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Selective bosonization of the many-fermion problem in a model framework
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The higher-order terms of a novel boson-fermion expansion formalism previously introduced by one of the
authors are discussed within the framework of the solubl&8LMG model. A new formulation is provided
to rectify certain undesirable features of the original expansion. In particular, the subsidiary condition that
defines the physical subspace is obtained in a much simpler form. With the new formulation, the infinite
expansion is summed in closed form. A comparison is made with earlier extended Holstein-Primakoff boson-
fermion expansions.
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[. INTRODUCTION bosonize only the collective degrees of freedom while allow-
ing the noncollective ones to retain their fermion nature. We
A long-standing problem of conventional shell-model cal-refer to such methods aglective bosonizatigim contrast to
culations, especially in heavy nuclei, is the difficulty of de- the traditionalpan-bosonizationSelective bosonization of-
scribing collective excitations because of the astronomicallyfers the possibility of a shell model capable of fully describ-
large basis required. The boson-mapping approach has beiy collective as well as noncollective states. In this paper,
proposed as a possible solutiph]. Taking a cue from the we explore such a formalism within the framework of a
physical idea that collective excitations are coherent supesimple soluble S(2) model, namely, the model of Lipkin,
positions of fermion pairs that behave approximately likeMeshkov, and GlicKLMG) [2], although it can be applied
bosons, the boson-expansion approach employs exact majpst as well to other S(2) models. The springboard for the
pings from the many-fermion to a many-boson Hilbert spacdormalism is the boson-fermion expansion thegBFET)
in such a way as to preserve the Pauli principle. In the typicatleveloped by Miyanishi and colleagug3-5]. The formal-
treatment of an even-even nucleus, the fermion-pair operdsm presented here significantly improves upon the original
tors, which generate a Lie algebra, are mapped onto fundFET in the handling of higher-order corrections and the
tions of boson creation and destruction operators in asubsidiary constraints that define the physical subspace. If
algebra-preserving way. Correspondingly, the many-fermiorone regards the BFET as version 1.0, then this is version 2.0,
Fock space is injectively mapped onto a subspace of a manyvhich is sufficiently different to merit a renaming—tise-
boson Fock space called the physical subspace. This prockective unitary bosonizatiomethod, with associated acro-
dure formally replicates the fermion system, including thenyms SUB or SUBM. Hereunitary refers to the use of uni-
full effects of the Pauli principle, within the confines of the tary transformations to effect the mappings. The BFET and
physical subspace, whose orthogonal complement, the uthe SUBM are equivalent in the sense that they generate the
physical subspace, is entirely irrelevant to the many-fermiorsame 1N expansions of physical quantities, but the SUBM is
problem. The bosonization of the nuclear many-body probmuch more convenient in practice, especially because of the
lem affords a number of advantagesee Ref[1]), the chief  simplification of the subsidiary conditions.
one being that anharmonic collective states become elemen- Before proceeding to the new developments, it is worth-
tary boson excitations, which can be automatically incorpowhile to point out that boson-fermion expansions have some
rated in a boson shell-model of reasonable dimensionality. Aarly precedents. For example, in 1965, Yamami6a
price to be paid, however, is that noncollective excitationsmapped the fermion Fock space into a tensor product of the
also become boson states. While this is nonproblematic frorfermion space with a boson space in order to describe the
a formal mathematical viewpointeven a noninteracting- degrees of freedom of an odd nucleon added to an even-even
fermion Hamiltonian can be expressed exactly in terms obystem. Marshalek7,8], with the same purpose in mind,
bosong, it is possible, as argued below, that the couplingintroduced aboson-quasifermiomapping. The quasifermi-
between the many noncollective and the few collectiveons, which describe the states of an odd nucleon, obey anti-
modes slows down the convergence in computations of theommutation rules that deviate somewhat from ordinary fer-
latter. Other problems also occur in realistic applications ofmion anticommutation rules. The deviation is required to
boson expansions. In some treatments, the fermion space satisfy the underlying Lie algebra exactly without introduc-
drastically truncated to operators generating an approximati@eg redundant degrees of freedom. In both of these examples,
closed subalgebra prior to bosonization. The validity of suctthe paired fermion degrees of freedom are completely
approximations is difficult to gauge. Another problem is thebosonized. A better example of selective bosonization is pro-
difficulty of distinguishing physical and unphysical eigen- vided by a formalism, developed independently by Mar-
vectors, which may become entangled because of truncshalek[9,10] on the one hand and by Geyer and Hahh¥
tions. on the other, in which valence particles and holes added to a
For these reasons, it is important to study methods thatlosed shell are treated as quasifermions while particle-hole
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excitations of the closed shell itself are treated as bosons. ki particular, consider the commutator of phonon destruction
special case of this is the extended Holstein-Primakoffand creation operators, which takes the form
(EHP) mapping of the LMG model in Refl9], which is
mathematically isomorphic to the EHP mapping of Suzuki
and Matsuyanagil12] that had been applied earlier to the
degenerate pairing model. The close relationship of this ear-
lier work with the present work is discussed later. AnotherThe sum on the right, which represents the deviation of the
closely related work is that of Kuriyanet al.[13], who also  phonons from ideal boson behavior, is, of course, a manifes-
use auxiliary variables to map collective coordinates. tation of the Pauli principle. In the traditional pan-bosonized

Except for the early effort of Yamamura, all of the above mappings for even-even systems, all the generators are
examples correspond to boson-quasifermion mappings, imapped onto polynomial functions of perfect bosons so as to
contrast to the SUBM discussed here, which is a true bosorsatisfy the Lie algebra. Infinite boson expansions, in which
fermion mapping. It is argued later that quasifermions areeach phonor)(L is replaced by a corresponding boshn;rpin
required to satisfy the underlying Lie algebra only when rep4eading order, are predicated on the assumption that the co-
resented on Hilbert spaces without redundant degrees of freefficientsI’, (. v) are all small. In particular, one attempts to
dom, whereas representations on spaces with redundant dgentify an expansion parameter=1/\/(), the exact defini-
grees of freedom permit the luxury of true fermions. Thetion of which depends on the system. For example, if the
price for this, the need for constraints, turns out to be vengenerators in Eq(2.1) all carry good angular momentum
minor. then one can make the identificatiOn=2j + 1, whergj is an

This paper is organized as follows. In Sec. Il, the generahverage value for thesubshells of the systefd5]. From the
concepts of the BFET are reviewed, the LMG model is re-Racah and Clebsch-Gordan coefficients, it then follows that
viewed, and the BFET is applled to the LMG model. In this the CoefﬁCientSF)\(,LLV)"’O(SZ) if the fermion-pair opera-
context, the Strengths and weaknesses of the BFET are maqﬂs are all scaled ag(l) In rea"ty, however, the presence
transparent. In Sec. lll, the SUBM is introduced and formu-of a formal small parameter is insufficient to guarantee the
lated as an expansion theory in the context of the LMGsmallness ofall the coefficientsI'y(xv), unless all the
model. In Sec. IV, closed forms, representing the summatioRhonons are collective, which is never the case. In general,
of the expansions, are derived for the elementary operators @ghen, the deviation from boson behavior in E2.2) is small
the LMG model. These depend critically on the concept ofpnly for the subset of phonons that are truly collective. For

[xM,x1]:5#v+; [, (nv)B,. (2.2

the principal subspacedefined in Sec. IV. an ideally collective phonon, the coefficients, (k1) would
all be of the same magnitude, so that for a superpositida of
Il. THE BFET AND THE LMG MODEL pairs one would havé¥ ,(kl)|=1\Q=e and [X, X]]

=1+0(&?). These conditions are well approximated to the
extent that the phonon approaches the ideal collective limit.
The philosophy of the BFET is to employ expansions in
_ which in leading order only collective phonons are
A. Review of the general BFET bosonized while noncollective excitations remain fermionic.
Given a fermion Fock space generated by the fermionhe underlying Hilbert spacé{ is taken to be the tensor
creation and annihilation operatorg andc,, respectively, —product of the Fock space of collective bosdiig with the

one may define a complete set of pair operaxjs X, , B, ~ many-fermion Fock spacelg, or H="Hg® M. Thus, the
in the form BFET is a formalism employing redundant degrees of free-

dom, which, of course, requires subsidiary conditions. Since
the physics of the many-fermion problem originally resides
fot _xt
% ,(khege!, X=X, in the subspace(r, the physical states 6f, denoted generi-
cally by |phys, satisfy the set of conditionb.|phys=0,
whereb, is any collective boson annihilation operator. The

We begin by reviewing the main ideas of the original
BFET [3-5], which will then be applied to the LMG model.

X

't
L)

BM=E (IJM(kl)clcI . (2.1)  next step in the BFET is the introduction of a unitary trans-
ki formation onH given by
Uo(6)=exp(— 0S), (2.3

The pair-excitation operatoDsL are commonly callegbho-

non creation operators, in particular when the coefficientswhere

W, (kl)=—-v,(Ik) are obtained from a Tamm-Dancoff

(TD) [14] qalculanon, whlle theB,, are calledscatteringop- SOEE (lec— blxc), (2.4)
erators, with the coefficient® ,(kl) scaled so that all gen- c

erators have the same order of magnitude. The fermion Fock

space can correspond to particles or quasiparticles, includin@e sum running over all collective operators, denoted by the
particle-holes as a special case. As is well known, the operandexc. Any operatorO defined oriH can be transformed as
tors of Eq.(2.1) generate a closed Lie algebra under commu-O— O( 0)EU0(6’)OU3(0) and expanded in powers of a
tation that is equivalent to the algebra of the group S©(2 small parametere whose scale is set by the coefficients
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I'y(wv) in Eq. (2.2) applied to collective phonons only. In {am-BTr}:O! {am,Bmw}=0, and H.c.eqs.(2.7)
particular, in lowest order the transforms of the collective m

phonon and boson annihilation operators are given by The SU?2) generators].. andJ, obeying the commutation

rules
Xc(0)=X;cosO+b.sind+0O(e),
[J+!J—]:2‘]01 [‘]O!‘]t]:i‘]i (28)
b.(0)=—X;sinf+b,cosf+O(e). (2.5 are then defined by
It then clear that for the choic#= /2 the collective Q
phonons and bosons essentially exchange roles in lowest or- Jo=> alpl, 3=,
der, i.e., m=1

Q
Xo(ml2)=b+0(e), be(m2)=—X.+0(¢), (2.6 1.1

C(7T ) Cc (8) C(7T ) Cc (8) ( ) \]O:_EQ+§rT]Z=l (aLam+ﬁLBm)- (29)
while noncollective phonon operators remain totally un-
changed to all orders. The higher orders in Eqj6) involve ~ The general Hamiltonian for the LMG model is given by
both boson and fermion operators.

The next essential step is the transformation of operators
O—>OE(’)(7T/2)=UO(WIZ)OUS(WIZ), which are obtained
as a power series i) Since in general the transforms couple . . . .
bosoﬁ and fermion stateuo(q?-/Z) maps the fermion sut?— W'th coupling constantyo am.jvl'. We note in passing that
spaceHg onto a certain subspace of the boson-fermionIf €0=V1=0, t_hgn this Ham"“’r."a_‘” reduces to tha}rt of the
space, which is the physical subspace. The subsidiary Conoq_egenerate pairing model, providing th&<0 andaand

tion defining the physical statéghys after the transforma- B; are reinterpreted as creation operators for time-reversal

L . _ . . conjugate orbitals.
tion s just given bybc|phy$=0. In th_e original BFET, this For later reference, we also briefly discuss the nature of

condition is a complicated one sin&® mixes bosons and the eigenvectors dfl, g . Since this Hamiltonian lies in the
fermions. enveloping algebra of S1), the eigenvectors are, of course,

In summary, the BFET, by bosonizing only collective de- |apeled by the total quasispin quantum numBerThese
grees of freedom, provides a true expansion in a small pagigenvectors are linear combinations of the basis vectors for
rameter, which may converge faster than conventional paryn irreducible representation given py;J,M), whereM is
bosonized expansions. The BFET also provides a cleahe eigenvalue al,, andy is a generic marker for additional
criterion for distinguishing the physical subspace, althoughyyantum numbers defining the many-body configuration.
the condition is rather complicated. In order to clearly bringpost discussions of the LMG model focus on the so-called
out the advantages and shortcomings of the BFET, we emgjiective subspacef the closed-shell system witf par-

ploy the LMG model in the remainder of the paper. Thisticles, which hasi= 10, spanned by the normalized vectors
model also points the way to overcome the shortcomings,

which is the main topic. Q 0 (Q=w)]¥2
O,E,_§+V =T J7|0)e, v=01,...9,

B. The LMG model (2.1

_ The simplest exactly soluble _mo_dels involve Ha_lmi_lto- where the fermion vacuuf®)e=|0;0/2,-Q/2), which is the
nians constrL_Jcted from SB) quasispin operators. This in- (uncorrelatedl closed-shell ground state, satisfyingy|0)q
cludes thatsine qua nonof nuclear physics—the LMG _q andg, |0)-=0. However, our treatment is not limited to
model, which we adopt here as a paradigm. However, thg,e collective subspace, but, in principle, encompasses all the
boson-fermion mappings of the generators can also be aRjgenstates oH,,,c. The basis vectors for an $2) irrep
plied to other SW2) models such as the single-shell pairing ¢ g,ch states are obtained by repeated application of the
model. The_ LMG m_odel describes particles d'St”bu_tedoperatorJJr to a “base state” with a total ofi particles plus
among two single-particle levels of equal degeneracy split b¥loles and havel=(Q—n)/2. For example, for theQ)

an amounte,. Relative to the closed-shell system with . icie system, one has the following @Umultiplets with
particles occupying the lower level, one may define creatiory _ 1()—1 built on a particle-hole excitation:

and destruction operators for particles in the upper level,
al . an, and for holes in the lower leve8), By, m=1, i 1

..., Q. These operators obey the standard fermion anticom- m;m, §§Q_ 1:'§Q+1+ V>
mutation rules

1 1
Hive= €odo+ 5 Vol J-+ Evl(JinLJz,), (2.10

+ + (Q—2-p)1]*2 v ot ot
{am,ap}=0nmw . {Bm:Bm}=Omm R J% e B, |0k
{am,am,}=0, {ﬂm,,@m/}ZO, and H.C. eqS., VZO, e ,Q—Z, m]_?& mz. (212
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In addition to the closed-shell system, one can also describj@mote: S(#)=S] subject to the “initial” condition O(0)
systems with one or more particles or holes added to the=O. This equation will play an essential role in the new

closed shell. developments of the next section, but for now we apply it to
the BFET case whers=S,, which, in analogy with Eg.
C. The BFET applied to the LMG model (2.4, is given by
So=X"b—b™X. (2.17

In order to assess the advantages and disadvantages of the
original BFET, we apply it now to the Lipkin model. In this
model, the smallness parameter is giveneby(1/Q)Y? and
the natural choice for the phonon creation operator is on

The Heisenberg equation fa( 8) and X( ) is then readily
gvaluated with the aid of the commutatd&14), with the

proportional taJ, . If one defines the scaled operatdfs X result
andB by db(e)__
1 deo
X'=ed,, X=eJ_, BEZ<—2+JO . (213
28 dX(6)
———=b(#)—&?B(#)b(#), and H.c.eqgs.(2.19
then the SW2) commutation rules of E(2.8) take the form do
[X,X"]=1-¢2B, [X,B]=2X andH.c. eq.. Now, the functionB(#) on the right can be evaluated in one

(2.14  of two ways. First, integration of the differential, E@.16),
with O=B leads to
It is then obvious that in the limié—0 (Q—), X andX" 0
become boson operators, which, in the BFET description, are  B(8)=B+ 2j [XT(6")b(6")+bT(6")X(6")]de’,
preempted in lowest order by the collective boson operators 0 (2.19

b andb’, respectively. It is also important to note that the
which makes Egs.(2.18 integro-differential equations.

scaling of the S(R) generators in Eq(2.13 is chosen to
guarantee that the three operatiifs X andB are all of the However, there is a simpler method to evalu&{®) follow-
ing from the observation that

same order of magnitude, i.€(1). Forlater reference, we
also note that
Q t _
R [B+2b'b,S;]=0. (2.20
B=n= 2, (amamt BB, (2.19
e That is, the quantit§d + 2b'b is invariant under the transfor-
. . A . mationU(6). This immediately leads to the simpler result
i.e., B is operator for the total number of particles and I (6) S ately 'mp !

holes. _ o . B(6)=B+2[b'b—b(6)b(6)]. (2.29
In line with the discussion in Sec. Il A, the Lipkin model

is assumed to be defined on the extended Hilbert space |, the |imit ¢—0, Egs.(2.18 have the harmonic solution
=Hp® Hg, whereHy is the boson Hilbert space generated b(8) =bo(8), X(6)=X,(6), where

by the familiar oscillator vectorfn)g =(n!) ~¥4b")"|0)g,

and’Hg is the fermion Hilbert space of the LMG model. The bo(6)=bcosd—Xsind, X,(68)=b sins+X cosé.
operatorsh, b" obey the usual boson commutation rule (2.22
[b,b™]=1. It will be implicitly assumed forthwith that all of

the LMG operators are extended to the full Hilbert spate The differential, Eqs(2.18), can then be solved perturba-
thus the Hamiltonian is to be understoodtag,c ® 1z and tively as a power series ia? as follows:

any purely bosonic functiofi(b’,b) asl-®f(b',b), where

g andl are the respective identity operators to the purely = on
bosonic and fermionic subspaces. It is also convenient to b(9)2b0(9)+n§=:1 &°"bn(0),
introduce the common boson-fermion vacuyf)=|0)z

®|0)¢ (|0)¢ being the closed-shell configuratipnvhich sat- m
isfie§X|0>=0 andb|0>=.0. Prior to any transformation, the X(0)=Xo(0)+ > £2"X,(6),
physical subspace df is, of course, the fermion subspace n=1

He itself, and the physical vectoiphys are the fermion
vectors, which must satisfy the conditibhphys=0.

Given a #-dependent unitary operattf(6)=exp(—69), B . 2
the transform of an arbitrary operat®ron H will be written B(6) _,go &""Bn(0), (223
as O(9)=U(6)OUT(6), which must obey a differential
equation of the Heisenberg type; specifically, the expansion oB(#) being induced by the expansions of
d0(9) b(6) andX(6) through Eq.(2.19 or (2.21). In practice, it is
—[0(6),5(6)]=[0(6),S] 2.16 convenient to employ the following second-order differential

de equation derived from Eq$2.18:
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d2b(0) starting with the zeroth-order solutidg.22), Eq. (2.25 can
5 +b(0)=¢?B(0)b(8)=e?R(0), (2.29 be integrated in each successive order using the well-known
dé solution (for example, see Ref16)):

with B(#) given by Eq.(2.21). Separation of orders then

leads to the following driven-oscillator equations foy( 6): b,(6)=Im| expi 0)f0d0’exp(—i0’)Rn_1(6’)}
0
?bn(6)
————+by(0)=Ry_1(0), n=1.2,...%, (2.29
de Xn(6)=—db,(6)/d6
h 6
where =—Re{exp(i6)f da’exq—ia')Rnl(e’)}.
n 0
Ra(6)= 2, Br(6)by-m( ). (226 (2.2
It should be noted that the right-hand sidks) of Eq. (2.25 Through order?, the explicit expressions for the quanti-

depends only on previously determined lower orders. Thugjes in Eq.(2.23 are as follows:

1
b(a)——XS|n0+bcos¢9+—sz[(cose cos 39— 46sin6)(2X"Xb+b™X2—b'b?)
+(9 sin@+ sin 30— 1260 cos#) XX+ (7 sind—sin 30— 460 cosd) X 'b?
—8(sinf— 6 cosd)BX+86sind Bb—2(sinf+sin36—460cosh)b"™Xb]+0O(&?), (2.28
1
X(6)=Xcos+bsin o+ 2[(5 sinfd— 3 sin 39+ 46 cosd) (2X'Xb+b"™X2—b'h?)

+3(cosf—cos 39—46sin )X X?>— (3 cosh— 3 cos I+ 46 sin )X b?
—8(sinf+ 6 cosh)Bb+86sind BX—2(3 cosh—3 cos ¥—40sind)bT™Xb]+0O(e?), (2.29

B(#)=B+(1—cos 20)(b'b—X"X)+sin20(X'b+b™X)

1
+ &2 (—1+cos 20+ 6sin 20) X' BX+ = (sin 26— 26 cos 20)(X'Bb+b'BX) — 6 sin 26b"Bb

2(

(1—cos 40— 405|n20)bT2b2+ 5(9—8cos¥—cos 49— 126 sin 20) X2x?

(1—cos 40— 405|n20)XTbTbX——(S|n20+sm40 66 cos 20)(XTbTX?+ X ?h X)

-bll—‘ l’\)ll—‘ mll—‘

(sin 26— sm40+2000$2:9)(XTbTb2+bT2bX)+ 58— 4 cos 2+ cos 49)(X12b%+b12X?) |+ O(&?).

(2.30

The operatord’(6) and X'(9) are, of course, obtained by use the “bar notation” in which the physical unitary trans-
Hermitian conjugation of Eqg$2.28 and(2.29), respectively  form of any operato(® is denoted by as follows:

[B(6) is Hermitiarl. It should be noted that these expres-

sions donot correspond to a Fourier expansion because of O= O(72)=VU(wl2) OUT(7/2). (2.31)
the presence of aperiodic terms of the fowfisinng or

6™ cosnd. This becomes important when operators areThus the operators of Eq$2.30 evaluated at9= /2 are
evaluated for the physical valug= 7/2. From now on, we given by
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_ 1
=—X+¢g? 5(=BX+ XTX2+ X'h?)

T
+g(2Bb— bTX2—2X"™Xb+bb?)|+0O(&?),

(2.32

_ 1
X=b+g? E(bfxz—bTbZ— Bb+2X"Xb)

+ —(2BX—X'h?—3X"™X?+2b b X) |+ O(&?),

®| 3

(2.33

B=B+2b'b—2XX+&2| —2XTBX+2X2X2+ X12p?

+ht2x2y g(xfsm bBX)+ g(beTb% b'2hX)

3
- TW(bTXTXZJrXTZXb) +0(eY). (2.34

The numerous terms in Eq82.32—(2.34) are required to
satisfy the commutation relations

[X,X"]=1-¢?B,[X,B]=2X and H.c. egs.,

[b,b']1=1[b,X]=[b,X"]=[b,B]=0 and H.c. egs.
(2.39

through order2. One observes that some terms are propor-

tional to 7. In higher orders, one finds powers afwhich
arise from the aperiodic term®" sinng for odd values of
and #™ cosnd for even values of. These “r terms” must

then occur in all transformed operators, including the Hamil

tonian, which at first sight may appear a little disturbing, as

7 itself were a fundamental coupling constant. However, the

physical basis vectors also haweterms that conspire with
the transformed Hamiltonian to guarantee that the eigenv
ues and other physical observables are independent. of

This must obviously be the case since a unitary transforma-

tion cannot change the eigenvalues.

If one denotes the physical vectors after the transforma-

tion by |phys=U(#/2)|phys, then the condition defining
the physical subspace after the transformation is just

b[phys=0. (2.36

It is clear from Eq.(2.32 that this condition, which inter-

twines bosons and fermions and depends:énis actually

rather complicated. However, we can proceed as follows.
Let Pynys be the projection operator to the transforme

physical subspace, which is spanned by the stategs . Let
Opphysdenote the projection of an arbitrary operator onto th
subspace, i.e.,

0643
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5P Pphysfapphys- (2-37}

From Egs.(2.32 and(2.36), it is readily seen that

phys_

- 1 -
X[phyg = &2 ngb2+ S X7+ %Bb Iphys +O(&*).
(2.39

Thus, the operatorX annihilate all physical states through
ordere, but not higher orders. From E(.38 and its H.c.,

it follows that in the projection of the operator and B
given above, all terms involving and X" may be dropped
through order?. Therefore,

X L b2 4
Xp s~ Pony b_ES (b™b*+Bb) |Pynyst O(e?),

Bp = PondB+2b'D)PppO(eh).  (2.39
We note that the % terms” are automatically eliminated in
the physical subspace throu@(s2). Explicitly including

the next order gives the result

%o =p Lo Le2btozenb)— ted| (1 T |bt2?
Ponye~ Pphyg D= 587(D'b"+Bb)— 2™ | 1— 7%
2 2
T the T hR2
g b'b%+|1-—|bB
772
+(2_T b'b’B }Pphys+0(86),
§pphys=Pphy5(5+2bfb)Pphys+0(86). (2.40

One observes that the7# terms” arise again ir0O(s*) of
Xonys» the boson part of which is obviously different from
the corresponding expansion of the Holstein-Primakidf)
iboson maf17] beyondO(&?):
1
Xup=(1—¢£°b'b)Y?b=b—-£%bb?
al- 2

1
— g&"(b"0%+b'b?) + ("),

Byp=2b"b. (2.41

Note that the boson part cﬁphys, however, happens to co-

incide withByp . The discrepancy betweety,,sandXp, of
course, does not mean EE.40 is incorrect. Instead, it
should be attributed to the fact that the physical vectors in
the BFET deviate from pure boson states in higher order.
Indeed, the physical states in general are complicated super-

dpositions of boson-fermion states.

Now, we can proceed as follows. Letn)

~=(n!) "2p™|0)=|n)g®|0)¢ be the orthonormal set ofpure

IShoson states defined dr. With the aid of Eq.(2.32, one
then obtains
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aperiodic coefficients, they would disappear if a purely peri-
In)+0(e*), (242  odic expansion could be found. The argument in the preced-
ing paragraph points the way to overcoming both drawbacks.

where the rhs expresses the deviation of the veetpfrom ~ Namely, by using successive infinitesimal unitary transfor-

physicality. Althoughn) is not a purely physical state, it can mation, one may attempt to generate a modified BFET trans-
be employed to construct a corresponding physical $tete formation in which the physical state; arendependent anq

by means of a unitary transformation. Th@ is defined the 7 terms are absent. However, since a product of unitary

through orders2 by an infinitesimal unitary transformation t_rans_fo_rmauons Is equivalent to a single unitary transforma-
as follows: tion, it is reasonable to seek an extended unitary transforma-

tion generated by an operator of the form

1
bjn) = E82(th)2+ ;bsz

Iny=exp(e2F)|n) ,bln)=0(e*), (2.43

S=5,+AS, (2.46

where F is a suitable anti-Hermitian operator @(&9).
From Egs(2.32 and(2.43), the explicit form ofF is readily

P 2
found to be where AS is O(e“). CanAS be chosen to remove all the

drawbacks of the original BFET? Furthermore, can one find
1 - an operatolS that allows a closed summation of the expan-
F= Z(Xszz— bT2X?)+ E(XTbTbZ_ b2pX). sions? As demonstrated in the next two sections, the answers
(2.44 to these rhetorical questions are, of course, both affirmative
' (otherwise, we would not have much of a paper

The calculation of matrix elements between the physical
states is straightforward with the help of the relatiois)

. I, . S Ill. THE SUBM: EXPANSIONS
=B|n)=0 and their Hermitian conjugates, yielding the re- ¢

sults In this section we present the solution to the problem
discussed at the end of the previous section. This modifica-
— 1 1 tion of the BFET will be called theselective unitary
’ —/n'lh— —o2htTh2_ — .4/Kh12RK3 th2
(n |xPphan>_<n [b 2° b’b g° (b™*b>+b'b%)[n) bosonization methodr SUBM. The SUBM can be devel-

oped along two lines: either as an expansion formalism in

+0(&%), powers ofe as was done for the BFET, or in terms of closed
_ forms, which represent the summations of the expansions. In
(n’|Bpphme=<n’|2bTb|n>+O(86), (245  this section, we develop the expansion formalism. In appli-

cations to realistic cases, it is the expansions that are of most
which are identical to the HP matrix elements between pur@ractical use while closed forms may not always be achiev-
boson states to the given order. This demonstrates for a ceable. However, since in the $2) model it is possible to
tain subspace of states the possibility of going from theobtain exact closed forms, these are discussed in the subse-
BFET to the HP expansion via a unitary transformation. Wequent section. The closed forms are important for assessing
also note that the second of Eq&.45 follows from the the global validity of the mappings on the Hilbert space in
invariance implied by B+2b'b,F]=0. guestion and also to make contact with previous work on

In summary, the BFET does provide a well-defined ex-SU(2) models.

pansion in the small parameter as long as the subsidiary
condition defining the physical states is properly taken into
account. However, there are some significant drawbacks.
First, the constraint defining the physical subspace is given The SUBM is formulated on the same boson-fermion Hil-
in the form of an expansion in2, and the pure boson states bert space as the BFET and the notations are all the same. It
are not automatically physical states except for the lowesis not our intention to provide the most general solution to
order. According to the general argument given in Ref.if  the “a problem” but rather the simplest solution. To this
the states are physical @(&") then the matrix elements of end, we introduce the unitary transformation
any transformed fermion operator between these states are
correctly given inO(e""?). Therefore BFET gives the cor- U(0)=exp—69), (3.3)
rect matrix elements for any transformed fermion operator
automatically up td(&?). However if one goes on to higher with the generatoB having the form
order thanO(&?) it is necessary to manipulate both the op-
erator and the subsidiary condition in expansion form. To
avoid this complexity, we have to seek an expansion in
which the physical states aseindependent. Another related
drawback is the existence of the terms in the expansion. whereY and its Hermitian conjugat¥’ are assumed to be
Since these are canceled by the associatel@rms in the pure fermionic operators, which, of course, commute with
physical basis vectors, one must deal with a surfeit of seenthe boson operatotsandb®. Furthermore, it is assumed that
ingly unnecessary terms. Since thesdéerms arise from the in zeroth ordery and X coincide, i.e.,

A. General formulation of the SUBM

S=Y'b—b'Y, (3.2
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Y=X+AY, (3.3)  the present model is clearly of finite dimension. A closer
examination of the proof, which depends on a closure argu-
whereAY is O(e). Therefore, ment, reveals that it depends on the assumption that the bo-

son operators are well defined over the entire space, which is
then invariant under these operatbrslowever, the proof
S=S+AS, (3.4 does not rule out the possibility that a pair of operators can
L . _ + obey the boson commutation rule onnaninvariant sub-
VXZETYS& (')S( )glv'(léﬂusb{heEgl.Zl(Ez'lizz dvtvhhe"eSUABSI\/l é(ﬁr\% dt:e in spaceof the many-fermion space but not obey the rule on the
seroth order &) whole space. If the subspace includes the ground state and is
e . _ + sufficiently large, a physically meaningful theory can be de-
We _contlnue to use the notatlaﬁ?_( 0)=U(6)OU (0) for veloped. In the next subsection, it is shown that, in fact, there
the unitary transform of a generic operat®x From Eqg.

. . . is no problem in finding fermion operators satisfying Eq.
t(rzl'elg)aﬁpgfl'ggfé?e%?afggztggsand Y, one readily obtains (3.8 as expansions in powers ef Subsequently, a global

operator corresponding to this series is constructed, which
clearly demarcates its domain. The operatérand Y will
db(6) be referred to agermionic bosor(FB) operators.
—=-Y(0), Before leaving this subsection, we note that with E39)
do taken into account, the solution of E(3.5 satisfying the
conditions(3.7) as well as the initial-value conditions is just
dY(e)

bl A t
d0 [Y(0),Y'(0)]b(6) (andH.c.eqs. (3.5 b(6)=b cosd—Y sind,

which also implies the second-order equation
Y(#)=bsin#+Ycoshd, and H.c.egs. (3.9

d?b( )
de?

=—[Y(0),Y( 6’)T]b(é’)- (3.6 B. Series expansions of pair operators in the SUBM

It is natural to seek expansions ¥fandY" as polynomi-
It is immediately obvious thab(#) would be a simple har- als in the generators, X', andB. In fact, one finds that the
monic function ofé if the commutatof Y(6),Y(6)"] were a  series can be written in the form
positive constant, which would also makg#) a harmonic
function. If one takes into account the zero-order require- Y=IX, Y'=XxTT, (3.10
ments

wherel is the Hermitian operator given by the expansion
lim b(8)=by(0)=b cosfd—Xsing,
e—0 * n

r=1- 21 mZ:O e2c(n,m)(XHmMBr-mx™  (3.11)

lim X(0)=Xy(6)=bsinf+ X cosb, (3.7 . i
60 where the coefficients(n,m), which are allO(1), are ex-

panded in powers of? and determined by the requirement
as well as the initial values(0)=b, Y(0)=Y, one finds in  that the boson commutat@8.8) be fulfilled order by order in
fact that the condition making these functions harmonic ise?. In each order, this condition leads to a set of linear equa-
[Y(6),Y(6)"]=1, which is equivalent to thé-independent tions for the undetermined coefficients. We found it very
condition convenient to carry out this procedure using the computer-
algebra systenREDUCE 3.6, which easily handles honcom-
[Y,y'=1. (3.9  muting operators. As an example, the solutionYahrough
O(&%) is given by
But this means that andY' would have to be, respectively,
boson destruction and creation operators.

Is it possible to construct boson operators on a many- 1an elementary proof by contradiction is provided by observing
fermion space? Since it is certainly possible to construct ferg,at on a finite-dimensional vector space, the trace of a commutator
mionic operators on a boson space, which is just the usuglways vanishes, while the trace of the identity is the dimension of
boson mapping, why not the reverse? There is just one gemhe vector space. We note that the proof given in RE8] shows
eral obstacle we are aware of, namely, the dimensionality ofstead that boson operators are unbounded.
the Hilbert space. As is well knowfsee, for example, Ref.  2we actually successfully obtained the solution through osdér
[18]), a pair of boson operators satisfying £8.8) can only  in about 3 min on a 333 MHz Pentium |l machine running Win-
exist on an infinite-dimensional space. The fermion space inows NT 4.0.
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1 1
Y=X— E82(x‘fx2— BX)— 584(9XTX2—7XT2X3+ 10X"BX?—3B?X)

1
- 3—286(70xfx2— 234XT2X3+ 66X T3X 4+ 126X TBX?— 126X 2B X3+ 70X TB2X?— 10B3X) + O(&®).  (3.12)

This form is in normal order with respect to the fermion creation and destruction operators. However, one can also rewrite it
so thatl" is a function ofX"X andB. To facilitate a later comparison it is convenient to wite: XI'' with I'’ a function of
XX andB. Then Eq.(3.12 corresponds to

1 1 1
Y=X|1- E82(1+x*x— B)+ g:-;4(3+ 10X™X+7(X"X)2— 6B+ 3B%— 10X"XB)— 3—286(1o+ 70XTX+126(XX)?

+66(X"X)3—30B+30B2— 10B3— 140X "X B+ 70X "X B?— 126 X"X)?B) | + O(£?). (3.13

Equations(3.12 and(3.13 are rearrangements representing B()=B+(1—cos 20)(b'b—YTY)+sin26(YTb+b'Y).
one and the same operator. Therefore, while one might be (3.16
tempted to impose the Pauli constrain"(***=0 and _ .

(X)2+1=0 on the expansiofB.12), this would be incorrect The & expansion ofB(#) can then be obtained from the
since it is impossible to impose these constraints on Egexpansions off andY".

(3.13. The later discussion in Sec. IV A makes it clear that TO obtain the expansion oX(#) requires more work.
the Pauli principle arises from the cutoff on the fermion vec-From the unitary transformation of Eq3.3) written as
tor space rather than from constraints placed on the oper&(6) =Y(6)—AY(6), with AY(6)=[1'(6)—1]X(6), to-

tors. gether with Eqs(3.9) and (3.11), one obtains
Having obtained the solution for and Y*, one is in a v 1
position to obtain the expansions of)-dependent operators X(9)=Y Lbsing+ 2n
and, in particular, the values far=w/2. We first consider (9) cosg+bsing nzl mE:O e7e(n.m)
the derivation oB(6). One observes first that the operakor N " nm il
defined by Eq(3.11) does not change the eigenvalueJgf X[XHO)"B(O)™ "[X(6) ] 3.17

or, equivalently,B. Therefore, it follows thafI",B]=0 and

from Egs.(2.14 and (3.10 Since on the right-hand side, the first two terms have a

zeroth-order part equal ¥8y( ), while the sum i€(e), the

[Y,B]=2Y. (3.14 e expansion ofX(6) can be obtained through successive
' approximations beginning witK,( 6). Of course, the known
From Eq.(3.2 for S it is then easily calculated that expansions off andB(¢) to the appropriate order must be
substituted first, together with the previously determined co-
[S,B+2b'h]=0, (3.15 efficients c¢(n,m). Substitution of the expansiorX(6)

:EE;(])'SZKXK to order 2h— 2 then determineX(#6) to order
or, in other words, the operat@+ 2¢b'b is invariant under  2n. SinceB(6) is periodic and the zeroth-order valdg(6)
the general unitary transformatidh( 6) just as in the BFET. s periodic, the expansion generated must be periodic. There-
ConsequentlyB(6) is given by Eq.(2.21), which, together fore, the aperiodic terms that give rise to theproblem in
with the first of Eqs.(3.9), provides the following exact re- the BFET cannot occur in the SUBM. As an exampé/)
sult: through order* is given by

1
X(6)=X cosf+b sin g+ 582[(3 sing—sin 30)(2X"™Xb—b™b?) + (cosf— cos 39)(XTX2— XTb%—2bTXb)

1
—(sin+sin30)b"™X2—4 singBb] + E84[(3 sing—sin 30)(6X"BXb—b'Bb?)

+2(cosf—cos 39)(2X"BX?— XTBb?—2b"BXb) — 3(sin 6+ sin 39)b"BX?—2 sindB?b]+O(&f). (3.189
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Not only are the aperiodic terms absent here, but beyond C. Expansion of single-fermion operators

O(e) the periodic terms have different coefficients than in = 5 complete theory requires not only the transformation of
the BFET counterpart, E¢2.29. o fermion-pair operators, but also the transformation of single-
The transformed operators of physical importance COresermion operators, which are required for the description of
spond to the valu@= /2. We continue to use the notation sne_nucleon transfer processes and chains of nuclei with dif-
O=0(wl2) for an arbitrary operatoO. Then from Eqs. ferent particle numbers. In this subsection we describe a

(3.9 one immediately obtains straightforward technique for obtaining tleeexpansions of
o . single-fermion operators using the “equations of motion.”
b=-Y, Y=b, and H.c.egs., (3.19 In the next subsection, we present an alternative formalism
that permits the transformation of both single-fermion and
and from EQ.(3.16), pair operators within the same algorithm.
o We begin by noting that the single-fermion operataﬁ$
B=B+2(b'b—YT'Y), (3.20 andp,, are components of a rank-1/2 &) spherical tensor,
while ,8; and «a,,, are the corresponding components of the
which has the expansion H.c. tensor. Indeed, the commutators with the(@lgenera-

- tors of Egs.(2.9) are given by
B=B+2(—X"X+b'b)+22(2X"2X2— XTBX)

1
o=t —
+2e4(3XT2BX2—XTB2X) + O(&?). (3.2 [Jo,aml=5am, [Jo.Bml==5Bm,

Now, X can, of course, be obtained by settifig /2 in the [J.,a11=0, [J_,al1=Bm,
solution [Eq. (3.18] of Eqg. (3.17. However, it is much
faster to directly solve the counterpart of E8.17) for 6 [J. ,Bm]=aﬁq, [J_,Bm]=0, and H.c.egs.
=7/2, namely, (3.26

© n In terms of the generatod$, X' andB, the equivalent com-

X=b+>, > &¥c(n,mXmMB"~MxM*l (322  mutators are
n=1 m=0

_ [B.aml=al, [B.Bul=—Bm,
beginning with the zeroth-order valug=b. This results in

the expansion [X"al1=0, [X,all=¢Bm,
_ 1 1 (X", Bml=eal, [X,Bm]=0, and H.c.egs.
— 2 T _ _ T hth2
X=b+e X'Xb 2Bb 2b b ) (3.27)
1 3 1 1 The “equations of motion” for the single-fermion operators
+s4(§XTXb— EXT2X2b+ EbTXTXbZ— ngb follow from Eq. (2.16), namely,
dal(6)
3 1 1 1 mo Tt
P YTBXhe —h'RRh2— —hTh2— —ht2h3 =[am(6),5(0)],
+2X BXb 4b Bb 8bb 8b b) do m
+0(&%), and H.c. eq. (3.23 dBm(6)

d0 =[Bm(0),S(6)], and H.c. egs.,(3.28
Finally in this subsection, we briefly discuss the auxiliary
condition in the SUBM. In accord with the earlier discussion,where the expansion @&(6)=Y(6)'b(8)—b'(6)Y(6) has
the general condition is given dyphys =0, where|phys  been previously determined. The formal solution of these
=U(m/2)|phys. However, from Eq(3.19), this implies that ~equations satisfying the initial values, (0)=a! and
Bm(0)= B is
Y|phys =0. (3.29 ,
T _ T t/pr ’ ’
If the operatod” has an inverse on the domain4fand we an(60)= amt fo Lam(67),5(67) 0",
show later(Sec. IV A) that it does, then from Ed3.10 the
auxiliary condition simplifies to 0
Bm(0)=Bmt+ fo[gm(a’),S(()’)]de’, and H.c. egs.

X|phys =0. (3.2 (3.29
In fact, using thes expansion ofl’, one can derive a con- From the commutator§3.27) and the expansions of(6)

comitant expansion of ~1, but this is insufficient to estab- and Y'(6) it is obvious that the integrals in Eq&3.29 are
lish the domain. O(e). Therefore, thes expansions oivﬁ]( 0) and B,(0) can
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be obtained by succqrsswi aeproxmatloni beglnnnjg with the Q=+ e(— X+ b)ﬁ:n
zeroth-order valuest,(0)= «, and 8,(0)=B,. This ap-
proach was easily set up usimgDUCE 3.6 Once the solu-
tions are obtained to a given order, they may be evaluated at
0=/2. Since higher-order terms become very numerous,
we give the explicit results for th@-dependent operators te (

2 3 —§x*xt>+ §x*x2+x—Bx
only through ordeg“: 2 2

1 1
+82( - Ex*x+x*b— Eb*b—l) am

al(0)=al—e[(1—cosf)X"—sinob"] B, BL+0(sY. (33D

+ 2Bb+ 2b'Xb =b
1 2 2 2
- Zsz[(3—4 cosf+ cos 20) XX + sin 26X 'b

Here, the H.c. of each operator is explicitly listed since a

—(4 sinf—sin 20)b™X+ (1—cos 29)b’fb]a;1 standard form is employed in which the single-fermion op-
5 erators always appear on the far right, entailing rearrange-
+0(e%), andH.c.eq., ment after Hermitian conjugation. As is readily checked,

. these operators obey the fermion anticommutation rules
_ _ _ t
Bm(0) = Bm+e[(1—cosh)X—sindb]a, through the given order ia.

1
_ .2 _ T ; T
28 [(3—4 cosf+cos 20) X' X+sin 26b'X D. A universal framework for transforming arbitrary

. . fermion operators
— (4 sinf—sin20)X'b+(1—
(4 sing—sin 26)X’b+(1-cos H)bb While the above methods for obtaining thexpansion of

+4(1—co0s6)]Bn+O(e®), andH.c. eq. the unitary transforms of fermion operators are sufficient, a
(3.30 different approach was used for each type of operator. There
' exists another method whose appeal is that a single frame-
. . . work, indeed, a single algorithm can be implemented for
The fmfl transformed fermions; = ap,(w/2), etc., through arbitrary fermion operators. This formalism is an extension
ordere* are given by of one first used by Villar§19] for introducing collective
;rTn:a:-n+8(_XT+ b") B canonically conjugate operators into a Hamiltonian. How-
ever, here we apply it to boson operators, which was appar-
ently first done in Ref[12]. Since the derivations were omit-
ted there, we provide them in the Appendix.
Let © be an arbitrary fermion operator and MtY' be
fermionic bosons, i.e., fermion operators obeying E18)
on some subspace of the fermion space, which will be the
“arena of action” in the ensuing discussion. From a formal
+1bTB+1bTXTb_bT)IB +0(e% viewpoint, the operators could be defined on any kind of
2 2 m ' space, not necessarily a many-fermion one, the main require-
ment being the existence of a boson degree of freedom rep-

1 1
+82( - ExTx+ bfX— EbTb) al

1 3 3
3| Zyty Dxtey _ytg_ Zptyt
8(2X+2X X—=X'B 2bXX

Brn= Bt e(X~ b)ar, resented by the pai¥, Y'. Corresponding to the generic
o 1 + + 1 + operatorQ, we introduce the fermion operatg} defined by
+ef| — 5 XIX+XTb=5bb—1/8y the formal infinite series
8% 5X"™Xb- 3 3 XTX2—X+BX OEkZ Z (- YDomkY!, (3.32
1 1 1 . .
— EBb_ —b"Xb+ fb a;+ O(&%), whereO(k,l) is the iterated commutator
m:ﬁ;-ﬁ- S(XT—bT)am Ok, D)=[Y,[Y,- '[Y’[YT’[YT" o [YT O]]-- -1,
1 1 k ;mes ! times
2| _ Tyt ty— —hth | pt
+83( _ EXT_ §Xsz+XTB+ §bTXTX and O(0,0)=0. It is then easily showitsee the Appendijx
2 2 that O has the property

1 1
_ Z“ptg= Zptxt T
2bB 2bXber

am+0O(s%), [Y,0]=0, [Y',0]=0, (3.39
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which means tha is invariant under the unitary transfor- &t€d directly. This provides an advantage over the method
mation U (). While every fermion operator has an associ- described above for the single-fermion operators. We wrote a
ated invariant, in some cases it may be trivially zero. To aXEPUCE procedure that evaluates Eq8.37) or (3.3 for

given order ins, only a finite number of terms contribute to any fermion operator. This reproduces the results presented

the serieg3.32. For example, for the single-fermion opera- above for the transforma_tlon_OK and the single-fermion _
operators but the calculation is much faster. Moreover, this

t . . . © + ) X . . .
tors ap and theB,, the corresponding invarianisy,, and  ypjyersal algorithm has the advantage of being readily appli-
Bm, respectively, are given through ordeft by cable to more realistic nuclear shell models.

aT —al X1 By %82 X'Xal IV. THE SUBM: CLOSED FORMS

The previous section described methods for obtaining the
. - . e-expansions of transformed operators. In this section we

X+ 5XX=XB| B discuss how to obtain the transformed operators in a closed

form within the framework of the S(2) model. While this

approach is not immediately applicable to the general case, it

3 11
Y S XTX+ §x*zxz—xfsx) al

) provides insight into the validity of the treatment in Sec. lII.
+0(e°, andH.c.eq, A. Closed forms for Y and Y'
3 1 As discussed in Sec. Il, eigenvectorstdfyg are linear
Bm=Bm~+ sXaL—sz EXTX+1 Bm combinations of the basis vectofg;JM) belonging to an

irreducible representation of the group @Y Since the to-
tality of these basis vectors is complete on the Lipkin-model

Hilbert space, an arbitrary fermionic operatf)p can be ex-

3
—s3<§xfx2+x— BX) al
pressed in the following dyadic form:

419 11
+ef 3 — XX+ = 5 X"2X2-1-X"BX-B| B,
Op=2 2 E E (v 3 M|
+0(e®%, and H.c.eq. (3.35 yy' 33 M==Im——y
As proven in the Appendix, the operaifrhas the formal X Ol ;3. M) y":3" M ) (7,3 M. 4.
decomposition Thus, the quasispin operators are expressed as
0=2 2 ok Y™ (=)', (336 3= 3 w@I- v Dy, -3+ v-1)
y,Jd v=0
where ,l) is the invariant associated with the multiple X {(y:d,— I+,
commutatorO(k,1). Although this decomposition is a formal
identity, it becomes valuable when both sides are trans- J.=3)T, 4.2

formed, leading immediately to the result

o) Jo:% ;O(V—J)|‘}/;J,—J+V><‘)/;J,—J+V|, (4.3

Ok NIY(OI{-Y(0)],

x
=

(3.3  where we seM=—J+v.

which for 6= /2 becomes We define the invariant operatdras

A | - L L
=2 3 anokhoh - @38 3= 3 Ay dend —deel @d

. — . . which satisfies the following relations:
In order to obtain?(#) or O to a given order ire, only a g

finite number of the operator coefficien@ (and a finite 37,3, 3+ v)=3]y,d,— I+ 1), 4.5
number of iterated commutatgnseed to be evaluated, which

can be done very efficiently with computer algebra. Equa- [3,.1=[J,3,]=0, (4.6)
tions (3.37 and(3.38 can be applied tany fermion opera-

tor, be it a pair operator, a single-particle operator, or a j(j+1)=JSiJo+J:J+=J2, 4.7

Hamiltonian with interactions. Moreover, it is not necessary
to calculate®(#6) in order to obtain®, which can be evalu- whereJ? is the Casimir operator.
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Next, we introduce the fermionic boson destruction opera-
tor Y by PHEEJ |:3,3)(y;3,d|. (4.19
Y

2J
Y= > Vuy:3,-3+v—1)(y;J,—JI+v|, (4.8 Thus, the boson commutation rule/,Y'1=1 holds only
v.J v=0 within the subspace spanned by vectpysJ,M) with M

. . . . #J, but not in the subspace of maximally aligned vectors
in analogy with the dyadic representation of the boson deTY'J J). It should be noted that Eq&4.18 and (4.19 guar-

struction operator antee that T{Y,Y']=0 on the full fermion space, as re-
o quired by its finite dimensionality.
b:nE—:O \/ﬁ|n—l>(n|, (4.9 Noticing that
I=30)|7;3,— I+ v)y=(23—v)|y;3,— I+ v),
where|n) denotes the normalizeatboson state. The use of ( ol )= Ud )

the labelY is justified below. From Eq(4.8) and its H.c. we  gpe obtains the following closed form &f from Egs. (4.2)
immediately obtain and (4.9):

Y|y;d, =3+ v)=v|y;d,—I+v-1), »=0,1,...,2, 1
(4.10 V=) —— (4.20

NAER

YTy:d, =3+ v)=Vr+1|y;d,— I+ v+1),

_ _ The rhs of this expression is equivalent to (ﬁl/—JO)J_
v=0,1,..,2—-1, (4.11 . : . .
unless acting on bra vectors in the maximally aligned sub-
Y'|y:3,3)=0. 4.12 space, where the inverse square root operator breaks down.

To verify that Eq.(4.20 gives thee-expansion forY ob-

Thus, within each S(2) irrep, the operatoy corresponds to  tained in Sec. Ill, one may proceAed as follows. As a root of
a boson destruction operator with vacuy@)=|y;J,—J), the quadratic equation in E4.7), J is given in terms of]
while YT corresponds to a boson creation operagaceptfor andJ.. by

the maximally aligned statgy;J,J). Therefore, the fermi-

onic bosons provide an exampletafincated bosonsavhose A 1 \/

mathematical properties are discussed by Hammel in an In- J=- §+ Z+‘]0(‘]0_1)+‘]+‘]—'
ternet publicatiorf20]. Of course, Eq(4.12 represents the

inevitable cutoff required by the finite dimensionality of Therefore /j_Jo+l can be expressed in termsXfX and

SU(2) irreps. B using Eq.(2.13. In thi finally obtai
The fermionic phonon number operafdy, is defined as using Eq(2.13. In this way we finally obtain

=vT 1
Ny=YTY, (4.13 v=X
the d_yadic form of which, derived from Ed4.8) and its \/E(1+82—828)+ E\/(1+82—828)2+482XTX
H.c, is 2 2
»s (4.21
Ny= ZO vy, d,=J3+v)(y.;d,—J+v|. (414  This expression represents the summation ottexpansion
"= given by Eqs(3.10 and(3.11). Indeed, it was directly con-
; ; firmed to very high orders is that the Taylor expansion of
It is then easily shown that
y Eqg. (4.2)) coincides with the expansiof8.13, and when
Ny|y;d,—=J+v)=v|y;d,—J+v), »=0,1,..,2, written in normal order, with Eq(3.12).
(4.15 The explicit construction of and YT presents us with a
conundrum—we have consistently assumed the relation
[Ny, YTI=YT, [Ny,Y]=-Y, (4.16  [Y,Y"]=1 in all derivations in Sec. lll, while the actual
commutation rule given by Ed4.18 involves the projector
Ny=3+J,. (4.17  Py. Some insight is provided by an explicit representation of

_ _ ) _ this projector. From Eq(4.20 and the relation,J_=(J
The commutation relation betweeviand Y', obtained | jy(3—J3,+1), it follows that
from Eq.(4.8) and its H.c., is

. 1 -
[Y.Y=1-(2J+1)Py, (4.18 [Y,YT]=J,mJ+—(J+JO). (4.22

whereP; is the projector to the subspace of maximally spin-

aligned vectors, i.e., Comparison with Eq(4.18 identifies the projector as
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1 n 1 1
Po=— J+Jo+1-J_+—1 Jhn, v)y=———=(b"" (YN y;3,-J);
f 23+1 0 J_J0+1 + |{7 } > m( ) ( )|7 >
1 n = - =
:Zj+1(J+JO+1_YYT)- (4.23 v{y,J}, »=01,....2; n=v,wv+1,.... (429

Here, the fermion vectors are implicitly extended to the en-
tire boson-fermion space, so thatJ,—J+ v) is to be inter-
This representation is well defined on the entire fermionpreted ag0)g®|y,J,—J+ v)g, etc. Also, in this notation
space. What is remarkable upon first examination is that the
e expansion oP; turns out to be precisely zero. This seems Hy,dbv,v)=]y:3,—J3+v), (4.26
to justify a posteriorithe use of the boson relatidry,Y'] o )
=1 in derivinge expansions. The reason for the vanishingWhich is a pure fermion vector. For later reference, we note
of the expansion is easily comprehended. The ternhere thato|{y,J};»,»)=0.

J_[ll(j—J0+ 1)]J, has the same expansion as the ex- If one defines the total phonon numtéy as

pr§ssion[1/(J—Jo)]J,J+=[1/(J—J0)1(J—J0)(J+Jo+ 1) N;=Np+Ny, (4.27
=J+Jo+ 1, but the latter, involving 10— J,) is valid only

in the subspace thaixcludeshe maximally aligned vectors whereNy is defined by Eq(4.13 andNy, is the boson num-
|v;J,J). We thus return to the same conclusion reached twder operator

paragraphs ago. But now, the inevitability[of,YT]=1 in a +

Taylor expansion may be better appreciated. Taylor expan- Np=b'b, (4.28
sions are inherently insensitive to cutoffs. The analogy ma . ] .
be made to the Taylor expansion of an attractive potentiajie" the basis vectof$y,J};n,v) have the following prop-
well about its minimum—the expansion cannot distinguishert'es'

between an infinite well and one of finite depth. . —(n_ .

A key question remains to be resolved: in which subspace Nol{7.3}in.v)=(n=»)[{y.3}n.v),
of the boson-fermionspace areb(6) and Y(6) harmonic
functions, as given by Eq3.9)? This is taken up in the next
subsection.

Ny[{y.d}in,v)=v[{y,3};n,v),
Nd{v.3};n,v)=n|{y,3}:n,v). (4.29

B. The principal subspace Since[N;,Y'b]=[N,,bTY]=0, N, also commutes witts
and therefore with the unitary transformatidh(8) gener-

; t
3 g)mceY atn(rj]YI d are trut?]catedf ratger thafn true bosons, Elq'ated byS. As a consequence, under this unitary transforma-

=) cannot hold over the entire boson-iermion space. n'tion, each fermion basis vector remains an eigenvectdi; pf
deed, direct evaluation df(6) and Y(6) using the multi-

) ) and, therefore, may be expanded in the set of all such eigen-
commutator expansion of the unitary transformatieame-

times referred to as the Baker-Campbell-Hausd®&®€H) vectors with the same eigenvaloeas follows:
expansiof, indicates that in addition to the césand sind U(6)|{y,3};:n,n)

terms there is a huge number of terms involving higher har-
monics that dependinearly, of coursg¢on the projectoP; .
While, in principle, the additional terms define the action on = Z ({7, 35:n,2|U(0)[{y,3};n,m)[{y,3};n,v),
the whole boson-fermion space, this BCH series is impos- v=0
sible to sum in practice. Nevertheless, we show that the har-
monic solution forb(#) andY(6) can be realized, not on the
whole boson-fermion space, but on a certain subspace th

Wet c_aII th?prtllnmpdal sut;sptacel'll'ms re?trlcnﬁn, as it turns then the image basiU(6)| W (i)} for any 6 can be ex-
out, 1S pertectly adequate to allow us o achieve our aims. panded in a subset of the ba##s25), with the property that

e Saelmiery lo conscing he picbal SUbSDCE th ol mmber ofphonons= 2120, The subspace g
fermion spacé(. Now, in accord with the H.c. of Eqé4.8) erated by the latter subset is what we call the principal sub-

) - space. The formal definition is as follows: thencipal sub-
or (4.20, the basis vectorsy,J—J+») for the purely fer- spaceH, of the whole boson-fermion spaé¢ is the set
mionic subspace can be written as

2J

n=0,1,...,2. (4.30

‘ﬁ]us, if {{We(i))} is any basis for the fermion subspace,

1 Ho=spand|{y,I};n,v):V{y,J};n=0,1,2...,2;
. _ TNy A,
|%J’—J+V>—ﬁ(Y> 17:d,=3). (429 »=0,12...n}. (4.31)
Note thatHoDHg, the entire fermion subspace, and, also
Therefore, a set of orthonormal basis vectors for the wholé{,DHps, the entire physical subspace, generated by the
boson-fermion space is represented by the product states image basi§U(/2)|W(i))}.
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We now consider the restriction of any operator to theone may also write Eq$4.37) in the form
principal subspace. To do so, we introduce the projection

operatorP, to the principal subspack,, hamely, b(#)Po=[b cosé—Y sind]Py,
2 n Y(0)Py=[bsind+Y cosd]P,, and H.c.egs.
Po=2 > > [{yJhno)({r.dhnsl. (432 (4.39
Y =V r=

) o While Egs.(4.37) have the same form as Eg&.9), it
Then, for any boson-fermion operat6t, the restriction to  should be noted thahpo and YPo are not bosons, owing to

the principal subspace, denoted Oy, is defined by the presence of projectors. In fact, it is straightforward to
show that the commutation rules 6t are given by

[beybp 1=Po—({Nu}p + 1Py,

Op,=PoOP. (4.33

SinceU () leaves invariant both the principal subspace and
its orthogonal complement, which is the consequence of the + A
property [N, U(#)]=0, it follows that [U(6),Pg] [Ypy Ypol=Po=(J+Jot1)Py
=[UT(6),P,]=0. This, in turn, implies that

[b! ,Yp ]=Yb'P, , and H.c.eq,
[O(0)]p,=Op,(0). (4.39 ° -

We are now positioned to prove the harmonic behavior of [bPO'Ypo]:O’ and H.c.eq., (4.40

b(#) andY(#) in the principal subspace. As a preliminary, . . -
we consider the action of the operafof,Y']b on the vec- WhereanaX, the projector to the subspace having the maxi

tors (4.29: thus, from Eqs(4.9) and (4.18 mum number of phonons,,,=2J for each value of], is
’ ’ ’ given by
[Y,YTIbl{y,3};n,v)

2J
=\Vn—v[1-(23+1)P;][{y,3};n— 1 ). anaf% Z,O {73523 v)({.3520,0]. (44D

But in H,, the projectorP; has a nonzero action only on
vectors withn=»=2J, in which caseyn—v»=0. In other
words, acting on vectors iy, [Y,Y']b=b, even if

The operatordp bLO andYp, YLO are truncated bosons
acting within the subspact,, the projectorPnmax guaran-

[Y,YT]#1, or, more formally, teeing thatb”{,0 and YI,O annihilate vectors withn=2J
+ phonons. However, when acting on all other vectorg{y
{[y.y ]b}POZ bPov (4.39 the truncated bosons behave just like ordinary bosons. There-

. ) o fore, the identification of Eq9.3.9) and (4.37) is complete.
which, because of the commutation of the projection and theyo problems arise as a result of treating truncated bosons

unitary transformation, implies thdfY(6),Y"(6)1b(6)}p; like true bosons as long as physical matrix elements are con-
= bpo(e). Then, the projection of the exact Heisenberg equastructed withinH,. Thus, the treatment in the preceding sub-
tions (3.5) is given by sections is fully justified provided that all operators are re-
garded as being defined on the principal subspdge In
dbp (6) doing so, the boson operatdssb™ are restricted so that they
do = " Vel are more on a par with the operatofsY'. One could also
contemplate the opposite tack: extending the fermion sub-
dYp (6 space to an infinite-dimensional one so that the operators
S —1[Y(0),YT(0)]b(0)}p =bp (0), Y' could be defined as true bosons on a par with the true
do 0 0 bosonsh, b'. Indeed, such an approach had been attempted

many years ago by Kuriyamet al. [13] in their auxiliary-
and H.c.eqs(4.36  variables treatment of the pairing problem. However, their
. . extension of the fermion space is a purely formal one that
This proves that the projected operators have the harmomr(fas no obvious physical connection with the original many-
solution body problem. It amounts to little more than the assumption
be (6)=bp cOSO—Yp sind, of a license to treat all the operatdosb®, Y, andY" as true
0 0 0 bosons.

Yp (0)=bp sind+Yp cosd, and H.c.egs.(4.3
PO( ) Po Po 4s(4.37 C. Transformation of SU(2) generators

By invoking the following easily proven properties: The remaining task is the transformation of operators, be-
. . . . ginning with the SW2) generators and then proceeding to
Yp,=YPo, Yp =PoY', Dbp =bPg, bp =Pgb’, single-fermion operators. A convenient starting point is the

(4.38 generatod,, which according to Eq4.17) can be written as
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Jo=—J+Ny. Since[J,S]=0, J is invariant under the uni- Where the projectoP, can also be commuted to the far left
tary transformatior(9), i.e., of the bracket if desired. The complete expression for
[\]0(0)]p0 is then given by

J(6)=1J. (4.42

An operatorQ leaves invariant botft{, and its orthogonal

o 1
complementH if and only if [Jo(0)]py=| =I+Ny+ 5 (Np—Ny)(1-cos 2)

PoOPo=Py0=OPy. 4.4 1
omroTo 0 (443 +5(b"Y+YTb)sin 26| Po. (4.48
Sinced, in fact, has this property, it follows that
[3(6)]p0=3p0= Pod=JP,. (4.449  Apart from the presence of the projector, this result exactly

agrees with Eq(3.16), taking into account the relation be-
Next, making use of the first of Eq$4.38 as well as tweenB andJ,.

[U(e),Po]z[UT(a),PO]=O, it is easily shown that Next consider the transformation @f . The starting
N point is the inverse of Eq4.20, which can be written as
[Nv(0)1p,=(Ny)p () =YF (0)Yp (6).  (4.45

Therefore, the projected unitary transformationgfs given J_=+J-J,Y. (4.49
by

[Jo(61)]p,= —Ip + YEJO( 6)Yp,(0). (4.4 Noting thatyd—J,= 23— Ny has the property4.43, one
obtains from Eqs(4.38 and (4.46) the following projected
However, one can do a little more. Using the first of Egs.unitary transform of)_ :

(4.37) for Ypo(a) and its H.c., together with the salient result
thatNy, Ny, b'Y, andY'b all have the property4.43, one

calculates [3-(0)1p,= \Ip,~ [Jo(B)]p,Yp,(6)

Ny + %(Nb— Ny) (1 cos 26) =235, = YE(O)Yp (0)Yp(6), (450

YE (0)Yp,(6)=Ny(6)Po=

= (4.47) which, with the aid of Eqs(4.37), (4.44), and(4.47) can be
0 ' written as

1 .
+§(bTY+YTb)S|n 26

- 1 1
[J,(a)]p(): \/2J— Ny— E(Nb_ Ny)(1—cos 20)— E(bTY-F Y'b)sin 26(b sin6+Y cosh) Py,

[3:(0)]p,=[I-(0) Ty (4.50

We note that the projectd?, must stand on the far right in the above expression. Apart from the projecta;elkpansion
of e[J_(6)]p, exactly coincides with that ok given by Eq.(3.17), as checked to high orders. Therefore, we conclude that Eq.
(4.5 represents the closed summation of E17).

The final transformation, of course, corresponds to the ch@ieer/2. At this point, one may just as well replace the
projectorP to the principal subspace by the projecRy;sto the physical subspace since the latter subspace is included in
the former and all of the physics has been transported to the physical subspace. It will be recalled that the physical subspace
is spanned by all vectors having the propei®y24 or (3.25. We also extend the notation of EGL.33), so that (’))pphys

=PphyOPpnys: for an arbitrary operator©. In accord with our convention in WhichJO(w/Z)]pthSE(Fo)pphys, and

[J_(7-r/2)],3physE (J__)pphys, etc., we immediately obtain the following images of the generators:

(‘]_0) PphyS: (— J+ Np) Pphys: Pphys( -3+ Np),

(3 )py, = V2I=NpbPprys,  (3:)p,=(3-)b = Ppind V2T =Ny, (4.52
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This result is a very familiar one: a slightly extended vers{&iiP) of the Holstein-Primakoff mappinfl7] of the SU2)
generators, the extension corresponding to the opedateplacing thec-numberJ. As discussed in the next section, the
operatorJ can be written in the form

L1 o
J=§(Q—n), (4.53
where
h= (o Bhm) (4.54

is the total number oideal particles and holegalso known as quasifermionim the terminology of Refd.12,9]. Indeed, the
above EHP representation is identical to the one obtained by other means in these references.

D. Transformation of single-fermion operators

In this subsection we derive closed forms of the transformed single-fermion operators. First, the fermion operators are
written in the following dyadic form:
Q2 23

= E E z <'y’;J—1/2,—J+1/2+V|aL|y;J,—J+V)|y’;J—1/2,—J+1/2+V}('y;J,—J+V|
312 570 5

(Q-1)12 23
+ > > Zw J+1/2-3+ 12+ v]al | y,d,— 3+ 0|y 3+ 12— I+ 12+ v)(y;d,— I+ 1,
J=0 v= 0
Qr 2
Bm= 2 > Zw 1J— 12— 3= 112+ v| By y;d, = I+ v)| v/ ;I — 12— I— 112+ v){ ;J,— I+ 1|
J=1/2 v= 0
(Q-1)2 23

+ Z > 2(7 I+ 112~ 3= 112+ v| Bl 7,3, — I+ 0|y I+ 12— I— 12+ v)(y;d,— I+ |, and H.c.egs.

=0 gy

(4.55

As shown in Eq(3.26), these operators are components of a rank-1/2 spherical téﬁswith

12 2
trlnllz_a;rna th? 1/5= Brm- (4.56

Consequently, application of the Wigner-Eckart theorem with explicit evaluation of the Clebsch-Gordan coefficients allows
one to write Egs(4.59 in terms of the reduced matrix elements as follows:

ar 2

al=—> 2 2 (y";3—1/2t¥35;3) |y (J—1/2,~ 3+ 112+ v)(y;d,— I+ V|
J=1/12 =0 2J+1

(Q-1)12 23
- 2 2 Z<y I+ 12t v; ) J+1|y I+ 112~ 34 112+ v)(y;d,— I+ ],

Qr 23
2 2 (/3= 112|t5 A ;) ly';3= 12, 3= 12+ v)(y:d,— I+ |
BT = 2J+1
(Q-1)12 23
+ 2 2 Z (y' J+1/z|t1’2||y,J>\/W|y ;J+1/2-3—1/2+v){(y,J,—J+v|, and H.c. egs.

(4.57)
This motivates the introduction of thz;yasifermionoperatorSa,“:q and B,,, defined by
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Q02 23-1

. 2J
ab=— 2 2 2 (¥ I-U2thA| ;) |y 13— 12~ 3+ 12+ v)(y;3,— I+ |
=i =0 5 2J+1
a2 23-1
=> > > (y3-12-3+12al |y, |y d- 12,3+ 12+ v){y,d,— I+ 1],
J=1/2 v=0 yy’
(Q-1)2 23
Bu= X 2 2 (¥ 3+U2tH v )]y 3+ 12~ 3 112+ v)(y;3,— I+ |
J=0 v=0 yy’
(Q-1)2 23
= > > > {(y3+12-3-12 Bl y;d,— D]y I+ 12~3—1/2+ v)(y;J,—I+v|, and H.c. eqs(4.58
J=0 r=0

$%4

The notation for the quasifermions suggests identification
with the invariants given by Eq3.35, which will be even-
tually justified. With the help of Eqg4.15 and(4.20), one

Al=P.alYP,=P,alY=0alYP,,

readily obtains from the dyadic forrt%.57) the following Bu=PyY ' BnPi=PyY' B=Y"B,Py,  (4.63
key linear relation between the fermion and quasifermion
op)e/:ratorS' g andP;, which is defined by Eq(4.19, represents the pro-
' jector to the subspace of aligned quasispin states. The second
1 1 line of Eq. (4.62 shows that the quasifermions do not ex-
al = ;;1/23_ NY+YT,?3m ' actly commute with botty and Y', as one would expect of
V2i+1 V23+1 strictly invariant operators. However, the quasifermions do

commute with bothY and Y™ on the fermion subspace that
excludesthe aligned states. Moreover, tleexpansionof

Br=— ! Yaf++/25— NYE L the operator\!. and B, vanishsince they are proportional
m i1 " 5341 to P, , which has a vanishing expansion, as discussed in Sec.

IVA. Therefore, the quasifermions are invariants in the
sense of Sec. Il D. What is most important, the quasifermi-
ons are strictly invariant in the principal subspace as we pro-
gceed to show.

First, we note the following relations:

and H.c. eqs(4.59

There are several other important properties of the quas
fermion operators. First, the following relations are easily
derived from Eqs(4.3), (4.5, and(4.58: o o
{b"[Y,afl}p, =0, {[Y',Bnlb}p =0, and H.c.egs.

(4.69

The proof is similar to that of Eq4.35: since the commu-
1 tators are proportional t8; and aligned vectors ifi(, have
[3,811=-[0.8-1=— =B, andH.c. egs. zero bosongn= v in Eq. (4.31)], the projectiorPymust give
" 0rFm 20 a vanishing result. Now, from Eq&2.16), (3.2), and(4.62),
(4.60 e obtain the differential equations

[3,al1=-[Jy, ]=—1&*
1Om 0:%m 2%m:

Also, from Egs.(4.13 and(4.58 we obtain oy
day,(0) o4
. . 4g ~DI(OLY(6).an(6)],
[Ny,a!1=[Ny,B/1=0,  and H.c.egs.,(4.61)
which is a property expected for invariant operators. On the d,OBm( 0) o N
other hand, as one can straightforwardly verify with the help dg~[Bm(6),Y(6)]b(6), and H.c.egs.
of Egs.(4.60 and(4.61) (4.65
[YT,;:rn]:O’ [YT’EL]:O, The projection of these equations into the principal subspace

can then be immediately evaluated with the aid of Egs.

oy N i o (4.64 as follows:
[Y,anl=—Ar, [Y'.Bml=Bn, and H.c.egs.,

(4.62 dle(6)]p, . .\
whereAﬁ1 andB,, can be written as de =10 (OLY(0), arm( 9)]}%_0'
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d[ Bl 0)]1p,

55— ={[Bu(0),Y(0)b(6)}s=0, and H.c. egs.

(4.69

Therefore,

[Em(a)]p():fg’m, and H.c. egs.,
(4.67

[al(0)]p,= .,

o o . . . . .
and a,‘;, Bm are invariant in the principal subspace.

PHYSICAL REVIEW B3 064314

The anticommutatiorrelations of the quasifermions can
be obtained by a straightforwaighough tediou exercise
using the definitiong4.58. One finds the results

(Gl = B~ B
S E L

- b
2J+1

OT o
A&t

+

rTan’ - 5mm’) Pﬂ )

The stage is now set for the transformation of the single-

fermion operators. Thus, transformation of EG&59), tak-
ing into account the invariance Sﬂn, f%m, Eq. (4.38), and

that the operators Y23+ 1 and\2J— Ny have the property

(4.43, yields the result

&\ 23p,~ Y1 (6)Y5,(6)

I
[a(6)]p, = ——
V23p +1

1
+Y! () B ————,
o \23p,+1

1 .

B )], = — Yo (0)a,

V23p +1

#3235 =Y (0)Ye (0B

1
X —- (and H.c. egs.

V23p, +1
Setting = 7/2, taking into account Eq$4.38), (4.44), and

(4.47), and, as before, replacing the projecRy by Pppys,
one obtains the final images in the following form:

V23-N,+b' 3,

(4.68

1 1
(ErTn) Pohys PphyS( fajm A—) )
V2J+1 V2J+1

_ 1 o
(Bmp, =| — ba

~ m
e V23+1

. 1
+\/2:]—Nbﬁm\/;
2J+1

)Pphys, and H.c. egs.

(4.69

In fact, this result, which is the so-callegiantized Bogoliu-

bov transformatiofQBT), formally agrees with that of Refs.

o o 1 OT o
{Bm.ap}= Omm — = amam

2J+1

o

+| AL, B+
:Bm',Bm

1 OTO 6 P
= XXy ’ ,
23+ M Tmm Tl

o o 1 o o
T
{Boy st} =~ mamlﬁm

o o 1 o o
_(era{:-n'f‘ ~ a;,ﬁm> Pﬂr
2J+1

and H.c. eq.,
{Zlm !am’}zo! {Em vEm'}:Ov

{em,Bm}=0, and H.c. egs. (4.70

These anticommutators coincide with those of the quasifer-
mions of Refs[9,12] only if the terms proportional to the
operatorP; were to vanish. Now, from the definition of the
physical subspace given by E@.24) it is easily seen that

Pphyspﬂpphysz Pphyspﬂ: Pﬂpphys: 0. (4.71)

Therefore, in the physical subspace it is justified toRgt
—0 in Eq. (4.70 so that, in fact, the transformatid4.69
entirely agrees with the earlier references. Note that the final
anticommutation relations deviate from those of fermions,
which is why the operators in question are called quasifer-
mions.

Another property of the quasifermions is expressed by
Egs. (4.53 and (4.54 of the previous subsection. It is a
straightforward exercise to prove E@.53 by inserting the
definitions of the quasifermion4.58 on the right-hand side
of Eq. (4.54), making use of the definition af, [Eq. (2.9)]

[12,9]. Actually, to prove that the expressions in parentheseand noting that the result is the same(as 2J.
are identical to those of the earlier papers, it must be shown Since the aim of this paper is to express all final images in
that the algebraic properties of the quasifermions are théerms of boson and fermion operators, not quasifermions, we

same, which is the next task.

must go a little further. Equationg.59 can be inverted to
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express the quasifermions in terms of the fermions, and the

1
resu:tﬁ substituted in Eq$4.69 and rearranged to give the (E;rn)pphysz physzj+ [(V23-Np+ 13— Jo+1+DbTY)
resu

X Bl — (0"VI— 35— V23— Np+ 1Y) ],

[a](6)]p = POAL[(\/zj—mY( 0)+1v23—Ny+1
0 2J+1

:L[ (V23-NpY—bV3- 3o+ 1) B},

(@mlpy= 53
+Y'0)Y)al +(YT(0)V2I—Ny
< + (V23— NpVI—Jg+bY") am]P s,
—*/ZJ—‘J‘(Y(G)+1YT),8m], ( b 0 )] phys
4.73
1 _ where the operator¥, Y' are defined by Eq(4.20. Apart
[Bm(0)]p,= —=——[(V2I=9(O)Y from the projector, this represents the closed summation of
2J+1 the serieq3.31).
~Y(0) m)a; Having completed the task of mapping all elementary op-

erators into the physical subspatg,s, we conclude this

o A_ + section with a brief discussion 6f,, itself. By definition,
+(V23= (V23 =Ny + Y () YD) 8P, Honys IS spanned by the image vectorgy;J,M)
=U(w/2)|y;J,M). Since the base vectors satisfy

) 1 _ _ |v;d,—J)=Db|y;J,—J)=0, it follows that S|y;J,—J)=0,
[Bm(6)]1p,= Pom[(\/ZJ—WY(G)+1\/ZJ—NY+1 implying the invariance y;J,—J)=|v;J,—J). Then from
Eq. (4.52, the transformation of a general fermion basis vec-
LY (O)Y)BL - (YT() /—23—NY tor |y;J,M=—J+n) is given by
N~s ) — [23=n)
V2 =Ny (0) + 1Y) ], ly;d,—J+n)= (ZJ)W (3" y:3,- )
SN S WP \/(2 — )'[b*m No) 1" %9, ~ J)
Lam(0)lp,= 53— [~ (N2I=9(O)Y (2J)! o) 1Y
= 1
—Y(6)V2I-Ny+1)8L =\/—_I(bT)”|y;J,—J), n=0,1,...,2.
n!
+(V2I- M) V23— Ny + Y () YN @ 1P, 4.74
(4.72

It is then immediately obvious that the propei.24) is

. _ - indeed satisfied oft(,,,s. The vectorg4.74 correspond to
whereMy(6) is defined by Eq(4.47). It was verified thatthe  the subset of Eq(4.31) with »=0. The base states them-

& expansions of these expressions coincide with E380.  selves can be generated from the uncorrelated ground state
Setting = 7/2 and noting that 2—Ny=J—J, provides the |0;Q/2,—Q/2) by the action of the quasifermions. For ex-
final images, equivalent to Eqet.69: ample, a base state with- — M =(Q —k—1)/2 is given by

1 1
r—1 r—1
1 My My, My - -m, ;—(Q—k—l),——(Q—k—I)>
(e~ Ponvsys [(V2I=Np+1vI—Jp+14bTY) 2 2

o o o o
ot t t
=al, ah B ./gml,

X! +(b'I—Jo— V23— Ny +1Y") B,

020,20 4.7
15 1_5 ’ ( - 3

which follows from Eqgs.(4.60. Such a state can be further

1 = = expressed in terms of the fermion operators, which can be
phys 23+ 1[( 2J=NpY—=bVI=Jo+1)ap, most conveniently done using the inverse of Egs59.

(Bm)e
+(V2I-NyVI—Jo+ bYT)Bm]PphyS, E. Summary and conclusions

The aim of this work is to develop a viable theoretical

framework in which prescribed collective excitation modes
3Note that the expressions have been ordered so that the fermi@re selectively treated in terms of bosons while all other de-
operators always appear on the far right. grees of freedom retain their fermionic character. This is in
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contrast to traditional formalisms in which all degrees ofbased on an auxiliary-variables method originally introduced
freedom are indiscriminately bosonized. The motivation isin Ref.[13]. This method, which also involves unitary trans-
based on the belief that the former approach should lead ttormations on a boson-fermion space, is similar to the
faster convergence. Our starting point was the improvemer8UBM, but with one critical difference. In order to justify

of the boson-fermion expansion theofFET) of Refs. the commutation rul€Y,Y']=1 for fermionic operators on
[3-5], and the final result is a substantially modified ap-2 finite-dimensional S(2) space, the authors attempt to for-
proach that we call the selective unitary bosonization metho@nally extend the space to infinite dimensions. However, as
(SUBM) In this paper, we limited the deve|opment to (S)J preViOUSIy I’emarked, this artificial Construction, which ob-
quasispin models, including the model of Lipkin, Meshkov, Scures the relation to the original many-body problem, seems
and Glick(LMG) and the singlg-pairing model. Since these 10 amount to little more than_a license to use the boson
exactly soluble models have already been subjected to afommutation rule for fermionic operators. Moreover, the
most every applicable many-body approximation, they progeneralization of this trick to the realistic case is not at all
vide a convenient basis for assessing the validity of newglear. The present work, on the other hand, takes the opposite
formalisms. A further convenience is the existence of a defack: instead of extending the boson-fermion space, it merely
coupled collective subspace residing in a singlgBlirrep, ~ Selects a subspace—the principal subspace—on which the
which eliminates ambiguities in the definition of the relation[Y,Y"]=1is valid. In this way, one is automatically
bosonized collective mode. To be sure, this leaves open fded to the correct projection operators required in the closed
future investigations the question of how well our approachexpressions. Thus, a major weakness in the foundation of the
works for more realistic models, in which such a conve-auxiliary variables approach has been repaired.

nience does not exist. Any method utilizing auxiliary variables requires subsid-

The SUBM belongs in the category of auxiliary-variablesiary conditions. In our method, these are simply expressed by
techniques. The encompassing Hilbert space is the tens&d. (3.24 or Eq.(3.25. Since the final unitary transforma-
product of a boson space and the original many-body fertion of the fermion basis generates a subspace of the boson-
mion space. The physics is transferred from the fermiorfermion Space within which the SUbSidiary conditions are
space to a Subspace of the boson-fermion space by meansa.j,ftomatica”y SatiSﬁEd, itis Only necessary to diagonalize the
unitary transformations in such a way that the collectiveHamiltonian (or its expansion to a given ordewithin this
mode is Se|ective|y preempted by a boson. The key Step igubspace to insure that SUbSidiary conditions are fulfilled.
the recognition that in the generator Of the transformaﬁon The indiscriminate use Of a |al’ger baSiS that inCIUdeS vectors
=Y'b—b'Y, whereb, b" are perfect boson operators, the violating the subsidiary conditions may lead to poorer nu-
fermionic operatorsy, Y' must also obey boson commuta- merical results. Such studies will be presented elsewhere.
tion rules on a suitablsubspacecalled the principal sub-
space, i.e., they are truncated boson operators. Indeed, the APPENDIX: INVARIANT OPERATORS
requirement that coincide in lowest order with the phonon
X, together with the commutation ruf&/,Y™]=1, uniquely
ieterm'?gs the expansion of in thg small parametes boson degree of freedom, represented by the opergafs
=(1/Q)"%, and ultimately the expansions of all physical op- with commutator
erators. A more detailed analysis of the Hilbert space leads to [Y,Y]=1. (A1)
the identification ofY in closed form and to the demarcation
of its domain as a truncated boson annihilation operator, i.ey.et O(k,1) be the iterated commutator
the principal subspace. Thenceforth, straightforward analysis
leads to the derivation of all physical operators in closed — tryt Lyt
form for the SUW2) case. For this case, we have both an OtkH=LY.[Y, [Y:[Y L [YJ’O]] .
expansion theory and also the closed summation of the ex- b \ oo ! s (A2)
pansions. In more realistic applications, the latter may not . . — . . .
always be achievable, but that remains a problem for futurdith ©(0,0)=0. From this definition, it follows immedi-
investigation. The expansion theory, which is what one ac@t!y that
tually needs for numerical computations, can be readily ex-
tended to realistic models.

Our final cIo_sed-form mappings_ of the &) generators 1o corresponding relation,
and also the single-nucleon creation and destruction opera-
tors, which are SI2) tensors, forma_llly agree with the corre- Y ok,H]=0k,1+1), (A4)
sponding results of Ref§9,12], obtained by different means.

This testifies to the validity of our approach. In the earlierjs also true but requires a bit more work. From the Jacobi
work, the final mappings were given in terms of bosons andgentity together with Eq(A1), one obtains
quasifermiongreferred to as “ideal quasiparticleg”obey-

ing complicated anticommutation rules. In the present ap-[yT, Ok,)]=[YT,[Y,Ok—1)]1]1=[Y,[YT,Ok—1)]].
proach, the quasifermions can be expressed in terms of the (A5)
original fermion operators, providing a true boson-fermion

mapping. In Ref[12], a secondary derivation was sketched, Application of this rulek times then gives

Let O be an arbitrary operator defined on the Hilbert
space of any system having amongst its degrees of freedom a

LY, Ok,)]=0(k+1]). (A3)
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[YT,0kD]=[Y,[Y, - -[Y.[YT,00,)]] - - 1=[Y.[Y, - -[V,O00,]+1)]- - - =O(k, ]+ 1)].

—————— ——————
k times k times ( A 6)
Next, corresponding to the operatoy, define the operatcrOO in terms of the infinite series
R |
o=> 2 T (—=YH*ok,HY'. (A7)
k=0 =0
We show thai© satisfies the conditions
[Y,01=0, [Y!,0]=0. (A8)
Such operators will be calledvariants Using Eqs.(Al) and (A3), one calculates
oo o] 1
[.01= 2 2 . 1).“ G CYDokY 2 3 (=YD ROk L)Y
-> 2 ¢ (—YH*ok+1HY'+ D 2 k— (-YH*ok+1)Y'=0, (A9)
k=0 = k=0 =

after index relabeling in the first sum. The demonstration [ﬂffét(oD]=0 is entirely parallel, with Eq(A4) replacing Eq(A3).
Let us assume tha can be expanded in terms of the boson degree of freedom, i.e.,

[

0=§EQ

2 24 TOYHm(=Y)n, (A10)

where the coefficient§), , are independent of the boson degree of freedom and are therefore invariants, satisfying

[Y.Qnnl=0, [Y',Q,.]=0. (A11)
With the aid of Eqs(A10) and(Al1l), the multiple commutatofA2) can be evaluated as follows:

)n+l

kl)—E > ,—(Y*)m Kov)n '—2 » ”*,k,”*'w*)ﬂ(—w, (A12)
=k n= |(m k) (n ) wu=0 vr=0 MV

where the change of indgx=m—k, v=n—1| was used in the second step. This sets the stage té}findin terms ofO, Y,

and Y'. Since theQ,, , are invariants, it is interesting to find the relation to the invariaﬁ)t(;k,l) based on the operators
O(k,l) as follows:
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- YT)”I[Y,[Y, o
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JqY Yty [yt ok,n11- - 1Y

R -

m times

Qg (=17

n times

(YHMY)”

Q,u,+k,v+l(_

nminl(p—m)(v—n)!

wlv!

)

i Q,u,+k,v+l(_ I)V
ulv!

w=0 »=0

Il
M s

1)m+n+v(’u

(YD (Y)"8,06,0= s,

12 Jrtyecry

m

—“”M”*’( Z vy E (—1)’"( )ni)(—w"(,’j)

(A13)

where the following identity for binomial coefficients was used in the last step:

M
> (-
m=0

(A14)

This proves that in facf), | = O (k,I), so that the decompositidi10) of O is finally given by

o min!

O(m,n)(YH™(—Y)",

(A15)

This relation should be understood as a formal identity with no guarantees of convergence.
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