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Chiral symmetry and quantum hadrodynamics
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Using the linear sigma model, we study the evolutions of the quark condensate and of the nucleon mass in
the nuclear medium. Our formulation of the model allows the inclusion of both pion and scalar-isoscalar
degrees of freedom. It guarantees that the low-energy theorems and the constraints of chiral perturbation theory
are respected. We show how this formalism incorporates quantum hadrodynamics improved by the pion loop
effects.
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I. INTRODUCTION

The influence of the nuclear medium on the spontane
breaking of chiral symmetry remains an open problem. T
amount of symmetry breaking is measured by the quark c
densate, which is the expectation value of the quark oper
q̄q. The vacuum valuê q̄q(0)& satisfies the Gell-Mann
Oakes, and Renner relation

2mq^q̄q~0!&52mp
2 f p

2 , ~1!

where mq is the current quark mass,q the quark field,f p

593 MeV the pion decay constant, andmp its mass. In the
nuclear medium the quark condensate decreases in m
tude. Indeed the total amount of restoration is governed b
known quantity, the nucleon sigma commutatorSN which,
for any hadronh is defined as

Sh52 i ^hu@Q5 ,Q̇5#uh&

52mqE dxW @^huq̄q~xW !uh&2^q̄q~0!&#, ~2!

whereQ5 is the axial charge andQ̇5 its time derivative. At
low density, where the nucleons do not interact, one
estimate the restoration effect by adding the contributions
the individual nucleons. This leads to@1,2#

^q̄q~r!&

^q̄q~0!&
512

SNr

mp
2 f p

2
, ~3!

where r is the density. Using the experimental valueSN
}50 MeV one thus gets a relative drop of almost 40%
normal densityr050.17 fm23.

The part of the restoration process which is best und
stood arises from the nuclear virtual pions. They act in
same way as the real ones of the heat bath, leading
similar expression for the evolution of the quark condens
that is,

^q̄q~r,T!&

^q̄q~0,0!&
512

rs
p~r,T!

2mp f p
2

512
^f2&

2 f p
2

, ~4!
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whereT is the temperature and the scalar pion densityrs
p is

linked to the average value of the squared pion fieldf2

5fW •fW through~it is understood that the vacuum contrib
tion to ^f2& is substracted!

rs
p5mp^f2&. ~5!

Estimates of the right-hand side~RHS! of Eq. ~5! for nuclear
matter at normal density givers

p}0.07 fm23 which leads to
a 20% relative decrease, due to the pion cloud, of the qu
condensate. So half of the restoration is due to the nuc
pion cloud. Concerning the manifestation of the symme
restoration, the pion cloud produces a correlator mixing
fect first introduced in the framework of the heat bath by D
et al. @3# and adapted to the nuclear case by Chanfrayet al.
@4#.

The restoration of nonpionic origin is by contrast not
well understood. In this paper we clarify the role of the m
son clouds with special emphasis on the scalar-isoscalar
son which enters in the relativistic models of nuclei. It
expected to play a distinguished role since it has the sa
quantum numbers as the condensate and can thus dis
into it. At variance with the scalar-isoscalar meson, wh
contributes already at the mean field level, the other mes
including the pion, contribute only through the fluctuation
On the other hand the scalar-isoscalar meson is also an
sential actor of the nuclear dynamics since it provides
medium range attraction which binds the nucleons toge
in the nucleus. In particular the existence of a scalar field
a central ingredient of quantum hadrodynamics~QHD! @5,6#.

The mean scalar field is responsible for the lowering
the nucleon mass (M* ) in the nucleus. Effective values o
M* lower than the free mass by several hundreds of M
are commonly discussed in QHD. It is quite appealing
interpret this mass reduction as a signal for the symme
restoration. Indeed one scenario for the Wigner realization
the symmetry is the vanishing of hadronic masses. Pa
restoration would then show up as a reduction of the mas
This was the suggestion of Brown and Rho@7# who proposed
a scaling law linking the mass reduction to the condens
evolution according to
©2001 The American Physical Society02-1



g
ev

l
a

a

ic

or
u
th
er
e
th
ol

de
gm
hi
ion
ki
at
on
ib
s
th
pio
th
e

on

n
ns
n

ge
ith
lso
a
lu

r
th
fo
no

is
th

in-
the

d
ma
s in
-
rm
a

he
im-
c-
eon
of

es
r

nd
of

sta-

G. CHANFRAY, M. ERICSON, AND P. A. M. GUICHON PHYSICAL REVIEW C63 055202
M*

M
5

f p*

f p
5F ^q̄q~r!&

^q̄q~0!&
Ga

, with a51/3. ~6!

Birse @8,9# pointed out the difficulties inherent to the scalin
law ~6!. The condensate evolution is, as we have seen pr
ously, partly governed by the expectation value^f2& which
contains a term of ordermp . It is linked to the nonanalytica
part of ordermp

3 of the pionic part of the nucleon sigm
commutatorSN through the relation

SN~pionic!5
mp

2

2 E dxW ^Nuf2~xW !uN&. ~7!

If the mass evolution were to follow the condensate one
cording to Eq.~6!, it would thus contain a term of ordermp ,
which is forbidden by chiral perturbation theory@8,9#. It is
thus clear that̂f2&, i.e., the condensate evolution of pion
origin, cannot influence the mass.

This argument, however, does not imply that other act
of the restoration cannot affect the mass. In fact the pict
which naturally emerges from the previous discussion is
different components of the restoration may produce diff
ent signals. One of them is the axial-vector mixing induc
by the pionic type of restoration. Another signal may be
hadron mass reduction and its link to the condensate ev
tion is studied in the following.

The model we use for this study is the linear sigma mo
which possesses chiral symmetry and considers the si
and the pion as chiral partners. We first point out that t
model faces a potential problem. In the tree approximat
the nucleon mass has its origin in the spontaneous brea
of the chiral symmetry and is proportional to the condens
Its in-medium value then follows the condensate evoluti
However the tree approximation is not sufficient to descr
this evolution which is largely influenced by the pion loop
as discussed previously. If the proportionality between
mass and the condensate evolutions still holds once
loops are included, then the mass would be affected by
pion loops in the same way as the condensate. But, as
plained before, this is forbidden by chiral perturbati
theory.

We propose to clarify this point through a reformulatio
of the linear sigma model. As is well known the predictio
of the linear sigma model generally involve cancellatio
between several graphs. One example is thepN scattering
amplitude where the contribution from sigma exchan
which by itself violates the soft pion results, combines w
the Born term to satisfy them. We will see that this is a
the case in the mass evolution problem. Namely, the m
evolution, even though it is linked to the condensate evo
tion, is independent of the pion density.

To mention some previous works, Birse and McGove
@10# investigated the evolution of the condensate with
density up to second order. This was done in the usual
mulation of the linear sigma model and pion loops were
included. On the other hand Delormeet al. @11# performed a
similar investigation in the nonlinear sigma model which
well adapted for the pion loops but ignores the role of
05520
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scalar meson exchange. Our formulation allows one to
clude both effects, which is necessary in order to discuss
relation between the mass and condensate evolutions.

Our article is organized as follows. In Sec. II we remin
the reader of the steps which lead from the linear sig
model to the nonlinear one and we present argument
favor of an alternative formulation. In Sec. III, we reformu
late the linear sigma model in the standard nonlinear fo
for what concerns the pion field but we keep explicitly
scalar degree of freedom~called u) corresponding to the
fluctuation along the chiral radius. The resulting form of t
Lagrangian automatically embodies the cancellations
posed by chiral symmetry. We tentatively identify this flu
tuation with the scalar meson which produces the nucl
nucleon attraction. In Sec. IV we discuss the prediction
this model for the behavior of various in-medium quantiti
and we make explicit the link with QHD. Section V is ou
conclusion.

II. REMINDER OF THE SIGMA MODEL

The starting point is the usual linear sigma model@12#
which is defined by the Lagrangian

L5 i c̄gm]mc1
1

2
~]ms]ms1]mpW •]mpW !

1g0c̄~s1 i tW•pW g5!c2Vpot~s21p2!1cs, ~8!

where (c,s,pW ) are, respectively, the nucleon, sigma, a
pion fields, the arrow indicating the isovector character
the pion. For the meson potentialVpot we take the usual form
Vpot(x)5l(x2v2)2/4.

For later use it is convenient to writeL in terms of the
232 matrix W5s1 i tW•pW acting in the nucleon isospin
space. NotingPR/L5(16g5)/2 the chirality projectors, one
can write

L5L01LxSB, ~9!

L05 i c̄gm]mc1g0c̄@WPR1W†PL#c

1
1

4
Tr ]mW]mW†2

l

4 S 1

2
Tr WW†2v2D 2

, ~10!

LxSB5cs5
c

2
Tr W. ~11!

In this form it is apparent thatL0 is invariant under the
transformations

PRc→gRPRc, PLc→gLPLc, W→gLWgR
† ,

where (gR ,gL) are elements of the SU(2)3SU(2) group.
The termLxSB explicitly breaks the symmetry.

In the vacuum one haŝpW &50 by parity and one notes
^s&5 f p the constant expectation value ofs. The breaking
of the symmetry by the vacuum (^s&5” 0) is realized at the
classical level by imposing that the meson’s energy be
tionary at the point (s5 f p ,pW 50). This amounts to
2-2
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]

]s
@Vpot~s21p2!2cs#s5 f p ,pW 5050, ~12!

since the stationarity with respect topW is trivially satisfied.
The other parameters are fixed by identifying the mass ter
that is,

g0^s&5MN , ms
25

]2Vpot

]s2 U
s5 f p ,pW 50

,

mp
2 d~ i , j !5

]2Vpot

]p i]p j
U

s5 f p ,pW 50

. ~13!

One gets

c5mp
2 f p , l5

ms
22mp

2

2 f p
2

, v25 f p
2

ms
223mp

2

ms
22mp

2
, ~14!

and the quantized version of the model is obtained by c
sideringpW ands85s2 f p as the degrees of freedom.

This model is referred to as the linear sigma mo
~LSM!. Since, in the limitmp→0, its equations of motion
respect chiral symmetry this model reproduces the soft p
theorems in the tree approximation. However, this gener
involves somewhat unnatural cancellations between sev
diagrams. Moreover the lack of experimental evidence~see,
however, Ref.@13#! for a scalar meson that could be asso
ated with the fluctuations8 has led to the idea that this fiel
was unphysical and should be eliminated from the mod
This is achieved by lettingms→` which leads to the con
straint

s21p25 f p
2 ~15!

for the finite energy solutions. The constraint~15! is solved
by the point transformation

s5 f p cosFS f

f p
D , pW 5f̂ sinFS f

f p
D , ~16!

which eliminates thes field and definesfW 5ff̂ as a new
pion field.F is an odd function of the form

F~x!5x1ax31••• , ~17!

which selects the particular realization of the model. Cha
ing F amounts to a redefinition of the pion field and th
should not affect the physics. In the following we keepa
arbitrary and check that the final results do not depend o

The last step is to perform a new point transformat
defined by@14#

c5expS 2
1

2
i tW•f̂F~f/ f p!g5DN ~18!

and to takeN as the nucleon field. This defines the nonline
sigma model. Due to the transformation~18!, the pion then
couples to the nucleonN only through derivatives. This
05520
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eliminates the unnatural cancellations of the LSM beca
the Born terms are automatically suppressed by power
mp in the soft pion limit.

This is all fine for chiral symmetry but somewhat frustra
ing for nuclear physics. The reason is that the medium ra
attraction is known to be dominated by a scalar-isosca
correlated two pion exchange. Chiral perturbation theory
tually forbids the identification of this attraction with th
exchange of thes8 (5s2 f p) field but, if we go back in the
above discussion, we realize that the chiral radiusAs21p2

has been fixed tof p by mere convenience. Nothing preven
us from keeping it as a degree of freedom and to, tentativ
identify it with the meson which produces the medium ran
attraction. To avoid any confusion withs, the chiral partner
of the pion, we shall note it asQ. The fact that no such
meson is clearly seen inpp scattering is not an obstacle
There is in the model a strongQ→pp coupling which, as in
the linear sigma model, leads to a largeQ width. This may
explain why this meson is so elusive. For theNN interaction
this large on-shell width of theQ is not a conceptual diffi-
culty because it comes into play only through spacelike
change between nucleons. So its width is effectively zero

We stress that, with respect to the LSM, we simply ma
a convenient change of variables (s,pW )→(Q,fW ) which
avoids keeping track of the cancellations inherent to
model. When studying elementary processes these canc
tions are just a matter of care, but when they are intertwin
with the unavoidable approximations of the nuclear ma
body problem this may lead to results inconsistent with c
ral symmetry.

III. ALTERNATIVE FORMULATION OF THE LINEAR
SIGMA MODEL

Our starting point is defined by the Lagrange density

L5L01DL01LxSB, ~19!

where to the symmetric pieceL0 defined in Eq.~10! we have
added, as in Ref.@4#, the chiral invariant piece

DL05 iac̄gm~W]mW†PL1W†]mWPR!c, ~20!

which is not present in the original sigma model. Its on
role is to generate an axial coupling constantgA different
from unity in the tree approximation. The spirit of this is n
to try to make a realistic description of the nucleon but
make easier the identification of the evolution of this qua
tity. The axial current corresponding to Eq.~19! is

JW5m5S 12
a

2
Tr W†WD S c̄gmg5

tW

2
c D

2ac̄gmS W†
tW

2
WPR2W

tW

2
W†PLDc

2
i

4
Tr~W†]mW1W]mW†!, ~21!
2-3
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from which one sees that one needs

a5
12gA

2 f p
2

, ~22!

in order to get the correct value of the nucleon axial cha
in the tree approximation. The other parameters~l, v, g0 , c!
have the same expressions as in Eqs.~13!,~14!. Notice that if
we noteQi

5 the axial charge of the model, the symmet
breaking part of L is such that the identityHxSB

5@Qi
5 ,@Qi

5 ,H## is satisfied, as in QCD itself.
Guided by the discussion of Sec. II we make the po

transformation (s,pW )→(Q,fW ) defined by

s5Q cosFS f

f p
D , pW 5Qf̂ sinFS f

f p
D , ~23!

which allows one to write

W5QU, U5j25expF i tW•f̂FS f

f p
D G ~24!

and we define the new nucleon field

N5~jPR1j†PL!c, ~25!

which is equivalent to Eq.~18!. Note that the mass termN̄N
is a chiral invariant. In the vacuum one has^Q&5^s&
5 f p . So we define the fluctuationu5Q2 f p and writeL in
terms of the degrees of freedom (N,u,fW ), that is,

L5~ f p1u!2 Tr ]mU]mU†1
1

2
]mu]mu

2
ms

22mp
2

8 f p
2 S u212 f pu1

2 f p
2 mp

2

ms
22mp

2 D 2

1 iN̄gm]mN2MNS 11
u

f p
D N̄N1N̄gmV c

mN

1F12~12gA!S 11
u

f p
D 2GN̄gmg5Ac

mN

1 i
12gA

2 f p
S 11

u

f p
D N̄gmN]mu1LxSB, ~26!

where we have defined

V c
m5

i

2
~j]mj†1j†]mj!, Ac

m5
i

2
~j]mj†2j†]mj!.

~27!

We have

mu
25

]2L~u!

]u2 U
u50

5ms
2 , ~28!

so in the followingms will be replaced bymu .
05520
e

t

In terms of the new variables, we get the following e
pressions for the symmetry breaking piece:

LxSB5 f pmp
2 ~ f p1u!cosFS f

f p
D , ~29!

and for the axial current

JW5m52 i
f p

2

4
~11u/ f p!2 Tr~tWU†]mU2tWU]mU†!

1
1

2
@12~12gA!~11u/ f p!2#N̄gmg5

3S j
t i

2
j†1j†

t i

2
j DN1

1

2
N̄gmS j

t i

2
j†2j†

t i

2
j DN.

~30!

Some comments on the Lagrangian of Eq.~26! are in
order. The term N̄gmg5Ac

mN generates the standar
pNN p-wave coupling but corrected by a 3pNN coupling
and other higher order terms. One can check that the G
berger relationgpNN f p5MNgA is fulfilled. There is a non-
derivativeuN interaction with a coupling constant equal
MN / f p}10 which is smaller than thepN coupling constant
by a factor 1/gA . Note that this coupling constant is not
free parameter in this model because all the nucleon ma
generated by the spontaneous symmetry breaking. This
no longer be true in models where part of the nucleon m
is due to the confinement. Finally we stress that, in the ch
limit, the new scalar fieldu couples only derivatively to two
pions, there is no term of the formuf2. This insures the
validity of the soft pion theorems forpN scattering.

IV. MEDIUM EFFECTS

We are now in a situation to describe various in-mediu
quantities in the framework of the mean field approximati
combined with the pion gas limit.

A. Condensate evolution

Firstly the quark condensate and its evolution at fin
density can be obtained by identifying the symmetry bre
ing pieces of QCD and the one of our Lagrangian, that is

22mqq̄q↔ f pmp
2 s5 f pmp

2 ~ f p1u!cosFS f

f p
D . ~31!

This equation shows that the condensate evolution is dri
by the mean value ofs, the chiral partner of the pion. From
Eq. ~31! and using the Gell-Mann, Oakes, and Renner re
tion, we get the relative modification of the condensate

^q̄q~r!&

^q̄q~0!&
512

^f2&

2 f p
2

1K u

f p
S 12

f2

2 f p
2 D L 1•••, ~32!

where we have expanded cosF(f/fp) and kept only the lead-
ing terms in 1/f p . There are two contributions to the rest
2-4
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CHIRAL SYMMETRY AND QUANTUM HADRODYNAMICS PHYSICAL REVIEW C 63 055202
ration effect. The first one arises from the pion cloud,
second one is driven by the scalar fieldu. The second con-
tribution also depends on the squared pion field, which is
be expected since the condensate is not a chiral inva
quantity.

The mean field̂ u& is obtained from the equation of mo
tion which writes, for a uniform medium of densityr:

f pmu
2

2
~2X13X21X3!1g0r50, with X5

^u&
f p

,

~33!

where terms of ordermp
2 have been ignored. To second ord

in the density the solution is

^u&
f p

52
g0r

f pmu
2

2
3

2 S g0r

f pmu
2D 2

. ~34!

To zeroth order in the pion field the quantity^u&/ f p fixes the
relative amount of restoration from theu exchange. Numeri-
cal estimates will be discussed later.

The term quadratic in the density in Eq.~34! represents a
moderate effect at normal density but its interpretation
interesting. Due to theu3 vertex in Eq.~26!, the mean field
^u& gets a contribution from theu exchange as shown in Fig
1. For what concerns the condensate evolution this sec
order term inr represents the contribution to the restorati
due to theu exchanged between nucleons. Indeed the sig
commutator of theu mesonSu which fixes the amount o

FIG. 1. The mechanism which induces the term quadratic inr in
Eq. ~34!.
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restoration induced by a singleu, can be obtained from the
Feynman-Hellman theorem, which leads to

Su5c
dmu

dc U
l,v

53c
mp

mu

dmp

dc U
l,v

53
mp

mu
Sp5

3mp
2

2mu
.

~35!

This quantity has to be multiplied by the two-body contrib
tion to theu scalar densityru

(2) which is

ru
(2)5muE dxW1dxW2r~xW1!r~xW2!u1~xW !u2~xW !5

g0
2r2

mu
3

,

~36!

whereu i is theu field created by the nucleon located atxW i .
In order to obtain the relative amount of restoration we ha
to multiply Eq. ~35! by expression~36! and divide by
(2 f p

2 mp
2 ). This gives 3(g0r/ms2)2/2, which is precisely the

quadratic part of Eq.~34!. This second order term in th
density of the quark condensate was already given by B
and McGovern@10#. It is absent in the nonlinear sigm
model @11#, as it should be since this correction concer
only theu meson. Weise@15# also estimated the contributio
to the restoration of the sigma exchanged between nucle
by relating the sigma commutator of the sigma to t
nucleon one.

B. Nucleon andu mass evolution

We now come to another in-medium quantity, the effe
tive nucleon mass. Its evolution in presence of the me
scalar field is apparent from the Lagrangian~19!. It reads

MN* 5MN2g0^u&5MN2
g0

2r

mu
2

2
3g0

2 f p
S g0

2r

mu
2 D 2

. ~37!

It is exclusively governed by the chiral invariant scalar fie
u. It has no dependence at all onf2, which eliminates the
conflict with the chiral perturbation constraints. The canc
lations of the linear model are indeed present for the mas
such a way that the influence of the pion loops on the mas
eliminated. The present formulation of the model automa
cally insures these cancellations. The identification with
mean scalar field of the Walecka model now becomes o
ous. The scalar field of QHD has to be identified with t
scalar invariant mean field̂u& and not withs85s2 f p , the
chiral partner of the pion. The model also provides its co
pling to the nucleon,guNN5g05M / f p.10, somewhat
smaller thangpnN513.5, a welcome feature with respect
the phenomenology of QHD@5#.

The chiral invariant character of the mean scalar field
QHD is not a new concept. It was first studied by Lin a
Serot@16# in the framework of the linear sigma model com
bined with dispersion relations to account for the exchan
of correlated pions in theNN interaction. In the work of
Serot@17# a chiral invariant scalar is added to the nonline
sigma model but its coupling to the nucleon is arbitrary a
the in-medium mass bears no relation to the condensate
2-5
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G. CHANFRAY, M. ERICSON, AND P. A. M. GUICHON PHYSICAL REVIEW C63 055202
lution. On the other hand Delormeet al. @18# have studied
the nucleon mass in the quark-meson coupling model@19#.
Here the source of the scalar field is the quark scalar den
which allows a link between the nucleon mass and the c
densate modifications. The chiral invariant character of
quark-meson coupling was imposed.

We are now in a situation to discuss the relation betw
the mass and condensate evolutions, a connection totally
sent in the standard formulation of QHD, and the connect
between the present work and the scaling law of Brown
Rho. The mass evolution is related to the condensate ev
tion, but only to part of it, the purely nonpionic part. On
the chiral invariant fieldu influences the mass. Thisu field is
dressed by the pion loops while thes is not. It is only to zero
order in the pion loops that the two evolutions are the sa
Note that, to zeroth order in the pion loops and in the l
density limit, our approach givesa51 instead ofa51/3 for
the expression of the scaling factor of Eq.~6!.

In the same way the effectiveu mass follows from the
Lagrangian~26!. In the nuclear medium theu field acquires
mean valuê u& and the effective mass refers to the fluctu
tions about this mean value, that is,

mu*
25

]2L~u!

]u2 U
u5^u&

, ~38!

which leads to

S mu*

mu
D 2

5113
^u&
f p

1
3^u&2

2 f p
2

512
3g0r

f pmu
2

. ~39!

It turns out that in Eq.~39! there is a cancellation betwee
the terms which are quadratic inr. Theu mass is reduced by
the medium effects getting closer to the pion mass. It follo
a pattern similar to that of the nucleon mass, with a som
what faster evolution, as seen by comparing Eqs.~37!, ~39!.
Thus in the nuclear medium, the shape of the Mexican
(Vpot) is appreciably modified. There is not only a shrinkin
of the radius of the chiral valley due to the mean value of
u field, but accordingly the potential becomes more shallo
The lowering of theu mass suggests enhanced fluctuatio
around the mean value. The connection between chiral s
metry restoration and the sigma mass as well as the ex
mental implications have been studied by Hatsudaet al. @20#.

We now make some numerical evaluations. We have
paramaters in our version of the model. They are link
through the set of equations~13!,~14!, to the pion decay con
stant, the nucleon mass, the axial coupling constant and
pion and the theta masses. All these quantities are meas
except for theu mass which can be taken as a free parame
As an example we will take two valuesmu51 GeV and
mu50.8 GeV. Formu51 GeV ~0.8 GeV! the scalar mean
field u has a value of 17 MeV,~30 MeV! at normal density.
The corresponding nucleon mass reduction isMN* 2MN

52170 MeV (2300 MeV). These magnitudes are com
patible with the current phenomenology of QHD. Accordi
to Eq. ~39!, theu mass also drops by 22%~34%!, an appre-
ciable modification. For the condensate evolution we rem
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the reader that the pion cloud, that is the term^f2&/2f p
2 in

Eq. ~32!, produces a relative decrease of about 20%. The
of the condensate evolution due to the scalar field depe
not only on the expectation valuêu/ f p& but also on
^(u/ f p)(f2/2f p

2 )& which we estimate aŝu/ f p&^f2/2f p
2 &. In

this way we find a relative decrease of 14%~25%! of the
condensate.

C. Evolution of gA

To orderf3 the axial current~30! is written

JWm55 f pS 11
2u

f p
D F S 113a

f2

f p
2 D ]mfW 1

1

f p
2 S 2a1

2

3D
3~fW fW •]mfW 2f2]mfW !G1gAS 112

gA21

gA

u

f p
D

3F N̄gmg5
tW

2
N1

1

2 f p
2
N̄gmg5S fW

fW •tW

2
2f2

tW

2
DNG

1
1

f p
N̄gm

fW 3tW

2
N1•••. ~40!

The last term in Eq.~40! does not contribute in the mea
field approximation. The medium modification is due to t
coupling to theu field and to the terms with several pio
fields. In the mean field approximation we replaceu by ^u&
andf if j by ^f if j&5^f2&d i j /3 which gives the mean cur
rent

^JWm5&5 f pS 11
2^u&
f p

D F11
^f2&

f p
2 S 5a

3
2

4

9D G]mfW

1gAS 112
gA21

gA

^u&
f p

D S 12
^f2&

3 f p
2 D N̄gmg5

tW

2
N,

~41!

from which, to lowest order in̂ u& and ^f2&, we get the
following expression for the evolution ofgA :

gA*

gA
5S 112

gA21

gA

^u&
f p

2
2

3

^f2&

2 f p
2 D . ~42!

At normal nuclear density the scalar contribution yields
quenching ofgA of the order of 6% while the pionic contri
bution gives a quenching of about 15%. As pointed out
Ref. @4#, this result is strictly valid only when the short rang
correlations between nucleons are neglected. The renor
izations of the weak coupling constantsgA and f p , due to
the suppression of the quark condensate by the scalar m
have been previously discussed by Akmedov@21# in the
usual formulation of the sigma model, ignoring the pio
loops.
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D. Pionic properties evolution

We now turn to the in-medium values of pionic prope
ties: the pion decay constant and the pion mass. We s
that we are concerned only by the influence of the two m
sons present in our modelu andp. In this context the nucle-
ons act only as a source for these fields. The problem red
to the question of the pion mass and decay constant in a
gas and in the presence of a mean scalar field^u&. Within
this limited framework we do not expect a realistic descr
tion of the in-medium effects for these two quantities. Inde
the pion mass modification is linked, in the dilute gas lim
to the isospin symmetricpN amplitude and is of ordermp

2 .
It is subject to other influences than just the pion and
theta. The pion decay constant which is linked to the p
mass by the Gell-Mann, Oakes, and Renner relation is
subject to these extra influences. Therefore we quote the
plications of the model forf p and mp only to show the
absence of a universal link between their evolution and
condensate one.

For what concerns the influence of the nuclear pion ga
has already been studied@4,22#. It is described through the
scalar pion density~5!. On this particular point the presen
work brings nothing new. The novel part concerns the infl
ence of theu field. For completeness, however, we treat t
two effects simultaneously in our formulation of the line
sigma model.

The effective pion decay constant is the coefficient
]mfW in the mean axial current~41! multiplied by the wave
function renormalizationAZ ~see the Appendix!. To leading
order in^u& and^f2& we get the result, independent ofa as
it should be

f p*

f p
5S 11

^u&
f p

2
2

3

^f2&

2 f p
2 D . ~43!

We see that the evolution off p follows the condensate, Eq
~32!, only for what concerns the scalar field piece. At va
ance with the nucleon mass case there is a pionic piece. W
respect to the condensate evolution~32! this pionic term is
multiplied by 2/3, exactly as in the thermal case.

The effective pion mass is defined as the position of
pole energy of the propagator for vanishing thre
momentum. It obeys the relation

mp*
25mp

2 1S~mp* ,0W !,

whereS(q) is the pion self-energy. As shown in the Appe
dix this leads to

S mp*

mp
D 2

5S 12
^u&
f p

1
^f2&

6 f p
2 D . ~44!

Both terms on the RHS of Eq.~44! are positive, correspond
ing to a repulsive interaction and it is clear that the evolut
of mp is completly different from the condensate one.
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V. CONCLUSION

In this work we have studied the role of the scalar mes
both in the partial restoration of chiral symmetry and in t
lowering of the hadron mass in the nuclear medium, as w
as the link between the two effects in the framework of t
linear sigma model. We have used a formulation of the lin
sigma model with the usual nonlinear realization for the p
field but we have kept a scalar degree of freedom co
sponding to the fluctuation along the chiral radius. This n
scalar fieldis not the chiral partner of the pion but instead
a chiral invariant. It is already dressed by the pion loops.
mean value in the medium represents the modification of
radius of the chiral circle as compared to the vacuum va
In this formalism the low-energy theorems and the co
straints of chiral perturbation theory are easily fulfilled wit
out need for cancellations. For instance, this scalaru couples
derivatively to two pions, in the chiral limit. For what con
cerns the density evolution of the quark condensate, whic
not a chiral invariant quantity, it is instead governed by t
mean sigma field, the chiral partner of the pion. This diffe
ence shows up in the comparison between the two ev
tions. The condensate is influenced by the pion cloud wh
the mass is not. It is only in zero order in the pion loops th
the two relative evolutions become the same. In practice
difference is large since about half of the restoration ori
nates from the pion cloud.

Our work shows that for what concerns the scalar fie
quantum hadrodynamics can be incorporated in a ch
theory such as the linear sigma model. The scalar field
QHD should be identified with the chiral invariant scal
field u. This is in fact imposed by the constraints of chir
perturbation theory, which prevents the nucleon-nucleon
tential from being influenced by the pion density in the chi
limit. The phenomenology which comes out from this refo
mulation is compatible with that of QHD.

Concerning the signals associated with the restora
they are of two types depending on the origin of the resto
tion. In the linear sigma model the quark condensate depe
on the average sigma field. In the vacuum^s&5 f p . In the
medium this quantity is modified by two effects. On the o
hand, there is an oscillation along the chiral circle induced
the pionic fluctuations, which is described by pion dens
On the other hand, there is a modification of the radius of
chiral circle due to the mean scalar fieldu. The oscillation
along the chiral circle shows up in the mixing of the ax
and vector correlators. The shrinking of the chiral rad
shows up in the lowering of the nucleon mass. Both types
signal are simultaneously present in the nuclear medium
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APPENDIX

We study the pion propagation in the nuclear medium
addition to the excitation of particle-hole states by thes- and
p-wave couplings, the in-medium pion self-energySreceives
a contribution from the pion loop. For a pion of fou
momentumq and isospin labela the one loop self-energy i
written

Sloop~q![Sloop~vqW !

5
1

2E id4k

~2p!4 (
c

^qa;kcuMuqa;kc&DR~k!,

~A1!

whereDR(k) is the full in-medium pion propagator andM
is the ~possibly in medium modified! pp interaction which
has the decomposition

^q1a;k1buM0uq2c;k2 ,d&

5^q1 ;k1uMsuq2 ;k2&dabdcd1^q1 ;k1uMtuq2 ;k2&

3dacdbd1^q1 ;k1uMuuq2 ;k2&daddbc , ~A2!

and the projection on the total isospin statesI 50,1,2 of thes
channel@s5(p1q)2# are

M053Ms1Mt1Mu , M15Mt2Mu ,

M25Mt1Mu . ~A3!

Working out the isospin summations one finds

Sloop~q!5
1

2E id4k

~2p!4 (
c

^q;ku
1

3

3~M013M115M2!uq;k&DR~k!. ~A4!

The particular combination1
3 (M013M115M2)53Mt

1Ms1Mu is in fact theI 50 amplitude of thet channel

Sloop~q!5
1

2E id4k

~2p!4 (
c

^q;2quM0uk;2k&DR~k!.

~A5!

Let us calculate, in the tree approximation, thisI
50, pp amplitude, first ignoring possible in-medium ve
tex corrections. The relevant piece of the Lagrangian is

Lpp5~ f p1u!2
1

4
Tr ]mU]mU†1 f pmp

2 ~ f p1u!cosFS f

f p
D .

~A6!

At the tree level we keep the terms of orderf4 and theupp
interaction term
05520
n

L pp
(4)5

1

f p
2 F2mp

2 S a2
1

24Df41S a2
1

6Df2]mfW •]mfW

1S 2a1
1

6DfW •]mfW fW •]mfW G , ~A7!

L pp
upp5

u

f p
S ]mfW •]mfW 2

1

2
mp

2 f2D . ~A8!

The Ms amplitude is straightforwardly obtained as

^qa ;qbuMsuqc ;qd&

5
1

f p
2 F2~s2mp

2 !22~a21/6! (
i 5a, . . . ,d

~qi
22mp

2 !

1~s2qa
22qb

21mp
2 !~s2qc

22qd
21mp

2 !/s2mu
2G ,

~A9!

wheres5(qa1qb)25(qc1qd)2 is the squared c.m. energ
of the pion pair. We see from Eq.~A9! that in the low-energy
regime of interest (q;mp) theu exchange contribution is o
ordermp

2 /mu
2 . Since we limit ourselves to the leading ord

in the chiral expansion we only keep the first contribution
the RHS of Eq.~A9!, which is nothing but the well-known
nonlinear sigma model result.

TheMt andMu amplitudes are obtained by the substit
tion (a↔c,s↔t) and (a↔d,s↔u), respectively. It follows
that theI 50 amplitude reads

^qa ;qbuM0uqc ;qd&5
1

f p
2 Fmp

2 22s1b (
i 5a, . . . ,d

~mp
2 2qi

2!G ,
b51110~a21/6!, ~A10!

where the relations1t1u5( i 5a, . . . ,dqi
2 has been used.

In the medium Chanfray and Davesne@22# have estab-
lished that thepp interaction receives vertex corrections
the type shown in Fig. 2. The 3pN vertex derived from the
Lagrangian~A20! is, at the relevant order

L3pN5
gA

2 f p
3
N̄gmg5tWN@~a21/6!f2]mfW

1~2a11/6!fW fW •]mfW #. ~A11!

For a zero momentum pion pair (PW 50) the effective in-
mediumI 50, pp potential takes the simple form

FIG. 2. Vertex correction topp scattering.
2-8
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^qa ;qbuM 0
effuqc ;qd&

5
1

f p
2 Fmp

222s1b (
i5a, . . . ,d

@mp
2 2qi

21qW i
2P̃0~v i ,qW i !#G ,

~A12!

where qW i
2P̃0(v i ,qW i) is the standardp-wave pionic polariz-

ability which may include the screening effect from sho
range correlations. Hence the effect of vertex corrections
pending on thep-wave polarizabilities is to make the effec
tive pp potential independent ofa for on shell quasipions
satisfying

mp
2 2qi

21qW i
2P̃0~v i ,qW i !50. ~A13!

The pion loop contribution to the pion self-energy~A5! is
obtained from the matrix element of theI 50 amplitude
making the replacementsqa5q,qb52q,qc5k,qd52k,s
5t50:

Sloop~q!5
1

2E id4k

~2p!4
$mp

2 22b@DR
21~k!1v22qW 2

2mp
2 2qW 2P̃0~v,qW !#%DR~k!. ~A14!

Since we are interested in the effect of the in-medium p
cloud we have to subtract the vacuum contribution. Cons
terms such asD21D disappear. One obtains

Sloop~q!5
1

2E id4k

~2p!4
$mp

2 22b@v22qW 22mp
2

2qW 2P̃0~v,qW !#%@DR~k!2D0~k!#

5
^f2&

6 f p
2 $mp

2 22b@v22qW 22mp
2 2qW 2P̃0~v,qW !#%,

~A15!

which is valid to leading order in the pion density defined

^f2&53E id4k

~2p!4
@DR~k!2D0~k!#. ~A16!
. C

05520
t
e-

n
nt

Finally the pion self-energy has a contribution from the s
lar field which can be obtained directly from theppu La-
grangian

S(u)~q!52~2q22mp
2 !

^u&
f p

. ~A17!

The pion self-energy is

S~q!5S(p-wave)~q!1S(loop)~q!1S(u)~q!

5qW 2P̃0~v,qW !1
^f2&

6 f p
2 $mp

2 22b@v22qW 22mp
2

2qW 2P̃0~v,qW !#%2~2q22mp
2 !

^u&
f p

. ~A18!

In the above expression we have ignored thes wave cou-
pling. It would influence the pion mass though the Born p
of thepN amplitude. The pion propagator atqW 50 is written

D̃R~v!5@v22mp
2 2S~q!#215

Z

v22mp*
2

, ~A19!

with

Z512
b^f2&

3 f p
2

2
2^u&

f p
2

, ~A20!

from which we deduce the effective pion mass, to low
order in ^f2& and ^u&

S mp*

mp
D 2

5ZS 11~112b!
^f2&

6 f p
2

1
^u&
f p

D 5S 12
^u&
f p

1
^f2&

6 f p
2 D .

~A21!

As it should be the result is independent ofa, that is inde-
pendent of the choice of the canonical pion field.
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