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Complete set of polarization observables inp¢ p¢\ppp0 close to threshold

H. O. Meyer,* A. Wellinghausen, J. T. Balewski, J. Doskow, R. E. Pollock, B. v. Przewoski, T. Rinckel,
and P. Tho¨rngren-Engblom†

Indiana University Cyclotron Facility, Bloomington, Indiana 47405

L. D. Knutson, W. Haeberli, B. Lorentz,‡ F. Rathmann,§ B. Schwartz, and T. Wise
Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706

W. W. Daehnick and Swapan K. Sahai

Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260

P. V. Pancella
Department of Physics, Western Michigan University, Kalamazoo, Michigan 49008

~Received 5 January 2001; published 2 May 2001!

In a kinematically complete experiment we have measured the two analyzing powers and the five spin

correlation coefficients of the reactionpW pW→ppp0 as a function of all five parameters of the three-body final
state for bombarding energies between 325 and 400 MeV. The data are in disagreement with the theoretical
predictions available at this time. Below 400 MeV, fewer than a dozen complex partial-wave amplitudes are
likely to be significant, and it is expected that the present experimental information constrains these ampli-
tudes. We also describe the formalism for an expansion of the spin observables into a complete set of angular
functions and use this to completely characterize the polarization information obtainable from reactions with
polarized spin-1/2 collision partners and a three-body final state.
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I. INTRODUCTION

The behavior of a system consisting of two nucleons a
a pion is basic to classical nuclear physics. It is thus
important task to try to relate the process of pion product
in a nucleon-nucleon (NN) collision to our understanding o
the NN interaction or to constraints given by basic symm
tries, or, ultimately, to a model that features the constitue
of nucleons and mesons. The theoretical task was expe
to be relatively simple at energies very close to thresh
because only a single angular momentum channel con
utes.

Triggered by the advent of new cross section data clos
threshold, there has been a flurry of theoretical activity d
ing the past five years devoted to an understanding of
lowest partial wave~see Sec. V A for more details on th
current status of the theory!. Even though this work is still
going on, it is clearly important to also investigate the high
partial waves which become active as the bombarding
ergy is increased. In order to identify the role of individu
partial waves, the use of polarized collision partners is ess
tial.

Each of the three periods of activity in the study of pi
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production in the nucleon-nucleon system is related to s
cific technical advances. The first was the developmen
accelerators with sufficient energy, which led to the first o
servation of thepp→ppp0 reaction@1# just a few years after
the pion was discovered@2# and 17 years after it was pre
dicted by Yukawa@3#. The second was the construction
meson factories with intense, well-defined proton beams
made possible accurate and kinematically complete c
section measurements, and the third was the advent of
age rings with electron-cooled beams and internal targets@4#,
which started to operate in the late 1980s, and which ope
up the near-threshold region for experimental study.

Measurements of pion production inpp collisions benefit
from storage ring technology mainly in two ways. The fir
concerns the use of windowless internal gas targets. S
targets put only hydrogen gas into the path of the beam
make it possible to measure smallpp→ppp0 cross sections
very close to threshold with little contamination from unde
ired reactions. In addition, the amount of material betwe
the target volume and the detector can be made small,
the momenta of both outgoing hadrons can be measured
curately. Thus, the complete kinematics of each event ca
determined. Internal targets must be thin in order for
cooling process to keep up with target heating, but this lim
tation is offset by the intensity of the accumulated, stor
beam. The second unique advantage of the storage ring
vironment concerns polarized atomic gas targets. It turns
that the maximum target thickness that can be achieved
good match for the target thickness requirements o
medium-energy storage ring.

Close to threshold the number of participating part

ni-
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waves is small. In fact, at energies below 320 MeV, only o
partial wave is significant~the Ss partial wave with the an-
gular momenta of the final-statepp pair as well as the pion
equal to zero!. In one of the first nuclear physics experimen
with a stored, cooled beam@5#, the total cross section in thi
energy region was measured, revealing a serious disag
ment with the theory at that time~see Sec. V A!. For bom-
barding energies larger than 320 MeV, additional par
waves come into play but their number is still relative
small since below about 400 MeV final-state angular m
menta larger than one should be unimportant. With this lim
tation, it is possible to provide an expression for the m
general dependence of any observable on the angles o
three outgoing particles. For the present study, this poin
crucial for two reasons. First, we use the angular depende
given by these expressions to formulate a strategy to o
and present the information available from an experim
with polarized beam and target by defining an appropriate
of single-valued ‘‘observables’’ that characterize the co
plete five-dimensional phase space. Second, it allows u
carry out an analysis of the data in terms of the coefficie
that appear in these expressions. The resulting coeffici
completely parametrize the polarization observables of
reaction and constrain participating amplitudes individua
This constitutes a powerful and detailed test of any theo

Prior to this experiment, the world’s polarization data f
the reactionpp→ppp0 below 400 MeV consisted of jus
two analyzing power measurements@6,7#. In this paper we
describe a complete measurement of this reaction cove
most of the available phase space, carried out with a po
ized beam on a polarized target at bombarding energies
tween 325 and 400 MeV. All polarization observables
lowed by parity conservation have been measured. Since
are dealing with a three-body final state, these observa
depend on five kinematic variables. Section II of this pape
concerned with the definition of polarization observables a
their dependence on the kinematics of the final state. Sec
III contains a description of the apparatus, an account of
acquired data, and a description of the method used to ex

FIG. 1. Coordinate frame. Thez axis is along the beam direc
tion, they axis is pointing up, and thex axis completes the right

handed coordinate system. The direction of a vectorrW is given by a
polar angleu and an azimuthal anglef.
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the observables from the measured quantities. In Sec. I
scheme is introduced to completely map out the spin dep
dence of the reaction everywhere in the five-dimensio
phase space, and results are presented. Finally, Sec.
devoted to a discussion of the present status of the theo
comparison of some of the data to recent calculations, an
list of conclusions from the present experiment.

II. POLARIZATION OBSERVABLES

A. Basic definitions

In a reaction with two outgoing particles it is customary
relate the coordinate frame to the reaction plane. With
three-body final state there is no such distinguished plane
we use a Cartesian coordinate frame that is fixed in sp
The z axis is along the beam direction, they axis is vertical,
pointing up, and thex axis completes the right-handed coo
dinate system. The polar angleu and azimuthal anglef, as
defined in Fig. 1, are used to specify the direction of a
vector.

In this experiment we detect the energy and direction
the two final-state protons of the reactionpp→ppp0. Let
the center-of-mass momentum of the two protons bebW 1 and
bW 2. To describe the final-state kinematics we define the m
mentapW andqW , wherepW 5(bW 12bW 2)/2 ~the proton momentum
in the pp rest system! and qW 52(bW 11bW 2) ~the center-of-
mass momentum of the pion; see Fig. 2!. Five independent
parameters are needed to describe the final state, namely
directions p̂ and q̂ and an ‘‘energy-sharing’’ parametere,
which we will later define as the kinetic energy of the tw
final-state protons in their rest system@see Eq.~21!#. All five
parameters follow from the observation of the two proto
For brevity, we sometimes denote the set$up ,wp ,uq ,wq ,e%
by j.

The largest possible value of the pion momentum is giv
by ~we setc5\51)

FIG. 2. The momenta and of thepp→ppp0 final state in the
center-of-mass system. Particle numbers 1 and 2 are the two

tons with momentabW 1 andbW 2. The proton momentum in thepp rest

system is given bypW 5(bW 12bW 2)/2 and the center-of-mass mome

tum of the pion~3! by qW 52(bW 11bW 2).
qmax5
1

2As
A@s2~2mp1mp!2#@s2~2mp2mp!2#, ~1!
2-2
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COMPLETE SET OF POLARIZATION OBSERVABLES IN . . . PHYSICAL REVIEW C 63 064002
whereAs is the total center-of-mass energy, andmp andmp

are the masses of the proton and the pion, respectively
stead of the bombarding energy, one often quotes the pa
eter

h5qmax/mp , ~2!

which vanishes at threshold. The term ‘‘near threshol
loosely corresponds to the energy region withh,1, i.e.,
below 400 MeV.

The polarization of an ensemble of spin-1/2 particles m
be described by the expectation value of the thr
component Pauli spin operator~see, e.g., Ref.@8#!. In the
following, we denote the polarization of the beam and
target by the two vectorsPW 5(Px ,Py ,Pz) and QW
5(Qx ,Qy ,Qz), respectively.

B. Definition of observables

We abbreviate the differential cross section for the re
tion, initiated by a polarized beam on a polarized target,

s~j,PW ,QW ![
ds~up ,wp ,uq ,wq ,e,PW ,QW !

dVpdVqde
, ~3!

and writes0(j) for the cross section that would be measur
without polarization. In terms of the so-called Cartesian p
larization observables, the spin-dependent cross section
comes

s~j,PW ,QW !5s0~j!•F11(
i

PiAi0~j!1(
j

QjA0 j~j!

1(
i , j

PiQjAi j ~j!G . ~4!

Here,i andj stand forx, y, or z and the sums extend over a
possibilities. The resulting 15 polarization observables
clude the beam analyzing powersAi0, the target analyzing
powersA0 j , and the spin correlation coefficientsAi j . It is
convenient to define the following combinations of spin c
relation coefficients:

AS~j![Axx~j!1Ayy~j!, ~5a!

AD~j![Axx~j!2Ayy~j!, ~5b!

AJ~j![Axy~j!2Ayx~j!. ~5c!

The 15 polarization observables of Eq.~4! are not inde-
pendent. For instance,Ax0 and Ay0 are equivalent becaus
the radiation pattern observed with a beam polarized alonŷ

is the same as when the beam is polarized alongx̂, except for
a rotation by 90° around thez axis. This and other, similar
‘‘rotational’’ equivalences are given by@9#

Ax0~up ,wp ,uq ,wq!5Ay0~up ,wp1p/2,uq ,wq1p/2!,
~6a!
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Ayz~up ,wp ,uq ,wq!5Axz~up ,wp2p/2,uq ,wq2p/2!,
~6b!

Axy~up ,wp ,uq ,wq!1Ayx~up ,wp ,uq ,wq!

5AD~up ,wp2p/4,uq ,wq2p/4!. ~6c!

If the two particles in the initial state are identical, measu
ments with interchanged beam and target polarization st
must be equivalent. It is straightforward to show that if par
is conserved, the identity of the particles in the initial sta
requires

Ai j ~up ,wp ,uq ,wq!5Aji ~p2up ,wp1p,p2uq ,wq1p!.
~7!

Applying the relations in Eqs.~5!–~7!, we find that for the
reactionpp→ppp0 there are the following seven indepe
dent polarization observables:

Ay0~j!, Az0~j!, AS~j!, Azz~j!, Axz~j!, AD~j!,

AJ~j!. ~8!

The fact that the two nucleons in the final state are a
identical requires that all observables must be invariant
der the transformationpW→2pW . This means that the phas
space of the final state has two identical halves. In the an
sis of the present experiment this is taken into account
always labeling the protons 1 and 2 in such a way tha
<up<p/2. Consequently, results are presented only forup
in this range, and when calculating a total cross section,
up integral extends only from 0 top/2.

For reactions with two colliding spin-1/2 particles, on
can define three total cross sections, two of which depend
the spin. These total cross sections are related to the obs
ables in Eq.~8! by

s tot5E s0~j!dVpdVqde, ~9a!

DsT52E s0~j!AS~j!dVpdVqde, ~9b!

DsL522E s0~j!Azz~j!dVpdVqde, ~9c!

where dV5d cosudw, and the integration extends over
<uq<p, 0<up<p/2 and 0<e<emax. The possible value
for DsL /s tot andDsT /s tot ranges between22 and12.

C. Angular momentum

1. Partial waves

Let us denote the angular momentum of the colliding p
tons by l, their channel spin bysi , and the total angular
momentum byJ. In the final state, angular momentum, cha
nel spin, and total angular momentum of the proton pair
given byl p , sf , andj, respectively, and the angular mome
tum of the~spinless! pion, relative to the center of mass, b
l q . This set of quantum numbers, denoted collectively by
2-3
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H. O. MEYER et al. PHYSICAL REVIEW C 63 064002
a5$ l ,si ,J,l p ,sf , j ,l q%, ~10!

fully identifies the amplitudesUa for transitions from a
given initial to a given final state. These amplitudes are fu
tions of the energy-sharing parametere and the total energy
The quantum numbers in Eq.~10! are constrained by angula
momentum and parity conservation as well as by the P
principle. Because close to threshold it is realistic to assu
that l p and l q are either 0 or 1, the possible choices for t
angular momentum in the final state are then (l p ,l q)
5(0,0), ~1,0!, and ~1,1!, or Ss, Ps, andPp. In pp→ppp0,
there areno Sp final states permitted by the usual symme
constraints of parity and angular momentum conserva
and the Pauli principle. A list of all transitions with thes
constraints can be found in Table I. For completeness,
have included in Table I the transitions withl p 5 2, l q50
~Ds! andl p50, l q52 ~Sd!. Since these amplitudes can inte
fere with the importantSs amplitude, their contribution
might be non-negligible@10#. The list in Table I follows the
conventional notation2si11l J→2sf11l p , j ,l q where the spec-
troscopic notation, (l , l p)5S, P, D, F, . . . andl q5s, p, d,
f . . . is used.

2. Angular distributions of the observables

Since close to threshold only relatively few amplitud
contribute topp→ppp0, it is feasible to expand the observ
ables in terms of angular momentum. In the formalism
use, the expansion functions are products of two spher
harmonics with argumentsp̂ and q̂, and the expansion coef
ficients are a sum of terms, where each term contains
product of two amplitudesUaUa8

* times an angular-
momentum coupling factor. The coupling factor is oft
zero, reflecting the constraints arising from conservat
laws and antisymmetrization. For instance, one finds that
amplitudes can be arranged into the two groups~Ss, Sd, Ds!
and ~Ps, Pp!, and only amplitudes within one group ca
interfere with each other. The details of such an expans
into partial waves are given in the Appendix.
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Based on this partial-wave expansion, we have dedu
equations that contain the dependence of the observable
the four angles that describe the final-state kinematics.
availability of such a set of equations is of crucial impo
tance for the present work because it shows us how to a
lyze the measurement in view of the complexity of a fiv
dimensional phase space, and it guides us in definin
reasonable and complete set of observables that desc
this complexity. It will be seen later that these equatio
provide a sufficient framework, since they are able to rep
duce the measured angular distributions. The following se
equations represents the general angular dependence o
spin-averaged cross sections0(j) and the spin dependen
cross sectionss0(j)Ai j (j) in terms of the real coefficientsE,
Fk , Gk

i j , Hk
i j , I, andK. Note that we useDw[wp2wq :

TABLE I. Angular momentum quantum numbers for the part
waves of the reactionpp→ppp0. TheSd andDs amplitudes have
been included for completeness sake; the present experiment
no evidence for their significance.

Type 2si11l J→2sf11l p j,l q

Ss 3P0→1S0 ,s
Ps 1S0→3P0 ,s

1D2→3P2 ,s
Pp 3P0→3P1 ,p

3P2→3P1 ,p
3P2→3P2 ,p
3F2→3P1 ,p
3F2→3P2 ,p
3P1→3P0 ,p
3P1→3P1 ,p
3P1→3P2 ,p
3F3→3P2 ,p

Sd 3P2→1S0 ,d
3F2→1S0 ,d

Ds 3P2→1D2 ,s
3F2→1D2 ,s
s0~j!5E1F11H0
001~H1

001I !~3 cos2uq21!1~H2
001F21K !~3 cos2up21!1H3

00~3 cos2uq21!~3 cos2up21!

1H4
00sin 2upsin 2uqcosDw1H5

00sin2upsin2uqcos2Dw, ~11a!

s0~j!Ay0~j!5@$G1
y01G2

y0~3 cos2up21!%sinuq1$H1
y01I y01H2

y0~3 cos2up21!%sin 2uq#coswq

1@H3
y01Ky01G3

y0cosuq1H4
y0~3 cos2uq21!#sin 2up coswp

1@G4
y0sinuq1H5

y0sin 2uq#sin2upcos~2wp2wq!1H6
y0sin 2upsin2uqcos~2wq2wp!, ~11b!

s0~j!AS~j!52~E2F1!1H0
S1~H1

S12I !~3 cos2uq21!1~H2
S22F212K !~3 cos2up21!1H3

S~3 cos2up21!~3 cos2uq21!

1H4
Ssin 2upsin 2uq cosDw1H5

Ssin2upsin2uq cos 2Dw, ~11c!

s0~j!Azz~j!52E2F11H0
zz1~H1

zz2I !~3 cos2uq21!1~H2
zz2F22K !~3 cos2up21!1H3

zz~3 cos2up21!~3 cos2uq21!

1H4
zzsin 2upsin 2uq cosDw1H5

zzsin2upsin2uq cos 2Dw, ~11d!
2-4
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s0~j!AD~j!5@H1
D1H2

D~3 cos2up21!#sin2uqcos 2wq1@H3
D1H4

D~3 cos2uq21!#sin2up cos 2wp

1H5
Dsin 2upsin 2uq cos~wp1wq!, ~11e!

s0~j!Axz~j!5@$G1
xz1G2

xz~3 cos2up21!%sinuq1$H1
xz1I xz1H2

xz~3 cos2up21!%sin 2uq#coswq

1@H3
xz1Kxz1G3

xzcosuq1H4
xz~3 cos2uq21!#sin 2up coswp

1@G4
xzsinuq1H5

xzsin 2uq#sin2up cos~2wp2wq!1H6
xzsin 2upsin2uq cos~2wq2wp!, ~11f!

s0~j!Az0~j!5@H1
z0sin 2uq1G1

z0sinuq#sin 2up sinDw1H2
z0sin2upsin2uq sin 2Dw, ~11g!

s0~j!AJ~j!5G1
Jsin 2upsinuq sinDw. ~11h!
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The letter symbolsE, Fk , Gk
i j , and Hk

i j distinguish terms
with (Ss)2, (Ps)2, (PsPp), and (Pp)2 angular momenta in
the final state according to the definitions given in Table
and II. The superscript associates the coefficient with a gi
observable, and the subscript enumerates multiple oc
rences of the same symbol within a given observable
coefficient without a superscript appears in more than
observable. The coefficientsI, K, I i j , andKi j are associated
with SsSd or SsDs interference terms. We note that the
always occur in conjunction with anHk

i j term. Thus, the
angular dependence alone does not provide sufficient in
mation to separate thed-wave contributions. All contribu-
tions of the amplitudes listed in Table I have been taken i
account, except those that correspond to a (Ds)2 and (Sd)2

final state.
The physics of the reaction is contained in the values

the coefficientsE, Fk , Gk
i j , Hk

i j , I, andK. We will determine
these values as a way to parametrize the results of the m
surement. These coefficients are bilinear sums of the reac
amplitudes. The corresponding relations between the co
cients and the amplitudes are known, but often complica
They can be derived from the partial-wave expansion
scribed in the Appendix. Thus, in principle, it is possible
construct a set of amplitudes that best describes the pre
data; however, this task involves a nonlinear fit with a no
diagonal error matrix and possible ambiguities, and is
yond the scope of this paper.

TABLE II. Partial waves according to the final-state angu
momenta. The column labeledL lists the symbol used in Eqs.~11!
for a parameter of this type. The last column shows the power oh
for the expected dependence on bombarding energy for the c
where neitherl p nor l p8 is zero.

Final-state angular momenta
l p l q l p8 l q8 L wL(e) hm

~Ss!2 0 0 0 0 E q•p• f (e) de -
(Ps)2 1 0 1 0 F q•p3 de h6

PsPp 1 0 1 1 G q2
•p3 de h7

(Pp)2 1 1 1 1 H q3
•p3 de h8

SsSd 0 0 0 2 I q3
•p• f (e) de -

SsDs 0 0 2 0 K q•p3
•Af (e) de -
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Equations~11! explicitly depend on the four anglesup ,
wp , uq , and wq , while the energy-sharing parametere is
contained in the coefficients. A discussion of the energy
pendence is given in Sec. IV E.

When calculating the value of a polarization observa
from Eqs. ~11!, one has to evaluate the ratioAi j (j)
5s0(j)Ai j (j)/s0(j), and an overall normalization of al
terms in these equations cancels. Here, we choose to m
ply all coefficients by 8p2/s tot . This makes the coefficient
dimensionless. The spin-averaged total cross section is
an incoherent sum of the partial total cross sectio
s(Ss)/s tot5E, s(Ps)/s tot5F1, and s(Pp)/s tot5H0

00,
involving the three final states with (Ss)2, (Ps)2, and (Pp)2,
and

E1F11H0
0051. ~12a!

The spin-dependent total cross sections are then given b

DsT /s tot522E12F12H0
S , ~12b!

DsL /s tot52E12F122H0
zz. ~12c!

It should be noted that not all coefficients are indepe
dent. For instance, we know from the partial-wave analy
~see the Appendix! that for m50, . . . ,5,

Hm
005Hm

S1Hm
zz ~12d!

holds. Combining Eqs.~12b!–~12d! one easily derives the
important relation

s~Ps!

s tot
5

1

4 S 11
DsT

s tot
1

1

2

DsL

s tot
D . ~13!

This relation, which holds forpp→ppp0, allows one to
determine, in a model-independent way, the total strength
the reaction going to aPs final state directly from the mea
sured total cross sections. Thismeasurement of a partia
wavehas been presented in an earlier publication@11#, where
the relation given in Eq.~13! appears without proof.

ses
2-5
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TABLE III. Bombarding energies used in this experiment, theh parameter@Eq. ~2!#, and the upper bound
emax on the energy-sharing parameter@Eq. ~21!#. Also listed are the accumulated luminosities and the pr
ucts of beam and target polarization for the two phases of the experiment~see Sec. III B!.

Run A Run B

Energy h emax *L dt PyQ *L dt PxQ PyQ PzQ
~MeV! ~MeV! (nb21) (nb21)

325.6 0.560 21 2.163 0.456~3! 3.0 0.059~2! 0.333~2! 0.296~3!

350.5 0.707 33 0.901 0.342~4! 1.3 0.053~3! 0.316~3! 0.267~5!

375.0 0.832 44 3.024 0.514~4! 4.1 0.041~2! 0.333~2! 0.266~4!

400.0 0.948 55 0.831 0.526~6! 1.1 0.039~4! 0.289~4! 0.203~8!
le
e

t
t
em

o-
ng
s

0
.6

th

e
e
o
he
to
e
n
e
tu

-
e

ed
te
e.

si
on
;

Th

is
he
the

ces
3

lear
s
is
a-
ss

ell,
to
se-
ion
he

the
e

is

ot
ibil-

ons
m-

hat
two

of

tor

ht
ergy
sion
n-
ge

axis
tec-
III. MEASUREMENTS

A. Apparatus

The experiment was carried out with the Indiana Coo
storage ring. A detailed description of the apparatus has b
presented previously in a technical paper@12#. In the follow-
ing, we give an abbreviated description of the experimen
setup, pointing out features that are especially importan
appreciating the benefits and limitations of the technique
ployed.

1. Beam

A polarized 197 MeV proton beam from the IUCF cycl
tron was accumulated in the Cooler ring, resulting in orbiti
currents of 100–200mA. The energy of the stored beam wa
then ramped to the desired value~for a list of energies, see
Table III!. The beam energy was known to better than 1
keV, and the polarization of the beam varied between 0
and 0.70.

The experiment was conducted in two phases. During
first phase, the beam polarization was vertical~along ŷ),
while in the second phase nonvertical polarization was us
The latter is achieved with two spin-rotating solenoids. Th
field is held fixed during acceleration. The field integral
these solenoids is limited, partly by the current limit of t
solenoid, partly by difficulties in adjusting the ring optics
compensate for the additional focusing. The consequenc
this limitation is that purely longitudinal beam polarizatio
cannot be achieved for beam energies larger than 200 M
Instead, for the second phase of the experiment, the ac
polarization direction is aboutPW /P5(0.12,0.75,0.65), some
what depending on beam energy~for actual values, see Tabl
III !.

The filling and ramping process takes 1–2 min, follow
by 5–8 min of data taking. This beam cycle is then repea
The sign of the beam polarization is changed every cycl

2. Target

The stored beam passes through a target cell that con
of an open-ended 12 mm diameter cylindrical tube c
structed from 25mm aluminum foil. The tube is 25 cm long
the center of the cell defines the origin of thez axis. Joined to
the side of this tube, atz50, is a similar ‘‘feed’’ tube that is
oriented towards the incident beam of polarized atoms.
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target cell is supported by the end of the feed tube. It
possible to remotely adjust the cell position relative to t
stored beam, in order to minimize the overlap between
beam halo and the cell wall. An atomic beam source@13#
delivers the polarized hydrogen atoms. This source produ
a beam of about 1 cm diameter with a flux of about
31016 atoms per second in a pure spin state with a nuc
polarization of aboutQ50.75. The role of the target cell i
to improve the utilization of the source output. The cell
coated with Teflon, which practically eliminates depolariz
tion of the atoms during wall collisions. The total thickne
of the target is a few times 1013 atoms/cm2. The density of
the target is determined by the gas flow through the c
decreasing linearly from a maximum in the cell center
near zero at the open ends. The polarization direction is
lected by a magnetic guide field of a few gauss in the reg
of the target. This field is generated by coils exterior to t
scattering chamber, and can be oriented in the6x, 6y, and
6z directions. It has been shown@14# that the magnitude of
the target polarization does not vary significantly when
polarization direction is changed, and in the following w
assumeQ5Qx5Qy5Qz for the target polarization. During
data acquisition the direction of the target polarization
changed every 2 s.

Internal polarized targets of this kind are pure and n
susceptible to radiation damage, and they offer the poss
ity of rapidly changing the polarization direction.

3. Detector

The purpose of the detector is to measure the directi
and energies of the two outgoing protons. This is acco
plished with a stack of scintillators and wire chambers t
are arranged as shown in Fig. 3. The directions of the
outgoing protons are determined by a set of four planes
wire chambers, and the ‘‘E’’ and the ‘‘K’’ scintillator arrays
measure the energies of the protons.

The combined thickness of the E and the K detec
planes is sufficient to stop the protons from thepp→ppp0

reaction for up to 400 MeV bombarding energy. The lig
from both planes is added and then converted to the en
of the stopped particle using a phenomenological expres
for the light response, and a correction for the positio
dependent light collection efficiency. The angular covera
of the detector depends on where along the target cell
the event occurs. Seen from the center of the cell, the de
2-6
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COMPLETE SET OF POLARIZATION OBSERVABLES IN . . . PHYSICAL REVIEW C 63 064002
tor stack subtends a cone with a half-angle of 35°, with a
hole in the center that is required to admit the beam pipe
the circulating beam. This hole is responsible for most of
departure of the detector acceptance from 100%. The co
quences of incomplete acceptance are discussed in Sec.

The wall of the vacuum chamber just downstream of
target consists of a 0.18-mm-thick, stainless steel window
1.5-mm-thick scintillator~‘‘F’’ in Fig. 3 !, immediately fol-
lowing this window, provides a start signal for a time-o
flight measurement for particle identification, and elimina
events originating in the beam pipe downstream of the
detector.

The E detector is divided into eight segments. The trig
for processing an event is a coincidence between the F
tector and at least two segments of the E detector. A v
issued by the last scintillator in the stack~‘‘V’’ in Fig. 3 !
removes events where at least one particle is not stoppe
either the E or the K scintillator, and thus are not from pi
production.

Concurrent with the acquisition ofpp→ppp0 events,pp
elastic scattering is observed nearu lab545° by four scintil-
lators~labeled ‘‘S’’ in Fig. 3!. For elastic scattering events
coincidence between two opposite detectors is required.
ticles reaching the S detectors traverse the first set of w
chambers~‘‘WC1’’ in Fig. 3 !. A coplanarity condition and
the known angle between the two protons provide a cl
selection ofpp elastic events.

B. Acquired data

The experiment has been conducted in two phases. In
first ~called ‘‘run A’’ ! the beam polarization was vertica
~along or opposite they axis! and the target polarization wa
alternated in 2 s intervals between four directions~along or

FIG. 3. Detector system to detect the two outgoing protons.
scintillators E and K measure energies and the wire chambers W
and WC2 directions. The scintillator V vetoes background eve
containing energetic charged particles. The four scintillators S p
vide a concurrent measurement ofpp elastic scattering nearu lab

545° as a monitor for beam and target polarization. For m
details see Sec. III A 3.
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opposite thex axis or they axis!. Thus, data were accumu
lated with eight combinations of beam and target polari
tion (Pn , Qm), namely, (6Py , 6Qx) and (6Py , 6Qy).
Run A, which took place in the fall of 1997, was thus limite
to observables that are accessible with only transverse p
ization.

In the second phase~called ‘‘run B’’ !, spin rotators were
employed to generate nonvertical beam polarization~see
Sec. III A 1!. In this case, the beam polarization was a s
of three components (Px , Py , Pz), and the target polariza
tion was alternated between the six directions6Qx , 6Qy ,
and 6Qz , giving rise to 12 different spin states (6PW ,
6QW x), (6PW , 6QW y), and (6PW , 6QW z). Run B was carried
out in the spring and fall of 1998. All possible analyzin
powers and spin correlation coefficients were measured.

During both runs data were acquired at the beam ener
325, 350, 375, and 400 MeV. The respective integrated
minosities, together with the values for beam and target
larization, are listed in Table III.

C. Measured yields

1. Selecting the pp\ppp0 events

Events of interest are selected off line by requiring th
both particles be identified as protons, that their wire cha
ber tracks be consistent with the patterns of responding
ments in the various scintillator arrays, and that the origin
the event be in the target region. For each event the mas
the third, unobserved particle is calculated from the fo
momenta of the two protons. An example of a missing m
spectrum is shown in Fig. 4. To accept an event, its miss
mass has to be close to the mass of a neutral pion.

The amount of background under the pion mass peak
ies with bombarding energy but is never larger than 10
This background is caused by reactions of protons with
aluminum cell walls and with impurities in the target ga
Monte Carlo studies show that only reactions with three
more protons in the final state contribute significantly wh

e
1

ts
-

e

FIG. 4. Missing-mass spectrum of thepp→ppp0 reaction at
375 MeV. The dashed line shows the normalized background sh
obtained with a N2 target.
2-7
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(p,2p) reactions are unimportant. The shape of the ba
ground is determined from a separate measurement w
the hydrogen in the target cell is replaced by N2. This mea-
surement results in a missing-mass spectrum that clo
matches the one observed with a hydrogen target, excep
thep0 peak, and is therefore used to subtract the backgro
under the pion peak.

The kinematics of the event is transformed to the cen
of-mass system, and the anglesup , wp , uq , andwq as well
as the energy-sharing parametere are calculated. For eac
accepted event, these parameters, together with informa
on the direction of the beam and target polarization at
time of the event, are stored for further processing.

2. Spin-dependent yields

We define the ‘‘yield’’ to be the number of events in
certain regionDj of phase space, defined by conditions
the five kinematic variablesj of the final state. There is on
such yieldYm,n(j), for each combination (m,n) of beam and
target polarization. For run A there are 8 and for run B
such combinations. The yields in different spin states
always background corrected and normalized such that
correspond to equal accumulated luminosity in every s
state. This normalization compensated differences of a
percent in the luminosity with different beam polarizatio
The integrated luminosity was determined from a concurr
measurement ofpp elastic scattering~see next section!.

3. Monitoring beam and target polarization and the luminosity

Concurrent with the measurement of pion productio
elasticpp scattering is observed by a dedicated set of f
detectors that covers the angular region nearu lab545°. For
these angles, thepp scattering spin correlation coefficien
AD and Azz are quite large and well known@15#. This pro-
vides a sensitive on-line monitor for the productsPxQx ,
PyQy , andPzQz of all three beam polarization componen
and the target polarizationQ5Qx5Qy5Qz . Note that the
pp elastic scattering analyzing powers nearu lab545° are
small, so that the individual values forP andQ are not well
determined from this measurement; however, these num
are not needed for the subsequent analysis. From thepp
scattering yield, averaged over azimuth and from the kno
cross section, we also deduce the integrated luminosity
cumulated with each of the combinations of beam and ta
polarization. The relative luminosities are used to norma
the pion production yields in different spin states to eq
integrated luminosity.

D. Asymmetries

From the spin-dependent yields, three different asymm
tries can be calculated. The first,SP , is the beam polariza
tion asymmetry. It is obtained from the difference in t
yields with positive and negative beam polarization, summ
over all target polarization directionsj:
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SP5

(
m5x,y,z

~Y1,Qm
2Y2,Qm

!

(
m5x,y,z

~Y1,Qm
1Y2,Qm

!

. ~14a!

Since each target orientation occurs with both signs,
effectively corresponds to an unpolarized target. The sum
the denominator is an average over both beam and ta
polarization direction, and thus represents the spin-avera
yield. Note that for run B the beam polarization is not alo
one of the coordinate axes and the asymmetrySP contains
contributions from all the three polarization components.

The three target polarization asymmetries for the tar
polarization directionsm 5 x, y or z are given by

SQm
5

(
n51,2

~Yn,1Qm
2Yn,2Qm

!

(
n51,2

~Yn,1Qm
1Yn,2Qm

!

, ~14b!

where the sum overn provhdes the average over the bea
polarization direction.

Finally, the three spin correlation asymmetries, again w
the target polarization in them 5 x, y, or z directions, are
given by

SP,Qm
5

~Y1,1Qm
1Y2,2Qm

!2~Y1,2Qm
1Y2,1Qm

!

~Y1,1Qm
1Y2,2Qm

!1~Y1,2Qm
1Y2,1Qm

!
.

~14c!

These asymmetries will be needed as a function of som
the kinematic variablesj while integrating over the others
For instance, if we want to know the asymmetries as a fu
tion of uq andwq , we sort the events into bins that divide th
full range of uq and wq to obtain the yieldsYn,m(uq ,wq)
while ignoring the other kinematic variables. If the detec
acceptance is 100%, ignoring a kinematic variable is equ
lent to integrating over that variable. Corrections due to
complete detector acceptance are discussed in Sec. IV F.
asymmetriesSP , SQm

, andSP,Qm
of Eq. ~14! form the basis

for deducing the observables as described in Secs. IV B
IV C.

IV. RESULTS

A. Exploring the five-dimensional phase space

The dependence of each polarization observable on
kinematic variables contains a wealth of detailed informat
about the reaction, but it also presents the difficulty of ord
ing and accessing this information. In the present case
benefit from the limited number of amplitudes, which pe
mits us to determine the functional dependence of the
servables on the anglesuq , wq , up , wp @Eq. ~11!#. Based on
this knowledge we now develop a procedure for extract
polarization information from the data in a systematic a
complete way.
2-8
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Inspecting Eq.~11!, we note that the azimuthal function
Fk(wq ,wp) that occur are one of the following:wq , wp ,
wp1wq , 2wp2wq , 2wq2wp, or wp2wq . Assume that we
evaluate the asymmetries versus one of these functionsFk
(k51, . . . ,6) bysorting the events into bins of constantFk .
This is equivalent to an integral over azimuth with the co
dition Fk5const, and eliminates one of the two azimuth
degrees of freedom. The implied integration retains o
terms in Eqs.~11! that either containFk or do not depend on
azimuth at all. To further reduce the remaining terms,
evaluate observables as a function of one of the polar an
u (up or uq), while integrating over the other one by igno
ing it. Thus, for each of the polarization observables listed
Eq. ~8!, we have the choice of six azimuthal functionsFk
and two polar angles. The resulting set of observables
are now functions of a single variable~eitherup or uq) rep-
resents completely the effect of polarized collision partn
on the angular variables. For now, we ignore the depende
on the energy-sharing parametere, and integrate over this
quantity as well. The dependence one will be discussed
separately in Sec. IV E.

B. Ay0 , AS , Azz, AD , and Axz

The spin-dependent cross sectionss0Ay0 , s0AS , s0Azz,
s0AD , ands0Axz contain only terms that are either azimu
independent or proportional to cosFk or cos 2Fk whereFk is
one of five azimuthal dependences. Let us define the po
ization observableAi j

Fk(uq) @or Ai j
Fk(up)] as that part of the

observableAi j that remains when integrating overup @or uq]
and overwq and wp with the constraintFk50. Of course,
we still distinguish contributions with cosFk from those with
cos 2Fk , since we have knowledge of the fullFk distribu-
tion. In this definition, the particularFk selected is used as
superscript as a reminder thatFk is used to isolate the cor
responding term; it no longer appears in the functional
pendence of the observable. As an example, the transv
beam analyzing power that would be measured when obs
ing just the pion, in the present notation, would beAy0

fq(uq).
Using this definition, we end up with the following obser
ables:

AS~uq!, AS~up!: Azz~uq!: Azz~up!,

Ay0
wq~uq!, Axz

wq~uq!, AD
wq~uq!,
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Ay0
wp~up!, Axz

wp~up!, AD
wp~up!,

Ay0
wp~uq!, Ay0

2wp2wq~uq!, Ay0
2wq2wp~uq!,

Ay0
wp~up!, Ay0

2wp2wq~up!, Ay0
2wq2wp~up!,

Axz
wp~uq!, Axz

2wp2wq~uq!, Axz
2wq2wp~uq!,

Axz
wp~up!, Axz

2wp2wq~up!, Axz
2wq2wp~up!,

AD
wp~uq!, AD

wp1wq~uq!, AD
wq~up!. ~15!

These 25 independent observables are extracted from
data as follows. First, we sort the events into bins for
selected polar angleu5up or uq and azimuth functionFk to
obtain the asymmetriesSP(u,Fk), SQm

(u,Fk), and

SP,Qm
(u,Fk) in Eq. ~14!. Next, we insert the spin-depende

cross section, Eq.~4!, into the expression for the asymme
tries. For instance, for the beam asymmetry@Eq. ~14a!# this
results in SP(u,Fk)5PxAx0(u,Fk)1PyAy0(u,Fk). Simi-
larly, Eq. ~14b! yields the two relations SQj

(u,Fk)

5QA0 j (u,Fk), where j 5x or y. We then use the equiva
lences in Eqs.~6! and ~7! and the definition ofAy0

Fk(u) to
obtain

SP~u,Fk!5Ay0
Fk~u!~Py cosFk2Px sinFk!, ~16a!

SQx
~u,Fk!5Ay0

Fk~u!Q sinFk , ~16b!

SQy
~u,Fk!5Ay0

Fk~u!Q cosFk . ~16c!

The Fk distributions of the asymmetries on the left a
measured. Since Eqs.~16! constrain the ratiosPy /Q and
Px /Q, knowing just the productsPxQ and PyQ ~see Sec.
III C 3! is sufficient to extractAy0

Fk(u).
In a similar fashion, the spin correlation observables

extracted; note that the observablesAS andAzz have no azi-
muthal dependence, except for the terms containingDw
5wp2wq which will be discussed separately in the next se
tion:
SP,Qx
~u,Fk!51/2AS~u!PxQ11/2AD

Fk~u!~PxQ cos 2Fk1PyQ sin 2Fk!2Axz
Fk~p2u!PzQ cosFk , ~17a!

SP,Qy
~u,Fk!51/2AS~u!PyQ11/2AD

Fk~u!~PxQ sin 2Fk2PyQ cos 2Fk!2Axz
Fk~p2u!PzQ sinFk , ~17b!

SP,Qz
~u,Fk!5Axz

Fk~u!~PxQ cosFk1PyQ sinFk!1Azz~u!PzQ. ~17c!
2-9
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Some of the 25 observables that are determined in
manner are displayed in Figs. 5–9. Figures 5 and 6 show
spin correlation coefficientsAS(u) andAzz(u) as a function
of uq andup , respectively, for all four bombarding energie
Figure 7 shows the analyzing powerAy0

wq(uq) and the two

spin correlation coefficientsAxz
wq(uq) andAD

wq(uq) that would
be measured if only the pion were observed, i.e., if the
rection of the relativepp momentum is ignored. Similarly

FIG. 5. The observablesAS(uq) and Azz(uq) as a function of
bombarding energy. The dashed curve is obtained with the co
cients of Table IV inserted into Eqs.~11!. The solid line is the same
but takes into account the real acceptance of the detector~see Sec.
IV F!. The current status of the theory is illustrated by the dot
line ~see Sec. V B!.

FIG. 6. The observablesAS(up) and Azz(up) as a function of
bombarding energy. The curves are explained in the caption
Fig. 5.
06400
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he
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Fig. 8 shows these observables for the case where the
direction is ignored. In Fig. 9, some of the remaining po
sible observables are shown at 375 MeV, the energy with
best statistics. The errors shown in these figures are f
counting statistics only. The solid curve is obtained from E
~11! with the coefficients in Table IV, taking into account th
restricted acceptance of the detector system, while
dashed curve results when a detector with 100% accept
is assumed. The only significant effect of the restricted
ceptance occurs with the observablesAS andAzz. The dot-
ted curves are theoretical calculations that will be discus
later.

C. Az0 and AJ

The longitudinal analyzing powerAz0 and the combina-
tion AJ[Axy2Ayx of spin correlation coefficients are pro
portional to sinDw or sin 2Dw @Eq. ~11!#, where Dw[wp
2wq . Thus, these observables are invariant with respect
rotation around the beam axis, and they vanish forDw50
and p, which is the case when the momenta of the th
outgoing particles are coplanar. The vanishing of these
servables in the case of a coplanar final state is a co
quence of parity conservation. In fact, a measurement ofAz0

fi-

d

of

FIG. 7. Ay0
wq(uq), Axz

wq(uq), andAD
wq(uq) at all four bombarding

energies. These observables are based on the direction of thep0;
i.e., the relative proton momentum is ignored. The curves are
plained in the caption of Fig. 5.
2-10
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in a two-body final-state reaction~thus, in coplanar geom
etry!, or in a total cross section, has been used as a too
study the violation of parity conservation@16#.

Recently, we have published a first analysis@17# of the
longitudinal analyzing powerAz0 for pp→ppp0 in which
we demonstrated that this observable can be quite larg
noncoplanar final states are involved. Previous meas
ments of this observable are scarce: some indication o
large value ofAz0 was found@18# in another pion production
reaction,pn→ppp2 at 443 MeV, while a measurement o
Az0 in the reaction2H(p,pp)n at 9 MeV yielded values tha
are consistent with zero at the level of 0.003@19#.

In analogy with the previous section, we define the o
servablesAz0

Dw(uq), Az0
2Dw(uq), and AJ

Dw(uq) as Az0(j) and
AJ(j), integrated overup , as well as integrated over az
muth with the conditionDw5const and evaluated atDw
5p/2. This definition is suggested by Eqs.~11g! and~11h!.
Again, we can distinguishAz0

Dw(uq) from Az0
2Dw(uq) because

we know the fullDw distribution. Likewise, we define the
Dw parts ofAS and Azz as AS

Dw , AS
2Dw , Azz

Dw and Azz
2Dw , in

this case evaluated atDw50 @based on Eqs.~11c! and
~11d!#.

In order to extractAz0 andAJ from the present data, w
generate the asymmetriesSP , SQj

, andSP,Qj
as a function of

FIG. 8. Ay0
wp(up), Axz

wp(up), andAD
wp(up) at all four bombarding

energies. These observables are based on the direction of the
tive proton momentum; i.e., thep0 momentum is ignored. The
curves are explained in the caption of Fig. 5.
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Dw. It is obvious thatAy0 , Axz , andAD do not contribute in
this case, since they do not depend onDw. Ignoring for the
moment a possibleDw dependence of the spin-averag
cross section, we obtain, for the asymmetries@analogous to
Eqs.~16! and ~17!#,

SP~u,Dw!5PzAz0
Dw~u!sin 2Dw, ~18a!

SQx
~u,Dw!5SQy

~u,Dw!50, ~18b!

SQz
~u,Dw!5QAz0

Dw~p2u!sinDw1QAz0
2Dw~p2u!sin 2Dw,

~18c!

SP,Qx
~u,Dw!51/2PxQ@AS~u!1AS

Dw~u!cosDw

1AS
2Dw~u!cos 2Dw#

21/2AJ
Dw~u!PyQ sinDw, ~18d!

SP,Qy
~u,Dw!51/2PyQ@AS~u!1AS

Dw~u!cosDw

1AS
2Dw~u!cos 2Dw#

11/2AJ
Dw~u!PxQsinDw, ~18e!

ela-

FIG. 9. Some of the observables not shown in Figs. 5–8, at
MeV bombarding energy. For these observables the direction
thep0 andof the relative proton momentum have to be known. T
curves are explained in the caption of Fig. 5.
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TABLE IV. Values at the four bombarding energies of the coefficients introduced in Eqs.~11!. The
derivation of these coefficients is discussed in Sec. IV D. All values have been normalized with the co
factor 8p2/s tot . These numbers parametrize all possible initial-state polarization observables of the re
everywhere in phase space.

325 MeV 350 MeV 375 MeV 400 MeV
Value Error Value Error Value Error Value Error

E 0.721 0.082 0.410 0.086 0.221 0.030 0.043 0.05
F1 0.168 0.021 0.265 0.022 0.262 0.007 0.297 0.01
H0

00 0.111 0.005 0.325 0.010 0.517 0.015 0.660 0.01
H0

S 0.056 0.059 0.289 0.060 0.369 0.038 0.603 0.04
H0

zz 0.055 0.082 0.036 0.086 0.148 0.030 0.057 0.05

H1
001I 0.014 0.082 0.041 0.086 0.063 0.030 0.084 0.05

H2
001F21K 20.008 0.416 20.059 0.419 20.118 0.402 20.170 0.406

H1
S12I 20.017 0.060 20.051 0.064 20.080 0.020 20.105 0.028

H2
S22F212K 20.078 0.080 20.167 0.094 20.215 0.024 20.248 0.114

H1
zz2I 0.031 0.056 0.092 0.058 0.143 0.023 0.189 0.04

H2
zz2F22K 20.046 0.079 20.104 0.080 20.139 0.030 20.166 0.059

G1
z0 20.096 0.010 20.223 0.022 20.296 0.030 20.344 0.034

G1
J 20.158 0.016 20.365 0.037 20.486 0.049 20.564 0.056

H1
z0 0.019 0.002 0.057 0.006 0.089 0.009 0.117 0.01

H2
z0 20.054 0.052 0.020 0.047 20.041 0.020 0.000 0.032

H4
00 20.013 0.006 20.038 0.018 20.060 0.029 20.079 0.038

H5
00 20.056 0.006 20.165 0.018 20.257 0.029 20.325 0.038

H4
S 20.038 0.019 20.122 0.055 20.175 0.086 20.231 0.114

H5
S 20.133 0.019 20.389 0.055 20.607 0.086 20.688 0.090

H4
zz 0.025 0.019 0.074 0.055 0.115 0.080 0.152 0.11

H5
zz 0.074 0.019 0.217 0.055 0.339 0.080 0.363 0.11

G1
y0 20.079 0.016 20.196 0.016 20.223 0.005 20.291 0.009

G2
y0 0.009 0.020 20.023 0.022 0.026 0.007 0.048 0.011

G3
y0 20.018 0.038 20.149 0.038 20.298 0.013 20.347 0.021

G4
y0 0.018 0.024 0.037 0.024 0.031 0.008 0.030 0.01

G1
xz 0.223 0.058 0.396 0.056 0.473 0.022 0.574 0.04

G2
xz 0.058 0.083 20.043 0.083 0.024 0.029 0.040 0.054

G3
xz 0.146 0.140 0.017 0.136 0.245 0.051 0.195 0.09

G4
xz 0.045 0.086 20.031 0.086 0.035 0.032 0.085 0.059

H1
y01I y0 0.030 0.019 0.016 0.019 0.000 0.006 20.029 0.011

H3
y01Ky0 20.051 0.019 20.045 0.019 20.049 0.006 20.061 0.011

H4
y0 0.006 0.019 20.019 0.019 0.018 0.006 0.028 0.011

H5
y0 20.011 0.029 0.039 0.029 0.021 0.010 0.024 0.01

H6
y0 20.016 0.029 0.121 0.029 0.071 0.010 0.062 0.01

H1
xz1I xz 0.064 0.068 0.027 0.068 0.203 0.025 0.216 0.04

H3
xz1Kxz 20.123 0.068 20.193 0.068 20.188 0.025 20.316 0.047

H4
xz 20.101 0.070 20.086 0.068 0.051 0.028 20.053 0.049

H5
xz 0.016 0.102 20.259 0.102 20.315 0.038 20.391 0.070

H6
xz 0.027 0.102 0.157 0.102 0.153 0.038 0.208 0.07

H1
D 0.135 0.081 0.194 0.099 0.374 0.027 0.379 0.03

H2
D 20.069 0.120 20.020 0.141 20.008 0.036 0.072 0.054

H3
D 0.071 0.081 0.339 0.099 0.441 0.027 0.567 0.03

H4
D 0.137 0.081 0.429 0.102 0.536 0.027 0.567 0.02

H5
D 20.030 0.135 0.093 0.158 0.106 0.045 0.198 0.06
064002-12
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SP,Qz
~u,Dw!5PzQ@Azz~u!1Azz

Dw~u!cosDw

1Azz
2Dw~u!cos 2Dw#. ~18f!

These asymmetries, integrated over polar angle, are show
Fig. 10. Here,SP andSQz

reflect the beam and target analy

ing powersAz0 andA0z , which are related by Eq.~7!. The
quantitiesSQx

andSQy
are consistent with zero, as expecte

Evaluating the asymmetries as a function ofuq ~thus, in-
tegrating overup), we extract theuq distributions of the
observables by fitting with the respective functions ofDw. In
this way we obtain the observables

Az0
Dw~uq!, AJ

Dw~uq! ~Dw5p/2!, ~19!

AS
Dw~uq!, Azz

Dw~uq! ~Dw50!,

AS
2Dw~uq!, Azz

2Dw~uq! ~Dw50!.

The part ofAz0 that scales with sin 2Dw @see Eq.~11g!# was
found to be consistent with zero. It is clear from Eqs.~11g!
and ~11h! that theup dependence does not contain indepe
dent information. Thus, from theDw-dependent asymmetrie
we extract six additional observables. They are shown in
11 for the measurements with better statistics at 375 and
MeV.

D. Parametrization of the data

The expansion into functions of the anglesuq , wq , up ,
wp @Eq. ~11!# allows one to calculate all polarization obser

FIG. 10. The asymmetries versusDw[wp2wq at 375 MeV
bombarding energy. Integrated over both polar angles, the cu
represent a fit to theDw distribution according to Eq.~18!.
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ables at any point in phase space, provided the expan
coefficientsE, F, G, . . . are known. These coefficients thu
represent a parametrization of all our measurements and
stitute the central result of this experiment. The values
the coefficients, normalized by a common factor 8p2/s tot ,
are listed in Table IV. Note that the common factor canc
when calculating a polarization observableAi j by dividing
the spin-dependent cross sections0Ai j by the spin-averaged
cross sections0.

The task of determining the values of the coefficients
Eqs. ~11! is simplified by the fact that a given polarizatio
observable from the list in Eqs.~15! and ~19! depends on
only a few coefficients. For instance, the observableAy0

wq(uq)

depends onG1
y0, (H1

y01I y0), and (H1
001I ), and Ay0

wq(up)
depends onG1

y0, G2
y0, and (H2

001F21K). However, the
quality of the data, especially at the lower two energies

es

FIG. 11. Polar angleuq dependence of the observables that d
pend onDw[wp2wq , as discussed in Sec. IV C, at the two bom
barding energies with the best statistics. The curves are explain
the caption of Fig. 5.
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TABLE V. Total cross sections versus bombarding energy. The second column lists the spin-av
total cross section assumed in this paper. The next two columns show the result of this experiment
spin-dependendent total cross sections. These values have been corrected for incomplete detector a
by the amount listed in the last two columns~see Sec. IV F!.

T s tot(h) DsT /s tot DsL /s tot Corrections
~MeV! (mb) d(DsT /s tot) d(DsL /s tot)

325 7.7 21.16260.063 1.66860.116 20.106 0.026
350 17 20.57960.068 1.27860.114 20.095 0.026
375 40 20.28760.018 0.67160.046 20.059 0.021
400 86 20.09660.030 0.56560.088 20.020 20.001
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not sufficient to fit the coefficients to the data without a
constraining assumptions. In the following, we descr
these assumptions and a step-by-step procedure to dete
the coefficients of Eq.~11!.

In the first step, we address the coefficientsE, F1 , H0
00,

H0
S , andH0

zz. The corresponding terms in Eq.~11! do not
depend on angle but represent different final states (Ss)2,
(Ps)2, and (Pp)2 ~see Table II!. The relative weight of the
(Ps)2 final state follows from the spin-dependent total cro
section@Eq. ~13!#, but the relative contributions of the (Ss)2

and (Pp)2 final states can only be distinguished because t
depend on energye differently. This is explained in more
detail in Sec. IV E. Using that result, we set the coefficie
H0

00 equal tos(Pp)/s tot , the relative contribution of the
(Pp)2 final state. Having fixed the (Pp)2 strength, the coef-
ficients E, F1 , H0

00, H0
S , and H0

zz follow from Eqs. ~12!,
with the values of the spin-dependent total cross sect
DsT /s tot and DsL /s tot , which have been deduced from
the total, spin-dependent yields as listed in Table V.

Next, we turn to the coefficients that multiply the term
with (3 cos2u21) in s0 , s0AS, and s0Azz @Eqs. ~11a!,
~11c!, ~11d!#. Those coefficients areH1

00, H1
S , H1

zz, H2
00,

H2
zz, andF2, two of which can be eliminated by Eq.~12d!.

The SsSd and SsDs interference terms,I and K may be
lumped with the correspondingHk

i j terms with Eq.~12d! still
satisfied. Since calculating the observabless0Ai j /s0 in-
volves a ratio of similar functions, the statistical accuracy
the present data is insufficient to determine these coeffici
separately for each bombarding energy. Instead, we imp
an energy dependence on the coefficients by settingHk

i j (h)

5H̄k
i j
•h8/s tot(h) andF2(h)5F 2̄(h)•h6/s tot(h). The jus-

tification for this assumption is given in the next section, a
the values fors tot(h) are those listed in Ref.@11# and in
Table V. Thus, we fit five variables to the angular distrib
tions AS(uq), AS(up), Azz(uq), andAzz(up) at all four en-
ergies simultaneously. The fit is shown as a solid line in F
5 and 6; thex2 per degree of freedom is 1.5.

Next, we determine the coefficientsHk
00, Hk

S , Hk
zz (k

54,5), H1
z0 , Gz0, andGJ that appear with terms that con

tain Dw. Again, Eq. ~12d! constrains theHk
i j . The corre-

sponding observables have been discussed in Sec. IV C
again impose a bombarding energy dependence of theH co-
efficients as described in the preceding paragraph and
Gi j (h)5Ḡi j h7/s tot(h). The remaining seven variables a
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then fit to the angular distributionsAS(uq), AS
Dw(uq),

AS
2Dw(uq), Azz(uq), Azz

Dw(uq), Azz
2Dw(uq), Az0

Dw(uq), and
AJ

Dw(uq) at all four energies simultaneously. The fit is show
as a solid line in Fig. 11; thex2 per degree of freedom is 1.6

With the angular dependence of the spin-averaged c
section now known, the remaining coefficients are det
mined by fitting the corresponding observables without a
constraint on their energy dependence. The errors are
tained by propagating the statistical errors of the meas
ments.

Note that the observables@Eqs. ~15! and ~19!# are inte-
grated over eitherup or uq and thus do not constrain th
coefficientsH3

00,H3
S ,H3

zz,H2
x0, andH2

xz .
The values of the coefficients in Table IV have been o

tained from the data by taking into account the incompl
acceptance of the detector~for more detail, see Sec. IV F!.
The resulting parametrization of the data is shown as a s
line in Figs. 5–9. Using the same coefficients, but pretend
that the detector accepts all of phase space, leads to
dashed line. This illustrates the smallness of the effect
incomplete detector acceptance.

We note that the coefficientsI andK that represent inter-
fering SsSdandSsDsamplitudes always occur in a sum wit
anHk

i j coefficient. These sums become a single paramete
the analysis. Thus, the present analysis provides no infor
tion on the importance of these terms.

Equations~11! contain a total of 49 coefficients. Of thes
we determine 44 from the data~see Table IV!. Among these,
there are six known relations@Eqs.~12a!, ~12d!#, resulting in
38 numbers determined. On the other hand, the coeffici
are ~known! functions of the amplitudes listed in Table
Ignoring contributions fromSd andDs amplitudes, there are
12 amplitudes. Since there is no interference between am
tudes withsf50 andsf51, there are two free phases, and,
principle 22 real numbers should be sufficient to complet
describe the data. Thus, the parametrization presented
@Eq. ~11! and Table IV# has some redundancy; i.e., there a
relations between the parameters@in addition to those in Eq.
~12!#. These relations will be revealed in the course of t
amplitude analysis which is planned for the future.

E. Energy dependence

1. Definitions and kinematics relation

A complete description of the final-state kinematics, ap
from the four anglesup , wp , uq , wq , must include an en-
2-14
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ergy variable that specifies the sharing of the available
netic energy between the pion and theNN pair. There is only
one such variable since the total energy of the system,As, is
determined by the bombarding energy. For instance, ifq is
the magnitude of the pion center-of-mass momentum,
proton momentum in theNN rest system is given by

p5
1

2
As1224mp

2'qmaxA12~q/qmax!
2, ~20!

wheres125s22As(q21mp
2 )1mp

2 is the square of the en
ergy of theNN subsystem. The second part of Eq.~20! is the
corresponding nonrelativistic expression, which is a good
proximation near threshold. Here,qmax @Eq. ~1!# is the largest
possible pion momentum, which is realized when the t
protons are at rest relative to each other (p50). In the fol-
lowing, we use as the energy-sharing variable, the kin
energye in the NN subsystem given by

e5As1222mp , ~21!

which ranges frome50 ~when q5qmax) to emax5As
22mp2mp ~whenq50). The value foremax is determined
by the bombarding energy, orh @Eq. ~2!#, as listed in Table
III for the energies of this experiment. Using Eqs.~20! and
~21!, p andq may be expressed in terms ofe.

2. Leading contributions to the energy dependence

For a limited energy range, thedynamicsof pion produc-
tion is often considered energy independent. The strong
ergy dependence of theobservablesnear threshold is then
due to a number of known factors, as discussed in the
lowing.

The first energy dependence is due to the phase s
volumedr(e). Nonrelativistically the phase space volume
proportional toq(e)p(e)de. The second energy-depende
factor arises from the radial wave functions for the pion a
the NN pair. Close to threshold, the momentaq andp, and
thus the arguments of these wave functions, are small,
one can use their limiting form to obtain the factorql qpl p,
wherel q andl p are the respective angular momenta. It is t
factor that makes it possible to use the energy dependen
the reaction to make statements about partial-wave contr
tions, but one must keep in mind that the simple power law
an approximation, strictly true only forp→0 or q→0.

The third energy-dependent factor arises from distort
in the entrance and exit channel. By far the strongest ene
dependence is due to the final-state interaction~FSI! between
two nucleons in a relativeS state. Watson showed@20# that
the FSI energy dependence of the cross section can be
rated as a factorf (e) that follows from theNN phase shifts
at energye. One method to calculatef (e) is by representing
the S-wave phase shift by an effective-range expansi
Since the two nucleons carry charge, Coulomb repulsion
to be incorporated into the effective-range expansion@21#. In
the present work, this procedure is adopted for calculati
that involve FSIs. Other authors have used a fit to a phen
enological representation of theNN interaction to obtain
f (e) @10#.
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When integrating over the energy-sharing parametee
one obtains, via the upper limitemax, a dependence on bom
barding energy, orh. Thus, close to threshold, where on
the Sswave contributes, the shape of totalpp→ppp0 cross
section as a function of bombarding energy should be de
mined by the phase space and FSI, an expectation th
borne out by the data@5#. However, in order to reproduce th
measured proton angular distributions, one has to use a v
21.5fm for the scattering length~see Ref.@5#!. This is sig-
nificantly larger than the accepted, Coulomb-uncorrec
value for thepp scattering length ofapp527.8260.01fm
@22#. This indicates clearly that factorizing the FSI of th
protons and neglecting all other distortions in the initial a
final states is only an approximation~for more on this topic,
see Ref.@23#!.

In Eq. ~11!, the partial-wave coefficientsE, Fk , Gk
i j , Hk

i j ,
I, andK may be integrated overe. This integration is inde-
pendent of the angular variables sincee ranges from 0 to
emax for any choice of angles.

To reveal the explicit energy dependence of these coe
cients, we separate off the probabilitywL(e) with which a
given e occurs whereL denotes the set of four final-stat
angular momenta,l p , l q , l p8 , andl q8 , that occur in the bilin-
ear sums of amplitudes,

wL~e!de5z q~e!11 l q1 l q8 p~e!11 l p1 l p8 f L~e! de,
~22!

where the normalizationz ensures that*wL(e)de51. The
final-state factor is given byf L(e)5 f (e) if both l p andl p8 are
zero, by f L(e)5Af (e) if either l p or l p8 is zero, and by
f L(e)51 in all other cases. Thee dependence for partia
waves with various angular momenta is given in Table
The three functionswE(e), wF(e), and wH(e) represent
(Ss)2, (Ps)2, and (Pp)2 partial waves. For a bombardin
energy of 375 MeV, these three functions are displayed
solid curves in Fig. 12. Note thatwE(e) clearly shows an
enhancement for smalle, caused by the final-state intera
tion. In general, the weight functionswL(e) depend on the
detector acceptance, since in the laboratory the moment
the two protons do depend one. This is illustrated in Fig. 12
by Monte Carlo–generated histograms that show the ef
of a 5° central hole in the detector coverage. The con
quences of incomplete detector acceptance are discusse
ther in Sec. IV F.

As briefly noted, the dependence of the amplitudes oe
implies a dependence on bombarding energy, orh, because
the upper limitemax of the integration overe depends onh.
In the absence of FSIs, and with the nonrelativistic expr
sion for the phase volume and forp(e) @Eq. ~20!#, the inte-
gration of Eq.~22! is analytic and a simple power law re
sults. From this, we expect the partial-wave coefficientsF,
G, andH to be proportional toh6/s tot(h), h7/s tot(h), and
h8/s tot(h), respectively. Such a simple dependence on bo
barding energy is not expected for the coefficientsE, I, and
K, since these are affected by the FSI.

3. Dependence of AS and Azz on the energy-sharing parameter

Some of the coefficients in Eq.~11! cannot be distin-
guished from each other based on the angular distributio
2-15
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However, their individual values can still be assessed, us
the fact that they depend differently on the energy param
e. In this section, we explain how this can be done.

When we integrate the spin-dependent cross section
Eq. ~11! over all angles, onlys0(e), s0(e)AS(e), and
s0(e)Azz(e) remain which in turn depend on four coeffi
cients E, F1 , H0

00, H0
S , and H0

zz, where H0
zz5H0

002H0
S .

Note that these coefficients when normalized by 8p2/s tot are
related to the partial-wave total cross sectionss( l p ,l q) by
s(Ss)/s tot5E, s(Ps)/s tot5F1, and s(Pp)/s tot5H0

00.
The present notation is related to that used in Ref.@11# by
2ŝ(Pp)/s tot5H0

S . The two observablesAS(e) andAzz(e)
in terms of the partial-wave coefficients are now given b

AS~e!5
2@E•wE~e!2F1•wF~e!#1H0

S
•wH~e!

E•wE~e!1F1•wF~e!1H0
S
•wH~e!

,

~23a!

Azz~e!5
2E•wE~e!2F1•wF~e!1~H0

002H0
S!•wH~e!

E•wE~e!1F1•wF~e!1H0
S
•wH~e!

.

~23b!

In these equations, the probabilitieswE , wF , andwH are
known functions ofe that differ from each other~see Fig.
12!. Thus, it is possible to determine the coefficientsE, F1 ,
H0

00, andH0
S from a fit to the measuredAS(e) andAzz(e).

These coefficients are not accessible separately by a stu
the angular distributions. A similar method has been app
previously@10# to the spin-averaged total cross section a
function of e.

From the set of good events we determineAS(e) and
Azz(e) following the same procedure as described in S
IV B, except that the argumentuq ~or up) is replaced by the

FIG. 12. The probabilitywL(e) as a function of the energy
sharing parametere/emax. The solid line corresponds to Eq.~22!,
while the Monte Carlo–generated histograms show the effect of
central hole in the detector stack.
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energy-sharing parametere. The result is shown in Fig. 13
for all four bombarding energies. The solid curves are o
tained from Eq.~23! with weight functionswL that take into
account the acceptance of the detector. The coefficient
Eq. ~23! were forced to depend on bombarding energy
F1(h)5F̃1h6/s tot(h), H0

00(h)5H̃0
00h8/s tot(h), and

H0
S(h)5H̃0

Sh8/s tot(h). At T5325 MeV an accurate value
for the total cross section exists (s tot57.7060.26mb @5#!.
However, at higher energies, data are few and of poor q
ity. For the present purpose we use fors tot(h) a smooth
approximation to the world’s data~see Ref.@11# and Table
V! Assuming that there are no other partial waves, we h
E512F12H0

00. Therefore, only three energy-independe
parameters are adjusted. Thex2 of the best fit per degree o
freedom is 1.8, which leads us to suspect that the limitati
of the simple energy dependence adopted here may be
ticeable, especially at the higher energies. The resul
partial-wave contributions to the total cross section
shown in Fig. 14. The error bars are obtained by repea
the fit by varying the values assumed fors tot or by using

e

FIG. 13. Dependence ofAS andAzz, integrated over both pola
angles, on the energy-sharing parametere/emax. The solid lines
represent a three-parameter fit to the data at all four energies si
taneously; see Sec. IV E 3.

FIG. 14. Contribution of the three possible final-state angu
momenta to the total cross section. The dashed and solid lines
resent the expectedh6 (h8) dependence of thePs~Pp! partial-wave
cross section, while the dotted line indicates the remainder, wh
represents theSspartial-wave cross section.
2-16
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weight functionswL calculated directly from Eq.~22!, as
would be appropriate for a detector with 100% acceptan
The dashed line in Fig. 14 represents the expectedh6 depen-
dence of thePs partial cross section,s(Ps)5F1, and the
solid line corresponds to the imposedh8 dependence o
s(Pp)5H0

00, while the dotted line indicates the remainde
given by E512F12H0

00, which represents theSs partial-
wave cross section.

4. Dependence of observables on bombarding energy

As pointed out at the end of Sec. IV E 1, based on
phase space, angular momentum dependence of the
functions, and FSI, we expect that the partial-wave coe
cientsF, G, andH times the total cross sections tot(h) are
proportional toh6, h7, andh8, respectively. We have als
explained that the integration overe is independent of the
angular variables. Thus, each of the coefficients in Eq.~11!
that does not contain aNN Sstate (F, G, andH coefficients!
is expected to obey such a power law. In order to test
expectation, we have to multiply the values for the coe
cients in Table IV by the total cross sections tot(h) at the
corresponding energy. Fors tot(h) we use a smooth approx
mation to the world’s data, as explained in the previous s
tion. The resultingh dependence of some of the coefficien
in Table IV that have been obtained without constrain
their energy dependence is shown in Fig. 15. The two li
shown in the figure correspond to the best fit with anh7 or
h8 dependence. As can be seen, the simple power-lawh
dependence of the coefficients is at least qualitatively c
rect. This is also true for the coefficient (H3

xz1K/2), which
could in principle contain a contribution from aDs ampli-

FIG. 15. Dependence of some of the coefficients of Eqs.~11!
and Table IV on the bombarding energy. The two lines are prop
tional to h7 ~solid! ~expected for theG coefficients! and h8

~dashed! ~expected for theH coefficients!.
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tude. The observation that theG andH coefficients obey the
power law that is expected from the ‘‘trivial’’ energy
dependent factors confirms a similar finding based on par
wave contributions to the spin-dependent total cross sect
@11#.

F. Systematic uncertainties and corrections

1. Corrections for a nonideal detector

For a number of reasons, the apparatus does not regi
all the generatedpp→ppp0 events. The main loss of even
occurs because the detector system has a hole in the cen
allow for the 3-cm-diam beam pipe just downstream of t
target. Seen from the center of the target, this hole subte
a cone with about 5° opening angle. Between 25%~at 325
MeV! and 10%~at 400 MeV! of all events have at least on
proton that falls into this cone. At 400 MeV a few percent
the events miss the detector on the outside, and about
contain a proton that is energetic enough to fire the v
detector. In about 2% of the events, both protons strike
same segment of the E detector, and therefore do not trig
the detector. The efficiency of an individual wire chamb
plane is between 93% and 95%, but since only three pla
have to respond for a valid event, only about 8% of all eve
are lost because of this. All of these effects combin
amount to a loss of events between 30% and 22% for
energies from 325 MeV to 400 MeV. A Monte Carlo simu
lation of the detailed detector performance was used to
termine these numbers. Reactions in the scintillators m
lower the proton energy measured by the K and E scinti
tors, leading to a tail of thep0 peak in the missing-mas
spectrum~Fig. 4!, placing some good events outside the a
cepted mass range. However, there is no evidence for a
nificant tail in the mass spectrum.

The correction of the data presented in this paper for
losses discussed above turns out to be small. This is bec
polarization observables are a ratio of yields measured w
and without polarization. If the fraction of lost events is th
same in both cases, there is no net correction. For this rea
there is no correction for the data in a given volume elem
dVpdVqde of the five-dimensional phase space. Thus, c
rections arise only when integrating over some region of
phase space.

Acceptance corrections are estimated as follows. Let
denote bya(j) the detector acceptance at a given pointj in
phase space. Since the corresponding event is either se
not seen,a(j) has a value of 1 or 0. In five-dimensiona
phase space the transition froma50 to a51 occurs at well-
defined boundaries. However, when one integrates over
eral variables, the dependence ofa on the remaining vari-
ables is smoothed out, and this is another reason for
smallness of the acceptance corrections. Since the functi
dependence of the observables on all five variablesuq , wq ,
up , wp , and e is known, we can carry out the integratio
over kinematic variables, weighting the integrand witha(j)
and thus taking into account the real detector accepta
These integrals are evaluated numerically using the Mo
Carlo method for each of the partial waves in Table II a
for each of the trigonometric functions of the kinematic va

r-
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ables. For comparison, settinga51, independent ofj, yields
the result for a detector with 100% acceptance. The effec
incomplete acceptance on the angular distributions is il
trated in Figs. 5–9. The solid curve is obtained from E
~11! and the coefficients in Table IV using the true detec
acceptance, while the dashed line results when 100% de
tor acceptance is assumed. As can be seen the effect
very small.

The acceptance corrections for the total cross secti
Eq. ~12!, involve the integrals over the entire phase space
three partial waves with the final statesSs, Ps andPp, cor-
responding toE, F1, andH in Eq. ~12!. Again, if the frac-
tional loss for all three partial waves were the same, th
would be no correction. However, as can be seen from
12, theSspartial wave is affected more strongly by losses
the central hole than the other two partial waves. In orde
evaluate the correction forDsT /s tot andDsL /s tot the rela-
tive strength of the three partial waves is taken as show
Fig. 14. The resulting corrections are listed in Table V. Th
are slightly different than those used in Ref.@11# because
more has since been learned about the relative importanc
the three contributing partial waves.

2. Other systematic effects

The dead time of the data acquisition system was m
sured for each of the different spin states of beam and tar
The dead time is a few percent and differences between
states are less than 1023. Thus, dead time effects can b
neglected.

The reconstruction of the pion polar angleuq depends
sensitively on the absolute energy calibration of the E an
scintillators, since the pion has to account for the remain
momentum. However, because of the identity of the collis
partners, the spin-averaged cross section has to be symm
arounduq590°. This condition has been used as one of
criteria in determining the energy calibration of the scintil
tors.

Finally, one has to worry about the resolution of the d
tector system as a whole for the cms anglesup ,fp ,uq , and
fq . This has been studied with a Monte Carlo simulation
the response of the detector system. The generated e
were processed by the same code that was used to an
the data. For all four angles, the difference between the
constructed angle and the ‘‘true’’ angle~as chosen initially
by the Monte Carlo simulation! falls into a distribution
which is very nearly a Gaussian, centered on zero within
widths of the distributions. We identify the angular reso
tion with the s of this Gaussian in each case. These dis
butions vary somewhat with beam energy and are widest
the lowest-energy data. Therefore, we here report thes of
the Gaussian fit to each distribution at 325 MeV beam
ergy. The results ares53.0° for up , 1.5° for fp , 8.0° for
uq , and 6.0° forfq . The s corresponding to the cos(up)
distribution of errors is 0.04, and for cos(uq) it is 0.12. There
is no correlation observed between the errors in the rec
structedp andq vectors. Clearly, this resolution is sufficien
to resolve the harmonic content of the angular distributio
in this experiment.
06400
of
-
.
r
c-

are

s,
r

re
g.

o

in
y

of

a-
et.
in

K
g
n
tric
e

-

f
nts
yze
e-

e
-
i-
or

-

n-

s

V. COMPARISON WITH THEORY

A. Current status of the theory of NN\NNp

The advent of new data due to the three technical
vances mentioned in Sec. I was answered by theoretical
velopments. The first measurements triggered a study
quantum number selection rules, of the role of the final-st
interaction, and of nucleon excited states, and led to a the
of pion production in analogy with quantum electrodyna
ics. The availability of kinematically complete cross secti
data led to the application of effective chiral Lagrangians,
soft pion techniques, and models with coupled channels,
the recent precise cross section data close to threshold
tained at storage rings stimulated the construction of me
exchange models, and a study of the short-range part of
NN interaction as well as the role of chiral symmetry in t
interpretation of pion production. A review of the develop
ment of the theory ofpNN systems, prior to 1990 is given in
Ref. @24#.

We now recognize the fact that the reactionpp→ppp0

near threshold is sensitive to short-range exchange me
nisms in the two-nucleon system, because the main pion
change term is prohibited by isospin conservation. Soon a
the first accurate total cross section measurement with
electron-cooled beam@5#, it was realized@25,26# that pion
production on a single nucleon underestimates the empir
cross section by about a factor of 5. Lee and Riska propo
@27# that this shortfall of the theoretical cross section mig
be explained by the omission of pair diagrams with an
changed heavy meson (s, v). This was confirmed quantita
tively @28#. Subsequently, the role of residual, virtual pio
exchange was found to be not necessarily small@29,30#.
However, at this time the role of pion rescattering is s
controversial, especially since field theoretical models a
chiral perturbation theory@31,32# disagree on the sign of th
pion exchange amplitude. On the other hand, the importa
of heavy-meason exchange also has been questioned@33#.
Additional short-range mechanisms have been studied
well, including transition couplings between different e
changed mesons@34# and the role of theD~1232! isobar
@26,32,30# and theS11 andD13 nucleon resonances@35#. An
interpretation of the reaction on the basis of approximat
conserved chiral symmetry@36,37,31,32# has, so far, not
been able to reproduce the cross section close to thresh
Fully relativistic calculations have been carried out in a c
variant one-boson exchange model with parameters fitte
the amplitudes of elasticNN scattering@38,39#.

B. Theory and polarization observables

The impressive theoretical effort during the past deca
that is summarized in the preceding section has been mo
devoted to a study of the lowest partial wave. Since, as
have seen, the energy dependence of that partial wave is
described by ‘‘trivial’’ factors, this means that, so far, on
its strength, i.e., a single experimental number, has been
fronted with theory. Some of the models mentioned in t
preceding section naturally include higher partial waves a
thus would be able to predict polarization observables. Ho
2-18
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ever, at this time, such calculations have only been car
out by groups at Osaka@40# and at Ju¨lich @30,41,42#.

Pion production in the Ju¨lich model @43# includes direct
production,s- andp-wave pion rescattering, an intermedia
D~1232! nucleon excited state, and a contribution from p
diagrams. The latter carries an adjustable parameter;
taken to represent those short-range mechanisms that ar
explicitly included in the model. Final-state angular m
menta up to 2 are included. The prediction of the Ju¨lich
model for some of the observables presented in this pap
shown as a dotted line in Figs. 5–8. It is fair to say that th
is little similarity between theoretical estimates and the da
We hope that the theoretical community views this disagr
ment as a challenge.

Finally, we point out that the experimental informatio
now available offers the possibility to discuss individual r
action amplitudes, and that a comparison with theory sho
take place on this level. Such a study is currently in progre

VI. SUMMARY AND CONCLUSIONS

We have studied the reactionpp→ppp0, kinematically
complete, with a polarized beam and a polarized target.
experiment relies on the advantages offered by the use o
internal target in a storage ring. The experiment has b
carried out at four bombarding energies between 325
400 MeV. In this energy range theSspartial wave ceases t
be dominant, and higher partial waves become impor
~see Fig. 14!.

Throughout the present energy region, the number of
nificant partial amplitudes is still small~at most 12!. Under
these conditions, it is feasible to expand the observables
a complete set of angular functions. The expansion coe
cients are determined from the data. This results in a par
etrization of the findings of this experiment and allows o
to calculate any analyzing power or correlation coefficie
for any configuration of the three-body final state. We
clude as an appendix the necessary framework to dis
polarization observables in a reaction with polarized spin-
collision partners and a three-body final state.

From a formal partial-wave analysis we learn that the a
plitudes can be arranged into the two groups~Ss, Sd, Ds! and
~Ps, Pp!, and only amplitudes within one group can interfe
with each other. We also see that in the coefficients of
angular distributions, terms that represent the interfere
between~SsSd! and ~SsDs! amplitudes, always occur in
sum with a term that contains onlyPp waves. These sum
then become a single parameter in the analysis. Thus
contribution fromSd and Ds partial waves cannot be de
duced from the angular distribution and must rely on a stu
of the energy dependence. However, we find no evide
that terms that containSd and Ds partial waves depart in
their energy dependence from what is expected for the c
petingPp wave alone.

The formalism presented in this paper shows that it
possible to calculate the observables from the partial-w
amplitudes directly. Embedding this calculation into a fitti
procedure would allow one to discuss the constraints on
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dividual amplitudes that follow from the present measu
ment. Such an amplitude analysis is currently in progres
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APPENDIX: PARTIAL-WAVE FORMALISM

1. Expansion of the reaction amplitude

We present here the details of the partial-wave formali
which was employed to determine the form of the angu
distributions of the cross section and polarization obse
ables, Eqs.~11!. The main difficulty for reactions such a
pp→ppp0 is to understand how a partial-wave expansi
can be carried out for situations in which the final state h
three particles.

We work in the c.m. frame and adopt coordinatesr andr
conjugate to the momentap andq of Fig. 2. The symbolC
represents the full wave function of the system that evol
from thepp initial state, and we wish to focus on the com
ponents ofC which correspond to some three-body chan
b. We know from Ref.@44# that for reactions leading to
three-body final states, the outgoing wave in the asympt
region is of the form

Cb~r,r!→ ei jRb

Rb
5/2

f b~p,q;ki !, ~A1!

whereki is the initial momentum. The quantitiesj and Rb
are given by

j252Am1m2Eb /\2 ~A2!

and

Rb
25~m1r 21m2r2!/Am1m2, ~A3!

wherem1 andm2 are the reduced masses associated with
coordinatesr andr, andEb is the available kinetic energy in
the final state.

If the particles have spin, we may construct a wave fu
tion with spin projectionssa andsb for the two particles in
the initial state, and the full wave functionC that evolves
from this initial state will contain outgoing waves with var
ous final-state spin projectionss1 , s2, and s3. It follows
that the reaction amplitudesf b must carry all five spin labels
Isospin projection quantum numbers may be incorporate
a similar way.
2-19
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Formal expressions for the reaction amplitudes can be
tained by employing a three-body Green’s function@45# in
conjunction with a Lippmann-Schwinger-like equation~see
Ref. @44#!. The result for the asymptotic wave function
channelb is

Cb~r,r!→ i S 2

pj D 1/2ei jRb

Rb
5/2

Ebm1m2

~2p\2!2 ^c f uVbuC&, ~A4!

whereVb is some kind of interaction potential and

c f5eik•reiq•rf1f2f3 . ~A5!

In this last formula thef i ’s are the internal wave function
of the particles in the final state. Forpp→ppp0 these are
just spin and isospin wave functions. The matrix elemen
Eq. ~A4! implies integration over all coordinates of the pro
lem, and the actual dependence ofCb on r and r is con-
tained in theei jR/R5/2 factor. The formula for the reaction
amplitude can simply be read off from Eq.~A4! with the
help of Eq.~A1!.

To obtain a partial-wave expansion off b we need to ex-
pand bothC and the outgoing plane waves in terms of a
gular momentum eigenfunctions. One begins by dividingC
into two parts,

C5c i1F, ~A6!

where c i is the unscattered incident plane wave andF is
everything else. Forc i we write

c i5xa
sa xb

sb ha
ta hb

tb eiki
•r i , ~A7!

where thex ’s andh ’s are spin and isospin wave function
respectively.

For the angular momentum expansion we choose b
states that are simultaneous eigenfunctions of the initial t
spin si , orbital angular momentuml, total angular momen-
tum J, and total isospin t, with the coupling orders
@(sa ,sb)si ,l #J and (ta ,tb)t. We use the symboln to denote
initial state quantum numbersJ, l, si , and t. Then, by em-
ploying standard angular momentum identities~see, for ex-
ample, Ref.@46#! we obtain

c i54p(
n

(
M ,l,s i ,t

^sasa ,sbsbusis i&^sis i ,lluJM&

3 ^tata ,tbtbutt& j l~kir i ! Y n
M ,t Yl

l* ~ k̂i !, ~A8!
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whereYn is the angular momentum/isospin function:

Y n
M ,t5 (

sa ,sb ,s i
l,ta ,tb

^sasa ,sbsbusis i&^sis i ,lluJM&

3^tata ,tbtbutt& i l Yl
l~ r̂ i ! xa

sa xb
sb ha

ta hb
tb . ~A9!

One can easily argue that the full wave functionC must
have the same basic angular momentum structure asc i . To
see this we write the Bessel functionj l in terms of spherical
Hankel functions so thatc i becomes a sum of ingoing an
outgoing spherical waves, each having well-defined quan
numbers. For example, the ingoing wave in a given angu
momentum channel will have the asymptotic form

xn
( in)→2S 1

2ik i r i
D e2 i (ki r i2 lp/2) Y n

M ,t . ~A10!

We then assume that whatever interactions are present
serve total angular momentum and total isospin. These in
actions affect the outgoing waves but do not alter the ingo
wave, and so it follows that the full wave function will be o
the form

C54p(
n

(
M ,l,s i ,t

^sasa ,sbsbusis i&^sis i ,lluJM&

3^tata ,tbtbutt& Fn
M ,t Yl

l* ~ k̂i !, ~A11!

where Fn
M ,t is the wave function that evolves fromxn

( in) .
Although the exact form ofFn may not be known, by our
assumptions it must be an eigenfunction ofJ, M, t, and t.
The formula in Eq.~A11! is our working equation for the
expansion ofC.

The three-body final state wave function given in E
~A5! must also be expanded in terms of angular momen
eigenfunctions. For now we keep the discussion general
allow all three particles to have nonzero spin. Symbolica
the coupling order we adopt i
$@(s1 ,s2)sf ; l p# j :@s3 ; l q# j 8%J8 for the angular momenta an
@(t1 ,t2)t f ;t3#t8 for the isospins. The corresponding angu
momentum/isospin functions are
Y b
M8,t85 (

s1 ,s2 ,s3 ,s f ,m,m8
t1 ,t2 ,t3 ,t f ,lp ,lq

^s1s1 ,s2s2usfs f&^sfs f ,l plpu jm&^s3s3 ,l qlqu j 8m8&^ jm, j 8m8uJ8M 8&^t1t1 ,t2t2ut ft f&

3^t ft f ,t3t3ut8t8& i l p1 l q Yl p

lp~ p̂! Yl q

lq~ q̂! x1
s1 x2

s2 x3
s3 h1

t1 h2
t2 h3

t3 , ~A12!

where in this contextb is shorthand for the final-state quantum numbersl p , l q , j, j 8, J8, sf , t f , andt8. The expansion ofc f
in terms of theY functions is
2-20



y

of

the

nts

COMPLETE SET OF POLARIZATION OBSERVABLES IN . . . PHYSICAL REVIEW C 63 064002
c f5~4p!2(
b

(
M8,s f ,t f ,t8
m,m8,lp ,lq

^s1s1 ,s2s2usfs f&^sfs f ,l plpu jm&^s3s3 ,l qlqu j 8m8&^ jm, j 8m8uJ8M 8&^t1t1 ,t2t2ut ft f&

3^t ft f ,t3t3ut8t8& j l p
~pr ! j l q

~qr! Y
l p

lp* ~ p̂! Y
l q

lq* ~ q̂! Y b
M8,t8 . ~A13!

We may now obtain the partial wave expansion off b by substituting Eqs.~A11! and ~A13! into Eq. ~A4!. The result is

f sa ,sb

s1 ,s2 ,s35 i S 2

pj D 1/24Ebm1m2

\4 (
n,b,M ,M8l,s i ,t,t8
s f ,m,m8,t f ,lp ,lq

^sasa ,sbsbusis i&^sis i ,lluJM&^tata ,tbtbutt&^s1s1 ,s2s2usfs f&

3^sfs f ,l plpu jm&^s3s3 ,l qlqu j 8m8&^ jm, j 8m8uJ8M 8&^t1t1 ,t2t2ut ft f&^t ft f ,t3t3ut8t8&

3^ j l p
~pr ! j l q

~qr!Y b
M8,t8uVbuFn

M ,t&Yl
l* ~ k̂i ! Yl p

lp~ p̂! Yl q

lq~ q̂!. ~A14!

At this point we can simplify the result by assuming that the interaction potentialVb is a rotational scalar in both ordinar
and isospin space. It follows that the matrix elements are nonzero only for$J,M ,t,t%5$J8,M 8,t8,t8%. Furthermore, we know
from the Wigner-Eckhart theorem that, for a given set of quantum numbersn andb, the matrix elements are independent
both M andt. With this in mind we adopt the shorthand notation

Ua~e!5A2J11 ^ j l p
~pr ! j l q

~qr! Y b
M ,tuVbuFn

M ,t&, ~A15!

where, as in Eq.~10!, a is shorthand for the full set of initial- and final-state quantum numbers. We see from Eq.~A15! that
the matrix elementUa depends explicitly on the momentum parametersp and q. These parameters are constrained by
requirement that the total kinetic energy in the final state must beEb , and thereforeU is effectively a function of the energy
sharing parametere.

To obtain our final expression for the reaction amplitude we adopt the coordinate frame of Fig. 1, in which thez axis is
alongki . The result is

f sa ,sb

s1 ,s2 ,s35
8iA2

Aj

Ebtm1m2

\4 (
a,m,s i ,t

s f ,mp ,mq ,t f ,lp ,lq

^sasa ,sbsbusis i&^sis i ,l0uJM&^tata ,tbtbutt&^s1s1 ,s2s2usfs f&

3^sfs f ,l plpu j pmp&^s3s3 ,l qlqu j qmq&^ j pmp , j qmquJM&^t1t1 ,t2t2ut ft f&^t ft f ,t3t3utt&

3F 2l 11

2J11G1/2

Ua~e! Yl p

lp~ p̂! Yl q

lq~ q̂!. ~A16!

Equation~A16! simplifies considerably if we specialize forpp→ppp0. In this case the isospin Clebsch-Gordan coefficie
become constant numerical factors. In additions3 is zero andl q5 j q . The result is

f sa ,sb

s1 ,s25
8i

Aj

Ebtm1m2

\4 (
a,M ,s i ,m
lp ,s f ,lq

F 2l 11

2J11G1/2

^sasa ,sbsbusis i&^sis i ,l0uJM&^s1s1 ,s2s2usfs f&^sfs f ,l plpu jm&

3^ jm,l qlquJM& Ua~e!tYl p

lp~ p̂! Yl q

lq~ q̂!. ~A17!
er
io
w
dy

s.
a-

tion
2. Cross section and polarization observables

In most respects, the procedure for obtaining the obs
ables from the reaction amplitude is the same as for react
with two-body final states. In particular one can sho
that the fivefold differential cross section for a three-bo
final state is proportional tof b f b* ~averaged over initial
spin states and summed over final spin states!, where the
06400
v-
ns

proportionality constant involves only kinematic factor
For our purposes it is useful to introduce a ‘‘reaction m
trix’’ M directly proportional tof, with normalization chosen
in such a way that the spin-dependent partial cross sec
Ds for reactions leading from initial statesa ,sb to final
states1 , s2, with p̂ and q̂ in the intervalsDVp andDVq ,
and with the energy-sharing parametere in the intervalDe is
given by
2-21
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Ds5uMsasb

s1s2u2DeDVpDVq . ~A18!

For the case in whiche is taken to be thepp relative kinetic
energy@as in Eq.~21!# the result forM is

Msa ,sb

s1 ,s258i Fm1m2pq

v i\
5 G1/2

(
a,M ,s i ,m
lp ,s f ,lq

F 2l 11

2J11G1/2

3^sasa ,sbsbusis i&^sis i ,l0uJM&

3^s1s1 ,s2s2usfs f&^sfs f ,l plpu jm&

3^ jm,l qlquJM& UatYl p

lp~ p̂! Yl q

lq~ q̂!, ~A19!

wherev i is the relative velocity in the initial state.
The differential cross section and polarization observab

may now be obtained directly from the reaction matrixM. In
general, the observablesO are found by taking the trace of
matrix product, i.e.,

O5Tr@MTM†#, ~A20!

whereT is the appropriate operator. To obtain the unpol
ized cross section, the partial cross sections of Eq.~A18! are
to be summed over final states and averaged over in
states with the result

s05
1

~2sa11!~2sb11!
Tr@MM†#. ~A21!

The polarization observables are obtained by using
appropriate spin operators forT in Eq. ~A20!. For the ana-
lyzing powers the operators we want are the Pauli matric
and the result is

s0Ai05
1

~2sa11!~2sb11!
Tr@Ms iM

†#, ~A22!

where the subscripti can bex, y, or z. In a similar way, the
spin correlation parameters are obtained by using forT the
direct product of the Pauli matrices for beam and target p
ticles:

s0Ai j 5
1

~2sa11!~2sb11!
Tr@Mts i

(b)
^ s j

(t)tM†#.

~A23!

Obtaining the partial-wave expansions is simplified co
siderably if one introduces spherical tensor spin operator
use in place of the Cartesian spin operators that appea
Eqs. ~A22! and ~A23!. The new operators transform und
rotations like the spherical harmonics and are defined,
each particle, by the equations

t005I ,

t105sz ,
06400
s

-

al

e

s,

r-

-
to
in

r

t16157
1

A2
~sx6 isy!, ~A24!

where I is the 232 unit matrix. Associated with these op
erators, there is corresponding set of ‘‘spherical tensor’’ p
larization observables@47#

Tk1q1 ,k2q2
5

1

~2sa11!~2sb11!
Tr@Mtk1q1

(b)
^ tk2q2

(t) M†#.

~A25!

From the definitions given above, it is straightforward
find simple relationships between the Cartesian analyz
powers and spin correlation coefficients and the spher
tensor observables. The relevant formulas are

s05T00,00,

s0 Ay052A2 Im @T11,00#,

s0 Az05T10,00,

s0 Azz5T10,10,

s0 AS522 Re@T11,121#,

s0 AD52 Re@T11,11#,

s0 Axz52A2 Re@T11,10#,

s0 AJ52 Im @T11,121#. ~A26!

The introduction of the spherical tensor spin operat
leads to a compact, general formula for the partial-wave
pansion of the observables. The simplification comes fr
the fact that the spin operators of Eq.~A24! can be repre-
sented in angular momentum language:

^sutkqus8&5~2 !s2s8A2s11^ss,s2s8ukq&. ~A27!

To obtain the partial-wave expansion formula we no
substitute this expression, along with Eq.~A19! for M, into
Eq. ~A25!. The angular dependence of the observables
expressed as an expansion in terms of bipolar harmonic

BLp ,Lq ;L
L ~ p̂,q̂!5 (

Lp ,Lq

^LpLp ,Lq LquLQ& YLp

Lp~ p̂! YLq

Lq~ q̂!.

~A28!

After carrying out an angular momentum reduction th
eliminates the sums over the magnetic quantum numbers
obtain the result

Tk1q1 ,k2q2
5

1

~2sa11!~2sb11! S 16m1 m2 p q

v i p \5 D
3 (

Lp ,Lq ,L F (
a,a8

CLp ,Lq ;L
a,a8;k Ua~e! Ua8

* ~e!G
3BLp ,Lq ;L

Q ~ p̂,q̂!, ~A29!
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where the labelk is shorthand for the indicesk1q1 ,k2q2 and
whereQ5q11q2.

Equation ~A29! represents our central result for th
partial-wave expansion of the cross section and polariza
observables. Each observable has a set of allowed ang
dependences,BLp ,Lq ;L

Q ( p̂,q̂), and the factor inside the squa

brackets gives the expansion coefficient. Each of these c
in
o

u

ut
9

at
a
rv

06400
n
lar

ef-

ficients is a sum of terms involving an angular momentu
coupling coefficientC and a bilinear product of matrix ele
mentsUa . The selection rules that determine which parti
wave combinations contribute to a given angular function
contained in theC coefficients.

The angular momentum coefficients are given by the f
lowing expression:
CLp ,Lq ;L
a,a8;k 5~2 ! l p81 l q81 l 1si2J2si81J8 dsf ,s

f8 (
I ,K

@~2sa11!~2sb11!~2k111!~2k211!~2K11!3~2I 11!~2si11!~2si811!

3~2l 11!~2l 811!~2l p11!~2l p811!~2l q11!~2l q811!~2 j 11!~2 j 811!~2J11!~2J811!#1/2 ^ l0,l 80uI0&

3^I0,KQuLQ&^ l p0,l p80uLp0&^ l q0,l q80uLq0&^k1q1 ,k2q2uKQ& W~ j ,sf ,Lp ,l p8 ; l p , j 8!H si J l

si8 J8 l 8

K L I
J

3H j l q J

j 8 l q8 J8

Lp Lq L
J H sa sa k1

sb sb k2

si si8 K
J . ~A30!
ws
y in-

e
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-
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in-

spin

Eq.
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on
This equation differs from the analogous formula given
Ref. @9# in two respects. First of all the Clebsch-Gordan c
efficient ^ l0,l 80uI0& was inadvertently omitted in Ref.@9#.
Second, we have changed the coupling order for the ang
momenta in the initial state@see Eqs.~A8! and~A9!# and this
results in additional phase factors inC.

Although the expression given in Eq.~A30! is fairly com-
plex, the coefficients are easily evaluated since comp
codes for calculating the Clebsch-Gordan, Racah, andj
symbols are readily available.

The expansion formulas given in Eq.~11! are obtained
most readily by substituting Eq.~A28! into Eq. ~A29! to
obtain

Tk1q1 ,k2q2
5

1

~2sa11!~2sb11! S 16m1 m2 p q

v i p \5 D
3 (

Lp ,Lq ,m F (
a,a8

XLp ,Lq ,m
a,a8;k Ua~e! Ua8

* ~e!G
3YLp

m ~ p̂! YLq

Q2m~ q̂!, ~A31!

where the coefficientsX are given by

XLp ,Lq ,m
a,a8;k 5(

L
^Lpm,Lq Q2muLQ& CLp ,Lq ;L

a,a8;k . ~A32!

Equations~11! are then obtained by using Eq.~A31! in con-
junction with Eqs.~A30! and ~A32! assuming that only the
partial waves of Table I contribute and that terms quadr
in Sd or Ds are negligible. In general, one finds that only
few distinct angular functions are allowed for each obse
-

lar

er

ic

-

able. The constraints, which arise from conservation la
and the antisymmetrization requirements, can be seen b
specting Eq.~A30!.

The first constraint comes from thedsf ,s
f8

factor. Forpp

→ppp0, sf is thepp total spin quantum number. Since w
have only antisymmetricpp states, the conclusion is tha
there will be no interference between evenl p and odd l p
partial waves.

The next constraint is on the allowed values ofLp . This
constraint comes from the Clebsch-Gordan coefficie
^ l p0,l p80uLp0& which requires thatl p l p8 and Lp satisfy the
triangle inequality and also thatl p1 l p81Lp be even. There
are analogous constraints onLq . Thus, for example, interfer-
ence betweenPs and Pp may give rise to angular distribu
tions with Lp50 and 2 and withLq51. For the conditions
we assume, the angular distributions involve no spher
harmonics of degree greater thanL52.

One can easily demonstrate from Eq.~A30! that X coef-
ficients are either symmetric or antisymmetric under the
terchange ofa anda8:

XLp ,Lq ,m
a,a8;k 5~2 !k11k2XLp ,Lq ,m

a8,a;k . ~A33!

This means that the unpolarized cross section and the
correlation parameters depend only on Re@UaUa8

* # whereas
the analyzing powers depend only on Im@UaUa8

* #. One con-
sequence is that the factor inside the square brackets in
~A29! is either purely real or purely imaginary. From this
follows that a given observable will depend either
Re@YLp

m ( p̂) YLq

Q2m(q̂)# or on Im@YLp

m ( p̂) YLq

Q2m(q̂)#, and as a
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result thef dependences of the allowed angular distributio
are relatively simple. In particular we see thats0 Az0 and
s0 AJ ~both of which haveQ50) go as sin@m(fp2fq)#,
while the remaining observables go as cos@m(fp2fq)
w,

te
F.

M

h-

-
.

n,

nd

06400
s1Qfq].
The formalism outlined in this appendix leads to a nu

ber of additional useful results that are described in the m
text and in other publications.
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