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New method for measuring azimuthal distributions in nucleus-nucleus collisions
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The methods currently used to measure azimuthal distributions of particles in heavy-ion collisions assume
that all azimuthal correlations between particles result from their correlation with the reaction plane. However,
other correlations exist, and it is safe to neglect them only if azimuthal anisotropies are much larger than 1/AN,
with N the total number of particles emitted in the collision. This condition is not satisfied at ultrarelativistic
energies. We propose a new method, based on a cumulant expansion of multiparticle azimuthal correlations,
which allows measurements of much smaller values of azimuthal anisotropies, down to 1/N. It is simple to
implement and can be used to measure both integrated and differential flow. Furthermore, this method auto-
matically eliminates the major systematic errors, which are due to azimuthal asymmetries in the detector
acceptance.

DOI: 10.1103/PhysRevC.63.054906 PACS number~s!: 25.75.Ld, 25.75.Gz
e
s

ion
b
,
a

n
o

th
at
he
e
e
f
tic
P

d
v
a

r-

fin

. I
en
a

ha

w

tion
ea-

e to
de-

h a
e
m

tal
ec-
to
if
dity.
ion

me

-

be
, for

ro-
s
rge
r
be

for
or-
ing
la-

re
ble

a-
any
I. INTRODUCTION

In heavy-ion collisions, much work is devoted to th
study of the azimuthal distributions of outgoing particle
and in particular of distributions with respect to the react
plane. Since these distributions reflect the interactions
tween particles, possible anisotropies, the so-called ‘‘flow
reveal information on the hot stages of the collision: therm
ization, pressure gradients, time evolution, etc.@1#.

Since the orientation of the reaction plane is not knowa
priori , flow measurements are usually extracted from tw
particle azimuthal correlations. This is based on the idea
azimuthal correlations between two particles are gener
by the correlation of the azimuth of each particle with t
reaction plane. The assumption that this is the only sourc
two-particle azimuthal correlations, or at least that oth
sources can be neglected, dates back to the early days o
flow @2#. It still underlies the analyses done at ultrarelativis
energies, both at the Brookhaven AGS and the CERN S

However, we have shown in recent papers@3,4# that other
sources of azimuthal correlations~which we refer to as
‘‘nonflow’’ correlations! are of comparable magnitude an
must be taken into account in the flow analysis. We ha
studied in detail the well-known correlations due to glob
momentum conservation@5# and those due to quantum co
relations between identical particles@3#. We have also dis-
cussed other correlations due to resonance decays and
state interactions@4#.

Nonflow correlations scale with the total multiplicityN
like 1/N. Thus, they become large for peripheral collisions
is important to take them into account, in particular, wh
studying the centrality dependence of the flow, which h
been recently proposed as a sensitive probe of the p
transition to the quark-gluon plasma@6–8#.

Clearly, a reliable flow analysis should eliminate nonflo
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correlations. Correlations due to momentum conserva
can be calculated analytically and subtracted from the m
sured correlations, so as to isolate the correlations du
flow @4,5#; short-range correlations can be measured in
pendently and subtracted in the same way@3#. Other well-
identified nonflow correlations can be estimated throug
Monte Carlo simulation@9#. This method was used by th
WA93 Collaboration to estimate direct correlations fro
p0→gg decays @10#. Alternatively, one can attempt to
eliminate nonflow correlations directly at the experimen
level: effects of momentum conservation cancel if the det
tor used in the flow analysis is symmetric with respect
midrapidity @5#; short-range correlations are eliminated
one correlates two subevents separated by a gap in rapi
This is the method recently used by the STAR Collaborat
at the Relativistic Heavy Ion Collider~RHIC! @11#. In the
STAR paper, the correlations between pions of the sa
charge are also compared with correlations betweenp1 and
p2: correlations fromr0→p1p2 are thus found to be neg
ligible.

Nevertheless, nonflow correlations remain that cannot
handled so simply. Correlations due to resonance decays
instance, are hard to estimate~this would require a detailed
knowledge of the collision dynamics! and cannot be elimi-
nated at the experimental level; more importantly, the p
duction of minijets will contribute to azimuthal correlation
in the experiments at higher energies, at RHIC and the La
Hadron Collider ~LHC!. Finally, the existence of othe
sources of nonflow correlations, so far unknown, cannot
excluded.

The purpose of this paper is to propose a new method
the flow analysis that requires no knowledge of nonflow c
relations. The general idea is to eliminate these latter us
higher-order azimuthal correlations. Higher-order corre
tions were previously used in@12# to show qualitatively the
collectivity of flow. The study presented in this paper is mo
quantitative: by means of a cumulant expansion, we are a
to extract the value of the flow from multiparticle correl
tions. The method we propose is more reliable, and in m
respects simpler than traditional methods@9#. In particular,
©2001 The American Physical Society06-1
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detector defects, which must be considered carefully w
measuring anisotropies of a few percent, can be correcte
a compact and elegant way.

In Sec. II, we give the principle of our method as well
orders of magnitude. We show in particular that this meth
is more sensitive: it allows measurements of azimut
anisotropies down to values of order 1/N, instead of 1/AN
with the standard analysis, whereN denotes the total multi-
plicity of particles emitted in the collision.

Then, we show how the method can be implemented p
tically. As usual, the measurement of azimuthal distributio
is performed in two steps. First, one reconstructs appr
mately the orientation of the reaction plane from the dir
tions of many emitted particles, and one estimates the st
tical uncertainties associated with this reconstruction. In f
this first step amounts to measuring the value of the flo
integrated over some region of phase space~corresponding
typically to a detector!. We show in Sec. III how this mea
surement can be done using moments of the distribution
the Q vector, which generalizes the transverse momen
transfer introduced by Danielewicz and Odyniec in order
estimate the azimuth of the reaction plane@2#. We also dis-
cuss an improved version of the subevent method introdu
by the same authors to estimate the accuracy of the rea
plane reconstruction.

The second step in the flow analysis is to perform m
detailed measurements of azimuthal distributions, for vari
particles, as a function of rapidity and/or transverse mom
tum. We refer to these detailed measurements as ‘‘differ
tial flow.’’ They are usually performed by measuring dist
butions with respect to the reconstructed reaction plane,
then correcting for the statistical errors in this reconstructi
which have been estimated previously. Here, the differen
flow will be extracted directly from the correlation betwee
the azimuths of the outgoing particles and theQ vector, as
explained in Sec. IV. The discussion applies so far to
ideal detector. A general way of implementing accepta
corrections adapted to our method is discussed in Sec
Finally, the correct procedure is summarized in Sec.
Readers already familiar with flow analysis and willing
apply our method may go directly to this last section.

II. CUMULANT EXPANSION OF AZIMUTHAL
CORRELATIONS

As the standard methods of flow analysis@9#, our method
is based on a Fourier expansion of azimuthal distributi
@13# that is defined in Sec. II A. Then, in Sec. II B, we di
cuss two-particle azimuthal correlations, on which the st
dard flow analysis relies, and show that they decompose
a contribution from flow and an additional term of order 1N
which corresponds to nonflow correlations; this latter con
bution limits the sensitivity of the traditional method. In Se
II C, the decomposition is generalized to multiparticle cor
lations. Finally, in Sec. II D, we show how this decompo
tion of multiparticle correlations allows us to obtain mo
sensitive measurements of flow.
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A. Fourier coefficients

We call ‘‘flow’’ the azimuthal correlations between th
outgoing particles and the reaction plane. These are co
niently characterized in terms of the Fourier coefficientsvn
@13# which we now define. In most of this paper, we sh
work with a coordinate system in which thex axis is the
impact direction, and (x,z) the reaction plane, whilef de-
notes the azimuthal angle with respect to the reaction pla
In this frame, the momentum of a particle of massm is

p5S px5pT cosf

py5pT sinf

pz5ApT
21m2sinhy

D , ~1!

where pT is the transverse momentum andy the rapidity.
Since the orientation of the reaction plane is unknown
experiments, so is the azimuthf. Thereforepx and py are
not measured directly.

When necessary, we shall denote byf̄ the azimuthal
angle in the laboratory frame. Unlikef, f̄ is a measurable
quantity, related tof by f̄5f1fR , wherefR is the un-
known azimuthal angle of the reaction plane in the labo
tory system.

With these definitions,vn can be expressed as a functio
of the one-particle momentum distributionf (p)[dN/d3p,

vn~D![^einf&5

E
D

einf f ~p! d3p

E
D

f ~p! d3p
, ~2!

where the brackets denote an average value over m
events, andD represents a phase-space window in
(pT ,y) plane where flow is measured, typically correspon
ing to a detector. Since the particle source is symmetric w
respect to the reaction plane for spherical nuclei,^sinnf&
vanishes andvn is real.

The purpose of the flow analysis is to extractvn from the
data. Only the first two coefficientsv1 and v2 have been
published. They are usually called directed and elliptic flo
respectively. There are so far very few measurements
higher-order coefficients. The E877 experiment at
Brookhaven AGS reported values compatible with zero
v3 andv4 @14#. Nonvanishing values of higher harmonics, u
to v6, were reported from preliminary analyses at the CER
SPS @15,16#. However, the latter results are likely to b
strongly biased by quantum two-particle correlations@3#. At
the energies of the CERN SPS,v1 andv2 are of the order of
a few percent@17#, close to the limit of detectability with the
standard methods, hence the need for a new, more sens
method.

B. Two-particle correlations

Since the actual orientation of the reaction plane is
known experimentally, one can only measure relative a
muthal angles between outgoing particles. The standard
6-2
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analysis relies on the measurement of two-particle azimu
correlations, which involve the two-particle distributio
f (p1 ,p2)5dN/d3p1d3p2:

^ein(f12f2)&D13D2
5

E
D13D 2

ein(f12f2) f ~p1 ,p2! d3p1d3p2

E
D13D2

f ~p1 ,p2! d3p1d3p2

.

~3!

The standard analysis neglects nonflow correlations. Un
that assumption, the two-particle momentum distribution f
torizes:

f ~p1 ,p2!5 f ~p1! f ~p2!. ~4!

Then, Eqs.~2! and ~3! give

^ein(f12f2)&D13D2
5vn~D1!vn~D2!. ~5!

This equation means that the only azimuthal correlation
tween two particles results from their correlation with t
reaction plane. Measuring the left-hand side~lhs! of Eq. ~5!
in various phase-space windows, one can then reconstruvn
from this equation, up to a global sign. For instance,
E877 Collaboration uses the correlations between three
pidity windows to extract flow from their data@18#.

However, nonflow correlations do exist. The two-partic
distribution can generally be written as

f ~p1 ,p2!5 f ~p1! f ~p2!1 f c~p1 ,p2!, ~6!

where f c(p1,p2) denotes the correlated part of the distrib
tion. There are various sources of such correlations, am
which global momentum conservation, resonance decay~in
which the decay products are correlated!, final state Cou-
lomb, strong or quantum interactions@3,4#.

In the coordinate system we have chosen, where the r
tion plane is fixed,f c(p1,p2) is typically of order 1/N relative
to the uncorrelated part, whereN is the total number of par
ticles emitted in the collision. This order of magnitude c
easily be understood in the case of correlations between
cay products, such asr→pp. A significant fraction of the
pions produced in a heavy-ion collision originate from th
decay, and the conservation of energy and momentum in
decay gives rise to a large correlation between the reac
products. Since a large number ofr mesons are produced i
a high-energy nucleus-nucleus collision, the probability t
two arbitrary pions originate from the samer is of order 1/N.
This 1/N scaling also holds for the correlation due to glob
momentum conservation@4,5#.

Inserting Eq.~6! in expression~3!, one finds, instead o
Eq. ~5!,

^ein(f12f2)&D13D2
5vn~D1!vn~D2!1^ein(f12f2)&c . ~7!

The left-hand side represents the measured two-particle
muthal correlation. The first term in the right-hand side~rhs!
is the contribution of flow to this correlation, while the se
ond term^ein(f12f2)&c denotes the contribution of the corre
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lated partf c . The latter term corresponds to azimuthal co
relations that do not arise from flow: we call them ‘‘direct
correlations, in opposition to the indirect correlations arisi
from the correlation with the reaction plane, that is, fro
flow.

Since the correlated two-particle distributionf c(p1 ,p2) is
of order 1/N, so is the second term in the right-hand side
Eq. ~7!, which therefore reads

^ein(f12f2)&D13D2
5vn~D1!vn~D2!1OS 1

ND . ~8!

However, one must be careful with this order of magnitu
Strictly speaking, it holds only when momenta are averag
over a large region of phase space. In the case of the sh
range correlations due to final-state interactions~Coulomb,
strong, quantum! the correlations vanish as soon as the ph
spacesD1 andD2 of the two particles are widely separate
This is the method used in@11# to get rid of such correla-
tions. If, on the other hand,D1 andD2 coincide, the short-
range correlations are larger than those expected from
~8!: in this equation, the total number of emitted particlesN
should be replaced by the number of particlesM used in the
flow analysis, which is smaller in practice. Furthermore,
the case of correlations due to the quantum~HBT! effect, the
nonflow correlation scales like 1/N only if the source radius
R scales likeN1/3 @3,4#. From now on, we shall omit the
subscriptD for sake of brevity. Note, however, that all th
averages we shall consider are over a region of phase s
that is not necessarily the whole space, but may be restri
to the (pT ,y) acceptance of a detector. This will be esp
cially important in Sec. V, when we discuss acceptance c
rections.

Equation~8! shows that nonflow correlations can be n
glected ifvn@N21/2. At SPS energies, the flow is weak an
this condition is not fulfilled. Indeed, we have shown@3,4#
that the values of flow measured by the NA49 Collaborat
at CERN are considerably modified once nonflow corre
tions are taken into account.

C. Multiparticle correlations and the cumulant expansion

The failure of the standard analysis is due to the impo
bility to separate the correlated part from the uncorrela
part in Eq.~6! at the level of two-particle correlations. Th
main idea of this paper is to perform this separation us
multiparticle correlations. The decomposition of the partic
distribution into correlated and uncorrelated parts in Eq.~6!
can be generalized to an arbitrary number of particles.
instance, the three-particle distribution can be decompo
as

dN

dp1dp2dp3
[ f ~p1 ,p2 ,p3!5 f c~p1! f c~p2! f c~p3!

1 f c~p1 ,p2! f c~p3!1 f c~p1 ,p3! f c~p2!

1 f c~p2 ,p3! f c~p1!1 f c~p1 ,p2 ,p3!, ~9!
6-3
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where f c(p1)[ f (p1). The last term f c(p1 ,p2 ,p3) corre-
sponds to the genuine three-particle correlation, which is
order 1/N2.

To understand this order of magnitude, let us take
simple example: thev meson decays mostly into three pion
First of all, this decay generates direct two-particle corre
tions: the relative momentum between any two of the out
ing pions is restricted by energy and momentum conse
tion. The corresponding correlation is of order 1/N as
discussed previously in the case ofr→pp decays. It corre-
sponds to the second, third, and fourth term in the right-h
side of Eq.~9!. As stated above, the last term in this equat
stands for the direct three-particle correlation. The cor
sponding correlation between the decay products of a g
v is of order unity, while the probability that three arbitra
pions come from the samev scales withN like 1/N2. Thus
the correlation between three random pions is of order 1/N2.

More generally, the decomposition of thek-particle distri-
bution yields a correlated partf c(p1 , . . . ,pk) of order
1/Nk21. Generalizing the above discussion ofv→ppp de-
cay, the decay of a cluster ofk particles will generate corre
lations f c(p1 , . . . ,pk8) with k8<k. For instance, momentum
conservation, which is an effect involving allN particles
emitted in a collision, produces directk-particle correlations
for arbitraryk.

Such a decomposition is similar to the cluster expans
that is well known in the theory of imperfect gases@19#. In
the language of probability theory, this is known as the
mulant expansion@20#. Equations~6! and ~9! can be repre-
sented diagrammatically by Figs. 1 and 2. In these figu
correlated distributionsf c are represented by enclosed sets
points, i.e., they correspond to connected diagrams.

More generally, in order to decompose thek-point func-
tion f (p1 , . . . ,pk), one first takes all possible partitions o
the set of points$p1 , . . . ,pk%. To each subset of point
$pi 1

, . . . ,pi m
%, one associates the corresponding correla

function f c(pi 1
, . . . ,pi m

). The contribution of a given parti
tion is the product of the contributions of each subset.
nally, f (p1 , . . . ,pk) is the sum of the contributions of a
partitions.

The equations expressing thek-point functionsf in terms
of the correlated functionsf c can be inverted order by orde
so as to isolate the term of smallest magnitude:

FIG. 1. Decomposition of the two-particle distribution into u
correlated and correlated components. The second term in the r
hand side is smaller than the first by a factor of order 1/N.
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f c~p1!5 f ~p1!,

f c~p1 ,p2!5 f ~p1 ,p2!2 f ~p1! f ~p2!,

f c~p1 ,p2 ,p3!5 f ~p1 ,p2 ,p3!2 f ~p1 ,p2! f ~p3!

2 f ~p1 ,p3! f ~p2!2 f ~p2 ,p3! f ~p1!

12 f ~p1! f ~p2! f ~p3!. ~10!

The cumulant expansion has been used previously
high-energy physics to characterize multiparticle corre
tions: it has been applied to correlations in rapidity@21# and
to Bose-Einstein quantum correlations@22,23#. In these stud-
ies, the interest was mainly in short-range correlations. T
use of higher-order cumulants was therefore limited by s
tistics: the probability that three or more particles are ve
close in phase space is small. In this paper, we are intere
in collective flow, which by definition produces a long-rang
correlation, so that the limitation due to statistics is not
drastic. It will indeed be shown in Sec. III D that cumulan
up to order 6 can be measured, depending on the event
tiplicity and available statistics.

We shall deal with multiparticle azimuthal correlation
which generalize the two-particle azimuthal correlations
Eq. ~7!, and can be decomposed in the same way. Refer
to the diagrammatic representation in Figs. 1 and 2, we s
name the contribution off c(p1 , . . . ,pk) to an azimuthal cor-
relation, i.e., the genuinek-particle correlation, the ‘‘con-
nected part’’ of the correlation or, equivalently, the ‘‘direct
k-particle correlation.

D. Measuring flow with multiparticle azimuthal correlations

Our method, which we now explain, allows the detecti
of small deviations from an isotropic distribution. If th
source is isotropic, there is no flow, and the orientation of
reaction plane does not influence the particle distributi
We can therefore consider that the reaction plane has a fi
direction in the laboratory coordinate system, so that the
mulant expansion can be performed in that frame: in ot
terms, we replacef by the measured azimuthal anglef̄. One
then measures thekth cumulant of the multiparticle azi
muthal correlation, which is of orderN12k if the distribution
is isotropic. Flow will appear as a deviation from this e
pected behavior.

Let us be more explicit. We are dealing with azimuth
correlations. When the source is isotropic, that is, if t
k-particle distribution remains unchanged when all azimut
angles are shifted by the same quantitya, the flow coeffi-

ht-
FIG. 2. Decomposition of the three-particle distribution. The last term in the right-hand side is of order 1/N2 relative to the first, while
the three remaining terms are of relative order 1/N.
6-4



i-
er
lik
-

io

re

r
h

r-

i
t-

th

d

a

th

th
cl
e

t
e

e
ra
w

b
on

.e

,
r

but

e.,
s a

-
n,
la-
o-

tri-

a-
:

r

is

ill

on

ds
re-

d

ss

ni-

the

NEW METHOD FOR MEASURING AZIMUTHAL . . . PHYSICAL REVIEW C 63 054906
cients~2! obviously vanish. Therefore, the two-particle az
muthal correlation~7! reduces to its connected part, of ord
1/N. As a further consequence of isotropy, averages
^ein(f11f22f3)& vanish: only 2k-particle azimuthal correla
tions involvingk powers ofeinf andk powers ofe2 inf are
nonvanishing. For instance, the four-particle correlat
^expin(f11f22f32f4)& is a priori nonvanishing. Introduc-
ing the cumulant expansion defined in Sec. II C, this cor
lation can be decomposed into

^exp@ in~f11f22f32f4!#&

5^ein(f12f3)&c^e
in(f22f4)&c

1^ein(f12f4)&c^e
in(f22f3)&c

1^exp@ in~f11f22f32f4!#&c

5^ein(f12f3)&^ein(f22f4)&

1^ein(f12f4)&^ein(f22f3)&

1^exp@ in~f11f22f32f4!#&c . ~11!

Note that most terms in the cumulant expansion disappea
a consequence of isotropy. The first two terms in the rig
hand side of Eq.~11! are products of direct two-particle co
relations, and are therefore of order 1/N2, while the last term,
which corresponds to the direct four-particle correlation,
much smaller, of order 1/N3. However, in the case of shor
range correlations, it may rather be of order 1/M3, whereM
is the number of particles used in the flow analysis, for
same reasons as discussed in Sec. II B.

We name this latter term the ‘‘cumulant’’ to order 4 an
denote it by^^exp@in(f11f22f32f4)#&&. Using Eq.~11!, it
can be expressed as a function of the measured two-
four-particle azimuthal correlations:

^^exp@ in~f11f22f32f4!#&&

[^exp@ in~f11f22f32f4!#&

2^ein(f12f3)&^ein(f22f4)&

2^ein(f12f4)&^ein(f22f3)&. ~12!

The reason why we introduce a new notation here is that
cumulant to order 4 will always be defined by Eq.~12! in this
paper, even when the source is not isotropic. Now, if
source is not isotropic, the decomposition of the four-parti
azimuthal correlation involves many terms which have be
omitted in Eq.~11! ~see Appendix A 1!, so that the cumulan
^^exp@in(f11f22f32f4)#&& no longer corresponds to th
connected part̂exp@in(f11f22f32f4)#&c .

In the isotropic case, the cumulant^^exp@in(f11f22f3
2f4)#&& involves only direct four-particle correlations: th
two-particle correlations have been eliminated in the subt
tion. In order to illustrate this statement, let us consider t
decaysr→pp, and ‘‘turn off’’ all other sources of azi-
muthal correlations. We label 1 and 2 the pions emitted
the first resonance, 3 and 4 the pions emitted by the sec
There are correlations betweenp1 and p2, or betweenp3
and p4, so that the measured four-particle correlation, i
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the left-hand side of Eq.~11!, does not vanish. However
there is nodirect four-particle correlation between the fou
outgoing pions, so that the cumulant~12! vanishes. More
generally, if particles are produced in clusters ofk particles,
there are measured azimuthal correlations to all orders,
the cumulants to orderk8.k vanish.

Let us now consider small deviations from isotropy, i.
weak flow. The two-particle azimuthal correlation receive
contributionvn

2 according to Eq.~7!. For similar reasons, the
four-particle correlation gets a contributionvn

4 . The cumu-
lant defined by Eq.~12! thus becomes~see Appendix A 1!

^^exp@ in~f11f22f32f4!#&&52vn
41OS 1

N3 1
v2n

2

N2 D ,

~13!

where the coefficient21 in front of vn
4 is found by replacing

each factoreinf or e2 inf in the left-hand side with its aver
age valuevn . The flowvn can thus be obtained, up to a sig
from the measured two- and four-particle azimuthal corre
tions, with a better accuracy than when using only tw
particle correlations, as we shall see shortly.

It should be noticed that the cumulant involves a con
bution from the higher-order harmonic 2n, of magnitude
v2n

2 /N2. This contribution does not interfere with the me
surement ofvn provided the following condition is satisfied

uv2nu!Nvn
2 . ~14!

Sincevn is measurable only ifvn@1/N, as we shall see late
in this section, the interference with the harmonic 2n occurs
only if uv2nu@uvnu. In practice, the only situation where th
might be a problem is when measuring the directed flowv1
at ultrarelativistic energies, where elliptic flowv2 is expected
to be larger thanv1. On the other hand, this interference w
not endanger the measurement ofv2, since v4 should be
much smaller.

In the following, we shall always assume that conditi
~14! is fulfilled. Then, using Eq.~13!, it becomes possible to
measure the flowvn as soon as it is much larger thanN23/4.
The sensitivity is better than with the traditional metho
using two-particle correlations which, as we have seen,
quire vn@N21/2.

Similarly, using 2k-particle azimuthal correlations an
taking the cumulant, i.e., isolating the connected part~which
amounts to getting rid of nonflow correlations of orders le
than 2k), one obtains a quantity that is of magnitudeN122k

for an isotropic source. Flow gives a contribution of mag
tude vn

2k . The contribution of higher-order harmonicsvkn

can be neglected as soon as

uvknu!Nk21vn
k . ~15!

If uvnu@1/N, this is not a problem, unlessuvknu@uvnu. This is
unlikely to occur, since one expectsvn to decrease rapidly
with n. Neglecting higher-order harmonics, there remains
contributions of flow, of magnitudevn

2k , and of direct
2k-particle correlations, of magnitudeN122k. Therefore,
2k-particle azimuthal correlations allow measurements ofvn
6-5



io

a
n-
ts
r

on

th
e
o

. I

ar
io
lu

y
-

g

o

t

re
s
l-

si
as

d
-

ch
r-
c.
he
icz

ted.
his
f

w

to
e
ase

s:

om

the

s
e
-
-

ns,

BORGHINI, DINH, AND OLLITRAULT PHYSICAL REVIEW C 63 054906
if it is larger thanN2111/2k. Sincek is arbitrarily large, one
can ideally measurevn down to values of order 1/N, instead
of 1/AN with the standard methods. A necessary condit
for the flow analysis is therefore

vn@
1

N
, ~16!

which will be assumed throughout this paper. As we sh
see in Sec. III D, the sensitivity is in fact limited experime
tally by statistical errors due to the finite number of even

In practice, the cumulants of multiparticle azimuthal co
relations will be extracted from moments of the distributi
of the Qn vector introduced in next section.

III. INTEGRATED FLOW

In this section, we show how it is possible to measure
value ofvn integrated over a phase-space region. This m
surement will serve as a reference when we perform m
detailed measurements of azimuthal anisotropies in Sec
We first define in Sec. III A a simple version of theQn
vector, or event-flow vector, which is used in the stand
flow analysis to estimate the orientation of the react
plane. We then show, in Sec. III B, that the integrated va
of the flow can be obtained from the moments of theQn
distribution: eliminating nonflow correlations up to order 2k
by means of a cumulant expansion, we obtain an accurac
the integratedvn of magnitudeN2111/2k, better than the ac
curacy of standard methods ifk.1. Instead of using a
single-event vectorQn , one can do a similar analysis usin
subevents~Sec. III C!. Since the order 2k of the calculation
is arbitrary, we obtain with either method an infinite set
equations to determinevn . The order 2k, which should be
chosen when analyzing experimental data, depends on
number of events available~Sec. III D!. More general forms
of the Qn vector, which allow an optimal flow analysis, a
discussed in Sec. III E. Finally, in Sec. III F, we recover, a
limiting case, the results obtained in the limit of large mu
tiplicity where the distribution ofQn is Gaussian@13,24#. In
the whole section, we assume the analysis is performed u
a perfectly isotropic detector; corrections to this ideal c
will be dealt with in Sec. V.

A. The Q vector

1. Definition

Consider a collision in whichM particles are detecte
with azimuthal anglesf1 , . . . ,fM . In order to detect pos
sible anisotropies of thef distribution, it is natural to con-
struct an observable that involves all thef j , i.e., a global
quantity. For the study of thenth harmonic, one uses thenth
transverse event-flow vector@9#, which we write as a com-
plex number

Qn5
1

AM
(
j 51

M

einf j , ~17!
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wheref j denotes the azimuthal angle of thej th particle with
respect to the reaction plane.

For simplicity, we have associated a unit weight with ea
particle in Eq.~17!. The generalization of our results to a
bitrary weights is straightforward and will be given in Se
III E. The Qn vector generalizes to arbitrary harmonics t
transverse momentum transfer introduced by Danielew
and Odyniec@2#, which corresponds ton51 and the trans-
verse sphericity tensor introduced in@24,25#, which corre-
sponds to the casen52.

In practice, the number of particlesM used for the flow
analysis is not equal to the total multiplicityN of particles
produced in the collision, since all particles are not detec
However, M should be taken as large as possible. In t
paper, we shall assume thatM andN are of the same order o
magnitude. The factor 1/AM in front of Eq.~17!, which does
not appear in previous definitions of the flow vector@2,13#,
will be explained in Sec. III A 3.

2. Flow versus nonflow contributions

A nonvanishing value for the average value of the flo
vector ^Qn& signals collective flow. Indeed, using Eqs.~2!
and~17!, it is related to the Fourier coefficientvn5^einf& by

^Qn&5AMvn . ~18!

Note that^Qn& is real, as isvn , due to the symmetry with
respect to the reaction plane.

As stated before, the purpose of the flow analysis is
measurevn , i.e., ^Qn&. This is not a trivial task because th
azimuth of the reaction plane is unknown, so that the ph
of Qn is unknown. The only measurable quantity isuQnu, the
length ofQn . Its squareQnQn* , whereQn* denotes the com-
plex conjugate, only depends on relative azimuthal angle

QnQn* 5
1

M (
j ,k51

M

ein(f j 2fk). ~19!

In Sec. III B, we shall see that the flow can be deduced fr
the moments of the distribution ofuQnu2, i.e., from the aver-
age valueŝ uQnu2k&, wherek is a positive integer. To illus-
trate how flow enters these expressions, we discuss here
second-order moment̂uQnu2&. Averaging Eq. ~19! over
many events and using Eq.~7!, one obtains

^uQnu2&5
1

M
@M1M ~M21!~vn

21^ein(f j 2fk)&c!#.

~20!

The first term corresponds to the diagonal termsj 5k, i.e., to
‘‘autocorrelations.’’ If there are no azimuthal correlation
~neither flow nor nonflow!, only this term remains and th
average value ofuQnu2 is exactly 1. The second term corre
sponds toj Þk, i.e., to the two-particle azimuthal correla
tions discussed in Sec. II B. Since^ein(f12f2)&c is at most of
order 1/M , direct correlations give a contribution that isa
priori of the same order of magnitude as autocorrelatio
although it may be smaller in practice. Equation~20! can
thus be written as
6-6
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^uQnu2&5M Fvn
21

1

M
1OS 1

M D G5^Qn&
2111O~1!.

~21!

As expected from the discussion of Sec. II B, since^uQnu2&
involves two-particle correlations, flow measurements ba
on ^uQnu2& are reliable only ifuvnu@1/AM . Smaller values of
flow can be obtained using higher moments of the distri
tion of uQnu2, as explained in Sec. III B.

If flow is strong enough, the event-flow vector can
used to estimate the orientation of the reaction plane. Ind
if uvnu@1/AM , Eqs. ~18! and ~21! show that Qn.^Qn&
5AMvn . Then the phase ofQn is approximately 0 ifvn
.0 andp if vn,0. Experimentally, one definesQn as in
Eq. ~17!, with the azimuthal anglesf j measured with respec
to a fixed direction in the laboratory~rather than the reaction
plane, which is unknown!. Then the azimuthal angle of th
reaction planefR can be estimated from the phase ofQn ,
which we write nfQ : fR.fQ (fR.fQ1p/n) modulo
2p/n if vn.0 (vn,0).

3. Varying the centrality

Let us now explain the factor 1/AM in the definition~17!.
This factor was introduced independently by A. Poskan
and S. Voloshin, and in@26#. It is important when using
events with different multiplicitiesM in the flow analysis,
i.e., events with different centralities. This is the case in pr
tice: one takes all events in a given centrality interval
order to increase the available statistics.

If there is no flow, Eq.~21! shows that̂ uQnu2& is inde-
pendent ofM since nonflow correlations scale like 1/M . This
can be understood simply: the sum in Eq.~17! is a random
walk of M unit steps, therefore it has a length of orderAM ,
which cancels out with the factor 1/AM in front. Flow, on
the other hand, depends strongly on centrality~it vanishes for
central and very peripheral collisions!: according to Eq.~21!,
it gives a positive contribution tôuQnu2& that strongly de-
pends onM. This allows one to disentangle flow and nonflo
effects.

Note that flow can be detected by studying the variat
of ^uQnu2& with centrality. This is the method used in@27#:
one expectŝ uQnu2& to be minimum for the most periphera
collisions where the density of particles is too small for c
lective behavior to set in, and for central collisions wherevn
also vanishes from azimuthal symmetry. However, suc
method does not allow an accurate measurement of flow:
impossible to select true~i.e., with b50) central collisions
experimentally, and there may still be some flow up to la
impact parameters, as suggested by hydrodynamic calc
tions in the case of elliptic flow@24#, and by recent measure
ments@28#.

The method presented in this paper is more powerfu
the sense that it allows flow measurements for a given c
trality. The error on the centrality selection~due to the fact
that one always selects events within a finite range of imp
parameters! is compensated by the factor 1/AM in the defi-
nition of Qn .
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B. Cumulants of the distribution of zQnz2

For the sake of brevity, we now drop the subscriptn and
setn51 until the end of this paper, unless otherwise stat
All our results can be easily generalized to the study
higher-ordervn’s by multiplying all azimuthal angles byn.

The moments of theuQu2 distribution involve the multi-
particle azimuthal correlations discussed in Sec. II D. Wh
^uQu2& involves two-particle azimuthal correlations, as se
in Eq. ~19!, the higher momentŝuQu2k& involve 2k-particle
correlations. For instance, we have

^uQu4&5
1

M2 (
j ,k,l ,m

^exp@ i ~f j1fk2f l2fm!#&. ~22!

These higher-order azimuthal correlations can be used
eliminate nonflow correlations order by order, as explain
in Sec. II D. This will be achieved by taking the cumulan
of the distribution ofuQu2, which we shall soon define.

1. Isotropic source

Following the procedure outlined in Sec. II D, we fir
consider an isotropic source~no flow!. Using Eq. ~21!,
^uQu2& is then of order unity, and so are the higher-ord
moments^uQu2k&. However, by analogy with the cumulan
decomposition of multiparticle distributions introduced
Sec. II C, we can construct specific combinations of the m
ments, namely, the cumulants of theuQu distribution, which
are much smaller than unity: the cumulant^^uQu2k&& to order
k, built with the ^uQu2 j& where j <k, is of magnitude
1/Mk21.

As an illustration, let us construct the fourth-order cum
lant ^^uQu4&&. If the multiplicity M is large, most of the terms
in Eq. ~22! are nondiagonal, i.e., they correspond to values
j, k, l, andm all different. Then, using the cumulant of th
four-particle azimuthal correlation defined by Eq.~12! and
summing over (j ,k,l ,m), it is natural to definê^uQu4&& as

^^uQu4&&5^uQu4&22^uQu2&2. ~23!

The order of magnitude of̂̂ uQu4&& is easy to derive: each
term of type~12! is of order 1/M3 as discussed in Sec. II D
there areM4 such terms in the sum~22!; taking into account
the factor 1/M2 in front of the sum,̂ ^uQu4&& is finally of
order 1/M . As intended, two-particle nonflow correlation
which are of order unity, have been eliminated in the su
traction ~23!.

A more careful analysis must take into account diago
terms for which two~or more! indices among (j ,k,l ,m) are
equal. This analysis is presented in Appendix A 2, where
show that diagonal terms are also of order 1/M : they give a
contribution of the same order of magnitude as direct fo
particle correlations. In the following, we shall assume th
this property, namely, that the contribution of diagonal ter
is at most of the magnitude of the contribution of nondiag
nal terms, also holds for higher-order moments.

Among these diagonal terms are the autocorrelations
ready encountered in the expansion ofuQu2 @see the discus-
sion below Eq.~20!#, which we define as the terms that r
6-7
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FIG. 3. Decomposition of̂uQu4&5^QQQ* Q* &. In the right-hand side, the first term is of order unity while the second term is of o
1/M .
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main in the absence of flow and direct correlations.
straightforward calculation~see Appendix A 2! shows that
their contribution to the cumulant^^uQu4&& is 21/M . As in
the case of the second-order moment^uQu2& discussed pre-
viously, autocorrelations area priori of the same order o
magnitude as other nonflow correlations. As we shall
later in this section, they can easily be calculated and
moved order by order.

Arbitrary momentŝ uQu2k& can be decomposed into cu
mulants, which can then be isolated in a similar way. T
decomposition can be represented in terms of diagrams,
the decomposition of the multiparticle distribution in Se
II D. This is explained in detail in Appendix B. For exampl
the decomposition of̂uQu4& is displayed in Fig. 3. In these
diagrams, each dot on the left~on the right! of the dashed
line represents a power ofQ (Q* ), and correlated parts
which correspond to direct correlations, are circled: the eq
tion displayed in Fig. 3 stands for

^uQu4&52^^uQu2&&21^^uQu4&&. ~24!

Since^^uQu2&&5^uQu2&, one recovers Eq.~23!. More gener-
ally, to decomposêuQu2k&, one drawsk dots on each side o
the dashed line. The diagrams combine all possible sub
of the dots on the left with subsets of the dots on the ri
containing the same number of elements. The latter condi
is due to the fact that the average value of^QlQ* m& vanishes
when lÞm, as a consequence of isotropy.

In order to invert these relations, and to express the
mulants as a function of the measured moments, the simp
way consists in using the formalism of generating functio
recalled in Appendix B 2. There it is shown that the cumula
^^uQu2k&& is obtained from the expansion in power series ox
of the following generating equation, and then the identifi
tion of the coefficients ofx2k:

(
k51

`
x2k

~k! !2
^^uQu2k&&5 lnS (

k50

`
x2k

~k! !2
^uQu2k& D

5 ln^I 0~2xuQu!&, ~25!

whereI 0 is the modified Bessel function of order 0. Expan
ing this equation to orderx4, one recovers Eq.~23!; to order
x6, one obtains the sixth-order cumulant

^^uQu6&&5^uQu6&29^uQu4&^uQu2&112̂ uQu2&3, ~26!

which is of the order of 1/M2 for an isotropic source.
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2. Contribution of flow

Let us now consider small deviations from isotropy. A
explained in Sec. II D, these deviations will contribute to t
cumulantŝ ^uQu2k&& defined above.

The contribution of flow to the fourth-order cumulan
^^uQu4&& is calculated in detail in Appendix A. It is shown i
particular that the diagonal terms in Eq.~22! are at most of
the same magnitude as nondiagonal terms, as in the ca
an isotropic source. As in Sec. II D, higher-order harmon
can be neglected as soon as condition~14! is fulfilled. One
then obtains

^^uQu4&&52^Q&42
1

M
1OS 1

M D , ~27!

where the term21/M is the contribution of autocorrelations
i.e., the casej 5k5 l 5m. From Eqs.~18! and ~27!, one can
measure values of the integrated flowv down toM 23/4, in-
stead ofM 21/2 with traditional methods.

Increased sensitivity can be attained using higher-or
cumulants. As shown in Appendix B 3, the cumulants d
fined by Eq.~25! are related to the flow by the following
generating equation:

(
k50

`
x2k

~k! !2
^^uQu2k&&5 ln I 0~2x^Q&!1M ln I 0S 2x

AM
D .

~28!

Expanding this equation up to orderx2k, and isolating the
coefficient ofx2k/(k!) 2, one obtains a relation with on th
left-hand side the cumulant^^uQu2k&&, while the first term on
the right-hand side is the contribution of flow, and the seco
term corresponds to autocorrelations. This identity ho
within an error of orderM12k due to direct 2k-particle cor-
relations. Using Eq.~18!, it therefore allows measuremen
of v within O(M 2111/2k), as expected from the discussion
Sec. II D. Expanding Eq.~28! to orderx4, one recovers Eq
~27!. To orderx6, one obtains

^^uQu6&&54^Q&61
4

M2 1OS 1

M2D , ~29!

which extends the limit of detectability down tov;M 25/6.
Since Eqs.~25! and ~28! can be expanded to any orde

one obtains an infinite set of equations to determine the s
quantity ^Q&. The best choice for the orderk will be dis-
cussed below in Sec. III D. Before we come to this point,
shall discuss an alternative method to measure^Q&, the so-
called ‘‘subevent’’ method.
6-8
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C. Subevents

The standard flow analysis, instead of studying the au
correlation of the event-flow vector as in Sec. III B, dea
with ‘‘subevents’’: the set of detected particles is divid
randomly into two subsets I and II of equal multiplicitie
and the two corresponding~subevent! flow vectorsQI and
QII are constructed. Then one studies the azimuthal corr
tion betweenQI andQII @2,9#. This is usually done under th
assumption that the only azimuthal correlation between
subevents is due to flow. Then, from the flow of two equiv
lent subevents, one can deduce the flow of the whole e
by a simple multiplication by a factor ofA2, as will soon be
explained.

A nice feature of that method is that, since the subeve
have no particle in common, autocorrelations are autom
cally removed: only correlations due to flow and direct c
relations remain. Therefore, one may prefer to work w
subevents when direct correlations are small~although they
are, generally, of the same order of magnitude as autoco
lations!.

In this section, we shall improve the standard subev
method, in the spirit of Sec. III B: we eliminate nonflo
azimuthal correlations order by order by means of a cum
lant expansion of the distribution ofQI and QII , thereby
increasing the sensitivity of the method.

1. Definitions

Consider two separate subevents of multiplicityM I and
M II , respectively~in practice, one choosesM I5M II). We
can construct the subevent flow vectorsQIn andQIIn as fol-
lows:

QIn5
1

AM I
(
j 51

M I

einf j5uQInueinC I, ~30!

QIIn5
1

AM II
(
k51

M II

einf̃k5uQIInueinC II. ~31!

As in Sec. III B, we setn51 and drop the subscriptn in QIn
andQIIn ; generalization to highern is straightforward.

By analogy with Eq.~18!, we write

^QI&5AM I v I , ^QII&5AM II v II , ~32!

wherev I andv II denote the values ofv1 associated with each
subevent. Hereafter, we shall assume that the two subev
are equivalent, i.e.,v I5v II[v, as is the case if they ar
chosen randomly.

Therefore, if M I5M II5M /2, the value of^Q& for the
whole event is related to the value for one subevent,^QI&, by

^Q&5AMv5A2 ^QI&. ~33!

The purpose here is to measure^QI&, which is equivalent to
measurinĝ Q&.
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2. Limitations of the standard method

In order to extract the azimuthal correlation between
subevents, the simplest possibility is to form the product

QIQII* 5
1

AM IM II
(
j ,k

ei (f j 2f̃k)5uQIQIIuei (C I2C II ). ~34!

Using Eq.~7!, the average over many events gives

^QIQII* &5AM IM II~v21^ei (f j 2f̃k)&c!. ~35!

This equation is analogous to Eq.~20!, with the important
difference that autocorrelations@the first term in the right-
hand side of Eq.~20!# no longer appear. As a consequenc
^QIQII* & vanishes if there are no azimuthal correlations b
tween particles.

However, two-particle nonflow correlations do rema
Since they are of order 1/N, Eq. ~35! can be written as

^QIQII* &5AM IM IIFv21OS 1

ND G . ~36!

One recognizes in the right-hand side of this equation
flow and nonflow contributions to two-particle azimuth
correlations, as in Eq.~8!. The only difference lies in the
global multiplicative factorAM IM II . In particular, summing
over many particles does not decrease the relative weigh
nonflow correlations, as might be believed: they add up
the same way as the correlations due to flow.

3. Beyond the standard method

Now, following the procedure outlined in Sec. III B, it i
possible to eliminate nonflow correlations betweenQI and
QII order by order. This is done by means of a cumula
expansion, which is a trivial generalization of the one p
sented previously. The equation to an arbitrary order 2k is
obtained by replacing, in Eqs.~25! and ~28!, uQu2 with
QIQII* , and^Q&2 with ^QI&^QII&. For example, Eqs.~23! and
~27! become

^QI
2QII*

2&22^QIQII* &25M IM IIF2v41OS 1

N3D G , ~37!

which allows measurements of the flow whenv is much
larger than 1/N3/4: the sensitivity is better than that with Eq
~36!, where v is to be compared with 1/N1/2. The term
21/M in Eq. ~27!, which reflects autocorrelations, is aut
matically removed in Eq.~37!.

To make a long story short, the same techniques appl
subevents as to the whole event. The only interest of sub
ents is that they remove autocorrelations. However, they
not remove direct nonflow correlations, which may be of t
same order of magnitude. Furthermore, autocorrelations
also be subtracted systematically when working with
whole event, as shown in Sec. III B. Another drawback
the subevent method is that each subevent contains at
half of the total multiplicity, resulting in increased errors. A
6-9
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a conclusion, the subevent method seems to be obs
when working with cumulants.

D. Statistical errors

The cumulant expansion allows in principle the measu
ment ofv down to values of 1/M by going to large ordersk,
as explained in Sec. II D. In practice, however, since
number of eventsNevts used in the analysis is finite, the se
sitivity is limited by statistical errors. In this section, w
determine, as a function ofM andNevts, which order of the
cumulant expansion should be chosen so as to obtain
most accurate value of the integrated flow.

First, there is a ‘‘systematic’’ error, which is the error du
to nonflow correlations. Expanding Eq.~28! to order 2k, we
obtain an equation relating the measured cumulant^^uQu2k&&
and the integrated floŵQ&, which is of the type

^^uQu2k&&5ak^Q&2k1O~M12k!, ~38!

whereak is a numerical coefficient of order unity, and th
last term is the systematic error. The resulting error on^Q& is
therefore

d^Q&syst;^Q&122k M12k. ~39!

The systematic error thus decreases with increasingk, since
^Q&AM5Mvn@1, as assumed in Eq.~16!.

Let us now discuss the statistical error. When averagin
quantity over a large number of eventsNevts, the statistical
error is generally of relative order 1/ANevts. Since the mo-
ments of the distribution ofuQu2 are of order unity, the ab
solute statistical error on the moments is of order 1/ANevts.
The same error applies to the cumulants, which are c
structed from the moments. If there is no flow, a more ac
rate calculation shows that the statistical error on the cu
lant is

d^^uQu2k&&stat5
k!

ANevts

. ~40!

If the flow is weak, that is if̂ Q&!1, this formula still holds
approximately. Using Eq.~38!, one thus derives the statist
cal error on the integrated flow

d^Q&stat;^Q&122k Nevts
21/2. ~41!

Since we have assumed that^Q&!1, the statistical error in-
creases withk, unlike the systematic error.

It is very likely that this property still holds in the mor
general case when̂Q& is not much smaller than unity. How
ever, we have not been able to derive a general formula
the statistical error for arbitrarŷQ& and k. We only have
formulas for the lowest-order cumulants. Using the cumul
to order 2 (k51),

d^Q&stat5
1

2^Q&
A112^Q&2

Nevts
, ~42!

and with the fourth-order cumulant (k52),
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d^Q&stat5
1

2^Q&3A114^Q&21^Q&412^Q&6

Nevts
. ~43!

One sees in these two formulas that for very strong fl
(^Q&@1), the statistical errord^Q&stat is of order 1/ANevts,
independent of̂ Q&. This remains true for higher-order cu
mulants. Note, moreover, that both formulas give Eq.~41! in
the limit of small ^Q&.

Since the systematic error decreases withk and the statis-
tical error increases withk, the best accuracy is achieved fo
the value ofk such that both are of the same order of ma
nitude. Using Eqs.~39! and ~41!, one thus obtains the opti
mal value of the order 2k:

2k.21
ln Nevts

ln M
. ~44!

Since, in practice,M is at least of the order of a hundred
ultrarelativistic energies, the fourth-order cumulant 2k54
@i.e., Eq. ~27!# gives the best accuracy if the number
events lies in the range 103,Nevts,106. Higher order cumu-
lants may be useful if a large statistics is available and/o
the multiplicity M is low, as for instance in a periphera
collision.

The flow is detectable only if̂ Q& is larger than both
statistical and systematic errors. Taking for instanceNevts
5105 and M5300, statistical and systematic errors are
the same order. One then obtains, using Eq.~43!, that flow
can be seen if̂Q&.0.3. Using Eq.~18!, v can be measured
down to 1.6% using the fourth-order cumulant. Ifv53%, a
typical value at the CERN SPS, then^Q&.0.5. Using Eq.
~43!, the typical error is thend^Q&.0.02, i.e.,dv50.1%.

E. Weighted Q vectors

The vectorQn has been defined in Eq.~17! with unit
weights. A more general definition is

Qn5
1

A(
j 51

M

wj
2

(
j 51

M

wje
inf j , ~45!

where the weightwj is an arbitrary function ofpT , y, the
particle type, and the order of the harmonic under study.
a consequence, we shall restore the indexn in this subsec-
tion.

1. Flow analysis with arbitrary weights

The method discussed in Sec. III B also applies to t
more general definition. There are only two slight diffe
ences. The first is that the average value ofQn , which we
have denoted bŷQn&, is no longer related to the averag
value vn of the flow by Eq.~18!. This modification is not
important for what follows: we shall see in Sec. IV B th
measurements of differential flow depend on the value
^Qn& rather thanvn . The second difference is that autoco
relations cannot be removed so simply: the procedure gi
6-10



n
i

s
c
th

on

e

s

t

th
e
l

th

,
d

o
he

r

s

o

um

re

ra

e
en
od

and

r

the
-
nto

of

l

NEW METHOD FOR MEASURING AZIMUTHAL . . . PHYSICAL REVIEW C 63 054906
in Appendix B 4 is no longer valid, so that the subeve
method, which avoids autocorrelations, may regain some
terest.

Apart from this difference, the procedure is the same a
Sec. III B. In particular, the cumulants of the event-flow ve
tor distribution are expressed in the same way in terms of
moments. The generating equation~28! still holds, with the
caveat that the last term, corresponding to autocorrelati
is no longer exact.

However, autocorrelations are unchanged at the low
order: a calculation analogous to the one leading to Eq.~20!
shows that̂ uQnu2&51 if there are no azimuthal correlation
between particles, up to terms of order 1/M . Changes occur
only at higher orders.

2. Optimal weights

What is the best choice for the weightw(pT ,y,n)? In
practice, it should be chosen so as to maximize the effec
flow: one should try to obtain a value of^Qn& as large as
possible, since this value will determine the accuracy in
measurement of azimuthal distributions, as we shall se
Sec. IV. From the definition~45!, averaging over azimutha
angles and denoting by (vn) j the value ofvn for the corre-
sponding particle, one obtains

^Qn&5

(
j 51

M

~vn! jwj

A(
j 51

M

wj
2

<A(
j 51

M

~vn! j
2, ~46!

where we have used a simple triangular inequality, and
fact that the flow coefficients (vn) j are real. The identity
holds whenwj5l(vn) j , wherel is arbitrary. In other terms
the optimal weight for a particle with given rapidity an
transverse momentum is the associated flow coefficient (vn) j
itself.

Of course, since the goal is precisely to measurevn , the
above discussion does not answer the question of the ch
of the optimal weight. However, general properties of t
vn’s can be used to guess a reasonable choice ofw. Sincevn
is an odd~even! function of the center-of-mass rapidity fo
odd n ~evenn), so should bew. Regarding thepT depen-
dence, one may note that at lowpT , vn generally behaves a
vn}pT

n @1#. Therefore, it seems natural to choosew}pT
n

when measuring thenth harmonic. Forn51, Qn then be-
comes the sum of transverse momenta, weighted by an
function of rapidity, which was the definition chosen in@2#.
For n52, Qn is then equivalent to the transverse moment
sphericity tensor used in@24#.

F. Gaussian limit

In this section, we compare our method to methods p
viously used in@13,24#, which rely on the large multiplicity,
Gaussian limit. It is well known that, according to the cent
limit theorem, the distribution of the fluctuations ofQ around
05490
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its average valuêQ& is Gaussian in the limit of largeM. Up
to corrections of order 1/M , the normalized probability of
Q5Qx1 iQy thus reads

dp

d2Q
5

1

2psxsy
expS 2

~Qx2^Q&!2

2sx
2

2
Qy

2

2sy
2D , ~47!

with sx
25^Qx

2&2^Q&2 andsy
25^Qy

2&.
We shall first show that this limit is equivalent to th

cumulant expansion to order 4 presented in Sec. III B. Th
we shall discuss the relationship with an alternative meth
to measure flow, which has been used in the literature,
consists in fitting the distribution ofuQu.

1. Higher harmonics

In the case of the Gaussian distribution~47!, one easily
calculates the cumulants used in Sec. III B:

^uQu2&5^Q&21sx
21sy

2 ,

^uQu4&22^uQu2&252^Q&412~sx
22sy

2!^Q&21~sx
22sy

2!2.
~48!

In order to compare these equations with Eqs.~21! and~A7!,
we need to evaluate the sums2[sx

21sy
2 and the difference

sx
22sy

2 .
From Eqs.~18! and ~20!, one obtains

s25^uQu2&2^Q&2512v1
21~M21!^ei (f j 2fk)&c ,

~49!

where the last term is of order unity since^ei (f j 2fk)&c is of
order 1/N&1/M . This still holds for the generalized vecto
~45!. One thus recovers Eq.~21!.

Let us now calculate the difference:

sx
22sy

25
1

M (
j ,k51

M

@^cos~f j1fk!&2^cosf j&^cosfk&#

5v22v1
21O~v2!, ~50!

where the first two terms in the last equation come from
diagonal termsj 5k, while the remaining term is the contri
bution of nondiagonal terms. Reporting this expression i
Eq. ~48!, we recover Eq.~A7!: higher harmonics reflect a
deviation from isotropy in the fluctuations ofQ.

2. Isotropic fluctuations

Neglecting higher harmonics, we may writesx5sy .
Then the distribution~47! becomes

dp

d2Q
5

1

ps2
expS 2

uQ2^Q&u2

s2 D . ~51!

With this distribution, we expect to recover the results
Sec. III B, where higher harmonics were also neglected.

Indeed, one finds after some algebra, for arbitrary, reax,

ln^I 0~2xuQu!&5s2x21 ln I 0~2x^Q&!, ~52!
6-11
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to be compared with Eqs.~25! and ~28!. According to Eq.
~49!, the extra terms2x2 is of order unity, in agreement with
the statement following Eq.~28! that the correction at orde
x2k is O(M12k).

Corrections to the central limit theorem are of order 1/M .
Thus, expanding Eq.~52! in powers ofx, one obtains iden-
tities that are valid up to that order. To orderx4, we recover
the result obtained in the previous section, see Eq.~27!, with
the same accuracy. To orderx2k with k.2, the results ob-
tained in Sec. III B are more accurate since we have seen
the correction is of magnitudeM12k!1/M .

3. Distribution of zQz

A method for extracting the flow from the data, whic
was proposed in@13,24#, consists in plotting the measure
distribution of uQu. This method led to the first observatio
of collective flow in ultrarelativistic nucleus-nucleus coll
sions@14#. It is a simplified version of the method based
the sphericity tensor@29#, which led to the first observation
of collective flow at Bevalac@30#. Note that these method
are more reliable than what we call the ‘‘standard metho
in this paper, in the sense that one need not neglect non
correlations.

The distribution ofuQu is obtained by integration of Eq
~51! over the phase ofQ:

1

uQu
dp

duQu
5

2

s2
expS 2

^Q&21uQu2

s2 D I 0S 2uQu^Q&

s2 D .

~53!

One must then fit both parameterss and ^Q& to the data.
If there is no flow, that iŝ Q&50, the uQu distribution

given by Eq.~53! is purely Gaussian:

1

uQu
dp

duQu
5

2

s2
expS 2

uQu2

s2 D . ~54!

The uQu distribution deviates from the Gaussian shape if
flow is strong enough compared to the fluctuation scale,
is for values of^Q&*s. In particular, the maximum of the
distribution is shifted touQuÞ0 if ^Q&.s. Sinces is of
order 1, using Eq.~18!, this condition is equivalent tov
*1/AM . Note, however, that one need not assumev
@1/AM , as with the methods based on two-particle a
muthal correlations.

If ^Q&!s, i.e., v!1/AM , the shape of the distribution i
very close to a pure Gaussian distribution. In fact, the de
tions from the Gaussian shape are of order^Q&4/s4 @26#.
This can be seen by expanding Eq.~53! to order^Q&2, which
is equivalent to replacings2 with s21^Q&2 in Eq. ~54!.
Alternatively, one can eliminates and obtain^Q& directly
using the following identity, which can be easily derive
from Eq. ~51!:

^uQu4&22^uQu2&252^Q&4, ~55!

again showing that the deviation is of fourth order in t
flow. Knowing that the deviation to the central limit is o
05490
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order 1/M , one finds that Eq.~55! is equivalent to Eqs.~23!
and ~27!, i.e., to the cumulant expansion to order 4.

The importance of the factor 1/AM in the definition ofQ,
Eq. ~17!, also appears clearly when fitting Eq.~53! to experi-
mental data. Because of this factor,s does not depend on th
multiplicity M in the limit of largeM, as discussed above
This is especially important when the fit is done using eve
with different multiplicitiesM. If there is no flow, the distri-
bution of uQu is Gaussian with widths. If s depended onM,
the distribution would rather be a superposition of Gauss
distributions with different widths. In this case, the left-ha
side of Eq.~55! would be positive, hiding a possible wea
flow. This phenomenon probably explains why the fi
analysis of the E877 Collaboration@14# gives zero values of
the flow in some centrality bins.

When fitting Eq.~53! to the data, it is important to fit̂Q&
independently, which reflects the flow, ands, which also
involves two-particle correlations, according to Eq.~49!. As-
suming thats is the same for all Fourier harmonics, as w
done by E877@14#, amounts to neglecting two-particle co
relations.

Finally, note that the Gaussian limit can also be applied
the subevent method, yielding interesting results: in parti
lar, the distribution of the relative angle betweenQI andQII
is not the same for direct correlations and correlations du
flow @26#.

IV. DIFFERENTIAL FLOW

In this section, we explain how it is possible to perfor
detailed measurements of azimuthal distributions: typica
one wishes to measurevn for a given type of particle as a
function of the rapidityy and the transverse momentumpT .
In the following, we shall call this particle a ‘‘proton,’’ but i
can be anything else. We denote byc its azimuthal angle,
and by vm8 the corresponding differential flow coefficien
vm8 5^eimc&. Unlike the standard method, as stated befo
we do not make the assumption that all azimuthal corre
tions are due to flow. As in the case of the integrated fl
studied in Sec. III, we get rid of nonflow correlations ord
by order, by means of a cumulant expansion.

The principle of the method is explained in Sec. IV A.
Sec. IV B, we show thatvm8 can be obtained from the az
muthal correlation betweenc and the flow vectorQ. As in
the case of integrated flow, the order to which nonflow c
relations must be eliminated depends in practice on the n
ber of events available: this is explained in Sec. IV C, wh
we also estimate the resulting accuracy onvm8 . Our method
is compared to traditional methods in Sec. IV D.

A. Principles and orders of magnitude

The differential flow coefficientsvm8 can be obtained only
through azimuthal correlations with other particles, typica
particles used to estimate the orientation of the reac
plane, which we call ‘‘pions’’ in this section, although the
can be anything else.
6-12
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For instance, correlating the proton with one pion,v18 can
be derived from the measurement of the two-particle a
muthal correlation

^ei (c2f1)&5v18v11OS 1

ND , ~56!

wherev1 refers to the pion, and is determined independen
We have used an analogy with Eq.~8!. The termO(1/N)
comes from two-particle nonflow correlations between
proton and the pion. The error made in the determination
v18 is thus of order 1/(Nv1). Of course, one should correla
the proton to particles with a strong flow, so thatv1 be as
large as possible.

More accurate measurements can be obtained u
higher-order correlations and a cumulant expansion. For
stance, at fourth order, one can eliminate the two-part
nonflow correlation by correlating the proton with thre
pions and taking the cumulant, by analogy with Eqs.~12!
and ~13!:

^^exp@ i ~c1f12f22f3!#&&

[^exp@ i ~c1f12f22f3!#&2^ei (c2f2)&^ei (f12f3)&

2^ei (c2f3)&^ei (f12f2)&

52v18v1
31OS 1

N3D . ~57!

More generally, correlating the proton with 2k11 pions, the
connected part of the correlation is of order 1/N2k11 @since it
corresponds to direct (2k12)-particle correlations#, while
the contribution of flow isv18v1

2k11. Comparing both terms
the accuracy onv18 is thus of order 1/(Nv1)2k11. Using Eq.
~16!, this shows that the accuracy increases with increas
k, i.e., when using multiparticle correlations.

Higher harmonics, such asv28 , can be obtained by at leas
two methods. The first consists in multiplying all the ang
by 2 in the equations above, and replacingv18 andv1 by v28
andv2, respectively. A second method is to mix two diffe
ent harmonics, measurinĝei (2c2f12f2)&. If the source is
isotropic, this quantity is of order 1/N2 since it involves a
direct three-particle correlation. If there is flow, neglecti
other sources of correlation for simplicity,^ei (2c2f12f2)&
factorizes into^e2ic&^e2 if1&^e2 if2&5v28v1

2. Putting every-
thing together, we obtain

^ei (2c2f12f2)&5v28v1
21OS 1

N2D . ~58!

One sees that nonflow correlations come into play only
order 1/N2, rather than 1/N when comparing the same ha
monics as in Eq.~56!. Nonetheless, they do not disappe
These correlations can also be eliminated order by order
ing the cumulant expansion, as we shall see in Sec. IV
Generally, if one correlates the proton with 2k1m pions,
one obtains an accuracy onvm8 of order 1/(Nv1)2k1m.
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B. Differential flow from correlations with Qn

In order to correlate a proton with pions, it is convenie
to use the event-flow vectorQn , Eq. ~17!. From now on in
this section, we choosen51, and drop the subscriptn, i.e.,
we write Q andv instead ofQ1 andv1. On the other hand
we keep the subscriptm for the protonvm8 because severa
harmonics may be measured. Generalization to arbitraryn is
straightforward: one simply multiplies all azimuthal angl
~of both protons and pions! by n.

In the standard flow analysis, one usually excludes ‘‘a
tocorrelations’’ by excluding the ‘‘proton’’ under study from
the definition of the event-flow vector@2#; that is, the azi-
muthal anglec is not one of thef j in Eq. ~17!. Here, it is
not necessary to do so. First, autocorrelations will be
moved order by order as well as direct correlations, as in
case of the integrated flow in Sec. III B. Furthermore, au
correlations, if any, can be subtracted exactly if the eve
flow vectorQ is defined with unit weight, as in Eq.~17!. This
subtraction is performed in Appendix C 4. For simplicity, w
neglect the corresponding term in this section, unless ot
wise specified.

Let us start with the measurement of the first harmo
v18 . The two-particle azimuthal correlation between the p
ton and a pion, Eq.~56!, can be expressed introducing th
vectorQ defined by Eq.~17!. Summing Eq.~56! over all the
pions involved inQ, one obtains the correlation between^Q&
and the proton:

^Q* eic&5^Q&Fv181OS 1

Nv D G . ~59!

The value of̂ Q& must be obtained independently, using t
methods discussed in Sec. III.

More accurate measurements, involving correlations
the proton with several pions, are performed using high
order moments, as in Sec. III B. These higher-order mome
are obtained by weighting the previous expression with po
ers of uQu2, i.e., by measurinĝ uQu2kQ* eic&. These mo-
ments are then decomposed into cumulants. For instance
~57! becomes

^^uQu2Q* eic&&[^uQu2Q* eic&22^Q* eic&^uQu2&

52^Q&3Fv181OS 1

~Nv !3D G , ~60!

through which we define the cumulant^^uQu2Q* eic&&.
As in the case of integrated flow, the decomposition

higher-order momentŝuQu2kQ* eic& in cumulants can be
represented in terms of diagrams. For instance, the dec
position of ^uQu2Q* eic& is displayed in Fig. 4.

FIG. 4. Decomposition of̂uQu2Q* eic&5^Q* 2Qeic&. The cross
corresponds to the factoreic of the proton, while dots on left~on
the right! of the dashed line stand forQ (Q* ).
6-13
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The diagrams in this figure stand for

^uQu2Q* eic&52^^Q* eic&&^^uQu2&&1^^uQu2Q* eic&&

52^Q* eic&^uQu2&1^^uQu2Q* eic&&. ~61!

One thus recovers the expression of the cumulant, Eq.~60!.
More generally, in order to decompose the mom
^uQu2kQ* eic&5^QkQ* k11eic&, one draws a cross on the le
representing the proton,k dots on the left andk11 dots on
the right representing the pions. The graphs combine all p
sible subsets of the points on the left with subsets of
points on the right containing the same number of eleme

Let us now discuss the measurements of higher harmo
of the proton azimuthal distributionvm8 . In the casem52,
Eq. ~58! gives, summing over the pions involved inQ,

^Q* 2e2ic&5^Q&2Fv281OS 1

~Nv !2D G . ~62!

To obtain a better accuracy, one must decompose hig
order momentŝuQu2kQ* 2e2ic& in cumulants. In terms of the
diagrammatic representation, the proton is now associ
with two crosses, as seen in Fig. 5 fork51.

As before, the graphs combine all possible subsets of
points on the left with subsets of the points on the rig
containing the same number of elements, with the subsid
condition that the two crosses belong to the same subse
the left-hand side of Fig. 5, the dot on the left of the dash
line can be associated with any of the three dots on the ri
The equation represented by the figure can be written as

^uQu2Q* 2e2ic&53^^Q* 2e2ic&&^^uQu2&&1^^uQu2Q* 2e2ic&&

53^Q* 2e2ic&^uQu2&1^^uQu2Q* 2e2ic&&,

~63!

where the last term involves a direct five-particle correlati
and is therefore of orderM23O(1/N4). When there is flow,
one obtains

^^uQu2Q* 2e2ic&&5^uQu2Q* 2e2ic&23^Q* 2e2ic&^uQu2&

5^Q&4F22v281OS 1

~Nv !4D G . ~64!

Cumulants of arbitrary order, for arbitrary harmonicsvm8 ,
can be obtained by expanding in powers ofx the following
generating equation, derived in Appendix C 2:

FIG. 5. Expansion of̂ uQu2Q* 2e2ic&5^Q* 3Qe2ic&. The linked
crosses stand for the proton, while dots on left~on the right! corre-
spond toQ (Q* ).
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k! ~k1m!!
^^uQu2kQ* meimc&&

5
^I m~2xuQu! ~Q* /uQu!meimc&

^I 0~2xuQu!&
, ~65!

whereI m is the modified Bessel function of orderm. For m
51, one recovers Eq.~61! by expanding this equation to
orderx3. For m52, one recovers Eq.~63! by expanding this
equation to orderx4.

The cumulants defined by Eq.~65! are related to the dif-
ferential flow by

(
k50

`
x2k1m

k! ~k1m!!
^^uQu2kQ* meimc&&

5
I m~2x^Q&!

I 0~2x^Q&!
vm8 1

I m~2x/AM !

I 0~2x/AM !
. ~66!

The second term corresponds to autocorrelations, and m
be included only if the proton is involved in the flow vecto
Q. In the casem51, one recovers the lowest-order formul
~59! and~60! by expanding this equation to ordersx andx3,
respectively. Form52, one recovers Eqs.~62! and ~64! by
expanding it to ordersx2 andx4, respectively.

At order x2k1m, Eq. ~66! gives an accuracy invm8 of or-
ders 1/(Nv)2k1m, as expected from the discussion of Se
IV A.

C. Statistical errors

Equation ~66! generates an infinite set of equations
measure the differential flowvm8 , since it can be expanded t
any arbitrary orderx2k1m. As in the case of integrated flow
the best choice ofk is the one that yields the best accuracy
vm8 . It results from a compromise between systematic err
stemming from nonflow correlations, which decrease wh
using higher-order cumulants, and statistical errors, wh
increase with the orderk.

The equation obtained when expanding Eq.~66! to order
x2k is of the type

^^uQu2kQ* meimc&&5bk^Q&2k1mvm8 1O~M 2k2(m/2)!,
~67!

wherebk is a numerical coefficient of order unity. Neglec
ing for the moment the error on the integrated flow^Q&, this
equation gives a systematic error onvm8

~dvm8 !syst;^Q&22k2mM 2k2(m/2). ~68!

This systematic error decreases when increasing the ordk.
Note that form51, the systematic error should be the sam
on the differential flow as on its integrated value at a giv
order. Thus we expect Eqs.~68! and ~39! to give the same
result, using Eq.~18!. In doing the comparison, one must pa
attention to the fact that the cumulant used for differen
flow ^^uQu2kQ* eic&& involves 2k12 particles while the cu-
mulant for integrated floŵ ^uQu2k&& involves only 2k par-
6-14
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ticles. Thus, comparing the two ‘‘at a given order’’ mea
that we must replace 2k in Eq. ~68! by 2k12 in Eq. ~39!.

The statistical error in the cumulant~67! is of order
1/ANevts8 , whereNevts8 is the number of events containing
proton. This leads to an error onvm8 :

~dvm8 !stat;^Q&22k2m ~Nevts8 !21/2. ~69!

If m51, we again recover the result obtained for the in
grated flow, provided we replace 2k by 2k12 in Eq. ~41!,
and Nevts8 by MNevts ~which is the total number of particle
involved in the measurement of integrated flow! in Eq. ~69!.

If ^Q&,1, the statistical error~69! increases with increas
ing k, and the optimal value ofk is that for which statistical
and systematic errors are equivalent, i.e.,

2k.2m1
ln Nevts8

ln M
. ~70!

The error in ^Q&, estimated in Sec. III D, should also b
taken into account. However, the measurement of differen
flow is done in a limited region of phase space, by definiti
so that the corresponding statistics is smaller than for
integrated flow where many more events can be used.
then safe to assume that the statistical error on^Q& gives a
negligible contribution to the error invm8 .

If m51, the previous equation shows thatk51 is more
accurate thank50 ~the latter value corresponds to the sta
dard method, neglecting correlations! only if ln Nevts8 / ln M
.2, i.e., if the statistics is large enough, typicallyNevts8
.104 for an event multiplicityM;100. For higher harmon
ics m.1, the contribution of nonflow correlations ar
smaller as explained above: thus the lowest-order methok
50 is to be chosen unless a very large number of even
available, typicallyNevts.106 for the second harmonicm
52 if M;100.

D. Relation with previous methods

Previously used methods@9,31# also study the correlation
between the event-flow vector~17! with the momentum of
the proton. The traditional justification is that, as explain
in Sec. III A, the phasenfQ of the event-flow vector~17!
gives an estimate of the orientation of the reaction pla
modulo 2p/n. Studying the correlation betweenc andfQ ,
one can reconstruct harmonicsvn8 , v2n8 , v3n8 , etc.

The standard analysis relies on a purely angular corr
tion. One measures the average^cosm(c2fQ)&. Neglecting
nonflow correlations, this quantity is the product ofvm8 and a
resolution factor that is given by an independent meas
ment @32#. Our method relies on similar averages, weigh
by powers ofuQu:

^uQu2k1mcosm~c2fQ!&5^Q* m1kQkeimc&. ~71!

In the traditional method, autocorrelations are usually
moved explicitly by specifying that the proton under study
not used in constructingQn in Eq. ~17! @2#. However, non-
flow direct correlations, which are of the same order of m
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nitude as autocorrelations, do remain, and limit the sens
ity of the analysis. With our method, autocorrelations can
removed in the same way as in the standard analysis. Bu
also remove direct correlations, thereby increasing the se
tivity of the measurements.

V. ACCEPTANCE CORRECTIONS

For simplicity, the discussion has been limited so far to
ideal detector, i.e., a detector with an acceptance that is
muthally isotropic inf. An actual detector is never perfec
either because its components are of uneven quality, or s
ply because it does not cover the wholef range. In this
section, we discuss a simple extension of the method
allows us to work withany detector. More precisely, it al
lows the detection of deviations from an isotropic sour
i.e., flow, with any detector, and the correction is impl
mented in the same way for all detectors. However, the
curacy on the measurement ofvn can be poor if the detecto
covers only a limited range inf.

The only modification lies in the definition of the cumu
lants, for which the expressions given in Secs. III B and IV
are no longer valid. These modified cumulants are define
Sec. V A for integrated flow and in Sec. V B for differentia
flow. As we shall see, the analytical expression of high
order cumulants become very lengthy, so that it is more c
venient to work directly at the level of generating function
As an illustration of our method, results of a simple Mon
Carlo simulation are given in Sec. V C.

A. Integrated flow

The key idea is that anisotropies in the detector acc
tance can be handled much in the same way as anisotro
of the emitting source. The only difference is that the r
evant coordinate system is the laboratory system in the
case, and the system associated with the reaction plane i
second case.

Let us be more specific: until now, we have been worki
in the coordinate system associated with the reaction pla
i.e., with the emitting source. In this system, we used a cl
ter expansion to define directk-particle correlations, of orde
N12k relative to the uncorrelatedk-particle distribution~Sec.
II C!. This cluster expansion allowed us to construct t
‘‘connected moments’’ of the distribution ofQ, which were
noted aŝ QkQ* l&c ~Appendix B 1!, of orderM12k2 l relative
to the corresponding moment^QkQ* l&. This decomposition
was performed for an arbitrary source, but with an ideal
tector.

Exchanging the roles played by the source and the de
tor, the same reasoning applies if we work with an isotro
source and an imperfect detector, provided we use the c
dinate system associated with the detector. We thus de
the connected moments exactly in the same way, replacinf

by the measuredf̄ ~see Sec. II A!. Similarly, the flow vector
Q will be denotedQ̄ when azimuthal angles are measured
the laboratory system, i.e., whenf j is replaced byf̄ j in the
definition ~17!.
6-15
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If the acceptance is not perfect, averages such as^einf̄& or

^exp in(f̄11f̄22f̄3)& no longer vanish. Thus, nondiagon
momentŝ Q̄kQ̄* l& with kÞ l are also nonvanishing: there
no more cancellation due to isotropy, and all terms must
kept in the cumulant expansion. At order 2, for instance,
cumulants are defined as

^^Q̄2&&[^Q̄2&2^Q̄&2,

^^uQ̄u2&&[^uQ̄u2&2^Q̄&^Q̄* &. ~72!

These cumulants are of the same magnitude as when
acceptance is perfect, i.e., of order unity, while the mome

^Q̄2& and^uQ̄u2& scale like the multiplicityM if the detector
is very bad. Note that at this order (k1 l 52), taking the
cumulant is equivalent to shifting the distribution ofQ̄ by its
average valuêQ̄&, as proposed in@9#.

Higher-order cumulants can be obtained in a similar w
as for an ideal detector. The only difference is that the s
plifications due to isotropy no longer exist. Thus one can
use expression~B5! for the generating function of the mo
ments; one must use instead the more general expres
~B2!. The cumulant̂ ^Q̄kQ̄* l&& is therefore defined by

(
k,l

z* kzl

k! l !
^^Q̄kQ̄* l&&5 ln G0~z!5 ln^ez* Q̄1zQ̄* &. ~73!

Expanding the right-hand side to orderz* kzl , one obtains the
cumulant̂ ^Q̄kQ̄* l&& as a function of the measured momen

^Q̄k8Q̄* l 8& with k8<k and l 8< l . While the moment

^Q̄kQ̄* l& is of magnitudeM (k1 l )/2 for a bad detector, the
corresponding cumulant ^^Q̄kQ̄* l&& is of order
M (k1 l )/2N12k2 l;M12(k1 l )/2.

If the acceptance is not too bad, we assume that rela
~28! between the cumulants and the integrated flow is
proximately preserved. The integrated flow can then be
tained from the cumulants to order 2, 4, 6 using Eqs.~21!,
~27!, and~29!, which we write again in the form:

^Q&25^^uQ̄u2u&&211O~1!6A112^Q&2

Nevts
, ~74a!

^Q&452^^uQ̄u4&&2
1

M
1OS 1

M D
62A114^Q&21^Q&412^Q&6

Nevts
, ~74b!

^Q&65
1

4
^^uQ̄u6&&2

1

M2 1OS 1

M2D6
3

2ANevts

, ~74c!

where, in the right-hand side of each equation, the last th
terms stand for autocorrelations, systematic errors due to
rect 2k-particle correlations, and statistical errors due to
finite number of events~see Sec. III D!, respectively. Note
that ^Q& denotes the average value ofQ in the coordinate
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system associated with the reaction plane, i.e., what we
the ‘‘integrated flow.’’ It must not be mistaken for^Q̄& @see
for instance Eq.~72!#, which denotes the average value in t
laboratory coordinate system, and vanishes if the accepta
is perfect. Note also that only the ‘‘diagonal cumulants

^^uQ̄u2k&& ~i.e., with k5 l ) are related to the flow. These d
agonal cumulants could equivalently be written as^^uQu2k&&
since Q and Q̄ differ only by a phase. Other cumulant
^^QkQ* l&& with kÞ l , are not influenced by the flow an
vanish except for statistical and systematic errors. They
therefore be used to estimate the magnitude of errors.

The modified definition of higher-order cumulants i
volves a large number of terms when the detector accepta
is nonisotropic. For instance, the fourth-order cumulant
obtained by expanding Eq.~73! to orderz2z* 2:

^^uQ̄u4&&5^uQ̄u4&22^Q̄&^Q̄Q̄* 2&22^Q̄* &^Q̄* Q̄2&

22^uQ̄u2&22^Q̄2&^Q̄* 2&18^Q̄&^Q̄* &^uQ̄u2&

12^Q̄&2^Q̄* 2&12^Q̄* &2^Q̄2&26^Q̄&2^Q̄* &2.

~75!

This equation replaces Eq.~23! for an imperfect detector. It
shows that implementing acceptance corrections order by
der can be very tedious since it involves a large numbe
terms.

It is simpler to work directly with generating functions
Although this might seem to be more complicated, it is n
unnatural since the generating functions constructed from
perimental data have the same geometrical properties a
data, in particular regarding the detector acceptance. Fo
stance, when the detector is isotropic, so is the genera
function, Eq.~B5!.

One can compute numerically the generating function
the cumulantsG0(x,y) at various points in the comple
plane, then extract numerically the coefficients at a giv
order by means of an interpolating polynomial. Let us
more specific: separating the real and imaginary parts of
flow vector, we write it as

Q̄x[
1

A(
j 51

M

wj
2

(
j 51

M

wj cos~f̄ j !,

Q̄y[
1

A(
j 51

M

wj
2

(
j 51

M

wj sin~f̄ j !. ~76!

The generating function of the cumulants, defined by E
~73!, is a real-valued function:

ln G0~x,y![ ln^e2xQ̄x12yQ̄y&, ~77!

where we have setz5x1 iy .
6-16
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According to Eq. ~73!, the cumulant to order 2k,

^^uQū2k&& is the coefficient of (zz* )k5(x21y2)k in the
power series expansion of this generating function, up t
factor 1/(k!) 2:

ln G0~x,y![(
k51

`
^^uQū2k&&

~k! !2
~x21y2!k, ~78!

where we have kept only the relevant terms in the expans
The cumulant can be obtained from the tabulated value
ln G0(x,y) using the interpolation formulas given in Appe
dix D 1.

B. Differential flow

When measuring differential flow, acceptance correctio
can be implemented in the same way as for integrated fl
Flow is extracted using the same formulas as when the
tector is perfectly isotropic in azimuth~Sec. IV!, without the
simplifications allowed by isotropy. Therefore, one must ta
as the generating function of the cumulantsCm(z) the general
expression~C4! instead of Eq.~C6!. We thus define the cu
mulants by

(
k,l

z* kzl

k! l !
^^Q̄kQ̄* leimc̄&&5Cm~z![

^ez* Q̄1zQ̄* 1 imc̄&

^ez* Q̄1zQ̄* &
,

~79!

wherec̄ denotes the azimuthal angle of the proton, measu
in the laboratory coordinate system. This equation repla
Eq. ~65! for an imperfect detector. Expanding Eq.~79! to
orderz for m51, we obtain for instance

^^Q̄* ei c̄&&[^Q̄* ei c̄&2^Q̄* &^ei c̄&. ~80!

We assume that the relation~66! between the cumulant
and the differential flow,vm8 , is approximately preserved i
the acceptance is not too bad. Fork50 andk51, flow is
then related to the cumulants by Eqs.~59! and ~60! for m
51 and by Eqs.~62! and ~64! for m52. We rewrite these
formulas

^Q&v185^^Q* eic&&1OS 1

M1/2D 6
1

ANevts8
, ~81a!

^Q&3v1852^^uQu2Q* eic&&1OS 1

M3/2D 6
1

ANevts8
,

~81b!

^Q&2v285^^Q* 2e2ic&&1OS 1

M D6
1

ANevts8
, ~81c!

^Q&4v2852
1

2
^^uQu2Q* 2e2ic&&1OS 1

M2D6
1

ANevts8
,

~81d!
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where, in the right-hand side of each equation, the sec
term represents the systematic error due to direct par
correlations, while the last term is the statistical error due
the finite number of events. Note that only the cumula
^^QkQ* leimc&& with l 5k1m are related to the flow by Eqs
~81!.

We wish to recall here that the differential flowv28 might
also have been obtained from the correlation between
azimuth of the proton and the event-flow vectorQ2. As
stated in Sec. IV B, the only modification is a multiplicatio
of all angles by 2, so that this does not change Eqs.~79! and
~82!. Therefore,v28 may be deduced from Eqs.~81a! and
~81b! by the simple substitution ofv18 and ^Q& by v28 and
^Q2&, respectively.

As in the case of integrated flow, the modified definitio
of the cumulants quickly involve a large number of term
when going to higher orders. Therefore, it is simpler in pra
tice to extract the cumulants numerically from the generat
function. For this purpose, one must tabulate numerically
real and imaginary parts ofCm(z):

Re@Cm~x,y!#5
^e2xQ̄x12yQ̄ycos~mc̄ !&

^e2xQ̄x12yQ̄y&
,

Im@Cm~x,y!#5
^e2xQ̄x12yQ̄ysin~mc̄ !&

^e2xQ̄x12yQ̄y&
. ~82!

Keeping only the terms withl 5k1m that are related to the
flow, the generating function~79! becomes

Cm~z!5 (
k50

`
^^uQu2kQ* meimc&&

k! ~k1m!!
z* kzk1m. ~83!

Interpolation methods to calculate the cumulan
^^uQu2kQ* meimc&& as a function of the tabulated values
the generating function, are explained in detail in Appen
D 2.

C. Results of a Monte Carlo simulation

We have tested our method with a simple Monte Ca
simulation. Particles have been generated randomly with
distribution

dN

df
}112v1 cosf12v2 cos~2f!. ~84!

The value of the integrated directed flow, which we tried
reconstruct, was fixed tov150.03, corresponding roughly
~up to a sign! to the value measured at SPS for pions@17#.
We have taken various values ofv2, in order to probe the
interference between both harmonics, discussed in Sec.

In a first step, we do not simulate nonflow correlatio
between the particles. In order to take into account the ef
of detector inefficiencies, we have assumed that all partic
are detected, except in a blind azimuthal sector of sizea.
The simulation has been performed withNevts5200 000
events, and a multiplicityM5200 for each event. For sim
6-17



d

es
or
r

re

a-
a
a

on

he
h
e
pe

he
r

o

fo
i
z

ca
lu

w
th

th

th
th
I
fo

ed
b

ow
ctor

em.
y,

r-

on,

ob-
by
e
g

the

alue
e

e
w

ults
and

ter-

-
-

s
f

nc-
er.
m:
eri-
tes

ts
The
i-

-
g

ruc-

ent

till

BORGHINI, DINH, AND OLLITRAULT PHYSICAL REVIEW C 63 054906
plicity, we have assumed that exactly 200 particles are
tected in each event. Fluctuations inM should not influence
the results, as explained in Sec. III A 3. With these valu
the optimal sensitivity for the integrated flow is obtained f
k52 according to Eq.~44!, i.e., by taking the fourth-orde
cumulant. We therefore reconstruct the flow using Eq.~74b!.

With the values we have chosen,^Q&5v1AM.0.42,1,
so that traditional methods might fail, as stated befo
Within our method, the statistical error onv1, calculated
with Eq. ~43!, is of the order of 0.14%. Since direct correl
tions between particles are not simulated, the only system
error comes from detector inefficiencies and the higher h
monic v2.

Results are shown in Table I. The table gives the rec
structedv1 as a function of the size of the blind anglea, and
the higher harmonicv2.

If v250, the reconstructed value is compatible with t
theoretical value within statistical errors, except for the hig
est value ofa, i.e., when the detector covers only half of th
range in azimuth. Therefore, errors due to acceptance im
fections are under good control.

The systematic error from higher harmonics, on the ot
hand, is far from negligible. The limits of applicability of ou
method, given by Eq.~A8!, are here20.43,v2,0.07. We
have checked these bounds numerically. The valuev2
50.06 is very close to the upper bound. However, the c
responding relative error onv1 is only 12% with an ideal
detector.

In a second step, we simulate nonflow correlations:
simplicity, we do this assuming that particles are emitted
pairs, both particles in a pair having exactly the same a
muthal angle. This would be the case for the two-body de
of a very fast resonance. Taking the same numerical va
as above, the standard method, corresponding to Eq.~74a!,
givesv157.7%: it fails, as expected, overestimating the flo
by more than a factor of 2. On the other hand, the four
order formula~74b!, which eliminates two-particle nonflow
correlations, givesv153.1%, in much better agreement wi
the theoretical value.

VI. SUMMARY

We have proposed in this paper a new method for
flow analysis, which is more sensitive than traditional me
ods to small anisotropies of the azimuthal distributions.
this section, we summarize the procedure that should be
lowed in practice.

The first step consists in measuring the ‘‘integrat
flow,’’ as explained in Sec. III. This corresponds to the pro

TABLE I. Results of a Monte Carlo simulation. All values ofv1

andv2 are given in percent~%!.

a50° a545° a590° a5135° a5180°

v250 3.04 3.10 3.11 2.91 2.11
v253 2.83 2.85 2.98 2.78 2.57
v256 2.65 2.82 2.78 3.55 4.24
v2523 3.30 3.22 3.23 2.99 2.57
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lem of the reaction plane determination in the standard fl
analysis. One first constructs, event by event, the flow ve

Q̄n defined by Eq.~76!, where thef̄ j are the azimuthal
angles of the particles in the laboratory coordinate syst
The weightwj is chosen as explained in Sec. III E 2; ideall
it should be taken equal to the differential flowvn(pT ,y),
i.e., proportional topT

n , and even~odd! in the rapidityy for
even~odd! n. Alternatively, one may choose the simpler ve
sion with unit weights~17!. The value ofn depends on the
system under study: up to energies of 10 GeV per nucle
one usually works withn51, i.e., with Q1 @2,18,33#. At
SPS, directed flow is so small that a better accuracy is
tained by working directly with the second harmonic, i.e.,
constructingQ2 @17#. Then, only even harmonics can b
measured. Most of this paper has been written assuminn
51. In order to generalize the results to the casen52, one
need only multiplyall azimuthal angles by 2.

Measuring the integrated flow amounts to measuring
average value of the flow vector,^Qn&, in the coordinate
system where the reaction plane is fixed. The average v
^Qn& is of ordervnAM ~it is even equal to that value if on
is working with unit weights!, wherevn is the Fourier har-
monic of ordern, andM the number of particles used in th
flow analysis. As explained in Sec. III, the integrated flo
^Qn& is obtained from the cumulant̂̂ uQnu2k&&, which re-
moves nonflow correlations up to order 2k, the standard
method corresponding to the lowest order,k51. The value
of k is chosen so as to obtain the best sensitivity. It res
from a balance between systematic and statistical errors,
depends both on the number of eventsNevts available for the
flow analysis, and on the number of particles used to de
mine the reaction plane in each event,M. The optimal order
k is then given by Eq.~44!. However, performing measure
ments with other values ofk does not cost much and pro
vides a useful comparison.

The cumulant̂ ^uQnu2k&& is a combination of the moment
of the distribution ofQ̄n , i.e., it is expressed as a function o
the measured moments^Q̄n

l Q̄n*
m&, with l<k and m<k. In

this paper, we have used the formalism of generating fu
tions to derive the corresponding formulas at arbitrary ord
As explained in Sec. V, this is not only an elegant formalis
it is also the simplest way to calculate the cumulants num
cally from experimental data. For this purpose, one tabula
the generating functionG0(x,y), defined by Eq.~77!, at vari-
ous points in the (x,y) plane. In this equation, the bracke
denote an average over the whole sample of events.
cumulant^^uQnu2k&& is then obtained by extracting numer
cally the coefficient in front of (x21y2)k in the power series
expansion of lnG0(x,y), as explained in Sec. V A. The inte
grated flow^Qn& is finally obtained from the cumulant usin
Eqs.~74!.

The value of̂ Qn& is the important parameter in the flow
analysis, since it determines the accuracy of the reconst
tion of azimuthal distributions. If̂Qn&.1, the flow can eas-
ily be studied with traditional methods, although the pres
method should give more accurate results. If^Qn&,1, on the
other hand, standard methods fail, while our method s
works.
6-18
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FIG. 6. Expansion into connected parts of the cumulant of the four-particle azimuthal correlation. Dots on the left~right! of the dashed
line representeif (e2 if).
ile

tia
i-
n

-

ce

t
its
-

ob

,

le
in
e

uc

el

he
n
n

fo
ge
t
u

it
our

ner-

ful
tiv-

rst
Vo-
ng

le
c.

n
.

ua-

on
the
y in
The second step in the flow analysis is to perform deta
measurements of the flow coefficientvm8 for a particle of
given rapidity and transverse momentum, i.e., differen
flow. The coefficientvm8 can be obtained from the compar
son of the azimuth of the particle under study with an eve
flow vector, which can be eitherQm , calculated with the
same harmonic, or aQn , calculated with a different har
monic, providedm is a multiple ofn. For instance,v28 can be
measured with respect toQ1 or Q2, as explained in@9#. We
show in Sec. IV B that it is the value of^Qn& that determines
the accuracy on the measurement ofvm8 . Therefore,n should
be chosen so that^Qn& be as large as possible. For instan
at RHIC wherev2 is expected to be much larger thanv1 , v28
should be measured withQ2 rather than withQ1, as is al-
ready the case at SPS@17#. In the text, we have assumedn
51. If one usesQ2, thenm must be replaced by 2m every-
where in our equations.

As the integrated flow, the differential flowvm8 is obtained
from a cumulant̂ ^uQu2kQ* meimc&& that eliminates nonflow
correlations up to an arbitrary order 2k1m, the standard
analysis corresponding to the casek50. Here again, the bes
choice of k is the one that leads to the smallest error:
value is given by Eq.~70!. In order to measure the cumu
lants, one first tabulates the generating function~82! at vari-
ous points in the complex plane. The cumulant is then
tained by extracting the coefficient proportional toz* kzk1m

in the power series expansion of the generating function
explained in Sec. V B. Finally, the differential flowvm8 is
related to the cumulants by Eqs.~81!.

A limitation of our method at a given order is the possib
interplay of higher harmonics in the measurement. For
stance, Eq.~13! shows that in the fourth-order cumulant, th
second harmonicv2n interferes withvn . More precisely,
uv2nu must be small compared withMvn

2 @see Eq.~14!#. This
limitation means that the method should be used with m
care when extracting the directed flow (n51) at RHIC and
LHC @34#, since it is expected to be much smaller than
liptic flow. On the other hand, in the casen52, there should
be no problem sincev2 is much larger thanv4.

While higher harmonics or statistical errors may limit t
use of the method, there is no problem with the accepta
of detectors. As a matter of fact, the required correctio
appear in a natural way in the method, at all orders, from
modification of the generating equation that is the same
all detectors. In particular, the sensitivity remains unchan
when acceptance corrections are taken into account, so
choosing the order in the expansion of the generating eq
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tion does not depend on that problem.
Most of our results have been established in the lim

where azimuthal anisotropies are weak. For this reason,
method seems to be more adapted to ultrarelativistic e
gies, i.e., at SPS energies and beyond, wherev1 andv2 are
usually less than 10%. In particular, it should be very use
in the forthcoming flow analyses at the Brookhaven Rela
istic Heavy Ion Collider.
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APPENDIX A: DETAILED STUDY OF THE
FOUR-PARTICLE AZIMUTHAL CORRELATION

In Sec. A 1, we calculate the cumulant of the four-partic
azimuthal correlation, introduced in Sec. II D. Then, in Se
A 2, we calculate the fourth-order cumulant of theQ distri-
bution, introduced in Sec. III B.

1. Cumulant of the four-particle correlation

The cumulant of the four-particle azimuthal distributio
has been defined by Eq.~12! when the source is isotropic
We setn51 for simplicity:

^^ei (f11f22f32f4)&&[^ei (f11f22f32f4)&2^ei (f12f3)&

3^ei (f22f4)&2^ei (f12f4)&

3^ei (f22f3)&. ~A1!

Here, we want to evaluate the right-hand side of this eq
tion when the source is no longer isotropic.

In order to do so, we expand the four-particle distributi
into connected parts, as explained in Sec. II C. Using
diagrammatic representation introduced there, the quantit
Eq. ~A1! can be decomposed as in Fig. 6.

The diagrams in Fig. 6 stand for

^ei (f11f22f32f4)&22^ei (f12f3)&2

52v1
412 v1

2^e2 i (f31f4)&c1^ei (f11f2)&c^e
2 i (f31f4)&c

14 v1^e
6 i (f11f22f3)&c1^ei (f11f22f32f4)&c . ~A2!
6-19
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Note that the direct two-particle correlations^ei (f12f3)&c are
automatically removed. In the isotropic case, only the c
nected part of the correlation, i.e.,̂exp@i(f11f22f3
2f4)#&c , remains in the right-hand side of Eq.~A2!.

Let us now enumerate the orders of magnitude of
different terms in the right-hand side of Eq.~A2!. As stated
above, all terms but the last vanish in the isotropic ca
indeed,^ei (f11f22f3)&c and ^e6 i (f11f2)&c are not invariant
under the transformationf j→f j1a, wherea is any angle.
Therefore, it seems reasonable to consider that these t
are proportional tov1 or v2, depending on whether a facto
e6 ia or e62ia appears under the previous transformatio
Furthermore, since we consider here connectedk-particle
correlations, they behave likeO(1/Nk21) ~see Sec. II C!.
More precisely,

^exp@ i ~f11f22f3!#&c5OS v1

N2D ,

^e6 i (f11f2)&c5OS v2

N D . ~A3!

Note that the second term in the right-hand side of Eq.~A2!
is smaller than either the first or the third terms.

Finally, the order of magnitude of the right-hand side
Eq. ~A1! is v1

41O(v2
2/N211/N3). We have neglectedv1

2/N2

since it is smaller than eitherv1
4 or 1/N3.

2. Calculation of the cumulant ŠŠzQz4
‹‹

In this section, we derive the order of magnitude of t
fourth-order cumulant of theQ distribution, defined by Eq
~23!. From the definition of the event-flow vector~17!, one
obtains

^^uQu4&&5
1

M2 (
j ,k,l ,m

~^ei (f j 1fk2f l2fm)&2^ei (f j 2f l )&

3^ei (fk2fm)&2^ei (f j 2fm)&^ei (fk2f l )&!. ~A4!

In the above sum, one may distinguish nondiagonal ter
when all four indices are different, and diagonal terms,
which at least two indices are equal.

Nondiagonal terms correspond precisely to the cumu
of the four-particle correlation. The corresponding contrib
tion, evaluated in Sec. A 1, must be multiplied by the co
binatorial factorM (M21)(M22)(M23);M4. With the
factor 1/M2 in front of the sum in Eq.~A4!, the contribution
of nondiagonal terms tô^uQu4&& is of order M2v1

41O(v2
2

11/N).
We are now going to show that diagonal terms give

contribution at most of the same order as nondiagonal ter
Let us enumerate the various diagonal terms.

~i! If j 5k5 l 5m, each term in the sum is equal to21.
This is the contribution that we call ‘‘autocorrelations.
Multiplying by a combinatorial factorM and by the factor
1/M2 in Eq. ~A4!, the corresponding contribution is exact
21/M .
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~ii ! When three indices are identical while the fourth
different, i.e., in 4M (M21) cases, the difference in Eq
~A4! reduces to2^ei (f12f2)&. Using Eq.~8!, this contribu-
tion is of order24v1

21O(1/N). Although this contribution
is a two-particle correlation, it is suppressed by the com
natorial factor:v1

2 is much smaller than the termM2v1
4 that

appears in the cumulant of the four-particle azimuthal cor
lation ~see Sec. A 1!. Therefore, this contribution will be
negligible.

~iii ! Let us consider the cases when the indices are e
two by two.

If j 5k andl 5m but j Þ l , which occursM (M21) times,
the difference is given by

^e2i (f12f3)&22^ei (f12f3)&2

5v2
21^e2i (f12f3)&c22~v1

21^ei (f12f3)&c!
2.

~A5!

The order of magnitude is thenv2
21O(1/N). Here, we have

neglected terms of orderv1
2/N and 1/N2, smaller than 1/N;

the termv1
4 is smaller by a combinatorial factor 1/M2 than

the similar contribution of nondiagonal terms. Note that t
higher harmonicv2 contributes here. We shall see below th
these higher harmonics can limit the use of our method.

The 2M (M21) cases$ j 5m and k5 l but j Þ l % or $ j
5 l andk5m but kÞ l % yield a contribution2^ei (f12f3)&2.
Its order of magnitude is22v1

41O(1/N2), negligible com-
pared to nondiagonal terms.

~iv! There are two cases when three indices are differ
If j 5 l or j 5m or k5 l or k5m, while the two remaining

indices are different, the contribution is2^ei (f12f3)&2, to be
multiplied by a combinatorial factor 4M (M21)(M22).
Thus, the order of magnitude isM @24v1

41O(1/N2)# and
this contribution is suppressed by a factor 1/M with respect
to the cumulant of the four-particle correlation.

If the two identical indices are either (j ,k) or (l ,m), the
combinatorial factor is 2M (M21)(M22), which multi-
plies a term ^exp@6i(2f12f32f4)#&22^ei(f12f3)&2. Using
Eq. ~9!, the three-particle correlation̂ei (2f12f32f4)& can be
expanded as

^ei (2f12f32f4)&5^e2if1&^e2 if3&^e2 if4&

1^ei (2f12f3)&c^e
2 if4&

1^ei (2f12f4)&c^e
2 if3&1^e2if1&

3^e2 i (f31f4)&c1^ei (2f12f32f4)&c

5v2v1
21OS v1

2

N D 1OS v2
2

N D 1OS 1

N3D .

~A6!

The second term in the difference,22^ei (f12f3)&2, gives a
contribution of22v1

41O(1/N2). Finally, since terms such
as v1

4, v1
2/N are suppressed because of the combinato

factor, the contribution in this case is 2Mv2v1
2

1O(Mv2
2/N)1O(M /N2).
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FIG. 7. Decomposition of̂Q2Q* & in connected parts, see Eq.~B1e!. Dots on the left of the dashed line represent factors ofQ while dots
on the right represent factors ofQ* . Circled subsets correspond to connected moments.
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We shall assume that the total multiplicity in the collisio
N and the numberM of particles used to calculate the flo
vector are large and of the same order of magnitude. Th
we find that the contribution of the diagonal terms
21/M1v2

212Mv1
2v21O(v2

211/M ).
All in all, when we add the contributions of diagonal an

nondiagonal terms, we obtain the following result:

^^uQu4&&52
1

M
2M2v1

412Mv1
2v21v2

21O~v2
2!1OS 1

M D .

~A7!

The first term in the right-hand side coresponds to autoc
relations, the last two terms are due to nonflow correlatio
and the three remaining terms arise from flow. One wo
like 2M2v1

4 to be the dominant flow term. However, high
harmonics, i.e.,v2, also contribute. Ifv2 is large enough, it
may even reverse the sign of the contribution of flow
^^uQu4&&. This does not happen providedv2 lies in the fol-
lowing interval:

2Mv1
2~A211!,v2,Mv1

2~A221!. ~A8!

We have checked these bounds with our Monte Carlo si
lation, see Sec. V C.

APPENDIX B: A GENERATING EQUATION FOR THE
INTEGRATED FLOW

In this appendix, we first construct the cumulants of t
distribution ofuQu, which we denotê^uQu2k&&, as a function
of the measured moments^uQu2k& ~Secs. B 1 and B 2!. Then,
we relate the cumulants to the integrated flow^Q& ~Sec. B 3!,
and show how to remove autocorrelations at all orders~Sec.
B 4!.

1. Cluster decomposition of the moments

We have shown in Sec. II C how thek-particle momen-
tum distribution can be decomposed, in a coordinate fra
where the reaction plane is fixed, into a sum of terms invo
ing lower-order distributions (k8 particles withk8,k), plus
a ‘‘connected’’ term of relative order 1/Nk21. This decom-
position also applies to the moments of the distribution of
event-flow vectorQ defined by Eq.~17!. As pointed out in
Sec. III B, moments of orderk involve k-particle azimuthal
correlations. This allows us to write a series of equatio
similar to Eqs.~6! and ~9!:

^Q&5^Q&c , ~B1a!

^Q2&5^Q&c
21^Q2&c , ~B1b!
05490
n,

r-
s,
d

u-

e

e
-

e

s

^QQ* &5^Q&c^Q* &c1^QQ* &c , ~B1c!

^Q3&5^Q&c
313^Q&c^Q

2&c1^Q3&c, ~B1d!

^Q2Q* &5^Q&c
2^Q* &c12^Q&c^QQ* &c1^Q2&c^Q* &c

1^Q2Q* &c , ~B1e!

etc. In these equations, the subscriptc denotes ‘‘connected’’
moments. The connected moment of orderk is of magnitude
M12k/2: a factorM12k comes from the fact that it involve
directk-particle correlations~see Sec. II C!, and a factorMk/2

from the scaling ofQ with the number of particles likeAM ,
see Eq.~17!.

The expansion of a given moment^QkQ* l& in connected
parts can be represented graphically by the expansion
(k1 l )-point diagram into connected diagrams. This is sim
lar to the decomposition of thek-particle distribution in Figs.
1 and 2. To be more specific, the decomposition of^QkQ* l&
is represented by drawingk dots of one type correspondin
to powers ofQ and l dots of another type corresponding
powers ofQ* . One then takes all possible partitions of th
set ofk1 l points. To each subset of points one associates
corresponding connected moment. The contribution o
given partition is the product of the contributions of ea
subset. Finally,̂ QkQ* l& is the sum of the contributions o
all partitions. Figure 7 represents, as an example, the dec
position of ^Q2Q* &.

The connected moments can be expressed as a functio
the moments by inverting Eqs.~B1! order by order. How-
ever, this procedure is very tedious. An elegant and comp
way to express moments of arbitrary order in terms of
connected parts, and to invert these relations, consists in
ing generating functions. The generating function of the m
ments is a function of the complex variablez that is defined
as

G0~z!5^ez* Q1zQ* &5(
k,l

z* kzl

k! l !
^QkQ* l&, ~B2!

wherek and l go from 0 to1`, and the brackets denote a
average over many events. It is well known in graph the
that the generating function of connected diagrams is
logarithm of the generating function of all diagrams@35#.
Therefore, the generating function of the connected mome
is the logarithm of the generating function of the mome
@20#:

(
k,l

z* kzl

k! l !
^QkQ* l&c5 ln G0~z!. ~B3!
6-21
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The normalization coefficient 1/k! l ! has been chosen suc
that ^QkQ* l&c appears with a unit coefficient in the expa
sion of ^QkQ* l&, as in Eq.~B1!. Expanding Eqs.~B2! and
~B3! to orderz* 2z, one finds, for instance,

^Q2Q* &c5^Q2Q* &2^Q2&^Q* &22^Q&^QQ* &

12^Q&2^Q* &, ~B4!

which can be checked by inverting Eqs.~B1! order by order.
Note that we are working in a coordinate system where
reaction plane correponds to thex axis, and is unknown. In
this coordinate system, the generating function~B2! is not a
measurable quantity.

2. Isotropic source

We now consider specifically an isotropic source, i.
without flow. In that case, the moment^QkQ* l& vanishes if
kÞ l . The connected partŝQkQ* l&c enjoy the same prop
erty. Therefore, in the diagrammatic expansion, one only
tains terms containing as many powers ofQ as ofQ* , i.e., as
many dots on the left as on the right. The quantity rep
sented in Fig. 7 does not satisfy this property, and there
it vanishes. A decomposition with nonvanishing terms is r
resented in Fig. 3.

Keeping only the termsk5 l , the generating function~B2!
becomes

G0~z!5 (
k50

` uzu2k

~k! !2
^uQu2k&5^I 0~2uzQu!&, ~B5!

where I 0 is the modified Bessel function of order 0. No
that now the generating functionG0 itself is isotropic, since
G0(z)5G0(zeia). The consequence is that it can be evalua
in the laboratory coordinate system rather than in the co
dinate system associated with the reaction plane: it thus
comes a measurable quantity. We define the cumul
through

(
k50

` uzu2k

~k! !2
^^uQu2k&&[ ln G0~z!5 ln^I 0~2uzQu!&. ~B6!

They coincide with the connected moments^uQu2k&c defined
in Eq. ~B3! if the source is isotropic. Note that for an isotr
pic system, the raw moment^uQu2k& is of order unity, as
noted in Sec. III B. The corresponding cumulant^^uQu2k&& is
of order M12k. Equation ~B6! corresponds to Eq.~25!,
where we have setx5uzu.

3. Flow

Let us now calculate the cumulants in the case of co
sions with flow. Neglecting for simplicity nonflow correla
tions between particles, we can write^QkQ* l&5^Q&k^Q* & l

5^Q&k1 l . The generating function~B2! thus becomes

G0~z!5e(z1z* )^Q&. ~B7!
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Now, we want to compare with the experimental value
G0(z), which is measured in the laboratory coordinate syst
where the azimuth of the reaction planefRÞ0. The gener-
ating function in this coordinate system is deduced from E
~B7! by the substitutionz→zeifR. Averaging the new ex-
pression over all possiblefR , under the assumption that th
distribution offR is uniform, one obtains

G0~z!5
1

2pE0

2p

exp@~zeifR1z* e2 ifR!#^Q& dfR

5I 0~2uzu^Q&!. ~B8!

Gathering the results obtained in Eqs.~B6! and ~B8!, we
obtain

(
k50

` uzu2k

~k! !2
^^uQu2k&&5 ln G0~z!5 ln I 0~2uzu^Q&!. ~B9!

Expanding Eq.~B9! to order uzu2k, one obtains an equatio
relating ^Q&2k to the cumulant̂ ^uQu2k&&. However, when
writing Eq. ~B7!, we have neglected direct 2k-particle cor-
relations and autocorrelations. As explained in Sec. B 1, b
give a contribution of magnitudeM12k to the cumulant
^^uQu2k&&. Thus, Eq.~B9! at orderuzu2k is valid up to a cor-
rrection of orderM12k.

4. Removing autocorrelations

Equation~B9! can be somewhat refined. In the case of aQ
vector defined with unit weights, as in Eq.~17!, autocorrela-
tions can be calculated and subtracted explicitly, which is
purpose of this section.

This calculation has already been done in Sec. III for
lowest ordersk51 andk52: we have seen in Eq.~20! that
diagonal terms give a contribution 1 in the expansion
^uQu2&. In this paper, we refer to these diagonal terms
‘‘autocorrelations.’’ Similarly, they give a contribution
21/M to the fourth-order cumulant̂̂ uQu4&&, see Eq.~27!
and Appendix A.

To calculate the contribution of autocorrelations to t
cumulant at an arbitrary order, we once again make use
the generating functionG0(z), Eq. ~B2!. Neglecting correla-
tions for simplicity, the contributions of theM particles to
G0(z) factorize, leading to

G0~z!5^exp@~2x cosf12y sinf!/AM &#f
M , ~B10!

where we have setz5x1 iy , and the brackets here denote
average overf. Assuming for simplicity that thef distribu-
tion is isotropic, one obtains

G0~z!5F I 0S 2uzu

AM
D GM

. ~B11!

This is the expression of the generating function if there
only autocorrelations~no direct correlations, no flow!. If
6-22
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FIG. 8. Decomposition of̂QQ* e2ic& in connected parts, see Eq.~C1c!. As in Fig. 7, the dot on the left~right! of the dashed line stand
for Q (Q* ). The linked crosses represent the proton, the number of crosses being chosen equal to the harmonic under study, hm52.
Circled subsets~connected diagrams! correspond to connected moments.
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there is flow, we assume that autocorrelations and flow g
additive contributions to the cumulants, which yields inste
of Eq. ~B9!

(
k50

` uzu2k

~k! !2
^^uQu2k&&5 ln G0~z!5 ln I 0~2uzu^Q&!

1M ln I 0S 2uzu

AM
D . ~B12!

This formula is equivalent to Eq.~28!, which we use in Sec
III B. It removes exactly all autocorrelations when the eve
flow vectorQ is defined with unit weights, as in Eq.~17!.

APPENDIX C: A GENERATING EQUATION FOR
DIFFERENTIAL FLOW

In this appendix, we follow closely the same procedure
in Appendix B, applied to differential flow. In Secs. C 1 an
C 2, we first construct the relevant cumulan
^^uQu2kQ* leimc&&, as a function of the measured momen
^QkQ* leimc&. Here, c denotes the azimuthal angle of th
particle under study~which we call a proton!, and m the
order of the harmonic measured for this particle. Then,
relate the cumulants to the integrated flowvm8 ~Sec. C 3!, and
show how to remove autocorrelations~Sec. C 4!.

1. Cluster decomposition

A quantity such aŝQkQ* leimc& involves correlations be
tweenk1 l 11 particles:k1 l ‘‘pions’’ ~according to the ter-
minology introduced in Sec. IV! and a proton. This quantity
can therefore be decomposed, in the coordinate sys
where the reaction plane is fixed, into a sum of terms invo
ing lower-order correlations, plus a connected term of re
tive order 1/Nk1 l . For instance, we can write

^eimc&5^eimc&c , ~C1a!

^Qeimc&5^Q&c^e
imc&c1^Qeimc&c, ~C1b!

^QQ* eimc&5^Q&c^Q* &c^e
imc&c1^QQ* &c^e

imc&c

1^Q&c^Q* eimc&c1^Q* &c^Qeimc&c

1^QQ* eimc&c , ~C1c!

where, in the third equation, the last term is of order 1/N2

relative to the first one. Such decompositions can be re
sented diagrammatically, in a way similar to the decompo
tion of ^QkQ* l& in Appendix B. We choose to represent th
05490
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proton bym crosses on the left, for reasons that will becom
clear below, when we consider the specific case of an iso
pic source. For instance, Eq.~C1c! can be represented dia
grammatically by Fig. 8.

In order to express in a compact way the relations
tween the momentŝQkQ* leimc& and the corresponding
connected momentŝQkQ* leimc&c , we introduce the fol-
lowing generating function

Gm~z!5^exp~z* Q1zQ* !eimc&5(
k,l

z* kzl

k! l !
^QkQ* leimc&.

~C2!

ExpandingGm(z) to orderz* kzl , one obtains all the moment
^QkQ* leimc&. In order to obtain the generating function o
the connected moments, we note that each diagram in F
can be written as the product of a connected diagram c
taining the crosses, i.e., the proton, times an arbitrary d
gram ~not necessarily connected! involving only pions,
which corresponds to the terms^QkQ* l& considered in Ap-
pendix B. For instance, using Eqs.~B1a! and~B1c!, one can
rewrite Eq.~C1c! as

^QQ* eimc&5^QQ* &^eimc&c1^Q&^Q* eimc&c1^Q* &

3^Qeimc&c1^QQ* eimc&c . ~C3!

Therefore, the generating function of the diagrams w
pions and protonŝexp(z*Q1zQ*1imc)& is the product of
the generating function of graphs with only pions, i.e.,G0(z)
defined in Eq.~B2!, by the generating function of connecte
graphs with pions and protons. This latter is therefore

Cm~z!5(
k,l

z* kzl

k! l !
^QkQ* leimc&c[

Gm~z!

G0~z!
5

^ez* Q1zQ* 1 imc&

^ez* Q1zQ* &
.

~C4!

As in Eq.~B3!, the normalization coefficient 1/k! l ! has been
chosen so that̂QkQ* leimc&c appears with a unit coefficien
in the expansion of̂QkQ* leimc&.

2. Isotropic source

We now consider the particular case of an isotro
source, without flow. Then the moment^QkQ* leimc& van-
ishes whenk1mÞ l , and so do the corresponding connect
parts. This is the reason why we chose to represent the
ton with m crosses: in the isotropic case, only diagrams w
the same number of points~crosses and dots! on each side of
the dashed line do not vanish.
6-23
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Expanding the generating function~C2! and keeping only
the nonvanishing terms, one finds

Gm~z!5 (
k50

` uzu2kzm

k! ~k1m!!
^uQu2kQ* meimc&

5 K I m~2uzQu!S zQ*

uzQu D
m

eimcL , ~C5!

whereI m is the modified Bessel function of orderm.
We define the cumulantŝ̂ uQu2kQ* meimc&& so that they

coincide with the connected moments in Eq.~C4! when the
source is isotropic. Using Eq.~B5!, this gives

Cm~z!5 (
k50

` uzu2kzm

k! ~k1m!!
^^uQu2kQ* meimc&&

[
K I m~2uzQu!S zQ*

uzQu D
m

eimcL
^I 0~2uzQu!&

. ~C6!

This equation is equivalent to Eq.~65!, settingx5uzu.

3. Flow

Finally, we turn to the more general case of collisio
with flow. Neglecting for simplicity nonflow correlations be
tween particles, the generating function~C2! becomes

Gm~z!5e(z1z* )^Q&vm8 . ~C7!

As explained in Sec. B 3, this quantity is measured in
laboratory coordinate system, therefore one must replaz
by zeifR and average the new expression over all poss
fR . That yields

Gm~z!5vm8 E
0

2p

exp@~zeifR1z* e2 ifR!#^Q&eimfR
dfR

2p

5I m~2uzu^Q&! S z

uzu D
m

vm8 . ~C8!

Using Eq.~B8!, the generating function of cumulants~C4!
takes the form

Cm~z!5
I m~2uzu^Q&!

I 0~2uzu^Q&! S z

uzu D
m

vm8 . ~C9!

Gathering Eqs.~C6! and ~C9!, we obtain

(
k50

` uzu2kzm

k! ~k1m!!
^^uQu2kQ* meimc&&

5Cm~z!5
I m~2uzu^Q&!

I 0~2uzu^Q&! S z

uzu D
m

vm8 . ~C10!

Expanding this equation to orderuzu2kzm, one obtains a
proportionality relation between the cumula
^^uQu2kQ* meimc&& and^Q&2k1mvm8 . Having measured inde
05490
e

le

pendently the integrated floŵQ&, one thus obtains the dif
ferential flow vm8 from the cumulant. As discussed in Se
IV, the corresponding error from nonflow correlations is
order (̂ Q&AM )2k2(m/2).

4. Removing autocorrelations

In the case when the ‘‘proton’’ is included in the con
struction of the event flow vectorQn , i.e., if c is one of the
anglesf j in Eq. ~17!, the resulting autocorrelations can b
removed at the level of the generating functionCm(z) in Eq.
~C6!: this subtraction is similar to that performed in Sec. B
for the integrated flow.

Neglecting correlations for simplicity, the generatin
function of the cumulants, defined by Eq.~C4!, becomes

Cm~z!5
^exp@~2x cosc12y sinc1 imc!/AM #&c

^exp@~2x cosc12y sinc!/AM #&c

,

~C11!

where we have setz5x1 iy , and the brackets denote a
average overc. Assuming for simplicity that thec distribu-
tion is isotropic, one obtains

Cm~z!5
I m~2uzu/AM !

I 0~2uzu/AM !
S z

uzu D
m

. ~C12!

This is the value of the generating function if there are o
autocorrelations. If there is flow in addition, we assume t
the contributions of autocorrelations and flow are additi
Equation~C10! is then replaced by

(
k50

` uzu2kzm

k! ~k1m!!
^^uQu2kQ* meimc&&

5S I m~2uzu^Q&!

I 0~2uzu^Q&!
vm8 1

I m~2uzu/AM !

I 0~2uzu/AM !
D S z

uzu D
m

.

~C13!

This equation is equivalent to Eq.~66!, settingx5uzu. This
formula removes exactly all autocorrelations when the vec
Qn is defined with unit weights.

APPENDIX D: INTERPOLATION FORMULAS

In this appendix, we give interpolation methods to calc
late numerically the cumulants from their generating fun
tions.

1. Integrated flow

The cumulants used for the measurement of the integr
flow are defined by Eq.~78!. In order to compute numeri
cally the cumulantŝ^uQ2k8u&& for k851, . . . ,k from the gen-
erating function, one can for instance tabulate the genera
function at the following points:
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Gp,q[ ln G0S r 0Ap cos
2 q p

qmax
r 0Ap sin

2 q p

qmax
D ~D1!

for p51, . . . ,k andq50, . . . ,qmax21. In this equation,r 0 is
a real number that should be chosen small enough for
series expansion to converge rapidly, typicallyr 0;0.1, and
qmax is the number of angles at which the generating funct
is evaluated, which should satisfy the conditionqmax.2k.

One then averages over the angle, thereby elimina
nonisotropic terms up to orderuzu2k:

Gp[
1

qmax
(
q50

qmax21

Gp,q . ~D2!

Then, theGp , with p51, . . . ,k, are related to the cumulant

^^uQ̄u2k8&& with k851, . . . ,k by the following linear system
of equations:

Gp5 (
k851

k

^^uQ̄u2k8&&
r 0

2k8

~k8! !2
pk8 1<p<k. ~D3!

For practical purposes, it is enough to takek53, as ex-
plained in Sec. III D. In this case, the solution of the abo
system reads

^^uQ̄u2&&5
1

r 0
2 S 3 G12

3

2
G21

1

3
G3D ,

^^uQ̄u4&&5
2

r 0
4 ~25 G114 G22 G3!,

^^uQ̄u6&&5
6

r 0
6 ~3 G123 G21G3!. ~D4!

2. Differential flow

The cumulants used for the measurement of the harm
vm8 are defined from the generating function by Eq.~83!. In
order to compute numerically the cumulan

^^uQu2k8Q* meimc&& for k850, . . . ,k, from the generating
function, we first tabulate the real and imaginary parts of
generating function, defined by Eq.~82!, at the following
points:
05490
e

n

g

e

ic

e

Xp,q[ReFCmS r 0Ap cos
2 q p

qmax
,r 0Ap sin

2 q p

qmax
D G ,

Yp.q[ImFCmS r 0Ap cos
2 q p

qmax
,r 0Ap sin

2 q p

qmax
D G ~D5!

for p51, . . . ,k11 and q50, . . . ,qmax21. The number of
anglesqmax must satisfy the conditionqmax.2(k1m), as we
see below.

One then multipliesCm(z) by z* m, takes the real part and
averages over azimuthal angles. Providedqmax is large
enough, one thus eliminates all nonisotropic terms up to
der z* kzk1m in the generating function:

Cp[
~r 0Ap!m

qmax
(
q50

qmax21 FcosS 2m qp

qmax
D Xp,q

1sinS 2m qp

qmax
D Yp,qG . ~D6!

Then, the values ofCp for p51, . . .k11 are related to the
cumulants^^uQu2k8Q* meimc&& for k850, . . . ,k by the fol-
lowing linear system of equations:

Cp5 (
k850

k

^^uQ̄u2k8Q̄* meimc̄&&
r 0

2(k81m)pk81m

k8! ~k81m!!
, 1<p<k11.

~D7!

Takingk51 is sufficient for most purposes, as shown in S
IV C. For m51, the solution of this system is

^^Q̄* ei c̄&&5
1

r 0
2 S 2 C12

1

2
C2D ,

^^uQ̄u2Q̄* ei c̄&&5
1

r 0
4 ~22 C11C2!, ~D8!

while for m52,

^^Q̄* 2e2i c̄&&5
1

r 0
4 S 4 C12

1

2
C2D ,

^^uQ̄u2Q̄* 2e2i c̄&&5
1

r 0
6 S 26 C11

3

2
C2D . ~D9!
ys.
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