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Renormalization of the weak hadronic current in the nuclear medium

T. Siiskonen*
Helsinki Institute of Physics, University of Helsinki, P.O. Box 9, FIN-00014 Helsinki, Finland

M. Hjorth-Jensen
Department of Physics, University of Oslo, N-0316 Oslo, Norway

J. Suhonen
Department of Physics, University of Jyva¨skylä, P.O. Box 35, FIN-40351 Jyva¨skylä, Finland
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The renormalization of the weak charge-changing hadronic current as a function of the reaction energy
release is studied at the nucleonic level. We have calculated the average quenching factors for each type of
current~vector, axial vector, and induced pseudoscalar!. The obtained quenching in the axial vector part is, at
zero momentum transfer, 19% for the 1s0d shell and 23% in the 1p0 f shell. We have extended the calcula-
tions also to heavier systems such as56Ni and 100Sn, where we obtain stronger quenchings, 44% and 59%,
respectively. Gamow-Teller-type transitions are discussed, along with the higher-order matrix elements. The
quenching factors are constant up to roughly 60 MeV momentum transfer. Therefore the use of energy-
independent quenching factors in beta decay is justified. We also found that going beyond the zeroth and first
order operators~in inverse nucleon mass! does not give any substantial contribution. The extracted renormal-
ization to the ratioCP /CA at q5100 MeV is23.5%,27.1%,228.6%, and18.7% for mass 16, 40, 56, and
100, respectively.
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I. INTRODUCTION

The phenomenological structure of the weak hadro
current between proton and neutron states is well determ
by its properties under the Lorentz transformation. The ad
tional constraints come from the requirement of time reve
symmetry as well as from the invariance under theG-parity
transformation~combined charge conjugation and isospin
tation!. The resulting interaction Hamiltonian consists
vector (V), axial vector (A), induced weak magnetism (M ),
and induced pseudoscalar~P! terms together with the asso
ciated form factorsCa , a5V, A, M, or P. These form fac-
tors are called as coupling constants at zero momen
transfer. The present experimental knowledge does not
clude the presence of the scalar and tensor interactions. H
ever, their contribution is expected to be small due to we
couplings@1#.

The values of vector, axial vector, and weak magnet
couplings are well established by beta-decay experiment
well as by the conserved vector current~CVC! hypothesis,
introduced already in the late 1950s@2#. The magnitude of
the pseudoscalar coupling is more uncertain, although
partially conserved axial current~PCAC! hypothesis@3# pro-
vides an estimate along with muon capture experiment
hydrogen@4,5#. The value ofCP in the nuclear medium is
not precisely established.

In nuclear beta decay, with an energy release up to s
20 MeV, only the vector~Fermi! and the axial vector
~Gamow-Teller! terms are usually important. The induce
pseudoscalar and weak magnetism parts are essentially

*Mailing address: EP Division, CERN, CH-1211 Geneva 2
Switzerland.
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tive, since their contributions are proportional toq/M , where
q is the energy release andM is the nucleon mass~in units
where \5c51). There are, however, weak nuclear pr
cesses, like muon capture, where the energy release is m
higher ~in muon capture, typicallyq'mm'100 MeV!.

Summed theoretical beta-decay strengths are system
cally larger than the experimental ones. This so-cal
quenching of the~allowed! decay strength is usually ex
plained in terms of core polarization~degrees of freedom
which are left out from the model space! and non-nucleonic
degrees of freedom like isobars and meson-exchange
rents @6#. The core polarization correction is intimate
linked to the choice of the model space~the orbits between
the inert core and excluded orbits at high single-particle
ergies!. Hence, to demonstrate this dependence, we h
used two different model spaces for the nuclei in the mid
of the 1p0 f shell, like Cu and Zn isotopes~see below!.

In @7,8# we have self-consistently constructed effecti
operators for the weak hadronic current between proton
neutron states. These operators, as explained in Sec. III,
into account the above-mentioned core polarization effe
which are expected to be the largest correction to the b
matrix elements@9#. Earlier, many authors~e.g., @6,10–12#!
established the quenching factors for the Gamow-Teller
cays and closely related magnetic dipole (M1) transitions. In
the present work our aim is to calculate self-consistently
quenching for all types of operators (V, A, M, and P) for
energies up to the muon capture range. In addition to 1s0d
and 1p0 f shells, we have extended our calculations to28

56Ni
and 50

100Sn as closed-shell cores.
Empirically, one expects about 20% quenching of t

axial vector part in the 1s0d shell; i.e., the calculated
Gamow-Teller matrix elementŝs& are to be multiplied by a
factor of ;0.8 @11# when both core polarization and non

,
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nucleonic degrees are accounted for.1 Effects of the same
magnitude are expected in the 1p0 f shell @12#, and the mass
dependence of the quenching is seemingly saturated. H
ever, the major shell closures which separate the spin-o
partners in our56Ni and 100Sn model spaces introduce larg
first-order corrections to the operators. Thus, the situatio
not analogous to the one seen in light nuclei with closedLS
shells. For a recent work in the Sn mass region, see,
Ref. @13#.

We remind the reader that the quenching we describ
always related to the choice of the model space. This me
that if a shell-model calculation is to be performed for, s
Cu or Zn isotopes with56Ni as closed-shell core, a pertine
model space consists then of the single-particle orbits 0f 5/2,
1p1/2, 1p3/2, and 0g9/2. If transition probabilities are to be
calculated, then effective operators defined for this mo
space are to be used. Disagreement with experiment
often imply missing degrees of freedom. Typically, for n
clei with mass numbers close toA556, particle-hole excita-
tions involving the 0f 7/2 hole orbit may be important. Then
the model space needs to be enlarged and the correspo
effective operator to be computed.

Our extracted quenching factors are averaged over
model space single-particle orbits~see Sec. IV!. Thus, they
are not directly applicable for the closed-shell plus o
nucleon configurations, like17O. Instead, they should b
used in configuration-mixing calculations~shell model in
particular! in the indicated model space. Strictly speaking,
this case, also effective two-body operators should be ca
lated. In practice, this is rarely done and accordingly
neglect such corrections. For reference, we shall also
the renormalizations of some single-particle transitions.

The nuclear muon capture can be used for the extrac
of the ratio CP /CA . Unfortunately, the results for partia
capture rates are very sensitive to the applied nuclear mo
especially to the residual two-body interaction~see, e.g.,@14#
and references therein!. The total rates offer perhaps a mo
reliable source of information, indicating no or only sma
quenching for the ratioCP /CA @15#. It is of interest to see
whether this can be explained in terms of effective char
05550
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for the axial vector and pseudoscalar operators, that is, w
out the complications coming from the nuclear structure c
culations.

In addition to the zeroth-order Fermi and Gamow-Telle
type operators, our set includes the first-order terms in
transition amplitude~first order inq/M as well as velocity-
dependent terms!. We shall also examine the importance
the second-order terms. We stress that the results obtain
this work can be applied quite generally. We have used
muon as an initial bound-state lepton, but the results appl
electron capture as well and therefore to beta decay in g
eral ~in our calculations, the muon is nothing but a hea
electron!.

In this work, after a short review of the formalism of th
semileptonic weak processes in Sec. II and effective op
tors in Sec. III, we concentrate on the results in Sec. IV. W
consider four cases, with16O, 40Ca, 56Ni, and 100Sn as
closed-shell cores.

II. INVARIANT AMPLITUDE AND SINGLE-PARTICLE
OPERATORS

After the standard nonrelativistic reduction, the semile
tonic charge-changing weak process

lb1p→nl1n, ~1!

wherelb is a bound~anti!lepton in an atomic 1S orbit and
nl is the corresponding~anti!neutrino, is described by the
amplitude

M 25(
ku

uMV~k,u!1MA~k,u!1M P~k,u!u2. ~2!

We takelb to be a muon, with a massmm5105.658 MeV.
The form of the effective weak hadronic current used for E
~2! is the most general one consistent with the expec
G-parity symmetry and time reversal symmetry. The fun
tionsMa(k,u) include the form factors, transition operator
and angular momentum couplings. Explicitly, the vector p
is given by
MV~k,u!/CV~q2!5@0lu#S0u~k!d lu2
1

M
@1 l̄ up#S1u8 ~2k!1

qA3

2M

3HA l̄ 11

2 l̄ 13
@0 l̄ 11u1#d l̄ 11,u1A l̄

2 l̄ 21
@0 l̄ 21u2#d l̄ 21,uJ S1u8 ~2k!

1A3

2

q

M
~11mp2mn!$A l̄ 11 W~11u l̄ ,1l̄ 11!@1 l̄ 11u1#

1A l̄ W~11u l̄ ,1l̄ 21!@1 l̄ 21u2#%S1u8 ~2k!. ~3!

1The Gamow-Teller strengthsB(GT)}^s&2 are then multiplied by (0.8)2.
1-2
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RENORMALIZATION OF THE WEAK HADRONIC . . . PHYSICAL REVIEW C63 055501
We consider theV andM terms together, as suggested by t
CVC hypothesis:CM5(mp2mn)CV/2M , wheremp andmn
are the anomalous magnetic moments of the proton and
tron in nuclear magnetons. The Fermi-type term is the fi
term on the right-hand side of Eq.~3!. The axial vector part
is given by

MA~k,u!/CA~q2!52@1lu#S1u~k!1
1

M
@0 l̄ up#d l̄ uS0u8 ~2k!

2M P~k,u!/CP~q2!, ~4!

including the pseudoscalar part

M P~k,u!/CP~q2!52
q

2A3M
HA l̄ 11

2 l̄ 11
@1 l̄ 11u1#

1A l̄

2 l̄ 11
@1 l̄ 21u2#J d l̄ uS0u8 ~2k!.

~5!

The Gamow-Teller-type term is the first term on the rig
hand side of Eq.~4!.

In Eqs. ~3!–~5!, k labels the quantum numbers of th
emitted neutrinonl ,

k.0: j 5 l 2
1

2
, l 5k, ~6!

k,0: j 5 l 1
1

2
, l 52k21, ~7!

where l and j are the orbital and total angular momentu
quantum numbers ofnl . The quantity l̄ is given by l
2sgn(k), W are the usual Racah coefficients, and

Sku~k!5A2~2 j 11! W~1/2 1 j l ,1/2u! ~k51!

5A2 j 11

2l 11
~k50!,

Sku8 ~2k!5sgn~k!Sku~2k!. ~8!

The most important ingredients, the transition operato
are embedded in the reduced matrix elements@kwu#,
@kwu6#, and @kwup#. The quantum numbers labeling th
matrix elements arek5sl1sn , so thatk[uku50 or 1, and
u[uuu5uJf1Ji u is the tensorial rank of the transition oper
tor. The symbolw is the rank of the spherical harmonics a
is therefore related to the parity change. It is given byw5 l
for @kwu#- and @kwu6#-type matrix elements, andw5 l
11 or w5 l 21 for @kwup#-type matrix element (k and w
must be able to couple tou). The symbolp labels the
momentum-dependent operators. The matrix elements
the corresponding single-particle operators are listed in Ta
05550
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I. These operators are further multiplied by the radial wa
function of the initial-state lepton@16#. We have taken into
account the large component

Gm~r !52~aZmm8 !3/2e2aZmm8 r , ~9!

wherea'1/137 is the fine structure constant andmm8 is the
reduced muon mass.

The amplitude~2! can be used for the calculations o
muon~or electron! capture rates@14,16#. As mentioned in the
previous section, our aim is to calculate the effective char
~effective form factors! for the vector, axial vector, and pseu
doscalar parts of the amplitude, so as to help to unders
the differences between calculated and experimental r
and other observables.

For the actual calculations, we divide the reduced nucl
matrix elements into single-particle and many-body parts

Ma~k,u!5(
pn

@nuuma~k,u!uup#
~Jf uu@an

†ãp#JuuJi !

A2J11
,

~10!

where n[(nn ,l n , j n) and p[(np ,l p , j p) label the single-
particle states. The doubly barred matrix elements are
duced in the angular momentum space. These redu
single-particle matrix elements, which we calculate in t
harmonic oscillator basis with the single-particle operat
ma(k,u), are constructed as described in the following s
tion. Further, we have defined

ã jm5~21! j 1maj ,2m . ~11!

As an example, from Eq.~4!, the single-particle matrix
element for the axial vector part is

TABLE I. Reduced nuclear matrix elements and the correspo
ing single-particle operators@without the lepton radial wave func
tion Gm(r )]. The j w(qr) are the spherical Bessel functions an
Ykwu

M are the vector spherical harmonics@16#. The momentum op-
erator for nucleons isp, andpn is the momentum of the neutrino.

Matrix element Okwu

@0wu# j w(qr)Y0wu
M ( r̂ )dwu

@1wu# j w(qr)Y1wu
M ( r̂ ,s)

Okwu6

@0wu6# @ j w(qr)6aZ(mm8 /pn) j w71(qr)#Y0wu
M ( r̂ )dwu

@1wu6# @ j w(qr)6aZ(mm8 /pn) j w71(qr)#Y1wu
M ( r̂ ,s)

Okwup

@0wup# i j w(qr)Y0wu
M ( r̂ )s•pdwu

@1wup# i j w(qr)Y1wu
M ( r̂ ,p)
1-3
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~nuumA~k,u!uup!52CA~q2!@nuuO1luGm~r !uup#S1u~k!1
CA~q2!

M
@nuuO0 l̄ upGm~r !uup#d l̄ uS0u8 ~2k!

1CA~q2!
q

2A3M
HA l̄ 11

2 l̄ 11
@nuuO1 l̄ 11u1Gm~r !uup#1A l̄

2 l̄ 11
@nuuO1 l̄ 21u2Gm~r !uup#J d l̄ uS0u8 ~2k!.

~12!

A closer look into the Gamow-Teller-type matrix element gives

2CA~q2!@nuuO1luGm~r !uup#S1u~k!52CA~q2!i l p2 l n@ l nj nuuY1lu~ r̂ ,s!uu l pj p#

3E
0

`

r 2Rnnl n
~r ! j l~qr !Rnpl p

Gm~r !drA2~2 j 11! W~1/2 1 j l ,1/2u!. ~13!

Here Rnl(r ) are the radial single-particle wave functions. The reduced matrix element of the vector spherical harmo
given by

~ l nj nuuY1lu~ r̂ ,s!uu l pj p!5A 3

16p2~21! l p1 j p1 j n1 l 11 l̂ û ĵ p ĵ nS j p j n u

1/2 21/2 0D
3F ĵ n

21~21! j n1 j p1u ĵ p
2

A2u~u11!
S u 1 l

1 21 0D 1~21! l n11/21 j nS u 1 l

0 0 0D G , ~14!
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wherex̂5A2x11. The expressions for the vector and pse
doscalar parts are obtained in a similar way using Eqs.~3!
and ~5! and Table I, where the operatorsO of Eq. ~12! are
given. For more details, see@16#.

The many-body part, the one-body transition dens
~OBTD!, is given by the adopted nuclear model. The effe
tive operators introduced in Sec. III do not affect the OBT
which are taken to be given numbers. We do not calcu
them here~see, e.g.,@14# for examples!. In what follows we
shall consider only the single-particle part of Eq.~10!. This
is analogous to, e.g.,M1 transitions, where the effectiv
charges are calculated without referring to the many-b
part.

III. PERTURBATIVE METHODS AND EFFECTIVE
OPERATORS TO SECOND ORDER

In order to derive a microscopic approach to the effect
operator within the framework of perturbation theory, w
need to introduce various notations and definitions pertin
to the methods exposed. In this section we briefly revi
how to calculate an effective one-body operator within
framework of degenerate Rayleigh-Schro¨dinger~RS! pertur-
bation theory@17,18#; see also Refs.@6,9# for a detailed dis-
cussion on various effective operator diagrams.

It is common practice in perturbation theory to reduce
infinitely many degrees of freedom of the Hilbert space
those represented by a physically motivated subspace
model space. In such truncations of the Hilbert space,
notions of a projection operatorP onto the model space an
its complementQ are introduced. The projection operato
defining the model and excluded spaces are defined by
05550
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i 51

D

uF i&^F i u ~15!

and

Q5 (
i 5D11

`

uF i&^F i u, ~16!

with D being the dimension of the model space, andPQ
50, P25P, Q25Q, and P1Q5I . The wave functions
uF i& are eigenfunctions of the unperturbed HamiltonianH0
5T1U, whereT is the kinetic energy andU an appropri-
ately chosen one-body potential, that of the harmonic os
lator ~HO! in this calculation. The full Hamiltonian is then
rewritten asH5H01H1 with H15V2U, V being, e.g., the
nucleon-nucleon (NN) interaction or theG matrix to be dis-
cussed below. The eigenvalues and eigenfunctions of the
Hamiltonian are denoted byuCa& andEa , i.e.,

HuCa&5EauCa&. ~17!

Rather than solving the full Schro¨dinger equation above, on
defines an effective Hamiltonian acting within the mod
space such that

PHeffPuCa&5EaPuCa&5EauFa&, ~18!

whereuFa&5PuCa& is the projection of the full wave func
tion onto the model space, the model space wave function
RS perturbation theory, the effective interactionHeff can be
written out order by order in the interactionH1 as
1-4
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RENORMALIZATION OF THE WEAK HADRONIC . . . PHYSICAL REVIEW C63 055501
PHeffP5PH1P1PH1

Q

e
H1P1PH1

Q

e
H1

Q

e
H1P1•••.

~19!

Here we have definede5v2H0, wherev is the so-called
starting energy, defined as the unperturbed energy of the
teracting particles. Similarly, the exact wave functionuCa&
can now be written in terms of the model space wave fu
tion as

uCa&5uFa&1
Q

e
H1uFa&1

Q

e
H1

Q

e
H1uFa&1•••.

~20!

In studies of nuclear transitions such as beta decay,
quantity of interest is the transition matrix element betwe
an initial stateuC i& and a final stateuC f& of an operatorO
defined as

Of i5
^C f uOuC i&

A^C f uC f&^C i uC i&
. ~21!

Since we perform our calculation in a reduced space,
exact wave functionsuC f ,i& are not known, only their pro-
jections onto the model space. We are then confronted w
the problem of how to evaluateOf i when only the model
space wave functions are known. In treating this problem
is usual to introduce an effective operatorO f i

eff , defined by
requiring

Of i5^F f uOeffuF i&. ~22!

Observe thatOeff is different from the original operatorOf i .
The standard empirical procedure is then to introduce so
adjustable parameters inO f i

eff .
The perturbative expansion for the effective operator

then be written in a way similar to Eqs.~19! and ~20!, i.e.,

^C f uOuC i&5^F f uOuF i&1 K F fUOQ

e
H1UF i L

1 K F fU Q

e
H1OUF i L 1 K F fUOQ

e
H1

Q

e
H1UF i L

1•••. ~23!

In Fig. 1 we list all diagrams~except folded diagrams! to
second order in the interaction evaluated in this work. We
not include Hartree-Fock insertions. For pure Gamow-Tel
or Fermi-like operators~see, e.g., the review article b
Towner@6#!, such diagrams are exactly zero. Another feat
of, e.g., the Gamow-Teller-type operators is that for seve
diagrams involving particle-hole contributions, these d
grams are exactly zero unless the particle-hole orbits
spin-orbit partners. This means that forLS-closed-shell nu-
clei like 16O and 40Ca diagrams like~I!–~VIII ! or ~XIII !–
~XX ! are all zero. However, this picture changes when
move to closed-shell nuclei like56Ni and 100Sn. For Ni the
last proton and neutron holes are in the 0f 7/2 single-particle
orbit. This means that the 0f 7/2 hole and the 0f 5/2 particle
05550
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states in 56Ni yield nonvanishing contributions to th
Gamow-Teller-type operator from the above-mentioned d
grams. Similarly, in Sn these contributions are represen
by the spin-orbit partners in the 0g9/2 hole and the 0g7/2
particle states. These spin-orbit partners yield then 1\v in-
termediates states. Similarly, we have also spin-orbit partn
for particles states outside the model space. These are 0g9/2
and 0g7/2 for 56Ni and 0h11/2 and 0h9/2 for 100Sn. These 1\v
intermediates states are then responsible for the diffe
quenching of the effective operators in the mass regions
16O-40Ca and56Ni-100Sn, respectively.

We end this section with a discussion of how to constr
a G matrix. The G matrix enters in turn our perturbativ
expansion for the effective operator. As is well known
nuclear physics, theNN potential exhibits a repulsive core
which renders any perturbative treatment prohibitive. Ho
ever, one possible way of overcoming this deficiency is
introduce the reaction matrixG, which accounts for short-
range correlations. TheG matrix is defined through

G5V1V
Q

v2QTQ
G. ~24!

Here, v is the energy of the interacting nucleons in a m
dium andV is the freeNN potential. We have assumed th
the energy of the intermediate states can be replaced by
free kinetic spectrumT, since these states are predominan
of high excitation energy.

In this work we solve Eq.~24! for finite nuclei by em-
ploying a formally exact technique for handlingQ, originally
presented by Tsai and Kuo@19# and discussed in Ref.@20#.
Tsai and Kuo employed the matrix identity

Q
1

QAQ
Q5

1

A
2

1

A
P

1

PA21P
P

1

A
, ~25!

with A5v2T2V, to rewrite Eq.~24! as

G5GF1DG, ~26!

whereGF is the freeG matrix defined as

GF5V1V
1

v2T
GF . ~27!

The termDG is a correction term defined entirely within th
model spaceP and is given by

DG52V
1

A
P

1

PA21P
P

1

A
V. ~28!

Employing the definition for the freeG matrix of Eq. ~27!,
one can rewrite the latter equation as

DG52GF

1

e
P

1

P~e211e21GFe21!P
P

1

e
GF , ~29!

with e5v2T.
1-5
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FIG. 1. Nonfolded diagrams to second order in the interaction included in the evaluation of the effective operator. Hole st
represented by greek letters while particle states are given by roman letters. The operator itself is given by2223 in the various diagrams
while the wiggly lines are the nuclearG matrix. Folded diagrams to second order in the interaction are included in the calculation b
shown here.
e
nd
u

me
We see then that theG matrix for finite nuclei is ex-
pressed as the sum of two terms; the first term is the freG
matrix with no Pauli corrections included, while the seco
term accounts for medium modifications due to the Pa
05550
li

principle. The second term can easily be obtained by so
simple matrix operations involving the model-space matrixP
only.

Finally, in order to calculate theG matrix for the various
1-6
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FIG. 2. Renormalization of the vector, axia
vector, and pseudoscalar terms with16O as the
closed-shell core,k521 (J50→1 transition,
Dp5no).
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mass regions, we need to define the relevant model sp
used to define theP andQ operators in the equation forG.
The oscillator energies\V will be derived from \V
545A21/3225A22/3, A being the mass number. This yield
\V513.9, \V511.0, \V510.05, and\V58.5 MeV for
A516, A540, A556, andA5100, respectively. We choos
the model spaces which are believed, from both experim
and theoretical calculations, to be relevant as a first appr
mation for calculations of effective interactions and ope
tors in the mass areas fromA516 to A5100. These are the
0d5/2, 0d3/2, and 1s1/2 orbits for A516, the 1p3/2, 1p1/2,
0 f 7/2, and 0f 5/2 orbits for nuclei in the mass region ofA
540, the 1p3/2, 1p1/2, 0f 5/2, and 0g9/2 orbits for nuclei in
the mass region ofA556 and the 0h11/2, 0g7/2, 1d5/2,
1d3/2, and 2s1/2 orbits for A5100. For these systems, th
closed-shell cores (16O, 40Ca, 56Ni, and 100Sn) have equa
numbers of protons and neutrons, and the model space
the same for both protons and neutrons.

The definition of the Pauli operator for theG matrix can
be found in Refs.@20,21#, where the so-called double
partitioned scheme has been used. A detailed discussio
the computation of theG matrix can be found in Ref.@21#.
This definition means that also the shell above that wh
defines the model space of the effective interaction is
cluded in the evaluation of theG matrix. For the 1s0d shell,
this means that we also include the 1p0 f shell in the defini-
tion of theP operator for theG matrix. As a consequence, w
have to include in our perturbation expansion ladder type
diagrams where the allowed intermediate states are thos
the 1p0 f shell. With this prescription, we have to evalua
diagrams X, XIII, XIV, and XXIII–XXVIII in Fig. 1.

In our actual calculation of the various effective ope
tors, we truncate the sum over intermediate states at ex
tions of (4 – 8)\v in oscillator energy. This truncation yield
an error of;1% in our evaluation of the effective operato
The nucleon-nucleon interaction employed in this work
the CD-Bonn interaction of Machleidtet al. @22#.

IV. RESULTS

We consider the transition 01→11, which is of ranku
51. In addition,k521 or k52, corresponding toj 5 1

2 and
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2 and l 52, respectively. The nuclear matrix e

ements, allowed by these quantum numbers together
parity conservation, are@101#, @121#, @1012#, @1211#,
@011p#, and @111p#. We remind the reader that the matr
element@101# is closely related to the Gamow-Teller matr
element of the nuclear beta decay, only the radial dep
dence is more complicated due to the possibility of a lar
energy release~see Table I!. Our set includes matrix ele
ments which are classified as forbidden in the nuclear b
decay@16#.

In order to discuss the average quenching, we defin
factor ra :

ra~q![ra5

(
pn

u@nuuma
ren~k,u!uup#u

(
pn

u@nuuma
bare~k,u!uup#u

, ~30!

wherea5V, A, or P, and ‘‘ren’’ and ‘‘bare’’ refer to renor-
malized and bare single-particle matrix elements, resp
tively. The sums run over all the single-particle states
cluded in the model space. We use absolute values in
sums in order to avoid cases where two single-particle ma
elements, with similar magnitudes but opposite signs, can
each other. This kind of cancellations do not easily happe
nuclear structure calculations, since the involved OBT
have different magnitudes~and signs!.

We start the discussion with 1s0d-shell nuclei. The effec-
tive operators are calculated with8

16O as a closed-shell core
The model space is the full 1s0d shell. From Fig. 2 we see
that the quenching forV, A, andP terms remains essentiall
constant for the whole energy range considered. In particu
at the beta-decay energies~below 20 MeV! all k521 terms
are constant. Moreover, we haverA

2(0)50.81 which is a
factor of 2 larger value than the empirical ‘‘univers
quenching factor’’ of Ref.@11#, fitted to a large body of
beta-decay data in the 1s0d shell ~we remind the reader tha
our effective operators do not include subnucleonic degr
of freedom!. We also get a clear renormalization in the ve
1-7
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tor and pseudoscalar parts of the current. Note that the C
hypothesis does not apply here; since we are not lookin
Fermi transitions, the vector-type contribution comes fro
the higher-order terms.

Strictly speaking, our single-particle effective operato
are applicable for one-particle systems, e.g., for17O. In prac-
tice, these factors are often used for the whole model sp
and the~weak! mass dependence is simply left out. In fa
we find thatrA

2(0)50.81 for 14
28Si as well~at the one-particle

level!. As we average over the single-particle transitions,
believe that the extractedr values are representative of th
multiparticle configuration mixing calculations. At the end
the model space, effective operators derived for the hole s
can also be used. Then, often a larger renormalization c
pared to the particle operator is seen@6#, reflecting the mass
dependence. Brown and Wildenthal take this depende
into account by a normalization factor}A0.35 @10#. In Table
II we have added results for the 1s0d shell where the single

TABLE II. RenormalizationsrA
2(0) of selected single-particle

transitions. The empirical results from Ref.@10# (16O core! are
scaled toA517 @see Eq.~16! in Ref. @10#!#. The second line unde
each entry for the 1s0d shell refers, however, to the case where t
single-particle orbits are holes with40Ca as a closed-shell core. Th
1p0 f -shell values of this work are for40Ca as a closed-shell core
except where indicated otherwise. Theg9/2→g9/2 transition is with
56Ni as a closed-shell core. The last four entries are with100Sn as a
closed-shell core.

Transition This work Ref.@6# Ref. @10# Ref. @24#

0d5/2→0d5/2 0.854 0.796a - -
0.823 - - -

0d3/2→0d3/2 0.832 - - -
0.903 0.681a - -

0d5/2→0d3/2 0.769 - - -
0.741 - - -

0d→0d ~average! 0.817 - 0.627 -
0.821 - - -

1s1/2→1s1/2 0.778 0.778a 0.656 -
0.696 0.686a - -

0 f 7/2→0 f 7/2 0.819 0.745a - -
0 f 5/2→0 f 5/2 0.778 - - -
0 f 7/2→0 f 5/2 0.733 - - -
1p3/2→1p3/2 0.774 0.731a - 0.593
1p1/2→1p1/2 0.869 - - -
1p3/2→1p1/2 0.745 - - -
0 f 5/2→0 f 5/2 0.210b - - -
1p3/2→1p3/2 0.475b - - 0.122
1p3/2→1p1/2 0.462b - - -
0g9/2→0g9/2 0.643 - - -
0g7/2→0g7/2 0.223 - - -
1d5/2→1d5/2 0.354 - - -
1d3/2→1d3/2 0.425 - - -
1d5/2→1d3/2 0.263 - - -

aCore-polarization terms only.
bWith 56Ni as a closed-shell core.
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particle orbits are holes with40Ca as closed shell core; i.e
our one-particle systems has nowA539 rather thanA517.
One clearly sees a slight enhancement compared to thA
517 case, as discussed in Ref.@6# as well. This increase is
simply due to the fact that there are more intermedi
particle-hole configurations to sum over in the various co
polarization diagrams. Note, however, that relativistic c
rections are expected to be larger for hole states than par
states, due to the increased density. Such effects are no
counted for here.

For 20
40Ca as a core, Fig. 3, the overall features are v

similar to 16O. We get somewhat more quenching,rA
2(0)

50.77. This is in line with earlier studies, where only
slightly larger quenching for the 1p0 f shell is introduced
~see Table II and Ref.@12#!. Our model space includes all th
single-particle orbits of the 0f 1p shell. In @12# the authors
reach the conclusion that already in the 1p0 f shell the
quenching factor has reached the large-A limit. This is, in-
deed, confirmed by our results. We also note the good ag
ment with the results of Ref.@23#, Table 1.

As an example, the calculation of Ref.@24# yields rA
2(0)

50.593, when two-particle excitations from thef 7/2 orbit in
0 f 1p space are considered for the3

2
2→ 3

2
2 beta decay of

57Cu. Our extracted single-particle quenchingrA
2(0)

50.774 ~with 40Ca as a core; see Table II! is somewhat
higher than the quenching stated in Ref.@24#. See, however,
below.

Qualitatively, the saturation of the quenching comes fro
the similar choice of the model space~complete 0\v space!
in 16O and 40Ca. In both cases, the first-order diagrams g
zero contribution. Second, particle-hole excitations involvi
spin-orbit partners are essentially absent. Therefore, typ
screening diagram contributions to second-order are ne
gible ~see, e.g., diagrams III–VIII in Fig. 1!, and a very
similar behavior is expected and, indeed, seen. The dif
ences can be attributed, e.g., to different oscillator para
eters and differences in the single-particle orbit structures~in
40Ca moren\v excitations are available!. Therefore, when-
ever the model space includes the whole 0\v oscillator
shell, a similar quenching is to be expected. The small va
tions depend thus on the mass of the closed-shell core.

The model space in which the effective operators are
culated for 28

56Ni does not have a closedLS core. Now, the
first-order transitions betweenf 7/2, f 5/2, g9/2, and g7/2
single-particle orbits become possible~the situation is analo-
gous to theM1 operator, which is diagonal in orbital angula
momentum and spin!. This is clearly reflected in the value
shown in Fig. 4. We now haverA

2(0)50.56. We also remind
the reader that the Ikeda sum rule for Gamow-Teller~GT!
beta decays is not fulfilled in this space. The extreme sing
particle model for the beta decay of57Cu yields a quenching
of rA

2(0)50.122@24#. Our calculation, with56Ni as a closed-
shell core, yieldsrA

2(0)50.475.
At mass A5100 our space includes the single-partic

orbits 0g7/2, 1d5/2, 1d3/2, 2s1/2, and 0h11/2 above theN
5Z550 (50

100Sn) major shell closure. The spin-orbit partne
of 0g7/2 and 0h11/2 orbits, 0g9/2 and 0h9/2, are missing from
our model space. As in56Ni ~see Fig. 5!, all terms are
1-8
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FIG. 3. Renormalization of the vector, axia
vector, and pseudoscalar terms with40Ca as the
closed-shell core,k521 (J50→1 transition,
Dp5no).
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quenched by a factor which is clearly larger than in ligh
nuclei with closedLS shells. In the axial vector part we hav
now rA

2(0)50.41, which again stays nearly constant up
tens of MeVs, well beyond the beta-decay energy range.
kink in the vector curve betweenq580 and 100 MeV is
mainly caused by the increase of the bare 0g7/2→0g7/2 and
0h11/2→0h11/2 transitions.

For nuclei aroundA5100 there is now a wealth of ex
perimental data onb decay; see, e.g.,103In @25# or 97Ag
@26#. The b-decay properties are strongly influenced by t
transitions between the spin-orbit partners 0g9/2 and 0g7/2.
Our present model space for100Sn as a closed-shell cor
does not include the 0g9/2 orbit. However, there are also G
transitions which could be described by the present mo
space. As an example, the Gamow-Teller strength for
reaction 127I( p,n)127Xe was recently extracted@27#. The
nucleus 127I has been thought of as a candidate for a so
neutrino detector. The theoretical work of Engelet al. @28#
assumes a quenching factor of 63% – 64%, close to ours
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At a single-particle transition level, the spin-flip matr
elements~e.g., f 7/2→ f 5/2) are more quenched than the dia
onal ones. This feature does not depend on the operato
mass. A few examples are shown in Table II, and compa
to earlier calculations. We further note that the Gamo
Teller-type matrix element@101#, being by far the dominan
axial term, follows very closely the trend of the axial vect
part through the whole mass range. Thel-forbidden single-
particle matrix elements (D lÞ0) become important in
heavier nuclei: The ratio of the reduced axial matrix e
ments corresponding to transitionsd3/2→s1/2 andd5/2→d5/2
is 0.0133 with16O as a closed-shell core. In40Ca, we have,
for the ratio of f 5/2→p3/2 and f 7/2→ f 7/2 transitions, a value
of 0.0145. In 100Sn, we get the ratio of 0.570 for the trans
tions g7/2→d5/2 andg7/2→g7/2. The mass 56 is an interme
diate case, since we have the ratio of 0.0827 for the tra
tions f 5/2→p3/2 andp3/2→p3/2.

Thek52 axial vector terms are shown in Fig. 6. Only th
axial vector part is shown, sinceV andP terms are identical
l
FIG. 4. Renormalization of the vector, axia
vector, and pseudoscalar terms with56Ni as the
closed-shell core,k521 (J50→1 transition,
Dp5no).
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FIG. 5. Renormalization of the vector, axia
vector, and pseudoscalar terms with100Sn as the
closed-shell core,k521 (J50→1 transition,
Dp5no).
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to the casek521. ForA516, 40, and 56 a strong quenc
ing is obtained at high momentum transfers. This is mai
caused by the spherical Bessel functionj w(qr). Oscillations
in rA(q) are a sign of the interference betweenj w(qr) and
the radial single-particle wave function. Clearly, a coher
extraction of the renormalization is not as feasible as in
k521 case.

In the report by Ciechanowiczet al. @29# the meson-
exchange contribution to the muon capture matrix eleme
was found to be very small, at least in capture by28Si. This
is, however, in contrast with the results forA512 nuclei of
Ref. @30#. The quenching of the spin matrix element, ess
tially the Gamow-Teller matrix element, is expected to
dominated by the core polarization correction@6#. However,
our results leave some room for subnucleonic correctio
05550
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For example, in the 1s0d shell, about 50% of the observe
quenching@11# comes fromD isobars, meson-exchange cu
rents, and more complicated many-body terms. The situa
is similar also in the beginning of the 1p0 f shell (40Ca).

Although isobars and meson-exchange currents have b
extensively studied in the literature~see, e.g., Ref.@9# for a
review!, they have been omitted here. The main reason
that we wish to focus on nucleonic contributions only. Ho
ever, as a result of the way the nucleon-nucleon interac
we employ is parametrized@22#, isobars are already include
asimplicit degrees of freedom through intermediate states
e.g., 2p diagrams. The inclusion ofexplicit isobar degrees o
freedom as intermediate states based on aG matrix with one
or two isobars as external legs has the potential for dou
counting problems. This is the second reason why we h
r
FIG. 6. Renormalization of the axial vecto
term withk52 for 16O, 40Ca, 56Ni, and 100Sn as
closed-shell cores (J50→1 transition, Dp
5no).
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omitted such terms in the present study.2 However, quite
recently, Machleidt has constructed a nucleon-nucleon in
action which includes isobars as explicit degrees of freed
This interaction@31# accounts for scattering data up to;1
GeV in laboratory energy. We ought, however, to add, t
contributions from isobars have essentially been stud
through the inclusion of the first-order core-polarization d
gram only; see diagrams I and II in Fig. 1 and Ref.@6#. For
this diagram the above-mentioned double-counting proble
are not important. However, when including isobars as
plicit degrees of freedom, it is important that the fitting of t
potential include isobars and nucleons on the same foot
That yields an isobar-nucleon interaction which, toget
with the nucleon-nucleon interaction reproduces, e.g., ph
shifts and the binding energy of the deuteron. Finally,
mention that the contribution from second-order diagra
with isobars as intermediate states is an unsettled topic.

The second-order terms in the invariant amplitude
scribing the process~1! are proportional toM 22. Therefore
one would expect their contribution to be at most a f
percent of the first order terms@see Eqs.~3!–~5!#. Indeed this
is the case. For example, in16O, the r-dependent single
particle matrix elements, which, according to Baraban
@32#, should be the dominating second-order terms, are a
an order of magnitude smaller than the first-order term
Only seldom are the magnitudes roughly equal~one case in
16O). Thus, when the first-order terms are scaled byM 21

and second-order terms byM 22, the magnitudes behav
roughly as 50:1, respectively. Their contribution is, in th
context, neglible. The same conclusion is reached in@32#,
where detailed expressions for the matrix elements are gi

The quenching factorsrA andrP can be used to estimat
the ratioCP /CA . We take the data from Figs. 2, 3, 4, and
at q5100 MeV, which corresponds to the muon capture
gion. Then we have23.5%, 27.1%, 228.6%, and18.7%
changes inCP /CA for masses 16, 40, 56, and 100, resp
tively. If the bare value is taken from PCAC,CP /CA'7.0,
we haveCP /CA'6.8, 6.5, 5.0, and 7.6 for masses 16, 4
56, and 100. This yields an average;6.5. Although not
directly comparable to our results, it is interesting to note
results of Kolbe, Langanke, and Vogel@15#. They used the
continuum random phase approximation~CRPA! to calculate
the part of the capture rate which goes above the par
emission threshold. Their results show a reasonable ag
ment with data when the bare couplings are used. This ni
demonstrates the fact that if the model space dimensio
increased, the couplings should asymptotically reach the
values. However, the CRPA approach does not include

2An interesting test case is to calculate the isoscalar part of
M1 operator. This term, as demonstrated in Ref.@6#, is dominated
by core-polarization contributions with nucleonic degrees of fr
dom only. We have also calculated this operator for single-part
orbits in the 1s0d shell with 16O as closed-shell core and find
good agreement~similar to the numbers listed in Table II! with Ref.
@6#.
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the higher-order core polarization correlations in the wa
functions.

V. SUMMARY

We have constructed the effective transition operat
corresponding to the general form of the weak hadronic c
rent between the proton and neutron states. The effects o
renormalization are investigated as a function of the tran
tion q value, and an average over the single-particle tran
tions is taken separately for vector, axial vector and pseu
scalar terms. We have considered only nucleonic degree
freedom. In addition to the operators present in the allow
beta decay, we have considered the higher-order correct
to the transition amplitudes.

In the 1s0d and 1p0 f shells, we get 19% and 23%
quenchings in the axial vector strength, respectively. Fr
these numbers we can conclude that we have reached
large-A limit already in the 1p0 f shell, supporting the con
clusions of@12#. We have also explained this saturation
qualitative terms. In56Ni and 100Sn, where a major shel
closure separates the spin-orbit partners, a larger effec
seen. This is caused by the first-order contributions to
effective operator. The quenching stays nearly constant
energies up to some 60 MeV in all cases. Therefore i
justified to speak about energy-independent quenching
tors for beta decays in a given mass region. We also fo
that the second-order terms~in inverse nucleon mass! are
relatively unimportant for most calculations. In particula
the uncertainties in the nuclear model calculations of
one-body transition densities mask these tiny correctio
generally a few percent at maximum.

The quenching factors are used to extract the value of
ratio CP /CA at q5100 MeV. In light systems such as16O
and 40Ca our results indicate a small~of the order of few
percent! quenching. In100Sn, we obtain an enhancement
the same order of magnitude. In56Ni a large quenching is
seen.

The next step in studies of effective operators is the
clusion of subnucleonic degrees of freedom in the evalua
of the different diagrams entering the definition of the effe
tive operator. Especially we have in mind theD isobars as an
intermediate state. These states have essentially been
glected due to the lack of a suitableDD interaction. We plan
to extend our formalism to include such states through
use of a newly refitted nucleon-nucleon interaction wh
includes isobars as explicit degrees of freedom. This inte
tion @31# accounts for scattering data up to;1 GeV in labo-
ratory energy. The inclusion of meson-exchange effects
gether with the effective transition operators is also
considerable task, not fully attacked yet.
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