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Complete set of polarization observables irﬁﬁ—»ppwo close to threshold
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In a kinematically complete experiment we have measured the two analyzing powers and the five spin
correlation coefficients of the reactiqfrﬁﬂppwo as a function of all five parameters of the three-body final
state for bombarding energies between 325 and 400 MeV. The data are in disagreement with the theoretical
predictions available at this time. Below 400 MeV, fewer than a dozen complex partial-wave amplitudes are
likely to be significant, and it is expected that the present experimental information constrains these ampli-
tudes. We also describe the formalism for an expansion of the spin observables into a complete set of angular
functions and use this to completely characterize the polarization information obtainable from reactions with
polarized spin-1/2 collision partners and a three-body final state.
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[. INTRODUCTION production in the nucleon-nucleon system is related to spe-
The behavior of a system consisting of two nucleons andific technical advances. The first was the development of
a pion is basic to classical nuclear physics. It is thus araccelerators with sufficient energy, which led to the first ob-
important task to try to relate the process of pion productiorservation of theop— pp reaction[1] just a few years after
in a nucleon-nucleonN(N) collision to our understanding of the pion was discovere®] and 17 years after it was pre-
the NN interaction or to constraints given by basic symme-dicted by Yukawd 3]. The second was the construction of
tries, or, ultimately, to a model that features the constituentsneson factories with intense, well-defined proton beams that
of nucleons and mesons. The theoretical task was expectedade possible accurate and kinematically complete cross
to be relatively simple at energies very close to thresholdsection measurements, and the third was the advent of stor-
because only a single angular momentum channel contritege rings with electron-cooled beams and internal tafdéts
utes. which started to operate in the late 1980s, and which opened
Triggered by the advent of new cross section data close tap the near-threshold region for experimental study.
threshold, there has been a flurry of theoretical activity dur- Measurements of pion production jrp collisions benefit
ing the past five years devoted to an understanding of th&fom storage ring technology mainly in two ways. The first
lowest partial wave(see Sec. V A for more details on the concerns the use of windowless internal gas targets. Such
current status of the theoryEven though this work is still targets put only hydrogen gas into the path of the beam and
going on, it is clearly important to also investigate the highermake it possible to measure smppp— pp=° cross sections
partial waves which become active as the bombarding envery close to threshold with little contamination from undes-
ergy is increased. In order to identify the role of individual ired reactions. In addition, the amount of material between
partial waves, the use of polarized collision partners is esserihe target volume and the detector can be made small, and
tial. the momenta of both outgoing hadrons can be measured ac-
Each of the three periods of activity in the study of pion curately. Thus, the complete kinematics of each event can be
determined. Internal targets must be thin in order for the
cooling process to keep up with target heating, but this limi-
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FIG. 1. Coordinate frame. Theaxis is along the beam direc-
tion, they axis is pointing up, and theg axis completes the right-
handed coordinate system. The direction of a veElisrgiven by a
polar angled and an azimuthal anglé.

FIG. 2. The momenta and of thgp— pp=? final state in the
center-of-mass system. Particle numbers 1 and 2 are the two pro-
tons with momenté, andb,. The proton momentum in thep rest
waves is small. In fact, at energies below 320 MeV, only onesystem is given by = (b, —b,)/2 and the center-of-mass momen-
partial wave is S|gn|f|ca}n(the Ss partl_al wave with the an-  tym of the pion(3) by = — (b, +b,).
gular momenta of the final-stapep pair as well as the pion
equal to zerd In one of the first nuclear physics experimentsthe observables from the measured quantities. In Sec. IV a
with a stored, cooled beafs], the total cross section in this Scheme is introduced to completely map out the spin depen-
energy region was measured, revealing a serious disagre@ence of the reaction everywhere in the five-dimensional
ment with the theory at that timesee Sec. V A For bom- phase space, and results are presented. Finally, Sec. V is

barding energies larger than 320 MeV, additional partiaid€voted to a?'SC“SS'Of”tﬁf tgetprtesent stf\tusl O‘; t?e theor;c/j, a
waves come into play but their number is still relatively comparison of some of the data to recent caiculations, and a

small since below about 400 MeV final-state angular mo- ISt of conclusions from the present experiment.

menta I_ar_ger tha_n one shoul_d be unimportar_1t. With this limi- Il POLARIZATION OBSERVABLES
tation, it is possible to provide an expression for the most ‘ o
general dependence of any observable on the angles of the A. Basic definitions

three outgoing particles. For the present study, this point is | 3 reaction with two outgoing particles it is customary to
crucial for two reasons. First, we use the angular dependengg|ate the coordinate frame to the reaction plane. With a
given by these expressions to formulate a strategy to ordepree-body final state there is no such distinguished plane, so
and present the information available from an experimenive use a Cartesian coordinate frame that is fixed in space.
with polarized beam and target by defining an appropriate sefhe z axis is along the beam direction, tlgexis is vertical,

of single-valued “observables” that characterize the com-pointing up, and the axis completes the right-handed coor-
plete five-dimensional phase space. Second, it allows us tdinate system. The polar angbeand azimuthal angle, as
carry out an analysis of the data in terms of the coefficientslefined in Fig. 1, are used to specify the direction of any
that appear in these expressions. The resulting coefficientector.

completely parametrize the polarization observables of the In this experiment we detect the energy and direction of
reaction and constrain participating amplitudes individually.the two final-state protons of the reactipp— pp®. Let

This constitutes a powerful and detailed test of any theory.the center-of-mass momentum of the two protongﬁpand

Prior to this experir(?ent, the world’s polarization data for g 14 gescribe the final-state kinematics we define the mo-
the reactionpp—ppm" below 400 MeV consisted of just ta5 anda. wheren= (B — B.)/2 (th i t
two analyzing power measuremeii&7]. In this paper we mentap andgq, wherep=(b; —~b,)/2 (the proton momentum

describe a complete measurement of this reaction covering} the pp rest systemand g=—(b,+b,) (the center-of-
most of the available phase space, carried out with a polafass momentum of the pion; see Fig. Eive independent
ized beam on a polarized target at bombarding energies b@arameter§ are nAeeded to describe the final state, namely, the
tween 325 and 400 MeV. All polarization observables al-directionsp and g and an “energy-sharing” paramete,
lowed by parity conservation have been measured. Since wehich we will later define as the kinetic energy of the two
are dealing with a three-body final state, these observabldmal-state protons in their rest systésee Eq(21)]. All five
depend on five kinematic variables. Section Il of this paper igparameters follow from the observation of the two protons.
concerned with the definition of polarization observables andror brevity, we sometimes denote the §&§,¢,,0q,¢q, €}
their dependence on the kinematics of the final state. Sectidoy &.

[l contains a description of the apparatus, an account of the The largest possible value of the pion momentum is given
acquired data, and a description of the method used to extraby (we setc=A=1)

1

Omax— > \/g

VIs—(2mp+m,)?I[s—(2m,—m,)?], ()
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where /s is the total center-of-mass energy, angandm,, Ayl 0p,0p,0q,¢0q) =Axd 0, 0p— /2,04, pq— T2),
are the masses of the proton and the pion, respectively. In- (6b)
stead of the bombarding energy, one often quotes the param-
eter Axy( Op.¢p.bq v@q)"'Ayx( Op,¢p,bq r‘Pq)

7= Qe M. @) =As(0p,0p— 4,04, 0q— T4). (60

If the two particles in the initial state are identical, measure-
] ¢ g ments with interchanged beam and target polarization states
loosely corresponds to the energy region wik<l, i.e.,  mystbe equivalent. It is straightforward to show that if parity

below 400 MeV. _ _ is conserved, the identity of the particles in the initial state
The polarization of an ensemble of spin-1/2 particles MaYequires

be described by the expectation value of the three-

component Pauli spin operat¢see, e.g., Ref{8]). In the Aij(0p,0p,0q,0q) =Aji(T— 0y, 0p+ 7, 7= by, @q+ 7).
following, we denote the polarization of the beam and the 7
target by the two vectorsl5=(PX,Py,PZ) and Q
=(Qx.Qy,Q,), respectively.

which vanishes at threshold. The term “near threshold”

Applying the relations in Eq45)—(7), we find that for the
reactionpp— pp=° there are the following seven indepen-
dent polarization observables:

B. Definition of observables

We abbreviate the differential cross section for the reac-  ~vo(§), An(8), As(£), AdE), AE), Ax(E),

tion, initiated by a polarized beam on a polarized target, by aA_(¢). (8)
- . da(6,,0p,04,9q.€,P.Q) The fact that the two nucleons in the final state are also
o(§,P.Q)= dQ,dQ,de ' 3 identical requires that all observables must be invariant un-

der the transformatiop— —p. This means that the phase

and writeoy(&) for the cross section that would be measuredspace of the final state has two identical halves. In the analy-
without polarization. In terms of the so-called Cartesian po-sis of the present experiment this is taken into account by
larization observables, the spin-dependent cross section bakvays labeling the protons 1 and 2 in such a way that 0
comes < ¢p<m/2. Consequently, results are presented onlyéor

in this range, and when calculating a total cross section, the

0, integral extends only from O tar/2.
1+2i: PiAi0(§)+§j: QjAoj(£) P For reactions with two colliding spin-1/2 particles, one

can define three total cross sections, two of which depend on

o(¢,P,Q)=0o(£)-

the spin. These total cross sections are related to the observ-
+|§J: PiQjAij(£)|. @ aples in Eq.(8) by
Here,i andj stand forx, y, or zand the sums extend over all gtot:f oo(£)dQ,dQde, (9a)
possibilities. The resulting 15 polarization observables in-

clude the beam analyzing powess,, the target analyzing

powersAg;, and the spin correlation coefficients; . It is AUT:_f oo §)As(£)dQ,dQde, (9b)
convenient to define the following combinations of spin cor-

relation coefficients:

Ao :—ZJ oo(E)A,L6€)dQ,dQ de, (90
As(§)=Aul &)+ Ay (), (59 : ae P
. where dQ) =d coséde, and the integration extends over 0
As(O)=A(E) —Ayy(£), (50) <@ =m, 0<6,<m/2 and O<e<en,. The possible value
for Ao /oot andAot/oy ranges between-2 and +2.
Az(8)=Ax (&) —Ayx(§). (5¢)

o . C. Angul t
The 15 polarization observables of Ed) are not inde- NgUiar momentim

pendent. For instancéy,, and A, are equivalent because 1. Partial waves

the radiation pattern observed with a beam polarized aJong  Let us denote the angular momentum of the colliding pro-
is the same as when the beam is polarized alqraxcept for ~ tons by, their channel spin by, and the total angular
a rotation by 90° around theaxis. This and other, similar, momentum byd. In the final state, angular momentum, chan-

“rotational” equivalences are given 8] nel spin, and total angular momentum of the proton pair are
given byl,, s¢, andj, respectively, and the angular momen-
Axo( O 0p,0q:0q) =Ayo( O, ppt 2,04, 0q+ T/2), tum of the(spinles$ pion, relative to the center of mass, by

(6a) lq. This set of quantum numbers, denoted collectively by
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a={1,s,3,1,,5¢.i.lq} (10) TABLE I. Angular momentum quantum numbers for the partial
waves of the reactiopp— pp°. The Sd and Ds amplitudes have

fully identifies the amplitudedU, for transitions from a been included for completeness sake; the present experiment finds
given initial to a given final state. These amplitudes are funcho evidence for their significance.

tions of the energy-sharing parameteand the total energy.
The quantum numbers in E€LO) are constrained by angular TYP€
mpmgntum and parity conservation as 'Well as 'by the Paulgg 3py—15y,s
principle. Because close to threshold it is realistic to assumgg 15,—3P,,s
thatl, andl, are either O or 1, the possible choices for the

23i+1|J_>25f-*—1|pj’|q

1 3
angular momentum in the final state are thelr?,,l(%) Pp 322:3;)2’;
=(0,0), (1,0, and(1,1), or Ss Ps andPp. In pp—ppm>, BPOHSP]-’
there areno Sp final states permitted by the usual symmetry 3P2H3P1’p
constraints of parity and angular momentum conservation 3F2 3P2‘p
and the Pauli principle. A list of all transitions with these 3F2ﬁ3Pl'p
constraints can be found in Table I. For completeness, we 5 2_’3 2:P
have included in Table | the transitions with = 2, 1,=0 3Pl_>3P0'p
(Ds) andl,=0, | ;=2 (Sd). Since these amplitudes can inter- 3P1_>3P1'p
fere with the importantSs amplitude, their contribution 3P1—’3P2’p
might be non-negligibl§10]. The list in Table | follows the F3—"P2,p
conventional notatiorf® " ;—25*1| | j 1, where the spec- Sd *Py—'Sp,d
troscopic notation,I( 1,)=S, P, D, F, ... andl,=s, p, d, *F,—1S.d
f ... is used. Ds °P,—'D;,s

3F2—>1D2,S

2. Angular distributions of the observables

Since close to threshold only relatively few amplitudes Based on this partial-wave expansion, we have deduced
contribute topp— pp=?, it is feasible to expand the observ- equations that contain the dependence of the observables on
ables in terms of angular momentum. In the formalism wethe four angles that describe the final-state kinematics. The
use, the expansion functions are products of two sphericavailability of such a set of equations is of crucial impor-

harmonics with arguments andg, and the expansion coef- tance for the present work because it shows us how to ana-

ficients are a sum of terms, where each term contains thgZ€ the measurement in view of the complexity of a five-
: * . imensional phase space, and it guides us in defining a
product of two amplitudesU,U,, times an angular- reasonable and complete set of observables that describes

momentum coupling factor. The coupling factor is oftenthis complexity. It will be seen later that these equations
zero, reflecting the constraints arising from conservatiorprovide a sufficient framework, since they are able to repro-
laws and antisymmetrization. For instance, one finds that thguce the measured angular distributions. The following set of
amplitudes can be arranged into the two gro(§s Sd, DS)  equations represents the general angular dependence of the
and (Ps Pp), and only amplitudes within one group can spin-averaged cross sectien(£) and the spin dependent
interfere with each other. The details of such an expansiogross sectione(£)A;;(£) in terms of the real coefficients,

into partial waves are given in the Appendix. Fk, G¢, HY, I, andK. Note that we usé ¢=¢,— ¢q:

0o(€)=E+F1+Hg’+ (HP+1)(3 cogfy— 1)+ (H3*+F,+K)(3 cogd,— 1)+ H3(3 cog,—1)(3 cogg,— 1)
+H3%sin 26,,sin 20,08\ o+ H2%iP 6,si? 9,c0s2A o, (11a

oo(&)Ayo(8)=[{GY°+G¥%(3 coga,— 1)}sin ,+{H{ +1Y°+ HY(3 cogg,— 1)}sin 26,]cose,
+[HY+KY+ G¥ cosh, + HY(3 cogg,— 1)]sin 26, cose,
+[GY%sin 4+ HE sin 26, ]sin? 6,c08 29, — @) + HL sin 20,si? 8,08 2¢04— @p), (11b
oo(§)As(£)=2(E—Fp)+H5+ (HI+21)(3 cogy— 1)+ (H3 — 2F ,+ 2K)(3 cod 6, — 1)+ H3(3 cod,— 1)(3 codh,— 1)

+Hysin 26,sin 26, cosA ¢+ HE sirg,sir?6, cos 2A ¢, (110

oo §A (€)= —E—F+HF*+ (Hi*~1)(3 cos6,— 1)+ (H5*~F,—K)(3 cos,— 1)+ H5(3 co$6,— 1)(3 cogf,— 1)
+H37sin 26,sin 26, cosA @+ HEsin? ,,sin? 6, cos A ¢, (119

064002-4



COMPLETE SET OF POLARIZATION OBSERVABLES IN . .. PHYSICAL REVIEW C 63 064002

oo(§)Ar(E)=[H]+H3(3 cog,—1)]sirf0,c0s 2pq+[H3 +H3(3 cog,— 1)]sir? g, cos 2p,
+Hgsin 26,8in 26, cos ¢+ @), (110
oo(E) A §) =[{G1"+ G543 cogh,— 1)}sin -+ {H "+ 1**+ H*(3 cog6,— 1)}sin 26,]cose,

+[H+ K**+ G5*cosf,+ H};%(3 cog §,— 1)]sin 26, cose,,

+[G)sin 64+ HEsin 20,4]Sin? 6, o 2¢,— @q) + H3sin 26,Sin? 6, o 24— @p), (11f)
ao(€)A(&)=[HPsin 20,+ G sin 0, ]sin 26, sinA ¢+ HZsir? g,si? 6, sin 2A ¢, (119
ool £)Az(€)=GEsin 20,sin 6, sinA . (11h

The letter symbolsE, F, G/, andH}! distinguish terms Equations(11) explicitly depend on the four angles,,
with (S92, (P92, (PsPp, and Pp)? angular momenta in ¢p, 04, and ¢4, while the energy-sharing parameteris
the final state according to the definitions given in Tables Icontained in the coefficients. A discussion of the energy de-
and . The superscript associates the coefficient with a giveRendence is given in Sec. IV E.
observable, and the subscript enumerates multiple occur- When calculating the value of a polarization observable
rences of the same symbol within a given observable. Arom Egs. (11), one has to evaluate the ratid;;(§)
coefficient without a superscript appears in more than one go(§)Aij(§)/0o(§), and an overall normalization of all
observable. The coefficientsK, I'/, andK'l are associated terms in these equations cancels. Here, we choose to multi-
with SsSdor SsDsinterference terms. We note that they ply all coefficients by 8%/ oo This makes the coefficients
always occur in conjunction with abl] term. Thus, the dimensionless. The spin-averaged total cross section is then
angular dependence alone does not provide sufficient info@n incoherent sum of the partial total cross sections
mation to separate thé-wave contributions. All contribu- (S9/01=E, o(P9)/oyo=F1, and o(Pp)/o=HY’,
tions of the amplitudes listed in Table | have been taken intdnvolving the three final states witt8§2, (P9)?, and Pp)?,
account, except those that correspond tda)t and (Sd)? and
final state.

The physics of the reaction is contained in the values of E+F,+ Hgozl_ (129
the coefficientE, F, G{ , H!, I, andK. We will determine
these values as a way to parametrize the results of the meg@pe gpin.dependent total cross sections are then given by
surement. These coefficients are bilinear sums of the reaction
amplitudes. The corresponding relations between the coeffi-
cients and the amplitudes are known, but often complicated.
They can be derived from the partial-wave expansion de-
scribed in the Appendix. Thus, in principle, it is possible to Ao loy=2E+2F,—2HZ". (120
construct a set of amplitudes that best describes the present
data; however, this task involves a nonlinear fit with a non-
diagonal error matrix and possible ambiguities, and is beae
yond the scope of this paper.

Aotlow=—2E+2F;—H3, (12b

It should be noted that not all coefficients are indepen-
nt. For instance, we know from the partial-wave analysis
(see the Appendijxthat form=0, ... ,5,

TABLE II. Partial waves according to the final-state angular HOO— 3 4 yzz (120
H H m m m
momenta. The column labelddlists the symbol used in Eqél1)
for a parameter of this type. The last column shows the power of o ) )
for the expected dependence on bombarding energy for the casB®lds. Combining Eqs(12b—(12d) one easily derives the

where neithet,, nor | is zero. important relation
Final-state angular momenta o(Ps) 1 Aor 1Ao
' ' m =—|1+ += .

o la e la - () 7 Otot 4 Ttot 2 Otot (13
(S92 0 0 0 0 E gp-fle)de -
(Psp 1 0 1 0 F q-pide 7° This relation, which holds fopp— pp#?°, allows one to
PsPp 1 0 1 1 G g®-pide 7’ determine, in a model-independent way, the total strength of
(Pp)? 1 1 1 1 H g% pide 7® the reaction going to s final state directly from the mea-
SsSd 0 0 0 2 | g%p-fe)de - sured total cross sections. Thiseasurement of a partial
SsDs 0 0 2 0 K qp*flede - wavehas been presented in an earlier publicafibti, where

the relation given in Eq(13) appears without proof.
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TABLE Ill. Bombarding energies used in this experiment, thparametefEqg. (2)], and the upper bound
€max ON the energy-sharing paramef&q. (21)]. Also listed are the accumulated luminosities and the prod-
ucts of beam and target polarization for the two phases of the exper{semSec. IIl B.

Run A Run B

Energy 7 €max JLdt P,Q JLdt P,Q P,Q P,Q

(MeV) (MeV) (nbY (nb™1)

325.6 0.560 21 2.163 0.458) 3.0 0.059(2) 0.333(2) 0.296(3)
350.5 0.707 33 0.901 0.342) 1.3 0.053(3) 0.316(3) 0.267(5)
375.0 0.832 44 3.024 0.514) 4.1 0.041(2) 0.333(2) 0.266(4)
400.0 0.948 55 0.831 0.526) 1.1 0.039(4) 0.289(4) 0.203(8)

lll. MEASUREMENTS target cell is supported by the end of the feed tube. It is

possible to remotely adjust the cell position relative to the
stored beam, in order to minimize the overlap between the
The experiment was carried out with the Indiana Coolemeam halo and the cell wall. An atomic beam sourt8a]
storage ring. A detailed description of the apparatus has beefelivers the polarized hydrogen atoms. This source produces
presented previously in a technical papE2]. In the follow- 3 beam of about 1 cm diameter with a flux of about 3
ing, we give an abbreviated description of the experimentak 10'® atoms per second in a pure spin state with a nuclear
setup, pointing out features that are especially important iyolarization of abouQ=0.75. The role of the target cell is
appreciating the benefits and limitations of the technique emy improve the utilization of the source output. The cell is
ployed. coated with Teflon, which practically eliminates depolariza-
tion of the atoms during wall collisions. The total thickness
1. Beam of the target is a few times 1datoms/cr. The density of
A polarized 197 MeV proton beam from the IUCF cyclo- the target is determined by the gas flow through the cell,
tron was accumulated in the Cooler ring, resulting in orbitingdecreasing linearly from a maximum in the cell center to
currents of 100—20@.A. The energy of the stored beam was near zero at the open ends. The polarization direction is se-
then ramped to the desired val(fer a list of energies, see lected by a magnetic guide field of a few gauss in the region
Table 1ll). The beam energy was known to better than 1000f the target. This field is generated by coils exterior to the
keV, and the polarization of the beam varied between 0.65cattering chamber, and can be oriented inthe =y, and
and 0.70. +z directions. It has been shovj4] that the magnitude of
The experiment was conducted in two phases. During thée target polarization does not vary significantly when the

first phase, the beam polarization was verticalong 9), polarization direction is changed, and in the following we
while in the second phase nonvertical polarization was used@SSUMe&Q=Q,=Q,=Q, for the target polarization. During
The latter is achieved with two spin-rotating solenoids. Thejfdata acquisition the direction of the target polarization is
field is held fixed during acceleration. The field integral of changed every 2s. o

these solenoids is limited, partly by the current limit of the ~Internal polarized targets of this kind are pure and not
solenoid, partly by difficulties in adjusting the ring optics to SUsceptible to radiation damage, and they offer the possibil-
compensate for the additional focusing. The consequence 8¥ ©f rapidly changing the polarization direction.

this limitation is that purely longitudinal beam polarization
cannot be achieved for beam energies larger than 200 MeV.
Instead, for the second phase of the experiment, the actual The purpose of the detector is to measure the directions

polarization direction is aboR®/P = (0.12,0.75,0.65), some- and energies of the wo outgoing protons. This is accom-

what depending on beam enerdyr actual values, see Table plished with a stack of scintillators and wire chambers that
i) ' are arranged as shown in Fig. 3. The directions of the two

The filling and ramping process takes 1—2 min, followedou'[going protons are determined by a set of four planes of

by 5—8 min of data taking. This beam cycle is then repeated{"ire chambers, and the “E” and the “K” scintillator arrays

. o measure the energies of the protons.
The sign of the beam polarization is changed every cycle. The combined thickness of the E and the K detector

planes is sufficient to stop the protons from {he— ppm°
reaction for up to 400 MeV bombarding energy. The light
The stored beam passes through a target cell that consii®sm both planes is added and then converted to the energy
of an open-ended 12 mm diameter cylindrical tube con-of the stopped particle using a phenomenological expression
structed from 25:m aluminum foil. The tube is 25 cm long; for the light response, and a correction for the position-
the center of the cell defines the origin of thaxis. Joined to  dependent light collection efficiency. The angular coverage
the side of this tube, &=0, is a similar “feed” tube that is of the detector depends on where along the target cell axis
oriented towards the incident beam of polarized atoms. Théhe event occurs. Seen from the center of the cell, the detec-

A. Apparatus

3. Detector

2. Target
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FIG. 3. Detector system to detect the two outgoing protons. The
scintillators E and K measure energies and the wire chambers WC1 FIG. 4. Missing-mass spectrum of tipp—pp=° reaction at
and WC2 directions. The scintillator V vetoes background event$75 MeV. The dashed line shows the normalized background shape
containing energetic charged particles. The four scintillators S proobtained with a N target.
vide a concurrent measurement pp elastic scattering neaf
=45° as a monitor for beam and target polarization. For moreopposite thex axis or they axis). Thus, data were accumu-
details see Sec. Il A 3. lated with eight combinations of beam and target polariza-
tion (P,, Qm), namely, Py, £Q,) and (xPy, £Q,).
LRun A, which took place in the fall of 1997, was thus limited

tor st_ack subtends a cone W't.h a half—angle of 357, W't.h as to observables that are accessible with only transverse polar-
hole in the center that is required to admit the beam pipe fofzation

the circulating beam. This hole is responsible for most of the In the second phasiealled “run B"), spin rotators were
departure of the detector acceptance from 100%. The CONSEimployed to generate nonvertical beam polarizatisee
quences of incomplete acceptance are discussed in Sec. IVE&ge 1| A 1). In this case, the beam polarization was a sum
The wall of the vacuum chamber just downstream of thesf three componentsH, P,, P,), and the target polariza-
target consists of a 0.18-mm-thick, stainless steel window. Ajon was alternated between the six direction®,, =Qy,
1.5-mm-thick scintillator(“F” in Fig. 3 ), immediately fol- and =Q,, giving rise to 12 different spin statestqs,

lowing this window, provides a start signal for a time-of- = - > - > :
. S o - +Qy), (P, =Q,), and (=P, £Q,). Run B was carried
flight measurement for particle identification, and eliminates ut in the spring and fall of 1998. All possible analyzing

events originating in the beam pipe downstream of the powers and spin correlation coefficients were measured.

detector. ; . .
o . . . During both runs data were acquired at the beam energies
The E detector is divided into eight segments. The tngge@25, 350, 375, and 400 MeV. The respective integrated Iu-

for processing an event is a coincidence between the F dexinqsities, together with the values for beam and target po-
tector and at least two segments of the E detector. A VetQyization. are listed in Table III.

issued by the last scintillator in the sta¢kvV” in Fig. 3)
removes events where at least one particle is not stopped in
either the E or the K scintillator, and thus are not from pion
production. 1. Selecting the pp>ppn® events
Concurrent with the acquisition gfp— pp#° eventspp

C. Measured yields

X U o ot Events of interest are selected off line by requiring that
elastic scatterl‘rJgnls., ob_served n@*{b:_% by fqur scintil- both particles be identified as protons, that their wire cham-
lators (labeled “S™ in Fig. 3. For elastic scattering events & por yracks be consistent with the patterns of responding seg-
coincidence between two opposite detectors is required. Pajse s in the various scintillator arrays, and that the origin of
ticles reaching the S detectors traverse the first set of wirgyg eyent be in the target region. For each event the mass of
chambers(“WC1" in Fig. 3). A coplanarity condition and yhe third, unobserved particle is calculated from the four-

the known angle between the two protons provide a cleafomenta of the two protons. An example of a missing mass

selection ofpp elastic events. spectrum is shown in Fig. 4. To accept an event, its missing
mass has to be close to the mass of a neutral pion.

The amount of background under the pion mass peak var-
ies with bombarding energy but is never larger than 10%.

The experiment has been conducted in two phases. In thEhis background is caused by reactions of protons with the
first (called “run A”) the beam polarization was vertical aluminum cell walls and with impurities in the target gas.
(along or opposite thg axis) and the target polarization was Monte Carlo studies show that only reactions with three or
alternated in 2 s intervals between four directigaltbng or  more protons in the final state contribute significantly while

B. Acquired data
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(p,2p) reactions are unimportant. The shape of the back-

ground is determined from a separate measurement where m;yz (Y+,Qm_Yan)

the hydrogen in the target cell is replaced by. N'his mea- Sp=——— ) (14a
surement results in a missing-mass spectrum that closely > (Yoo +Y o)

matches the one observed with a hydrogen target, except for m=x,y,z m m

the 7° peak, and is therefore used to subtract the background

under the pion peak. Since each target orientation occurs with both signs, this

The kinematics of the event is transformed to the centereffectively corresponds to an unpolarized target. The sum in
of-mass system, and the anglés, ¢,, 0, ande, as well the denominator is an average over both beam and target
as the energy-sharing parametearg calculated. For each Polarization direction, and thus represents the spin-averaged

accepted event, these parameters, together with informatiofi!d- Note that for run B the beam polarization is not along

on the direction of the beam and target polarization at th&ne of the coordinate axes and the asymm&sycontains

time of the event. are stored for further processin contributions from all the three polarization components.
' P 9 The three target polarization asymmetries for the target

polarization directionsn = x, y or z are given by
2. Spin-dependent yields

We define the “yield” to be the number of events in a 2 (Ynio.~Yn o)
certain regionA ¢ of phase space, defined by conditions on =+ Lom Lom 14b
the five kinematic variable§ of the final state. There is one S~ ' (14b)

E _ (Yn,+Qm+ Yn,me)

such yieldY, ,(&), for each combinationng,n) of beam and e

target polarization. For run A there are 8 and for run B 12

such combinations. The yields in different spin states arg nore the sum oven provhdes the average over the beam
always background corrected and normalized such that thep{olarization direction.

correspond to equal accumulated luminosity in every spin  Finally, the three spin correlation asymmetries, again with
state. This normalization compensated differences of a fewne target polarization in then = x, y, or z directions, are
percent in the luminosity with different beam polarization. given by

The integrated luminosity was determined from a concurrent

measurement gbp elastic scatteringsee next section (Yi 10, tY-—q)~(Ys g, TY-+q,)

S = .
P-Qm (Yi4q,TY-—q )T (Vi —q, TY-4q,)
3. Monitoring beam and target polarization and the luminosity (140

Concurrent with the measurement of pion production, ) ) )
elasticpp scattering is observed by a dedicated set of four! NeSe asymmetries will be needed as a function of some of

detectors that covers the angular region nas=45°. For the kinematic variableg while integrating over the others.

these angles, thpp scattering spin correlation coefficients Eor instance, if we want to know the asymmetries as a func-

A, andA,, are quite large and well knowfl5]. This pro- ]E|o”n of 0 an?gq, Wg sori theb(iv'enttshlntq blgs\,(that;lwde the
vides a sensitive on-line monitor for the produ®sQ,, Uil range of 6y and oq to obtain the yieldsYy, (g, eq)

P.Q,. andP,Q, of all three beam polarization components while ignoring the other kinematic variables. If the detector
yy! zxz . P P acceptance is 100%, ignoring a kinematic variable is equiva-
and the target polarizatio@ = Q,=Q,=Q,. Note that the

lasti : vz . lent to integrating over that variable. Corrections due to in-
pp elastic scattering analyzing powers nef,=45° aré  compjete detector acceptance are discussed in Sec. IV F. The

small, so that the individual values férandQ are not well asymmetriesS,, Sy , andSp o of Eq. (14) form the basis
1 m’ ) m .

determined from this measurement; however, these numbe%r deducing the observables as described in Secs. IV B and
are not needed for the subsequent analysis. Fromphe

scattering yield, averaged over azimuth and from the known
cross section, we also deduce the integrated luminosity ac-
cumulated with each of the combinations of beam and target
polarization. The relative luminosities are used to normalize A. Exploring the five-dimensional phase space
the pion production yields in different spin states to equal
integrated luminosity.

IV. RESULTS

The dependence of each polarization observable on five
kinematic variables contains a wealth of detailed information
about the reaction, but it also presents the difficulty of order-
ing and accessing this information. In the present case we
benefit from the limited number of amplitudes, which per-

From the spin-dependent yields, three different asymmenits us to determine the functional dependence of the ob-
tries can be calculated. The firSp, is the beam polariza- servables on the angl#g, ¢4, 6,, ¢, [EQ.(11)]. Based on
tion asymmetry. It is obtained from the difference in thethis knowledge we now develop a procedure for extracting
yields with positive and negative beam polarization, summegbolarization information from the data in a systematic and
over all target polarization directions complete way.

D. Asymmetries
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Inspecting Eq(11), we note that the azimuthal functions ASR(0.), A®(6), A®(4,),

P (@q,¢p) that occur are one of the followingsq, ¢p, yor e Xz P AP
PpT@qs 20p= ®q, 2¢0q— Pps OF @, — ¢q. Assume that we
evaluate the asymmetries versus one of these functlgns
(k=1,...,6) bysorting the events into bins of constah .
This is equivalent to an integral over azimuth with the con- AR(0,), AZ g ), AZfa (g ),

. .. . yo' ”'p y0 p y0 p
dition ®,=const, and eliminates one of the two azimuthal
degrees of freedom. The implied integration retains only
terms in Egs(11) that either contairb, or do not depend on
azimuth at all. To further reduce the remaining terms, we

2¢0,— 2¢q—
ASB(O),  AZERTA(0,),  AZEYR(y),

2¢,— 20—
ALR(0g),  AZPTE(0y), AL R(6y),

evaluate observables as a function of one of the polar angles AD(8,), ALPEa(6,),  AZEYTR(6y),
6 (6, or 6,), while integrating over the other one by ignor-
ing it. Thus, for each of the polarization observables listed in Azp( 0y, A§p+ ¢q( 0y), AZq( 0,). (15)

Eqg. (8), we have the choice of six azimuthal functiofg
and two polar angles. The resulting set of observables that These 25 independent observables are extracted from the

are now functions of a single varlabdel_ther Op or _0q) rep data as follows. First, we sort the events into bins for the
resents completely the effect of polarized collision partners — ; .

‘ . Selected polar anglé= 6, or 6, and azimuth functiom, to
on the angular variables. For now, we ignore the dependenc

on the energy-sharing parameterand integrate over this Obtain  the ) asymmetnessp(e,d.)k), SQm(a'ka)’ and
quantity as well. The dependence enwill be discussed Sp.Q,(f:®i) in Eq. (14). Next, we insert the spin-dependent

separately in Sec. IV E. cross section, Eq4), into the expression for the asymme-
tries. For instance, for the beam asymmeétey. (149] this
B. Ay, As, Ay, Ay, andA,, results in Sp(6,®y) =P, A0(0,P,) +PyAyo(0,Dy). Simi-

larly, Eq. (14b) yields the two reIationsSQj(a,CDK)

The spin-dependent cross sectien#\,, ooAs , 0oA;7, B o ;
oA, , andogA,, contain only terms that are either azimuth =QAgj(0,®y), wherej=x or y. We then use tf(})e equiva-

independent or proportional to ¢ or cos 2b, where®, is Iencgs in Egs(6) and (7) and the definition ofA (6) to
one of five azimuthal dependences. Let us define the pola@btain

ization observable!\ﬁ’k(eq) [or Aﬁk(ep)] as that part of the

g .
observabley;; that remains when integrating oveg [or 6] Sp(0,®4) =A5(0)(P, cosb—Pysin®y), (163
and overey and ¢, with the constraintb, =0. Of course,
we still distinguish contributions with cdg from those with So,(6, D)) :A?/)(;(( 0)Q sind,, (16b)

cos 2b,, since we have knowledge of the full, distribu-

tion. In this definition, the particulab, selected is used as a o,

superscript as a reminder thd, is used to isolate the cor- S, (0, P =A5(0)Q cosdy. (169
responding term; it no longer appears in the functional de-

pendence of the observable. As an example, the transverse The @ distributions of the asymmetries on the left are
beam analyzing power that would be measured when obserweasured. Since Eq$l6) constrain the ratio®,/Q and
ing just the pion, in the present notation, wouldA(¢g).  Px/Q, knowing just the product®,Q and P,Q (see Sec.
Using this definition, we end up with the following observ- Il C 3) is sufficient to extracAj’Ok(e).

ables: In a similar fashion, the spin correlation observables are
_ _ extracted; note that the observabkes andA,, have no azi-
As(bq),  As(bp): Adbq):  AAby), muthal dependence, except for the terms containing
= ¢,— ¢4 Which will be discussed separately in the next sec-
A;Dg( 0q), Af;( fq), AZ“( 0q), tion? ’
Sp,o,(0,0) = 1/2A5(6) P,Q+ 1/2A7(0) (PxQ c0s 2D+ P, Q sin 20y) — ALK(m— ) P,Q cosdy, (173
Sp.o,(6:P1) = L/2As(8)P,Q+ 1/2A7( 0) (P,Q sin 2By~ PyQ c0s Zby) — A K(m— 6)P,Q sind, (17b)
Spo,( 0,dy)= A;I’Zk( 0)(PxQ cos®+P,Qsin®,)+A,(6)P,Q. (179
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FIG. 5. The observable&s(6,) andA,/#6,) as a function of F F F b,
bombarding energy. The dashed curve is obtained with the coeffi- g,- 0.5 '_+ C C C . $
cients of Table IV inserted into EqéL1). The solid line is the same > b E T E E 5
but takes into account the real acceptance of the detésxter Sec. ¢ o ) Saaril e = ra ¥ ; }
IV F). The current status of the theory is illustrated by the dotted F “ I j F F
line (see Sec. VB —0s5f - - -
Some of the 25 observables that are determined in this I e e T Ey s e

manner are displayed in Figs. 5-9. Figures 5 and 6 show the
spin correlation coefficientds (#) andA,A6) as a function

of 04 and 6, , respectively, fgr all four bombarding energies. FIG. 7. A“’q(ﬁq) AS3(6,), andA%i(8,) at all four bombarding
Figure 7 shows the analyzing pOWAf/Dg(eq) and the two energies. These observables are based on the direction af’the
spin correlation coefficientad’d(6,) andA$%(6,) that would i.e., the relative proton momentum is ignored. The curves are ex-
be measured if only the pion were observed, i.e., if the diplained in the caption of Fig. 5.

rection of the relativgpp momentum is ignored. Similarly,

cos(—)c|

Fig. 8 shows these observables for the case where the pion

325 350 375 400 d_irection is ignored. In Fig. 9, some of the remaining_pos-
T T T P sible observables are shown at 375 MeV, the energy with the
’ best statistics. The errors shown in these figures are from

1.5 Fover ~" 31 E 4 EF it 3
= Bkt 41f AHE it 3 counting statistics only. The solid curve is obtained from Eq.
:tf« "F 1 R 3 qF E (11) with the coefficients in Table IV, taking into account the
05F 1 F ] E ‘; 4 restricted acceptance of the detector system, while the
o F E F t 1 F - R /3 dashed curve results when a detector with 100% acceptance
E HE iE Nj _:_ ___________ x\ﬂ is assumed. The only significant effect of the restricted ac-
OSSR o 'og e 'Of5' ot ceptance occurs with 'Fhe observa_bmzs andAZ_Z. The _dot-
05 ted curves are theoretical calculations that will be discussed
RS B AR I AR +' later.
0 o 1 E

C. A, and Az

The longitudinal analyzing powek,, and the combina-
tion Az=A,,— A of spin correlation coefficients are pro-
o3BT R R portional to sim¢ or sinA¢ [Eq. (11)], where Ap=¢,

0.5 60 05 10 05 10 05 —¢q- Thus, these observables are invariant with respect to a

coso rotation around the beam axis, and they vanishXgr=0
P and 7r, which is the case when the momenta of the three

FIG. 6. The observabless(6,) andA,/6,) as a function of outgoing particles are coplanar. The vanishing of these ob-
bombarding energy. The curves are explained in the caption ogervables in the case of a coplanar final state is a conse-
Fig. 5. quence of parity conservation. In fact, a measuremet,gf

|
[
- »
RARRNRHeTTanRy RAL
] -

——

e |y |||||’i:| 11

O rrrr
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o . o ) FIG. 9. Some of the observables not shown in Figs. 5-8, at 375
FIG. 8. Aj§(0p), A2(0p), andAP(6p) at all four bombarding  \Mev bombarding energy. For these observables the directions of

energies. These observables are based on the direction of the refae 70 andof the relative proton momentum have to be known. The
tive prOton momentum; i.e., the’o momentum is ignored. The curves are explained in the Caption of F|g 5.

curves are explained in the caption of Fig. 5.

in a two-body final-state reactiofthus, in coplanar geom- A¢- Itis obvious that,o, A, andA, do not contribute in

etry), or in a total cross section, has been used as a tool S case, since they do not depend. Ignoring for the

study the violation of parity conservatiga6]. moment a pos&blehp_dependence of the spin-averaged
Recently, we have published a first analyglg] of the ~ Cr0SS section, we obtain, for the asymmetfiasalogous to

longitudinal analyzing powen,, for pp—pp7® in which ~ EAs-(16) and (17)],

we demonstrated that this observable can be quite large if _ Ag ;

noncoplanar final states are involved. Previous measure- Se(0,4¢)=PAyg(0)sin2A ¢, (183

ments of this observable are scarce: some indication of a

large value ofA,, was found 18] in another pion production So,(0:A@)= SQy(e'A‘P) =0, (180

reaction,pn—ppm  at 443 MeV, while a measurement of

A, in the reactiorH(p,pp)n at 9 MeV yielded values that So (0,Ap)= QA?O"’(rr— 0)sinAcp+QA§§"’(Tr— 6)sin 2A ¢,

are consistent with zero at the level of 0.0a3®). z (189
In analogy with the previous section, we define the ob-

servablesAyf(6,), A% (0,), and A2¢(6,) asAy(€) and

= () +Ade
Az(§), integrated over,, as well as integrated over azi- SP'QX(Q’A(’D) V2P QLA (0)+AsT()coshe

muth with_ the _cqr_‘lditi_onAgo:const and evaluated at¢ + A%Aqo( 0)cos 2A o]
= 1r/2. This definition is suggested by Ed41g and(11h).
Again, we can distinguisisg(8,) from AZ3¢(6,) because —1/2A2%(0)P,QsinA ¢, (18d)
we know the fullA¢ distribution. Likewise, we define the
Ag parts of Ay andA,, asAS?, AF*?, AYf andAZ¢, in Sp.o.(0,A¢)=1/2P,Q[As() + A2%(8)cosA
this case evaluated aio=0 [based on Eqs(11¢9 and Y
(110)]. +A3*(9)cos A ¢]
In order to extracA,q and A=z from the present data, we Ap _
generate the asymmetri€s, SQJ_, andSp'Qj as a function of +1/2AZ%(0)PxQsinA ¢, (18¢
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TABLE IV. Values at the four bombarding energies of the coefficients introduced in &d). The
derivation of these coefficients is discussed in Sec. IV D. All values have been normalized with the common
factor 872/ oo . These numbers parametrize all possible initial-state polarization observables of the reaction
everywhere in phase space.

325 MeV 350 MeV 375 MeV 400 MeV

Value Error Value Error Value Error Value Error
E 0.721 0.082 0.410 0.086 0.221 0.030 0.043 0.053
F! 0.168 0.021 0.265 0.022 0.262 0.007 0.297 0.013
HYO 0.111 0.005 0.325 0.010 0.517 0.015 0.660 0.010
H> 0.056 0.059 0.289 0.060 0.369 0.038 0.603 0.048
HZ? 0.055 0.082 0.036 0.086 0.148 0.030 0.057 0.053
H2O+1 0.014 0.082 0.041 0.086 0.063 0.030 0.084 0.053
HO%+ Fo+K -0.008 0416 -—0.059 0.419 -0.118 0.402 -0.170 0.406
HI+2l -0.017 0.060 -0.051 0.064 —0.080 0.020 —0.105 0.028
H3—2F,+2K -0.078 0.080 -0.167 0.094 -—0.215 0.024 -—0.248 0.114
HZ2—| 0.031 0.056 0.092 0.058 0.143 0.023 0.189 0.045
H3*—F,—K —0.046 0.079 -0.104 0.080 -—0.139 0.030 -—0.166 0.059
G -0.096 0.010 -0.223 0.022 -0.296 0.030 —0.344 0.034
eh -0.158 0.016 —0.365 0.037 —0.486 0.049 —0.564 0.056
HZO 0.019 0.002 0.057 0.006 0.089 0.009 0.117 0.012
HZ -0.054 0.052 0.020 0.047 —0.041  0.020 0.000 0.032
H9° -0.013 0.006 -0.038 0.018 -0.060 0.029 -0.079 0.038
H2O -0.056 0.006 —0.165 0.018 -—0.257 0.029 -—0.325 0.038
H3 -0.038 0.019 -0.122 0.055 -0.175 0.086 —0.231 0.114
H: -0.133 0.019 -0.389 0.055 -0.607 0.086 —0.688  0.090
HZ%? 0.025 0.019 0.074 0.055 0.115 0.080 0.152 0.114
HZ? 0.074 0.019 0.217 0.055 0.339 0.080 0.363 0.114
GY° -0.079 0.016 -0.196 0.016 —0.223 0.005 —0.291  0.009
GY° 0.009 0.020 -0.023 0.022 0.026 0.007 0.048 0.011
GY° -0.018 0.038 -0.149 0.038 -—0.298 0.013 -0.347 0.021
GY° 0.018 0.024 0.037 0.024 0.031 0.008 0.030 0.014
GX? 0.223 0.058 0.396 0.056 0.473 0.022 0.574 0.040
G%* 0.058 0.083 —0.043 0.083 0.024 0.029 0.040 0.054
G¥* 0.146 0.140 0.017 0.136 0.245 0.051 0.195 0.093
GX* 0.045 0.086 —0.031 0.086 0.035 0.032 0.085 0.059
HYO+ 0 0.030 0.019 0.016 0.019 0.000 0.006 —0.029  0.011
HY%+ KYO —-0.051 0.019 -0.045 0.019 -0.049 0.006 -—0.061 0.011
HYO 0.006 0.019 -0.019 0.019 0.018 0.006 0.028 0.011
HY° -0.011  0.029 0.039 0.029 0.021 0.010 0.024 0.016
HY° —-0.016  0.029 0.121 0.029 0.071 0.010 0.062 0.016
HY24 1% 0.064 0.068 0.027 0.068 0.203 0.025 0.216 0.047
HXZ+ K*? —-0.123 0.068 —0.193 0.068 —0.188 0.025 -0.316 0.047
H? -0.101 0.070 -—0.086 0.068 0.051 0.028 —0.053  0.049
H¥? 0.016 0.102 -0.259 0.102 -0.315 0.038 -0.391 0.070
HE? 0.027 0.102 0.157 0.102 0.153 0.038 0.208 0.070
Ha 0.135 0.081 0.194 0.099 0.374 0.027 0.379 0.039
H2 -0.069 0.120 -0.020 0.141 —0.008 0.036 0.072 0.054
HS 0.071 0.081 0.339 0.099 0.441 0.027 0.567 0.039
H4 0.137 0.081 0.429 0.102 0.536 0.027 0.567 0.027
HE -0.030 0.135 0.093 0.158 0.106 0.045 0.198 0.068
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FIG. 10. The asymmetries versusp=¢,— ¢4 at 375 MeV ~ - | l | N { LI"{J
bombarding energy. Integrated over both polar angles, the curvesE 0 :‘ 4 ! 0 :I i
represent a fit to tha ¢ distribution according to Eq18). s“ - ' l :l i I
Ao _0.5;| Ll |(|)| Ll |1_0.51_| 1 |(|)| L1 1
Sp,q,(0:A¢)=P,Q[AA0)+A;;(6)cosA ¢ 0.5 05
+A22¢(p)cos 2A¢]. as 3 P iTIa oF L~ 1
5 1 H o —
These asymmetries, integrated over polar angle, are shown i N t 1 *
Fig. 10. HereSp andSy, reflect the beam and target analyz-  .ggber1o L1111 | g sbo | L1 .
ing powersA,q andAg,, which are related by Ed7). The -1 0 1 -1 1
quantitiesSo_andSq are consistent with zero, as expected. cosf,

Evaluating the asymmetries as a functiondgf(thus, in-

tegrating overd,), we extract theg, distributions of the
observables by fitting with the respective functiong\af. In

this way we obtain the observables

A(6y), A6y (Ap=ml2), (19)
AS(6y), ASF(6y) (Ae=0),
AZe(0,), AZ9(6,) (Ae=0).

The part ofA,q that scales with sin®¢ [see Eq(11g] was
found to be consistent with zero. It is clear from E¢klg)

FIG. 11. Polar angl®, dependence of the observables that de-
pend onA ¢=¢,— ¢4, as discussed in Sec. IV C, at the two bom-
barding energies with the best statistics. The curves are explained in
the caption of Fig. 5.

ables at any point in phase space, provided the expansion
coefficientsk, F, G, ... are known. These coefficients thus
represent a parametrization of all our measurements and con-
stitute the central result of this experiment. The values for
the coefficients, normalized by a common factar?8o;,

are listed in Table IV. Note that the common factor cancels
when calculating a polarization observallg by dividing

and(11h) that thed, dependence does not contain indepen-the spin-dependent cross sectiogh;; by the spin-averaged
dent information. Thus, from th& ¢-dependent asymmetries cross sectiornr.

we extract six additional observables. They are shown in Fig. The task of determining the values of the coefficients of
11 for the measurements with better statistics at 375 and 40Bgs. (11) is simplified by the fact that a given polarization

MeV.

D. Parametrization of the data

The expansion into functions of the anglés, ¢, 0,

observable from the list in Eq$15) and (19) depends on
only a few coefficients. For instance, the observakijg 0q)
depends onGY°, (HY°+1Y%), and H+1), and A7S(6p)
depends onG¥°, G¥°, and H+F,+K). However the

®p [Eg. (11)] allows one to calculate all polarization observ- quality of the data, especially at the lower two energies, is
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TABLE V. Total cross sections versus bombarding energy. The second column lists the spin-averaged
total cross section assumed in this paper. The next two columns show the result of this experiment for the
spin-dependendent total cross sections. These values have been corrected for incomplete detector acceptance
by the amount listed in the last two colum(see Sec. IV F

T Tiot( M) Aotlo Ao oo Corrections

(MeV) (ub) o(Aor/owe) (Ao lo1or)
325 7.7 —1.162+0.063 1.6680.116 —0.106 0.026
350 17 —0.579+0.068 1.2780.114 —0.095 0.026
375 40 —0.287+0.018 0.6710.046 —0.059 0.021
400 86 —0.096+0.030 0.5650.088 —0.020 —0.001

not sufficient to fit the coefficients to the data without anythen fit to the angular distribution#\s(6,), Aé‘”(eq),
constraining assumptions. In the following, we describeAZ*¢(6,), A,(6,), A3f(6,), AZ¢(8,), Ax(d,), and
these assumptions and a step-by-step procedure to determi}néw(gq) at all four energies simultaneously. The fit is shown
the coefficients of Eq(11). as a solid line in Fig. 11; thg? per degree of freedom is 1.6.

In the first step, we address the coefficieBts, H80, With the angular dependence of the spin-averaged cross
H3, andHZ%. The corresponding terms in E6L1) do not  section now known, the remaining coefficients are deter-
depend on angle but represent different final stag?(  mined by fitting the corresponding observables without any
(P92, and Pp)? (see Table ). The relative weight of the constraint on their energy dependence. The errors are ob-
(P92 final state follows from the spin-dependent total crosst"’“netd by propagating the statistical errors of the measure-
section[Eq. (13)], but the relative contributions of th&g? ~ MENtS. .
and (Pp)? final states can only be distinguished because the¥l Note that the observablgggs. (15) and (19)] are Inte-
depend on energy differently. This is explained in more rate_d_over ‘35‘“62’99 cz)zr 0%and thuxf do not constrain the
detall in Sec. IV E. Using that result, we set the coefficientcoeff'c'entSH3 H3 H3"H; ', andl-_|2 :

Hgo equal t0(Pp)/oy,. the relative contribution of the The values of the coefficients in Table IV have been ob-

' oty tained from the data by taking into account the incomplete
(Pp)” final state. Having fixed ”;Zep(p)z strength, the Coef-  5cceptance of the detécttior more detail, see Sec. IV)F
ficients E, F1, Ho', Hg, andHg” follow from Egs.(12),  The resulting parametrization of the data is shown as a solid
with the values of the spin-dependent total cross sectionfne in Figs. 5—9. Using the same coefficients, but pretending

Aotlow and Aoy /oy, Which have been deduced from that the detector accepts all of phase space, leads to the

the total, spin-dependent yields as listed in Table V. dashed line. This illustrates the smallness of the effect of
Next, we turn to the coefficients that multiply the termsincomplete detector acceptance.
with (3 cog6—1) in oy, ooAs, and opA,, [Egs. (119, We note that the coefficientsandK that represent inter-

(110, (11d)]. Those coefficients arel®®, H3, HZZ, HY®,  fering SsSdandSsDsamplitudes always occur in a sum with
2z andF,, two of which can be eliminated by E¢L2d.  anH}/ coefficient. These sums become a single parameter in

The SsSdand SsDsiinterference terms| and K may be the analysis. Thus, the present analysis provides no informa-

lumped with the correspondirtg) terms with Eq(12d still  tion on the importance of these terms.

satisfied. Since calculating the observablesh;; /oy in- Equations(11) contain a total of 49 coefficients. Of these,

volves a ratio of similar functions, the statistical accuracy ofe determine 44 from the dataee Table 1. Among these,

the present data is insufficient to determine these coefficieni§ere are six known relation&gs. (124, (12d], resulting in

separately for each bombarding energy. Instead, we impos& numbers determined. On the other hand, the coefficients

an energy dependence on the coefficients by seHiif) i’:\re (known) Iu_gctti_ons fOf r'[:s% amdp[I)itudes I'IiSt;d i?hTabIe I
— —_ ; noring contributions fron8d and Ds amplitudes, there are
—HY - 7% 00 7) aNdFo(m) =F()- nonoe(7). The jus- 5o g

tification for this assumption is given in the next section, an uzdzgnvglilttﬁsfe:d i‘:g; t:hf retzhlz rzoalrr(]et?vr\fce)rffggepﬁzsg:eg n?jmiﬁh-

tThaebI\é a{;’e_f_ggéat\?\;é”f?t 2{2 51aoriS:bll<lessfet(cj> ItﬂeR;rflﬂa?r:j(ijs{?ibu-prindple 22 real numbers should be sufficient to completely

tions A .(«9 ) A (6.), A(6,), andA,(6y) at g” four en describe the data. Thus, the parametrization presented here
S\Uq/s M3\ Up)s MzAUq)s z2\Yp -

. A - oo 2 [EQ.(11) and Table 1M has some redundancy; i.e., there are
ergies simultaneously. The fitis shown as a solid line in Figs |1 2tions between the parametfirs addition to those in Eq.
5 and 6; they? per degree of freedom is 1.5.

. S 000 Lz (12)]. These relations will be revealed in the course of the
Next, we determine the coefficientd,”, H,, H, " (k

0 - | amplitude analysis which is planned for the future.
=4,5), H?®, G®, andGF= that appear with terms that con-

tain A_go. Again, Eqg.(12d constrain_s theHLj ._The corre- E. Energy dependence
sponding observables have been discussed in Sec. IV C. We o _ _ _
again impose a bombarding energy dependence dfitbe- 1. Definitions and kinematics relation

efficients as described in the preceding paragraph and set A complete description of the final-state kinematics, apart
G'l(5)=G" 5'low(n). The remaining seven variables are from the four angled,, ¢p, 0y, ¢q, Must include an en-
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ergy variable that specifies the sharing of the available ki- When integrating over the energy-sharing parameter
netic energy between the pion and tibl pair. There is only  one obtains, via the upper limé,,,, a dependence on bom-
one such variable since the total energy of the syst@nis  barding energy, or. Thus, close to threshold, where only
determined by the bombarding energy. For instance,igf  the Sswave contributes, the shape of topgh— pp® cross

the magnitude of the pion center-of-mass momentum, théection as a function of bombarding energy should be deter-

proton momentum in th&IN rest system is given by mined by the phase space and FSI, an expectation that is
borne out by the daté]. However, in order to reproduce the

1 measured proton angular distributions, one has to use a value
p= 5\/512—4m,23*qmax\/1—(q/qmax)z, (200 —1.5fm for the scattering lengtfsee Ref[5]). This is sig-
nificantly larger than the accepted, Coulomb-uncorrected
value for thepp scattering length of,,= —7.82+0.01fm

wheres;,=s—2/s(g*+ m )+m2 is the square of the en- . nIER »
m v - [22]. This indicates clearly that factorizing the FSI of the
ergy of theNN subsystem. The second part of E20) is the protons and neglecting all other distortions in the initial and

corresponding nonrelativistic expression, which is a good APfinal states is only an approximatidfor more on this topic
proximation near threshold. Hem,,.x[EQ. (1)] is the largest see Ref[23)) '
possible pion momentum, which is realized when the two ’
protons are at rest relative to each othpe=(Q). In the fol-

lowing, we use as the energy-sharing variable, the kineti

energye in the NN subsystem given by

In Eq.(11), the partial-wave coefficien§, F, G/, H ,

I, andK may be integrated oves. This integration is inde-
(f)endent of the angular variables sineeanges from 0 to
€may fOr any choice of angles.

To reveal the explicit energy dependence of these coeffi-
cients, we separate off the probability (¢) with which a
given e occurs wherel denotes the set of four final-state
angular momentdy,, |4, I, andlg, that occur in the bilin-
ear sums of amplitudes,

€= Slz_zmp y (21)

which ranges frome=0 (when q=0ma) 10 €ma= VS
—2m,—m,_ (wheng=0). The value forey,, is determined
by the bombarding energy, oy [Eg. (2)], as listed in Table
[l for the energies of this experiment. Using Eq20) and

_ 1+1g+1! 1+1,+1!
(21), p andg may be expressed in terms ef wi(e)de={ q(e)™ a7 a p(e)™ e i (€) de,

(22

2. Leading contributions to the energy dependence where the normalizatio ensures thafw, (e)de=1. The

For a limited energy range, thdynamicsof pion produc- ~ final-state factor is given bf; (e) =f(e) if both 1, andl ; are
tion is often considered energy independent. The strong erero, by f, (€)= f(e) if either I, or I is zero, and by
ergy dependence of thebservablesnear threshold is then f (e)=1 in all other cases. The dependence for partial
due to a number of known factors, as discussed in the folwaves with various angular momenta is given in Table II.
lowing. The three functionswg(e), wg(e), and wy(e) represent
The first energy dependence is due to the phase spaéés)z, (P9?, and (Pp)? partial waves. For a bombarding
volumedp(€). Nonrelativistically the phase space volume isenergy of 375 MeV, these three functions are displayed as
proportional tog(e)p(e)de. The second energy-dependent solid curves in Fig. 12. Note thatg(€) clearly shows an
factor arises from the radial wave functions for the pion andenhancement for smaéd, caused by the final-state interac-
the NN pair. Close to threshold, the momemandp, and tion. In general, the weight functions,_(e) depend on the
thus the arguments of these wave functions, are small, andetector acceptance, since in the laboratory the momenta of
one can use their limiting form to obtain the facigpp's,  the two protons do depend en This is illustrated in Fig. 12
wherel, andl , are the respective angular momenta. It is thisby Monte Carlo—generated histograms that show the effect
factor that makes it possible to use the energy dependence of a 5° central hole in the detector coverage. The conse-
the reaction to make statements about partial-wave contribuiguences of incomplete detector acceptance are discussed fur-
tions, but one must keep in mind that the simple power law igher in Sec. IV F.
an approximation, strictly true only fgg—0 or q—0. As briefly noted, the dependence of the amplitudeson
The third energy-dependent factor arises from distortiorimplies a dependence on bombarding energyyobecause
in the entrance and exit channel. By far the strongest energijne upper limite,o Of the integration ovee depends om.
dependence is due to the final-state interactie®l) between In the absence of FSls, and with the nonrelativistic expres-
two nucleons in a relativ& state. Watson showdg@0] that  sion for the phase volume and fp(e) [Eq. (20)], the inte-
the FSI energy dependence of the cross section can be seggation of Eq.(22) is analytic and a simple power law re-
rated as a factof(€) that follows from theNN phase shifts sults. From this, we expect the partial-wave coefficights
at energye. One method to calculati €) is by representing G, andH to be proportional ta;® ai(7), 7"/ o0 7), and
the Swave phase shift by an effective-range expansions® o.(7), respectively. Such a simple dependence on bom-
Since the two nucleons carry charge, Coulomb repulsion hasarding energy is not expected for the coefficiehtd, and
to be incorporated into the effective-range expan$&in. In K, since these are affected by the FSI.
the present work, this procedure is adopted for calculations _
that involve FSls. Other authors have used a fit to a phenoms- Dependence of A and A,, on the energy-sharing parameter
enological representation of thEN interaction to obtain Some of the coefficients in Eq11) cannot be distin-
f(e) [10]. guished from each other based on the angular distributions.
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FIG. 12. The probabilityw, (¢) as a function of the energy- (- o’ tour hombarding energies. The solid curves are ob-
sharing parametee/ ema. The solid line corresponds to ER2), tained from Eq(23) with weight functionsw, that take into
while the Monte Carlo—generated histograms show the effect of th%\ccount the acceptance of the detector LThe coefficients in
central hole in the detector stack. )

Eq. (23) were forced to depend on bombarding energy as

However, their individual values can still be assessed, using1(7) =F17% o),  HZ(m)=Hg* 7% oo(n),  and
the fact that they depend differently on the energy parametelﬂ%(n) =F|§778/atot( 7). At T=325 MeV an accurate value
€. In this section, we explain how this can be done. for the total cross section existe;=7.70+0.26ub [5]).
When we integrate the spin-dependent cross sections ¢fowever, at higher energies, data are few and of poor qual-
Eqg. (11) over all angles, onlyoy(€), oo(€)As(€), and ity. For the present purpose we use foyr,(») a smooth
oo(€)A,{€) remain which in turn depend on four coeffi- approximation to the world’s datésee Ref[11] and Table
cientsE, F,, HY, H3, and HZ, whereHZ*=HY~H3. V) Assuming that there are no other partial waves, we have
Note that these coefficients when normalized m?8r,,, are  E=1—F,—HJ’. Therefore, only three energy-independent
related to the partial-wave total cross sectior($,,lq) by  parameters are adjusted. Tke of the best fit per degree of
0(S9/010i=E, o(Ps)/o=F;, and o(Pp)/ow=H. freedom is 1.8, which leads us to suspect that the limitations
The present notation is related to that used in Ref] by  of the simple energy dependence adopted here may be no-
2(}(pp)/0tot:|_|§_ The two observables () and A, €) ticeable, especially at the higher energies. The resulting

in terms of the partial-wave coefficients are now given by Partial-wave contributions to the total cross section are
shown in Fig. 14. The error bars are obtained by repeating

2[E~WE(e)—Fl-WF(e)]+H§~WH(e) the fit by varying the values assumed f@f,; or by using
T E We(e)+ Fr-We(e)+ HE-wh(e) -
(239 oll,l) [ Ss
Ot 08 |-
Aoy EWE(O) F1We(e)+ (HP—Hg) - wi(e) [
A E-we(e)+Fy-We(e)+Hg-wy(e) 08 |-
(23b) I
04
In these equations, the probabilities , wg, andwy are C
known functions ofe that differ from each otheftsee Fig. 02
12). Thus, it is possible to determine the coefficieBid,, C
HY, andH3 from a fit to the measureds(e) andA,fe). Y TS »—-04’.3 YT -"‘?-~1

These coefficients are not accessible separately by a study of - m

the angular distributions. A similar method has been applied M = G/ M

prewpusly[lo] to the spin-averaged total cross section as & g, 14. Contribution of the three possible final-state angular

function of e. momenta to the total cross section. The dashed and solid lines rep-
From the set of good events we determig(e) and  resent the expectegf (7#8) dependence of thes (Pp) partial-wave

A,[€) following the same procedure as described in Seccross section, while the dotted line indicates the remainder, which

IV B, except that the argumers, (or 6,,) is replaced by the represents th&spartial-wave cross section.
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tude. The observation that ti&2andH coefficients obey the

E E 3
& GY° ¢ F HELK© , power law that is expected from the “trivial” energy-
gs_ "g i ’ dependent factors confirms a similar finding based on partial-
g 10F I °F wave contributions to the spin-dependent total cross sections
£ f [11].
1 T 1L
F F. Systematic uncertainties and corrections
0.1 ' — 0.1 ' — 1. Corrections for a nonideal detector
0.4 05 06 07 0809 1 04 05 06 07 0809 1
For a number of reasons, the apparatus does not registers
all the generate@ p— pp=° events. The main loss of events
g g 1% N occurs because the detector system has a hole in the center to
2 g [ H allow for the 3-cm-diam beam pipe just downstream of the
LA T 10 target. Seen from the center of the target, this hole subtends

a cone with about 5° opening angle. Between 2G#325
MeV) and 10%(at 400 MeVj of all events have at least one
proton that falls into this cone. At 400 MeV a few percent of
the events miss the detector on the outside, and about 3%
S o contain a proton that is energetic enough to fire the veto
04 05 06 07 0809 1 05 06 07 0809 1 detector. In about 2% of the events, both protons strike the
n yl same segment of the E detector, and therefore do not trigger
the detector. The efficiency of an individual wire chamber
plane is between 93% and 95%, but since only three planes
have to respond for a valid event, only about 8% of all events
are lost because of this. All of these effects combined
amount to a loss of events between 30% and 22% for the
energies from 325 MeV to 400 MeV. A Monte Carlo simu-
weight functionsw, calculated directly from Eq(22), as lation of the detailed detector performance was used to de-
would be appropriate for a detector with 100% acceptanceermine these numbers. Reactions in the scintillators might
The dashed line in Fig. 14 represents the expegfedepen-  lower the proton energy measured by the K and E scintilla-
dence of thePs partial cross sectiong(Ps)=F;, and the tors, leading to a tail of ther® peak in the missing-mass
solid line corresponds to the imposegf dependence of spectrum(Fig. 4), placing some good events outside the ac-
o(Pp)=HY’, while the dotted line indicates the remainder, cepted mass range. However, there is no evidence for a sig-
given by E=1—F;—HJ°, which represents th8spartial-  nificant tail in the mass spectrum.
wave Ccross section. The correction of the data presented in this paper for the
losses discussed above turns out to be small. This is because
polarization observables are a ratio of yields measured with
and without polarization. If the fraction of lost events is the
As pointed out at the end of Sec. IV E 1, based on thesame in both cases, there is no net correction. For this reason,
phase space, angular momentum dependence of the wawgere is no correction for the data in a given volume element
functions, and FSI, we expect that the partial-wave coeffiﬂdeque of the five-dimensional phase space. Thus, cor-
cientsF, G, andH times the total cross sectian.(7) are  rections arise only when integrating over some region of the
proportional to7°, »’, and % respectively. We have also phase space.
explained that the integration overis independent of the Acceptance corrections are estimated as follows. Let us
angular variables. Thus, each of the coefficients in@d)  denote bya (&) the detector acceptance at a given pdirin
that does not containldN Sstate £, G, andH coefficient3  phase space. Since the corresponding event is either seen or
is expected to obey such a power law. In order to test thi;iot seen,a(¢) has a value of 1 or 0. In five-dimensional
expectation, we have to multiply the values for the coeffi-phase space the transition fram+0 to =1 occurs at well-
cients in Table IV by the total cross section,(7) at the  defined boundaries. However, when one integrates over sev-
corresponding energy. Fof,(7) we use a smooth approxi- eral variables, the dependence @fon the remaining vari-
mation to the world’s data, as explained in the previous secables is smoothed out, and this is another reason for the
tion. The resultingy dependence of some of the coefficients smallness of the acceptance corrections. Since the functional
in Table IV that have been obtained without constrainingdependence of the observables on all five variablgse, ,
their energy dependence is shown in Fig. 15. The two Iine%, @p. and e is known, we can carry out the integration
shown in the figure correspond to the best fit withhor  over kinematic variables, weighting the integrand witft)
7® dependence. As can be seen, the simple powersaw and thus taking into account the real detector acceptance.
dependence of the coefficients is at least qualitatively corThese integrals are evaluated numerically using the Monte
rect. This is also true for the coefficienti§*+K/2), which  Carlo method for each of the partial waves in Table Il and
could in principle contain a contribution from @s ampli-  for each of the trigonometric functions of the kinematic vari-

0.1

0.1

o
kY

FIG. 15. Dependence of some of the coefficients of Efj$)
and Table IV on the bombarding energy. The two lines are propor
tional to 5’ (solid) (expected for theG coefficienty and 7°
(dashedl (expected for théd coefficients.

4. Dependence of observables on bombarding energy
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ables. For comparison, settiag= 1, independent of, yields V. COMPARISON WITH THEORY
the result for a detector with 100% acceptance. The effect of
incomplete acceptance on the angular distributions is illus-
trated in Figs. 5-9. The solid curve is obtained from Eqs. The advent of new data due to the three technical ad-
(11) and the coefficients in Table IV using the true detectorvances mentioned in Sec. | was answered by theoretical de-
acceptance, while the dashed line results when 100% dete¥elopments. The first measurements triggered a study of
tor acceptance is assumed. As can be seen the effects &éantum number selection rules, of the role of the final-state
very small. interaction, and of nucleon excited states, and led to a theory
The acceptance corrections for the total cross section®f pion production in analogy with quantum electrodynam-
Eq.(12), involve the integrals over the entire phase space foiCs. The availability of kinematically complete cross section
three partial waves with the final stat8s PsandPp, cor-  data led to the application of effective chiral Lagrangians, of
responding tcE, F4, andH in Eqg. (12). Again, if the frac-  soft pion techniques, and models with coupled channels, and
tional loss for all three partial waves were the same, ther¢he recent precise cross section data close to threshold ob-
would be no correction. However, as can be seen from Figtained at storage rings stimulated the construction of meson
12, theSspartial wave is affected more strongly by losses inexchange models, and a study of the short-range part of the
the central hole than the other two partial waves. In order tNN interaction as well as the role of chiral symmetry in the
evaluate the correction faxo /oo andA o /oo the rela-  interpretation of pion production. A review of the develope-

tive strength of the three partial waves is taken as shown ifent of the theory ofrNN systems, prior to 1990 is given in
Fig. 14. The resulting corrections are listed in Table V. Theyref, [24].

A. Current status of the theory of NN—NN

are slightly different than those used in Rgf1] because We now recognize the fact that the reactipp— pps°
more has since been learned about the relative importance g threshold is sensitive to short-range exchange mecha-
the three contributing partial waves. nisms in the two-nucleon system, because the main pion ex-
change term is prohibited by isospin conservation. Soon after
2. Other systematic effects the first accurate total cross section measurement with an

The dead time of the data acquisition system was mezE'ectron-cooled bearfb], it was realized 25,24 that pion

sured for each of the different spin states of beam and targe‘?.rr ggg(;té%?ignn ba seiggluet gufg;%rr] gfng eizset';nnagesiéig e:gpl(;g::(lj
The dead time is a few percent and differences between sp y : prop

states are less than 18 Thus, dead time effects can be 7] that _th|s shortfall of_the_z theoret|f:al cross section might
neglected. be explained by the omission of pair diagrams with an ex-

The reconstruction of the pion polar angh depends changed heavy mesomr( ). This was confirmed quantita-

sensitively on the absolute energy calibration of the E and F{'VEIy [28]. Subsequently, the role of re3|d_ual, virtual pion
o . X . . exchange was found to be not necessarily srfizd,30.
scintillators, since the pion has to account for the remainin

momentum. However, because of the identity of the collisior%owever’ at this time the role of pion rescattering is still

: . cantroversial, especially since field theoretical models and
partners, the spin-averaged cross section has to be symmetric. . . :
DN ; o chiral perturbation theor{31,37 disagree on the sign of the
aroundf,=90°. This condition has been used as one of the_. . .
oo - A . .. pion exchange amplitude. On the other hand, the importance
criteria in determining the energy calibration of the scintilla-

of heavy-meason exchange also has been questiB8&d
tors._ . Additional short-range mechanisms have been studied as
Finally, one has to worry about the resolution of the de-

tector system as a whole for the cms anglesd, .0, and well, including transition couplings between different ex-
prYq> i
¢q- This has been studied with a Monte Carlo simulation Ofchanged mesong34] and the role of thea (1232 isobar

the response of the detector system. The generated everg §6’32’3Q and t?eﬁﬂ andD nuclionbres_onafnce{%]. An |
were processed by the same code that was used to analy'?eerpret"’ltlon 0 the reaction on the basis of approximately
conserved chiral symmetr}36,37,31,32 has, so far, not

::Zi;?ttji'te?;r?”I;O;Lc?r;ﬁl:eﬁirbhe?’ cgge(raesnc;:seé\;]v?ﬁirtli;ne "een able to reproduce the cross section close to threshold.
g 9 y Fully relativistic calculations have been carried out in a co-

\?v%ié?ﬁsl\\/l/grmenegﬁrloa g?ﬁsl,z}?nnf?gﬁt;?é% (?n g';:g?};ﬁﬁg th variant one-boson exchange model with parameters fitted to
y M ! %he amplitudes of elastiblN scattering 38,39.

widths of the distributions. We identify the angular resolu-
tion with the o of this Gaussian in each case. These distri-
butions vary somewhat with beam energy and are widest for
the lowest-energy data. Therefore, we here reportothef The impressive theoretical effort during the past decade

the Gaussian fit to each distribution at 325 MeV beam enthat is summarized in the preceding section has been mostly
ergy. The results are=3.0° for 6,, 1.5° for ¢,, 8.0° for  devoted to a study of the lowest partial wave. Since, as we
0y, and 6.0° for¢,. The o corresponding to the co&)  have seen, the energy dependence of that partial wave is well
distribution of errors is 0.04, and for cag) it is 0.12. There  described by “trivial” factors, this means that, so far, only

is no correlation observed between the errors in the recorits strength, i.e., a single experimental number, has been con-
structedp andq vectors. Clearly, this resolution is sufficient fronted with theory. Some of the models mentioned in the

to resolve the harmonic content of the angular distributiongreceding section naturally include higher partial waves and

in this experiment. thus would be able to predict polarization observables. How-

B. Theory and polarization observables
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ever, at this time, such calculations have only been carriedividual amplitudes that follow from the present measure-

out by groups at Osalat0] and at Jlich [30,41,43. ment. Such an amplitude analysis is currently in progress.
Pion production in the Jich model[43] includes direct
production,s- and p-wave pion rescattering, an intermediate ACKNOWLEDGMENTS
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Finally, we point out that the experimental information
now available offers the possibility to discuss individual re-
action amplitudes, and that a comparison with theory should
take place on this level. Such a study is currently in progress. 1. Expansion of the reaction amplitude

APPENDIX: PARTIAL-WAVE FORMALISM

We present here the details of the partial-wave formalism
VI. SUMMARY AND CONCLUSIONS which was employed to determine the form of the angular
We have studied the reactiqmp— pp=°, kinematically distributions of the cross section and polarization observ-

complete, with a polarized beam and a polarized target. Th8P'ES: qus(_ll). Th(ej main (;JliLficuIty for re;actions such as
experiment relies on the advantages offered by the use of dhP—Pp7 Is to understand how a partial-wave expansion

internal target in a storage ring. The experiment has beeE_‘an be carried out for situations in which the final state has

carried out at four bombarding energies between 325 an ree particles.

. : We work in the c.m. frame and adopt coordinatesndp
400 Me\_/. In this energy range _tlﬁs partial wave ceases o onjugate to the momentaandq of Fig. 2. The symbolW
be dominant, and higher partial waves become importa

Fig. 1 epresents the full wave function of the system that evolves
(see Fig. 14 . . from the pp initial state, and we wish to focus on the com-

, .Throughqut the p.resent Energy region, the number of S'gfaonents ofl’ which correspond to some three-body channel
nificant partial amplitudes is still smalat most 12. Under B. We know from Ref.[44] that for reactions leading to

these conditions, it is feasible to expand the observables i”tf?wee-body final states, the outgoing wave in the asymptotic
a complete set of angular functions. The expansion coeffiragion is of the form

cients are determined from the data. This results in a param-

etrization of the findings of this experiment and allows one gltRp
to calculate any analyzing power or correlation coefficient ‘I'B(F,P)Hﬁfﬁ(p,q;ki), (A1)
for any configuration of the three-body final state. We in- B

clude as an appendix the necessary framework to discus . - -
polarization observables in a reaction with polarized spin-llﬁ’vShere ki is the initial momentum. The quantitigsand Ry

collision partners and a three-body final state. are given by
From a formal partial-wave analysis we learn that the am-
plitudes can be arranged into the two gro(®s Sd, Ds) and =2\ papoEpIh?
(Ps, Pp), and only amplitudes within one group can interfere
with each other. We also see that in the coefficients of th&"
angular distributions, terms that represent the interference ) ) 5
between(SsSd and (SsD$ amplitudes, always occur in a Ris= (el “+ u2p?) N papa, (A3)
sum with a term that contains ongp waves. These sums
then become a single parameter in the analysis. Thus th&hereu; andu, are the reduced masses associated with the
contribution fromSd and Ds partial waves cannot be de- coordinates andp, andE is the available kinetic energy in
duced from the angular distribution and must rely on a studythe final state.
of the energy dependence. However, we find no evidence If the particles have spin, we may construct a wave func-
that terms that contai®d and Ds partial waves depart in tion with spin projectionsr, and o, for the two particles in
their energy dependence from what is expected for the conthe initial state, and the full wave functiolf that evolves
peting Pp wave alone. from this initial state will contain outgoing waves with vari-
The formalism presented in this paper shows that it isous final-state spin projections,, o,, and o3. It follows
possible to calculate the observables from the partial-wavéhat the reaction amplitudég must carry all five spin labels.
amplitudes directly. Embedding this calculation into a fitting Isospin projection quantum numbers may be incorporated in
procedure would allow one to discuss the constraints on ina similar way.

(A2)
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Formal expressions for the reaction amplitudes can be obwhere)), is the angular momentum/isospin function:
tained by employing a three-body Green’s funct{d] in
conjunction with a Lippmann-Schwinger-like equatitsee
Ref. [44]). The result for the asymptotic wave function in yM7— % (g 5 5 5 |50:)(si0;,IN|IM)

channelg is 04,0 .0
N, Tq,Tp
2 \126i6Rs E R
i| =) = et X(taTa, byt YN 22 X100 772 3P A9
\Ifﬁ(r,p)—u(wg R%’Z (zwh2)2<¢,//f|vﬁ|‘lf>, (A4) (tara to |t Y (T X532 X" 720 7, (A9)
whereV is some kind of interaction potential and One can easily argue that the full wave functidnmust
iK-raiqp have the same basic angular momentum structurg ago
pi=e""€PP1drbs. (AS) see this we write the Bessel functipnin terms of spherical

In this last formula thep;’s are the internal wave functions Hankgl functlor)s so thag becomes. a sum of Ingoing and
outgoing spherical waves, each having well-defined quantum

of the particles in the final state. Fop—ppm° these are numbers. For example, the ingoing wave in a given angular
just spin and isospin wave functions. The matrix element in ' P'e, going g 9

Eq. (A4) implies integration over all coordinates of the prob- momentum channel will have the asymptotic form

lem, and the actual dependence'bf; onr and p is con-

tained in thee'*R/R%? factor. The formula for the reaction (i) 1

amplitude can simply be read off from E@A4) with the v H_(Zik-r-

help of Eq.(A1). v
To obtain a partial-wave expansion bf we need to ex-

pand both¥ and the outgoing plane waves in terms of an-We then assume that whatever interactions are present con-

gular momentum eigenfunctions. One begins by dividing serve total angular momentum and total isospin. These inter-

) e i(kiri=1m2) YM. (A10)

into two parts, actions affect the outgoing waves but do not alter the ingoing
wave, and so it follows that the full wave function will be of
V=yi+ o, (A6)  the form

where ; is the unscattered incident plane wave abds
everything else. Fog; we write

=Xt xp? m2 g ek, (A7)

where they’s and ’s are spin and isospin wave functions,
respectively.

For the angular momentum expansion we choose basighere ®'" is the wave function that evolves frop™ .
states that are simultaneous eigenfunctions of the initial totaAithough the exact form ofb, may not be known, by our
spins;, orbital angular momenturh) total angular momen-  assumptions it must be an eigenfunctionJoiM, t, and .

tum J, and total isospint, with the coupling orders The formula in Eq.(A11) is our working equation for the
[(Sa,Sp)si,| ]J and (,,tp)t. We use the symbal to denote  expansion of¥.

V=47, y }\Z (8207, SpTb| S0 )(Si 07 ,IN|[IM)

X(taTarty 7|ty ®MTYM (K), (A11)

initial state quantum numbe I, s;, andt. Then, by em- The three-body final state wave function given in Eq.
ploying standard angular momentum identitiese, for ex-  (A5) must also be expanded in terms of angular momentum
ample, Ref[46]) we obtain eigenfunctions. For now we keep the discussion general and
allow all three particles to have nonzero spin. Symbolically,
— A S.04,S00p|S oS 0 IN|IM the coupling order we adopt is
Vi ZV M,)%i,7'< a%a:S50b] 501 {Si071, N IM) {[(s1,82)s¢31plj:[S3;141j '}’ for the angular momenta and
] . . [(tq1,to)ts;t3]t" for the isospins. The corresponding angular
X (taTa tomolt7) Ji(KiF) VI TYI* (i), (A8)  momentum/isospin functions are
y%w’f/: E (8101,8,07|807¢) (S0 alp)\p|jm><530'3!|q)\q|j,m,><jm!j,m,|JIM,><tl7'1vt27'2|tf7'f>

0q,09,03,0¢,mm’
71,7'2,7'3,Tf,)\p,}\q

. ) N ) P C C
X{tye tamalt’ 7 )i'e T a Y1P(p) Yy (a) X1 X352 X33 0yt 2 mgd, (A12)

where in this contexg is shorthand for the final-state quantum numbgrs, j, j’, ', s¢, t¢, andt’. The expansion of;
in terms of the)’ functions is
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'ﬂf:(4ﬂ)2% > (8101,5,02|St0)(S107¢ | A pl iM) (8503, 1 A gl | "M )(jm,j M [I"M " )(ty 74, to7o|te7s)

M',a'f \TE N

m,m’,)\p,xq
Xty tamslt' 7, (PY) 1 (A) Y, P (P) Yy (@) VT (A13)
We may now obtain the partial wave expansionf gfoy substituting Eqs(A11) and(A13) into Eq. (A4). The result is
01,09,0 . 2 1/24E M2
fr 32'(—) 2—4 > (Sa0a 550|511 )(Si 07 INIMNtaTa Lo |t T)(S1071,Sp072| St )
ar’b 7T§ V,,B,M,M')\,o'i T

[ort ,m,m',rf ,}\p,)\q
X(stos I phplim)(S3073,1gNglj "M Y(jm,j ' m’[3' M)ty 71, tomo|te 7o) (ts7s  taTalt' 77)
X, (Pr) i (ap) VT IV DY) Y* (k) YiP(P) Y1 4(@). (A14)

At this point we can simplify the result by assuming that the interaction poteriiad a rotational scalar in both ordinary
and isospin space. It follows that the matrix elements are nonzero onfy fdr.t, 7}={J',M’',t’,7'}. Furthermore, we know
from the Wigner-Eckhart theorem that, for a given set of quantum numbarsl 8, the matrix elements are independent of
both M and . With this in mind we adopt the shorthand notation

Ual€)=+23+1 (i (pr) Ji (ap) VIV @), (A15)

where, as in Eq(10), « is shorthand for the full set of initial- and final-state quantum numbers. We see frof\E5). that
the matrix element) , depends explicitly on the momentum paramefe@nd q. These parameters are constrained by the
requirement that the total kinetic energy in the final state mud peand thereforeJ is effectively a function of the energy

sharing parametes.
To obtain our final expression for the reaction amplitude we adopt the coordinate frame of Fig. 1, in whichxibes

alongk; . The result is

o om0 8i\/§EBt/~LlM2
fgi',gi' 3= T —F mE (8a0a,Sp0p|S107)(8;0; 10| IM)(ta7a , 1y 7o |t T)(S1071, 5,07 S5 0¢)
a,m,oj,7

[oxt ,mp ,mq T ,)\p ,)\q

X(st0¢ | phpl§ pMp)(S303.1 A gl gMg) (oM 1] Mgl IM)(t1 71, to 7o te 7o)ty 7,y 75| E7)

21+1]Y2 N
p q
23+ 1 U,(e) Y|p(p) Y|q(q)- (A16)

X

Equation(A16) simplifies considerably if we specialize fpp— pp°. In this case the isospin Clebsch-Gordan coefficients
become constant numerical factors. In additigris zero and ;=j4. The result is

1/2

01,0 8| EBt,lLllle 2|+1 i
ga,gbzﬁ TQ‘MM ™ 23+1 (8a02,Sp0b|S107)(8;07 ,10[IM) (8,01 ,5,05| St o) (Sp 0 vlp)\pljm>
)\p,U'f ,)\q
X(im.lghglIM) U (€)Y (D) Y}(@). (AL7)
|
2. Cross section and polarization observables proportionality constant involves only kinematic factors.

For our purposes it is useful to introduce a ‘“reaction ma-
In most respects, the procedure for obtaining the obserwrix” M directly proportional td, with normalization chosen
ables from the reaction amplitude is the same as for reactioris such a way that the spin-dependent partial cross section
with two-body final states. In particular one can showAo for reactions leading from initial state,,o to final
that the fivefold differential cross section for a three-bodystater;, o, with p andq in the intervalsAQ, and AQ,
final state is proportional td 4f; (averaged over initial and with the energy-sharing parameten the intervalA e is
spin states and summed over final spin syatedere the given by
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Ao=|M7IZ2AeAQ AQ,. (A18) 1 _

a Tlil=+ﬁ(axilay), (A24)
For the case in whicle is taken to be th@p relative kinetic
energy[as in Eq.(21)] the result forM is wherel is the 2x2 unit matrix. Associated with these op-

erators, there is corresponding set of “spherical tensor” po-
1/2

V7172 gi| H12Pd 21+1]%? larization observablegt7]
Tty O UiAS | anfem | 2041
Np T\ — (b) (t) t
P Thay k™ 25,7 1) (2557 1) 1M Thyey® Tiga,M -
X<Sa0-avsb0-b|si0-i><sio-i1|0|‘JM> (A25)
X(81071,8,05|St0¢)(St ¢, | A pl JM) From the definitions given above, it is straightforward to

find simple relationships between the Cartesian analyzing
powers and spin correlation coefficients and the spherical
tensor observables. The relevant formulas are

XM, gAglIM) U Y} (p) Y, 9(0), (A19)
p q

wherev; is the relative velocity in the initial state.

The differential cross section and polarization observables 0= Too,00
may now be obtained directly from the reaction mawixIn
general, the observabl€sare found by taking the trace of a ToA0=—2Im[Ty0d,

matrix product, i.e.,
0A20=T1o,00
O=TI{MTMT], (A20)
00Az7=T1o,10

whereT is the appropriate operator. To obtain the unpolar- ooAs=—2 Re[T ]
ized cross section, the partial cross sections of(B8) are 0 11,115
to be summed over final states and averaged over initial ooAs=2 Re[T11 1]
states with the result 0ma i

00 AG=— \/E Re[T11 1dls
— T
70 e D251 MM (A2D) ooA==2Im[Ty1 1 1]. (A26)

The polarization observables are obtained by using the The introduction of the spherical tensor spin operators
appropriate spin operators fdrin Eq. (A20). For the ana- leads to a compact, general formula for the partial-wave ex-

and the result is the fact that the spin operators of E@24) can be repre-

sented in angular momentum language:

(ToA

ioz(zs D) (25 1) TIMoMT],  (A22) <U’|qu|0',>:(—)570,\/28+1<SO',S—O',||(C]>. (A27)

N o To obtain the partial-wave expansion formula we now
where the subscrifitcan bex, y, or z In a similar way, the  substitute this expression, along with E&19) for M, into
spin correlation parameters are obtained by usingTfthe  Eq. (A25). The angular dependence of the observables is

direct product of the Pauli matrices for beam and target parexpressed as an expansion in terms of bipolar harmonics:
ticles:

A A A ~ A ~
B, Lt (P= 2 {LpAp L AdlLQ) YL2(P) Y (@),
(A28)

T MteP & o{"tM™].
(A23)

TN = (s T 1) (2554 1)

After carrying out an angular momentum reduction that
Obtaining the partial-wave expansions is simplified Con_elimi_nates the sums over the magnetic quantum numbers we
siderably if one introduces spherical tensor spin operators tgbtain the result
use in place of the Cartesian spin operators that appear in 1
Egs. (A22) and (A23). The new operators transform under Thq, koa, =
rotations like the spherical harmonics and are defined, for 2z (25,11)(28,+1)
each particle, by the equations [
L

16piuapq
Uj ’7Tﬁ5

x X

L

S, cenin Ue) u;m}

’TOOZI, p’LQ‘ a,a’

XBE | (PO, (A29)

710~ Oz,
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where the labek is shorthand for the indicds q;,k,q, and  ficients is a sum of terms involving an angular momentum

whereQ=0q;+ Q5. coupling coefficientC and a bilinear product of matrix ele-
Equation (A29) represents our central result for the mentsU,. The selection rules that determine which partial-

partial-wave expansion of the cross section and polarizatiowave combinations contribute to a given angular function are

observables. Each observable has a set of allowed angulggntained in theC coefficients.

dependenceﬁ?p',_q;L(f),Q), and the factor inside the square  The angular momentum coefficients are given by the fol-

brackets gives the expansion coefficient. Each of these coellewing expression:

f’;"L;".L:(—)'é*'é*'*siﬂ*sf“' 855 2 [(25a+1)(28p+1)(2Ky 1) (2kp+1) (2K + 1) X (21 +1)(25,+ 1) (28] +1)
ar ' 1K

X(21+1) (21" + 1) (21 p+ 1) (21, +1)(214+1)(214+1)(2j+1)(2)" +1)(23+1)(23" + 1)1¥2(10,'0]10)

S J I
X(10,KQILQ)(1 30, 10]L 10140 L0|L g0} Ky koo KQ) W(j ¢, L 11315, i)Y ST 3 1
K L |

| PN S, Sa ki
x40 lg I p{se sp o kap. (A30)
L si s K

This equation differs from the analogous formula given inable. The constraints, which arise from conservation laws
Ref.[9] in two respects. First of all the Clebsch-Gordan co-and the antisymmetrization requirements, can be seen by in-
efficient (10,/'0/10) was inadvertently omitted in Ref9].  specting Eq(A30).
Second, we have changed the coupling order for the angular The first constraint comes from th®, ¢ factor. Forpp

. N . f o f
momenta in the initial statisee Eqs(A8) and(A9)] and this —pp#°, s; is thepp total spin quantum number. Since we

results in additional phase factors @ o have only antisymmetripp states, the conclusion is that
Although the expression given in EGA30) is fairly com-  here will be no interference between evenand oddl,
plex, the coefficients are easily evaluated since Comp“t%artial waves.

codes for calculating the Clebsch-Gordan, Racah, and 9° The next constraint is on the allowed valueslgf. This

symbols are readily available. constraint comes from the Clebsch-Gordan coefficients

The expansion formulas given in E¢ll) are obtained (1,0170[L,0) which requi / :
X - - pOI10[L quires that, |, and L, satisfy the
most readily by substituting EqA28) into Eq. (A29) to triangle inequality and also thdi5+lg,+ L, be even. There

obtain are analogous constraints bg. Thus, for example, interfer-
ence betwees and Pp may give rise to angular distribu-

) tions withL,=0 and 2 and withL,=1. For the conditions
we assume, the angular distributions involve no spherical

) harmonics of degree greater thlar2.
X > { > X Ug(e) UZ/(f)} One can easily demonstrate from HA30) that X coef-
Lobao# [aa’ P70 ficients are either symmetric or antisymmetric under the in-
terchange ofx anda':

1

- _ 16p1 2P q
kidi kol (2s,+1)(2s,+1)

Ui7Tﬁ5

XYL () Y2 #(@), (A3D)

’. ’
a,a’ K :(_)lirkZXf LK

where the coefficientX are given by LpLo.a oLy (A33)

Xf"f’L;’ﬁM:2 (Lps,LqQ—u|LQ) CI %, . (A32)  This means that the unpolarized cross section and the spin
P - P correlation parameters depend only or{ RgU”,] whereas

Equations(11) are then obtained by using EGA31) in con-  the analyzi_ng powers depen.d qnly on[lth, U7, 1. One con-
junction with Egs.(A30) and (A32) assuming that only the Sequence is that the factor inside the square brackets in Eq.
partial waves of Table | contribute and that terms quadratidA29) is either purely real or purely imaginary. From this it

in Sd or Ds are negligible. In general, one finds that only afollows that a given observable will depend either on
few distinct angular functions are allowed for each observ-Re[Yfp(p) Y(Bq_“(q)] or on Ir‘r[Y’fp(p) Y‘Bq‘“(q)], and as a
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result the¢ dependences of the allowed angular distributions+ Q¢,].

are relatively simple. In particular we see tha§A,o and The formalism outlined in this appendix leads to a hum-
ooAz (both of which haveQ=0) go as sifiu(¢,—d,)], ber of additional useful results that are described in the main
while the remaining observables go as [gd®,—¢,)  text and in other publications.
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