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Universal trend of the information entropy of a fermion in a mean field
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We calculate the information entropy of single-particle states in position spaceSr and momentum spaceSk

for a nucleon in a nucleus, aL particle in a hypernucleus, and an electron in an atomic cluster. It is seen that
Sr and Sk obey the same approximate functional form as functions of the number of particlesSr (or Sk)
5a1bN1/3 in all of the above many-body systems in position and momentum space separately. The net
information contentSr1Sk is a slowly varying function ofN of the same form as above. The entropy sum
Sr1Sk is invariant to a uniform scaling of coordinates, and is a characteristic of the single-particle states of a
specific system. The order of single-particle states according toSr1Sk is the same as their classification
according to energy, keeping the quantum numbern constant. The spin-orbit partners are ordered correctly. It
is also seen thatSr1Sk is enhanced by the excitation of a fermion in a quantum-mechanical system. Finally,
we obtain a relationship ofSr1Sk with the energy of the corresponding single-particle state, i.e.,Sr1Sk

5k ln(mE1n). This relation holds for all systems under consideration.

DOI: 10.1103/PhysRevC.63.064307 PACS number~s!: 21.10.2k, 21.80.1a, 89.70.1c
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I. INTRODUCTION

The information entropy for a continuous probability di
tribution p(x) in one dimension is defined by the expressi

S52E p~x!ln„p~x!…dx, ~1!

where*p(x)dx51. S is measured in bits if the base of th
logarithm is 2, and nats~natural units of information! if the
logarithm is natural. It represents the information content
a probability distribution as well as a measure of the unc
tainty of the corresponding state. We note that the inform
tion and thermodynamic entropy are different concepts,
can be connected by employing some assumptions.

An important step in the past was the discovery in Ref.@1#
of an entropic uncertainty relation~EUR!, which for a three-
dimensional system has the form

Sr1Sk>3~11 ln p!>6.434 ~\51!, ~2!

where

Sr52E r~r !ln r~r !dr ~3!

is the information entropy in position space,

Sk52E n~k!ln n~k!dk ~4!

is the information entropy in momentum space, andr(r ) and
n(k) are the density distributions in position and moment
space, respectively, normalized to unity.

The lower bound in Eq.~2! is attained for Gaussian den
sity distributions. The physical meaning of the above
equality is the following: an increase ofSk corresponds to a
decrease ofSr and vice versa, which indicates that a diffu
0556-2813/2001/63~6!/064307~7!/$20.00 63 0643
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density distributionn(k) in momentum space is associate
with a localized density distributionr(r ) in configuration
space, and vice versa.

Relation~2! represents a strengthened version of Heis
berg’s uncertainty principle for two reasons: first the EU
leads to Heisenberg’s uncertainty relation, but the invers
not true. Second, the right-hand side of the EUR does
depend on the state of the system, while in Heisenbe
relation it does depend. It is obvious from Eqs.~3! and ~4!
thatSr andSk depend on the unit of length in measuringr(r )
and n(k). However, the important quantity is the entrop
sumSr1Sk ~the net information content of the state!, which
is invariant to a uniform scaling of coordinates.

Information entropy was employed in the past to stu
quantum-mechanical systems@1–9#. Recently@10# we stud-
ied the position- and momentum-space information entrop
Sr andSk respectively, for the total densities of various sy
tems: the nuclear density distribution of nuclei, the electr
density distribution of atoms, and the valence electron d
sity distribution of atomic clusters. We showed that a simi
functional formS5a1b ln N for the total entropy as a func
tion of the number of particlesN holds approximately for the
above systems~in agreement with Refs.@2,3# for atomic sys-
tems!. We conjectured that this is a universal property o
many-fermion system in a mean field.

The concept of information entropy also proved to
fruitful in a different context@9#. We used the formalism o
Ghosh, Berkowitz, and Parr@11# within the ground-state
density-functional framework, to define the concept of
information entropy associated with the density distributi
of a nuclear system. It turned out thatS increases with the
quality of the wave function, and can serve as a criterion
the quality of a nuclear model. Another interesting res
@12# is the fact that the entropy of anN-photon state sub-
jected to Gaussian noise increases linearly with the logari
of N.

Encouraged by previous works, we attempt in the pres
paper to calculateSr andSk for the wave functions of single
particle states~instead of the total densities as in Ref.@10#!
©2001 The American Physical Society07-1
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for various systems, i.e., a nucleon in a nucleus, an elec
in an atomic cluster and aL particle in a hypernucleus. Fo
these systems we employ models existing in the literatur

Our aim is to investigate the dependence ofSr andSk on
the excitation of a fermion in a quantum-mechanical syste
as well as its dependence on the system under consider
and the number of particlesN. We also attempt to connec
the information entropy with the energy of the single-parti
state. The study of the dependence ofSon the quantum state
of a system is also interesting~as stated in Ref.@7#! for two
reasons:~i! The information-theoretical and physical entro
are connected via Boltzmann’s constantkB by Jayne’s rela-
tion Sphys5kBSin f . Thus one can ascribe to any quantu
object a certain value of its physical entropySphys if one
calculatesSin f . ~ii ! It is interesting to know the value of th
information entropy which is a measure of the spa
‘‘spreading out’’ of the wave function for various states
various systems.

The present paper is organized as follows. In Sec. II
calculateSr andSk for single-particle states of a nucleon in
nucleus as function of the number of nucleonsN using the
simplest model available, i.e., the harmonic-oscillator pot
tial and a more realistic one~Skyrme!. In Sec. III we calcu-
late Sr andSk for a L particle in a hypernucleus employin
a simple and a~semi! analytical relativistic model. In Sec. IV
we determineSr and Sk for the single-particle states of a
electron in atomic~metallic! clusters using the Woods-Saxo
potential. In Sec. V we present a relationship ofSr1Sk with
the energy. Finally, Sec. VI contains a discussion of o
results~comparison of Secs. II, III, and IV! and our conclu-
sions.

II. INFORMATION ENTROPY FOR A NUCLEON
IN A NUCLEUS

The information entropySr in position space for a single
particle wave functioncnl j (r ), normalized as

4pE
0

`

ucnl j~r !u2r 2dr51,

is defined by

Sr524pE
0

`

ucnl j~r !u2 lnucnl j~r !u2r 2dr ~5!

while the entropySk in momentum space is

Sk524pE
0

`

ufnl j~k!u2 lnufnl j~k!u2k2dk, ~6!

where fnl j (k) is the Fourier transform ofcnl j (r ) and
fnl j (k) is normalized as

4pE
0

`

ufnl j~k!u2k2dk51.

In this section we calculateSr and Sk for the single-
particle states 1s, 1p, 1d, . . . of a nucleon in a nucleus i
06430
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the framework of the harmonic-oscillator~HO! model. For
the HO parameter we use the well-known expression\v
541N21/3 MeV (N5A is the mass number!.

We find that the value of\v is important only forSr and
Sk , while the net information contentS5Sr1Sk is indepen-
dent of \v and consequently ofA. It depends only on the
state under consideration, and characterizes it. These va
for the states 1s, 1p, 1d, and 2s are 6.4341, 7.8388, 8.6651
and 8.3015, respectively.

However, the HO model is a simplification. Thus, we em
ployed a more realistic parametrization of the nuclear m
field i.e., the Skyrme~SkIII! interaction@13#. In this model
protons and neutrons move in different potentials. W
choose to work with protons. However, similar results can
obtained for neutrons. We found that the values forSr andSk
obtained from the wave functions of single-particle sta
calculated according to SkIII are well represented by the
pression

Sr ~or Sk!5a1bN1/3 ~7!

while Sr1Sk is a slowly varying function ofN of the same
form as Eq.~7!. The values of the parameters are shown
Table I.

In Fig. 1~a! we plot our fitted expressions~SkIII!
Sr (orSk)5a1bN1/3 for the entropiesSr , Sk , Sr1Sk of
1s states as functions ofN1/3. The lines correspond to ou
fitted expressions, while the corresponding values of our
merical calculations are denoted by squares forSr , circles
for Sk , and triangles forSr1Sk . Similar graphs can be plot
ted for the higher states 1p,1d,2s, . . . . From Fig. 1~a! we
see that the values of the entropies are represented we
our fitted expressions. In Fig. 1~b! we compare the sumSr
1Sk5a1bN1/3 for various single-particle states. We ob
serve that the entropy sumSr1Sk is enhanced with the ex
citation of the single-particle states. We see thatSr1Sk is a
slowly varying function ofN. We also note that the spin
orbit partners are ordered correctly, i.e., the state 1p3/2 is
lower than 1p1/2, etc.~as for the energy!, although their dif-
ference is small and cannot be shown in the figure. To s
port this argument we present Table II, where the entrop
and energies of various partners are compared for the nu
16O, 40Ca, and208Pb.

The following comment is appropriate. A relation ofSr
and Sk with N can be extracted from Eqs.~12! and ~13! of
Ref. @7# and the relation\v541N21/3, or equivalently the
size parameter of the HO,b.N1/6 fm @14#

Sr5 f ~n!1 ln s r , s r5b5A\/mv,

Sk5 f ~n!1 ln sk , sk5Amv/\,

where f (n) depends on the quantum numbern:

f ~n!52Cn
2E

2`

`

Hn
2~j!e2j2

ln@Cn
2Hn

2~j!e2j2
#dj.

Thus we obtain

Sr5 f ~n!1 1
6 ln N, ~8!
7-2
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TABLE I. Values of the parametersa andb which appear in the expressionsSr (or Sk)5a1bN1/3 for a
nucleon~proton! in nuclei according to the SkIII interaction, aL in hypernuclei according to a relativisti
model, and an electron in atomic clusters with a Woods-Saxon potential.

Case State Sr Sk Sr1Sk

a b a b a b

Nucleus 1s1/2 3.0831 0.8652 3.2353 -0.8140 6.3217 0.0501
1p3/2 4.2824 0.6368 3.6256 -0.6688 7.9084 -0.0322
1p1/2 4.2724 0.6235 3.6799 -0.6675 7.9521 -0.0439
1d5/2 4.7500 0.5743 4.0980 -0.6513 8.8480 -0.0771
1d3/2 4.9553 0.5042 4.0080 -0.6071 8.9618 -0.1024
2s1/2 5.2456 0.3364 3.4355 -0.4641 8.6756 -0.1260

Hypernucleus 1s1/2 3.5817 0.4967 2.8303 -0.4756 6.4120 0.0214
1p3/2 4.4347 0.3789 3.5123 -0.4021 7.9475 -0.0232
1p1/2 4.3764 0.3835 3.6575 -0.4199 8.0342 -0.0364
1d5/2 5.2553 0.2462 3.6249 -0.2938 8.8803 -0.0475
1d3/2 4.9910 0.2819 4.0503 -0.3543 9.0414 -0.0724

Cluster 1s 4.3038 0.7113 2.0923 -0.6883 6.3960 0.0232
1p 5.1114 0.6135 2.7700 -0.6299 7.8816 -0.0163
1d 5.5191 0.5636 3.1420 -0.5842 8.6611 -0.0205
2s 5.3858 0.4918 2.9672 -0.5301 8.3536 -0.0383
s
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-

Sk5 f ~n!2 1
6 ln N. ~9!

Adding Eqs.~8! and ~9!, we see that the twoN-dependent
terms cancel each other, so thatSr1Sk becomes exactly in-
dependent ofN for the HO. However, for more realistic case
this cancellation is not exact, andSr1Sk is a slowly varying
function of N. Equations~8! and ~9! suggest a linear depen
dence ofSr and Sk on lnN. However, for more realistic
systems, our numerical calculations show that a linear dep
dence onN1/3 is more accurate than one on lnN.

III. INFORMATION ENTROPY FOR A L IN A
HYPERNUCLEUS

We construct a simple and~semi! analytical relativistic
model of a hypernucleus from Refs.@15,16#, where a Dirac
equation with a scalar potentialUS(r ) and the fourth com-
ponent of a vector potentialUV(r ) was considered in the
case of rectangular shapes of these potentials with the s
radius:

R5r 0Acore
1/3 .

In Ref. @15# the Dirac equation was solved, and gave t
wave functionsG(r ) andF(r ) for the large and small com
ponents for aL particle in a hypernucleus. These comp
nents can be found in relations~12! and ~13! of Ref. @15#.

The Dirac spinors in terms of large~G! and small~F!
components can be expressed

cnl j5S iGnl j~r !/r

Fnl j~r !/r D . ~10!

The density distribution of aL in position space is
06430
n-

me

e
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rnl j~r !5
1

4p
@Gnl j

2 ~r !/r 21Fnl j
2 ~r !/r 2#, ~11!

and the normalization is

4pE
0

`

rnl j~r !r 2dr51.

In momentum space we have

fnl j~k!5S iXnl j~k!

Ynl j~k!
D , ~12!

where Xnl j (k) and Ynl j (k) are the Fourier transforms o
Gnl j (r )/r and Fnl j (r )/r , respectively. Thus the density dis
tribution in momentum space is given by

nnl j~k!5
1

4p
@Xnl j

2 ~k!1Ynl j
2 ~k!#, ~13!

and the normalization is

4pE
0

`

nnl j~k!k2dk51.

The information entropies of theL particle are calculated
according to the relations

Sr524pE
0

`

rnl j~r !ln rnl j~r !r 2dr, ~14!

Sk524pE
0

`

nnl j~k!ln nnl j~k!k2dk, ~15!
7-3
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wherernl j (r ) and nnl j (k) are given by Eqs.~11! and ~13!
respectively.

For the depths of the potential we used the values@15#
D1530.55 MeV, D25300 MeV, andr 051.01 fm, and
the radius parameterR5r 0Acore

1/3 obtained by fitting the ex-
perimental binding energies of the ground state of theL
particle. In the following we put Acore5N

FIG. 1. ~a! Values of the information entropiesSr ~squares!, Sk

~circles!, and Sr1Sk ~triangles!, calculated numerically, vs the
number of particlesN. These values correspond to the sing
particle states of a proton in various nuclei, according to the S
interaction. The lines correspond to our fitted expressi
Sr (or Sk)5a1bN1/3. ~b! Comparison of the sumSr1Sk for vari-
ous proton single-particle states.
06430
5number of particles.
Next we fitted the expressionsSr (orSk)5a1bN1/3 to

the values ofSr andSk calculated from Eqs.~14! and ~15!,
and found that these values are represented well. The va
of the parametersa and b for various states are shown i
Table I.

In Fig. 2~a! we plot our fitted expressions forSr , Sk , and
Sr1Sk as functions ofN1/3 for the 1s state. This is done for
a L in a hypernucleus in a similar way as for a nucleon in
nucleus@Fig. 1~a!#. Similar graphs can be plotted for th
higher states. In Fig. 2~b! we compare the sumSr1Sk for
various single-particle states of aL @similarly to Fig. 1~b!#.
The spin-orbit ordering is reproduced correctly as in nuc
~Sec. II!. A comparison of various states for some hypern
clei is shown in Table III.

IV. INFORMATION ENTROPY FOR AN ELECTRON IN
AN ATOMIC CLUSTER

We consider atomic~metallic! clusters composed of neu
tral sodium atoms, where the electrons move in an effec
radial electronic potential parametrized by a Woods-Sa
potential of the form

VWS~r !5
2V0

11exp@~r 2R!/a#
, ~16!

with V056 eV, R5r 0N1/3, r 052.25 Å, anda50.74 Å.
For a detailed study regarding the parametrization
Ekardt’s potentials, see Ref.@17#.

II
s

TABLE II. Values of thesp energy~E! in MeV and entropy
sum~S! for 16O, 40Ca, and208Pb and for the higher states of208Pb
for protons and neutrons.

Protons Neutrons
Nucleus State E S E S

16O
1p1/2 -9.72 7.901 -13.00 7.892
1p3/2 -15.09 7.859 -18.47 7.854

40Ca
1p1/2 -22.47 7.818 -29.71 7.816
1p3/2 -25.71 7.809 -33.00 7.807
1d3/2 -7.91 8.693 -14.82 8.678
1d5/2 -13.91 8.633 -20.95 8.626

208Pb
3p1/2 -6.96 9.949
3p3/2 -7.98 9.942
2 f 5/2 -8.27 10.138
2 f 7/2 -11.04 10.131
1h9/2 -12.48 9.981
1h11/2 -9.49 9.871 -18.03 9.901
2d3/2 -8.41 9.636 -17.48 9.660
2d5/2 -10.16 9.607 -19.45 9.626
1g7/2 -13.49 9.551 -21.97 9.577
1g9/2 -17.23 9.516 -25.77 9.536
2p1/2 -17.56 9.011 -26.71 9.026
2p3/2 -18.55 8.997 -27.79 9.009
7-4
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FIG. 2. The same as in Fig. 1, for aL in hypernuclei employing
a relativistic model.
06430
We found the wave functions of the single-particle sta
in configuration space numerically solving the Schro¨dinger
equation for atomic clusters for various values of the num
of valence electronsN. The wave functions in momentum
space were found by Fourier transforming the correspond
ones in configuration space. Using the above wave functio
we calculated the information entropiesSr andSk @relations
~5! and~6!# for single-particle states instead of the total de
sity distributions as in Ref.@10#. Then we fitted the form
Sr (orSk)5a1bN1/3 to these values, and found that the
expressions well represent the values ofSr and Sk . In Fig.
3~a! we plot Sr , Sk , andSr1Sk as functions ofN1/3 @simi-
larly as in Figs. 1~a! and 2~a!# and in Fig. 3~b! we compare
Sr1Sk for various states@similarly as in Figs. 1~b! and 2~b!#.
In Table I we present the values of the parametersa and b
which were obtained from the fitting.

V. RELATIONSHIP OF THE INFORMATION ENTROPY
WITH THE ENERGY OF SINGLE-PARTICLE

STATES

In Fig. 4 we plotSr1Sk , obtained with the HO model o
the nucleus, versus the energy of the single-particle sta
We use \v541N21/3 with N5208 (Pb), and keep the
quantum numbern equal to 1. A fitting procedure gives, fo
n51, the relation

S5k ln~mE1n!, ~17!

where k52.0206, m53.5373 MeV21, and n5212.5320.
Similar relations hold forn.1.

Next we plot the sumSr1Sk as a function of the energyE
of single-particle states for a proton in a nucleus according
SkIII interaction for 208Pb ~Fig. 5! and an electron in an
atomic cluster withN5198 ~Fig. 6! for n51. Similar curves
hold for larger values ofn.1. In both cases the dependen
of Sr1Sk on E can be represented well by the function
form @Eq. ~17!#. The values of the constants are the follow
ing:

k51.5262, m517.3043 MeV21,

n5793.109 for a proton in a nucleus

k51.2386, m51481.48 eV21,

n58730.52 for an electron in a cluster.
0
8

TABLE III. Values of thesp energy~E! in MeV and entropy sum~S! for various states ofL hypernuclei.

State Acore E S Acore E S Acore E S

1p1/2 39 -7.737 7.932 50 -10.079 7.894 88 -15.167 7.85
1p3/2 39 -9.040 7.883 50 -10.903 7.859 88 -15.576 7.82
1p1/2 137 -18.462 7.837 207 -20.973 7.835
1p3/2 137 -18.705 7.821 207 -21.123 7.822
1d3/2 137 -9.713 8.659 207 -13.820 8.623
1d5/2 137 -10.477 8.633 207 -14.264 8.603
7-5
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A similar relation may be obtained for aL in a hyper-
nucleus, but the number of values ofSr1Sk available is
small. Relation~17! can be extracted from the asymptot
form for the one-dimensional HO given in Eq.~31! of Ref.
@7#. However, in the present work we extend the calculatio
to more realistic three-dimensional systems, and we ob
relation ~17!.

VI. DISCUSSION AND CONCLUSIONS

Comparing our results in Secs. II, III, and IV, we see th
a similar functional formSr (orSk)5a1bN1/3 describes

FIG. 3. The same as in Fig. 1, for an electron in atomic clus
with a Woods-Saxon potential.
06430
s
in

t

well the information entropiesSr and Sk of the single-
particle states for a nucleon in a nucleus, aL in a hyper-
nucleus, and a valence electron in an atomic cluster, altho
the single-particle potentials are different. We conjecture t
this is a universal trend of the information entropiesSr and
Sk for a fermion in a mean field, while the net informatio

s

FIG. 4. The values of the entropy sumSr1Sk ~squares! of
single-particle states for a nucleon in Pb208 according to the HO
model for n51. The line corresponds to our fitted expressionS
5k ln(mE1n).

FIG. 5. The same as in Fig. 4, but for a proton in Pb208 accord-
ing to the SkIII interaction forn51.
7-6
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contentSr1Sk of the single-particle states of a fermion in
mean field is a slowly varying function ofN of the form S
5a1bN1/3 for the systems considered above. For nuclei a
a simple HO potential,Sr1Sk is exactly a constant indepen
dent ofN, i.e.,b50. We note that in Ref.@10# we found the

FIG. 6. The same as in Fig. 4, but for an electron in atom
clusters (N5198) using the Woods-Saxon potential forn51.
.

da

im

06430
d

universal propertyS5a1b ln N for the total density distri-
butions of various systems.

In both cases it is not clear whySdepends linearly on lnN
~total densities! or linearly on N1/3 ~single-particle states!,
but we note that in atomic physics there is already a conn
tion of the information entropy with experiment, i.e., wit
fundamental and/or experimental quantities, e.g., the kin
energy or the magnetic susceptibility. Both characteris
have been used in a study of the dynamics of atomic
molecular systems@18#. This connection established the in
formation entropy as an interesting entity for atomic physi
In the present paper we obtained a relationship ofSr1Sk
with a fundamental quantity as the energy of the sing
particle states, i.e.,S5k ln(mE1n). It is remarkable that the
same functional form holds for various systems.

S is a monotonic~increasing! function of thesp energy
~for quantum numbern5const), e.g., 1p1/2 has an energy
larger than 1p3/2. Thus 1p1/2 has a value ofS larger than
1p3/2. This gives the correct ordering. This rule is verifie
by our numerical calculations, as can be seen in Table II
nuclei and Table III for hypernuclei.

In Table I we observe a change of sign of the parameteb
from a 1s state to othersp states. For the HOSr1Sk does
not depend onN, as can be seen by adding Eqs.~8! and~9!.
However, for more realistic cases~examined in the presen
work! this cancellation is not exact. The change of sign
the parameterb from the 1s state to other single-particle
states is due to an interplay of the two terms. It is remarka
that the same sign change occurs for all the cases u
consideration.
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