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Properties of microscopic interaction potentials between*f@onuclei are discussed in connection with the
formation of ?C+1?C and 3x+ 3a molecular resonances. The nucleus-nucleus interactions are calculated by
the double-folding procedure based on a realistic nucleon-nucleon interé@@ivi3Y) and microscopi¢’C
transition densities calculated fronw-3RGM wave functions. The interaction potential can be written as the
sum of the monopole part obtained from the monopole density and the multiple parts generated from the
qguadrupole component of the density. We discuss the role of the monopole and multipole parts of the potential
separately. It is shown that the multipole part is very strong in the channels with33 structure and the
energy positions of the @+ 3a molecular bands generated by the monopole potential are largely modified.
The effect is moderate but non-negligible on the molecular bands witH@he'C dinuclearlike structure and
largely modifies the band crossing diagram between the elastic and aligned-inelastic molecular bands. The
channel coupling effect among théC+%C channels, namely, the elastic channel and the single- and mutual-

2] excitation channels is also investigated. Due to the strong coupling between the grounfl siatde® of

2C, the resonance wave functions obtained by the coupled-channel calculation have an additional radial node
compared with those of the single-channel resonances. All the results are discussed in connection with the band
crossing model which was believed to be successful in describingf@e?C molecular resonances.
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[. INTRODUCTION the crossing between the elastic and inelastic molecular
bands is realized by an effective increase of the moment of
Since the first discovery of three sharp resonances in thmertia of the inelastic “aligned band” due to the “spin-
12C+12C collision near the Coulomb-barrier energies in thealignment” mechanism, namely, the lowering of the orbital
1960s[1], a number of pronounced resonance phenomenangular momentum in the inelastic channel in which the in-
have been observed in various reaction channels of marnyinsic spins of the colliding nuclei has the stretched coupling
light heavy-ion systems, particularly of thé?C+'?C,  with the orbital angular momentum. It also succeeded in re-
160+12C, and %0+1%0 ones. Those resonances were ob-producing and interpreting the experimental data of heavy-
served not only around the Coulomb-barrier energies buion resonances not only in théC+12C system but also in
also at energies well above the Coulomb barf&r the %0+1%C [16,17 and *0+1%0 oneq[18]. The resonance
Among the heavy-ion systems, thé&C+*°C system was states observed in these heavy-ion systems are thus inter-
the most extensively studied and many pronounced resgreted as the so-called “molecular resonances” in which two
nance structures were observed in the elastic and inelast@lliding nuclei keep touching their surfaces and rotate to
scattering leading to the;2and 3 -excited states of’C  each other by almost keeping their identities.
[3—6] and nucleon or alpha-particle transfer reactions well However, not only in BCM but also in other theoretical
above the Coulomb barri¢7—12]. Various models are pro- models, all the interactions between colliding nuclei were
posed in order to explain the resonance phenomena observetienomenological ones such as the empirical optical poten-
in the 12C+12C inelastic scattering well above the Coulomb tials. As is well known, the empirical optical potentials for
barrier[13-22. low-energy heavy-ion scattering have a substantial ambigu-
Many of the theoretical approaches were based on th#y in their depth and shape and, hence, it was inevitable that
coupled-channel approach or an approximate form of it suclall these model calculations suffered from the ambiguity due
as distorted-wave theories and they looked successful to ta the use of the empirical interactions. Most of the empirical
certain level in reproducing the gross structure of the resopotentials used in the previous calculations are the so-called
nancelike behavior of excitation function$3—22. The so-  ‘“shallow potential,” a typical value of the central depth be-
called “band crossing model{BCM) [13-15 is the sim- ing, say 20 MeV, which is supplemented by a repulsive core
plest and superior to all other models in the sense that thim the inner region for taking account of the Pauli exclusion
model is able to predict the energy range and spins at whicRrinciple between the interacting nuclei. However, subse-
the resonances are to be observed. This model also explaigsient theoretical studies revealed that realistic heavy-ion po-
the mechanism of the resonance formation in terms of théential was the so-called “deep potential” and had no repul-
crossing between a dinuclear rotatiofadoleculaj band of  sive core at short distance even when the Pauli principle was
the elastic channel and those of inelastic channels. In BCMgorrectly taken into accoun23,24. The validity of the
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“deep potential” has now been established through the re€alculated by folding the monopole part of the diagonal den-
cent observation and analyzes of the nuclear-rainbow phesities, while the other one is done by folding the higher mul-
nomena[25]. Thus, it is very important to reinvestigate the tipole part of the densities. Since th& nucleus is strongly
previous analyses of the heavy-ion resonance phenomena dgformed[28—31, in the ?C+%C system, the molecular
using more realistic, “deep” interactions. rotational bands generated by the former part are largely
In addition to the above dinucleus resonances, anothanodified by the latter part. The molecular bands with the
important discovery was reported on a new type of heavy-iomodification due to the multipole part are very different from
resonance which decays into multicluster exit channelsthose suggested in BCNL3—15, while those without the
Namely, a broad resonancelike structure was observed in thaodification is similar to the bands in BCM. Furthermore,
12C+12C inelastic scattering leading to th&C(0;)+12C(0;)  the channel coupling effect is strong due to the strong defor-
channel[26,27] at energies arouné,,,=32.5MeV. Since mation of the’?C nucleus and hence, the reaction dynamics
the O excited state aE,=7.65MeV in thel?C nucleus is is also different from that discussed in BCM based on the
known to be a well-developeda3cluster state[28—31,  Wweak coupling picture.
which itself is a sharp resonance state just above'tfe In Secs. Il and Ill, we describe the framework of MCC
—3a breakup threshold at 7.27 MeV, the resonance oband show the properties of the nucleus-nucleus potentials in
served in the'?C(0})+'2C(05) channel should not be a detail, respectively. The calculated molecular rotational
simple dinucleus type molecular resonance state but it couljands having thé’C+*°C and 3v+ 3a structure are shown
be a state having a multicluster molecular configuration, suck Sec. IV and V, respectively. In both sections, the effect of
as the 3r+3a one. Moreover, in the recent experiment by the potential originating from the deformation B is dis-
Chappelet al. [32] and by Marechakt al. [33], resonance cussed in details. In Sec. VI, we discuss the roles of the
peaks have been observed also in other exit channels, suchesannel coupling effect in the channels with tHe€+12C
12C(0;)+1°C(3y), 'C(3;)+1°C(3;), and ®Beys+'°0ys,  structure. The last section will be devoted to summary and
around the samg, ,,=32.5MeV region with a good corre- discussion.
lation to the above-mentioned resonance in the
12C(03)+12C(05) channel. On the other hand, it is well
known that the pronounced resonance structure also exist in ||, FRAMEWORK OF THE MICROSCOPIC COUPLED

the 1'%Cys+'C(0;) channel around E;,=29.5MeV CHANNELS
[34,35. . ) . o .
In order to understand the various resonance states WitHA" Coupled-channel equations with microscopic interactions

very different nuclear structure such ¥€+°C, 2C+3a, In a practical calculation, the coupled-channels equations
and 3x+ 3« one systematically, the coupled-channel calcu-describing the collision of two nuclei for the total angular
lation based on the realistic nucleus-nucleus interactiomnomentum of the systerh

should be performed. Recently, a coupled-channel study

called the microscopic coupled chanr@ICC) has been h? d*  ACL(L+D) )

made on the'’C+%°C resonance reactioni86—39. In the - EWJF 2uR? Vol al (R~ Ea | xal(R)

MCC calculation, the**C-12C interactions are calculated in
the double-folding(DF) model[39]. In this model, the real
part of the interaction is calculated by folding the effective
nucleon-nucleorfNN) interaction with the transition-density
distributions of the two collidingC nuclei, which leads to a

typical “deep potential” interaction. The result of MCC cal- g solved numerically. Here; denotes a “channel” desig-

culation was quite successful in reproducing the resonancg,aq by the intrinsic spins of two nucléi and I,, the

E’eha‘l’;"r of the cross sections not only in the channels witlyy, | spini (1;+1,=1) and the sum of the excitation en-

a1 30 o B e oGt s ranin flo 100 m o €195 f W0 nucle Thus,E, <E e, is the center-of-

10 b [36—3,53 This implies that the double-folding interac- mass(c.m) energy of the nucleus-nucleus relative motion in
X the channek. For a givenJ, a channel specified by con-

tions used in the MCC calculation is reliable. ) | “subch o ified dL satisfvi
In the present paper, we discuss the properties of the mht—a'ns several “subchannels” specified byandL satisfying

croscopic nucleus-nucleus potentials same as those in t g—||§LsJ+|, whergL Is the _orb|tal an_gular momentum
MCC calculation and investigate its effects on the resonanc@Ssociated to _the relative Coﬁird'”ﬁe'” th'f paper, we cal!
formation. These microscopi®F mode) interactions with & state specified by andL a subchannelu and one speci-
the realisticNN interaction give reliable deep potentials and f|<_ad_ by_“ (or a combination of , andl,) a chan_nel. The

are free from any artificial parameters. The folded-diagonaf!iStinction between channel a('j)d subchannel is very impor-
density of excited states with a nonzero spin has the multitant in this paper. In Eq(l), x;((R) represents the radial
pole parts which relate to the intrinsic deformation of awave function of the relative motion in the subchanaél.
nucleus in addition to spheric&nonopole one. The micro- All the diagonal [(aL)=(BL")] and coupling[(aL)
scopic DF potentials can be divided into two parts according# (AL')] potentials V&) . ,(R) are calculated by the

to the classification of the folded densities. The first part isdouble-folding(DF) model[39] and defined as

=— 2 VoL RIXELR), )
(BL")#(a,L)
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J)

V(aJL) L/(R):Vf L s (R) while g(E,s) is the spin- and isospin-scald®€ T=0) com-
,.B 11280400

ponent of the original M3Y interactiof2]. HereE denotes
an incident energy per nucleon in a laboratory system. The
coefficientsC(E), a(E), andB(E) in the density-dependent
factor f(E,p) were determined at each energy by fitting a
Ny OM) 5 . volume integral of thevyn(E,p:S) to the real part of the
” i;c1 UNN(X”)lq)'i'é"L’(gl'ng»fl’gZ’R' optical potential felt by a nucleon in the nuclear mafts].
jeCy The inclusion of the density dependence is very important,
) especially for describing a large difference of interactions
between two nuclei in various states having different nuclear
structure. For example, the interaction between the two nu-
clei both in the spatially compact ground state and that be-
&ween nuclei both in the spatially extended excited state is
very different and the use of the density-dependent effective
NN interaction is essential in order to correctly take account
of such differences due to the structure change.

The coupling potential for the Coulomb excitation is also
given by the folding model by just replacing thN nuclear
interactionu  With the NN Coulomb one in Eq(2). How-
ever, the inclusion of the Coulomb coupling is not essential
in the lighter heavy-ion systems.

=(DPM (£1,6,,R)]

il

Here ®OM (&, £, R) is the channel wave function. In an
identical boson system, the explicit form of the channel wav

function ®CM (£, ,£,,R) is written as
(DE\;|'\2|)L(§11§2!Q)

N
2(1+5|1|25 i ) I

i1in

X(§)® llffizz)(fz)]l @Y (R)Iyum

] 1
2(1+6,,6i,i,)

I Y (€0 9 2 (£ 111 YLR) Low

B. Microscopic nucleus-nucleus interaction

By substituting Eq(3) into Eq.(2), the expression for the
coupling potential in Eq(2) reduces to the following form:

vy (R)

N
PPN

P (@)@ v 2 (E01@ (= DY LR Ty}
1
@ B \/(1+5|1||2)(1+5|i,|é)

which is symmetrized with respect to the exchange of the
identical nuclei. Here; and &, represent the internal coor-

dinates of the individual nuclei, whil® and R denote the
radial and angular parts of the relative coordinate between

X D TLL (= 1)YAL=L = OW(IL1 'L’ ;IN)
A

’ (V)
the center of mas&.m,) of the colliding nuclei.S;, denotes x(LoL 0|)\0>{V'1'z'v'1'é"(R)
the symmetrization operator which exchange the two identi- e~
i =D (R} ©®
cal nuclei, namely, the exchange of whole nucleons between PPNHHE :

two nuclei. This kind of exchange term only appears in a

system composed of two identical nuclei. This correspondéiere, W(ILI1’L";J\) represents the ordinary Racah coeffi-
to one of the various nucleon-exchange terms appearing in@ent andl,L,..., areabbreviations ofy21 +1,y2L+1,....

fully antisymmetrized resonating-group-methoRGM)

[We have dropped the superscriptandi, appearing in Eq.

wave function describing the identical boson system. In Eq(3) for simplicity. Hereafter, we do the same for simplicity of

(3), wl(ill)(gl) denotes the internal wave function of a nucleusnotations] In Eq. (6), W

RERAR ,(R) denotes the form factor
12

in thei;th state with an intrinsic spih;: e.g., a state with  having the following form:

i;=2 andl,=0" implies the § state.

In Eq. (2), vnn(X;j) represents an effective nucleon- ,1|2,,,£|é|,(R)
nucleon interaction which acts between tiie nucleon in a
nucleus G and thejth one in the other nucleus,CA more Iy 1, 1
explicit expressions of Eq2) will be given in the next sub- _an . T A 312
section. We use the DDM3Ydensity-dependent Michigan _Illz)gz ol T2 1 (=1)%(2m)
three-range Yukawa interactiprj40,41] as the nucleon- A A A

nucleon(NN) interaction. The interaction has the following
factorized form:

vnn(E,p;9)=0(E,9f(E,p). (4)

Here,f(E,p) is a density dependent factor with a form of
f(E,p)=C(E)[1+a(E)e A®r], (5
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Herea(E) andC(E) are the same as those in E). In the The nuclear states dfC up to about 15 MeV excitation
case of the Coulomb interaction, one should replagg by  energy can be divided into two group of states according to
the NN Coulomb potential and le€(E)=1 anda(E)=0 in  their nuclear structurf28—31]. The first group of states are
Eq. (7). On the right-hand side of Eq7), j,(kR) represents the so-called “shell-model-like states” having a spatially
a spherical Bessel function of the ramk The v(k) and compact structure and the second ones are the-cl8ster

ﬁﬁ),(k)[pl(ﬁ),(k)] represent a Fourier transform of thg,  States” having a well-developed a3structure. The
and the transition densitynodified transition densilywhich ~ ground state, the ;(4.44 MeV) first excited state, and the
are defined below. 3, (9.64 MeV) state belong to the first group, while the

The diagonal or transition density of colliding nucleus at a0, (7.65MeV), 2 (10.3MeV), and Q(14.04 MeV) states
positionr with respect to the c.m. of the nucleus are ex-belong to the second groyg8,29. The 2, and 0 states
panded into multipole components as follows: have not been identified experimentally due to the large
widths. However, most cluster-model theories predict the ex-
istence of these states in this energy region above the 0
state.

A
PlK,l'K/(r):<¢|K(§)|gl S(r=r)lhic (€)

=> ’K')\,ullK)pl(}\l),(l’)[iY)\’M(f’\)]*. (8) A. Microscopic transition densities of *C
N, ’ . . . .
g According to Eq.(8), the multipole expansion for the di-

Here, i (£) represents the internal wave function of collid- agonal density I(=1") can be divided into the monopole
ing nucleus obtained by the microscopic calculation such aé\ =0) part and thex#0 multipole one as follows:
resonating group methoRGM). Therefore, the nucleus- 12
nucleus interactions expressed by E@s.and(7) are deter- _ B
mined in a parameter free way, provided that the micro—p'K~'K'(r)_<q}'K(§)||Zl S(r=rdlik (6)
scopic internal wave functions of colliding nuclei are given.

The Fourier transforms of the nucleon-nucleon interaction , o) : -

— = IK'A | IK LYy, (F

and the radial part of the transition densitie$k), pf?]),(k), g { #IOPEHLEY (D]

and”ﬁl(]}‘,),(k), are defined as

2 o0
oK)= \/;fo drZjotknog(), (@)

PN (k)= \Ej drr2j,(kr)p(r), (100  Here, the first term in the RHS of E¢L3) is the spherical
’ m™Jo ’ (monopole part of the density distribution, while the rest
5 terms are the nonsphericahultipole) parts, which exist in
~ () o ~\) the state with a nonzero intrinsic spin.
priv (k)= \[;fo drrjatkn)py (). (1D As for the internal wave function of’C, i« (€), we
adopt the internal wave function calculated by Kamimura by
Here,f)fﬁl,)(r) represents a “modified” density associated to the 3»-RGM method [31]. Transition densities obtained
the density-dependent term of the DDM3Y interaction androm the 3-RGM wave functions were shown to well repro-
defined by du_c_e_ the observed level structure, the electric transition prob-
abilities[B(EMN)], and the charge form factors of the elec-
ﬁfxl),(r):pm(r)e—map(r)_ (12) tron.scattering{?al]. _ .

' : Figures 1a) and 1b) show the density profiles of the
Here,p(r) in the exponent is taken to hgr) = p{9(r) when shfll-model-like state_éof and 2) and the &-cluster ones
"= andp(r)=%{pfo,)(r)er,(?),,(r)} whenl’#1. Thevyy (0, and 22+) respect_lvely. Slnce_a spinless state hgs iny a

’ ' A=0 spherical density, there exists only\a=0 density in

in Eq. (9) is equal to either the M3Y interactiay(E,s) when . .
we calculate the nuclear interactions or to the Coulomb poth€ ground Q and G states, which are shown by the solid

tential when we calculate the Coulomb interactions. curves in the upper panel of each figure. The density of the
state having a nonzero intrinsic spin such as thiead 2

states has the nonsphericals 0) component of the density

in addition to the spherical one. In the lower pannel of each
figure, thex=0 and\=2 components of the density are

In this section, we show the properties of the nucleonshown by the solid and dashed curves, respectively.

densities of*?C calculated microscopically and discuss the ~As can be understood from E¢L3), there should also
features of the double-folding potentials calculated from theexist theA =4 component in the density of the"2states.
densities. The potential for the inelastic channel with a nonHowever, we neglect this component in the present paper,
zero intrinsic spin has a slightly complicated structure. because the magnitude of the higher-multipolarity compo-

1
=—p{P(N ok + K N[ 1K)pf Y (r)
\/Epl'l K.K M%O ( ul )P (

X[YE L (F)]*. (13)

Ill. PROPERTIES OF MICROSCOPIC
NUCLEUS-NUCLEUS POTENTIALS
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r. ' T given the expression for the double-folding potential in Egs.
(6) and(7) by the Fourier-transformation form. In the expres-
0.4 k gs sion, one takes the summation over the three kinds of multi-
) pole variables\1, \,, and\. A\, and\, represent the mul-
tipole valuables for the density of individual nuclei 1 and 2,
o2k ) each of which corresponds to the multipolarityappearing
o in Eq. (13), while the\ in Egs. (6) and (7) represents the
E total multipolarity satisfying a vector-coupling condition
-~ 9 N1 —Xo|<SA<\;+\,. The expression for the potential can
F - 5+ _ be divided into two parts as follows:
0.4 .
Vit LRI VIR 1 (R N2 K(ILLILIIN)
] )
0.2 X{V|1|2|,|1|é|'(R)
(a)
- 1 1 | +(_1)|“\7§)\|)||’|’|/(R)}' (14)
0 6 8 varen
Here, N, represents the normalization constant in Eg).
L — with respect to the symmetrization between identical nuclei
and theK(IL,IL;J\) does the factor including the Racah
03} 0+ and Clebsh-Gordan coefficients and so on appearing in the
2 summation of Eq(6). The prime appearing in the summation
02 . implies that thex;=\,=A=0 term are excluded from the
summation. The first terv{) | | (R) corresponds to the
«g 0.1 ] N1=A,=A=0 term in Egs.(6) and (7) and its explicit ex-
= pression reads
< 0
> T : % _
% 03F 2t v}fflelz(R)=C(E)(2w)3’2JO dkiCo(k)jo(kR)
o
0.2 1 —0) —0)
X{pi, 1, (Kpi, ), (K)
01F - - ~
(b) +a(E)pi2 (KB, (0}, (15)
Of-mee——————————==
------------- wherep{P(k) andp{9 (k) represent the Fourier-transform of

-0.1 L L L e L the monopole densities defined in Egs0) and in(11), re-

spectively. This term is calculated only from the=0 (i

=1 and 2 part of the density and nothing but the usual
FIG. 1. (a) The diagonal density of the ground angl 3tate in  double-folding potential between spinless partidié4).

the ?C nucleus. The ordinate denotes the modulus of the density. In - Since only the monopole part\(=0) exists in the

the upper and lower panels of the figure, the density distribution ohucleon density of the spinless state, such as the ground state

the ground and 2 states are shown, respectively. For thestate,  of even-even nuclei, only the first term in E@.4) contrib-

the solid and dotted curves represent the monopale @) and  tes to the potential for the'0+ 0" channels. For the inelas-

quadrupole X =2) components, respectivelih) The same a¢d)  tjc channels containing the nonzero spin states, such as the

but for the ¢f and 2 states in thé“C nucleus. 0"+2" and 2" +2" ones, the second term in Ed.4) also

contributes to the potentials, because ofxhe 2 part of the

nents is found to be negligibly small. It is clearly seen in thedensity in the 2 state.

figure that the radial shape of the densities of thesBtes Moreover, there is a distinctly different feature between

(0, and Z) is more spatially extended than that of the the first and the second term in Ed4). The first term de-

shell-model-like states. The long-range nature of the lattepends only on the combination of intrinsic states of interact-

has important effects on the calculated potentials. ing nuclei, (1,) and independent of either the channel spin

I, the orbital angular momentuin or the total angular mo-

mentumJ. However, the second term depends alsd,on,

and J. This implies that the nucleus-nucleus interactions of
The potentials calculated by the double-folding procedurelifferent subchannels are different from each other even

can be divided into two parts according to the existence ofhough they consist of a common intrinsic-state chanmnel

the nonspherical density components in Et8). We have for a givend.

B. Properties of microscopic potentials
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The above properties of the potentials are quite general ' ' ' ' '
and do not depend on the system. In the present paper, we
take the?C+1?C system as an example and discuss the ef-
fect of the nonspherical-density part in Efj4) and the prop-
erties of the molecular bands generated by the potentials.
Since the intrinsic deformation of th&C nucleus is very
strong[28-31], this system is a typical example in which the
effect of the nonspherical-density part is prominent.

In this paper, we consider two kinds of channel groups:
The first group is the elastic channel (8 0;) and the in-
elastic  +2; and 2 +2; channels. The second group is
the 0, +0,, 0, +2,, and Z +2, channels. The former 40
three channels havEC+'%C structure, while the latter three
channels have a well-developedv3 3« structure. These
channels are known to play important roles in f€+%C 0
inelastic scattering leading to the mutugl-@xcitation chan-
nel [45]. We refer to the first three channels and the second
three ones as the “shell group(SG and the “cluster
group” (CG), respectively.

There exists only the first term of E(L4) in the spinless
channels such as thg 6-0; and G, +0, ones, while both
terms of Eq.(14) exist in the channels with nonzero intrinsic
spins such as p+2;, 2, +2, . Figures 2a) and 2b) show
the potentials for the[2{®2]]j_4 —3-4 and [2;
®22+]|=41L=J,4 subchannels, respectively. The solid curve
represents the potential calculated from Etd), while the
dotted and dashed ones-represent the individual contribution
from Eq.(14). The former and latter curves represent the first _40
and second terms of Eq14), respectively. All the curves
include the Coulomb potentials calculated by the double-
folding procedure. The sign of the second term of Elgf) 0
shown by the dashed curves in Figéa)2and 2b) are oppo-
site to each other. This originates from the difference of sign FIG. 2. (a) The potentials of thg2; ® 27 1,4, —;_4 subchannel
in the quadrupole X=2) density between thef2 and 2; for J=18. The solid curve represents the full potentials calculated
states. The quadrupole density for thﬁ gtate[Fig. 1(a)] is from Eq.(14), while the dashed and dotted ones represent the indi-

. . . . . vidual contributions of Eq(14). All the curves include the Cou-
positive, while that for the; [Fig. 1(b)] is negative. lomb potentials calculated by the double-folding procedure. See

As can be seen from both figures, the contribution fromtext for details. (b) The same as(a but for the [2}
the second term in Eq14) has a surface-peaked shape. The®22+]._4L_J,4 sﬁbchannel. 2
second term for thg2; ®2; ],_, channel is repulsive at the '

surface region which amounts to about 8 MeV aroud For later convention, let us call the sum of the nuclear and
=3.8fm, while that for thé¢ 2, ©2, ],_4 channel is strongly  Coulomb potentials consisting of the first term in Efid)
attractive which reaches its maximum value of about 13jone the “monopole potential,” while we call the potential
MeV around R=4fm. Since the centrifugal potential is defined by the second term in Ed4) the “higher-multipole
strongly damped at the outer-side region, the contributiorpotential.” In the following sections, we discuss the nature
from the second term gives rise to a considerable change igf the molecular bands composed of the barrier-top reso-
the barrier-top resonance energy generated by the potentiahnces generated by the monopole potentials and the effects
calculated with Eq(15). of the second term in Eq14) on the molecular bands.

In both subchannels, the contribution of the second term
of Eq. (14) gives rise to a visible change in the potential. In
particular, the second term of Eql4) in the [2,
®25 ]y—41 -4 Subchannel is much stronger than that in the  In this section, we show the potentials in the shell group
[27 ®2] ]i—4L-1_4 ONe. This is due to the strong deforma- (SG) and discuss the behavior of the molecular bands gener-
tion of the 2, state with a well-developeda3structure as ated by the potentials. In Fig. 3, we show the monopole
shown in Fig. 1b). Therefore, the change of the resonancepotentials (nuclearCoulomb) in the @ +0;, 0y +2;,
energy due to the inclusion of the second term becomes mownd 2 +2; channels. These potentials are very closed to
important in the 2 +2; channel having 8+ 3« structure.  each other. This is because of the similarity of the monopole

V(R) (MeV)

S
S

(=]

V(R) (MeV)

S
S

]
'
1 Il 1 1 Il

i 3 12
R (fm)
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FIG. 3. The monopole part of the potentials for the elastit, 0
+27, and 2 +2; channels, which are shown by the solid, short-
dashed, and long-dashed curves, respectively. In all the curves, the
Coulomb part of the potential is included.

density distribution of the ground state and that of the 2
one as shown in Fig. 1. The effective potential which is the
sum of the monopole potential and the centrifugal potential
generates the molecular bands, i.e., the sequence of the po-

Ecm +Q (MeV)

[ 2¢*X2¢*] o4 ]

with full potential

tential resonances around the barrier top in each partial wave. AA""\ . (b)
In the [2] ®2 ],_4 channel, there are five subchannels, N le:astlc ban? L
orbital angular momenta of which equal to=J*=4, L=J 0 14 18 55

+2, andL =J according to the angular-momentum coupling

J(J+1)

between the channel spin=4) andL. TheL=J*3 and
L=J*+1 subchannels are forbidden by the parity-
conservation law.

FIG. 4. (a) The molecular bands in tH&; ®2; ],_4, subchan-
nel. The double circles, solid circles, open squares, solid diamonds,
The molecular bands in the elastic (& 01“) and [21r and solid triangles represent the band in theJ—4, L=J—2, L
®27 ],-4 channels are shown in Fig(a. All the bands are =J. andL=J+2, L=J+4 subchannels, respectivelfo) The
calculated from the monopole potential. The abscissa ansgme aga) but for the molecular bands calculated from the full
ordinate in the figure denote tigJ+ 1) value and the total potentials. In both figures, the elastic molecular band is also shown
energy of the 1204120 system with respect to the by the short-dashed line with open triangles.

2Mg—1%C+*2C threshold energy, respectively. The band _ . _
with double circles and solid circles corresponds to the mo€nce of the effective potential among the five subchannels

lecular bands in thé =J—4 andL=J—2 subchannels, re- belonging to th§ 2, ®2;] -, channel is the difference of
spectively, while the solid triangles and solid diamonds corthe centrifugal potential, because the monopole part of the
respond to the bands in th&=J+4 and L=J+2 potentials is common to all the subchannels. Therefore, the
subchannels, respectively. The former two subchannels afésonance energies of the aligned band are the same as those
called the “aligned subchannel,” while the latter two are Of theL=J band shifted to the higherside by four units of
called the “antialigned subchannel.” All the molecular % for theL=J—4 band and by two units of for theL=J
bands shown here are membersNof 18 rotational band, —2 band. The antialigned band is obtained by theJ
whereN is the total oscillator-quantum number of the har- bandshifted to the lowe¥-side by four units ofi for the L
monic oscillator defined bjN=2n+L. Here,n represents =J+4 band and by two units of for theL=J+2 one.
the number of nodes of the radial wave function. The molecular bands with<J in the 0] +2; and 2

The energy position of the molecular band in fi&g ® +2; channels are shown in Fig(d. The molecular band in
+2f]|:4,L:J channels, shown by the open squares, is highethe [01*®21+].:2,L:J subchannel is also parallel to thg 0
than that of the elastic-channel band by the intrinsic excita-+0; molecular band, the energy position of which is higher
tion energy 8.88 MeV and both bands are almost parallel tahan that of the elastic band by the intrinsic excitation ener-
each other. This is because the monopole potentials of thegges 4.44 MeV. As can be seen in Figah the “band cross-
channels are very closed to each other, which is due to thimg” between the aligned-inelastic molecular band and the
similarity of the monopole density distribution of the ground elastic one occurs arount=14 and 16.
state and that of the;2one(Figs. 1 and 3 The only differ- The band crossing between the elastic band and the
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(a)
0 L —or
6 10 14 18 22
J(J+1
( ) L
R{(fm)
with full potential . . o
—~ 40F 4 FIG. 6. The full potentials for th¢2; ®2; ],—4, subchannel.
% The dotted, dashed, dotted-dashed, thin-solid, and long-dashed
E curves represent the full potentials for the=J—4, L=J—-2, L
o L i =J, L=J+2, andL=J+4 subchannels, respectively. The solid
+ curve represents the monopole potential for tie+2; channel.
g The thin-solid curve cannot be distinguished from the solid one.
w 20 elastic — The Coulomb potential is included in all the curves.

a8 [ 04"x2¢*] 12 |
Next, we investigate the effect of the higher-multipole
Lo el 2T x 2T )1 S part of the folding potential originated from the
(b) nonspherical-density part, namely, the second term of the
| RHS in Eq.(14), on the m_olecular bands. Figure 6 shows the
6 10 14 18 20 “full potent!als,” whlch_ is the sum of the monop_ole and
J(J+1) higher-multipole potentials, around the surface region for the
five subchannels belonging to tH@, ®2,],_, channel.
FIG. 5. (@) The molecular bands in the elastif0f ®0;]),  These potentials depend dnas shown by Eq(14), and we
[0; ®27 ]j—p (with L=J-2,J) and[2] ®2; ];—4. (With L=J  show the potential fod=18 in Fig. 6. The monopole poten-
—4,J-2,J) subchannels, which are shown by the double circlestja| for the channel is also shown by the solid curve in the
open squares, open triangles, solid circles, solid squares, and sokgyme figure for comparison, which is independend.ofhe
triangles, respectively. All the molecular bands are calculated fromyqdition of the higher-multipole potential to the monopole
the monopole potentialgb) The same_a&a) but for the molecular 5,4 gives rise to a visible change to the depth, depending on
bands calculated from the full potentials. the subchannels. The difference between the monopole po-

aligned-inelastic band in the present double folding potentiaj€ntial and the full one amounts to about 2—-5 MeV around
is similar to the result of the band-crossing-modeCM) ~ R=4 fm in all the subchannels except for the=J+2 sub-
calculation[13,14). In the previous work based on BCM, channel. The contribution of the hlgher-mult!polg potential
however, “shallow potentials,” the central depth of which is 9&Pends on the subchannel and it is attractive inlLthe
about 20 MeV, were used as the nucleus-nucleus real pote@Nd L =J=2 subchannels, while it is repulsive in the-=J

tial which is very different from the double-folding-model =4 Subchannels. _ ,

potential used in the present work, the central depth of which Figures 7a) and 1b) show the effective potentials com-
is about 200 MeV. In the former case, the number of radialPosed of the nuclear, Coulomb, and centrifugal potentials for
nodes in a molecular band is common tokalWwhich is zero.  the[21 ®2],-4 channel. The nuclear and Coulomb part in
In the latter case, however, each of the molecular bands hdB) includes the contribution of the higher-multipole poten-
a constant value dfl=2n+L and the radial-node numbar tial, while that in(a) does not include the contribution. The
of the molecular band depends drasn=(N—L)/2. In ad- contribution from the higher-multipole part gives rise to
dition, the deep double-folding potential gives rise to otherabout 5 MeV change of the pocket depthlircJ the sub-
molecular bands having differeht values in each subchan- channels. In th¢2; ®2;]; channel with the channel spin
nel. The average energy interval between the molecular 0 and 2, the contribution of the higher-multipole part is
bands with differentN values is about 10 MeV, which cor- similar to that of thd 2] ®2; ], -, channel, although it is not
responds to the interval dN=2. In BCM, however, there shown in the figures.

is only one molecular band with=0 in each subchannel The molecular bands in Fig(@ generated by the mono-
because of the shallow depth of the nucleus-nucleus poterpole potential are largely modified by the addition of the
tial. higher-multipole part. In Fig. @), we show theN=18 mo-

(w]

064303-8



PROPERTIES OF MICROSCOPIC NUCLEUS-NUCLBU. . PHYSICAL REVIEW C 63 064303

®21+],:4,L:J_2 also cross with the elastic band at the same
spin region. This is because the effect of the higher-
multipole potential acts as an attractive effect to these sub-
channels.
These molecular bands modified by the higher-multipole
part shown in Figs. @) and 8b) serve as the starting point
of the subsequent coupled-channel calculations, in which the
coupling among different channels are taken into account. It
should be noted that the molecular bands generated by the
monopole potential aloneshown in Figs. 4a) and 5a)] can-
not be the starting point of the coupled-channel calculation.
It is worthwhile to discuss this point by comparing the
present results with the previous BCM calculati¢h8—15
In the previous BCM calculation, the same kind of correc-
tions corresponding to the higher-multipole part were also
included in the potentials by the collective rotational model.
However, the effect was small due to the use of a “shallow
optical potentials” as the basic interactions. As a result, no
difference was observed between the molecular bands gen-
erated by the monopole potential and that generated by the
full potential as the starting point of their coupled-channel
calculation. The main difference from the present paper,
thus, exists in the interaction model adopted. Namely, in the
present work, we adopt the double-folding-model interac-
tions to construct the internucleus potentials and this interac-
tion gives rise to a deep potential as well as a large compo-
nent due to the higher-multipole part. Hence, in the present
! double-folding-model case, the starting point of the coupled-
R (fm) channel calculation is already very different from the band-
crossing diagram based on the monopole potential shown in
FIG. 7. The effective potentials, the sum of the nuclear Cou-Fig. 5a). In the next section, we perform the similar analyses
lomb and centrifugal potential¢a) without and (b) with the  for the cluster grougCG). In CG, the contribution from the
nonspherical-density component of the nuclear potential, ¥or higher-multipole part is very large and hence, the molecular
=18 in the[2; ®2 ],4, subchannel. The solid, dotted, dashed- hands generated by the monopole potentials are much more
dotted-dashed, and thin-solid curves represent the effective pote’trongly modified by this part.
tials for theL=J—4,L=J-2,L=J, L=J+2, andL=J+4 sub-
channels, respectively.

V(R) + Q (MeV)

(b)

40f

V(R) + Q (MeV)

20

V. 3a+3a MOLECULAR BANDS
lecular bands generated by the full potentials in [2¢
® 27 ],—4 channels. The higher-multipole part contributes re-
pulsively in the L=J—-4, L=J+2, and L=J+4 sub-
channels, while it does so attractively in the=J—2 and _ _ n
L=J subchannels. Since the higher-multipole part depend@“fnoi:’f"e potent|als+(nucleaCoqumb) in the Q+_02 ,
onJ [as seen in Eq14)], the energy shift of the molecular Oz +2; . and % +2; channels. From the comparison of
band due to the inclusion of the multipole part also depend&ig- 3 and Fig. 8, we can see that the interaction range of the
onJ. This Change amounts to about 5 MeV, name|y7 the ha|p0tentials in all the CG channels is |Onger than that of the
of the energy interval between neighboring molecular band@otentials in the SG channels. This is because theutd 2
with AN=2. The large change of the energy position andstates have a well-developedr Zluster structure. In addi-
slopes of the molecular bands in f& ®2; ],_,, subchan- tion, one can see in' Fig. 8 that there is a considerable differ-
nels results in a drastic change of the band-crossing diagrariCe in the interaction ranges among the above three chan-
as shown in Figs. &) and 5b). As seen in Fig. &), only ~ nels. This is due to the fact that the density distribution of the
the most-aligned band{0; ®2;],—5 -3, and [2; 2, state has a longer rangee., the larger rms radidighan
®21+]|:41L:J_4 cross with the elastic (0+0;) band that of the § state, as we have already seen in Fig. 1.
aroundJ=14 and 16, respectively, in the case of monopole Figure 9a shows the molecular bands in tHe,
potential alone, while in the case with the higher-multipole®2§].,L subchannel with the channel sdir- 4. All the mo-
part added the crossing region moves 018 as seen in Fig. lecular bands shown here are the members of Nke20
5(b), which is due to the repulsive effect of the higher- rotational band. The D+ 0, molecular band is also shown
multipole part for theL =J—1 subchannels. In addition, the in the same figure by open triangles with the dotted line. The
nonaligned bands such ap0; ®2;]—, —; and [2;  moment of inertia of th¢2; ®2; ],_,, —; molecular bands

In this section, we discuss the folding potentials in the
cluster grougdCG) and discuss the behavior of the molecular
bands generated by the potentials. In Fig. 8, we show the
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FIG. 8. The monopole part of the potentials in thg-00; ,

05 +25, and Z +25 channels, which are shown by the solid, Z
short-dashed, and long-dashed curves, respectively. The Coulomb o + +
L. . . = | A [ 22 X22 ]|=4
part of the monopole potential is included in these potentials. = 20 ;
o - -
is much larger than that of tH{®), ®0, | ones, representing +E [
the fact that the interaction range of tf2; ®2, ],_, chan- S

nel is much longer than that of tH®; ® 0, ] channel. The
energy positions of the #J bands are obtained by just shift-
ing those of theL=J band to the lower or highel sides

20\ &

with full potential |

(b)

according to their L value, because the monopole f
nuclear-Coulomb interaction is common among the five '('3 ey ' 1'8 ' 2'2 ' 2
subchannels.

J(J+1)

The molecular bands with<J in the[0; ®2; ],~,, and
[2; ®2; -4, subchannels are plotted together in Fig. FIG. 9. (a) The molecular bands of tH@; ®2; ],_,, subchan-
10(a). The 0;4—0; molecular band is also plotted by the nel generated monopole potentials. The double circles, solid circles,
double circles for comparison. It is seen that the *“bandopen squares, solid diamonds, and solid triangles represent the band
crossing” between the aligned molecular bands and the 0 in theL=J-4,L=J-2,L=J andL=J+2, L=J+4 subchan-
+O£’ one occurs around=14 and 18. nels, respectively(b) The same asa) but for the moleculflr bﬁnds

Next, we investigate the effect of inclusion of the higher- calculated from the full potentials. In both figures, % ©0, |
multipole part on the molecular bands. The change of th molecular l:_)and is also shown by the short-dashed line marked by
potential due to the higher-multipole part is more prominent e open triangles.
in the [2, ®2, ], channel because of the large deforma-
tion of %C in the 2 state. Figure 11 shows the full poten-
tials for J=18 in the[2; ®2; ],_, subchannel around the

higher-multipole part gives rise to a large change to the
pocket depth and the barrier height in all the subchannels. In
) S 2 ) X particular, the barrier height and the pocket depth are drasti-
surface region. The contribution of the higher-multipole partCally changed in thé.=J+4 subchannels. It is interesting

depends on the subchannel and it is attractive inlthe] ¢ iha pocket depth of the=J+4 subchannel becomes
+4 subchannels, while it is repulsive in other subchannelsdeeloer than that of the=J andL = J+2 subchannels.

The higher-multipole part has opposite sign from that in the - zq \ye have confirmed, the correction due to the higher-
[2; ®2; ]1=4 channel. This is because the sign of the quady, tinole potential is very large and, hence, the molecular
rupole component of the,2density is opposite from that of pands generated by the monopole potential must be also
the 2/ density, which may reflect the difference of deforma- strongly modified. Th¢2; ©2; ],—, molecular bands calcu-
tion type, namely, an oblate shape in thg Btate and a |ated by the full potentials are shown in Figb® All the
prolatelike shape in the§20ne[28—3]]. The deviation of the  molecular bands are members of tde= 20 band. The loca-
full potential from the monopole one is particularly large in tion of the molecular bands calculated with the full potentials
the L=J=4 subchannels, which amounts to about 10 MeVdrastically changes from that calculated with the monopole
aroundR=7 fm, which is much larger than the correspond- potentials.
ing correction in thg 2, ®2; ],_, channels. From the comparison of Figs(l®) and 9b), the correc-

In Figs. 12a) and 12b), we compare the effective poten- tion due to the higher-multipole part is much larger for the
tials with and without the higher-multipole part, respectively,[2, ®2, ],—, channels than thg2; ®2; ],_, ones. The ef-
in the[2; ®25 1,4, subchannel. The contribution from the fect contributes attractively to thé =J+4 subchannels,
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FIG. 11. The full potentials for thg2; ® 23 ], subchannel.
The dotted, dashed, dotted-dashed, thin-solid, and long-dashed
> curves represent the full potentials for the=J—4, L=J-2, L
§ I =J, L=J+2, andL=J+4 subchannels, respectively. The solid
5 30 1 curve represents the monopole potential for tge+2; channel.
+ | The thin line cannot be distinguished from the solid one. The Cou-
£ lomb part is also included in all the potentials.
(5]
L

[0;®2;]|:2,L:J—2 and[2;®2;]|:4’|_ (W|th L=J-4 and
L=J-2), cross with the §+0, . In the case with the

20 . .
with full potential higher-multipole contribution shown in Fig. @), the band-

Lol (,b) crossing diagram of Fig. 18) is completely distorted by the
6 10 14 18 29 o6 large correction of the higher-multipole part. This implies
J(J+1) that the starting point of the coupled-channel calculation is

the diagram of Fig. 1®), which is completely different from
FIG. 10. (8 The molecular bands in thg0, ®0,] (double  the band-crossing diagram of Fig. (&0
circles, [0; ®25 ]2, —3_2; (Open squares, open triangleand
[23®25]1—41-3-43-2, (solid circles, solid squares, solid tri-
angles subchannels. All the molecular bands are calculated from V1. CHANNEL COUPLING EFFECT ON THE “C+'*C
the monopole potentialgb) The same aga) but for the molecular MOLECULAR BANDS

bands calculated from the full potentials. In this section, we discuss the coupled-channel effects on

_ _ ) the molecular bands of shell group shown in the preceding
while repulsively to other subchannels. In particular, the ef-section. In order to see the nuclear structure of the resonance
fect is the largest in thEzQi4 subchannels, which induces states more clearly, we do not include the imaginary poten-
about 10 MeV energy gain. It also reaches about 5 MeV fokjg|s also in the CC calculation. The coupling potentials be-
other subchannels except for the low spids<6). Since the  tween different subchannelsL# AL’ are calculated from
higher-multipole part depends ah the energy shift of the  the nondiagonal transition densities. Both the strength of the
molecular band also depends dnin the low-spin §<4)  hjigher-multipole part and that of the nondiagonal transition
region, the individual bands have a strange behavior. densities depends on the deformation of @ nucleus.

As shown in the above figure, the contribution from the Figure 13 shows the energy dependence of the partial-
higher-multipole part gives rise to a large energy shift in theygye components of the total cross section divided
[2;®2;]1-4 channels. Therefore, the band-crossing diaty 7k=2(23+1), namely, K2z~ (23+1) ol=2(1
gram between the 0+ 0, molecular band and the aligned _Reg)). The solid curves are the results of the CC calcu-
bands in th 0, ®2,],-, and[2, ®2;] -, channels gen- |ation. The results of the single-channel calculation with all
erated by the monopole potentials, shown in FiglalOis  the coupling to the!?C excitation switched off are also
largely modified by the contribution of the higher-multipole shown by the dotted curves for comparison. In the single-
part. In Fig. 1Qb), the L<J molecular bands in th€0,  channel calculation, a potential resonance is generated
®2; ]2, and[2; ®2; ];_4, subchannels are plotted. The around the barrier-top energy of each partial wave. The se-
0, +0, molecular band is also plotted in the same figure byquence of the potential resonances forms a molecular band
the double circles which are connected by the dashed line.with N=2n+L=18 and, hence, the band terminatesJat

In the calculation with the monopole potentials alone=18. A sign of the appearance Nf=20 band is also seen at
shown in Fig. 10a), we see that only the three aligned bandsseveral MeV above the =18 band but it is unclear, because

064303-11



M. ITO, Y. SAKURAGI, AND Y. HIRABAYASHI PHYSICAL REVIEW C 63 064303

60

V(R) + Q(MeV)
s

2(1-ReSYy)

601

15 25Ec.m. (MeV )35 45

FIG. 13. Partial-wave components of the total cross section di-
vided by 7k~2(2J+ 1) for J=14 to 20 obtained within the model
space consisting of the shell-group channels. The dotted curves are
the results of the single channel calculation with no channel cou-
pling, while the solid ones are the results of the coupled-channel
calculation.

4o

V(R) + Q (MeV)

201

the coupled-channel equations. In this approximation, the
coupled-channel equations are solved by the variational
method in the “bound-state-like” boundary condition using

the L2-integrable basis functions. Namely, the radial wave
. . T J) .
FIG. 12. The effective potentials composed of the nuclear Coufunctions in the individual subchanneﬂ%u are expanded in

lomb and centrifugal potential¢a) without and (b) with the  terms ofL%-integrable basis functions and the expansion co-
nonspherical-density component of the nuclear potential, Jor efficients are obtained by solving the eigenvalue equations.
=18 in the[2; ®25 ],_4, subchannel. The solid, dotted, dashed- Using the approximated wave functions, we can evaluate the
dotted-dashed, and thin-solid curves represent the effective poteprobability and the number of the radial nodes.
tials for theL=J—-4,L=J-2,L=J, L=J+2, andL=J+4 sub- Figure 14 shows the probability of finding the system in
channels, respectively. various subchannels obtained by the bound-state approxima-
tion, which is normalized to unity in each eigenstate. In the
it lies well above the barrier-top energies and the resonanckégure, we show the probability for some important subchan-
states have large widths. The channel coupling to tfie 2 nels of a spin-orbit aligned configuration in the caseJof
state of'?C gives rise to a number of sharp resonances in alf= 16. The solid circles in the lowest column are the energy
the partial waves investigated. In particular, the structure beeigenvaluesenergy spectjeobtained by the bound-state ap-
comes more complicated in the lower partial wave than irProximation. The partial cross section fd+ 16 obtained by
the higher partial wave, because the entrance wave can enf&e corresponding calculation in the scattering-state bound-
into well inside the barrier-top region, where the couplingary condition is also shown in the lowest column in Fig. 14.
potentials are very strong. As shown by the arrows, all the energy positions calculated
In order to understand the detailed properties of the resddy the bound-state approximation appear at high-energy side
nance wave functions, we calculate the following two kindsby about 1 MeV compared with those of the resonance states
of quantities: first, the probability of finding the system in obtained by the exact scattering-states calculation. This is
subchannel component, which is represented by the squaré@cause the system is confined in a finite region in the
modulus of the subchannel wave functions integrated ovelpound-state approximation.
the whole radial range, and, second, the number of the radial It is clearly seen that each eigenstate corresponding
nodesn or the total oscillator-quantum numbbi=2n+L, resonance statdnas its own characteristic channel structure,
of the radial wave function in each subchannel componentiamely, the probability distribution among the subchannels.
However, since the resonance state is a scattering state, feor example, the sharp resonance E&t,=21.36 MeV,
wave function cannot be normalized to unity and, hence, thhose corresponding bound state exists &,
absolute probability and the number of radial nodes cannot22.2MeV, has two dominant components, the elastic-
be defined for the scattering-state wave functions. Thereforeghannel component and tihe=J—2 component of th¢0;
we employ a “bound-state-like approximation” for solving ®2; ],_, single-excitation channel, while a broad resonance

R(fm)
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FIG. 14. Channel component of wave functions for each reso- TA+1)

hance inJ=16. The solid circles show the energy \{alue af t.he. FIG. 15. The diagram of the rotational spectra, called “eigen-
eigenstates obtained by the bound-state approximation. The 'ndb'ands » in SG drawn irE—J plane. The ordinate and the abscissa

vidual ordinate re_presents the probability c_>f each _subchannel Comrépresent the total energy of tR&C+12C system and thd(J+1)
ponent. The partial cross section f0r=16 is also in the lowest values. The double circles show the resonance-energy positions.
panel. See text for details. The resonance states connected by a solid line, corresponding to the
eigenbands, have a common subchannel structure, i.e., a dominant
at E;,=26.58 MeV has the large elastic-channel compo-component. The four eigenbands are identified, which are labeled
nent, etc. The radial node numberof the dominant sub- by A~D. The energy dependence of the total cross sections, 2(1
channels in the individual resonance states can be evaluatetReS), are also drawn to show the peak energy and the width of
by taking the overlap between the wave function in the CCthe individual resonances. See text for details.
calculation and that in the single-channel calculation without

the channel coupling. , , bols indicated, and theN values. The single-channel bands
We have performed the same kind of analysis of the resozish N=16—20 are also plotted in Fig. @ for compari-

nance wave functions for other partial waves and classifie on. It is seen that the energy positions of the eigenbands

the resonance states accordlr}g to the subchannel structuv(/?th N=18 (bands B, C, Dare close to those of the single-
and the radial node of the dominant subchannel components

As a result, we have identified several rotational bands. Fig(_:_hannel bands with =16, while the energy positions of the

ure 15 shows the rotational bands thus obtained for grazin _|ge|nbarr]1ds Wlit[)N N d20 (p%n_d 1’2 ?I'rre]' cllosellto tr;]ose dOf the
partial waves J=14—20). The resonance states connecte Ingle-channel bands with=18. This implies that, due to

by the solid line have a common subchannel structuretn® channel coupling effect, the original single-channel

namely, the dominant subchannel components are commc;?fmds are pulled down by about 6-10 MeV, which corre-
to all the states belonging to the same band. The total

oscillator-quantum numbeéd=2n+L is also common to all TABLE |. Dominant subchannels in the individual eigenbands
the states in a band. The four rotational bands are identifiedor SG.

which are labeled by A-D. The energy dependence of the

total cross sections 2(AReSy)), are also drawn to show the Band Subchannel N %

peak energy and th_e width of the indjvidual resonances. A [0F©27 ] _p0 ) 20 35.6
We call the rotational bands consisting of the eigenstates ’

(the solutions of the CC equationthe “eigenbands.” In elastic 20 19.5

Table I, we show the dominant subchannel components and
N values for each eigenband of Fig. 15. The average popu-
lation of the dominant subchannel component in each eigen- C [27®21 )i—41-3-4 18 28.4
band is also listed in the right-most column of the same

[2{®2)li-21-32 18 47.1

table. The population of the dominant components are less [20©21 ] 1-ar-5-2 18 36.3
than 50%, which also suggests a rather strong channel cou-p (07 @27 111 —y2 18 305
pling among SG. '

These eigenbands are plotted again in Figallgether elastic 20 20.2

with the dominant subchannels, which are labeled by sym
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40— y T y T y region and, hence, the overall energy gain by the channel
~ (a) Eigenbands (CC) 20 coupling is almost negligible in the whole energy-spin re-
18 gion. In the present CC calculation based on the double fold-
18 ing interaction, however, the strong channel mixing occurs in
18 all the grazing partial waves and the energy shift induced by
i the channel coupling is also large, even at non-band-crossing
i region.

As seen in Table I, the probabilities of the dominant com-
ponents somewhat depend on the subchannels. For instance,
it is relatively large for subchannels with an alignedalue
such as thg2; ®2; ]j_4.-;_4 One, while it is small for
subchannels such as the elastic §0d ®2; ],-,, -, ones
with a nonaligned. value. Moreover, there is no dominant
subchannel with.>J, i.e., the antialigned.. These results
suggest that the channel coupling effect is relatively weak for
subchannels with aligned than for subchannels with non-
aligned L. The stability of the subchannel with aligned
against the channel coupling is due to the weakness of the
centrifugal potential. In the aligned subchannel, the pocket
depth of the effective potential becomes deep and the unper-
turbed wave function obtained by the single channel calcu-
7 lation becomes a higher nodal state. The higher-nodal nature
. of the wave function leads to a reduction of overlap integral
- of the coupling potentials and the wave function, which re-
- sults in a weakening of the channel-coupling effect.

i One may also notice that the probability of the elastic
i channel is the smallest of all the dominant subchannels, of
which average value is less than about 20%, while all the
other subchannel components have the probability of more
than about 30%. The reason is that the elastic channel
strongly reduced by the channel coupling can also be inter-
preted by the intrinsic structure of tHéC nucleus. The chan-
nel coupling can be related with the deformation of the two
/ (b) Single—channel | colliding nuclei in their body-fixed frames. The intrinsic
shape of'?C is strongly deformed in an oblate shdg&,29.
10 1|4 1|6 ;8 2'0 The 0] ground state of°C corresponds to a rotational state
F(I+1) in which the intrinsically deformed nucleus rotates spheri-
cally. When such deformed nuclei get closer, the location of

FIG. 16. Comparison of energy position of the single-channelthe local minimum in the adiabatic potential-energy surface
bands with that of eigenbands obtained by the CC calculat®n. strongly depends on the relative distance and the orientation
The energy positions of the eigenbands A-D(dn N values of the  of the colliding nuclei[46,47. For example, the equator-
dominant subchannels are also shows).The energy positions of equator configuration becomes stable at relatively long dis-
the molecular bands withN=16 to 20, which are obtained by the tance, while the pole-pole configuration becomes stable at a
single-channel calculation with the full potential in the bound-stateshorter distance. In such a situation, it may not be plausible
approximation. In both figures, the open squares, open trianglegp expect that both of the interacting twéC nuclei rotate
and solid squares represent the elagi®; ®2; 1i-5.-y-2, and  gpherically in a very deformed adiabatic-potential surface.

[0; ®21 -2, subchannels, respectively, while the open andrherefore, the elasti0; ®0; ] component will be strongly
solid circles represent the[2;®2{]_4 ;4 and [2] suppressed

®27] —41-3-2 Subchannels, respectively. The solid triangles show
the[2] ®27 ],—2. 2 Subchannels.
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. VII. SUMMARY AND DISCUSSION
spond to the energy interval between the molecular bands

with AN=2. In this paper, we showed the expression of the micro-
In this way, the channel-coupling effects among the shelscopic DF potential and discussed its properties based on the
group are not very weak but rather strong. This result is verynultipole expansion of the nucleon densities. According to
different from the channel coupling scheme in the weak couthe multipole expansion, the nucleon density of a state with a
pling model such as BCNI13—-15. Since the channel cou- nonzero spin can be divided into the monopole part and the
pling studied in BCM was very weak, the mixing of the multipole one. The former and latter parts correspond to
different channels is very small except for the band crossingpherical and nonspherical component of the density, respec-
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tively. The density of a spinless state has only the monopoléng point of the coupled-channel calculation is not the mo-
component. lecular bands calculated by the monopole potentials but the
The DF potentials, namely the diagonal potentials, carmodified bands with the effect of the higher-multipole poten-
also be divided into two parts according to the multipolaritytials included. In the previous BCM calculations, the same
of the density. The one part is calculated by folding thekind of corrections corresponding to the higher-multipole po-
monop0|e densities, while the other part is given by fo|dingtentia|s are included by the use of the collective rotational
the nonzero multipole components. The latter part of the pomodel, but their effect was negligible due to the use of the
tential exists in the channels with a nonzero intrinsic spin.‘shallow optical potentials” as basic nucleus-nucleus inter-
We referred to the former and latter parts of the potentials agctions. As the result, the starting diagram for the coupled-
“m0n0p0|e potentia|” and “higher-mu|tip0|e potentiaL” re- channel calculations was almost identical to the band-
spectively. The former potential does not depend on thé&rossing diagram generated by the monopole potentials.
channel spir, the relative angular momentuln or the total Moreover, the effect of channel-coupling among the dif-
one J, while the latter potential depends dnL, andJ.  ferent channels is also important and it gives rise to an ad-
Therefore, the nucleus-nucleus interactions of the differenglitional energy gain of about 6—10 MeV. Due to this energy
subchannels are different from each other even though the%,hlft, the resonance wave functions have an additional radial
consist of a common intrinsic-state channel for giverit ~ hode compared with those of the original single-channel
should be noticed that the properties of the DF potential§€sonances existing in the same energy region as shown in
shown in this paper are quite general, because they are dEig. 16. We called the new bands generated by the channel
termined by the multipolarity of densities. In the presentcoupling the “eigenbands.” There is observed a consider-
framework, the monopole and higher-multipole potentialsable mixing among the subchannels and the population of the
are completely determined once we have a set of nucleoflominant subchannel component in the eigenbands is about
densities. 20-50%. Since the channel coupling is rather strong, the
We applied the above discussion to f€+1%C system. reaction mechanism leading to the resonance formation is
It was found that the higher-multipole potentials are espevery different from the “weak-coupling picture” suggested
cially large for the channels in which botfC nuclei are by BCM [13-15. The possibility of the strong-coupling
excited to the @ states. The @+ 3a molecular bands gen- States in the’C+“C molecular resonances was also sug-
erated by the monopole potentials are largely modified due tgested by the “strong coupling model” based on the
the large contribution of the higher-multipole ones. The seMmodified-perturbed-stationary state approximafié8,49.
quence of the barrier-top resonances generated by the mono- In order to examine the reliability of the strong channel-
pole potentials forms the band crossing between the molec@oupling effect due to DF potential more clearly, we should
lar band of the 0; ®0; ] channel and those of the aligned calculate the spin alignment of tHéC+*“C inelastic scatter-
[02+®22+]|]L and [2; ®2}7, . subchannels. However, the ing [50,.5]]. The BCM hlas n?t supceed(_ad in reprqducmg the
contribution from the higher-multipole potentials drastically SPIn alignment in- the “C+C inelastic scattering 52].
changes the location of the individual molecular bands calJ Nerefore, itis very interesting to discuss the spin alignment
culated by the monopole potentials and, hence, the charalSing the coupled-channel calculation based on the present
teristics of the band crossing is largely modified as shown if?F-model potential. The analysis of the spin alignment is
Fig. 10. The large correction due to the multipole densities'®W N PIOJress. The channel coupling effects on the 3
originates from the fact that thex3states in'?C have a large 3@ and “C+3a bands are lexpected to be much stronger
prolatelike ~ deformation. (The average quadrupole- than those we saw in theC+12C chan?els because of the
deformation parameter for thex3tates is known to be about Strong deformation of the & states of 2C The channel-
B,=+1.6[31].) coupling effect andi the reaction mechanism for the formatlon
In the 12C+%2C channels, the effect of the higher- of the resonances in tHéC+ 3a and 3x+ 3a channels will

multipole potentials is a little moderate compared with that?€ discussed in a forthcoming paper.
in the 3o+ 3« channels. The effect induces a non-negligible
modification about 2—5 MeV energy gain of the molecular
bands in the excited;2 channels generated by the monopole  The authors would like to thank Y. Abe and K. Kéfiar
potential alone, as shown in Figs. 4 and 5. It should be novaluable discussions and critical comments. The authors also
ticed that these properties about the potentials and the mavould like to thank M. Kamimura for providing us with the
lecular bands are very different from those discussed in th&ransition densities of thé“C nucleus including the unpub-
BCM studies[13-15. In the present DF potential, the start- lished ones.
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