only
exist on an infinite-dimensional space. The fermion spac
06431
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the present model is clearly of finite dimension. A clos
examination of the proof, which depends on a closure ar
ment, reveals that it depends on the assumption that the
son operators are well defined over the entire space, whic
then invariant under these operators.1 However, the proof
does not rule out the possibility that a pair of operators c
obey the boson commutation rule on anoninvariant sub-
spaceof the many-fermion space but not obey the rule on
whole space. If the subspace includes the ground state a
sufficiently large, a physically meaningful theory can be d
veloped. In the next subsection, it is shown that, in fact, th
is no problem in finding fermion operators satisfying E
~3.8! as expansions in powers of«. Subsequently, a globa
operator corresponding to this series is constructed, wh
clearly demarcates its domain. The operatorsY andY† will
be referred to asfermionic boson~FB! operators.

Before leaving this subsection, we note that with Eq.~3.8!
taken into account, the solution of Eq.~3.5! satisfying the
conditions~3.7! as well as the initial-value conditions is jus

b~u!5b cosu2Y sinu,

Y~u!5b sinu1Y cosu, and H.c. eqs. ~3.9!

B. Series expansions of pair operators in the SUBM

It is natural to seek expansions ofY andY† as polynomi-
als in the generatorsX, X†, andB. In fact, one finds that the
series can be written in the form

Y5GX, Y†5X†G, ~3.10!

whereG is the Hermitian operator given by the expansion

G[12 (
n51

`

(
m50

n

«2nc~n,m!~X†!mBn2mXm, ~3.11!

where the coefficientsc(n,m), which are allO(1), are ex-
panded in powers of«2 and determined by the requireme
that the boson commutator~3.8! be fulfilled order by order in
«2. In each order, this condition leads to a set of linear eq
tions for the undetermined coefficients. We found it ve
convenient to carry out this procedure using the compu
algebra systemREDUCE 3.6, which easily handles noncom
muting operators. As an example, the solution forY through
O(«6) is given by2

1An elementary proof by contradiction is provided by observi
that on a finite-dimensional vector space, the trace of a commut
always vanishes, while the trace of the identity is the dimension
the vector space. We note that the proof given in Ref.@18# shows
instead that boson operators are unbounded.

2We actually successfully obtained the solution through order«14

in about 3 min on a 333 MHz Pentium II machine running Wi
dows NT 4.0.
4-8
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Y5X2
1

2
«2~X†X22BX!2

1

8
«4~9X†X227X†2X3110X†BX223B2X!

2
1

32
«6~70X†X22234X†2X3166X†3X41126X†BX22126X†2BX3170X†B2X2210B3X!1O~«8!. ~3.12!

This form is in normal order with respect to the fermion creation and destruction operators. However, one can also r
so thatG is a function ofX†X andB. To facilitate a later comparison it is convenient to writeY5XG8 with G8 a function of
X†X andB. Then Eq.~3.12! corresponds to

Y5XF12
1

2
«2~11X†X2B!1

1

8
«4
„3110X†X17~X†X!226B13B2210X†XB…2

1

32
«6
„10170X†X1126~X†X!2

166~X†X!3230B130B2210B32140X†XB170X†XB22126~X†X!2B…G1O~«8!. ~3.13!
ng
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Equations~3.12! and ~3.13! are rearrangements representi
one and the same operator. Therefore, while one migh
tempted to impose the Pauli constraints (X†)V1150 and
(X)V1150 on the expansion~3.12!, this would be incorrect
since it is impossible to impose these constraints on
~3.13!. The later discussion in Sec. IV A makes it clear th
the Pauli principle arises from the cutoff on the fermion ve
tor space rather than from constraints placed on the op
tors.

Having obtained the solution forY and Y†, one is in a
position to obtain the« expansions ofu-dependent operator
and, in particular, the values foru5p/2. We first consider
the derivation ofB(u). One observes first that the operatorG
defined by Eq.~3.11! does not change the eigenvalue ofJ0
or, equivalently,B. Therefore, it follows that@G,B#50 and
from Eqs.~2.14! and ~3.10!

@Y,B#52Y. ~3.14!

From Eq.~3.2! for S, it is then easily calculated that

@S,B12b†b#50, ~3.15!

or, in other words, the operatorB12«b†b is invariant under
the general unitary transformationU(u) just as in the BFET.
Consequently,B(u) is given by Eq.~2.21!, which, together
with the first of Eqs.~3.9!, provides the following exact re
sult:
06431
e
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B~u!5B1~12cos 2u!~b†b2Y†Y!1sin 2u~Y†b1b†Y!.
~3.16!

The « expansion ofB(u) can then be obtained from th
expansions ofY andY†.

To obtain the expansion ofX(u) requires more work.
From the unitary transformation of Eq.~3.3! written as
X(u)5Y(u)2DY(u), with DY(u)5@G(u)21#X(u), to-
gether with Eqs.~3.9! and ~3.11!, one obtains

X~u!5Y cosu1b sinu1 (
n51

`

(
m50

n

«2nc~n,m!

3@X†~u!#mB~u!n2m@X~u!#m11. ~3.17!

Since on the right-hand side, the first two terms have
zeroth-order part equal toX0(u), while the sum isO(«), the
« expansion ofX(u) can be obtained through successi
approximations beginning withX0(u). Of course, the known
expansions ofY and B(u) to the appropriate order must b
substituted first, together with the previously determined
efficients c(n,m). Substitution of the expansionX(u)
5(k50

n21«2kXk to order 2n22 then determinesX(u) to order
2n. SinceB(u) is periodic and the zeroth-order valueX0(u)
is periodic, the expansion generated must be periodic. Th
fore, the aperiodic terms that give rise to thep problem in
the BFET cannot occur in the SUBM. As an example,X(u)
through order«4 is given by
X~u!5X cosu1b sinu1
1

8
«2@~3 sinu2sin 3u!~2X†Xb2b†b2!1~cosu2cos 3u!~X†X22X†b222b†Xb!

2~sinu1sin 3u!b†X224 sinuBb#1
1

16
«4@~3 sinu2sin 3u!~6X†BXb2b†Bb2!

12~cosu2cos 3u!~2X†BX22X†Bb222b†BXb!23~sinu1sin 3u!b†BX222 sinuB2b#1O~«6!. ~3.18!
4-9
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Not only are the aperiodic terms absent here, but bey
O(«) the periodic terms have different coefficients than
the BFET counterpart, Eq.~2.29!.

The transformed operators of physical importance co
spond to the valueu5p/2. We continue to use the notatio
Ō[O(p/2) for an arbitrary operatorO. Then from Eqs.
~3.9! one immediately obtains

b̄52Y, Ȳ5b, and H.c. eqs., ~3.19!

and from Eq.~3.16!,

B̄5B12~b†b2Y†Y!, ~3.20!

which has the expansion

B̄5B12~2X†X1b†b!12«2~2X†2X22X†BX!

12«4~3X†2BX22X†B2X!1O~«6!. ~3.21!

Now, X̄ can, of course, be obtained by settingu5p/2 in the
solution @Eq. ~3.18!# of Eq. ~3.17!. However, it is much
faster to directly solve the counterpart of Eq.~3.17! for u
5p/2, namely,

X̄5b1 (
n51

`

(
m50

n

«2nc~n,m!X̄†mB̄n2mX̄m11, ~3.22!

beginning with the zeroth-order valueX05b. This results in
the expansion

X̄5b1«2S X†Xb2
1

2
Bb2

1

2
b†b2D

1«4S 1

2
X†Xb2

3

2
X†2X2b1

1

2
b†X†Xb22

1

8
B2b

1
3

2
X†BXb2

1

4
b†Bb22

1

8
b†b22

1

8
b†2b3D

1O~«6!, and H.c. eq. ~3.23!

Finally in this subsection, we briefly discuss the auxilia
condition in the SUBM. In accord with the earlier discussio
the general condition is given byb̄uphys&50, whereuphys&
[U(p/2)uphys&. However, from Eq.~3.19!, this implies that

Yuphys&50. ~3.24!

If the operatorG has an inverse on the domain ofY, and we
show later~Sec. IV A! that it does, then from Eq.~3.10! the
auxiliary condition simplifies to

Xuphys&50. ~3.25!

In fact, using the« expansion ofG, one can derive a con
comitant expansion ofG21, but this is insufficient to estab
lish the domain.
06431
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C. Expansion of single-fermion operators

A complete theory requires not only the transformation
fermion-pair operators, but also the transformation of sing
fermion operators, which are required for the description
one-nucleon transfer processes and chains of nuclei with
ferent particle numbers. In this subsection we describ
straightforward technique for obtaining the« expansions of
single-fermion operators using the ‘‘equations of motion
In the next subsection, we present an alternative formal
that permits the transformation of both single-fermion a
pair operators within the same algorithm.

We begin by noting that the single-fermion operatorsam
†

andbm are components of a rank-1/2 SU~2! spherical tensor,
while bm

† and am are the corresponding components of t
H.c. tensor. Indeed, the commutators with the SU~2! genera-
tors of Eqs.~2.9! are given by

@J0 ,am
† #5

1

2
am

† , @J0 ,bm#52
1

2
bm ,

@J1 ,am
† #50, @J2 ,am

† #5bm ,

@J1 ,bm#5am
† , @J2 ,bm#50, and H.c. eqs.

~3.26!

In terms of the generatorsX, X† andB, the equivalent com-
mutators are

@B,am
† #5am

† , @B,bm#52bm ,

@X†,am
† #50, @X,am

† #5«bm ,

@X†,bm#5«am
† , @X,bm#50, and H.c. eqs.

~3.27!

The ‘‘equations of motion’’ for the single-fermion operato
follow from Eq. ~2.16!, namely,

dam
† ~u!

du
5@am

† ~u!,S~u!#,

dbm~u!

du
5@bm~u!,S~u!#, and H.c. eqs.,~3.28!

where the expansion ofS(u)5Y(u)†b(u)2b†(u)Y(u) has
been previously determined. The formal solution of the
equations satisfying the initial valuesam

† (0)5am
† and

bm(0)5bm is

am
† ~u!5am

† 1E
0

u

@am
† ~u8!,S~u8!#du8,

bm~u!5bm1E
0

u

@bm~u8!,S~u8!#du8, and H.c. eqs.

~3.29!

From the commutators~3.27! and the expansions ofY(u)
andY†(u) it is obvious that the integrals in Eqs.~3.29! are
O(«). Therefore, the« expansions ofam

† (u) andbm(u) can
4-10
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be obtained by successive approximations beginning with
zeroth-order valuesam

† (0)5am
† and bm(0)5bm . This ap-

proach was easily set up usingREDUCE 3.6. Once the solu-
tions are obtained to a given order, they may be evaluate
u5p/2. Since higher-order terms become very numero
we give the explicit results for theu-dependent operator
only through order«2:

am
† ~u!5am

† 2«@~12cosu!X†2sinub†#bm

2
1

4
«2@~324 cosu1cos 2u!X†X1sin 2uX†b

2~4 sinu2sin 2u!b†X1~12cos 2u!b†b#am
†

1O~«3!, and H.c. eq.,

bm~u!5bm1«@~12cosu!X2sinub#am
†

2
1

4
«2@~324 cosu1cos 2u!X†X1sin 2ub†X

2~4 sinu2sin 2u!X†b1~12cos 2u!b†b

14~12cosu!#bm1O~«3!, and H.c. eq.

~3.30!

The final transformed fermionsām
† [am

† (p/2), etc., through
order«3 are given by

ām
† 5am

† 1«~2X†1b†!bm

1«2S 2
1

2
X†X1b†X2

1

2
b†bDam

†

1«3S 1

2
X†1

3

2
X†2X2X†B2

3

2
b†X†X

1
1

2
b†B1

1

2
b†X†b2b†Dbm1O~«4!,

b̄m5bm1«~X2b!am
†

1«2S 2
1

2
X†X1X†b2

1

2
b†b21Dbm

1«3S 3

2
X†Xb2

3

2
X†X22X1BX

2
1

2
Bb2

1

2
b†Xb1

1

2
bDam

† 1O~«4!,

b̄m
† 5bm

† 1«~X†2b†!am

1«2S 2
1

2
X†X1b†X2

1

2
b†bDbm

†

1«3S 2
1

2
X†2

3

2
X†2X1X†B1

3

2
b†X†X

2
1

2
b†B2

1

2
b†X†b1b†Dam1O~«4!,
06431
e
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ām5am1«~2X1b!bm
†

1«2S 2
1

2
X†X1X†b2

1

2
b†b21Dam

1«3S 2
3

2
X†Xb1

3

2
X†X21X2BX

1
1

2
Bb1

1

2
b†Xb2

1

2
bDbm

† 1O~«4!. ~3.31!

Here, the H.c. of each operator is explicitly listed since
standard form is employed in which the single-fermion o
erators always appear on the far right, entailing rearran
ment after Hermitian conjugation. As is readily checke
these operators obey the fermion anticommutation ru
through the given order in«.

D. A universal framework for transforming arbitrary
fermion operators

While the above methods for obtaining the« expansion of
the unitary transforms of fermion operators are sufficien
different approach was used for each type of operator. Th
exists another method whose appeal is that a single fra
work, indeed, a single algorithm can be implemented
arbitrary fermion operators. This formalism is an extens
of one first used by Villars@19# for introducing collective
canonically conjugate operators into a Hamiltonian. Ho
ever, here we apply it to boson operators, which was ap
ently first done in Ref.@12#. Since the derivations were omit
ted there, we provide them in the Appendix.

Let O be an arbitrary fermion operator and letY, Y† be
fermionic bosons, i.e., fermion operators obeying Eq.~3.8!
on some subspace of the fermion space, which will be
‘‘arena of action’’ in the ensuing discussion. From a form
viewpoint, the operators could be defined on any kind
space, not necessarily a many-fermion one, the main requ
ment being the existence of a boson degree of freedom
resented by the pairY, Y†. Corresponding to the generi

operatorO, we introduce the fermion operatorO7 defined by
the formal infinite series

O7 [(
k50

`

(
l 50

`
1

k! l !
~2Y†!kO~k,l !Yl , ~3.32!

whereO(k,l ) is the iterated commutator

~3.33!

andO(0,0)[O. It is then easily shown~see the Appendix!

that O7 has the property

@Y,O7 #50, @Y†,O7 #50, ~3.34!
4-11
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which means thatO7 is invariant under the unitary transfor
mation U(u). While every fermion operator has an asso
ated invariant, in some cases it may be trivially zero. To
given order in«, only a finite number of terms contribute t
the series~3.32!. For example, for the single-fermion oper

tors am
† and thebm , the corresponding invariantsa° m

† and

b° m , respectively, are given through order«4 by

a° m
† 5am

† 2«X†bm2
1

2
«2 X†Xam

†

1«3S 1

2
X†1

3

2
X†2X2X†BDbm

1«4S 3

8
X†X1

11

8
X†2X22X†BXDam

†

1O~«5!, and H.c. eq.,

b° m5bm1«Xam
† 2«2S 1

2
X†X11Dbm

2«3S 3

2
X†X21X2BXDam

†

1«4S 19

8
X†X1

11

8
X†2X2212X†BX2BDbm

1O~«5!, and H.c. eq. ~3.35!

As proven in the Appendix, the operatorO has the formal
decomposition

O5 (
k50

`

(
l 50

`
1

k! l !
O7 ~k,l !Y†k~2Y! l , ~3.36!

where (k,l ) is the invariant associated with the multip
commutatorO(k,l ). Although this decomposition is a forma
identity, it becomes valuable when both sides are tra
formed, leading immediately to the result

O~u!5 (
k50

`

(
l 50

`
1

k! l !
O7 ~k,l !@Y†~u!#k@2Y~u!# l ,

~3.37!

which for u5p/2 becomes

Ō5 (
k50

`

(
l 50

`
1

k! l !
O7 ~k,l !~b†!k~2b! l . ~3.38!

In order to obtainO(u) or Ō to a given order in«, only a

finite number of the operator coefficientsO7 ~and a finite
number of iterated commutators! need to be evaluated, whic
can be done very efficiently with computer algebra. Eq
tions ~3.37! and~3.38! can be applied toany fermion opera-
tor, be it a pair operator, a single-particle operator, o
Hamiltonian with interactions. Moreover, it is not necessa
to calculateO(u) in order to obtainŌ, which can be evalu-
06431
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ated directly. This provides an advantage over the met
described above for the single-fermion operators. We wro
REDUCE procedure that evaluates Eqs.~3.37! or ~3.38! for
any fermion operator. This reproduces the results prese
above for the transformation ofX and the single-fermion
operators but the calculation is much faster. Moreover,
universal algorithm has the advantage of being readily ap
cable to more realistic nuclear shell models.

IV. THE SUBM: CLOSED FORMS

The previous section described methods for obtaining
«-expansions of transformed operators. In this section
discuss how to obtain the transformed operators in a clo
form within the framework of the SU~2! model. While this
approach is not immediately applicable to the general cas
provides insight into the validity of the treatment in Sec. I

A. Closed forms for Y and Y†

As discussed in Sec. II, eigenvectors ofHLMG are linear
combinations of the basis vectorsug;JM& belonging to an
irreducible representation of the group SU~2!. Since the to-
tality of these basis vectors is complete on the Lipkin-mo
Hilbert space, an arbitrary fermionic operatorÔF can be ex-
pressed in the following dyadic form:

ÔF5 (
g,g8

(
J,J8

(
M52J

J

(
M852J8

J8

^g8;J8,M 8u

3ÔFug;J,M &ug8;J8,M 8&^g;J,M u. ~4.1!

Thus, the quasispin operators are expressed as

J25(
g,J

(
n50

2J

An~2J2n11!ug;J,2J1n21&

3^g;J,2J1nu,

J15~J2!†, ~4.2!

J05(
g,J

(
n50

2J

~n2J!ug;J,2J1n&^g;J,2J1nu, ~4.3!

where we setM52J1n.
We define the invariant operatorĴ as

Ĵ5(
g,J

(
n50

2J

Jug;J,2J1n&^g;J,2J1nu, ~4.4!

which satisfies the following relations:

Ĵug,J,2J1n&5Jug,J,2J1n&, ~4.5!

@ Ĵ,J6#5@ Ĵ,J0#50, ~4.6!

Ĵ~ Ĵ11!5J0
26J01J7J65J2, ~4.7!

whereJ2 is the Casimir operator.
4-12
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Next, we introduce the fermionic boson destruction ope
tor Y by

Y5(
g,J

(
n50

2J

Anug;J,2J1n21&^g;J,2J1nu, ~4.8!

in analogy with the dyadic representation of the boson
struction operator

b5 (
n50

`

Anun21&^nu, ~4.9!

whereun& denotes the normalizedn-boson state. The use o
the labelY is justified below. From Eq.~4.8! and its H.c. we
immediately obtain

Yug;J,2J1n&5Anug;J,2J1n21&, n50,1,. . . ,2J,
~4.10!

Y†ug;J,2J1n&5An11ug;J,2J1n11&,

n50,1,. . . ,2J21, ~4.11!

Y†ug;J,J&50. ~4.12!

Thus, within each SU~2! irrep, the operatorY corresponds to
a boson destruction operator with vacuumu0&5ug;J,2J&,
while Y† corresponds to a boson creation operator,exceptfor
the maximally aligned stateug;J,J&. Therefore, the fermi-
onic bosons provide an example oftruncated bosons, whose
mathematical properties are discussed by Hammel in an
ternet publication@20#. Of course, Eq.~4.12! represents the
inevitable cutoff required by the finite dimensionality
SU~2! irreps.

The fermionic phonon number operatorNY is defined as

NY[Y†Y, ~4.13!

the dyadic form of which, derived from Eq.~4.8! and its
H.c., is

NY5 (
n50

2J

nug,J,2J1n&^g;J,2J1nu. ~4.14!

It is then easily shown that

NYug;J,2J1n&5nug;J,2J1n&, n50,1,. . . ,2J,
~4.15!

@NY ,Y†#5Y†, @NY ,Y#52Y, ~4.16!

NY5 Ĵ1J0. ~4.17!

The commutation relation betweenY and Y†, obtained
from Eq. ~4.8! and its H.c., is

@Y,Y†#512~2Ĵ11!P⇑ , ~4.18!

whereP⇑ is the projector to the subspace of maximally sp
aligned vectors, i.e.,
06431
-

-

n-

-

P⇑[(
gJ

ug;J,J&^g;J,Ju. ~4.19!

Thus, the boson commutation rule@Y,Y†#51 holds only
within the subspace spanned by vectorsug;J,M & with M
ÞJ, but not in the subspace of maximally aligned vecto
ug;J,J&. It should be noted that Eqs.~4.18! and~4.19! guar-
antee that Tr@Y,Y†#50 on the full fermion space, as re
quired by its finite dimensionality.

Noticing that

~ Ĵ2J0!ug;J,2J1n&5~2J2n!ug;J,2J1n&,

one obtains the following closed form ofY from Eqs.~4.2!
and ~4.8!:

Y5J2

1

AĴ2J011
. ~4.20!

The rhs of this expression is equivalent to (1/AĴ2J0)J2

unless acting on bra vectors in the maximally aligned s
space, where the inverse square root operator breaks d
To verify that Eq.~4.20! gives the«-expansion forY ob-
tained in Sec. III, one may proceed as follows. As a root
the quadratic equation in Eq.~4.7!, Ĵ is given in terms ofJ0
andJ6 by

Ĵ52
1

2
1A1

4
1J0~J021!1J1J2.

Therefore,AĴ2J011 can be expressed in terms ofX†X and
B using Eq.~2.13!. In this way we finally obtain

Y5X
1

A1

2
~11«22«2B!1

1

2
A~11«22«2B!214«2X†X

.

~4.21!

This expression represents the summation of the«-expansion
given by Eqs.~3.10! and~3.11!. Indeed, it was directly con-
firmed to very high orders in« that the Taylor expansion o
Eq. ~4.21! coincides with the expansion~3.13!, and when
written in normal order, with Eq.~3.12!.

The explicit construction ofY andY† presents us with a
conundrum—we have consistently assumed the rela
@Y,Y†#51 in all derivations in Sec. III, while the actua
commutation rule given by Eq.~4.18! involves the projector
P⇑ . Some insight is provided by an explicit representation
this projector. From Eq.~4.20! and the relationJ1J25( Ĵ
1J0)( Ĵ2J011), it follows that

@Y,Y†#5J2

1

Ĵ2J011
J12~ Ĵ1J0!. ~4.22!

Comparison with Eq.~4.18! identifies the projector as
4-13
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P⇑5
1

2Ĵ11
S Ĵ1J0112J2

1

Ĵ2J011
J1D

5
1

2Ĵ11
~ Ĵ1J0112YY†!. ~4.23!

This representation is well defined on the entire ferm
space. What is remarkable upon first examination is that
« expansion ofP⇑ turns out to be precisely zero. This seem
to justify a posteriori the use of the boson relation@Y,Y†#
51 in deriving« expansions. The reason for the vanishi
of the expansion is easily comprehended. The te
J2@1/(Ĵ2J011)#J1 has the same« expansion as the ex
pression @1/(Ĵ2J0)#J2J15@1/(Ĵ2J0)#( Ĵ2J0)( Ĵ1J011)
5 Ĵ1J011, but the latter, involving 1/(Ĵ2J0) is valid only
in the subspace thatexcludesthe maximally aligned vectors
ug;J,J&. We thus return to the same conclusion reached
paragraphs ago. But now, the inevitability of@Y,Y†#51 in a
Taylor expansion may be better appreciated. Taylor exp
sions are inherently insensitive to cutoffs. The analogy m
be made to the Taylor expansion of an attractive poten
well about its minimum—the expansion cannot distingu
between an infinite well and one of finite depth.

A key question remains to be resolved: in which subsp
of the boson-fermionspace areb(u) and Y(u) harmonic
functions, as given by Eq.~3.9!? This is taken up in the nex
subsection.

B. The principal subspace

SinceY andY† are truncated rather than true bosons, E
~3.9! cannot hold over the entire boson-fermion space.
deed, direct evaluation ofb(u) and Y(u) using the multi-
commutator expansion of the unitary transformation@some-
times referred to as the Baker-Campbell-Hausdorf~BCH!
expansion#, indicates that in addition to the cosu and sinu
terms there is a huge number of terms involving higher h
monics that depend~linearly, of course! on the projectorP⇑ .
While, in principle, the additional terms define the action
the whole boson-fermion space, this BCH series is imp
sible to sum in practice. Nevertheless, we show that the
monic solution forb(u) andY(u) can be realized, not on th
whole boson-fermion space, but on a certain subspace
we call theprincipal subspace. This restriction, as it turns
out, is perfectly adequate to allow us to achieve our aim

As a preliminary to constructing the principal subspa
we study the properties of a basis for the entire bos
fermion spaceH. Now, in accord with the H.c. of Eqs.~4.8!
or ~4.20!, the basis vectorsug,J2J1n& for the purely fer-
mionic subspace can be written as

ug;J,2J1n&5
1

An!
~Y†!nug;J,2J&. ~4.24!

Therefore, a set of orthonormal basis vectors for the wh
boson-fermion space is represented by the product state
06431
n
e

o

n-
y
al

e

.
-

r-

s-
r-

at

,
-

le

u$g,J%;n,n&[
1

An! ~n2n!!
~b†!n2n~Y†!nug;J,2J&;

;$g,J%, n50,1, . . . ,2J; n5n,n11, . . . . ~4.25!

Here, the fermion vectors are implicitly extended to the e
tire boson-fermion space, so thatug,J,2J1n& is to be inter-
preted asu0&B^ ug,J,2J1n&F , etc. Also, in this notation

u$g,J%;n,n&5ug;J,2J1n&, ~4.26!

which is a pure fermion vector. For later reference, we n
here thatbu$g,J%;n,n&50.

If one defines the total phonon numberNt as

Nt5Nb1NY , ~4.27!

whereNY is defined by Eq.~4.13! andNb is the boson num-
ber operator

Nb[b†b, ~4.28!

then the basis vectorsu$g,J%;n,n& have the following prop-
erties:

Nbu$g,J%;n,n&5~n2n!u$g,J%;n,n&,

NYu$g,J%;n,n&5nu$g,J%;n,n&,

Ntu$g,J%;n,n&5nu$g,J%;n,n&. ~4.29!

Since @Nt ,Y
†b#5@Nt ,b

†Y#50, Nt also commutes withS
and therefore with the unitary transformationU(u) gener-
ated byS. As a consequence, under this unitary transform
tion, each fermion basis vector remains an eigenvector ofNt ,
and, therefore, may be expanded in the set of all such eig
vectors with the same eigenvaluen as follows:

U~u!u$g,J%;n,n&

5 (
n50

2J

^$g,J%;n,nuU~u!u$g,J%;n,n&u$g,J%;n,n&,

n50,1, . . . ,2J. ~4.30!

Thus, if $uCF( i )&% is any basis for the fermion subspac
then the image basis$U(u)uCF( i )&% for any u can be ex-
panded in a subset of the basis~4.25!, with the property that
the total number of phononsn<2J<2V. The subspace gen
erated by the latter subset is what we call the principal s
space. The formal definition is as follows: theprincipal sub-
spaceH0 of the whole boson-fermion spaceH is the set

H0[span$u$g,J%;n,n&:;$g,J%;n50,1,2, . . . ,2J;

n50,1,2, . . . ,n%. ~4.31!

Note thatH0.HF , the entire fermion subspace, and, al
H0.Hphys, the entire physical subspace, generated by
image basis$U(p/2)uCF( i )&%.
4-14
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We now consider the restriction of any operator to t
principal subspace. To do so, we introduce the projec
operatorP0 to the principal subspaceH0, namely,

P0[(
g,J

(
n50

2J

(
n50

n

u$g,J%;n,n&^$g,J%;n,nu. ~4.32!

Then, for any boson-fermion operatorO, the restriction to
the principal subspace, denoted byOP0

, is defined by

OP0
[P0OP0. ~4.33!

SinceU(u) leaves invariant both the principal subspace a
its orthogonal complement, which is the consequence of
property @Nt ,U(u)#50, it follows that @U(u),P0#
5@U†(u),P0#50. This, in turn, implies that

@O~u!#P0
5OP0

~u!. ~4.34!

We are now positioned to prove the harmonic behavio
b(u) andY(u) in the principal subspace. As a preliminar
we consider the action of the operator@Y,Y†#b on the vec-
tors ~4.25!; thus, from Eqs.~4.9! and ~4.18!,

@Y,Y†#bu$g,J%;n,n&

5An2n@12~2Ĵ11!P⇑#u$g,J%;n21,n&.

But in H0, the projectorP⇑ has a nonzero action only o
vectors withn5n52J, in which caseAn2n50. In other
words, acting on vectors inH0 , @Y,Y†#b5b, even if
@Y,Y†#Þ1, or, more formally,

$@Y,Y†#b%P0
5bP0

, ~4.35!

which, because of the commutation of the projection and
unitary transformation, implies that$@Y(u),Y†(u)#b(u)%P0

5bP0
(u). Then, the projection of the exact Heisenberg eq

tions ~3.5! is given by

dbP0
~u!

du
52YP0

~u!,

dYP0
~u!

du
5$@Y~u!,Y†~u!#b~u!%P0

5bP0
~u!,

and H.c. eqs.~4.36!

This proves that the projected operators have the harm
solution

bP0
~u!5bP0

cosu2YP0
sinu,

YP0
~u!5bP0

sinu1YP0
cosu, and H.c. eqs.~4.37!

By invoking the following easily proven properties:

YP0
5Y P0 , YP0

† 5P0Y†, bP0
5bP0 , bP0

† 5P0b†,

~4.38!
06431
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one may also write Eqs.~4.37! in the form

b~u!P05@b cosu2Y sinu#P0 ,

Y~u!P05@b sinu1Y cosu#P0 , and H.c. eqs.
~4.39!

While Eqs. ~4.37! have the same form as Eqs.~3.9!, it
should be noted thatbP0

and YP0
are not bosons, owing to

the presence of projectors. In fact, it is straightforward
show that the commutation rules onH are given by

@bP0
,bP0

† #5P02~$Nb%P0
11!Pnmax

,

@YP0
,YP0

† #5P02~ Ĵ1J011!Pnmax
,

@b
P0

† ,YP0
#5Yb†Pnmax

, and H.c. eq.,

@bP0
,YP0

#50, and H.c. eq., ~4.40!

wherePnmax
, the projector to the subspace having the ma

mum number of phononsnmax52J for each value ofJ, is
given by

Pnmax
5(

gJ
(
n50

2J

u$g,J%;2J,n&^$g,J%;2J,nu. ~4.41!

The operatorsbP0
, bP0

† andYP0
, YP0

† are truncated boson

acting within the subspaceH0, the projectorPnmax
guaran-

teeing that bP0

† and YP0

† annihilate vectors withn52J

phonons. However, when acting on all other vectors inH0,
the truncated bosons behave just like ordinary bosons. Th
fore, the identification of Eqs.~3.9! and ~4.37! is complete.
No problems arise as a result of treating truncated bos
like true bosons as long as physical matrix elements are c
structed withinH0. Thus, the treatment in the preceding su
sections is fully justified provided that all operators are
garded as being defined on the principal subspaceH0. In
doing so, the boson operatorsb, b† are restricted so that the
are more on a par with the operatorsY, Y†. One could also
contemplate the opposite tack: extending the fermion s
space to an infinite-dimensional one so that the operatorY,
Y† could be defined as true bosons on a par with the t
bosonsb, b†. Indeed, such an approach had been attemp
many years ago by Kuriyamaet al. @13# in their auxiliary-
variables treatment of the pairing problem. However, th
extension of the fermion space is a purely formal one t
has no obvious physical connection with the original man
body problem. It amounts to little more than the assumpt
of a license to treat all the operatorsb, b†, Y, andY† as true
bosons.

C. Transformation of SU„2… generators

The remaining task is the transformation of operators,
ginning with the SU~2! generators and then proceeding
single-fermion operators. A convenient starting point is t
generatorJ0, which according to Eq.~4.17! can be written as
4-15
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J052 Ĵ1NY . Since@ Ĵ,S#50, Ĵ is invariant under the uni-
tary transformationU(u), i.e.,

Ĵ~u!5 Ĵ. ~4.42!

An operatorO leaves invariant bothH0 and its orthogonal
complementH 0

' if and only if

P0OP05P0O5OP0. ~4.43!

SinceĴ, in fact, has this property, it follows that

@ Ĵ~u!#P0
5 ĴP0

5P0Ĵ5 ĴP0. ~4.44!

Next, making use of the first of Eqs.~4.38! as well as
@U(u),P0#5@U†(u),P0#50, it is easily shown that

@NY~u!#P0
5~NY!P0

~u!5YP0

† ~u!YP0
~u!. ~4.45!

Therefore, the projected unitary transformation ofJ0 is given
by

@J0~ut !#P0
52 ĴP0

1YP0

† ~u!YP0
~u!. ~4.46!

However, one can do a little more. Using the first of Eq
~4.37! for YP0

(u) and its H.c., together with the salient resu

thatNY , Nb , b†Y, andY†b all have the property~4.43!, one
calculates

YP0

† ~u!YP0
~u!5NY~u!P0[FNY1

1

2
~Nb2NY!~12cos 2u!

1
1

2
~b†Y1Y†b!sin 2uGP0 , ~4.47!
06431
.

where the projectorP0 can also be commuted to the far le
of the bracket if desired. The complete expression
@J0(u)#P0

is then given by

@J0~u!#P0
5F2 Ĵ1NY1

1

2
~Nb2NY!~12cos 2u!

1
1

2
~b†Y1Y†b!sin 2uGP0. ~4.48!

Apart from the presence of the projector, this result exac
agrees with Eq.~3.16!, taking into account the relation be
tweenB andJ0.

Next consider the transformation ofJ2 . The starting
point is the inverse of Eq.~4.20!, which can be written as

J25AĴ2J0Y. ~4.49!

Noting thatAĴ2J05A2Ĵ2NY has the property~4.43!, one
obtains from Eqs.~4.38! and ~4.46! the following projected
unitary transform ofJ2 :

@J2~u!#P0
5AĴP0

2@J0~u!#P0
YP0

~u!

5A2ĴP0
2YP0

† ~u!YP0
~u!YP0

~u!, ~4.50!

which, with the aid of Eqs.~4.37!, ~4.44!, and~4.47! can be
written as
Eq.

e
ed in
subspace
@J2~u!#P0
5A2Ĵ2NY2

1

2
~Nb2NY!~12cos 2u!2

1

2
~b†Y1Y†b!sin 2u~b sinu1Y cosu!P0 ,

@J1~u!#P0
5@J2~u!#P0

† . ~4.51!

We note that the projectorP0 must stand on the far right in the above expression. Apart from the projector, the«-expansion
of «@J2(u)#P0

exactly coincides with that ofX given by Eq.~3.17!, as checked to high orders. Therefore, we conclude that
~4.51! represents the closed summation of Eq.~3.17!.

The final transformation, of course, corresponds to the choiceu5p/2. At this point, one may just as well replace th
projectorP0 to the principal subspace by the projectorPphys to the physical subspace since the latter subspace is includ
the former and all of the physics has been transported to the physical subspace. It will be recalled that the physical
is spanned by all vectors having the property~3.24! or ~3.25!. We also extend the notation of Eq.~4.33!, so that (O)Pphys

[PphysOPphys, for an arbitrary operatorO. In accord with our convention in which@J0(p/2)#Pphys
[( J̄0)Pphys

, and

@J2(p/2)#Pphys
[( J̄2)Pphys

, etc., we immediately obtain the following images of the generators:

~ J̄0!Pphys
5~2 Ĵ1Nb!Pphys5Pphys~2 Ĵ1Nb!,

~ J̄2!Pphys
5A2Ĵ2NbbPphys, ~ J̄1!P0

5~ J̄2!P0

† 5Pphysb
†A2Ĵ2Nb. ~4.52!
4-16
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This result is a very familiar one: a slightly extended version~EHP! of the Holstein-Primakoff mapping@17# of the SU~2!

generators, the extension corresponding to the operatorĴ replacing thec-numberJ. As discussed in the next section, th
operatorĴ can be written in the form

Ĵ5
1

2
~V2n° !, ~4.53!

where

n°[(
m

~a° m
† a° m1b° m

† b° m! ~4.54!

is the total number ofideal particles and holes~also known as quasifermions! in the terminology of Refs.@12,9#. Indeed, the
above EHP representation is identical to the one obtained by other means in these references.

D. Transformation of single-fermion operators

In this subsection we derive closed forms of the transformed single-fermion operators. First, the fermion opera
written in the following dyadic form:

am
† 5 (

J51/2

V/2

(
n50

2J

(
gg8

^g8;J21/2,2J11/21nuam
† ug;J,2J1n&ug8;J21/2,2J11/21n&^g;J,2J1nu

1 (
J50

(V21)/2

(
n50

2J

(
gg8

^g8;J11/2,2J11/21nuam
† ug;J,2J1n&ug8;J11/2,2J11/21n&^g;J,2J1nu,

bm5 (
J51/2

V/2

(
n50

2J

(
gg8

^g8;J21/2,2J21/21nubmug;J,2J1n&ug8;J21/2,2J21/21n&^g;J,2J1nu

1 (
J50

(V21)/2

(
n50

2J

(
gg8

^g8;J11/2,2J21/21nubmug;J,2J1n&ug8;J11/2,2J21/21n&^g;J,2J1nu, and H.c. eqs.

~4.55!

As shown in Eq.~3.26!, these operators are components of a rank-1/2 spherical tensortm
1/2 with

tm,1/2
1/2 5am

† , tm,21/2
1/2 5bm . ~4.56!

Consequently, application of the Wigner-Eckart theorem with explicit evaluation of the Clebsch-Gordan coefficients
one to write Eqs.~4.55! in terms of the reduced matrix elements as follows:

am
† 52 (

J51/2

V/2

(
n50

2J

(
gg8

^g8;J21/2i tm
1/2ig;J&A2J2n

2J11
ug8;J21/2,2J11/21n&^g;J,2J1nu

1 (
J50

(V21)/2

(
n50

2J

(
gg8

^g8;J11/2i tm
1/2ig;J&A n11

2J11
ug8;J11/2,2J11/21n&^g;J,2J1nu,

bm5 (
J51/2

V/2

(
n50

2J

(
gg8

^g8;J21/2i tm
1/2ig;J&A n

2J11
ug8;J21/2,2J21/21n&^g;J,2J1nu

1 (
J50

(V21)/2

(
n50

2J

(
gg8

^g8;J11/2i tm
1/2ig;J&A2J2n11

2J11
ug8;J11/2,2J21/21n&^g;J,2J1nu, and H.c. eqs.

~4.57!

This motivates the introduction of thequasifermionoperatorsa° m
† andb° m , defined by
064314-17
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a° m
† [2 (

J51/2

V/2

(
n50

2J21

(
gg8

^g8;J21/2i tm
1/2ig;J&A 2J

2J11
ug8;J21/2,2J11/21n&^g;J,2J1nu

5 (
J51/2

V/2

(
n50

2J21

(
gg8

^g8;J21/2,2J11/2uam
† ug;J,2J&ug8;J21/2,2J11/21n&^g;J,2J1nu,

b° m[ (
J50

(V21)/2

(
n50

2J

(
gg8

^g8;J11/2i tm
1/2ig;J&ug8;J11/2,2J21/21n&^g;J,2J1nu

5 (
J50

(V21)/2

(
n50

2J

(
gg8

^g8;J11/2,2J21/2ubmug;J,2J&ug8;J11/2,2J21/21n&^g;J,2J1nu, and H.c. eqs.~4.58!
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The notation for the quasifermions suggests identificat
with the invariants given by Eq.~3.35!, which will be even-
tually justified. With the help of Eqs.~4.15! and ~4.20!, one
readily obtains from the dyadic form~4.57! the following
key linear relation between the fermion and quasiferm
operators:

am
† 5

1

A2Ĵ11
a° m

† A2Ĵ2NY1Y†b° m

1

A2Ĵ11
,

bm52
1

A2Ĵ11
Ya° m

† 1A2Ĵ2NYb° m

1

A2Ĵ11
,

and H.c. eqs.~4.59!

There are several other important properties of the qu
fermion operators. First, the following relations are eas
derived from Eqs.~4.3!, ~4.5!, and~4.58!:

@ Ĵ,a° m
† #52@J0 ,a° m

† #52
1

2
a° m

† ,

@ Ĵ,b° m
† #52@J0 ,b° m

† #52
1

2
b° m , and H.c. eqs.

~4.60!

Also, from Eqs.~4.13! and ~4.58! we obtain

@NY ,a° m
† #5@NY ,b° m

† #50, and H.c. eqs., ~4.61!

which is a property expected for invariant operators. On
other hand, as one can straightforwardly verify with the h
of Eqs.~4.60! and ~4.61!

@Y†,a° m
† #50, @Y†,b° m

† #50,

@Y,a° m
† #52Am

† , @Y†,b° m#5Bm , and H.c. eqs.,
~4.62!

whereAm
† andBm can be written as
06431
n

n
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e
p

Am
† [P⇑a° m

† Y P⇑5P⇑a° m
† Y5a° m

† Y P⇑ ,

Bm[P⇑Y†b° mP⇑5P⇑Y†b° m5Y†b° mP⇑ , ~4.63!

and P⇑ , which is defined by Eq.~4.19!, represents the pro
jector to the subspace of aligned quasispin states. The se
line of Eq. ~4.62! shows that the quasifermions do not e
actly commute with bothY andY†, as one would expect o
strictly invariant operators. However, the quasifermions
commute with bothY and Y† on the fermion subspace tha
excludesthe aligned states. Moreover, the«-expansionsof
the operatorsAm

† andBm vanishsince they are proportiona
to P⇑ , which has a vanishing expansion, as discussed in S
IV A. Therefore, the quasifermions are invariants in t
sense of Sec. III D. What is most important, the quasiferm
ons are strictly invariant in the principal subspace as we p
ceed to show.

First, we note the following relations:

$b†@Y,a° m
† #%P0

50, $@Y†,b° m#b%P0
50, and H.c. eqs.

~4.64!

The proof is similar to that of Eq.~4.35!: since the commu-
tators are proportional toP⇑ and aligned vectors inH0 have
zero bosons@n5n in Eq. ~4.31!#, the projectionP0must give
a vanishing result. Now, from Eqs.~2.16!, ~3.2!, and~4.62!,
we obtain the differential equations

da° m
† ~u!

du
5b†~u!@Y~u!,a° m

† ~u!#,

db° m~u!

du
5@b° m~u!,Y†~u!#b~u!, and H.c. eqs.

~4.65!

The projection of these equations into the principal subsp
can then be immediately evaluated with the aid of E
~4.64! as follows:

d@a° m
† ~u!#P0

du
5$b†~u!@Y~u!,a° m

† ~u!#%P0
50,
4-18
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d@b° m~u!#P0

du
5$@b° m~u!,Y†~u!#b~u!%P0

50, and H.c. eqs.

~4.66!

Therefore,

@a° m
† ~u!#P0

5a° m
† , @b° m~u!#P0

5b° m , and H.c. eqs.,
~4.67!

anda° m
† , b° m are invariant in the principal subspace.

The stage is now set for the transformation of the sing
fermion operators. Thus, transformation of Eqs.~4.59!, tak-

ing into account the invariance ofa° m
† , b° m , Eq. ~4.38!, and

that the operators 1/A2Ĵ11 andA2Ĵ2NY have the property
~4.43!, yields the result

@am
† ~u!#P0

5
1

A2ĴP0
11

a° m
†A2ĴP0

2YP0

† ~u!YP0
~u!

1YP0

† ~u!b° m

1

A2ĴP0
11

,

@bm~u!#P0
52

1

A2ĴP0
11

YP0
~u!a° m

†

1A2ĴP0
2YP0

† ~u!YP0
~u!b° m

3
1

A2ĴP0
11

~and H.c. eqs.!. ~4.68!

Settingu5p/2, taking into account Eqs.~4.38!, ~4.44!, and
~4.47!, and, as before, replacing the projectorP0 by Pphys,
one obtains the final images in the following form:

~ ām
† !Pphys

5PphysS 1

A2Ĵ11
a° m

† A2Ĵ2Nb1b†b° m

1

A2Ĵ11
D ,

~ b̄m!Pphys
5S 2

1

A2Ĵ11
ba° m

†

1A2Ĵ2Nbb° m

1

A2Ĵ11
D Pphys, and H.c. eqs.

~4.69!

In fact, this result, which is the so-calledquantized Bogoliu-
bov transformation~QBT!, formally agrees with that of Refs
@12,9#. Actually, to prove that the expressions in parenthe
are identical to those of the earlier papers, it must be sho
that the algebraic properties of the quasifermions are
same, which is the next task.
06431
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The anticommutationrelations of the quasifermions ca
be obtained by a straightforward~though tedious! exercise
using the definitions~4.58!. One finds the results

$a° m ,a° m8
† %5dmm82

1

2Ĵ11
b° m

† b° m8

1S a° m8
† a° m1

1

2Ĵ11
b° m

† b° m82dmm8D P⇑ ,

$b° m ,a° m8
† %5dmm82

1

2Ĵ11
a° m

† a° m8

1S b° m8
† b° m1

1

2Ĵ11
a° m

† a° m82dmm8D P⇑ ,

$b° m8 ,a° m
† %52

1

2Ĵ11
a° m8

† b° m

2S b° m8a
°

m
† 1

1

2Ĵ11
a° m8

† b° mD P⇑ ,

and H.c. eq.,

$a° m ,a° m8%50, $b° m ,b° m8%50,

$a° m ,b° m8%50, and H.c. eqs. ~4.70!

These anticommutators coincide with those of the quasi
mions of Refs.@9,12# only if the terms proportional to the
operatorP⇑ were to vanish. Now, from the definition of th
physical subspace given by Eq.~3.24! it is easily seen that

PphysP⇑Pphys5PphysP⇑5P⇑Pphys50. ~4.71!

Therefore, in the physical subspace it is justified to letP⇑
→0 in Eq. ~4.70! so that, in fact, the transformation~4.69!
entirely agrees with the earlier references. Note that the fi
anticommutation relations deviate from those of fermio
which is why the operators in question are called quasi
mions.

Another property of the quasifermions is expressed
Eqs. ~4.53! and ~4.54! of the previous subsection. It is
straightforward exercise to prove Eq.~4.53! by inserting the
definitions of the quasifermions~4.58! on the right-hand side
of Eq. ~4.54!, making use of the definition ofJ0 @Eq. ~2.9!#
and noting that the result is the same asV22Ĵ.

Since the aim of this paper is to express all final images
terms of boson and fermion operators, not quasifermions,
must go a little further. Equations~4.59! can be inverted to
4-19
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express the quasifermions in terms of the fermions, and
result substituted in Eqs.~4.68! and rearranged to give th
result3

@am
† ~u!#P0

5P0

1

2Ĵ11
@~A2Ĵ2NY~u!11A2Ĵ2NY11

1Y†~u!Y!am
† 1~Y†~u!A2Ĵ2NY

2A2Ĵ2NY~u!11Y†!bm#,

@bm~u!#P0
5

1

2Ĵ11
@~A2Ĵ2NY~u!Y

2Y~u!A2Ĵ2NY11!am
†

1~A2Ĵ2NY~u!A2Ĵ2NY1Y~u!Y†!bm#P0 ,

@bm
† ~u!#P0

5P0

1

2Ĵ11
@~A2Ĵ2NY~u!11A2Ĵ2NY11

1Y†~u!Y!bm
† 2~Y†~u!A2Ĵ2NY

2A2Ĵ2NY~u!11Y†!am#,

@am~u!#P0
5

1

2Ĵ11
@2~A2Ĵ2NY~u!Y

2Y~u!A2Ĵ2NY11!bm
†

1~A2Ĵ2NY~u!A2Ĵ2NY1Y~u!Y†!am#P0 ,

~4.72!

whereNY(u) is defined by Eq.~4.47!. It was verified that the
« expansions of these expressions coincide with Eqs.~3.30!.
Settingu5p/2 and noting that 2Ĵ2NY5 Ĵ2J0 provides the
final images, equivalent to Eqs.~4.69!:

~ ām
† !Pphys

5Pphys

1

2Ĵ11
@~A2Ĵ2Nb11AĴ2J0111b†Y!

3am
† 1~b†AĴ2J02A2Ĵ2Nb11Y†!bm#,

~ b̄m!Pphys
5

1

2Ĵ11
@~A2Ĵ2NbY2bAĴ2J011!am

†

1~A2Ĵ2NbAĴ2J01bY†!bm#Pphys,

3Note that the expressions have been ordered so that the fer
operators always appear on the far right.
06431
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~ b̄m

† !Pphys
5Pphys

1

2Ĵ11
@~A2Ĵ2Nb11AĴ2J0111b†Y!

3bm
† 2~b†AĴ2J02A2Ĵ2Nb11Y†!am#,

~ ām!Pphys
5

1

2Ĵ11
@2~A2Ĵ2NbY2bAĴ2J011!bm

†

1~A2Ĵ2NbAĴ2J01bY†!am#Pphys,

~4.73!

where the operatorsY, Y† are defined by Eq.~4.20!. Apart
from the projector, this represents the closed summation
the series~3.31!.

Having completed the task of mapping all elementary o
erators into the physical subspaceHphys, we conclude this
section with a brief discussion ofHphys itself. By definition,
Hphys is spanned by the image vectorsug;J,M &
[U(p/2)ug;J,M &. Since the base vectors satisfyY
ug;J,2J&5bug;J,2J&50, it follows that Sug;J,2J&50,
implying the invarianceug;J,2J&5ug;J,2J&. Then from
Eq. ~4.52!, the transformation of a general fermion basis ve
tor ug;J,M52J1n& is given by

ug;J,2J1n&5A~2J2n!!

~2J!!n!
~J1!nug;J,2J&

5A~2J2n!!

~2J!!n!
@b†~2Ĵ2Nb!#nug;J,2J&

5
1

An!
~b†!nug;J,2J&, n50,1, . . . ,2J.

~4.74!

It is then immediately obvious that the property~3.24! is
indeed satisfied onHphys. The vectors~4.74! correspond to
the subset of Eq.~4.31! with n50. The base states them
selves can be generated from the uncorrelated ground
u0;V/2,2V/2& by the action of the quasifermions. For e
ample, a base state withJ52M5(V2k2 l )/2 is given by

Um1•••mk ,m18
21

•••ml8
21 ;

1

2
~V2k2 l !,2

1

2
~V2k2 l !L

5a° m1

†
•••a° mk

† b° m
18

†
•••b° m

l8
† U0;

1

2
V,2

1

2
V L , ~4.75!

which follows from Eqs.~4.60!. Such a state can be furthe
expressed in terms of the fermion operators, which can
most conveniently done using the inverse of Eqs.~4.59!.

E. Summary and conclusions

The aim of this work is to develop a viable theoretic
framework in which prescribed collective excitation mod
are selectively treated in terms of bosons while all other
grees of freedom retain their fermionic character. This is

ion
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contrast to traditional formalisms in which all degrees
freedom are indiscriminately bosonized. The motivation
based on the belief that the former approach should lea
faster convergence. Our starting point was the improvem
of the boson-fermion expansion theory~BFET! of Refs.
@3–5#, and the final result is a substantially modified a
proach that we call the selective unitary bosonization met
~SUBM!. In this paper, we limited the development to SU~2!
quasispin models, including the model of Lipkin, Meshko
and Glick~LMG! and the single-j pairing model. Since thes
exactly soluble models have already been subjected to
most every applicable many-body approximation, they p
vide a convenient basis for assessing the validity of n
formalisms. A further convenience is the existence of a
coupled collective subspace residing in a single SU~2! irrep,
which eliminates ambiguities in the definition of th
bosonized collective mode. To be sure, this leaves open
future investigations the question of how well our approa
works for more realistic models, in which such a conv
nience does not exist.

The SUBM belongs in the category of auxiliary-variabl
techniques. The encompassing Hilbert space is the te
product of a boson space and the original many-body
mion space. The physics is transferred from the ferm
space to a subspace of the boson-fermion space by mea
unitary transformations in such a way that the collect
mode is selectively preempted by a boson. The key ste
the recognition that in the generator of the transformatioS
5Y†b2b†Y, whereb, b† are perfect boson operators, th
fermionic operatorsY, Y† must also obey boson commut
tion rules on a suitablesubspace~called the principal sub-
space!, i.e., they are truncated boson operators. Indeed,
requirement thatY coincide in lowest order with the phono
X, together with the commutation rule@Y,Y†#51, uniquely
determines the expansion ofY in the small parameter«
[(1/V)1/2, and ultimately the expansions of all physical o
erators. A more detailed analysis of the Hilbert space lead
the identification ofY in closed form and to the demarcatio
of its domain as a truncated boson annihilation operator,
the principal subspace. Thenceforth, straightforward anal
leads to the derivation of all physical operators in clos
form for the SU~2! case. For this case, we have both
expansion theory and also the closed summation of the
pansions. In more realistic applications, the latter may
always be achievable, but that remains a problem for fut
investigation. The expansion theory, which is what one
tually needs for numerical computations, can be readily
tended to realistic models.

Our final closed-form mappings of the SU~2! generators
and also the single-nucleon creation and destruction op
tors, which are SU~2! tensors, formally agree with the corre
sponding results of Refs.@9,12#, obtained by different means
This testifies to the validity of our approach. In the earl
work, the final mappings were given in terms of bosons a
quasifermions~referred to as ‘‘ideal quasiparticles’’!, obey-
ing complicated anticommutation rules. In the present
proach, the quasifermions can be expressed in terms o
original fermion operators, providing a true boson-fermi
mapping. In Ref.@12#, a secondary derivation was sketche
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based on an auxiliary-variables method originally introduc
in Ref. @13#. This method, which also involves unitary tran
formations on a boson-fermion space, is similar to t
SUBM, but with one critical difference. In order to justif
the commutation rule@Y,Y†#51 for fermionic operators on
a finite-dimensional SU~2! space, the authors attempt to fo
mally extend the space to infinite dimensions. However,
previously remarked, this artificial construction, which o
scures the relation to the original many-body problem, see
to amount to little more than a license to use the bos
commutation rule for fermionic operators. Moreover, t
generalization of this trick to the realistic case is not at
clear. The present work, on the other hand, takes the oppo
tack: instead of extending the boson-fermion space, it me
selects a subspace—the principal subspace—on which
relation@Y,Y†#51 is valid. In this way, one is automaticall
led to the correct projection operators required in the clo
expressions. Thus, a major weakness in the foundation o
auxiliary variables approach has been repaired.

Any method utilizing auxiliary variables requires subsi
iary conditions. In our method, these are simply expressed
Eq. ~3.24! or Eq. ~3.25!. Since the final unitary transforma
tion of the fermion basis generates a subspace of the bo
fermion space within which the subsidiary conditions a
automatically satisfied, it is only necessary to diagonalize
Hamiltonian ~or its expansion to a given order! within this
subspace to insure that subsidiary conditions are fulfill
The indiscriminate use of a larger basis that includes vec
violating the subsidiary conditions may lead to poorer n
merical results. Such studies will be presented elsewher

APPENDIX: INVARIANT OPERATORS

Let O be an arbitrary operator defined on the Hilbe
space of any system having amongst its degrees of freedo
boson degree of freedom, represented by the operatorsY, Y†

with commutator
@Y,Y†#51. ~A1!

Let O(k,l ) be the iterated commutator

~A2!

with O(0,0)[O. From this definition, it follows immedi-
ately that

@Y,O~k,l !#5O~k11,l !. ~A3!

The corresponding relation,

@Y†,O~k,l !#5O~k,l 11!, ~A4!

is also true but requires a bit more work. From the Jac
identity together with Eq.~A1!, one obtains

@Y†,O~k,l !#5@Y†,@Y,O~k21,l !##5@Y,@Y†,O~k21,l !##.
~A5!

Application of this rulek times then gives
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~A6!

Next, corresponding to the operatorO, define the operatorO7 in terms of the infinite series

O7 [(
k50

`

(
l 50

`
1

k! l !
~2Y†!kO~k,l !Yl . ~A7!

We show thatO7 satisfies the conditions

@Y,O7 #50, @Y†,O7 #50. ~A8!

Such operators will be calledinvariants. Using Eqs.~A1! and ~A3!, one calculates

@Y,O7 #5 (
k51

`

(
l 50

`
21

~k21!! l !
~2Y†!k21O~k,l !Yl1 (

k50

`

(
l 50

`
1

k! l !
~2Y†!kO~k11,l !Yl

52 (
k50

`

(
l 50

`
1

k! l !
~2Y†!kO~k11,l !Yl1 (

k50

`

(
l 50

`
1

k! l !
~2Y†!kO~k11,l !Yl50, ~A9!

after index relabeling in the first sum. The demonstration that@Y†,O7 #50 is entirely parallel, with Eq.~A4! replacing Eq.~A3!.
Let us assume thatO can be expanded in terms of the boson degree of freedom, i.e.,

O5 (
m50

`

(
n50

`
Vm,n

m!n!
~Y†!m~2Y!n, ~A10!

where the coefficientsVm,n are independent of the boson degree of freedom and are therefore invariants, satisfying

@Y,Vm,n#50, @Y†,Vm,n#50. ~A11!

With the aid of Eqs.~A10! and ~A11!, the multiple commutator~A2! can be evaluated as follows:

O~k,l !5 (
m5k

`

(
n5 l

`
~21!n1 lVm,n

~m2k!! ~n2 l !!
~Y†!m2k~Y!n2 l5 (

m50

`

(
n50

`
Vm1k,n1 l

m!n!
~Y†!m~2Y!n, ~A12!

where the change of indexm5m2k, n5n2 l was used in the second step. This sets the stage to findVm,n in terms ofO, Y,

and Y†. Since theVm,n are invariants, it is interesting to find the relation to the invariantsO7 (k,l ) based on the operator
O(k,l ) as follows:
064314-22
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~A13!

where the following identity for binomial coefficients was used in the last step:

(
m50

m

~21!mS m
mD5dm,0 . ~A14!

This proves that in factVk,l5O7 (k,l ), so that the decomposition~A10! of O is finally given by

O5 (
m50

`

(
n50

`
1

m!n!
O7 ~m,n!~Y†!m~2Y!n. ~A15!

This relation should be understood as a formal identity with no guarantees of convergence.
r.
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