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Universal trend of the information entropy of a fermion in a mean field
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We calculate the information entropy of single-particle states in position shamed momentum spac®,
for a nucleon in a nucleus, & particle in a hypernucleus, and an electron in an atomic cluster. It is seen that
S, and S, obey the same approximate functional form as functions of the number of pa$iclésr S,)
=a-+bN" in all of the above many-body systems in position and momentum space separately. The net
information contentS; + S, is a slowly varying function oN of the same form as above. The entropy sum
S, + S is invariant to a uniform scaling of coordinates, and is a characteristic of the single-particle states of a
specific system. The order of single-particle states according, 10S, is the same as their classification
according to energy, keeping the quantum nuntbeonstant. The spin-orbit partners are ordered correctly. It
is also seen tha, + S, is enhanced by the excitation of a fermion in a quantum-mechanical system. Finally,
we obtain a relationship 08, + S, with the energy of the corresponding single-particle state, $et, S,
=kIn(uE+v). This relation holds for all systems under consideration.
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[. INTRODUCTION density distributionn(k) in momentum space is associated
with a localized density distributiop(r) in configuration
The information entropy for a continuous probability dis- space, and vice versa.

tribution p(x) in one dimension is defined by the expression Relation(2) represents a strengthened version of Heisen-
berg’s uncertainty principle for two reasons: first the EUR
leads to Heisenberg’s uncertainty relation, but the inverse is
S:_j PO)In(p(x))dx, (D not true. Second, the right-hand side of the EUR does not
depend on the state of the system, while in Heisenberg's

where [p(x)dx=1. Sis measured in bits if the base of the relation it does depend. It is obvious from E¢8) and (4)
logarithm is 2, and naténatural units of informationif the ~ thatS; andS, depend on the unit of length in measuripg)
logarithm is natural. It represents the information content ofnd n(k). However, the important quantity is the entropy
a probability distribution as well as a measure of the uncersums; + S (the net information content of the statevhich
tainty of the corresponding state. We note that the informals invariant to a uniform scaling of coordinates.
tion and thermodynamic entropy are different concepts, but Information entropy was employed in the past to study
can be connected by employing some assumptions. quantum-mechanical systerfts-9]. Recently[10] we stud-

An important step in the past was the discovery in Ref.  ied the position- and momentum-space information entropies
of an entropic uncertainty relatiEUR), which for a three- S, andS, respectively, for the total densities of various sys-

dimensional system has the form tems: the nuclear density distribution of nuclei, the electron
density distribution of atoms, and the valence electron den-
S +S=3(1+Inm)=6.434 (h=1), (2)  sity distribution of atomic clusters. We showed that a similar
functional formS=a+b In N for the total entropy as a func-
where tion of the number of particle holds approximately for the

above systemén agreement with Ref$2,3] for atomic sys-
tems. We conjectured that this is a universal property of a
S = —f p(n)Inp(r)dr 3 many-fermion system in a mean field.

The concept of information entropy also proved to be
fruitful in a different contex{9]. We used the formalism of
Ghosh, Berkowitz, and Pairll] within the ground-state
density-functional framework, to define the concept of an

__ information entropy associated with the density distribution
S J n(kinn(k)dk @ of a nuclear system. It turned out th&tincreases with the
quality of the wave function, and can serve as a criterion of
is the information entropy in momentum space, a(d and  the quality of a nuclear model. Another interesting result
n(k) are the density distributions in position and momentum[12] is the fact that the entropy of aN-photon state sub-
space, respectively, normalized to unity. jected to Gaussian noise increases linearly with the logarithm
The lower bound in Eq(2) is attained for Gaussian den- of N.
sity distributions. The physical meaning of the above in- Encouraged by previous works, we attempt in the present
equality is the following: an increase & corresponds to a paper to calculat§, andS, for the wave functions of single-
decrease 08, and vice versa, which indicates that a diffuse particle stateginstead of the total densities as in REEQ])

is the information entropy in position space,
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for various systems, i.e., a nucleon in a nucleus, an electrothe framework of the harmonic-oscillatéHO) model. For
in an atomic cluster and A particle in a hypernucleus. For the HO parameter we use the well-known expression
these systems we employ models existing in the literature. =4IN~® MeV (N=A is the mass numbgr

Our aim is to investigate the dependenceSpand S, on We find that the value of w is important only forS; and
the excitation of a fermion in a quantum-mechanical systemS,, while the net information conter8=S; + S, is indepen-
as well as its dependence on the system under consideratident ofZw and consequently of. It depends only on the
and the number of particled. We also attempt to connect state under consideration, and characterizes it. These values
the information entropy with the energy of the single-particlefor the states 4, 1p, 1d, and X are 6.4341, 7.8388, 8.6651,
state. The study of the dependencesain the quantum state and 8.3015, respectively.
of a system is also interestirigs stated in Ref.7]) for two However, the HO model is a simplification. Thus, we em-
reasons(i) The information-theoretical and physical entropy ployed a more realistic parametrization of the nuclear mean
are connected via Boltzmann’'s constagtby Jayne’s rela- field i.e., the SkyrmegSklll) interaction[13]. In this model
tion Spnys=KgSins- Thus one can ascribe to any quantumprotons and neutrons move in different potentials. We
object a certain value of its physical entrofy,ys if one  choose to work with protons. However, similar results can be
calculatesS;,¢ . (ii) It is interesting to know the value of the obtained for neutrons. We found that the valuesSoandS,
information entropy which is a measure of the spatialobtained from the wave functions of single-particle states
“spreading out” of the wave function for various states of calculated according to Sklll are well represented by the ex-

various systems. pression
The present paper is organized as follows. In Sec. Il we 13
calculateS, andS, for single-particle states of a nucleon in a S (or S)=a+bN @)

nucleus as function of the number of nucledwsising the
simplest model available, i.e., the harmonic-oscillator poten
tial and a more realistic ongSkyrme. In Sec. Il we calcu-
late S, and S, for a A particle in a hypernucleus employing
a simple and &sem) analytical relativistic model. In Sec. IV
we determineS, and S, for the single-particle states of an
electron in atomi¢metallio) clusters using the Woods-Saxon
potential. In Sec. V we present a relationshipSpf- S, with
the energy. Finally, Sec. VI contains a discussion of ou
results(comparison of Secs. Il, Ill, and IMand our conclu-
sions.

while S, + S, is a slowly varying function oN of the same
form as Eq.(7). The values of the parameters are shown in
Table 1.

In Fig. 1@ we plot our fitted expressiongSklll)
S, (orS)=a+bN? for the entropiesS,, S,, S +S of
1s states as functions df*®. The lines correspond to our
fitted expressions, while the corresponding values of our nu-
Imerical calculations are denoted by squaresSpor circles
for S, and triangles fof5, + S,. Similar graphs can be plot-
ted for the higher statesplid,2s, ... . From Fig. 1a) we
see that the values of the entropies are represented well by
our fitted expressions. In Fig(d) we compare the surs,
+S,=a+bN*? for various single-particle states. We ob-
serve that the entropy sul}+ S, is enhanced with the ex-
The information entropys, in position space for a single- Ccitation of the single-particle states. We see tRat S is a

particle wave functiony,;(r), normalized as slowly varying function ofN. We alsolnote that the s.pin-
orbit partners are ordered correctly, i.e., the stapg,lis

* oo lower than 4, etc.(as for the energy although their dif-
4 0 | iy (N)|*rédr=1, ference is small and cannot be shown in the figure. To sup-
port this argument we present Table I, where the entropies
is defined by and energies of various partners are compared for the nuclei
180, 40Ca, and?*%b.

II. INFORMATION ENTROPY FOR A NUCLEON
IN A NUCLEUS

* ) _— The following comment is appropriate. A relation 8f
S=—4m o [ (112 Inf g (r) [ “r “dr (®  ands, with N can be extracted from Eq&l2) and (13) of
Ref. [7] and the relatiomiw=41IN"'2 or equivalently the
while the entropyS, in momentum space is size parameter of the HD=NY® fm [14]

S=f(n)+Ino,, o,=b=Viimo,
Sc=f(n)+Inoy, o=Vmolt,

wheref(n) depends on the quantum number

f(n)=—cﬁf

S =7 | low 0PI g0, ©)

where ¢,;(k) is the Fourier transform ofi;(r) and
¢n1j(K) is normalized as
o0 *© H2 e,gzln C2H2 6752 de.
4wf | (k)| 2K2dk=1. HA® [CiHA(&)e ¥]dé
0

Thus we obtain

In this section we calculat&, and S, for the single-
particle states 4, 1p, 1d, ... of a nucleon in a nucleus in S=f(n)+zInN, (8)
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TABLE I. Values of the parametesandb which appear in the expressio8s (or S,) =a-+bN for a
nucleon(proton in nuclei according to the Sklll interaction, /& in hypernuclei according to a relativistic
model, and an electron in atomic clusters with a Woods-Saxon potential.

Case State S Sk S+ S
a b a b a b

Nucleus By 3.0831 0.8652 3.2353 -0.8140 6.3217 0.0501
1psy,  4.2824 0.6368 3.6256 -0.6688 7.9084 -0.0322
1py,  4.2724 0.6235 3.6799 -0.6675 7.9521 -0.0439
1ds,  4.7500 0.5743 4.0980 -0.6513 8.8480 -0.0771
1dy,  4.9553 0.5042 4.0080 -0.6071 8.9618 -0.1024
25, 5.2456 0.3364 3.4355 -0.4641 8.6756 -0.1260
Hypernucleus &1 3.5817 0.4967 2.8303 -0.4756 6.4120 0.0214
1psy,  4.4347 0.3789 3.5123 -0.4021 7.9475 -0.0232
1py,  4.3764 0.3835 3.6575 -0.4199 8.0342 -0.0364

1ds), 5.2553 0.2462 3.6249 -0.2938 8.8803 -0.0475
1d3), 4.9910 0.2819 4.0503 -0.3543 9.0414 -0.0724
Cluster s 4.3038 0.7113 2.0923 -0.6883 6.3960 0.0232
1p 5.1114 0.6135 2.7700 -0.6299 7.8816 -0.0163
1d 5.5191 0.5636 3.1420 -0.5842 8.6611 -0.0205
2s 5.3858 0.4918 2.9672 -0.5301 8.3536 -0.0383
=f(n)—%InN. 9 1
St © pn”(r):E[Gﬁu(r)/errFﬁ”(r)/rz], (11

Adding Egs.(8) and (9), we see that the twdl-dependent

terms cancel each other, so tl&t- S, becomes exactly in- and the normalization is

dependent oN for the HO. However, for more realistic cases

this cancellation is not exact, ai8l+ S, is a slowly varying * )
function of N. Equations(8) and(9) suggest a linear depen- 47710 paij(r)redr=1.
dence ofS, and S, on InN. However, for more realistic

systems, our numerical calculations show that a linear depefiy momentum space we have

dence orN*? is more accurate than one onNn

(12

[ X(k)
ll. INFORMATION ENTROPY FOR A A IN A bnij(k)= VoK) |

HYPERNUCLEUS

We construct a simple antsemj analytical relativistic  WNere Xnij(k) and Y;(k) are the Fourier transforms of
model of a hypernucleus from Refd 5,16, where a Dirac  Cnij(r)/r andFq;(r)/r, respectively. Thus the density dis-
equation with a scalar potentialg(r) and the fourth com- {fibution in momentum space is given by
ponent of a vector potentidl,(r) was considered in the

. . 1

?:jiis?f rectangular shapes of these potentials with the same Nt (K) = E[Xﬁu(kHYﬁu(k)], (13
R:rOAg/c?re- and the normalization is

In Ref. [15] the Dirac equation was solved, and gave the 47fonn|j(k)k2dk=1-

wave functionsgG(r) andF(r) for the large and small com- 0

ponents for aA particle in a hypernucleus. These compo-
nents can be found in relatioi$2) and(13) of Ref.[15]. The information entropies of thd particle are calculated
The Dirac spinors in terms of largés) and small(F)  according to the relations
components can be expressed
iGn”(r)/r 0
an:< (10

Sr:—4mepnlj(r)|npnlj(r)rzdr= (14)
Fnlj(r)/r)

=—4 fwn (K Innyi (k) k2dk, 15
The density distribution of & in position space is S "o iy () Ny (k) 19
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74 Nuclei 1S (a) TABLE II. Values of thesp energy(E) in MeV and entropy
12 sum(S) for %0, “°Ca, and?*%b and for the higher states &tPb
A—A—Achh—hbbbbh for protons and neutrons.
6 Sr+Sk
Protons Neutrons
5. Nucleus State E S E S
i ) lGO
» ] 1pys 972  7.901 -13.00  7.892
1ps,  -15.09  7.859  -18.47 7.854
40Ca
31 1py,  -22.47 7.818 -29.71  7.816
: 1ps,  -25.71  7.809  -33.00  7.807
2 s 1ds, 791 8693  -14.82 8.678
k 1ds, -1391 8633 -2095  8.626
208Pb
1 3Py -6.96 9.949
3pan -7.98 9.942
04 2fg) -8.27 10.138
r v T . T ] 2f 4 -11.04 10.131
2 3 N1/3 4 1hg, -12.48  9.981
ihy,,  -9.49  9.871  -18.03  9.901
. 2d3, -841  9.636  -17.48  9.660
9.5 Nuclei () 2ds, -10.16  9.607 -19.45  9.626
{F 19,,  -1349 9551  -21.97 9.577
9.0- 72 1ggp  -17.23 9516  -25.77 9.536
L 2P, 2py,  -1756 9.011  -26.71  9.026
) 85_\'—¥vm 2ps,  -1855 8997  -27.79  9.009
0 1D
5/2
=number of particles.
8'°'w2 Next we fitted the expressior§ (orS,)=a+bNY® to
1 P the values ofS; and S, calculated from Eqs(14) and (15),
7.5 32 and found that these values are represented well. The values
of the parameters and b for various states are shown in
Table I.
7-07 In Fig. 2(a) we plot our fitted expressions f& , S, and
1 18, S+ as functions oN_l’3 for the 1s state. This is done for
6_5___._.___“.____._._-——l——— a A in a hypernucleus in a similar way as for a nucleon in a
nucleus[Fig. 1(a)]. Similar graphs can be plotted for the
] higher states. In Fig.(B) we compare the sur§, + S, for
6.0 - ; - ; - various single-particle states of/a[similarly to Fig. 1b)].
2 3N1/3 4 The spin-orbit ordering is reproduced correctly as in nuclei

(Sec. ). A comparison of various states for some hypernu-

FIG. 1. (a) Values of the information entropie® (square S,  Clei is shown in Table IIl.
(circles, and S,+ S, (triangles, calculated numerically, vs the
number of particlesN. These values correspond to the single- V. INFORMATION ENTROPY FOR AN ELECTRON IN

particle states of a proton in various nuclei, according to the Skill AN ATOMIC CLUSTER

interaction. The lines correspond to our fitted expressions . . .

S, (orS)=a+bN'3 (b) Comparison of the surs, + S, for vari- We consider atomi¢metallic) clusters composed of neu-
ous proton single-particle states. tral sodium atoms, where the electrons move in an effective

radial electronic potential parametrized by a Woods-Saxon

where p,;(r) andny;(k) are given by Eqgs(11) and (13) potential of the form

respectively. -V,
For the depths of the potential we used the vallis Vwdr)= T+ exi(r—R)/al’

D,=30.55 MeV,D_=300 MeV, andr,=1.01 fm, and

the radius parametd®=r,AL3  obtained by fitting the ex- with Vo=6 eV, R=roN3 r,=2.25 A, anda=0.74 A.

perimental binding energies of the ground state of he For a detailed study regarding the parametrization of
particle. In the following we put Age=N Ekardt's potentials, see R4fL7].

(16)
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FIG. 2. The same as in Fig. 1, forin hypernuclei employing

a relativistic model.
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We found the wave functions of the single-particle states
in configuration space numerically solving the Sclinger
equation for atomic clusters for various values of the number
of valence electron§. The wave functions in momentum
space were found by Fourier transforming the corresponding
ones in configuration space. Using the above wave functions,
we calculated the information entropi&€s and S, [relations
(5) and(6)] for single-particle states instead of the total den-
sity distributions as in Refl10]. Then we fitted the form
S, (orS)=a-+bN to these values, and found that these
expressions well represent the valuesSpfand S,. In Fig.

3(a) we plotS,, S, andS,+S, as functions oN*3 [simi-
larly as in Figs. 1a) and 2a)] and in Fig. 3b) we compare
S, + S, for various statepsimilarly as in Figs. {b) and 2Zb)].
In Table | we present the values of the parameteend b
which were obtained from the fitting.

V. RELATIONSHIP OF THE INFORMATION ENTROPY
WITH THE ENERGY OF SINGLE-PARTICLE
STATES

In Fig. 4 we plotS, + S,, obtained with the HO model of
the nucleus, versus the energy of the single-particle states.
We useZw=4IN"13 with N=208 (Pb), and keep the
guantum numben equal to 1. A fitting procedure gives, for
n=1, the relation

S=kIn(uE+ ), (17

where k=2.0206, ©=3.5373 MeV'!, and v=—12.5320.
Similar relations hold fon>1.

Next we plot the sun$; + S, as a function of the enerdy
of single-particle states for a proton in a nucleus according to
Skill interaction for 2°%b (Fig. 5) and an electron in an
atomic cluster wittN= 198 (Fig. 6) for n=1. Similar curves
hold for larger values ofi>1. In both cases the dependence
of S,+S, on E can be represented well by the functional
form [Eq. (17)]. The values of the constants are the follow-

ing:
k=1.5262, wu=17.3043 MeV1,
v=793.109 for a proton in a nucleus
k=1.2386, u=1481.48 eV?,

ry=8730.52 for an electron in a cluster.

TABLE llIl. Values of thesp energy(E) in MeV and entropy sun(S) for various states ok hypernuclei.

State Acore E S Acore E S Acore E S

1P 39 7737 7.932 50 -10.079  7.894 88 -15.167  7.850
1p3 39 -9.040  7.883 50 -10.903  7.859 88 -15.576  7.828
1P 137  -18.462 7.837 207  -20.973  7.835

1pPap 137  -18.705  7.821 207  -21.123  7.822

1da, 137 -9.713 8659 207  -13.820 8.623

1ds), 137  -10.477 8633 207  -14.264  8.603
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Clusters 1S (a) 114
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10
6_
S e
7} r +_
4- 9D 94
2_
S, 84
0_
7_
-2 4
T T T T 4 T T T T T 6
T T T T T T T T T T T
! 2 8 4 5 6 10 20 30 40 50 60
NV E[MeV]
4 Clusters (b) FIG. 4. The values of the entropy suB}+S, (squarey of
M single-particle states for a nucleon in®baccording to the HO
9.0 \'HM model forn=1. The line corresponds to our fitted express®n
] 2P =Kk IN(LE+7).
R O
8.5 1D
] well the information entropiesS; and S, of the single-
_\'\va particle states for a nucleon in a nucleushan a hyper-
804 o 28 nucleus, and a valence electron in an atomic cluster, although
o T W ——eeo—o o the single-particle potentials are different. We conjecture that
‘Q 1P this is a universal trend of the information entropf&sand
- 789 Sy for a fermion in a mean field, while the net information
7.0
ks 10
651 g m m——SmS—E—&
6.0 T T T T 1 9_
1 2 3 4 5 6 «
N1/3 ‘.’3‘_
7]
FIG. 3. The same as in Fig. 1, for an electron in atomic clusters
with a Woods-Saxon potential. 81
A similar relation may be obtained for & in a hyper-
nucleus, but the number of values 8f+ S, available is
small. Relation(17) can be extracted from the asymptotic 7
form for the one-dimensional HO given in E(1) of Ref.
[7]. However, in the present work we extend the calculations
to more realistic three-dimensional systems, and we obtain
relation(17). 6 T T r T r T
-40 -30 -20 -10
VI. DISCUSSION AND CONCLUSIONS E[MeV]

Comparing our results in Secs. Il, Ill, and 1V, we see that
a similar functional formS, (orS,)=a+bN® describes

064307-6
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ing to the SKlll interaction fon=1.
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114 universal propertyS=a-+bInN for the total density distri-

Clusters n=1 butions of various systems.

In both cases it is not clear wi§depends linearly on IN

104 (total densities or linearly on N (single-particle states
but we note that in atomic physics there is already a connec-
x tion of the information entropy with experiment, i.e., with
cf fundamental and/or experimental quantities, e.g., the kinetic
0w 97 energy or the magnetic susceptibility. Both characteristics

have been used in a study of the dynamics of atomic and
molecular systemfl8]. This connection established the in-
formation entropy as an interesting entity for atomic physics.
In the present paper we obtained a relationshigsof S,
with a fundamental quantity as the energy of the single-
particle states, i.eS=kIn(uE+). It is remarkable that the
a same functional form holds for various systems.

S is a monotonic(increasing function of thesp energy
(for quantum numben=const), e.g., b1, has an energy
larger than b,,. Thus Ipq,» has a value ofS larger than

6 " T " '4 " T ' 1ps,. This gives the correct ordering. This rule is verified
A S i -3 by our numerical calculations, as can be seen in Table Il for
E[eV] nuclei and Table Il for hypernuclei.

In Table | we observe a change of sign of the parameter
from a 1s state to othesp states. For the HG, + S, does
not depend oM, as can be seen by adding E¢3. and(9).
However, for more realistic casésxamined in the present
contentS,; + S, of the single-particle states of a fermion in a work) this cancellation is not exact. The change of sign of
mean field is a slowly varying function df of the formS  the parameteb from the 1s state to other single-particle
=a+bN¥3for the systems considered above. For nuclei andtates is due to an interplay of the two terms. It is remarkable
a simple HO potentialS; + S, is exactly a constant indepen- that the same sign change occurs for all the cases under
dent ofN, i.e.,b=0. We note that in Ref.10] we found the  consideration.

FIG. 6. The same as in Fig. 4, but for an electron in atomic
clusters N=198) using the Woods-Saxon potential for 1.
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