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Properties of microscopic nucleus-nucleus interaction for molecular resonance
formation in 12C¿12C and 3a¿3a systems
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Properties of microscopic interaction potentials between two12C nuclei are discussed in connection with the
formation of 12C112C and 3a13a molecular resonances. The nucleus-nucleus interactions are calculated by
the double-folding procedure based on a realistic nucleon-nucleon interaction~DDM3Y! and microscopic12C
transition densities calculated from 3a-RGM wave functions. The interaction potential can be written as the
sum of the monopole part obtained from the monopole density and the multiple parts generated from the
quadrupole component of the density. We discuss the role of the monopole and multipole parts of the potential
separately. It is shown that the multipole part is very strong in the channels with 3a13a structure and the
energy positions of the 3a13a molecular bands generated by the monopole potential are largely modified.
The effect is moderate but non-negligible on the molecular bands with the12C112C dinuclearlike structure and
largely modifies the band crossing diagram between the elastic and aligned-inelastic molecular bands. The
channel coupling effect among the12C112C channels, namely, the elastic channel and the single- and mutual-
21

1 excitation channels is also investigated. Due to the strong coupling between the ground and 21
1 states of

12C, the resonance wave functions obtained by the coupled-channel calculation have an additional radial node
compared with those of the single-channel resonances. All the results are discussed in connection with the band
crossing model which was believed to be successful in describing the12C112C molecular resonances.

DOI: 10.1103/PhysRevC.63.064303 PACS number~s!: 21.60.Gx, 24.10.Eq, 24.30.Gd, 25.70.Ef
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I. INTRODUCTION

Since the first discovery of three sharp resonances in
12C112C collision near the Coulomb-barrier energies in t
1960s @1#, a number of pronounced resonance phenom
have been observed in various reaction channels of m
light heavy-ion systems, particularly of the12C112C,
16O112C, and 16O116O ones. Those resonances were o
served not only around the Coulomb-barrier energies
also at energies well above the Coulomb barrier@2#.

Among the heavy-ion systems, the12C112C system was
the most extensively studied and many pronounced re
nance structures were observed in the elastic and inel
scattering leading to the 21

1 and 31
2-excited states of12C

@3–6# and nucleon or alpha-particle transfer reactions w
above the Coulomb barrier@7–12#. Various models are pro
posed in order to explain the resonance phenomena obse
in the 12C112C inelastic scattering well above the Coulom
barrier @13–22#.

Many of the theoretical approaches were based on
coupled-channel approach or an approximate form of it s
as distorted-wave theories and they looked successful
certain level in reproducing the gross structure of the re
nancelike behavior of excitation functions@13–22#. The so-
called ‘‘band crossing model’’~BCM! @13–15# is the sim-
plest and superior to all other models in the sense that
model is able to predict the energy range and spins at w
the resonances are to be observed. This model also exp
the mechanism of the resonance formation in terms of
crossing between a dinuclear rotational~molecular! band of
the elastic channel and those of inelastic channels. In BC
0556-2813/2001/63~6!/064303~16!/$20.00 63 0643
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the crossing between the elastic and inelastic molec
bands is realized by an effective increase of the momen
inertia of the inelastic ‘‘aligned band’’ due to the ‘‘spin
alignment’’ mechanism, namely, the lowering of the orbi
angular momentum in the inelastic channel in which the
trinsic spins of the colliding nuclei has the stretched coupl
with the orbital angular momentum. It also succeeded in
producing and interpreting the experimental data of hea
ion resonances not only in the12C112C system but also in
the 16O112C @16,17# and16O116O ones@18#. The resonance
states observed in these heavy-ion systems are thus i
preted as the so-called ‘‘molecular resonances’’ in which t
colliding nuclei keep touching their surfaces and rotate
each other by almost keeping their identities.

However, not only in BCM but also in other theoretic
models, all the interactions between colliding nuclei we
phenomenological ones such as the empirical optical po
tials. As is well known, the empirical optical potentials fo
low-energy heavy-ion scattering have a substantial amb
ity in their depth and shape and, hence, it was inevitable
all these model calculations suffered from the ambiguity d
to the use of the empirical interactions. Most of the empiri
potentials used in the previous calculations are the so-ca
‘‘shallow potential,’’ a typical value of the central depth be
ing, say 20 MeV, which is supplemented by a repulsive c
in the inner region for taking account of the Pauli exclusi
Principle between the interacting nuclei. However, sub
quent theoretical studies revealed that realistic heavy-ion
tential was the so-called ‘‘deep potential’’ and had no rep
sive core at short distance even when the Pauli principle
correctly taken into account@23,24#. The validity of the
©2001 The American Physical Society03-1
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‘‘deep potential’’ has now been established through the
cent observation and analyzes of the nuclear-rainbow p
nomena@25#. Thus, it is very important to reinvestigate th
previous analyses of the heavy-ion resonance phenomen
using more realistic, ‘‘deep’’ interactions.

In addition to the above dinucleus resonances, ano
important discovery was reported on a new type of heavy-
resonance which decays into multicluster exit chann
Namely, a broad resonancelike structure was observed in
12C112C inelastic scattering leading to the12C~02

1!112C~02
1!

channel@26,27# at energies aroundEc.m.532.5 MeV. Since
the 02

1 excited state atEx57.65 MeV in the12C nucleus is
known to be a well-developed 3a cluster state@28–31#,
which itself is a sharp resonance state just above the12C
→3a breakup threshold at 7.27 MeV, the resonance
served in the12C~02

1!112C~02
1! channel should not be

simple dinucleus type molecular resonance state but it co
be a state having a multicluster molecular configuration, s
as the 3a13a one. Moreover, in the recent experiment
Chappelet al. @32# and by Marechalet al. @33#, resonance
peaks have been observed also in other exit channels, su
12C~02

1!112C~31
2!, 12C~31

2!112C~31
2!, and 8Beg.s.1

16Og.s.,
around the sameEc.m.532.5 MeV region with a good corre
lation to the above-mentioned resonance in
12C~02

1!112C~02
1! channel. On the other hand, it is we

known that the pronounced resonance structure also exi
the 12Cg.s.1

12C~02
1! channel around Ec.m.529.5 MeV

@34,35#.
In order to understand the various resonance states

very different nuclear structure such as12C112C, 12C13a,
and 3a13a one systematically, the coupled-channel calc
lation based on the realistic nucleus-nucleus interac
should be performed. Recently, a coupled-channel st
called the microscopic coupled channel~MCC! has been
made on the12C112C resonance reactions@36–38#. In the
MCC calculation, the12C-12C interactions are calculated i
the double-folding~DF! model @39#. In this model, the rea
part of the interaction is calculated by folding the effecti
nucleon-nucleon~NN! interaction with the transition-densit
distributions of the two colliding12C nuclei, which leads to a
typical ‘‘deep potential’’ interaction. The result of MCC ca
culation was quite successful in reproducing the resona
behavior of the cross sections not only in the channels w
12C112C configuration but also in those with12C13a and
3a13a one, of which magnitude is ranging from 100 mb
10 mb @36–38#. This implies that the double-folding interac
tions used in the MCC calculation is reliable.

In the present paper, we discuss the properties of the
croscopic nucleus-nucleus potentials same as those in
MCC calculation and investigate its effects on the resona
formation. These microscopic~DF model! interactions with
the realisticNN interaction give reliable deep potentials a
are free from any artificial parameters. The folded-diago
density of excited states with a nonzero spin has the m
pole parts which relate to the intrinsic deformation of
nucleus in addition to spherical~monopole! one. The micro-
scopic DF potentials can be divided into two parts accord
to the classification of the folded densities. The first par
06430
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calculated by folding the monopole part of the diagonal d
sities, while the other one is done by folding the higher m
tipole part of the densities. Since the12C nucleus is strongly
deformed@28–31#, in the 12C112C system, the molecula
rotational bands generated by the former part are larg
modified by the latter part. The molecular bands with t
modification due to the multipole part are very different fro
those suggested in BCM@13–15#, while those without the
modification is similar to the bands in BCM. Furthermor
the channel coupling effect is strong due to the strong de
mation of the12C nucleus and hence, the reaction dynam
is also different from that discussed in BCM based on
weak coupling picture.

In Secs. II and III, we describe the framework of MC
and show the properties of the nucleus-nucleus potentia
detail, respectively. The calculated molecular rotatio
bands having the12C112C and 3a13a structure are shown
in Sec. IV and V, respectively. In both sections, the effect
the potential originating from the deformation of12C is dis-
cussed in details. In Sec. VI, we discuss the roles of
channel coupling effect in the channels with the12C112C
structure. The last section will be devoted to summary a
discussion.

II. FRAMEWORK OF THE MICROSCOPIC COUPLED
CHANNELS

A. Coupled-channel equations with microscopic interactions

In a practical calculation, the coupled-channels equati
describing the collision of two nuclei for the total angul
momentum of the systemJ

F2
\2

2m

d2

dR2 1
\2L~L11!

2mR2 1VaL,aL
~J! ~R!2EaGxaL

~J!~R!

52 (
~b,L8!Þ~a,L !

VaL,bL8
~J!

~R!xbL8
~J!

~R!, ~1!

are solved numerically. Here,a denotes a ‘‘channel’’ desig-
nated by the intrinsic spins of two nucleiI 1 and I 2 , the
channel spinI (I11I25I ) and the sum of the excitation en
ergies of two nucleiea . Thus,Ea[E2ea is the center-of-
mass~c.m.! energy of the nucleus-nucleus relative motion
the channela. For a givenJ, a channel specified bya con-
tains several ‘‘subchannels’’ specified bya andL satisfying
uJ2I u<L<J1I , whereL is the orbital angular momentum
associated to the relative coordinateR. In this paper, we call
a state specified bya andL a ‘‘subchannel’’ and one speci
fied by a ~or a combination ofI 1 and I 2! a ‘‘channel.’’ The
distinction between channel and subchannel is very imp
tant in this paper. In Eq.~1!, xaL

(J)(R) represents the radia
wave function of the relative motion in the subchannelaL.

All the diagonal @(aL)5(bL8)# and coupling @(aL)
Þ(bL8)# potentials VaL,bL8

(J) (R) are calculated by the
double-folding~DF! model @39# and defined as
3-2
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VaL,bL8
~J!

~R!5VI 1I 2IL ,I
18I

28I 8L8
~J!

~R!

5^F I 1I 2IL
~JM! ~j1 ,j2 ,R̂!u

3 (
i PC1
j PC2

vNN~xi j !uF I
18I

28I 8L8
~JM!

~j1 ,j2R̂!&j1 ,j2 ,R̂ .

~2!

Here FaL
(JM)(j1 ,j2 ,R̂) is the channel wave function. In a

identical boson system, the explicit form of the channel wa
function FaL

(JM)(j1 ,j2 ,R̂) is written as

F I 1I 2IL
~JM! ~j1 ,j2 ,R̂!

5A 1

2~11d I 1I 2
d i 1i 2

!
S12@@c I 1

~ i 1!

3~j1! ^ c I 2

~ i 2!
~j2!# I ^ i LYL~R̂!#JM

5A 1

2~11d I 1I 2
d i 1i 2

!

3$@@c I 1

~ i 1!
~j1! ^ c I 2

~ i 2!
~j2!# I ^ i LYL~R̂!#JM

1@@c I 1

~ i 1!
~j2! ^ c I 2

~ i 2!
~j1!# I ^ ~21!Li LYL~R̂!#JM%

~3!

which is symmetrized with respect to the exchange of
identical nuclei. Herej1 andj2 represent the internal coor
dinates of the individual nuclei, whileR and R̂ denote the
radial and angular parts of the relative coordinate betw
the center of mass~c.m.! of the colliding nuclei.S12 denotes
the symmetrization operator which exchange the two ide
cal nuclei, namely, the exchange of whole nucleons betw
two nuclei. This kind of exchange term only appears in
system composed of two identical nuclei. This correspo
to one of the various nucleon-exchange terms appearing
fully antisymmetrized resonating-group-method~RGM!
wave function describing the identical boson system. In
~3!, c I 1

( i 1)(j1) denotes the internal wave function of a nucle

in the i 1th state with an intrinsic spinI 1 : e.g., a state with
i 152 andI 1501 implies the 02

1 state.
In Eq. ~2!, vNN(xi j ) represents an effective nucleo

nucleon interaction which acts between thei th nucleon in a
nucleus C1 and thej th one in the other nucleus C2. A more
explicit expressions of Eq.~2! will be given in the next sub-
section. We use the DDM3Y~density-dependent Michiga
three-range Yukawa interaction! @40,41# as the nucleon-
nucleon~NN! interaction. The interaction has the followin
factorized form:

vNN~E,r;s!5g~E,s! f ~E,r!. ~4!

Here, f (E,r) is a density dependent factor with a form of

f ~E,r!5C~E!@11a~E!e2b~E!r#, ~5!
06430
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while g(E,s) is the spin- and isospin-scalar (S5T50) com-
ponent of the original M3Y interaction@42#. HereE denotes
an incident energy per nucleon in a laboratory system. T
coefficientsC(E), a(E), andb(E) in the density-dependen
factor f (E,r) were determined at each energy by fitting
volume integral of thevNN(E,r:s) to the real part of the
optical potential felt by a nucleon in the nuclear matter@43#.
The inclusion of the density dependence is very importa
especially for describing a large difference of interactio
between two nuclei in various states having different nucl
structure. For example, the interaction between the two
clei both in the spatially compact ground state and that
tween nuclei both in the spatially extended excited state
very different and the use of the density-dependent effec
NN interaction is essential in order to correctly take acco
of such differences due to the structure change.

The coupling potential for the Coulomb excitation is al
given by the folding model by just replacing theNN nuclear
interactionvNN with the NN Coulomb one in Eq.~2!. How-
ever, the inclusion of the Coulomb coupling is not essen
in the lighter heavy-ion systems.

B. Microscopic nucleus-nucleus interaction

By substituting Eq.~3! into Eq.~2!, the expression for the
coupling potential in Eq.~2! reduces to the following form:

VI 1I 2IL ,I
18I

28I 8L8
~J!

~R!

5A 1

~11d I 1 ,I 2
!~11d I

18 ,I
28
!

3(
l

Î L̂ L̂8~21!1/2~L2L81l!W~ ILI 8L8;Jl!

3^L0L80ul0&$ṼI 1I 2I ,I
18I

28I 8
~l!

~R!

1~21! I 8ṼI 1I 2I ,I
28I

18I 8
~l!

~R!%. ~6!

Here, W(ILI 8L8;Jl) represents the ordinary Racah coef
cient andÎ ,L̂,..., areabbreviations ofA2I 11,A2L11,... .
@We have dropped the superscriptsi 1 andi 2 appearing in Eq.
~3! for simplicity. Hereafter, we do the same for simplicity o
notations.# In Eq. ~6!, ṼI 1I 2I ,I

18I
28I 8

(l)
(R) denotes the form facto

having the following form:

ṼI 1I 2I ,I
18I

28I 8
~l!

~R!

5 Î 1Î 2 (
l1l2

Î Î 8l̂1l̂2S I 1 I 2 I

I 18 I 28 I 8

l1 l2 l
D ~21!l1~2p!3/2

3^l10l20ul0&C~E!E
0

`

dkk2v̄~k! j l~kR!

3$r̄
I 1 ,I

18

~l1!
~k!r̄

I 2 ,I
28

~l2!
~k!1a~E!r̃

I 1I
18

~l1!
~k!r̃

I 2 ,I
28

~l2!
~k!%.

~7!
3-3
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Herea(E) andC(E) are the same as those in Eq.~5!. In the
case of the Coulomb interaction, one should replacevNN by
theNN Coulomb potential and letC(E)51 anda(E)50 in
Eq. ~7!. On the right-hand side of Eq.~7!, j l(kR) represents
a spherical Bessel function of the rankl. The v̄(k) and
r̄ I ,I 8

(l) (k)@ r̃ I ,I 8
(l) (k)# represent a Fourier transform of thevNN

and the transition density~modified transition density! which
are defined below.

The diagonal or transition density of colliding nucleus a
position r with respect to the c.m. of the nucleus are e
panded into multipole components as follows:

r IK ,I 8K8~r !5^c IK~j!u(
k51

A

d~r2r k!uc I 8K8~j!&

5(
l,m

^I 8K8lmuIK &r I ,I 8
~l!

~r !@ iYl,m~ r̂ !#* . ~8!

Here,c IK(j) represents the internal wave function of colli
ing nucleus obtained by the microscopic calculation such
resonating group method~RGM!. Therefore, the nucleus
nucleus interactions expressed by Eqs.~6! and~7! are deter-
mined in a parameter free way, provided that the mic
scopic internal wave functions of colliding nuclei are give

The Fourier transforms of the nucleon-nucleon interact
and the radial part of the transition densities,v̄(k), r I ,I 8

(l) (k),

and r̃ I ,I 8
(l) (k), are defined as

v̄~k!5A2

p E
0

`

drr 2 j 0~kr !vNN~r !, ~9!

r̄ I ,I 8
~l!

~k!5A2

p E
0

`

drr 2 j l~kr !r I ,I 8
~l!

~r !, ~10!

r̃ I ,I 8
~l!

~k!5A2

pE0

`

drr 2 j l~kr !r̂ I ,I 8
~l!

~r !. ~11!

Here,r̂
I ,I 8

(l1)
(r ) represents a ‘‘modified’’ density associated

the density-dependent term of the DDM3Y interaction a
defined by

r̂ I ,I 8
~l!

~r !5r I ,I 8
~l!

~r !e2b~E!r~r !. ~12!

Here,r(r ) in the exponent is taken to ber(r )5r I ,I
(0)(r ) when

I 85I andr(r )5 1
2 $r I ,I

(0)(r )1r I 8,I 8
(0) (r )% whenI 8ÞI . ThevNN

in Eq. ~9! is equal to either the M3Y interactiong(E,s) when
we calculate the nuclear interactions or to the Coulomb
tential when we calculate the Coulomb interactions.

III. PROPERTIES OF MICROSCOPIC
NUCLEUS-NUCLEUS POTENTIALS

In this section, we show the properties of the nucle
densities of12C calculated microscopically and discuss t
features of the double-folding potentials calculated from
densities. The potential for the inelastic channel with a n
zero intrinsic spin has a slightly complicated structure.
06430
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The nuclear states of12C up to about 15 MeV excitation
energy can be divided into two group of states according
their nuclear structure@28–31#. The first group of states ar
the so-called ‘‘shell-model-like states’’ having a spatia
compact structure and the second ones are the ‘‘3a-cluster
states’’ having a well-developed 3a structure. The 01

1

ground state, the 21
1(4.44 MeV) first excited state, and th

31
2(9.64 MeV) state belong to the first group, while th

02
1(7.65 MeV), 22

1(10.3 MeV), and 03
1(14.04 MeV) states

belong to the second group@28,29#. The 22
1 and 03

1 states
have not been identified experimentally due to the la
widths. However, most cluster-model theories predict the
istence of these states in this energy region above the2

1

state.

A. Microscopic transition densities of 12C

According to Eq.~8!, the multipole expansion for the di
agonal density (I 5I 8) can be divided into the monopol
(l50) part and thelÞ0 multipole one as follows:

r IK ,IK 8~r !5^C IK~j!u(
k51

12

d~r2r k!uc IK 8~j!&

5(
l,m

^IK 8lmuIK &r I ,I
~l!~r ![ ~ iYl,m~ r̂ !#*

5
1

A4p
r I ,I

~0!~r !dK,K81 (
l,mÞ0

^IK 8lmuIK &r I ,I
~l!~r !

3@ iYl,m* ~ r̂ !#* . ~13!

Here, the first term in the RHS of Eq.~13! is the spherical
~monopole! part of the density distribution, while the res
terms are the nonspherical~multipole! parts, which exist in
the state with a nonzero intrinsic spin.

As for the internal wave function of12C, c IK(j), we
adopt the internal wave function calculated by Kamimura
the 3a-RGM method @31#. Transition densities obtaine
from the 3a-RGM wave functions were shown to well repro
duce the observed level structure, the electric transition pr
abilities @B(El)#, and the charge form factors of the ele
tron scattering@31#.

Figures 1~a! and 1~b! show the density profiles of the
shell-model-like states~01

1 and 21
1! and the 3a-cluster ones

(02
1 and 22

1), respectively. Since a spinless state has onl
l50 spherical density, there exists only al50 density in
the ground 01

1 and 02
1 states, which are shown by the sol

curves in the upper panel of each figure. The density of
state having a nonzero intrinsic spin such as the 21

1 and 22
1

states has the nonspherical (lÞ0) component of the density
in addition to the spherical one. In the lower pannel of ea
figure, thel50 and l52 components of the density ar
shown by the solid and dashed curves, respectively.

As can be understood from Eq.~13!, there should also
exist thel54 component in the density of the 21 states.
However, we neglect this component in the present pa
because the magnitude of the higher-multipolarity com
3-4
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nents is found to be negligibly small. It is clearly seen in t
figure that the radial shape of the densities of the 3a states
(02

1 and 22
1) is more spatially extended than that of th

shell-model-like states. The long-range nature of the la
has important effects on the calculated potentials.

B. Properties of microscopic potentials

The potentials calculated by the double-folding proced
can be divided into two parts according to the existence
the nonspherical density components in Eq.~13!. We have

FIG. 1. ~a! The diagonal density of the ground and 21
1 state in

the12C nucleus. The ordinate denotes the modulus of the densit
the upper and lower panels of the figure, the density distribution
the ground and 21

1 states are shown, respectively. For the 21
1 state,

the solid and dotted curves represent the monopole (l50) and
quadrupole (l52) components, respectively.~b! The same as~a!
but for the 02

1 and 22
1 states in the12C nucleus.
06430
r

e
f

given the expression for the double-folding potential in E
~6! and~7! by the Fourier-transformation form. In the expre
sion, one takes the summation over the three kinds of mu
pole variablesl1 , l2 , andl. l1 andl2 represent the mul-
tipole valuables for the density of individual nuclei 1 and
each of which corresponds to the multipolarityl appearing
in Eq. ~13!, while the l in Eqs. ~6! and ~7! represents the
total multipolarity satisfying a vector-coupling conditio
ul12l2u<l<l11l2 . The expression for the potential ca
be divided into two parts as follows:

VI 1I 2IL ,I 1I 2I ,L
~J! ~R!5V I 1I 2 ,I 1I 2

~0! ~R!1N12(
l

8
K~ IL ,IL ;Jl!

3$V̂I 1I 2I ,I
18I

28I 8
~l!

~R!

1~21! I 8ṼI 1I 2I ,I
28I

18I 8
~l!

~R!%. ~14!

Here, N12 represents the normalization constant in Eq.~6!
with respect to the symmetrization between identical nuc
and theK(IL ,IL ;Jl) does the factor including the Raca
and Clebsh-Gordan coefficients and so on appearing in
summation of Eq.~6!. The prime appearing in the summatio
implies that thel15l25l50 term are excluded from the
summation. The first termV I 1I 2 ,I 1I 2

(0) (R) corresponds to the

l15l25l50 term in Eqs.~6! and ~7! and its explicit ex-
pression reads

V I 1I 2 ,I 1I 2

~0! ~R!5C~E!~2p!3/2E
0

`

dkk2v̄~k! j 0~kR!

3$r̄ I 1 ,I 1

~0! ~k!r̄ I 2 ,I 2

~0! ~k!

1a~E!r̃ I 1 ,I 1

~0! ~k!r̃ I 2 ,I 2

~0! ~k!%, ~15!

wherer̄ I ,I
(0)(k) andr̃ I ,I

(0)(k) represent the Fourier-transform o
the monopole densities defined in Eqs.~10! and in ~11!, re-
spectively. This term is calculated only from thel i50 ~i
51 and 2! part of the density and nothing but the usu
double-folding potential between spinless particles@44#.

Since only the monopole part (l i50) exists in the
nucleon density of the spinless state, such as the ground
of even-even nuclei, only the first term in Eq.~14! contrib-
utes to the potential for the 01101 channels. For the inelas
tic channels containing the nonzero spin states, such as
01121 and 21121 ones, the second term in Eq.~14! also
contributes to the potentials, because of thel i52 part of the
density in the 21 state.

Moreover, there is a distinctly different feature betwe
the first and the second term in Eq.~14!. The first term de-
pends only on the combination of intrinsic states of intera
ing nuclei, (I 1I 2) and independent of either the channel sp
I, the orbital angular momentumL or the total angular mo-
mentumJ. However, the second term depends also onI, L,
and J. This implies that the nucleus-nucleus interactions
different subchannels are different from each other e
though they consist of a common intrinsic-state channea
for a givenJ.

In
f
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The above properties of the potentials are quite gen
and do not depend on the system. In the present paper
take the12C112C system as an example and discuss the
fect of the nonspherical-density part in Eq.~14! and the prop-
erties of the molecular bands generated by the potent
Since the intrinsic deformation of the12C nucleus is very
strong@28–31#, this system is a typical example in which th
effect of the nonspherical-density part is prominent.

In this paper, we consider two kinds of channel grou
The first group is the elastic channel (01

1101
1) and the in-

elastic 01
1121

1 and 21
1121

1 channels. The second group
the 02

1102
1 , 02

1122
1 , and 22

1122
1 channels. The forme

three channels have12C112C structure, while the latter thre
channels have a well-developed 3a13a structure. These
channels are known to play important roles in the12C112C
inelastic scattering leading to the mutual-02

1 excitation chan-
nel @45#. We refer to the first three channels and the sec
three ones as the ‘‘shell group’’~SG! and the ‘‘cluster
group’’ ~CG!, respectively.

There exists only the first term of Eq.~14! in the spinless
channels such as the 01

1101
1 and 02

1102
1 ones, while both

terms of Eq.~14! exist in the channels with nonzero intrins
spins such as 01

1121
1, 22

1122
1. Figures 2~a! and 2~b! show

the potentials for the @21
1

^ 21
1# I 54,L5J24 and @22

1

^ 22
1# I 54,L5J24 subchannels, respectively. The solid cur

represents the potential calculated from Eq.~14!, while the
dotted and dashed ones-represent the individual contribu
from Eq.~14!. The former and latter curves represent the fi
and second terms of Eq.~14!, respectively. All the curves
include the Coulomb potentials calculated by the doub
folding procedure. The sign of the second term of Eq.~14!
shown by the dashed curves in Figs. 2~a! and 2~b! are oppo-
site to each other. This originates from the difference of s
in the quadrupole (l52) density between the 21

1 and 22
1

states. The quadrupole density for the 21
1 state@Fig. 1~a!# is

positive, while that for the 22
1 @Fig. 1~b!# is negative.

As can be seen from both figures, the contribution fro
the second term in Eq.~14! has a surface-peaked shape. T
second term for the@21

1
^ 21

1# I 54 channel is repulsive at th
surface region which amounts to about 8 MeV aroundR
53.8 fm, while that for the@22

1
^ 22

1# I 54 channel is strongly
attractive which reaches its maximum value of about
MeV around R54 fm. Since the centrifugal potential i
strongly damped at the outer-side region, the contribut
from the second term gives rise to a considerable chang
the barrier-top resonance energy generated by the pote
calculated with Eq.~15!.

In both subchannels, the contribution of the second te
of Eq. ~14! gives rise to a visible change in the potential.
particular, the second term of Eq.~14! in the @22

1

^ 22
1# I 54,L5J24 subchannel is much stronger than that in t

@21
1

^ 21
1# I 54,L5J24 one. This is due to the strong deform

tion of the 22
1 state with a well-developed 3a structure as

shown in Fig. 1~b!. Therefore, the change of the resonan
energy due to the inclusion of the second term becomes m
important in the 22

1122
1 channel having 3a13a structure.
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For later convention, let us call the sum of the nuclear a
Coulomb potentials consisting of the first term in Eq.~14!
alone the ‘‘monopole potential,’’ while we call the potenti
defined by the second term in Eq.~14! the ‘‘higher-multipole
potential.’’ In the following sections, we discuss the natu
of the molecular bands composed of the barrier-top re
nances generated by the monopole potentials and the ef
of the second term in Eq.~14! on the molecular bands.

IV. 12C¿12C MOLECULAR BANDS

In this section, we show the potentials in the shell gro
~SG! and discuss the behavior of the molecular bands ge
ated by the potentials. In Fig. 3, we show the monop
potentials (nuclear1Coulomb) in the 01

1101
1 , 01

1121
1 ,

and 21
1121

1 channels. These potentials are very closed
each other. This is because of the similarity of the monop

FIG. 2. ~a! The potentials of the@21
1

^ 21
1# I 54,L5J24 subchannel

for J518. The solid curve represents the full potentials calcula
from Eq. ~14!, while the dashed and dotted ones represent the i
vidual contributions of Eq.~14!. All the curves include the Cou-
lomb potentials calculated by the double-folding procedure. S
text for details. ~b! The same as ~a! but for the @22

1

^ 22
1# I 54,L5J24 subchannel.
3-6
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density distribution of the ground state and that of the1
1

one as shown in Fig. 1. The effective potential which is
sum of the monopole potential and the centrifugal poten
generates the molecular bands, i.e., the sequence of the
tential resonances around the barrier top in each partial w

In the @21
1

^ 21
1# I 54 channel, there are five subchanne

orbital angular momenta of which equal toL5J64, L5J
62, andL5J according to the angular-momentum coupli
between the channel spin (I 54) andL. The L5J63 and
L5J61 subchannels are forbidden by the pari
conservation law.

The molecular bands in the elastic (01
1101

1) and @21
1

^ 21
1# I 54 channels are shown in Fig. 4~a!. All the bands are

calculated from the monopole potential. The abscissa
ordinate in the figure denote theJ(J11) value and the tota
energy of the 12C112C system with respect to th
24Mg→12C112C threshold energy, respectively. The ba
with double circles and solid circles corresponds to the m
lecular bands in theL5J24 andL5J22 subchannels, re
spectively, while the solid triangles and solid diamonds c
respond to the bands in theL5J14 and L5J12
subchannels, respectively. The former two subchannels
called the ‘‘aligned subchannel,’’ while the latter two a
called the ‘‘antialigned subchannel.’’ All the molecula
bands shown here are members ofN518 rotational band,
whereN is the total oscillator-quantum number of the ha
monic oscillator defined byN52n1L. Here, n represents
the number of nodes of the radial wave function.

The energy position of the molecular band in the@21
1

^

121
1# I 54,L5J channels, shown by the open squares, is hig

than that of the elastic-channel band by the intrinsic exc
tion energy 8.88 MeV and both bands are almost paralle
each other. This is because the monopole potentials of t
channels are very closed to each other, which is due to
similarity of the monopole density distribution of the groun
state and that of the 21

1 one~Figs. 1 and 3!. The only differ-

FIG. 3. The monopole part of the potentials for the elastic,1
1

121
1, and 21

1121
1 channels, which are shown by the solid, sho

dashed, and long-dashed curves, respectively. In all the curves
Coulomb part of the potential is included.
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ence of the effective potential among the five subchann
belonging to the@21

1
^ 21

1# I 54 channel is the difference o
the centrifugal potential, because the monopole part of
potentials is common to all the subchannels. Therefore,
resonance energies of the aligned band are the same as
of theL5J band shifted to the higher-J side by four units of
\ for the L5J24 band and by two units of\ for the L5J
22 band. The antialigned band is obtained by theL5J
bandshifted to the lower-J side by four units of\ for the L
5J14 band and by two units of\ for the L5J12 one.

The molecular bands withL<J in the 01
1121

1 and 21
1

121
1 channels are shown in Fig. 5~a!. The molecular band in

the @01
1

^ 21
1# I 52,L5J subchannel is also parallel to the 01

1

101
1 molecular band, the energy position of which is high

than that of the elastic band by the intrinsic excitation en
gies 4.44 MeV. As can be seen in Fig. 5~a!, the ‘‘band cross-
ing’’ between the aligned-inelastic molecular band and
elastic one occurs aroundJ514 and 16.

The band crossing between the elastic band and

the

FIG. 4. ~a! The molecular bands in the@21
1

^ 21
1# I 54,L subchan-

nel. The double circles, solid circles, open squares, solid diamo
and solid triangles represent the band in theL5J24, L5J22, L
5J, and L5J12, L5J14 subchannels, respectively.~b! The
same as~a! but for the molecular bands calculated from the fu
potentials. In both figures, the elastic molecular band is also sh
by the short-dashed line with open triangles.
3-7
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aligned-inelastic band in the present double folding poten
is similar to the result of the band-crossing-model~BCM!
calculation @13,14#. In the previous work based on BCM
however, ‘‘shallow potentials,’’ the central depth of which
about 20 MeV, were used as the nucleus-nucleus real po
tial which is very different from the double-folding-mode
potential used in the present work, the central depth of wh
is about 200 MeV. In the former case, the number of rad
nodes in a molecular band is common to allJ, which is zero.
In the latter case, however, each of the molecular bands
a constant value ofN52n1L and the radial-node numbern
of the molecular band depends onJ asn5(N2L)/2. In ad-
dition, the deep double-folding potential gives rise to oth
molecular bands having differentN values in each subchan
nel. The average energy interval between the molec
bands with differentN values is about 10 MeV, which cor
responds to the interval ofDN52. In BCM, however, there
is only one molecular band withn50 in each subchanne
because of the shallow depth of the nucleus-nucleus po
tial.

FIG. 5. ~a! The molecular bands in the elastic (@01
1

^ 01
1#),

@01
1

^ 21
1# I 52,L ~with L5J22, J! and @21

1
^ 21

1# I 54,L ~with L5J
24, J22, J! subchannels, which are shown by the double circ
open squares, open triangles, solid circles, solid squares, and
triangles, respectively. All the molecular bands are calculated f
the monopole potentials.~b! The same as~a! but for the molecular
bands calculated from the full potentials.
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Next, we investigate the effect of the higher-multipo
part of the folding potential originated from th
nonspherical-density part, namely, the second term of
RHS in Eq.~14!, on the molecular bands. Figure 6 shows t
‘‘full potentials,’’ which is the sum of the monopole an
higher-multipole potentials, around the surface region for
five subchannels belonging to the@21

1
^ 21

1# I 54 channel.
These potentials depend onJ, as shown by Eq.~14!, and we
show the potential forJ518 in Fig. 6. The monopole poten
tial for the channel is also shown by the solid curve in t
same figure for comparison, which is independent ofJ. The
addition of the higher-multipole potential to the monopo
one gives rise to a visible change to the depth, depending
the subchannels. The difference between the monopole
tential and the full one amounts to about 2–5 MeV arou
R54 fm in all the subchannels except for theL5J12 sub-
channel. The contribution of the higher-multipole potent
depends on the subchannel and it is attractive in theL5J
andL5J62 subchannels, while it is repulsive in theL5J
64 subchannels.

Figures 7~a! and 7~b! show the effective potentials com
posed of the nuclear, Coulomb, and centrifugal potentials
the @21

1
^ 21

1# I 54 channel. The nuclear and Coulomb part
~b! includes the contribution of the higher-multipole pote
tial, while that in~a! does not include the contribution. Th
contribution from the higher-multipole part gives rise
about 5 MeV change of the pocket depth inL<J the sub-
channels. In the@21

1
^ 21

1# I channel with the channel spinI
50 and 2, the contribution of the higher-multipole part
similar to that of the@21

1
^ 21

1# I 54 channel, although it is no
shown in the figures.

The molecular bands in Fig. 4~a! generated by the mono
pole potential are largely modified by the addition of t
higher-multipole part. In Fig. 4~b!, we show theN518 mo-

,
lid

m

FIG. 6. The full potentials for the@21
1

^ 21
1# I 54,L subchannel.

The dotted, dashed, dotted-dashed, thin-solid, and long-da
curves represent the full potentials for theL5J24, L5J22, L
5J, L5J12, andL5J14 subchannels, respectively. The sol
curve represents the monopole potential for the 21

1121
1 channel.

The thin-solid curve cannot be distinguished from the solid o
The Coulomb potential is included in all the curves.
3-8
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lecular bands generated by the full potentials in the@21
1

^ 21
1# I 54 channels. The higher-multipole part contributes

pulsively in the L5J24, L5J12, and L5J14 sub-
channels, while it does so attractively in theL5J22 and
L5J subchannels. Since the higher-multipole part depe
on J @as seen in Eq.~14!#, the energy shift of the molecula
band due to the inclusion of the multipole part also depe
on J. This change amounts to about 5 MeV, namely, the h
of the energy interval between neighboring molecular ba
with DN52. The large change of the energy position a
slopes of the molecular bands in the@21

1
^ 21

1# I 54,L subchan-
nels results in a drastic change of the band-crossing diag
as shown in Figs. 5~a! and 5~b!. As seen in Fig. 5~a!, only
the most-aligned bands@01

1
^ 21

1# I 52,L5J22 and @21
1

^ 21
1# I 54,L5J24 cross with the elastic (01

1101
1) band

aroundJ514 and 16, respectively, in the case of monop
potential alone, while in the case with the higher-multipo
part added the crossing region moves toJ518 as seen in Fig
5~b!, which is due to the repulsive effect of the highe
multipole part for theL5J2I subchannels. In addition, th
nonaligned bands such as@01

1
^ 21

1# I 52,L5J and @21
1

FIG. 7. The effective potentials, the sum of the nuclear C
lomb and centrifugal potentials~a! without and ~b! with the
nonspherical-density component of the nuclear potential, foJ
518 in the@21

1
^ 21

1# I 54,L subchannel. The solid, dotted, dashe
dotted-dashed, and thin-solid curves represent the effective po
tials for theL5J24, L5J22, L5J, L5J12, andL5J14 sub-
channels, respectively.
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^21
1#I54,L5J22 also cross with the elastic band at the sa

spin region. This is because the effect of the high
multipole potential acts as an attractive effect to these s
channels.

These molecular bands modified by the higher-multip
part shown in Figs. 4~b! and 5~b! serve as the starting poin
of the subsequent coupled-channel calculations, in which
coupling among different channels are taken into accoun
should be noted that the molecular bands generated by
monopole potential alone@shown in Figs. 4~a! and 5~a!# can-
not be the starting point of the coupled-channel calculati

It is worthwhile to discuss this point by comparing th
present results with the previous BCM calculations@13–15#
In the previous BCM calculation, the same kind of corre
tions corresponding to the higher-multipole part were a
included in the potentials by the collective rotational mod
However, the effect was small due to the use of a ‘‘shall
optical potentials’’ as the basic interactions. As a result,
difference was observed between the molecular bands
erated by the monopole potential and that generated by
full potential as the starting point of their coupled-chann
calculation. The main difference from the present pap
thus, exists in the interaction model adopted. Namely, in
present work, we adopt the double-folding-model intera
tions to construct the internucleus potentials and this inte
tion gives rise to a deep potential as well as a large com
nent due to the higher-multipole part. Hence, in the pres
double-folding-model case, the starting point of the coupl
channel calculation is already very different from the ban
crossing diagram based on the monopole potential show
Fig. 5~a!. In the next section, we perform the similar analys
for the cluster group~CG!. In CG, the contribution from the
higher-multipole part is very large and hence, the molecu
bands generated by the monopole potentials are much m
strongly modified by this part.

V. 3a¿3a MOLECULAR BANDS

In this section, we discuss the folding potentials in t
cluster group~CG! and discuss the behavior of the molecu
bands generated by the potentials. In Fig. 8, we show
monopole potentials (nuclear1Coulomb) in the 02

1102
1 ,

02
1122

1 , and 22
1122

1 channels. From the comparison o
Fig. 3 and Fig. 8, we can see that the interaction range of
potentials in all the CG channels is longer than that of
potentials in the SG channels. This is because the 02

1 and 22
1

states have a well-developed 3a cluster structure. In addi-
tion, one can see in Fig. 8 that there is a considerable dif
ence in the interaction ranges among the above three c
nels. This is due to the fact that the density distribution of
22

1 state has a longer range~i.e., the larger rms radius! than
that of the 02

1 state, as we have already seen in Fig. 1.
Figure 9~a! shows the molecular bands in the@22

1

^22
1#I,L subchannel with the channel spinI 54. All the mo-

lecular bands shown here are the members of theN520
rotational band. The 02

1102
1 molecular band is also show

in the same figure by open triangles with the dotted line. T
moment of inertia of the@22

1
^ 22

1# I 54,L5J molecular bands

-

n-
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is much larger than that of the@02
1

^ 02
1# ones, representing

the fact that the interaction range of the@22
1

^ 22
1# I 54 chan-

nel is much longer than that of the@02
1

^ 02
1# channel. The

energy positions of theLÞJ bands are obtained by just shif
ing those of theL5J band to the lower or higherJ sides
according to their L value, because the monopo
nuclear1Coulomb interaction is common among the fi
subchannels.

The molecular bands withL<J in the @02
1

^ 22
1# I 52,L and

@22
1

^ 22
1# I 54,L subchannels are plotted together in F

10~a!. The 02
1102

1 molecular band is also plotted by th
double circles for comparison. It is seen that the ‘‘ba
crossing’’ between the aligned molecular bands and the2

1

102
1 one occurs aroundJ514 and 18.

Next, we investigate the effect of inclusion of the highe
multipole part on the molecular bands. The change of
potential due to the higher-multipole part is more promin
in the @22

1
^ 22

1# I 54 channel because of the large deform
tion of 12C in the 22

1 state. Figure 11 shows the full poten
tials for J518 in the @22

1
^ 22

1# I 54 subchannel around th
surface region. The contribution of the higher-multipole p
depends on the subchannel and it is attractive in theL5J
64 subchannels, while it is repulsive in other subchann
The higher-multipole part has opposite sign from that in
@21

1
^ 21

1# I 54 channel. This is because the sign of the qu
rupole component of the 22

1 density is opposite from that o
the 21

1 density, which may reflect the difference of deform
tion type, namely, an oblate shape in the 21

1 state and a
prolatelike shape in the 22

1 one@28–31#. The deviation of the
full potential from the monopole one is particularly large
the L5J64 subchannels, which amounts to about 10 M
aroundR57 fm, which is much larger than the correspon
ing correction in the@21

1
^ 21

1# I 54 channels.
In Figs. 12~a! and 12~b!, we compare the effective poten

tials with and without the higher-multipole part, respective
in the @22

1
^ 22

1# I 54,L subchannel. The contribution from th

FIG. 8. The monopole part of the potentials in the 02
1102

1 ,
02

1122
1 , and 22

1122
1 channels, which are shown by the soli

short-dashed, and long-dashed curves, respectively. The Cou
part of the monopole potential is included in these potentials.
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higher-multipole part gives rise to a large change to
pocket depth and the barrier height in all the subchannels
particular, the barrier height and the pocket depth are dra
cally changed in theL5J64 subchannels. It is interestin
that the pocket depth of theL5J14 subchannel become
deeper than that of theL5J andL5J12 subchannels.

As we have confirmed, the correction due to the high
multipole potential is very large and, hence, the molecu
bands generated by the monopole potential must be
strongly modified. The@22

1
^ 22

1# I 54 molecular bands calcu
lated by the full potentials are shown in Fig. 9~b!. All the
molecular bands are members of theN520 band. The loca-
tion of the molecular bands calculated with the full potenti
drastically changes from that calculated with the monop
potentials.

From the comparison of Figs. 4~b! and 9~b!, the correc-
tion due to the higher-multipole part is much larger for t
@22

1
^ 22

1# I 54 channels than the@21
1

^ 21
1# I 54 ones. The ef-

fect contributes attractively to theL5J64 subchannels,

mb

FIG. 9. ~a! The molecular bands of the@22
1

^ 22
1# I 54,L subchan-

nel generated monopole potentials. The double circles, solid circ
open squares, solid diamonds, and solid triangles represent the
in the L5J24, L5J22, L5J and L5J12, L5J14 subchan-
nels, respectively.~b! The same as~a! but for the molecular bands
calculated from the full potentials. In both figures, the@02

1
^ 02

1#
molecular band is also shown by the short-dashed line marked
the open triangles.
3-10
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while repulsively to other subchannels. In particular, the
fect is the largest in theL5J64 subchannels, which induce
about 10 MeV energy gain. It also reaches about 5 MeV
other subchannels except for the low spins (J<6). Since the
higher-multipole part depends onJ, the energy shift of the
molecular band also depends onJ. In the low-spin (J<4)
region, the individual bands have a strange behavior.

As shown in the above figure, the contribution from t
higher-multipole part gives rise to a large energy shift in
@22

1
^ 22

1# I 54 channels. Therefore, the band-crossing d
gram between the 02

1102
1 molecular band and the aligne

bands in the@02
1

^ 22
1# I 52 and @22

1
^ 22

1# I 54 channels gen-
erated by the monopole potentials, shown in Fig. 10~a!, is
largely modified by the contribution of the higher-multipo
part. In Fig. 10~b!, the L<J molecular bands in the@02

1

^ 22
1# I 52,L and @22

1
^ 22

1# I 54,L subchannels are plotted. Th
02

1102
1 molecular band is also plotted in the same figure

the double circles which are connected by the dashed lin
In the calculation with the monopole potentials alo

shown in Fig. 10~a!, we see that only the three aligned ban

FIG. 10. ~a! The molecular bands in the@02
1

^ 02
1# ~double

circles!, @02
1

^ 22
1# I 52,L5J22,J ~open squares, open triangles!, and

@22
1

^ 22
1# I 54,L5J24,J22,J ~solid circles, solid squares, solid tr

angles! subchannels. All the molecular bands are calculated fr
the monopole potentials.~b! The same as~a! but for the molecular
bands calculated from the full potentials.
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@02
1

^ 22
1# I 52,L5J22 and @22

1
^ 22

1# I 54,L ~with L5J24 and
L5J22!, cross with the 02

1102
1 . In the case with the

higher-multipole contribution shown in Fig. 10~b!, the band-
crossing diagram of Fig. 10~a! is completely distorted by the
large correction of the higher-multipole part. This implie
that the starting point of the coupled-channel calculation
the diagram of Fig. 10~b!, which is completely different from
the band-crossing diagram of Fig. 10~a!.

VI. CHANNEL COUPLING EFFECT ON THE 12C¿12C
MOLECULAR BANDS

In this section, we discuss the coupled-channel effects
the molecular bands of shell group shown in the preced
section. In order to see the nuclear structure of the resona
states more clearly, we do not include the imaginary pot
tials also in the CC calculation. The coupling potentials b
tween different subchannelsaLÞbL8 are calculated from
the nondiagonal transition densities. Both the strength of
higher-multipole part and that of the nondiagonal transit
densities depends on the deformation of the12C nucleus.

Figure 13 shows the energy dependence of the par
wave components of the total cross section divid
by pk22(2J11), namely, k2p21(2J11)21s tot

(J)52(1
2ReSel

(J)). The solid curves are the results of the CC calc
lation. The results of the single-channel calculation with
the coupling to the12C excitation switched off are also
shown by the dotted curves for comparison. In the sing
channel calculation, a potential resonance is genera
around the barrier-top energy of each partial wave. The
quence of the potential resonances forms a molecular b
with N52n1L518 and, hence, the band terminates aJ
518. A sign of the appearance ofN520 band is also seen a
several MeV above theN518 band but it is unclear, becaus

FIG. 11. The full potentials for the@22
1

^ 22
1# I 54,L subchannel.

The dotted, dashed, dotted-dashed, thin-solid, and long-da
curves represent the full potentials for theL5J24, L5J22, L
5J, L5J12, andL5J14 subchannels, respectively. The sol
curve represents the monopole potential for the 22

1122
1 channel.

The thin line cannot be distinguished from the solid one. The C
lomb part is also included in all the potentials.
3-11
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it lies well above the barrier-top energies and the resona
states have large widths. The channel coupling to the1

1

state of12C gives rise to a number of sharp resonances in
the partial waves investigated. In particular, the structure
comes more complicated in the lower partial wave than
the higher partial wave, because the entrance wave can
into well inside the barrier-top region, where the coupli
potentials are very strong.

In order to understand the detailed properties of the re
nance wave functions, we calculate the following two kin
of quantities: first, the probability of finding the system
subchannel component, which is represented by the squ
modulus of the subchannel wave functions integrated o
the whole radial range, and, second, the number of the ra
nodesn or the total oscillator-quantum numberN52n1L,
of the radial wave function in each subchannel compon
However, since the resonance state is a scattering stat
wave function cannot be normalized to unity and, hence,
absolute probability and the number of radial nodes can
be defined for the scattering-state wave functions. Theref
we employ a ‘‘bound-state-like approximation’’ for solvin

FIG. 12. The effective potentials composed of the nuclear C
lomb and centrifugal potentials~a! without and ~b! with the
nonspherical-density component of the nuclear potential, foJ
518 in the@22

1
^ 22

1# I 54,L subchannel. The solid, dotted, dashe
dotted-dashed, and thin-solid curves represent the effective po
tials for theL5J24, L5J22, L5J, L5J12, andL5J14 sub-
channels, respectively.
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the coupled-channel equations. In this approximation,
coupled-channel equations are solved by the variatio
method in the ‘‘bound-state-like’’ boundary condition usin
the L2-integrable basis functions. Namely, the radial wa
functions in the individual subchannelsxbL8

(J) are expanded in
terms ofL2-integrable basis functions and the expansion
efficients are obtained by solving the eigenvalue equatio
Using the approximated wave functions, we can evaluate
probability and the number of the radial nodes.

Figure 14 shows the probability of finding the system
various subchannels obtained by the bound-state approx
tion, which is normalized to unity in each eigenstate. In t
figure, we show the probability for some important subcha
nels of a spin-orbit aligned configuration in the case ofJ
516. The solid circles in the lowest column are the ene
eigenvalues~energy spectra! obtained by the bound-state ap
proximation. The partial cross section forJ516 obtained by
the corresponding calculation in the scattering-state bou
ary condition is also shown in the lowest column in Fig. 1
As shown by the arrows, all the energy positions calcula
by the bound-state approximation appear at high-energy
by about 1 MeV compared with those of the resonance st
obtained by the exact scattering-states calculation. Thi
because the system is confined in a finite region in
bound-state approximation.

It is clearly seen that each eigenstate~or corresponding
resonance state! has its own characteristic channel structu
namely, the probability distribution among the subchann
For example, the sharp resonance atEc.m.521.36 MeV,
whose corresponding bound state exists atEc.m.
522.2 MeV, has two dominant components, the elas
channel component and theL5J22 component of the@01

1

^ 21
1# I 52 single-excitation channel, while a broad resonan

-

n-

FIG. 13. Partial-wave components of the total cross section
vided bypk22(2J11) for J514 to 20 obtained within the mode
space consisting of the shell-group channels. The dotted curve
the results of the single channel calculation with no channel c
pling, while the solid ones are the results of the coupled-chan
calculation.
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at Ec.m.526.58 MeV has the large elastic-channel comp
nent, etc. The radial node numbern of the dominant sub-
channels in the individual resonance states can be evalu
by taking the overlap between the wave function in the
calculation and that in the single-channel calculation with
the channel coupling.

We have performed the same kind of analysis of the re
nance wave functions for other partial waves and classi
the resonance states according to the subchannel stru
and the radial node of the dominant subchannel compone
As a result, we have identified several rotational bands. F
ure 15 shows the rotational bands thus obtained for gra
partial waves (J514– 20). The resonance states connec
by the solid line have a common subchannel structu
namely, the dominant subchannel components are com
to all the states belonging to the same band. The t
oscillator-quantum numberN52n1L is also common to all
the states in a band. The four rotational bands are identi
which are labeled by A–D. The energy dependence of
total cross sections 2(12ReSel

(J)), are also drawn to show th
peak energy and the width of the individual resonances.

We call the rotational bands consisting of the eigensta
~the solutions of the CC equations! the ‘‘eigenbands.’’ In
Table I, we show the dominant subchannel components
N values for each eigenband of Fig. 15. The average po
lation of the dominant subchannel component in each eig
band is also listed in the right-most column of the sa
table. The population of the dominant components are
than 50%, which also suggests a rather strong channel
pling among SG.

These eigenbands are plotted again in Fig. 16~a! together
with the dominant subchannels, which are labeled by sy

FIG. 14. Channel component of wave functions for each re
nance inJ516. The solid circles show the energy value of t
eigenstates obtained by the bound-state approximation. The
vidual ordinate represents the probability of each subchannel c
ponent. The partial cross section forJ516 is also in the lowest
panel. See text for details.
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bols indicated, and theirN values. The single-channel band
with N516– 20 are also plotted in Fig. 16~b! for compari-
son. It is seen that the energy positions of the eigenba
with N518 ~bands B, C, D! are close to those of the single
channel bands withN516, while the energy positions of th
eigenbands withN520 ~band A! are close to those of the
single-channel bands withN518. This implies that, due to
the channel coupling effect, the original single-chann
bands are pulled down by about 6–10 MeV, which cor

-

di-
-

FIG. 15. The diagram of the rotational spectra, called ‘‘eige
bands,’’ in SG drawn inE2J plane. The ordinate and the abscis
represent the total energy of the12C112C system and theJ(J11)
values. The double circles show the resonance-energy posit
The resonance states connected by a solid line, corresponding t
eigenbands, have a common subchannel structure, i.e., a dom
component. The four eigenbands are identified, which are lab
by A;D. The energy dependence of the total cross sections,
2ReSel

(J)), are also drawn to show the peak energy and the width
the individual resonances. See text for details.

TABLE I. Dominant subchannels in the individual eigenban
for SG.

Band Subchannel N %

A @01
1

^ 21
1# I 52,L5J 20 35.6

elastic 20 19.5

B @21
1

^ 21
1# I 52,L5J22 18 47.1

C @21
1

^ 21
1# I 54,L5J24 18 28.4

@21
1

^ 21
1# I 54,L5J22 18 36.3

D @01
1

^ 21
1# I 52,L5J22 18 30.5

elastic 20 20.2
3-13
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spond to the energy interval between the molecular ba
with DN52.

In this way, the channel-coupling effects among the sh
group are not very weak but rather strong. This result is v
different from the channel coupling scheme in the weak c
pling model such as BCM@13–15#. Since the channel cou
pling studied in BCM was very weak, the mixing of th
different channels is very small except for the band cross

FIG. 16. Comparison of energy position of the single-chan
bands with that of eigenbands obtained by the CC calculation~a!
The energy positions of the eigenbands A–D. In~a!, N values of the
dominant subchannels are also shown.~b! The energy positions o
the molecular bands withN516 to 20, which are obtained by th
single-channel calculation with the full potential in the bound-st
approximation. In both figures, the open squares, open triang
and solid squares represent the elastic,@01

1
^ 21

1# I 52,L5J22, and
@01

1
^ 21

1# I 52,L5J subchannels, respectively, while the open a
solid circles represent the@21

1
^ 21

1# I 54,L5J24 and @21
1

^ 21
1# I 54,L5J22 subchannels, respectively. The solid triangles sh

the @21
1

^ 21
1# I 52,L5J22 subchannels.
06430
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region and, hence, the overall energy gain by the chan
coupling is almost negligible in the whole energy-spin r
gion. In the present CC calculation based on the double fo
ing interaction, however, the strong channel mixing occurs
all the grazing partial waves and the energy shift induced
the channel coupling is also large, even at non-band-cros
region.

As seen in Table I, the probabilities of the dominant co
ponents somewhat depend on the subchannels. For inst
it is relatively large for subchannels with an alignedL value
such as the@21

1
^ 21

1# I 54,L5J24 one, while it is small for
subchannels such as the elastic and@01

1
^ 21

1# I 52,L5J ones
with a nonalignedL value. Moreover, there is no dominan
subchannel withL.J, i.e., the antialignedL. These results
suggest that the channel coupling effect is relatively weak
subchannels with alignedL than for subchannels with non
aligned L. The stability of the subchannel with alignedL
against the channel coupling is due to the weakness of
centrifugal potential. In the aligned subchannel, the poc
depth of the effective potential becomes deep and the un
turbed wave function obtained by the single channel cal
lation becomes a higher nodal state. The higher-nodal na
of the wave function leads to a reduction of overlap integ
of the coupling potentials and the wave function, which
sults in a weakening of the channel-coupling effect.

One may also notice that the probability of the elas
channel is the smallest of all the dominant subchannels
which average value is less than about 20%, while all
other subchannel components have the probability of m
than about 30%. The reason is that the elastic chan
strongly reduced by the channel coupling can also be in
preted by the intrinsic structure of the12C nucleus. The chan
nel coupling can be related with the deformation of the t
colliding nuclei in their body-fixed frames. The intrinsi
shape of12C is strongly deformed in an oblate shape@28,29#.
The 01

1 ground state of12C corresponds to a rotational sta
in which the intrinsically deformed nucleus rotates sphe
cally. When such deformed nuclei get closer, the location
the local minimum in the adiabatic potential-energy surfa
strongly depends on the relative distance and the orienta
of the colliding nuclei@46,47#. For example, the equator
equator configuration becomes stable at relatively long
tance, while the pole-pole configuration becomes stable
shorter distance. In such a situation, it may not be plaus
to expect that both of the interacting two12C nuclei rotate
spherically in a very deformed adiabatic-potential surfa
Therefore, the elastic@01

1
^ 01

1# component will be strongly
suppressed.

VII. SUMMARY AND DISCUSSION

In this paper, we showed the expression of the mic
scopic DF potential and discussed its properties based on
multipole expansion of the nucleon densities. According
the multipole expansion, the nucleon density of a state wi
nonzero spin can be divided into the monopole part and
multipole one. The former and latter parts correspond
spherical and nonspherical component of the density, res

l

e
s,
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PROPERTIES OF MICROSCOPIC NUCLEUS-NUCLEUS . . . PHYSICAL REVIEW C 63 064303
tively. The density of a spinless state has only the monop
component.

The DF potentials, namely the diagonal potentials, c
also be divided into two parts according to the multipolar
of the density. The one part is calculated by folding t
monopole densities, while the other part is given by foldi
the nonzero multipole components. The latter part of the
tential exists in the channels with a nonzero intrinsic sp
We referred to the former and latter parts of the potentials
‘‘monopole potential’’ and ‘‘higher-multipole potential,’’ re-
spectively. The former potential does not depend on
channel spinI, the relative angular momentumL, or the total
one J, while the latter potential depends onI, L, and J.
Therefore, the nucleus-nucleus interactions of the differ
subchannels are different from each other even though
consist of a common intrinsic-state channel for givenJ. It
should be noticed that the properties of the DF potent
shown in this paper are quite general, because they are
termined by the multipolarity of densities. In the prese
framework, the monopole and higher-multipole potenti
are completely determined once we have a set of nuc
densities.

We applied the above discussion to the12C112C system.
It was found that the higher-multipole potentials are es
cially large for the channels in which both12C nuclei are
excited to the 3a states. The 3a13a molecular bands gen
erated by the monopole potentials are largely modified du
the large contribution of the higher-multipole ones. The
quence of the barrier-top resonances generated by the m
pole potentials forms the band crossing between the mol
lar band of the@02

1
^ 02

1# channel and those of the aligne
@02

1
^ 22

1# I ,L and @22
1

^ 22
1# I ,L subchannels. However, th

contribution from the higher-multipole potentials drastica
changes the location of the individual molecular bands c
culated by the monopole potentials and, hence, the cha
teristics of the band crossing is largely modified as shown
Fig. 10. The large correction due to the multipole densit
originates from the fact that the 3a states in12C have a large
prolatelike deformation. ~The average quadrupole
deformation parameter for the 3a states is known to be abou
b2.11.6 @31#.!

In the 12C112C channels, the effect of the highe
multipole potentials is a little moderate compared with th
in the 3a13a channels. The effect induces a non-negligib
modification about 2–5 MeV energy gain of the molecu
bands in the excited 21

1 channels generated by the monopo
potential alone, as shown in Figs. 4 and 5. It should be
ticed that these properties about the potentials and the
lecular bands are very different from those discussed in
BCM studies@13–15#. In the present DF potential, the star
v.
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ing point of the coupled-channel calculation is not the m
lecular bands calculated by the monopole potentials but
modified bands with the effect of the higher-multipole pote
tials included. In the previous BCM calculations, the sa
kind of corrections corresponding to the higher-multipole p
tentials are included by the use of the collective rotatio
model, but their effect was negligible due to the use of
‘‘shallow optical potentials’’ as basic nucleus-nucleus inte
actions. As the result, the starting diagram for the coupl
channel calculations was almost identical to the ba
crossing diagram generated by the monopole potentials.

Moreover, the effect of channel-coupling among the d
ferent channels is also important and it gives rise to an
ditional energy gain of about 6–10 MeV. Due to this ener
shift, the resonance wave functions have an additional ra
node compared with those of the original single-chan
resonances existing in the same energy region as show
Fig. 16. We called the new bands generated by the cha
coupling the ‘‘eigenbands.’’ There is observed a consid
able mixing among the subchannels and the population of
dominant subchannel component in the eigenbands is a
20–50 %. Since the channel coupling is rather strong,
reaction mechanism leading to the resonance formatio
very different from the ‘‘weak-coupling picture’’ suggeste
by BCM @13–15#. The possibility of the strong-coupling
states in the12C112C molecular resonances was also su
gested by the ‘‘strong coupling model’’ based on t
modified-perturbed-stationary state approximation@48,49#.

In order to examine the reliability of the strong chann
coupling effect due to DF potential more clearly, we shou
calculate the spin alignment of the12C112C inelastic scatter-
ing @50,51#. The BCM has not succeeded in reproducing t
spin alignment in the12C112C inelastic scattering@52#.
Therefore, it is very interesting to discuss the spin alignm
using the coupled-channel calculation based on the pre
DF-model potential. The analysis of the spin alignment
now in progress. The channel coupling effects on thea
13a and 12C13a bands are expected to be much strong
than those we saw in the12C112C channels because of th
strong deformation of the 3a states of12C. The channel-
coupling effect and the reaction mechanism for the format
of the resonances in the12C13a and 3a13a channels will
be discussed in a forthcoming paper.
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