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The renormalization of the weak charge-changing hadronic current as a function of the reaction energy
release is studied at the nucleonic level. We have calculated the average quenching factors for each type of
current(vector, axial vector, and induced pseudosgal@ine obtained quenching in the axial vector part is, at
zero momentum transfer, 19% for theQd shell and 23% in the 4Of shell. We have extended the calcula-
tions also to heavier systems such°8i and °°Sn, where we obtain stronger quenchings, 44% and 59%,
respectively. Gamow-Teller-type transitions are discussed, along with the higher-order matrix elements. The
guenching factors are constant up to roughly 60 MeV momentum transfer. Therefore the use of energy-
independent quenching factors in beta decay is justified. We also found that going beyond the zeroth and first
order operatorsin inverse nucleon massloes not give any substantial contribution. The extracted renormal-
ization to the ratidCp /C, atq=100 MeV is—3.5%, — 7.1%, — 28.6%, and+ 8.7% for mass 16, 40, 56, and
100, respectively.
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[. INTRODUCTION tive, since their contributions are proportionalttM, where
g is the energy release ad is the nucleon mas&n units
The phenomenological structure of the weak hadroniovhere #=c=1). There are, however, weak nuclear pro-
current between proton and neutron states is well determinegesses, like muon capture, where the energy release is much
by its properties under the Lorentz transformation. The addihigher (in muon capture, typicallg~m, ~100 MeV).
tional constraints come from the requirement of time reversal Summed theoretical beta-decay strengths are systemati-
symmetry as well as from the invariance under Garity cally larger than the experimental ones. This so-called
transformatior(combined charge conjugation and isospin ro-duenching of the(allowed decay strength is usually ex-
tation). The resulting interaction Hamiltonian consists of Plained in terms of core polarizatiofdegrees of freedom
vector (V), axial vector @), induced weak magnetisnM), which are left out from thg model spacand non-nucleonic
and induced pseudoscalé®) terms together with the asso- degrees of freedom like isobars and meson-exchange cur-
ciated form factorC,, a=V, A, M, or P. These form fac- rents [6]. The core polarization correction is intimately
tors are called as coupling constants at zero momenturinked to the choice of the model spa@te orbits between
transfer. The present experimental knowledge does not efhe inert core and excluded orbits at high single-particle en-
clude the presence of the scalar and tensor interactions. Hogfgies. Hence, to demonstrate this dependence, we have
ever, their contribution is expected to be small due to weak!Sed two different model spaces for the nuclei in the middle
couplings[1]. of the 1p0f shell, like Cu and Zn isotopesee below _
The values of vector, axial vector, and weak magnetism N [7.8] we have self-consistently constructed effective
couplings are well established by beta-decay experiments &perators for the weak hadronic current between proton and
well as by the conserved vector currd@VC) hypothesis, heutron states. These operators, as explained in Sec. Ill, take
introduced already in the late 19508]. The magnitude of into account the above-mentioned core polar_lzat|on effects,
the pseudoscalar coupling is more uncertain, although thehich are expected to be the largest correction to the bare
partially conserved axial currefPCAC) hypothesig3] pro- ~ Matrix element$9]. Earlier, many author¢e.g.,[6,10-13)
vides an estimate along with muon capture experiments ifStablished the quenching factors for the Gamow-Teller de-
hydrogen[4,5]. The value ofCp in the nuclear medium is Cays and closely related magnetic dipdi¢X) transitions. In
not precisely established. the present work our aim is to calculate self-consistently the
In nuclear beta decay, with an energy release up to som@uenching for all types of operator&/( A, M, and P) for
20 MeV, only the vector(Ferm) and the axial vector €nergies up to the muon capture range. In additionsdl
(Gamow-Telley terms are usually important. The induced and 1pOf shells, we have extended our calculationSdi
pseudoscalar and weak magnetism parts are essentially inaand 1%n as closed-shell cores.
Empirically, one expects about 20% quenching of the
axial vector part in the 40d shell; i.e., the calculated
*Mailing address: EP Division, CERN, CH-1211 Geneva 23, Gamow-Teller matrix elementsr) are to be multiplied by a
Switzerland. factor of ~0.8 [11] when both core polarization and non-
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nucleonic degrees are accounted fdEffects of the same for the axial vector and pseudoscalar operators, that is, with-
magnitude are expected in the@f shell[12], and the mass out the complications coming from the nuclear structure cal-
dependence of the quenching is seemingly saturated. Hoveulations.
ever, the major shell closures which separate the spin-orbit In addition to the zeroth-order Fermi and Gamow-Teller-
partners in our’®Ni and 1°°Sn model spaces introduce large type operators, our set includes the first-order terms in the
first-order corrections to the operators. Thus, the situation igransition amplitudgfirst order ing/M as well as velocity-
not analogous to the one seen in light nuclei with clos& dependent termsWe shall also examine the importance of
shells. For a recent work in the Sn mass region, see, e.ghe second-order terms. We stress that the results obtained in
Ref.[13]. this work can be applied quite generally. We have used the
We remind the reader that the quenching we describe ismuon as an initial bound-state lepton, but the results apply to
always related to the choice of the model space. This mearelectron capture as well and therefore to beta decay in gen-
that if a shell-model calculation is to be performed for, say,eral (in our calculations, the muon is nothing but a heavy
Cu or Zn isotopes witt*®Ni as closed-shell core, a pertinent electron.
model space consists then of the single-particle orbits, 0 In this work, after a short review of the formalism of the
1p1s, 1psn, and Qygp,. If transition probabilities are to be semileptonic weak processes in Sec. |l and effective opera-
calculated, then effective operators defined for this modelors in Sec. Ill, we concentrate on the results in Sec. IV. We
space are to be used. Disagreement with experiment magonsider four cases, with°0, “°Ca, ®Ni, and %°Sn as
often imply missing degrees of freedom. Typically, for nu- closed-shell cores.
clei with mass numbers close £0=56, particle-hole excita-
tions involving the @, hole orbit may be important. Then, II. INVARIANT AMPLITUDE AND SINGLE-PARTICLE
the model space needs to be enlarged and the corresponding OPERATORS
effective operator to be computed. R : .
Our extracted quenching factors are averaged over the After the standa(d nonrelativistic reduction, the semilep-
model space single-particle orbitsee Sec. IY. Thus, they tOnic charge-changing weak process
are not directly applicable for the closed-shell plus one
nucleon configurations, like’O. Instead, they should be

used in configuration-mixing calculationshell model in  where), is a bound(antilepton in an atomic $ orbit and

particulaj in the indicated model space. Strictly speaking, iny, is the correspondingantjneutrino, is described by the
this case, also effective two-body operators should be calcuzmplitude

lated. In practice, this is rarely done and accordingly we
neglect such corrections. For reference, we shall also give
the renormalizations of some single-particle transitions.

The nuclear muon capture can be used for the extraction
of the ratioCp/Cp. Unfortunately, the results for partial We take\, to be a muon, with a mass,=105.658 MeV.
capture rates are very sensitive to the applied nuclear modeThe form of the effective weak hadronic current used for Eq.
especially to the residual two-body interacti@ee, e.g.[14] (2) is the most general one consistent with the expected
and references therginThe total rates offer perhaps a more G-parity symmetry and time reversal symmetry. The func-
reliable source of information, indicating no or only small tionsM ,(«,u) include the form factors, transition operators,
quenching for the rati€Cp/Cx [15]. It is of interest to see and angular momentum couplings. Explicitly, the vector part
whether this can be explained in terms of effective charges given by

)\b+p—>1/)\+n, (1)

M2= [My(k,u)+Ma(k,u)+Mp(x,u)|2. (2

93

1
Muy(,0)/Cy(62) =[01U1Soy(1) 1y — 15 [LTUPISL(— )+ 5y

[T+1 [ T =
X[ m[0|+1u+]5ﬂl,u+ ﬂ[o —1U—]5T1,u]51u(—f<)

+ \/g%mﬂp—ﬂn){\/l +1W(11ul, 2+ 1)[ 1 +1u+]

+NTW(LUT, 11— 1)[ 11— Tu— 1S}y (— x). 6)

The Gamow-Teller strengtB(GT)=(o)? are then multiplied by (0.8)

055501-2



RENORMALIZATION OF THE WEAK HADRONIC. . .. PHYSICAL REVIEW C63 055501

We consider th&/ andM terms together, as suggested by the TABLE I. Reduced nuclear matrix elements and the correspond-
CVC hypothesisCy = (up—un)Cyv/2M, whereu, and u,  ing single-particle operatofsvithout the lepton radial wave func-
are the anomalous magnetic moments of the proton and netion G,(r)]. The j,(qr) are the spherical Bessel functions and
tron in nuclear magnetons. The Fermi-type term is the firstfiwu are the vector spherical harmonics]. The momentum op-
term on the right-hand side of EB). The axial vector part €rator for nucleons ip, andp, is the momentum of the neutrino.

is given by

Matrix element Okwu
1 — i r
M Ak, U)/Ca(07) = = [11U]Sy() + —[OTup] Oy Shu(— ) Lo (A7) Y6uu(F) S
[1wu] Jw(an Y1 (r,o)
—MP(K,U)/CP(QZ), (4) Okwut
including the pseudoscalar part [Owu=] [iw(ar) = aZ(m,/p,)jws1(ar) 1Y ou(r) Suy
[1wu=] [iw(ar) = aZ(m/,/p,)jw=1(ar) 1YY, o)
M ( )/C ( 2) q / |_+1 F1|_+1 +] Okwup
5u = 1 u ii r
P P 2\/§M 21 +1L [Owup] 'Jw(qr)YgAwu(r)U'pfswu
[1wup] w(ar) Yiwu(r.p)

[T
+ m[l —1U—]] S1uSou( — ).
I. These operators are further multiplied by the radial wave

(5 function of the initial-state leptofil6]. We have taken into

) ] ] account the large component
The Gamow-Teller-type term is the first term on the right-

hand side of Eq(4). ,
In Egs. (3)—(5), « labels the quantum numbers of the GL(r)=2(azm,)%¥e 2™, 9
emitted neutrinov, ,

wherea~1/137 is the fine structure constant almg is the
k>0: j=l—-5, I=k, (6) reduced muon mass.
The amplitude(2) can be used for the calculations of
muon(or electron capture ratefl4,16. As mentioned in the
k<0: j=I+ E = — k—1 @) previogs section, our aim is to calculat(_a the effective charges
‘ 2’ ' (effective form factorsfor the vector, axial vector, and pseu-
doscalar parts of the amplitude, so as to help to understand
wherel andj are the orbital and total angular momentumthe differences between calculated and experimental rates
quantum numbers ofs, . The quantity| is given by|  and other observables. .
—sgn(x), W are the usual Racah coefficients, and F(_)r the actual _calcu_latlons, we divide the reduced nuclear
matrix elements into single-particle and many-body parts,

S(K)=V2(2j +1) W(1/21j1,1/2u) (k=1)

- (Jill[afa,’|13;)
[2)+1 = L Tnp] V1
- Z:Tl (k=0), Ma(K,U)—% [n||m,(x,u)||p] 51 ,
(10
Seu( — &) =59 k) S (— k). (8)

where n=(n,,l,,j,) and p=(n,,l,,j,) label the single-

The most important ingredients, the transition operatorsparticle states. The doubly barred matrix elements are re-
are embedded in the reduced matrix elemefisvu], duced in the angular momentum space. These reduced
[kwu=], and[kwup]. The quantum numbers labeling the Single-particle matrix elements, which we calculate in the
matrix elements ar&=s, +s,, so thatk=|k|=0 or 1, and harmonic oscillator basis with the_singl_e—particle operators
u=|u|=|J;+J;| is the tensorial rank of the transition opera- Ma(«,U), are constructed as described in the following sec-
tor. The symbolw is the rank of the spherical harmonics and tion. Further, we have defined
is therefore related to the parity change. It is givervby |
for [kwu]- and [kwu=]-type matrix elements, and/=|
+1 orw=I|—1 for [kwup]-type matrix elementk andw
must be able to couple ta). The symbolp labels the
momentum-dependent operators. The matrix elements with As an example, from Eq@4), the single-particle matrix
the corresponding single-particle operators are listed in Tablelement for the axial vector part is

Ajm=(—1)""ay _p. (1D
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C 2
(0l [P) = ~ G2 [0, () IPISa ) + (0] OGP Sal ~ )

o} 1+1 T ,
+CA(q2)2ﬁM { \/ o 1[IﬂIIOlmwG,L(Ir)I||OJ+ o 1[nlIOuilufG,i(r)lllo] 81uSou( — k).
(12

A closer look into the Gamow-Teller-type matrix element gives
= Cal@)[N][01uG u(N|[PIS1u( ) = = CA(@D)i'e ™[I njol[Y114(F,0)[[Tpi o]
xj r’R,, | (r)j|(qr)Rnp,pGﬂ(r)dr\/2(2j+1) W(1/21j1,1/2u). (13
0 nn

Here R, (r) are the radial single-particle wave functions. The reduced matrix element of the vector spherical harmonics is
given by

) - .. | 3 [ Ip Jn U
(In]n”Yllu(rvU)HIDJD)_ 1677-2(_1)p P |Ujp]n 1/2 —1/2 0

2 _1\intiptui2
Int(=1)in*p Jp(u 1 1 +(_1)In+1/2+jn(u 1 I) | 10
V2u(u+1) 1 -1 0 0 0O

wherex= \2x+ 1. The expressions for the vector and pseu- -
doscalar parts are obtained in a similar way using E8s. P:Z |Di (D (19
and (5) and Table I, where the operato@sof Eq. (12) are =1
given. For more details, s¢&6]. an
The many-body part, the one-body transition density
(OBTD), is given by the adopted nuclear model. The effec- w0
tive operators introduced in Sec. Ill do not affect the OBTD, _ NTS
which are taken to be given numbers. We do not calculate Q i=§’+1 |DiXPil, (16)
them here(see, e.g.[14] for examples In what follows we
shall consider only the single-particle part of E§0). This  with D being the dimension of the model space, @@
is analogous to, e.gM1 transitions, where the effective =0, P?=P, Q?=Q, and P+Q=1I. The wave functions
charges are calculated without referring to the many-body®,) are eigenfunctions of the unperturbed Hamiltonkg
part. =T+U, whereT is the kinetic energy antd an appropri-
ately chosen one-body potential, that of the harmonic oscil-
lator (HO) in this calculation. The full Hamiltonian is then
Ill. PERTURBATIVE METHODS AND EFFECTIVE rewritten asH=H,+H; with H;=V—U, V being, e.g., the

OPERATORS TO SECOND ORDER nucleon-nucleonNN) interaction or theG matrix to be dis-

In order to derive a microscopic approach to the effectivecussgd b_elow. The eigenvalues and eige.nfunctions of the full
operator within the framework of perturbation theory, we Hamiltonian are denoted by¥,,) andE,, i.e.,
need to introduce various notations and definitions pertinent
to the methods exposed. In this section we briefly review H[W ) =Ed Vo). (17
how to calculate an effective one-body operator within the .
framework of degenerate Rayleigh-Sotimger (RS) pertur- Rather than solving the full Schdinger equation above, one
bation theory[17,18; see also Ref46,9] for a detailed dis- defines an effective Hamiltonian acting within the model

d

cussion on various effective operator diagrams. space such that
It is common practice in perturbation theory to reduce the
infinitely many degrees of freedom of the Hilbert space to PHeP|W o) =E.P|V ) =E | Pa), (18)

those represented by a physically motivated subspace, the

model space. In such truncations of the Hilbert space, thehere|® ,)=P|V¥,) is the projection of the full wave func-
notions of a projection operat® onto the model space and tion onto the model space, the model space wave function. In
its complementQ are introduced. The projection operators RS perturbation theory, the effective interactidgs can be
defining the model and excluded spaces are defined by  written out order by order in the interactidh, as
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Q Q Q states in °®Ni yield nonvanishing contributions to the
PHefP=PH P+ PHIEH1P+ PngngHlp’L T Gamow-Teller-type operator from the above-mentioned dia-
(199  9grams. Similarly, in Sn these contributions are represented
by the spin-orbit partners in thegg, hole and the @
Here we have defined=w—H,, wherew is the so-called particle states. These spin-orbit partners yield thém in-
starting energy, defined as the unperturbed energy of the inermediates states. Similarly, we have also spin-orbit partners
teracting particles. Similarly, the exact wave functioh,)  for particles states outside the model space. These gyg 0
can now be written in terms of the model space wave funcand (g, for ®Ni and Ch;;,, and Cthg, for 1°%Sn. These o
tion as intermediates states are then responsible for the different
0 0 0 ?gerltozhing of5t6he (f()fggctive operators in the mass regions of
_ ~ AT O-""Ca and*>°Ni-~""Sn, respectively.
W) =|Pa) g P+ gHIgHI Do)+ We end this section with a discussion of how to construct
(20 a G matrix. The G matrix enters in turn our perturbative

. . expansion for the effective operator. As is well known in
In studies of nuclear transitions such as beta decay, thg,cjear physics, thalN potential exhibits a repulsive core,

quantity of interest is the transition matrix element between,nich renders any perturbative treatment prohibitive. How-
an initial state|¥;) and a final stat¢W) of an operatol©O  gyer one possible way of overcoming this deficiency is to
defined as introduce the reaction matri@, which accounts for short-
range correlations. Th& matrix is defined through
(W¢|O[W;)

O T ey &

Since we perform our calculation in a reduced space, the

exact wave function$¥¢ ;) are not known, only their pro- Here, o is the energy of the interacting nucleons in a me-
jections onto the model space. We are then confronted witQjum andV is the freeNN potential. We have assumed that
the problem of how to evaluat®;; when only the model  the energy of the intermediate states can be replaced by the
space wave functions are known. In treating this problem, ifree kinetic spectrur, since these states are predominantly
is usual to introduce an effective operatof; , defined by of high excitation energy.
requiring In this work we solve Eq(24) for finite nuclei by em-
_ ploying a formally exact technique for handligy originally

Ofi = (P | Oct| i) (22 presented by Tsai and KJd9] and discussed in Ref20].

Tsai and Kuo employed the matrix identity

G=V+V (24)

w—0T0"

Observe thaO is different from the original operata®; .
The standard empirical procedure is then to introduce some

adjustable parameters @S L = E _i ! = (25)
The perturbative expansion for the effective operator can QAQ A A palp A
then be written in a way similar to Eq&l9) and(20), i.e., ) .
with A=w—T-V, to rewrite Eq.(24) as
Q
<‘Pf|0|‘l'i>=<<1>fl0l<1>i>+<<1>f OgH1 <I>i> G=Gr+AG, (26)
Q Q O whereGg is the freeG matrix defined as
+{ D¢ —H,0|D; ) +{ & O—H;—H,| D,
e e e
T (23 Cr=VHV =TG- @7

In Fig. 1 we list all diagramsexcept folded diagram$o ~ The termAG is a correction term defined entirely within the
second order in the interaction evaluated in this work. We danodel spacé® and is given by

not include Hartree-Fock insertions. For pure Gamow-Teller-

or Fermi-like operators(see, e.g., the review article by 1 1
Towner[6]), such diagrams are exactly zero. Another feature AG= _VK P— PKV' (28
of, e.g., the Gamow-Teller-type operators is that for several PA"P

diagrams involving particle-hole contributions, these dia-
grams are exactly zero unless the particle-hole orbits ar
spin-orbit partners. This means that 1o8&-closed-shell nu-
clei like %0 and “°Ca diagrams likel)—(VIII) or (Xl )—
(XX) are all zero. However, this picture changes when we AG=—G E 1

move to closed-shell nuclei likéNi and 1%°Sn. For Ni the Fe pel+e Gre Y
last proton and neutron holes are in thi,@ single-particle

orbit. This means that thef@,, hole and the 0, particle  with e=w—T.

gmploying the definition for the fre& matrix of Eq.(27),
one can rewrite the latter equation as

1
PPEGF, (29
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X

VI X
f £
(N
B o P
s q
1 1
X1 X1

XVI XVII XVIII

XXV XXVI XXVl

-
<
=

XXVIO XXIX

FIG. 1. Nonfolded diagrams to second order in the interaction included in the evaluation of the effective operator. Hole states are
represented by greek letters while particle states are given by roman letters. The operator itself is giver by in the various diagrams,
while the wiggly lines are the nucle® matrix. Folded diagrams to second order in the interaction are included in the calculation but not
shown here.

We see then that th& matrix for finite nuclei is ex- principle. The second term can easily be obtained by some
pressed as the sum of two terms; the first term is the &ee simple matrix operations involving the model-space ma®rix
matrix with no Pauli corrections included, while the secondonly.
term accounts for medium modifications due to the Pauli Finally, in order to calculate th& matrix for the various
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mass regions, we need to define the relevant model spacks 0 or j=3 andl=2, respectively. The nuclear matrix el-
used to define th® and Q operators in the equation f@.  ements, allowed by these quantum numbers together with
The oscillator energiesiQ) will be derived from 7 () parity conservation, ar¢101], [121], [101-], [121+],
=45A" 13250725 A being the mass number. This yields [011p], and[111p]. We remind the reader that the matrix
70=13.9,70=11.0,720=10.05, andi(1=8.5 MeV for  elemen{ 101] is closely related to the Gamow-Teller matrix
A=16,A=40, A=56, andA=100, respectively. We choose element of the nuclear beta decay, only the radial depen-
the model spaces which are believed, from both experimenjence is more complicated due to the possibility of a larger
and theoretical calculations, to be relevant as a first approXignergy releasésee Table )l Our set includes matrix ele-

mation for calculations of effective interactions and opera-,ants which are classified as forbidden in the nuclear beta
tors in the mass areas frofk= 16 to A=100. These are the decay[16].

Od5/2, Odg/z, and ]51/2 orbits fOfA:16, the ]p3/2, 1p1/2,
0f,,, and (fg, orbits for nuclei in the mass region &
=40, the Ip3,, 1pyp, Ofgp, and @g, orbits for nuclei in
the mass region oA=56 and the @5, 0975, 1ds:,
1d5,, and X, orbits for A=100. For these systems, the > |In|Im/® Y «,u)]|p]|
closed-shell cores'fO, 4°Ca, %Ni, and °%Sn) have equal (@) =p,— pn (30)
numbers of protons and neutrons, and the model spaces are Pl =Pa bar '
the same for both protons and neutrons. En [[nl[m* e, w)] [p]]

The definition of the Pauli operator for tl& matrix can P
be found in Refs.[20,21], where the so-called double- wherea=V, A, or P, and “ren” and “bare” refer to renor-
partitioned scheme has been used. A detailed discussion Ralized and bare single-particle matrix elements, respec-

the computation of th€& matrix can be found in Re{21]. tively. The sums run over all the single-particle states in-

This definition means that also the shell above that which . .
defines the model space of the effective interaction is inoluded in the model space. We use absolute values in the

cluded in the evaluation of th® matrix. For the 0d shell sums in orde_r to _av_oid cases where two singl_e-pa_rticle matrix
this means that we also include thpQff shell in the defini- €/€ments, with similar magnitudes but opposite signs, cancel
tion of theP operator for the&G matrix. As a consequence, we each other. This kind of ca_ncellatpns do not easily happen in
have to include in our perturbation expansion ladder type ofucléar structure calculations, since the involved OBTDs
diagrams where the allowed intermediate states are those Bpve different magnitude@nd signg

the 1pOf shell. With this prescription, we have to evaluate ~We start the discussion witls@d-shell nuclei. The effec-
diagrams X, XIlI, X1V, and XXIII-XXVIII in Fig. 1. tive operators are calculated Wlﬁ’?o as a closed-shell core.

In our actual calculation of the various effective opera-The model space is the fullsDd shell. From Fig. 2 we see
tors, we truncate the sum over intermediate states at excitéhat the quenching fov, A, andP terms remains essentially
tions of (4—8} w in oscillator energy. This truncation yields constant for the whole energy range considered. In particular,
an error of~1% in our evaluation of the effective operator. at the beta-decay energiéslow 20 MeV all k=—1 terms
The nucleon-nucleon interaction employed in this work isgre constant. Moreover, we haw§(0)=0.81 which is a
the CD-Bonn interaction of Machleidit al. [22]. factor of 2 larger value than the empirical “universal
guenching factor” of Ref[11], fitted to a large body of
beta-decay data in thesQd shell (we remind the reader that

We consider the transition0—1*, which is of ranku our effective operators do not include subnucleonic degrees
=1. In addition,k=—1 or k=2, corresponding tp=3 and  of freedom. We also get a clear renormalization in the vec-

In order to discuss the average quenching, we define a
factorp,:

IV. RESULTS
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TABLE II. RenormalizationspZ(0) of selected single-particle particle orbits are holes with°Ca as closed shell core; i.e.,
transitions. The empirical results from Réfl0] (*°O corg are one-particle systems has naw= 39 rather tham\=17.
scaled toA=17 [see Eq(16) in Ref.[10])]. The second line under One clearly sees a slight enhancement compared td\the
each entry for the 40d shell refers, however, to the case where the _ . . . .
single-particle orbits are holes wiffiCa as a closed-shell core. The ;r:rljlca(jﬁ’(aatsod;rs]zu?zgtd t'ﬂafgg]]e?: V;?él' ;Zlfelqg::?riidlisate
1p0f-shell values of this work are fof’Ca as a closed-shell core, partri)c>lle-hole configurations to sum over in the various core-

except where indicated otherwise. Tg,— gq, transition is with larization di N h h lativisti
56Ni as a closed-shell core. The last four entries are Witsn as a  Polarization diagrams. Note, however, that relativistic cor-

closed-shell core. rections are expected to be larger for hole states than particle
states, due to the increased density. Such effects are not ac-
Transition This work Ref[6] Ref.[10] Ref.[24] counted for here.

For ‘2‘8Ca as a core, Fig. 3, the overall features are very

0ds/z—0dsy 0854  0.796 - - similar to ®0. We get somewhat more quenching(0)

0.823 - - - =0.77. This is in line with earlier studies, where only a
0d3/2—0d32 0.832 - - - slightly larger quenching for the @f shell is introduced

0.903  0.68F - - (see Table Il and Ref12]). Our model space includes all the
0ds/>—0d3; 0.769 - - - single-particle orbits of the . p shell. In[12] the authors

0.741 - - - reach the conclusion that already in theQf shell the
0d—0d (averag¢  0.817 - 0.627 - quenching factor has reached the lafgdimit. This is, in-

0.821 - - - deed, confirmed by our results. We also note the good agree-
181— 1810 0.778 0.778  0.656 - ment with the results of Ref23], Table 1.

0.696 0.686 - - As an example, the calculation of R¢24] yields p3(0)
0f7,—0f7 0.819  0.74% - - =0.593, when two-particle excitations from thig, orbit in
0fg—0fg)p 0.778 - - - 0f1p space are considered for t§e — 32~ beta decay of
0f 7/ 0f g 0.733 - - - S’Cu. Our extracted single-particle quenching3(0)
1p3— 1Pap 0.774 0.73F - 0.593 =0.774 (with “°Ca as a core; see Table) lis somewhat
1p1— 1Py 0.869 - - - higher than the quenching stated in R&#]. See, however,
1pso— 1Py 0.745 - - - below.
0f5/,—0f 55 0.210° - - - Qualitatively, the saturation of the quenching comes from
1p3— 1Pas 0.475° - - 0.122 the similar choice of the model spat@mmplete @ » space
13— 1Py 0.462° . . . in %0 and“°Ca. In both cases, the first-order diagrams give
00g,— 00y 0.643 - - - zero contribution. Second, particle-hole excitations involving
097/5—097 0.223 ; ; ; spin-orbit partners are essentially absent. Therefore, typical
1de/— 1dep 0.354 - . - screening diagram contributions to second-order are negli-
1dg/p—1da) 0.425 N B B g_lbl_e (see, e.g., _dlagrams 1H=VIll in Fig.)Land a very
1dens1d 0.263 B 3 3 similar behavior is expected and, indeed, seen. The differ-

5/2 3/2 . . .
ences can be attributed, e.g., to different oscillator param-
@Core-polarization terms only. eters and differences in the single-particle orbit structtires
bwith %%Ni as a closed-shell core. 49Ca morenfiw excitations are availableTherefore, when-

ever the model space includes the whol&«0 oscillator
shell, a similar quenching is to be expected. The small varia-

tor and pseudoscalar parts of the current. Note that the cvéons depend thus on the mass of the qlosed-shell core.
hypothesis does not apply here: since we are not looking at The m0(15e6I space in which the effective operators are cal-
Fermi transitions, the vector-type contribution comes fromculated for2gNi does not have a closedS core. Now, the
the higher-order terms. first-order transitions betweeffiz;, fsp, 9o, and gz
Strictly speaking, our single-particle effective operatorssmgle-partlcle orbits become ppss!hitbe situation is analo-
are applicable for one-particle systems, e.g., f@. In prac-  90us t0 theM 1 operator,_whlch is diagonal in qrb|tal angular
tice, these factors are often used for the whole model spac80mentum and spinThis is clearly reflected in the values
and the(weak mass dependence is simply left out. In fact, Shown in Fig. 4. We now havej(0)=0.56. We also remind
we find thatp2(0)=0.81 for 23Si as well(at the one-particle the reader that the Ikeda sum rule for Gamow-Te{l8T)
level). As we average over the single-particle transitions, weP€t@ decays is not fulfilled in this space. The extreme single-
believe that the extractea values are representative of the part;cle model for the beta decay ofcu yields a quenching
multiparticle configuration mixing calculations. At the end of Of PA(0)=0.122[24]. Our calculation, with*Ni as a closed-
the model space, effective operators derived for the hole staghell core, yieldspz(0)=0.475.
can also be used. Then, often a larger renormalization com- At massA=100 our space includes the single-particle
pared to the particle operator is sd@éh, reflecting the mass orbits 097, 1ds,, 1dg,, 2S5, and (hyy, above theN
dependence. Brown and Wildenthal take this dependenceZ=50 (35°Sn) major shell closure. The spin-orbit partners
into account by a normalization facterA®*°[10]. In Table  of 0g,, and Ch,, orbits, 0gg, and thy,, are missing from
Il we have added results for thes@d shell where the single- our model space. As iP®Ni (see Fig. 5 all terms are
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guenched by a factor which is clearly larger than in lighter At a single-particle transition level, the spin-flip matrix
nuclei with closed_S shells. In the axial vector part we have elementde.g.,f,— fs-) are more quenched than the diag-
now pi(0)=0.41, which again stays nearly constant up toonal ones. This feature does not depend on the operator or
tens of MeVs, well beyond the beta-decay energy range. Thmass. A few examples are shown in Table I, and compared
kink in the vector curve betweeq=80 and 100 MeV is to earlier calculations. We further note that the Gamow-
mainly caused by the increase of the bam,0—-0g,, and  Teller-type matrix elemerjtl01], being by far the dominant
0hy12—0h4, transitions. axial term, follows very closely the trend of the axial vector
For nuclei aroundA=100 there is now a wealth of ex- part through the whole mass range. TiHerbidden single-
perimental data orB decay; see, e.g.X%n [25] or ®’Ag  particle matrix elements Al #0) become important in
[26]. The B-decay properties are strongly influenced by theheavier nuclei: The ratio of the reduced axial matrix ele-
transitions between the spin-orbit partneig® and . ments corresponding to transitiodg,— Sy, and ds;,— ds,
Our present model space fdf°Sn as a closed-shell core is 0.0133 with'®0 as a closed-shell core. f{Ca, we have,
does not include thed,, orbit. However, there are also GT for the ratio off5,— ps» and f;,— 4, transitions, a value
transitions which could be described by the present modebdf 0.0145. In1%%Sn, we get the ratio of 0.570 for the transi-
space. As an example, the Gamow-Teller strength for théons g,,—ds;, andg;,—g7,. The mass 56 is an interme-
reaction ?7l(p,n)'?"Xe was recently extractef27]. The diate case, since we have the ratio of 0.0827 for the transi-
nucleus'?’l has been thought of as a candidate for a solations f5,— ps, and pz,— Pays.
neutrino detector. The theoretical work of Englal. [28] The k=2 axial vector terms are shown in Fig. 6. Only the
assumes a quenching factor of 63%—64%, close to ours. axial vector part is shown, sindéandP terms are identical

e ' - ! ! T T T T T
Vector
Axial vector -------
Pseudoscalar --------
oms b T :
0.7 | |
-------------------------------------- FIG. 4. Renormalization of the vector, axial
- ] vector, and pseudoscalar terms wifNi as the
closed-shell corex=—1 (J=0—1 transition,
Am=no).
0.6 |- |
0.55 | |
05 y L L 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 %0 700

Q (MeV)
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to the casec=—1. ForA=16, 40, and 56 a strong quench- For example, in the 40d shell, about 50% of the observed
ing is obtained at high momentum transfers. This is mainlyguenching11] comes fromA isobars, meson-exchange cur-
caused by the spherical Bessel functjgiiqr). Oscillations  rents, and more complicated many-body terms. The situation
in pa(q) are a sign of the interference betwegy{qr) and is similar also in the beginning of thepDf shell (*°Ca).
the radial single-particle wave function. Clearly, a coherent Although isobars and meson-exchange currents have been
extraction of the renormalization is not as feasible as in thextensively studied in the literatufeee, e.g., Ref.9] for a
k=—1 case. review), they have been omitted here. The main reason is
In the report by Ciechanowicet al. [29] the meson- that we wish to focus on nucleonic contributions only. How-
exchange contribution to the muon capture matrix elementsver, as a result of the way the nucleon-nucleon interaction
was found to be very small, at least in capture®$i. This  we employ is parametrizd@2], isobars are already included
is, however, in contrast with the results fAr=12 nuclei of  asimplicit degrees of freedom through intermediate states in,
Ref.[30]. The quenching of the spin matrix element, essen<.g., 2r diagrams. The inclusion aXxplicitisobar degrees of
tially the Gamow-Teller matrix element, is expected to befreedom as intermediate states based @matrix with one
dominated by the core polarization correct{@). However, or two isobars as external legs has the potential for double-
our results leave some room for subnucleonic correctionscounting problems. This is the second reason why we have

0.9 T T T T T T T T T

\ FIG. 6. Renormalization of the axial vector
< term with k=2 for %0, 4%Ca, *Ni, and 1°°Sn as
051 N . closed-shell cores J=0—1 transition, A

' =no).

04| -

“lmp—

0.2

Q (MeV)
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omitted such terms in the present stddilowever, quite the higher-order core polarization correlations in the wave
recently, Machleidt has constructed a nucleon-nucleon interfunctions.

action which includes isobars as explicit degrees of freedom.

This interaction[31] accounts for scattering data up tel

GeV in laboratory energy. We ought, however, to add, that V. SUMMARY

contributions from isobars have essentially been studied \ye have constructed the effective transition operators
through the |nclu_S|on of the flrst-o_rder_ core-polarization d'a'corresponding to the general form of the weak hadronic cur-
gram only; see diagrams | and Il in Fig. 1 and R@]. For  yent between the proton and neutron states. The effects of the
this diagram the above-mentioned double-counting problemgenormalization are investigated as a function of the transi-
are not important. However, when including isobars as eXtion q value, and an average over the single-particle transi-
plicit degrees of freedom, it is important that the fitting of the tions is taken separately for vector, axial vector and pseudo-
potential include isobars and nucleons on the same footingcalar terms. We have considered only nucleonic degrees of
That yields an isobar-nucleon interaction which, togethefreedom. In addition to the operators present in the allowed
with the nucleon-nucleon interaction reproduces, e.g., phaseeta decay, we have considered the higher-order corrections
shifts and the binding energy of the deuteron. Finally, weto the transition amplitudes.
mention that the contribution from second-order diagrams In the 1s0d and IpOf shells, we get 19% and 23%
with isobars as intermediate states is an unsettled topic. quenchings in the axial vector strength, respectively. From
The second-order terms in the invariant amplitude dethese numbers we can conclude that we have reached the
scribing the procesél) are proportional tal ~2. Therefore  1argeA limit already in the pOf shell, supporting the con-
one would expect their contribution to be at most a fewclusions of[12]. We Qea\'/e alsoloexplamed this saturation in
percent of the first order ternisee Eqs(3)—(5)]. Indeed this ~ gualitative terms. In>Ni and ?Sn, where a major shell
is the case. For example, iffO, the r-dependent single- closure separates the spln-orl_alt partners, a _Iarg_er effect is
particle matrix elements, which, according to BarabanoyS€en- This is caused by the first-order contributions to the

[32], should be the dominating second-order terms, are abo&ffective operator. The quenching stays nearly constant for

an order of magnitude smaller than the first-order termsc€rd1€s up to some 60 MeV in all cases. Therefore it is

: . Tjustified to speak about energy-independent quenching fac-
?Gggl S%Iic;mvarzrfhti;nﬁglxgg:’ trgrungzliriqgaele((:jﬁélm tors for beta decays in a gi\_/en_ mass region. We also found
: ! ~2 ) that the second-order termig inverse nucleon magsare
and second-order terms by, the magnitudes behave (qasively unimportant for most calculations. In particular,
roughly as 50:1, respectively. Their contribution is, in this e yncertainties in the nuclear model calculations of the

context, neglible. The same conclusion is reache@3®,  one-body transition densities mask these tiny corrections,
where detailed expressions for the matrix elements are giveRenerally a few percent at maximum.

The quenching factors, andpp can be used to estimate  The quenching factors are used to extract the value of the
the ratioCp/C,. We take the data from Figs. 2, 3, 4, and 5ratio Cp/C, at q=100 MeV. In light systems such a$O
atq=100 MeV, which corresponds to the muon capture re-and “°Ca our results indicate a smalf the order of few
gion. Then we have-3.5%, —7.1%, — 28.6%, and+8.7%  percent quenching. In'°%Sn, we obtain an enhancement of
changes inCp/C, for masses 16, 40, 56, and 100, respecthe same order of magnitude. fiNi a large quenching is
tively. If the bare value is taken from PCAC,,/C,~7.0, seen.
we haveCp/C,~6.8, 6.5, 5.0, and 7.6 for masses 16, 40, The next step in studies of effective operators is the in-
56, and 100. This yields an average6.5. Although not clusion of subnucleonic degrees of freedom in the evaluation
directly comparable to our results, it is interesting to note thedf the different diagrams entering the definition of the effec-
results of Kolbe, Langanke, and Vogdl5]. They used the tive operator. Especially we have in mind mesobars as an
continuum random phase approximati@RPA) to calculate intermediate state. These states ha_ve ess_en'ually been ne-
the part of the capture rate which goes above the particldlected due to the lack of a suitable\ interaction. We plan
emission threshold. Their results show a reasonable agrel® extend our formalism to include such states through the
ment with data when the bare couplings are used. This nicel?se of a newly refitted nucleon-nucleon interaction which

demonstrates the fact that if the model space dimension ichudes isobars as explicit degrees of freedom. This interac-

increased, the couplings should asymptotically reach the batléon [31] accounts fqr scat_tenng data up-tal GeV in labo-
atory energy. The inclusion of meson-exchange effects to-

values. However, the CRPA approach does not include agether with the effective transition operators is also a
considerable task, not fully attacked yet.

2An interesting test case is to calculate the isoscalar part of the
M1 operator._Thi.s term, gs dgmons.trated in FE@}, is dominated ACKNOWLEDGMENTS
by core-polarization contributions with nucleonic degrees of free-
dom only. We have also calculated this operator for single-particle  This work has been supported by the Academy of Finland
orbits in the B0d shell with %0 as closed-shell core and find a under the Finnish Center of Excellence Programme 2000—
good agreemer(similar to the numbers listed in Table With Ref. 2005 (Project No. 44875, Nuclear and Condensed Matter
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