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New method for measuring azimuthal distributions in nucleus-nucleus collisions

Nicolas Borghini** Phuong Mai Dint? and Jean-Yves Ollitraflt
! aboratoire de Physique Theique des Particules Efaentaires, Universit®ierre et Marie Curie, 4 place Jussieu,
F-75252 Paris cedex 05, France
2Service de Physique Ttque, CEA-Saclay, F-91191 Gif-sur-Yvette cedex, France
(Received 28 July 2000; published 23 April 2001

The methods currently used to measure azimuthal distributions of particles in heavy-ion collisions assume
that all azimuthal correlations between particles result from their correlation with the reaction plane. However,
other correlations exist, and it is safe to neglect them only if azimuthal anisotropies are much larget/than 1/
with N the total number of particles emitted in the collision. This condition is not satisfied at ultrarelativistic
energies. We propose a new method, based on a cumulant expansion of multiparticle azimuthal correlations,
which allows measurements of much smaller values of azimuthal anisotropies, dow. thh & simple to
implement and can be used to measure both integrated and differential flow. Furthermore, this method auto-
matically eliminates the major systematic errors, which are due to azimuthal asymmetries in the detector

acceptance.
DOI: 10.1103/PhysRevC.63.054906 PACS nuniber25.75.Ld, 25.75.Gz
I. INTRODUCTION correlations. Correlations due to momentum conservation

can be calculated analytically and subtracted from the mea-

In heavy-ion collisions, much work is devoted to the sured correlations, so as to isolate the correlations due to

study of the azimuthal distributions of outgoing particles,low [4,5]; short-range correlations can be measured inde-
and in particular of distributions with respect to the reactionP€ndently and subtracted in the same Way Other well-

plane. Since these distributions reflect the interactions bé,\gjllentifie(c:i r}onfllowlcqrregttiqphs_ can kr)]e destimated dthtr)ou%h a
tween particles, possible anisotropies, the so-called “flow,”Monteé Carlo simulatior{9]. This method was used by the

reveal information on the hot stages of the collision: thermal-/AA93 Collaboration to estimate direct correlations from

O .
ization, pressure gradients, time evolution, €. m —yy decays[10]. Alternatively, one can attempt to

Since the orientation of the reaction plane is not knawn eliminate nonflow correlations directly at the experimental
iori f i I P tracted f i level: effects of momentum conservation cancel if the detec-
prior, Tlow measurements are usually extracted rom tWoy, \,seq in the flow analysis is symmetric with respect to

particle azimuthal correlations. This is based on the idea th%idrapidity [5]; short-range correlations are eliminated if
azimuthal correlations between two particles are generateghe correlates two subevents separated by a gap in rapidity.
by the correlation of the azimuth of each particle with theThjs is the method recently used by the STAR Collaboration
reaction plane. The assumption that this is the only source of; the Relativistic Heavy lon CollidefRHIC) [11]. In the
two-particle azimuthal correlations, or at least that othersTAR paper, the correlations between pions of the same
sources can be neglected, dates back to the early days of tBRarge are also compared with correlations betweérand

flow [2]. It still underlies the analyses done at ultrarelativistic 7~ : correlations fromp®— 7" 7~ are thus found to be neg-
energies, both at the Brookhaven AGS and the CERN SPSjgible.

However, we have shown in recent paplggl] that other Nevertheless, nonflow correlations remain that cannot be
sources of azimuthal correlationsvhich we refer to as handled so simply. Correlations due to resonance decays, for
“nonflow” correlations) are of comparable magnitude and instance, are hard to estimathis would require a detailed
must be taken into account in the flow analysis. We havexnowledge of the collision dynamiggnd cannot be elimi-
studied in detail the well-known correlations due to globalnated at the experimental level; more importantly, the pro-
momentum conservatiofb] and those due to quantum cor- duction of minijets will contribute to azimuthal correlations
relations between identical particlg8]. We have also dis- in the experiments at higher energies, at RHIC and the Large
cussed other correlations due to resonance decays and fingladron Collider (LHC). Finally, the existence of other
state interactionf4]. sources of nonflow correlations, so far unknown, cannot be

Nonflow correlations scale with the total multiplicity excluded.
like 1/N. Thus, they become large for peripheral collisions. It The purpose of this paper is to propose a new method for
is important to take them into account, in particular, whenthe flow analysis that requires no knowledge of nonflow cor-
studying the centrality dependence of the flow, which hagelations. The general idea is to eliminate these latter using
been recently proposed as a sensitive probe of the phasgggher-order azimuthal correlations. Higher-order correla-
transition to the quark-gluon plasnié—8|. tions were previously used ii2] to show qualitatively the

Clearly, a reliable flow analysis should eliminate nonflow collectivity of flow. The study presented in this paper is more

quantitative: by means of a cumulant expansion, we are able
to extract the value of the flow from multiparticle correla-
*Present address: Service de PhysiqueoTiiee, CP225, Univer-  tions. The method we propose is more reliable, and in many
site Libre de Bruxelles, B-1050 Brussels, Belgium. respects simpler than traditional methd@s. In particular,
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detector defects, which must be considered carefully when A. Fourier coefficients
measuring anisotropies of a few percent, can be corrected in \we call “flow” the azimuthal correlations between the
a compact and elegant way. outgoing particles and the reaction plane. These are conve-

In Sec. II, we give the principle of our method as well aspiently characterized in terms of the Fourier coefficients
orders of magnitude. We show in particular that this method13] which we now define. In most of this paper, we shall
is more sensitive: it allows measurements of azimuthalvork with a coordinate system in which theaxis is the
anisotropies down to values of ordeml/instead of 1{/N impact direction, andX,z) the reaction plane, while de-
with the standard analysis, whekedenotes the total multi- notes the azimuthal angle with respect to the reaction plane.

plicity of particles emitted in the collision. In this frame, the momentum of a particle of masss
Then, we show how the method can be implemented prac- _

tically. As usual, the measurement of azimuthal distributions Px=Prcosé

is performed _in twc_) steps. First, one reconstructs app_roxi- p= py=prsing ' )

mately the orientation of the reaction plane from the direc- D= Wsinhy

tions of many emitted particles, and one estimates the statis-

tical uncertainties associated with this reconstruction. In facrwhere p; is the transverse momentum agcthe rapidity.
this first step amounts to measuring the value of the flowgince the orientation of the reaction plane is unknown in

integrated over some region of phase speeresponding  experiments, so is the azimuth. Thereforep, and p, are
typically to a detector We show in Sec. Il how this mea- ot measured directly.

surement can be done using moments of the distribution of When necessary, we shall denote Eythe azimuthal
the Q vector, which generalizes the transverse momentum . Lo

transfer introduced by Danielewicz and Odyniec in order toangle.m the laboratory f@me. Unlike, ¢ is a measurable
estimate the azimuth of the reaction pldé We also dis- duantity, related tap by ¢= ¢+ ¢r, wheredg is the un-

cuss an improved version of the subevent method introduce%r?/v‘g;s"’t‘g'r:]mhal angle of the reaction plane in the labora-

by the same authors to estimate the accuracy of the reacti& - L .
y y With these definitionsy,, can be expressed as a function

plane reconstruction. - Cetrin = 3
The second step in the flow analysis is to perform moreOf the one-particle momentum distributiditp) =dN/d"p,

detailed measurements of azimuthal distributions, for various

particles, as a function of rapidity and/or transverse momen- f e"?f(p) d°p

tum. We refer to these detailed measurements as ‘“differen- —/aind\ _

) . R vn(D)=(e"?’)= : 2
tial flow.” They are usually performed by measuring distri- f(p) o

butions with respect to the reconstructed reaction plane, and D (p)d%p

then correcting for the statistical errors in this reconstruction,
which have been estimated previously. Here, the differentialvhere the brackets denote an average value over many
flow will be extracted directly from the correlation between events, andD represents a phase-space window in the
the azimuths of the outgoing particles and fevector, as (pr,y) plane where flow is measured, typically correspond-
explained in Sec. IV. The discussion applies so far to aring to a detector. Since the particle source is symmetric with
ideal detector. A general way of implementing acceptanceespect to the reaction plane for spherical nud{sinng)
corrections adapted to our method is discussed in Sec. Wanishes an@, is real.
Finally, the correct procedure is summarized in Sec. VI. The purpose of the flow analysis is to extragtfrom the
Readers already familiar with flow analysis and willing to data. Only the first two coefficients, and v, have been
apply our method may go directly to this last section. published. They are usually called directed and elliptic flow,
respectively. There are so far very few measurements of
higher-order coefficients. The E877 experiment at the
II. CUMULANT EXPANSION OF AZIMUTHAL Brookhaven AGS reported values compatible with zero for
CORRELATIONS vy andv,4 [14]. Nonvanishing values of higher harmonics, up
to vg, were reported from preliminary analyses at the CERN
~ As the standard methods of flow analyk8§, our method  gpg1516. However, the latter results are likely to be
is based on a Fourier expansion of azimuthal dlstrlbutlongtror]g|y biased by quantum two-particle correlatipd At
[13] that is defined ip Sec. Il A. Thep, in Sec. II'B, we dis- the energies of the CERN SP, anduv, are of the order of
cuss two-particle azimuthal correlations, on which the stang ¢a\y percenf17], close to the limit of detectability with the

dard flow analysis relies, and show that they decompose im@tandard methods, hence the need for a new, more sensitive
a contribution from flow and an additional term of ordeN1/ method.

which corresponds to nonflow correlations; this latter contri-
bution limits the sensitivity of the traditional method. In Sec.
Il C, the decomposition is generalized to multiparticle corre-
lations. Finally, in Sec. Il D, we show how this decomposi-  Since the actual orientation of the reaction plane is not
tion of multiparticle correlations allows us to obtain more known experimentally, one can only measure relative azi-
sensitive measurements of flow. muthal angles between outgoing particles. The standard flow

B. Two-particle correlations
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analysis relies on the measurement of two-particle azimuthdated partf.. The latter term corresponds to azimuthal cor-
correlations, which involve the two-particle distribution relations that do not arise from flow: we call them “direct”
f(p1,po) =dN/d3p;d3p,: correlations, in opposition to the indirect correlations arising
from the correlation with the reaction plane, that is, from
in(¢1- ) 35 48 flow.
fplxpze f(P1,p2) d°p1d”p, Since the correlated two-particle distributibg(p;,p,) is
of order 1N, so is the second term in the right-hand side of

(e, o, =

f f(p1,p,) d°p1d>p, Eq. (7), which therefore reads
DX D,
()
The standard analysis neglects nonflow correlations. Under (eMP17 %)y« p,=0n(D)vn(D2)+0 %) (8)
that assumption, the two-particle momentum distribution fac-
torizes:
_ However, one must be careful with this order of magnitude.
f(P1,p2) =f(Py)f(P2). @ Strictly speaking, it holds only when momenta are averaged
Then, Eqs(2) and (3) give over a large region of phase space. In the case of the short-
range correlations due to final-state interactie@sulomb,
(ei”("’f‘ﬁz))Dlxpzzvn(Dl)vn(Dz). (5)  strong, quantumthe correlations vanish as soon as the phase

spacesD; andD, of the two particles are widely separated.
This equation means that the only azimuthal correlation beThis is the method used ifl1] to get rid of such correla-
tween two particles results from their correlation with thetions. If, on the other handp, and D, coincide, the short-
reaction plane. Measuring the left-hand sittes) of Eq.(5)  range correlations are larger than those expected from Eq.
in various phase-space windows, one can then reconstguct (8): in this equation, the total number of emitted partidies
from this equation, up to a global sign. For instance, theshould be replaced by the number of partidiésised in the
E877 Collaboration uses the correlations between three rdlow analysis, which is smaller in practice. Furthermore, in

pidity windows to extract flow from their dafd 8]. the case of correlations due to the quantiiBT) effect, the
However, nonflow correlations do exist. The two-particle nonflow correlation scales like M/only if the source radius
distribution can generally be written as R scales likeN® [3,4]. From now on, we shall omit the
subscriptD for sake of brevity. Note, however, that all the
f(p1,p2) =f(p0)f(P2) +fc(p1.P2), (6)  averages we shall consider are over a region of phase space

. thatis not necessarily the whole space, but may be restricted
where f(p;,p,) denotes the correlated part of the distribu- 5 e (br,y) acceptance of a detector. This will be espe-

tion. There are various sources of such correlations, amon&a”y important in Sec. V, when we discuss acceptance cor-
which global momentum conservation, resonance de@ays rections '

which the decay products are correlgiefinal state Cou- Equation(8) shows that nonflow correlations can be ne-

lomb, strong or quantum interactiofi3, 4] lected ifv,,>N"Y2 At SPS energies, the flow is weak and
_ Inthe coordinate system we have chosen, where the reagyis condition is not fulfilled. Indeed, we have shoyg4]
tion plane is fixedf(ps,p) is typically of order IN relative ¢ the values of flow measured by the NA49 Collaboration

to Ithe un(_:orrellateg partl,l_vx_/heNﬂi.the total r;umber.of Par- at CERN are considerably modified once nonflow correla-
ticles emitted in the collision. This order of magnitude CaNtions are taken into account.

easily be understood in the case of correlations between de-
cay products, such gs— m. A significant fraction of the
pions produced in a heavy-ion collision originate from this C. Multiparticle correlations and the cumulant expansion
decay, and the conservation of energy and momentum in the The failure of the standard analysis is due to the impossi-
decay gives rise to a large correlation between the reaCtiOBiIit to separate the correlated );rt from the uncorrglated
products. Since a large number @esons are produced in ar%/in E F36) at the level of two—particle correlations. The
a high-energy nucleus-nucleus collision, the probability thaP2™t N =a- . . P . o
) : . . main idea of this paper is to perform this separation using
two arbitrary pions originate from the sames of order 1N. ltioarticl lati he d - £ th |
This 1N scaling also holds for the correlation due to globalm.u tiparticle correlations. The decomposition of t e particle
. distribution into correlated and uncorrelated parts in 6.
momentum conservatigm,5]. b lized bi ber of icles. F
Inserting Eq.(6) in expression(3), one finds, instead of can be generalized 1o an arbitrary number of particles. For
Eq. (5) ' ' ' instance, the three-particle distribution can be decomposed
T as
(eMP179) b, =0n(Dy)vg(Dy) + (NP1 9D) . (7)
_ _ _ mzf(plap21p3):fc(pl)fc(pz)fc(pS)
The left-hand side represents the measured two-particle azi- 9P19P20P3
muthal correlation. The first term in the right-hand sides) +f £ +f £
is the contribution of flow to this correlation, while the sec- o(Pr.P2)TelPa) + Tel(P,Pa)Te(Pe)
ond term(e"(¥1~#2)) . denotes the contribution of the corre- +fo(p2,Pa) fe(pr) + fe(P1.P2,P3), (9
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1 2= 0@+ fe(pr)=f(p1),

FIG. 1. Decomposition of the two-particle distribution into un- fe(P1.p2) =f(p1,p2) = f(pP1)f(P2),
correlated and correlated components. The second term in the right-
hand side is smaller than the first by a factor of ordét.1/ fo(P1,P2,P3) = F(P1,P2,P3) — F(P1,P2) F(P3)
where fo(p,)=f(p,). The last termf.(p,.p;.ps) corre- —(p1.Pa) f(p2) — F(p2.P3) F(py)
sponds to the genuine three-particle correlation, which is of
order 1N2. + 2f(pl)f(p2)f(p3)_ (10)

To understand this order of magnitude, let us take a
simple example: the meson decays mostly into three pions.

First of all, this decay generates direct two-particle correla-, X X ) . .
y 9 P tions: it has been applied to correlations in rapidit] and

tions: the relative momentum between any two of the outgo _ ) )
ing pions is restricted by energy and momentum conserva® Bose-_Elnstem quantum co_rrelaﬂo[r?éZ,Z?}. In these_ stud-
tion. The corresponding correlation is of orderNlas les, the interest was mainly in short-range correlations. The

discussed previously in the casef = decays. It corre- use of higher-order cumulants was therefore limited by sta-

sponds to the second, third, and fourth term in the right-hanHStiCS: the probability that three or more particles are very

side of Eq.(9). As stated above, the last term in this equation,cIose in phase space is small. In this paper, we are interested

stands for the direct three-particle correlation. The correl collective flow, which by definition produces a long-range
orrelation, so that the limitation due to statistics is not so

sponding correlation between the decay products of a give . o .
P 9 y P 9 rastic. It will indeed be shown in Sec. Ill D that cumulants

w is of order unity, while the probability that three arbitrary der 6 b d d di h |
pions come from the same scales withN like 1/N?. Thus up to order 6 can be measured, depending on the event mul-
tiplicity and available statistics.

the correlation between three random pions is of ordisiF.1/ We shall deal with ltinarticl imuthal lati
More generally, the decomposition of theparticle distri- we shail geal with multiparticle azimuthal correlations,
which generalize the two-particle azimuthal correlations in

bution yields a correlated parte(py,....p) of order o "o = 4o e Gecomposed in the same way. Referring

LN*"". Generalizing the above discussion mrm de- to the diagrammatic representation in Figs. 1 and 2, we shall
cay, the decay of a cluster &fparticles will generate corre- 9 natic rep gs. 1 ’
name the contribution df(p4, . . . ,px) to an azimuthal cor-

i ) wi '<k. i . . - ; .
lationsfe(py, . . . Pir) With k”<Kk. For instance, momentum relation, i.e., the genuin&-particle correlation, the “con-

conservation, which is an effect involving all particles nected part” of the correlation or, equivalently, the “direct”
emitted in a collision, produces direkiparticle correlations ap ) + €4 y:
k-particle correlation.

for arbitraryk.
Such a decomposition is similar to the cluster expansion

that is well known in the theory of imperfect gadd®]. In D. Measuring flow with multiparticle azimuthal correlations

the language of probability theory, this is known as the cu-  Qur method, which we now explain, allows the detection

mulant expansiof20]. Equations(6) and (9) can be repre-  of small deviations from an isotropic distribution. If the

sented diagrammatically by Figs. 1 and 2. In these figuressoyrce is isotropic, there is no flow, and the orientation of the

correlated distribution$ are represented by enclosed sets ofigaction plane does not influence the particle distribution.

The cumulant expansion has been used previously in
high-energy physics to characterize multiparticle correla-

points, i.e., they correspond to connected diagrams. We can therefore consider that the reaction plane has a fixed
More generally, in order to decompose theoint func-  djrection in the laboratory coordinate system, so that the cu-

tion f(py, ... .p), one first takes all possible partitions of mulant expansion can be performed in that frame: in other

the set of pointsipy, .. '.’pk}' To each subsgt of points erms, we replace by the measured azimuthal ang_ieOne

{Pi,, - - Pi}, one associates the corresponding correlate(,%ihen measures thkth cumulant of the multiparticle azi-

function fc(p; , ... .pi ). The contribution of a given parti- muthal correlation, which is of ordéi* ~* if the distribution

tion is the product of the contributions of each subset. Fiis isotropic. Flow will appear as a deviation from this ex-

nally, f(ps1, . ...px) is the sum of the contributions of all pected behavior.

partitions. Let us be more explicit. We are dealing with azimuthal

The equations expressing tkepoint functionsf in terms  correlations. When the source is isotropic, that is, if the
of the correlated functionf. can be inverted order by order, k-particle distribution remains unchanged when all azimuthal
so as to isolate the term of smallest magnitude: angles are shifted by the same quantitythe flow coeffi-

2 O @ A ® @ O
= + + + +
3 ® @
FIG. 2. Decomposition of the three-particle distribution. The last term in the right-hand side is of dideneltive to the first, while

the three remaining terms are of relative ordeM.1/
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cients(2) obviously vanish. Therefore, the two-particle azi- the left-hand side of Eq(11), does not vanish. However,
muthal correlation(7) reduces to its connected part, of order there is nodirect four-particle correlation between the four
1/N. As a further consequence of isotropy, averages likeoutgoing pions, so that the cumulafit2) vanishes. More
(eN(#1t42=¢3)y vanish: only X-particle azimuthal correla- generally, if particles are produced in clusterskgfarticles,
tions involvingk powers ofe'"? andk powers ofe "¢ are  there are measured azimuthal correlations to all orders, but
nonvanishing. For instance, the four-particle correlationthe cumulants to orded’ >k vanish.

(expin(py+ do— 3~ ¢bs)) is @ priori nonvanishing. Introduc- Let us now consider small deviations from isotropy, i.e.,
ing the cumulant expansion defined in Sec. Il C, this correweak flow. The two-particle azimuthal correlation receives a
lation can be decomposed into contributionvﬁ according to Eq(7). For similar reasons, the
_ four-particle correlation gets a contributimﬁ. The cumu-
(exdin(¢s1+ do— da= da)]) lant defined by Eq(12) thus becomes$see Appendix AL
— (eN(#1793)) (in(d2~ )} ,
. . . 1 v
+(eN(P17¢a)y (eiN(P2~da)) ((exdin(¢1+ dr— 3~ ba)1))=—vp+0 NG + N_zn ,
+(exin(d1+ do— b3~ ba)l)ec (13
=(e"(¢1793))(giN(P2~ ¢a)) where the coefficient 1 in front of v} is found by replacing

each factore"? or e "% in the left-hand side with its aver-

age value,,. The floww, can thus be obtained, up to a sign,
+(exin(dr+ do—da— ). (1D from the measured two- and four-particle azimuthal correla-

tions, with a better accuracy than when using only two-

Note that most terms in the cumulant expansion disappear d@article correlations, as we shall see shortly.

a consequence of isotropy. The first two terms in the right- It should be noticed that the cumulant involves a contri-

hand side of Eq(11) are products of direct two-particle cor- bution from the higher-order harmonicn? of magnitude

relations, and are therefore of ordeN#/ while the last term, v3,/N2. This contribution does not interfere with the mea-

which corresponds to the direct four-particle correlation, issurement ob,, provided the following condition is satisfied:

much smaller, of order N°. However, in the case of short- 5

range correlations, it may rather be of ordeM?/ whereM |[von| <Nvg. (14

is the number of particles used in the flow analysis, for the_. _ .
same reasons as discussed in Sec. || B Sincev,, is measurable only i#,,>1/N, as we shall see later

We name this latter term the “cumulant” to order 4 and in this section, the interference with the harmonit &curs

denote it by((exin(¢y+ dy— da— da)])). Using Eq.(11), it only if |v,,|>1]v,|. In practice, the only situation where this

can be expressed as a function of the measured two- afgight be & problem is when measuring the directed flqw
four-particle azimuthal correlations: at ultrarelativistic energies, where elliptic flawy is expected

to be larger thaw . On the other hand, this interference will

+ <ei“(¢1* ¢4)><ein(¢27¢3)>

(exdin(¢i+ do— d3—da)])) not endanger the measurementwgf, sincev, should be
) much smaller.
=(exdin(¢1+ ¢o— d3— d4)]) In the following, we shall always assume that condition
_<ein(¢1f¢3)><ein(¢27¢4)> (14) is fulfilled. Then, using Eq(13), it becomes possible to
measure the flow,, as soon as it is much larger thai 4,
—(eN(#17da)) (giN(d2~ ¢3)) (12 The sensitivity is better than with the traditional methods

using two-particle correlations which, as we have seen, re-
The reason why we introduce a new notation here is that thguire v ,>N~*2
cumulant to order 4 will always be defined by E2) in this Similarly, using X-particle azimuthal correlations and
paper, even when the source is not isotropic. Now, if theaking the cumulant, i.e., isolating the connected pattich
source is not isotropic, the decomposition of the four-particleamounts to getting rid of nonflow correlations of orders less
azimuthal correlation involves many terms which have beenthan ), one obtains a quantity that is of magnitudé 2
omitted in Eq.(11) (see Appendix A1, so that the cumulant for an isotropic source. Flow gives a contribution of magni-
((exdin(¢y+ ¢~ ¢3—¢4)])) no longer corresponds to the tyde v2%. The contribution of higher-order harmonies,,

connected partexfin(¢y+ ¢o— ds— Pa)])c- can be neglected as soon as
In the isotropic case, the cumulatitexdin(¢p.+ ¢o— ps
—¢4)])) involves only direct four-particle correlations: the |ukn|<Nk‘1vﬁ. (15

two-particle correlations have been eliminated in the subtrac-

tion. In order to illustrate this statement, let us consider twdf |v,|>1/N, this is not a problem, unle$s,,|>|v,|. This is
decaysp— m, and “turn off” all other sources of azi- unlikely to occur, since one expeats to decrease rapidly
muthal correlations. We label 1 and 2 the pions emitted bywith n. Neglecting higher-order harmonics, there remains the
the first resonance, 3 and 4 the pions emitted by the secondontributions of flow, of magnitudes?*, and of direct
There are correlations between, and m,, or betweenr;  2k-particle correlations, of magnitud®l’~2%. Therefore,

and m,, so that the measured four-particle correlation, i.e.2k-particle azimuthal correlations allow measurements,of
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if it is larger thanN~1"Y% Sincek is arbitrarily large, one
can ideally measure, down to values of order W, instead

of 1/\/N with the standard methods. A necessary condition

for the flow analysis is therefore

(16)

PHYSICAL REVIEW C 63 054906

where¢; denotes the azimuthal angle of tjté particle with
respect to the reaction plane.

For simplicity, we have associated a unit weight with each
particle in Eq.(17). The generalization of our results to ar-
bitrary weights is straightforward and will be given in Sec.
Il E. The Q, vector generalizes to arbitrary harmonics the
transverse momentum transfer introduced by Danielewicz
and Odynied 2], which corresponds ta=1 and the trans-
verse sphericity tensor introduced [i84,25, which corre-

which will be assumed throughout this paper. As we shalkponds to the case=2.

see in Sec. lll D, the sensitivity is in fact limited experimen-

In practice, the number of particléd used for the flow

tally by sta}tistical errors due to the fi_nite _numbgr of events.analysis is not equal to the total multiplicity of particles
In practice, the cumulants of multiparticle azimuthal cor- produced in the collision, since all particles are not detected.
relations will be extracted from moments of the distribution However, M should be taken as large as possible. In this

of the Q,, vector introduced in next section.

IIl. INTEGRATED FLOW

paper, we shall assume thdtandN are of the same order of
magnitude. The factor UM in front of Eq.(17), which does
not appear in previous definitions of the flow vectarl3],
will be explained in Sec. IIl A 3.

In this section, we show how it is possible to measure the

value ofv,, integrated over a phase-space region. This mea-
surement will serve as a reference when we perform more
detailed measurements of azimuthal anisotropies in Sec. |\</e

We first define in Sec. lll A a simple version of thg,

vector, or event-flow vector, which is used in the standar
flow analysis to estimate the orientation of the reaction

2. Flow versus nonflow contributions

A nonvanishing value for the average value of the flow
ctor{Q) signals collective flow. Indeed, using Eq®)

dand(17), it is related to the Fourier coefficient,=(e'"¢) by

(Qn)= \/Mvn . (18

plane. We then show, in Sec. Il B, that the integrated value

of the flow can be obtained from the moments of Qg
distribution: eliminating nonflow correlations up to ordet 2

Note that(Q,,) is real, as iw,, due to the symmetry with
respect to the reaction plane.

by means of a cumulant expansion, we obtain an accuracy on As stated before, the purpose of the flow analysis is to

the integrated,, of magnitudeN 1" ¥ petter than the ac-
curacy of standard methods K>1. Instead of using a

measure,,, i.e.,(Q,). This is not a trivial task because the
azimuth of the reaction plane is unknown, so that the phase

single-event vecto®,,, one can do a similar analysis using of Q,, is unknown. The only measurable quantity@,|, the

subeventgSec. Il O. Since the order R of the calculation

length ofQ,,. Its squareQ ,Q; , whereQ} denotes the com-

is arbitrary, we obtain with either method an infinite set of p|ex ConjugatE, On|y depends on relative azimuthal ang|es:

equations to determine,. The order X, which should be

chosen when analyzing experimental data, depends on the

number of events availabl&ec. Il D). More general forms

of the Q,, vector, which allow an optimal flow analysis, are

M
1 .
QuQr =11 jél ein(dj =40 (19)

discussed in Sec. Il E. Finally, in Sec. Ill F, we recover, as g, gec. ||| B, we shall see that the flow can be deduced from
limiting case, the results obtained in the limit of large mul- {1a moments of the distribution 00,2, i.e., from the aver-

tiplicity where the distribution of),, is Gaussian13,24]. In

age valueg|Q,|?¥), wherek is a positive integer. To illus-

the whole section, we assume the analysis is performed usinghie how flow enters these expressions, we discuss here the
a perfectly isotropic detector; corrections to this ideal casggcond-order momen{|Q,|2). Averaging Eq.(19) over
nl%). :

will be dealt with in Sec. V.

A. The Q vector
1. Definition

Consider a collision in whichVl particles are detected
with azimuthal anglesp,, ... ,¢y . In order to detect pos-
sible anisotropies of theé distribution, it is natural to con-
struct an observable that involves all tig, i.e., a global
quantity. For the study of theth harmonic, one uses timh
transverse event-flow vect®], which we write as a com-
plex number

M
1 2 elﬂlf)],

\/_Mj . 17

Qn=

many events and using E(¥), one obtains

<|Qn|2>=$[M+M(M—1)(vﬁ+<e‘”<¢i‘¢k>>c>].
(20

The first term corresponds to the diagonal tejm, i.e., to
“autocorrelations.” If there are no azimuthal correlations
(neither flow nor nonflow only this term remains and the
average value ofQ,|? is exactly 1. The second term corre-
sponds toj #Kk, i.e., to the two-particle azimuthal correla-
tions discussed in Sec. Il B. Sin¢e"(¢1~#2)) s at most of
order 1M, direct correlations give a contribution that as
priori of the same order of magnitude as autocorrelations,
although it may be smaller in practice. Equati(0) can
thus be written as
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1 B. Cumulants of the distribution of |Q,|?
(|Qu®=M|v3+ =+0 : .
M For the sake of brevity, we now drop the subscrignd
(21) setn=1 until the end of this paper, unless otherwise stated.
All our results can be easily generalized to the study of
higher-order’s by multiplying all azimuthal angles bg.
The moments of th¢Q|? distribution involve the multi-
rticle azimuthal correlations discussed in Sec. Il D. While
{|Q|?) involves two-particle azimuthal correlations, as seen
in Eq. (19), the higher moment§ Q|%¢) involve 2k-particle
correlations. For instance, we have

1) B 5
v =(Q) +1+0(1).

As expected from the discussion of Sec. Il B, sifp@,|?)
involves two-particle correlations, flow measurements baseBa
on(|Q,|?) are reliable only ifv ,|>1//M. Smaller values of
flow can be obtained using higher moments of the distribu
tion of |Q,|?, as explained in Sec. IIl B.

If flow is strong enough, the event-flow vector can be
used to estimate the orientation of the reaction plane. Indeed, 1 _
if |vy>1/\JM, Egs. (18) and (21) show thatQ,=(Q,) <|Q|4>:W _ %:m (exdi(¢j+ d—di—odm)]). (22
=\Mu,. Then the phase o, is approximately 0 ifv, bk

>0 and if v,<0. Experimentally, one definéQ, as in  rpege higher-order azimuthal correlations can be used to

Eq. (17), with the azimuthal angleg; measured with respect  g|iminate nonflow correlations order by order, as explained
to a fixed Q|reptlon in the Iaboraton(yath_er than the reaction ., sec. 11 D. This will be achieved by taking the cumulants
plane, which is unknown Then the azimuthal angle of the ¢ e gistribution oflQ|?, which we shall soon define.
reaction planepgr can be estimated from the phase@f,
which_ we write Ngg: ¢r=dq (Pr=cdg+ m/n) modulo 1. Isotropic source
2m/nif v,>0 (v,<0). ) . ) .

Following the procedure outlined in Sec. Il D, we first
consider an isotropic sourcéno flow). Using Eg. (21),
{|Q|?) is then of order unity, and so are the higher-order

Let us now explain the factor {M in the definition(17). moments(|Q|?¥). However, by analogy with the cumulant
This factor was introduced independently by A. Poskanzedecomposition of multiparticle distributions introduced in
and S. Voloshin, and if26]. It is important when using Sec. Il C, we can construct specific combinations of the mo-
events with different multiplicitiesV in the flow analysis, ments, namely, the cumulants of t{@ distribution, which
i.e., events with different centralities. This is the case in pracare much smaller than unity: the cumulgaitQ|)) to order
tice: one takes all events in a given centrality interval ink, built with the (|Q|%) where j<k, is of magnitude
order to increase the available statistics. 1UMKL,

If there is no flow, Eq.(21) shows that|Q,|?) is inde- As an illustration, let us construct the fourth-order cumu-
pendent oM since nonflow correlations scale likeM./ This  lant{{|Q|*)). If the multiplicity M is large, most of the terms
can be understood simply: the sum in Efj7) is a random in Eq.(22) are nondiagonal, i.e., they correspond to values of
walk of M unit steps, therefore it has a length of ord@,  j, k, I, andm all different. Then, using the cumulant of the
which cancels out with the factorm in front. Flow, on  four-particle azimuthal correlation defined by E42) and
the other hand, depends strongly on centralttyanishes for ~ summing over {,k,I,m), it is natural to defind(|Q|*)) as
central and very peripheral collisionsccording to Eq(21),

3. Varying the centrality

it gives a positive contribution t¢|Q,|?) that strongly de- QMY =(|QI" —2(|Q|?)2. (23)
pends orM. This allows one to disentangle flow and nonflow
effects. The order of magnitude of(|Q|*)) is easy to derive: each

Note that flow can be detected by studying the variationterm of type(12) is of order 1M?3 as discussed in Sec. |l D;
of (|Qn|?) with centrality. This is the method used [B7]:  there areM* such terms in the suif22); taking into account
one expect¢|Q,|?) to be minimum for the most peripheral the factor 1M? in front of the sum((|Q|*)) is finally of
collisions where the density of particles is too small for col-order 1M. As intended, two-particle nonflow correlations,
lective behavior to set in, and for central collisions whege  which are of order unity, have been eliminated in the sub-
also vanishes from azimuthal symmetry. However, such araction (23).
method does not allow an accurate measurement of flow: itis A more careful analysis must take into account diagonal
impossible to select trué.e., with b=0) central collisions terms for which two(or more indices amongj(k,I,m) are
experimentally, and there may still be some flow up to largeequal. This analysis is presented in Appendix A 2, where we
impact parameters, as suggested by hydrodynamic calculghow that diagonal terms are also of ordevlithey give a
tions in the case of elliptic flod24], and by recent measure- contribution of the same order of magnitude as direct four-
ments[28]. particle correlations. In the following, we shall assume that

The method presented in this paper is more powerful irthis property, namely, that the contribution of diagonal terms
the sense that it allows flow measurements for a given ceris at most of the magnitude of the contribution of nondiago-
trality. The error on the centrality selectigdue to the fact nal terms, also holds for higher-order moments.
that one always selects events within a finite range of impact Among these diagonal terms are the autocorrelations al-
parametersis compensated by the factoryM in the defi-  ready encountered in the expansion @f? [see the discus-
nition of Q,,. sion below Eq.(20)], which we define as the terms that re-
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FIG. 3. Decomposition of| Q|*)=(QQQ* Q*). In the right-hand side, the first term is of order unity while the second term is of order
1/M.

main in the absence of flow and direct correlations. A 2. Contribution of flow

straightforward calculatiorisee Appendix A2 shows that Let us now consider small deviations from isotropy. As

their contribution to the cumularf(|Q|*)) is —1/M. As in explained in Sec. Il D, these deviations will contribute to the

the case of the second-order moméi@|?) discussed pre- cumulants({|Q|?¢)) defined above.

viously, autocorrelations ara priori of the same order o The contribution of flow to the fourth-order cumulant

magn.itude_ as other nonflow correllations. As we shall se%<|Q|4>> is calculated in detail in Appendix A. It is shown in

later in this section, they can easily be calculated and "€harticular that the diagonal terms in E@2) are at most of

moved order by order. oK . the same magnitude as nondiagonal terms, as in the case of
Arbitrary moments(|Q|*) can be decomposed into cuU- ap jsotropic source. As in Sec. Il D, higher-order harmonics

mulants, which can then be isolated in a similar way. Thisqan pe neglected as soon as conditipd) is fulfilled. One
decomposition can be represented in terms of diagrams, lik@ on obtains

the decomposition of the multiparticle distribution in Sec.

[I D. This is explained in detail in Appendix B. For example, 1

the decomposition of|Q|*) is displayed in Fig. 3. In these {QI")y=—(Q)*~ —+0

diagrams, each dot on the lgfin the righj of the dashed M

line represents a power @ (Q*), and correlated parts,

which correspond to direct correlations, are circled: the equawhere the term-1/M is the contribution of autocorrelations,

tion displayed in Fig. 3 stands for i.e., the casg =k=I=m. From Eqgs.(18) and(27), one can
measure vallluzes of the integrated flondown toM ~¥4, in-
stead ofM ~*“ with traditional methods.

(QI=2((IQI)*+(IQl*)- (24) Increased sensitivity can be attained using higher-order

cumulants. As shown in Appendix B3, the cumulants de-

Since({|Q|?))=(|Q|?), one recovers Eq23). More gener- fined by Eq.(25 are related to the flow by the following
ally, to decomposé€|Q|¢), one drawsk dots on each side of generating equation:

the dashed line. The diagrams combine all possible subsets

of the dots on the left with subsets of the dots on the right  *  y2k
containing the same number of elements. The latter condition E >
is due to the fact that the average valud @Q* ™) vanishes k=0 (k!)
whenl#m, as a consequence of isotropy.

In order to invert these relations, and to express the cu- . . . « _ _
mulants as a function of the measured moments, the simple§¢Panding th|52kequa£|on up to Qrdg? » and isolating the
way consists in using the formalism of generating functions Coefficient ofx*/(k!)*, one obgiuns a relation with on the
recalled in Appendix B 2. There it is shown that the cumulanteft-hand side the cumulaxi¢|Q|*)), while the first term on
((|Q|%4) is obtained from the expansion in power serie of the right-hand side is the contribution of flow, and the second

of the following generating equation, and then the identifica€m corresponds to aultgf(:orrelatior!s. This identity holds
tion of the coefficients ok2«: within an error of ordeiM due to direct R-particle cor-

relations. Using Eq(18), it therefore allows measurements
of v within O(M 1Y% as expected from the discussion of

(27)

1
M )

(IQI*))=In15(2x(Q)+M In Io(ﬁ).
VM
(28)

oox oox Sec. Il D. Expanding Eq(28) to orderx*, one recovers Eq.
gl (k!)z<<|Q|2k>>=|”( k§=:O (k!)2<|Q|2k>) (27). To orderx®, one obtains
=In{15(2x|Q))), (25

Q) =4@)"+ rz+0[ gz (@9

wherel is the modified Bessel function of order 0. Expand-

ing this equation to order*, one recovers Eq23); to order ~ which extends the limit of detectability down to~M 56,

x8, one obtains the sixth-order cumulant Since Egs.(25) and (28) can be expanded to any order,
one obtains an infinite set of equations to determine the same

B\ 6 4 P 03 quantity (Q). The best choice for the ordérwill be dis-
(IR =dQIM - odQI*NIQP) +1K[QI%" (26 cussed below in Sec. Il D. Before we come to this point, we

shall discuss an alternative method to measg@e, the so-

which is of the order of M? for an isotropic source. called “subevent” method.
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C. Subevents 2. Limitations of the standard method

The standard flow analysis, instead of studying the auto- In order to extract the azimuthal correlation between the
correlation of the event-flow vector as in Sec. Ill B, dealssubevents, the simplest possibility is to form the product
with “subevents”: the set of detected particles is divided
randomly into two subsets | and Il of equal multiplicities,
and the two correspondingubevent flow vectorsQ, and
Q, are constructed. Then one studies the azimuthal correla-
tion betweerQ, andQ,, [2,9]. This is usually done under the
assumption that the only azimuthal correlation between th
subevents is due to flow. Then, from the flow of two equiva-

> ei(d’i_a’k):|Q|Q|||ei(\y'_w")- (34)

. 1
QIQII_\/W T

éJsing Eq.(7), the average over many events gives

lent subevents, one can deduce the flow of the whole event

by a simple multiplication by a factor af2, as will soon be
explained.

A nice feature of that method is that, since the subevent
have no particle in common, autocorrelations are automati-

(QIQE)= VMM (v2+ (el 90y, ).

This equation is analogous to E@O0), with the important
ifference that autocorrelatiofshe first term in the right-
and side of Eq(20)] no longer appear. As a consequence,

(39

cally removed: only correlations due to flow and direct cor-{QiQii) vanishes if there are no azimuthal correlations be-
relations remain. Therefore, one may prefer to work withtween particles.

subevents when direct correlations are sni@lthough they

However, two-particle nonflow correlations do remain.

are, generally, of the same order of magnitude as autocorrédince they are of order i} Eq. (35) can be written as

lations.

In this section, we shall improve the standard subevent
method, in the spirit of Sec. Ill B: we eliminate nonflow

v2+0 . (36)

(QQIH=VM M,

0

azimuthal correlations order by order by means of a cumu-

lant expansion of the distribution d®, and Q,, thereby
increasing the sensitivity of the method.
1. Definitions

Consider two separate subevents of multiplidity and
M, , respectively(in practice, one choosedl,=M,). We
can construct the subevent flow vect@g, andQ,,, as fol-
lows:

M
1 b .
Q== J_Zl enti=[Qyle™, (30)
" £

1 My
Qun= &

As in Sec. Il B, we seh=1 and drop the subscriptin Q,,
andQy;,; generalization to highenm is straightforward.
By analogy with Eq(18), we write

<Q|>:\/V|U|: (Qu)= \/M_nvnl

end=|Q, e, (31)

(32

One recognizes in the right-hand side of this equation the
flow and nonflow contributions to two-particle azimuthal
correlations, as in Eq(8). The only difference lies in the
global multiplicative factor/M M. In particular, summing
over many particles does not decrease the relative weight of
nonflow correlations, as might be believed: they add up in
the same way as the correlations due to flow.

3. Beyond the standard method

Now, following the procedure outlined in Sec. Il B, it is

possible to eliminate nonflow correlations betwegnand

Q, order by order. This is done by means of a cumulant
expansion, which is a trivial generalization of the one pre-
sented previously. The equation to an arbitrary orderns?
obtained by replacing, in Eqg25) and (28), |Q|? with
QQ;, and(Q)? with (Q,){Q,)). For example, Eq$23) and
(27) become

—0v%+0 , (37

1
(QFQIY)—2(QQI)*=MM, ﬁg)

which allows measurements of the flow whenis much
larger than IN%“* the sensitivity is better than that with Eq.

: .
wherev, andv, denote the values of, associated with each (36), whereu is to be compared with W' The term
subevent. Hereafter, we shall assume that the two subeventsl/M in Ed. (27), which reflects autocorrelations, is auto-
are equivalent, i.e.p,=v,=v, as is the case if they are matically removed in Eq(37).

chosen randomly.
Therefore, if M|=M; =M/2, the value of(Q) for the
whole event is related to the value for one subev@@t), by
(Q="Mv=12(Q). (33

The purpose here is to measyr@,), which is equivalent to
measuringQ).

To make a long story short, the same techniques apply to
subevents as to the whole event. The only interest of subev-
ents is that they remove autocorrelations. However, they do
not remove direct nonflow correlations, which may be of the
same order of magnitude. Furthermore, autocorrelations can
also be subtracted systematically when working with the
whole event, as shown in Sec. Il B. Another drawback of
the subevent method is that each subevent contains at most
half of the total multiplicity, resulting in increased errors. As
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a conclusion, the subevent method seems to be obsolete 1 1+4(Q)Y2+(Q)Y*+2(Q)°
when working with cumulants. Q) star= 2(Q)° N (43
evts
D. Statistical errors One sees in these two formulas that for very strong flow

The cumulant expansion allows in principle the measure{(Q)>1), the statistical errob(Q) is of order 1A/Neys
ment ofv down to values of M by going to large orderk,  independent of Q). This remains true for higher-order cu-
as explained in Sec. Il D. In practice, however, since thenulants. Note, moreover, that both formulas give &q4) in
number of eventdl,, used in the analysis is finite, the sen- the limit of small(Q).
sitivity is limited by statistical errors. In this section, we  Since the systematic error decreases Witnd the statis-
determine, as a function ofl andN,.,s, which order of the tical error increases witk, the best accuracy is achieved for
cumulant expansion should be chosen so as to obtain tHbe value ofk such that both are of the same order of mag-
most accurate value of the integrated flow. nitude. Using Eqs(39) and (41), one thus obtains the opti-

First, there is a “systematic” error, which is the error due mal value of the order 2
to nonflow correlations. Expanding E(®8) to order X, we

obtain an equation relating the measured cumuléd@|<)) k=24 I Neyts 44
and the integrated floyQ), which is of the type B InM - (44
<<|Q|2k>>:ak<Q>2k+O(Ml_k)' (38) Since, in practiceM is at least of the order of a hundred at

ultrarelativistic energies, the fourth-order cumulark=24
[i.e., Eq.(27)] gives the best accuracy if the number of
events lies in the range 1€ N < 10°. Higher order cumu-

whereay is a numerical coefficient of order unity, and the
last term is the systematic error. The resulting erro(@h is

therefore lants may be useful if a large statistics is available and/or if
8(Qeysr(QYT MK, (39) th(illmultiplicity M is low, as for instance in a peripheral
collision.
The systematic error thus decreases with increalsirgince The flow is detectable only i{Q) is larger than both
(Q)YM=Muv,>1, as assumed in EG16). statistical and systematic errors. Taking for instamgs

Let us now discuss the statistical error. When averaging & 10> and M =300, statistical and systematic errors are of
quantity over a large number of everits,, the statistical ~the same order. One then obtains, using @@), that flow
error is generally of relative order Ny Since the mo- can be seen ifQ)>0.3. Using Eq(18), v can be measured
ments of the distribution ofQ|2 are of order unity, the ab- down to 1.6% using the fourth-order cumulantvH 3%, a
solute statistical error on the moments is of ordeyNg,,  tyPical value at the CERN SPS, the®)=0.5. Using Eq.
The same error applies to the cumulants, which are con@3). the typical error is the®(Q)=0.02, i.e.,6v=0.1%.
structed from the moments. If there is no flow, a more accu-

rate calculation shows that the statistical error on the cumu- E. Weighted Q vectors
lant is The vectorQ, has been defined in Eq17) with unit
Kl weights. A more general definition is
5(( | Q| 2k>>stat: Nt (40) 1 M
Nevts ing;
Qn=—F—= 2 w;e'" i, (45
If the flow is weak, that is if Q)< 1, this formula still holds ) =1
approximately. Using Eq(38), one thus derives the statisti- Zl Wi
cal error on the integrated flow =
5(Q)g t~<Q>1—sz—1/2 (41) where the weightv; is an arbitrary function opy, y, the
stal evts -

particle type, and the order of the harmonic under study. As

Since we have assumed tH@)<1, the statistical error in- & consequence, we shall restore the inder this subsec-

creases wittk, unlike the systematic error. tion.
It is very likely that this property still holds in the more

general case whef@Q) is not much smaller than unity. How-

ever, we have not been able to derive a general formula for The method discussed in Sec. Il B also applies to this

the statistical error for arbitraryQ) andk. We only have more general definition. There are only two slight differ-

formulas for the lowest-order cumulants. Using the cumulangnces. The first is that the average valueQgf, which we

1. Flow analysis with arbitrary weights

to order 2 k=1), have denoted byQ,), is no longer related to the average
value v, of the flow by Eq.(18). This modification is not
1 [1+2(Q)? important for what follows: we shall see in Sec. IV B that
&Q)stat= 2(Q) Nevts (42) measurements of differential flow depend on the value of
(Qp) rather tharv,,. The second difference is that autocor-
and with the fourth-order cumulank € 2), relations cannot be removed so simply: the procedure given
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in Appendix B4 is no longer valid, so that the subeventits average valuéQ) is Gaussian in the limit of largl. Up
method, which avoids autocorrelations, may regain some ing corrections of order M, the normalized probability of

terest. o _ Q=0Q,+iQ, thus reads
Apart from this difference, the procedure is the same as in
Sec. Il B. In particular, the cumulants of the event-flow vec- dp 1 (Q—(Q))? Q§
tor distribution are expressed in the same way in terms of the P p—— —— |, @47
moments. The generating equati@8) still holds, with the d°Q <moxTy 20y 20y

caveat that the last term, corresponding to autocorrelations,. 5 5 9 2
is no longer exact. with of=(Q5) —(Q)? and oy =(Qy).

However, autocorrelations are unchanged at the lowest W€ shall first show that this limit is equivalent to the
order: a calculation analogous to the one leading to(E4). cumulant expansion to or(_jer 4_pres_ented in Sec._III B. Then
shows that|Q,|2)=1 if there are no azimuthal correlations we shall discuss the_relanonshlp with an alternfamve method
between particles, up to terms of ordeMl/Changes occur to measure _ﬂc_’W’ Wh'ch h‘.”‘S t_)een used in the literature, and
only at higher orders. consists in fitting the distribution dfQ)|.

1. Higher h i
2. Optimal weights igher harmonics

In the case of the Gaussian distributiofv), one easily

What is the best choice for the weighi(pr,y,n)? In 0qialculates the cumulants used in Sec. Il B:

practice, it should be chosen so as to maximize the effect
flow: one should try to obtain a value §8,) as large as (|Q|2)=<Q>2+U§+o§,

possible, since this value will determine the accuracy in the

measurement of azimuthal distributions, as we shall see in|Q|4) —2(|Q|?)2= —(Q)*+2(02— 02)(Q)?+ (v2— a2)2.

Sec. IV. From the definitiori45), averaging over azimuthal (48)
angles and denoting by ); the value ofv, for the corre-
sponding particle, one obtains In order to compare these equations with E&4) and (A7),
we need to evaluate the swi=o7%+ o and the difference
2 2

M O'X_O' .
s (00);W; - From Egs.(18) and(20), one obtains
j=1
=S W, @ 0?=(|Q%) —(Q)*=1-vi+(M—1)(ei~4),
j=1

where the last term is of order unity sin¢e(¢i~%¥)_ is of
order IN<1/M. This still holds for the generalized vector
where we have used a simple triangular inequality, and thé45). One thus recovers EQ1).

(49

fact that the flow coefficientsu(); are real. The identity Let us now calculate the difference:
holds wherw;=X\(v,);, where\ is arbitrary. In other terms, M
the optimal weight for a particle with given rapidity and 2 Z_i B
transverse momentum is the associated flow coefficiggt ( Ix= Iy jJ(zzl [{cod ;+ ¢i)) = (cosp;)(coshy]
itself.
Of course, since the goal is precisely to measyyethe =v,—05+0(vy), (50

above discussion does not answer the question of the choice

of the optimal weight. However, general properties of thewhere the first two terms in the last equation come from the
’ diagonal termg =k, while the remaining term is the contri-

v,’S can be used to guess a reasonable choiee &incev,, : i . . o
is an odd(even function of the center-of-mass rapidity for bution of nondiagonal terms. Reporting this expression into

odd n (evenn), so should bewv. Regarding thep; depen- Eq.'(4'8), we recover Eq(A?): higher.harmonics reflect a

dence, one may note that at lqw, v, generally behaves as deviation from isotropy in the fluctuations Q.

voxpt [1]. Therefore, it seems natural to choose:p]

when measuring thath harmonic. Fom=1, Q, then be-

comes the sum of transverse momenta, weighted by an odd Neglecting higher harmonics, we may write,=oy .

function of rapidity, which was the definition chosen[®]. ~ Then the distributiort47) becomes

Forn=2, Q, is then equivalent to the transverse momentum

sphericity tensor used if24]. dp 1 exp( B |Q—(Q>|2)
20 mo? 2 :

2. Isotropic fluctuations

(51)

(oa

F. Gaussian limit . e
With this distribution, we expect to recover the results of

In this section, we compare our method to methods presec. |11 B, where higher harmonics were also neglected.

viously used i 13,24, which rely on the large multiplicity, Indeed, one finds after some algebra, for arbitrary, xeal
Gaussian limit. It is well known that, according to the central
limit theorem, the distribution of the fluctuations @faround In{1o(2x|Q|))=02x2+1In 15(2x(Q)), (52
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to be compared with Eq$25) and (28). According to Eq. order 1M, one finds that Eq55) is equivalent to Eqs.23)
(49), the extra termr?x? is of order unity, in agreement with and (27), i.e., to the cumulant expansion to order 4.
the statement following Eq28) that the correction at order The importance of the factor {M in the definition ofQ,
x*is O(M*¥). Eq.(17), also appears clearly when fitting E&3) to experi-
Corrections to the central limit theorem are of ordévl1/  mental data. Because of this factordoes not depend on the
Thus, expanding Eq52) in powers ofx, one obtains iden-  myjtiplicity M in the limit of largeM, as discussed above.
tities that are valid up to that order. To ordéf, we recover  Ths is especially important when the fit is done using events
the result obtained in the previous section, see(EQ, With  ith different multiplicitiesM. If there is no flow, the distri-
th? same accuracy. To ordf* with k>.2’ the results ob- i of|Q| is Gaussian with widthr. If o depended oM,
tained in Sec. 111 B are more acggrkate since we have seen thity igtribution would rather be a superposition of Gaussian
the correction is of magnitude!™~*<1/M. distributions with different widths. In this case, the left-hand
side of Eq.(55) would be positive, hiding a possible weak
flow. This phenomenon probably explains why the first
A method for extracting the flow from the data, which gnalysis of the E877 Collaborati¢i4] gives zero values of
was proposed 13,24, consists in plotting the measured the flow in some centrality bins.
distribution of | Q. This method led to the first observation  when fitting Eq.(53) to the data, it is important to fQ)
of collective flow in ultrarelativistic nucleus-nucleus colli- independently, which reflects the flow, aed which also
Si0n3[14]. Itis a Slmpllfled version of the method based ONijnvolves two-partide Corre|ation5, according to qu) As-
the sphericity tensof29], which led to the first observation syming thato is the same for all Fourier harmonics, as was

of collective flow at BeVala(E?)o]. Note that these methods done by E877[14], amounts to neg|ecting two_partic|e cor-
are more reliable than what we call the “standard method”e|ations.

in this paper, in the sense that one need not neglect nonflow Finally, note that the Gaussian limit can also be applied to

3. Distribution of |Q|

correlatiqns: _ _ ) ) . the subevent method, yielding interesting results: in particu-
The distribution of| Q| is obtained by integration of Eq. |ar, the distribution of the relative angle betwe®pandQ,,
(51) over the phase of: is not the same for direct correlations and correlations due to
flow [26].
iﬂ—iexp( _(QFIQF <2|Q|<Q>>
QI dIQ] 42 o2 ANoer )
(53 IV. DIFFERENTIAL FLOW
One must then fit both parametersand(Q) to the data. In_ this section, we explain _how itis _po;sib]e to per.form
If there is no flow, that igQ)=0, the|Q| distribution detalle_d measurements of a2|mythal dlstr|but|on§: typically,
given by Eq.(53) is purely Gaussian: one wishes to measute, for a given type of particle as a

function of the rapidityy and the transverse momentuym.

In the following, we shall call this particle a “proton,” but it
(54 can be anything else. We denote Byits azimuthal angle,
and bywv/, the corresponding differential flow coefficients
v, =(e™”). Unlike the standard method, as stated before,
Qve do not make the assumption that all azimuthal correla-
Hlons are due to flow. As in the case of the integrated flow
studied in Sec. lll, we get rid of nonflow correlations order
by order, by means of a cumulant expansion.

The principle of the method is explained in Sec. IV A. In

Sec. IV B, we show thab,, can be obtained from the azi-

1.dp 2 p(_@
1Q[dIQ] o2 2 |

o

The | Q| distribution deviates from the Gaussian shape if th
flow is strong enough compared to the fluctuation scale, th
is for values of(Q)=o. In particular, the maximum of the
distribution is shifted tdQ|#0 if (Q)>o. Sinceo is of
order 1, using Eq(198), this condition is equivalent t@
=1/\JM. Note, however, that one need not assume
>1/JM, as with the methods based on two-particle azi-ythal correlation betweer and the flow vectoRQ. As in
muthal correlz_mons. ... . the case of integrated flow, the order to which nonflow cor-
If (Q)<o, i.e.,u<1/JM, the shape of the distribution is ye[ations must be eliminated depends in practice on the num-
very close to a pure Gaussian distribution. In f?cththe deviaper of events available: this is explained in Sec. IV C, where
tions from the Gaussian shape are of ord@)"/¢" [26].  \ye also estimate the resulting accuracyudp Our method
This can be seen by expanding B50) to order(Q)? which ;g compared to traditional methods in Sec. IV D.
is equivalent to replacingr? with o2+(Q)? in Eq. (54).
Alternatively, one can eliminate- and obtain(Q) directly
using the following identity, which can be easily derived A. Principles and orders of magnitude
from Eq. (51): The differential flow coefficients ;, can be obtained only
(1QIM—2(|Q|%)2%=—(Q)4, (55  through azimuthal correlations with other particles, typically
particles used to estimate the orientation of the reaction
again showing that the deviation is of fourth order in theplane, which we call “pions” in this section, although they
flow. Knowing that the deviation to the central limit is of can be anything else.
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For instance, correlating the proton with one piof,can x ' o . '
be derived from the measurement of the two-particle azi- E =2 @ @ + n
muthal correlation e ' o : '

i) ' (56) FIG. 4. Decomposition of| Q|?Q* &) =(Q*2Q€'¥). The cross
N corresponds to the facta'? of the proton, while dots on lefion
the righ) of the dashed line stand f@ (Q*).

whereuv ; refers to the pion, and is determined independently.
We have used an analogy with E@Q). The termO(1/N) B. Differential flow from correlations with Q,
comes from two-particle nonflow correlations between the |n order to correlate a proton with pions, it is convenient
proton and the pion. The error made in the determination ofg yse the event-flow vect®,, Eq. (17). From now on in
vy is thus of order 1Mlv,). Of course, one should correlate this section, we choose=1, and drop the subscript, i.e.,
the proton to particles with a strong flow, so thgtbe as  we write Q andv instead ofQ; andv;. On the other hand,
large as possible. we keep the subscriph for the protonv/, because several

More accurate measurements can be obtained usingarmonics may be measured. Generalization to arbitrasy
higher-order correlations and a cumulant expansion. For instraightforward: one simply multiplies all azimuthal angles
stance, at fourth order, one can eliminate the two-particlqof both protons and piondy n.
nonflow correlation by correlating the proton with three | the standard flow analysis, one usually excludes “au-
pions and taking the cumulant, by analogy with EG@E2)  tocorrelations” by excluding the “proton” under study from

(e dy=p1v,+0

and(13): the definition of the event-flow vectd®]; that is, the azi-
muthal angley is not one of thep; in Eq. (17). Here, it is
((exdi(+ 1= do— h3) 1)) not necessary to do so. First, autocorrelations will be re-

_ . o i — moved order by order as well as direct correlations, as in the
=(extli(+ h1— o= ba) ) — (/¥ (e(917%9)) case of the integrated flow in Sec. lll B. Furthermore, auto-
— (e!(V= 23l (gi($1742)) correlations, if any, can be subtracted exactly if the event-
flow vectorQ is defined with unit weight, as in EqL7). This
subtraction is performed in Appendix C 4. For simplicity, we
NeJ (57) neglect the corresponding term in this section, unless other-
wise specified.

Let us start with the measurement of the first harmonic
vy . The two-particle azimuthal correlation between the pro-
ton and a pion, Eq(56), can be expressed introducing the
vectorQ defined by Eq(17). Summing Eq(56) over all the

pions involved inQ, one obtains the correlation betwe@)
Snd the proton:
R - . i 1
Higher harmonics, such as,, can be obtained by at least (Q*e'"Y=(Q) No
two methods. The first consists in multiplying all the angles
by 2 in the equations above, and replacirigandv; by v The value of Q) must be obtained independently, using the
andv,, respectively. A second method is to mix two differ- methods discussed in Sec. III.
ent harmonics, measuringg'(/~%1~%2)). If the source is More accurate measurements, involving correlations of
isotropic, this quantity is of order W since it involves @  the proton with several pions, are performed using higher-
direct three-particle correlation. If there is flow, neglectingorder moments, as in Sec. Ill B. These higher-order moments
other sources of correlation for simplicitye'(®/~#17%2)) 46 obtained by weighting the previous expression with pow-
factorizes into(e?)(e”'?1)(e”'¥2)=v v . Putting every- ers of |Q|2, i.e., by measuring|Q|%*Q*e'”). These mo-

=—vjv3+0

More generally, correlating the proton wittk2 1 pions, the
connected part of the correlation is of ordeNf" ! [since it
corresponds to direct (+-2)-particle correlations while
the contribution of flow i jv3“"*. Comparing both terms,
the accuracy o} is thus of order 1/v,)?**. Using Eq.
(16), this shows that the accuracy increases with increasin
k, i.e., when using multiparticle correlations.

vy+0 : (59

thing together, we obtain ments are then decomposed into cumulants. For instance, Eq.
(57) becomes
) 1 ) ) )
(e@r 9y =pni+0 N—) 9 ((1QPQ* ") =(IQI%Q* &) ~2(Q*e")(|QI?)
1
— 3|,/
One sees that nonflow correlations come into play only at =—(Q)%|v1 10 (Nv)3) ' (60)

order 1N?, rather than ™M when comparing the same har-

monics as in Eq(56). Nonetheless, they do not disappear.through which we define the cumulaf{f Q|?Q* e'")).

These correlations can also be eliminated order by order us- As in the case of integrated flow, the decomposition of
ing the cumulant expansion, as we shall see in Sec. IV Bhigher-order moment¢|Q|?*Q*€'#) in cumulants can be
Generally, if one correlates the proton wittlk2m pions,  represented in terms of diagrams. For instance, the decom-
one obtains an accuracy o}, of order 1/(Nv)2*™, position of (|Q|2Q*e'?) is displayed in Fig. 4.
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: ' ; - 2k+m
:&\‘. : ¢ : E —<<|Q|2kQ*meim¢>>
:"2("; i e =3 @ + i k=0 K! (k+m)!
. | ! ’ _ (Im(2x|QD) (Q*/IQD)™e'™)

(65

, ‘ (1o(2x|Q)) ’
FIG. 5. Expansion of|Q|*Q*%e*¥)=(Q*3Qe”"). The linked _ 3 .
crosses stand for the proton, while dots on (eft the right corre- ~ Wherel , is the modified Bessel function of ordet Form

spond toQ (Q*). =1, one recovers Eq61) by expanding this equation to
orderx®. Form=2, one recovers Eq63) by expanding this
The diagrams in this figure stand for equation to ordex®.

The cumulants defined by E¢65) are related to the dif-
(IQI2Q*e'")=2((Q*e"))((|QI*) +((|QI*Q*e'")) ferential flow by

=2(Q*e'")(|QI) +((|Q[?Q*e')). (61 Fo x2k+m
(Q*e")(|Q%) +((|Q2Q*e™). (6D T
. =0 k! (k+ m)!

One thus recovers the expression of the cumulant,(&d).

More generally, in order to decompose the moment I m(2X(Q)) I (2X/ M)
(|Q|%Q* e'*)y=(Q*Q*k*1e!¥), one draws a cross on the left “To(2X(Q)) vt o 2X V)
representing the protok, dots on the left and+1 dots on 0 0
the right representing th_e pions. The graphs combine all poSrg secong term corresponds to autocorrelations, and must
sible subsets of the points on the left with subsets of thg,q jhciyded only if the proton is involved in the flow vector
points on the rlght containing the same numb_er of eIemenF . In the casen=1, one recovers the lowest-order formulas

Let us now discuss the measurements of higher harmomc( 9) and (60) by expanding this equation to ordecsndx®

of the prqton azimuthal distribution.r’n. In the casem=2, respectively. Fom=2, one recovers Eq$62) and (64) by
Eq. (58 gives, summing over the pions involved @ expanding it to orders? andx”, respectively.

At order x?**M Eq. (66) gives an accuracy in/, of or-

(66)

(Q*2e2¥)y=(Q)? v)+0 (Nl)z) . (62) ders 1/(Nv)?**™ as expected from the discussion of Sec.
v IV A.
To obtain a better accuracy, one must decompose higher- C. Statistical errors

order moment$|Q|?Q*2e??) in cumulants. In terms of the , o _
diagrammatic representation, the proton is now associated Eduation(66) generates an infinite set of equations to
with two crosses, as seen in Fig. 5 for 1. measure the differential flowy,, since it can be expanded to

As before, the graphs combine all possible subsets of th@ny arbitrary ordex”*“™. As in the case of integrated flow,
points on the left with subsets of the points on the rightthe best choice dfis the one that yields the best accuracy on
containing the same number of elements, with the subsidiarym - It results from a compromise between systematic errors
condition that the two crosses belong to the same subset. fiemming from nonflow correlations, which decrease when
the left-hand side of Fig. 5, the dot on the left of the dashedising higher-order cumulants, and statistical errors, which
line can be associated with any of the three dots on the righthcrease with the orde.

The equation represented by the figure can be written as _ The equation obtained when expanding E&f) to order
x%K is of the type

<|Q|2Q* zeZizp): 3<<Q* 262'¢>><<|Q|2>> + <<|Q|2Q* 2eZiz//>> <<|Q|2kQ* meimz//»: bk<Q>2k+mvrfn+ O( M fk*(mlz)),
=3(Q*%e’)(|QI%) +((|QI*Q* %)), (67)

(63 whereb, is a numerical coefficient of order unity. Neglect-

) ) . ) _ing for the moment the error on the integrated flo@), this
where the last term involves a direct five-particle correlatlon,equation gives a systematic error ofy

and is therefore of ordevi?x O(1/N%). When there is flow,

one obtains (V) syst=(Q) 2K~ MM~k (m2), (68)
((|Q|2Q*2e?")) =(|Q|?Q* 2e? ") — 3(Q* 2% *)(|Q|?) This systematic error decreases when increasing the krder
Note that form=1, the systematic error should be the same

%” (64)  on the differential flow as on its integrated value at a given
(Nv) order. Thus we expect Eq&8) and (39) to give the same

result, using Eq(18). In doing the comparison, one must pay

Cumulants of arbitrary order, for arbitrary harmonigg,  attention to the fact that the cumulant used for differential
can be obtained by expanding in powersxahe following  flow ({|Q|?Q*e'%)) involves X+ 2 particles while the cu-
generating equation, derived in Appendix C 2: mulant for integrated flow(|Q|?¥)) involves only X par-

=<Q>4[—2u§+o
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ticles. Thus, comparing the two “at a given order” meansnitude as autocorrelations, do remain, and limit the sensitiv-
that we must replacekin Eq. (68) by 2k+2 in Eq.(39). ity of the analysis. With our method, autocorrelations can be

The statistical error in the cumular{67) is of order removed in the same way as in the standard analysis. But we
1/\NL,s WhereN,, is the number of events containing a also remove direct correlations, thereby increasing the sensi-

proton. This leads to an error arj,: tivity of the measurements.
60, ~ —2k—m N/ 71/2- 69
(S0m)sa=(Q) (Nev 9 V. ACCEPTANCE CORRECTIONS
If m=1, we again recover the result obtained for the inte- o simpjicity, the discussion has been limited so far to an
grated flow, provided we replacekdy 2k+2 in Eq.(41),  jgeal detector, i.e., a detector with an acceptance that is azi-

and Neys by MNeys (which is the total number of particles mhally isotropic ing. An actual detector is never perfect,

involved in the measurement of integrated flaw Eq. (69).  gijther because its components are of uneven quality, or sim-
If (Q)<1, the statistical errof69) increases with increas- ply because it does not cover the whajerange. In this

ing k, and the optimal value df is that for which statistical section, we discuss a simple extension of the method that

and systematic errors are equivalent, i.e., allows us to work withany detector. More precisely, it al-
, lows the detection of deviations from an isotropic source,
. I Neys i.e., flow, with any detector, and the correction is imple-
2k=—m+ (70) :
InM mented in the same way for all detectors. However, the ac-

curacy on the measurementwf can be poor if the detector
The error in{Q), estimated in Sec. Ill D, should also be covers only a limited range igb.

taken into account. However, the measurement of differential The only modification lies in the definition of the cumu-
flow is done in a limited region of phase space, by definitionjants, for which the expressions given in Secs. Ill B and IV B
so that the corresponding statistics is smaller than for there no longer valid. These modified cumulants are defined in
integrated flow where many more events can be used. It iSec. V A for integrated flow and in Sec. V B for differential
then safe to assume that the statistical erro(@p gives a  flow. As we shall see, the analytical expression of higher-
negligible contribution to the error in/,. order cumulants become very lengthy, so that it is more con-
If m=1, the previous equation shows that1 is more venient to work directly at the level of generating functions.
accurate thak=0 (the latter value corresponds to the stan-As an illustration of our method, results of a simple Monte
dard method, neglecting correlationsnly if In Ng,/In M Carlo simulation are given in Sec. V C.
>2, i.e., if the statistics is large enough, typicalN,s
>10* for an event multiplicityM ~ 100. For higher harmon-
ics m>1, the contribution of nonflow correlations are
smaller as explained above: thus the lowest-order mekhod The key idea is that anisotropies in the detector accep-
=0 is to be chosen unless a very large number of events ignce can be handled much in the same way as anisotropies
available, typicallyNy,s>1CP for the second harmonim  of the emitting source. The only difference is that the rel-
=2 if M~ 100. evant coordinate system is the laboratory system in the first
case, and the system associated with the reaction plane in the
second case.
) _ Let us be more specific: until now, we have been working
Previously used method$,31] also study the correlation j, the coordinate system associated with the reaction plane,
between the event-flow vect¢l?7) with the momentum of e with the emitting source. In this system, we used a clus-
the proton. The traditional justification is that, as explainedier expansion to define direktparticle correlations, of order
in Sec. Il A, the phas@¢q of the event-flow vectofl?) N1k rejative to the uncorrelateiparticle distribution(Sec.
gives an estimate of the orientation of the reaction plang| c). This cluster expansion allowed us to construct the
modulo 2/n. Studying the correlation betweghand¢q,  “connected moments” of the distribution @, which were
one can reconstruct harmonie§, vy, , v3,, etc. noted ag Q*Q* "), (Appendix B 1, of orderM*~*"! relative
The standard analysis relies on a purely angular correlagp the corresponding momet®*Q*'). This decomposition
tion. One measures the avera@®sm(y/—¢g)). Neglecting  was performed for an arbitrary source, but with an ideal de-
nonflow correlations, this quantity is the productgf and a  tector.
resolution factor that is given by an independent measure- Exchanging the roles played by the source and the detec-
ment[32]. Our method relies on similar averages, weightedtor, the same reasoning applies if we work with an isotropic
by powers of|Q|: source and an imperfect detector, provided we use the coor-
: dinate system associated with the detector. We thus define
(IQI#" Mcosm(y— do)) =(Q* ™ Q€™). (7D the connected moments exactly in the same way, replaging

In the traditional method, autocorrelations are usually rePY the measured (see Sec. Il A Similarly, the flow vector

moved explicitly by specifying that the proton under study isQ Will be denotedQ when azimuthal angles are measured in
not used in constructin®,, in Eq. (17) [2]. However, non-  the laboratory system, i.e., whe#) is replaced byg; in the
flow direct correlations, which are of the same order of mag-definition (17).

A. Integrated flow

D. Relation with previous methods
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If the acceptance is not perfect, averages suc{le‘ég) or  System associated with the reaction plane, i.e., what we call

<expin($l+¢72—$3)) no longer vanish. Thus, nondiagonal the_“integrated flow.” It must not be mistaken f¢Q) [sgae
moments(@‘@*') with k+1 are also nonvanishing: there is for instance Eq(72)], which denotes the average value in the
no more cancellation due to isotropy, and all terms must béaboratory coordinate system, and vanishes if the acceptance

kept in the cumulant expansion. At order 2, for instance, thdS Perfect. Note also that only the “diagonal cumulants

cumulants are defined as {({|Q|?)) (i.e., withk=1) are related to the flow. These di-
agonal cumulants could equivalently be writtery §9|))
((Q%)=(Q%)—(Q)?, since Q and Q differ only by a phase. Other cumulants,
((Q*Q*")) with k=1, are not influenced by the flow and
<<|6|2>>E<|6|2>_<6>(6*>. (72)  vanish except for statistical and systematic errors. They can

therefore be used to estimate the magnitude of errors.
These cumulants are of the same magnitude as when the The modified definition of higher-order cumulants in-
acceptance is perfect, i.e., of order unity, while the momentsolves a large number of terms when the detector acceptance
(Q?) and(|Q|?) scale like the multiplicityM if the detector is nonisotropic. For instance, the fourth-order cumulant is
is very bad. Note that at this ordek{1=2), taking the obtained by expanding Eq73) to orderz?z*:

cumulant is eqiivalent to shifting the distribution(ﬁfby its — 4 —, — = — ==

average Va|u¢Q>, as proposed if9]. <<|Q| >>:<|Q| >_2<Q><QQ >_2<Q ><Q Q >
Higher-order cumulants can be obtained in a similar way o/ IRIN2 AN %2 e N2

as for an ideal detector. The only difference is that the sim- 2(|QIH*=(QNHQ™H+8(QXQ*XIQ[)

plifications due to isotropy no longer exist. Thus one cannot +2(0)2(0* 2} + 2{0*Y2(O2) — 6(0)2(O* )2,

use expressiolB5) for the generating function of the mo- (QAQ™)+2(Q7)XQY) - &QHQ)

ments; one must use instead the more general expression (795)

OkO* I\ i ;
(B2). The cumulan{{Q"Q"")) is therefore defined by This equation replaces E(Q3) for an imperfect detector. It
wkl o shows that implementing acceptance corrections order by or-
> I {(Q*Q*"N)=In Gy(2)=In(e?" 2"} (73)  der can be very tedious since it involves a large number of
ki B terms.

. . . ey ) It is simpler to work directly with generating functions.
Expandmgt_hke_rlgljht—hand side to order'z, one obtains the - Ajthough this might seem to be more complicated, it is not
cumulan{(Q*Q*")) as a function of the measured momentsunnatural since the generating functions constructed from ex-
(Q¥Q*"y with k’<k and I'<I. While the moment perimental data have the same geometrical properties as the
<6k6*l> is of magnitudeM &2 for a bad detector, the data, in par\]rticulk?r rgzgarding_th_e dete<_:tor ac_cepr:ance. For _in-
corresponding  cumulant ((QXQ*'Y) is of order stance, when the detector is isotropic, so is the generating
M (FD2NL—k=Tpg 2= (kD2 function, Eq.(B5).

If the acceptance is not too bad, we assume that relatio%eogjnﬁgrizrgn?zte)n:?igﬁilys th?)iﬁtesneir:attll'?eg ?Onrﬁt'?enXOf
(28) between the cumulants and the integrated flow is ap- olX.y P P

proximately preserved. The integrated flow can then be Obplane, then exiract numerically t_he coefficients at a given
tained from the cumulants to order 2, 4, 6 using E@4) order by means of an interpolating polynomial. Let us be

(27), and(29), which we write again in the form: more specific: separating the real and imaginary parts of the
' ' 9 ' flow vector, we write it as

— 1+2(Q)?
(2= (IR~ 1+ 0L+ e, (743 o
evts Q= Zl Wj COS &),
_ 1 A/ 2
(Qf=-{RI*M =+l jgl Wi
T+ 4QP Q)+ 2(Q)° o n
w2/ News SR Q= 2 W Sin(&). (76
e
e 1 —c 1 1), 3 Zl w
(Q°=7(IQFN—z+0 W)—m (7409

The generating function of the cumulants, defined by Eq.
where, in the right-hand side of each equation, the last thre€’3), is a real-valued function:
terms stand for autocorrelations, systematic errors due to di- _ _
rect k-particle correlations, and statistical errors due to the In Go(X,y)=In(e>AF2YQy), (77
finite number of eventgsee Sec. Il D, respectively. Note
that (Q) denotes the average value Qfin the coordinate where we have set=x+iy.
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According to Eq. (73), the cumulant to order K  where, in the right-hand side of each equation, the second
(JQIP) is the coefficient of £2°) =(x2+y?)¥ in the term represents the systematic error due to direct particle
power series expansion of this generating function' up to gorrelations, while the last term is the statistical error due to

factor 1/(!)2: the finite number of events. Note that only the cumulants
((Q*Q* ™)) with | =k-+ m are related to the flow by Egs.
S () ®D. . |
In Go(X,y)= E =L (x%+yA)K, (78 We wish to recall here that the differential flavy might
=1 (kh)? also have been obtained from the correlation between the

) _azimuth of the proton and the event-flow vec@Qp. As
where we have kept only the relevant terms in the expansionyated in Sec. IV B, the only modification is a multiplication

The cumulaqt can pe obtaingd from the tapulatgd values ot g angles by 2, so that this does not change Ef®. and
In_go(x,y) using the interpolation formulas given in Appen- (82). Therefore,v) may be deduced from Eq¢81a and
dix D1. (81b) by the simple substitution of] and(Q) by v} and
(Q,), respectively.
B. Differential flow As in the case of integrated flow, the modified definitions

When measuring differential flow, acceptance correction®f the cumulants quickly involve a large number of terms
can be implemented in the same way as for integrated flow¥hen going to higher orders. Therefore, it is simpler in prac-
Flow is extracted using the same formulas as when the ddice to extract the cumulants numerically from the generating
tector is perfectly isotropic in azimutSec. IV), without the ~ function. For thls purpose, one must tabulate numerically the
simplifications allowed by isotropy. Therefore, one must take'®@l and imaginary parts @f(2):
as the generating function of the cumulafit§z) the general

expressior(C4) instead of Eq(C6). We thus define the cu- REC. (x )]:<92XQX+2yQVCOS(m#//)>
mulants by m(X.Y (e2Qc+2yQy) '
sy <ez*6+26*+iml/_/> X0+ 2y D _
Ky | nimyny — _ et Qgin(m
2 T (QQTe™)=Cn(2) (@) ImLC(x,y)] = o) gy
) (79) <e2XQx+2yQy>

— ) Keeping only the terms with=k+ m that are related to the
whereys denotes the azimuthal angle of the proton, measuregq,, the generating functiotv9) becomes

in the laboratory coordinate system. This equation replaces

Eq. (65 for an imperfect detector. Expanding E{9) to o <<|Q|2kQ* meim¢/>>
= i i - * Kk m
orderz for m=1, we obtain for instance Cm(2) IZO Kl (k)] z¥ M, (83
O* e\ =(O* el "y — (O* )( el ¥
((Qe))=(Q"e') —(Q"){e"). (80 Interpolation methods to calculate the cumulants

: {{(|Q|?Q*™me'M")) as a function of the tabulated values of
We assume that the relatid6) between the cumulants the generating function, are explained in detail in Appendix

and the differential flowp,, is approximately preserved if D2
the acceptance is not too bad. Hor0 andk=1, flow is '
then related to the cumulants by Eq59) and (60) for m

=1 and by Eqs(62) and(64) for m=2. We rewrite these C. Results of a Monte Carlo simulation

formulas We have tested our method with a simple Monte Carlo
simulation. Particles have been generated randomly with the
(QYol=(Q* e +0 1 . 1 619 distribution
U= T ’
1 M2 m dN
@“14‘ 20, COSp+2v,C042¢). (84

_ 1 1

(QPvi=—((IQ]*Q*e'"))+0 M—g,,z> * N The value of the integrated directed flow, which we tried to
evts

reconstruct, was fixed to;=0.03, corresponding roughly
(up to a sign to the value measured at SPS for pi¢ag].

We have taken various values 0§, in order to probe the

1 1 interference between both harmonics, discussed in Sec. Il D.
— |+ (810 . . :

M In a first step, we do not simulate nonflow correlations
between the particles. In order to take into account the effect
of detector inefficiencies, we have assumed that all particles

(Q%v3=((Q*2%e*%))+0

(Q)*vh=— E<<|Q|2Q*2e2i¢>>+o iz) + ! ' are detected, except in a blind azimuthal sector of size
2 AN\ The simulation has been performed witd, =200 000

ts
(810 events, and a multiplicitM =200 for each event. For sim-
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TABLE I. Results of a Monte Carlo simulation. All values ©f lem of the reaction plane determination in the standard flow
anduv, are given in percent%). analysis. One first constructs, event by event, the flow vector

Q, defined by Eq.(76), where the¢; are the azimuthal
angles of the particles in the laboratory coordinate system.

a=0° a=45° a=90° «a=135° «a=180°

v,=0 3.04 3.10 3.11 291 2.11 The weightw; is chosen as explained in Sec. lll E 2; ideally,
v,=3 2.83 2.85 2.98 2.78 2.57 it should be taken equal to the differential flaw(pt,y),
v,=6 2.65 2.82 2.78 3.55 4.24 i.e., proportional top?, and even(odd) in the rapidityy for
v,=—3 3.30 3.22 3.23 2.99 2.57 even(odd) n. Alternatively, one may choose the simpler ver-

sion with unit weights(17). The value ofn depends on the
o . system under study: up to energies of 10 GeV per nucleon,
plicity, we have assumed that exactly 200 particles are degne ysually works witn=1, i.e., with Q; [2,18,33. At
tected in each event. FluctuationsVhshould not influence  gps directed flow is so small that a better accuracy is ob-
the results, as explained in Sec. Il A 3. With these valuestained by working directly with the second harmonic, i.e., by
the optimal sensitivity for the integrated flow is obtained for constructingQ, [17]. Then, only even harmonics can be
k=2 according to Eq(44), i.e., by taking the fourth-order measured. Most of this paper has been written assuming
cumulant. We therefore reconstruct the flow using €&4b.  —1.In order to generalize the results to the case2, one
With the values we have Cho?de):_Ul\/MZOAKL need only multiplyall azimuthal angles by 2.
so that traditional methods might fail, as stated before. Measuring the integrated flow amounts to measuring the
Within our method, the statistical error an, calculated ayerage value of the flow vecto(Q,), in the coordinate
with Eq. (43), is of the order of 0.14%. Since direct correla- system where the reaction plane is fixed. The average value

tions between particles are not simulated, the only systematiqy ) is of orderv,\M (it is even equal to that value if one
error comes from detector inefficiencies and the higher haris \orking with unit weighty whereuv,, is the Fourier har-

monicv,. ) ] monic of ordem, andM the number of particles used in the
Results are shown in Table I. The table gives the reconfiow analysis. As explained in Sec. Ill, the integrated flow

structedv, as a function of the size of the blind angte and (Q) is obtained from the cumular((|Q,|%)), which re-

the higher harmonie . moves nonflow correlations up to ordek,2the standard

If v,=0, the reconstructed value is compatible with the nethod corresponding to the lowest order 1. The value
theoretical value within statistical errors, except for the high-5¢ k is chosen so as to obtain the best sensitivity. It results
est value ofw, i.e., when the detector covers only half of the from a balance between systematic and statistical errors, and
range in azimuth. Therefore, errors due to acceptance impe&epends both on the number of eveNts,s available for the
fections are under good control. . flow analysis, and on the number of particles used to deter-

The systematic error from higher harmonics, on the othefine the reaction plane in each evelt, The optimal order
hand, is far from negligible. The limits of applicability of our | is then given by Eq(44). However, performing measure-
method, given by Eq(A8), are here-0.43<v,<0.07. We  ments with other values df does not cost much and pro-
have checked these bounds numerically. The valye yides a useful comparison.
=0.06 is very close to the upper bound. However, the cor- The cumulant(|Q,|?¥)) is a combination of the moments
responding relative error on, is only 12% with an ideal ¢ e gistribution 0fQ,, i.e., it is expressed as a function of

detector. ey
In a second step, we simulate nonflow correlations: foth® measured momen{Q,Q, ™), with I<k and m=Kk. In

simplicity, we do this assuming that particles are emitted inthiS Paper, we have used the formalism of generating func-
pairs, both particles in a pair having exactly the same azitions to c_ierlvg the corresporjdmg formulas at arbitrary o_rder.
muthal angle. This would be the case for the two-body decaf*S €XPlained in Sec. V, this is not only an elegant formalism:
of a very fast resonance. Taking the same numerical valuds!S &!SO the simplest way to calculate the cumulants numeri-
as above, the standard method, corresponding to( ) cally from experimental data. For this purpose, one tabulates
givesv, = 7.7%: it fails, as expected, overestimating the flow e generating functiogo(x,y), defined by Eq(77), at vari-

by more than a factor of 2. On the other hand, the fourth-2US points in theX,y) plane. In this equation, the brackets
order formula(74b), which eliminates two-particle nonflow denote an average over the whole sample of events. The

correlations, gives;=3.1%, in much better agreement with cumulant<(|Q,J|2.k>) is then obtained by extracting numeri-
the theoretical value. cally the coefficient in front of x>+ y?)¥ in the power series

expansion of Ig,(X,y), as explained in Sec. V A. The inte-
grated flow(Q,) is finally obtained from the cumulant using
Eqgs.(74).

We have proposed in this paper a new method for the The value ofQ,) is the important parameter in the flow
flow analysis, which is more sensitive than traditional meth-analysis, since it determines the accuracy of the reconstruc-
ods to small anisotropies of the azimuthal distributions. Intion of azimuthal distributions. §Q,)>1, the flow can eas-
this section, we summarize the procedure that should be folly be studied with traditional methods, although the present
lowed in practice. method should give more accurate result§Qf,)<1, on the

The first step consists in measuring the “integratedother hand, standard methods fail, while our method still
flow,” as explained in Sec. Ill. This corresponds to the prob-works.

VI. SUMMARY
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H I LI R4

-2 ©® e ®

FIG. 6. Expansion into connected parts of the cumulant of the four-particle azimuthal correlation. Dots on (tighleif the dashed
line represene'® (e~'?).

The second step in the flow analysis is to perform detailedion does not depend on that problem.
measurements of the flow coefficienf, for a particle of Most of our results have been established in the limit
given rapidity and transverse momentum, i.e., differentiawhere azimuthal anisotropies are weak. For this reason, our
flow. The coefficienty/, can be obtained from the compari- method seems to be more adapted to ultrarelativistic ener-
son of the azimuth of the particle under study with an eventgies, i.e., at SPS energies and beyond, wherandv, are
flow vector, which can be eithe®,,, calculated with the usually less than 10%. In particular, it should be very useful
same harmonic, or &,, calculated with a different har- !n .the forthcoming fllow analyses at the Brookhaven Relativ-
monic, providednis a multiple ofn. For instancey} can be  istic Heavy lon Collider.
measured with respect @, or Q,, as explained ih9]. We
show in Sec. IV B that it is the value ¢8),)) that determines ACKNOWLEDGMENTS
the accuracy on the measurement f. Thereforen should i
be chosen so th4,,) be as large as possible. For instance, We thank.Art Poskanzer fo_r helpful comments on the _flrst
at RHIC wherev, is expected to be much larger thag, v} version of '[hI.S paper, aqd Ralmond Snellings and Serge| Vo-
should be measured witQ, rather than withQ,, as is al- loshin for stimulating discussions. We also thank Aihong

ready the case at SH%7]. In the text, we have assumed Tang for correcting some misprints.
=1. If one useK,, thenm must be replaced byra every-
where in our equations. APPENDIX A: DETAILED STUDY OF THE
As the integrated flow, the differential flow/, is obtained FOUR-PARTICLE AZIMUTHAL CORRELATION
from a cumulani(|Q|?*Q* Me'™#)) that eliminates nonflow
correlations up to an arbitrary ordekk2m, the standard
analysis corresponding to the cdse0. Here again, the best
choice ofk is the one that leads to the smallest error: its
value is given by Eq(70). In order to measure the cumu-
lants, one first tabulates the generating functi®® at vari-
ous points in the complex plane. The cumulant is then ob- 1. Cumulant of the four-particle correlation

. . . . . k+m
tained by extracting the coefficient proportionalzt/z The cumulant of the four-particle azimuthal distribution

in the power series expansion of the generating function, agas peen defined by E¢L2) when the source is isotropic.
explained in Sec. V B. Finally, the differential flow;, is  \ye setn=1 for simplicity:

related to the cumulants by Eq81).

A limitation of our method at a given order is the possible  ((e(?1* 927 ¢3~ ¢a))) =gl (1 b2~ b3~ Pa)) — (gl (1 ¢3))
interplay of higher harmonics in the measurement. For in-
stance, Eq(13) shows that in the fourth-order cumulant, the
second harmoniw,, interferes withv,. More precisely, x (el (2~ 49y, (A1)
|v,n| Must be small compared wittlv 2 [see Eq(14)]. This
limitation means that the method should be used with much : : ;
care when extracting the directed flow=1) at RHIC and Here, we want to evaluate the right-hand side of this equa

; o tion when the source is no longer isotropic.
ITH.C [34], since it is expected_ to be much smaller than el- In order to do so, we expand the four-particle distribution
liptic flow. On the other hand, in the camse= 2, there should

i . into connected parts, as explained in Sec. Il C. Using the
be no problem since, is much larger thamw ,.

o . o I diagrammatic representation introduced there, the quantity in
While higher harmonics or statistical errors may limit the g P . y

Eqg. (Al in Fig. 6.
use of the method, there is no problem with the accept(:mceq-l-(he éigz?arﬁsﬂicgg pgssetgnadsf:r 9. 6

of detectors. As a matter of fact, the required corrections
appear in a natural way in the method, at all orders, from 3 4.+ g, go— g\ o/ ai(b1—dan 2
modification of the generating equation that is the same foaie e fem ) —2(elt 8

In Sec. A1, we calculate the cumulant of the four-particle
azimuthal correlation, introduced in Sec. Il D. Then, in Sec.
A2, we calculate the fourth-order cumulant of tQedistri-
bution, introduced in Sec. Il B.

X (€!($27 ¢a)y — (gl (17 0y

all detectors. In particular, the sensitivity remains unchanged  — — v+ 20X e (#at ¢a)) 4 (el (P11 82y (@7 I(Pat Pa))
when acceptance corrections are taken into account, so that ‘ _
choosing the order in the expansion of the generating equa- +4p (e (Pt dam3)) 4 (b1t damdsma)y - (A2)
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Note that the direct two-particle correlatiofe (41~ #3))  are (i) When three indices are identical while the fourth is
automatically removed. In the isotropic case, only the condifferent, i.e., in M(M—1) cases, the difference in Eq.
nected part of the correlation, ie{exdi(¢,+d,—ds (A4) reduces to—(e'(¥1~#2)). Using Eq.(8), this contribu-
—¢4)])e, remains in the right-hand side of EGp2). tion is of order—4v§+ O(1/N). Although this contribution
Let us now enumerate the orders of magnitude of thds a two-particle correlation, it is suppressed by the combi-
different terms in the right-hand side of Egh2). As stated  natorial factorw? is much smaller than the ter?v ] that
above, all terms but the last vanish in the isotropic caseappears in the cumulant of the four-particle azimuthal corre-

indeed,(€/(41* #2~43)) and(e*!(¢1*¢2)  are not invariant |ation (see Sec. AL Therefore, this contribution will be
under the transformatios; — ¢;+ @, wherea is any angle. negligible.

Therefore, it seems reasonable to consider that these terms (jii) Let us consider the cases when the indices are equal
are proportional tw, or v,, depending on whether a factor two by two.

e’ or e*?* appears under the previous transformation. |f j=k andl=m butj#!, which occursV (M — 1) times,
Furthermore, since we consider here connedtgihrticle  the difference is given by

correlations, they behave lik&(1/NK"1) (see Sec. Il ¢

More precisely, (2(917¢3)) — p(l (917 ¢3))2
=v2+ (P17 %)) —2(p2+(el(P17 %)) )2,
’ (A5)

U1

(exfi(p1+da—¢3)])c=0 N2

The order of magnitude is thars+O(1/N). Here, we have
<e+i(¢1+¢2)>czo(2>_ (A3) neglected terms of ordeﬂl/N and 1N?, smaller than IN;
N the termu 7 is smaller by a combinatorial factorM/# than
the similar contribution of nondiagonal terms. Note that the
Note that the second term in the right-hand side of @)  higher harmonia, contributes here. We shall see below that

is smaller than either the first or the third terms. these higher harmonics can limit the use of our method.
Finally, the order of magnitude of the right-hand side of The 2vi(M—1) cases{j=m andk=I but j#I} or {j
Eq. (A1) isvi+O(v3/N’+1/IN%). We have neglected?/N*  —| andk=m butk#1} yield a contribution— (e/(¢1~ )2,
since it is smaller than either; or 1N°. Its order of magnitude is-2v7+O(1/N?), negligible com-
pared to nondiagonal terms.
2. Calculation of the cumulant ({|Q|*) (iv) There are two cases when three indices are different.

In this section, we derive the order of magnitude of the If =1 orj=mork=| ork=m, while the two remaining
, indi i ibution is(e! (#1~ #3))2
fourth-order cumulant of th€ distribution, defined by Eqg. indices are different, the contribution is(e )°, to be

it _ multiplied by a combinatorial factor M(M —1)(M —2).
f)Zb?zgirl]:Srom the definition of the event-flow vect¢t7), one Thus, the order of magnitude M| — 40+ O(LN?)] and

this contribution is suppressed by a factoM1With respect
1 to the cumulant of the four-particle correlation.
«lQl*)= — > (et dimdm)y — (el (4= 4y If the two identical indices are eithej,k) or (I,m), the
M< jklm combinatorial factor is B1(M—1)(M—2), which multi-
i(Sk— )y — (@l (= dm)\( @i (bk— 1) plies a term (exd +i(2¢p,— ¢s—¢,) )~ 2?1~ %)% Using
x(e )= (et ime ). (Ad) Eq. (9), the three-particle correlatigfe'(?#1~ #3~%4)) can be

In the above sum, one may distinguish nondiagonal terms‘?Xpanded as

when all four indices are different, and diagonal terms, for (61201763~ da)) — (g2id1) (g 143) (1 9a)
which at least two indices are equal.
Nondiagonal terms correspond precisely to the cumulant +(e/ (2417 23)) (e71¢4)
of the four-particle correlation. The corresponding contribu- . _ .
tion, evaluated in Sec. A1, must be multiplied by the com- +(e@01790) (e7199) + (e %1)
binatorial factorM(M—1)(M—2)(M—3)~M?*. With the x(e*‘(%*"”‘ﬂ) +<ei(2¢1*¢3*¢’4)>
factor 1M? in front of the sum in Eq(A4), the contribution ¢ ¢
of nondiagonal terms t¢(|Q|*)) is of orderM?v}+O(v3 ) v3 1
_|_1/N) :U201+O W +0 m .
We are now going to show that diagonal terms give a
contribution at most of the same order as nondiagonal terms. (A6)

Let us enumerate the various diagonal terms. . ) A ,
D Ifi=k=|= i i The second term in the difference,2(e'(?1~%3)2, gives a
(i) If j=k=Il=m, each term in the sum is equal tol. g

This is the contribution that we call “autocorrelations.” contribution of —2v7+O(1/N?). Finally, since terms such
Multiplying by a combinatorial factoM and by the factor as v‘l‘, vi/N are suppressed because of the combinatorial
1/MZ in Eq. (A4), the corresponding contribution is exactly factor, the contribution in this case is Mb,v?
—1M. +0O(Mv2/N)+O(M/N?).

+0

2
i
N
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FIG. 7. Decomposition ofQ2Q*) in connected parts, see H&1e). Dots on the left of the dashed line represent factoi® wfhile dots
on the right represent factors @*. Circled subsets correspond to connected moments.

We shall assume that the total multiplicity in the collision (QQ*)=(Q)(Q*)c+(QQ* )¢, (Blo)
N and the numbeM of particles used to calculate the flow
vector are large and of the same order of magnitude. Then, (Q3>=<Q>3+3<Q) (Q%)+(Q%) (B1d)
Cc C C (o3}

we find that the contribution of the diagonal terms is
—1M+v3+2Mv2v,+0(v3+1M). o 2y . o
All'in all, when we add the contributions of diagonal and (Q7Q)=(Q)e(Q")e + 2Q)(QQ" )c+(QT)e(Q" )

nondiagonal terms, we obtain the following result: +(Q%Q*),, (Ble
1 1 H 3 b LR}

Q)4 =— e M2v%+2Mo2u,+02+0(v2)+ 0 M)' etc. In these equations, the subscdptenotes “connected
moments. The connected moment of orkés of magnitude

(A7) M1%2 g factorM®~¥ comes from the fact that it involves
i . ; ; k/2
The first term in the right-hand side coresponds to autocorgj'rec'[k particle correlationgsee Sec. Il §; and a factoM

relations, the last two terms are due to nonflow correlationsfrggnéz(?f‘?gal'ng oR with the number of particles I'ke’/m’

nd the three remainin rms arise from flow. One woul . . .
and the three remaining terms arise from flow. One would™ . expansion of a given momef®“Q*') in connected

like —M?v? to be the dominant flow term. However, higher " b ted hicallv by th : f
harmonics, i.e.v,, also contribute. I, is large enough, it parts can be represenied grapnicaly by e expansion of a
may even reverzse the sign of the éontribution of flow to(k+|)—p0|nt dlagram Into connectgd d|qgrgms: Th.ls 1S simi-
((|QI%). This does not happen provided lies in the fol- lar to the decomposition of _tHepartche d|str|b_u_t|on in Fllgs.
lowing iﬁterval' 1 and 2. To be more spgcnﬂc, the decompositiof@fQ* ).
: is represented by drawingdots of one type corresponding

to powers ofQ and| dots of another type corresponding to
powers ofQ*. One then takes all possible partitions of this
We have checked these bounds with our Monte Carlo simus€t ofk+1 points. To each subset of points one associates the
lation, see Sec. V C. corresponding connected moment. The contribution of a
given partition is the product of the contributions of each
subset. Finally{Q*Q*") is the sum of the contributions of
all partitions. Figure 7 represents, as an example, the decom-
position of(Q?Q*).

In this appendix, we first construct the cumulants of the The connected moments can be expressed as a function of
distribution of|Q|, which we denoté(|Q|?)), as a function ~the moments by inverting Eq¢B1) order by order. How-
of the measured momentiQ|? ) (Secs. B1 and BR Then,  ever, this procedure is very tedious. An elegant and compact
we relate the cumulants to the integrated fi@®) (Sec. B3,  Wway to express moments of arbitrary order in terms of the
and show how to remove autocorrelations at all ordSm_ connected parts, and to invert these relations, consists in us-

—Muv2(2+1)<v,<Mvi(y2-1). (A8)

APPENDIX B: A GENERATING EQUATION FOR THE
INTEGRATED FLOW

B4). ing generating functions. The generating function of the mo-
ments is a function of the complex variakdehat is defined
1. Cluster decomposition of the moments as
We have shown in Sec. Il C how theparticle momen- . ) Z* k|
tum distribution can be decomposed, in a coordinate frame Go(2)=(e" °"2") = 2 T (QQ*), B2

where the reaction plane is fixed, into a sum of terms involv-

ing lower-order distributionsk’ particles withk’ <k), plus

agconnected” term of reIatiIi(/eporder 8L This gesom- wherek and| go from 0 to+<, and the brackets denote an
position also applies to the moments of the distribution of the?VErage over many events. It is well known in graph theory
event-flow vectorQ defined by Eq(17). As pointed out in that the generating function of connected diagrams is the

Sec. Il B, moments of ordek involve k-particle azimuthal logarithm of the generating function of all diagrarf&5].

correlations. This allows us to write a series of equations "€réfore, the generating function of the connected moments

similar to Eqgs.(6) and (9): Is the logarithm of the generating function of the moments

[20]:
(Q)=(Q)c, (Bla N
VA4
(Q%)=(Q)+(Q?%.., (B1b) 2t (@R )e=InGo(2). (B3)
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The normalization coefficient &Y I! has been chosen such Now, we want to compare with the experimental value of
that(Q"Q*'}C appears with a unit coefficient in the expan- Gy(z), which is measured in the laboratory coordinate system
sion of<QkQ*'>, as in Eq.(B1). Expanding Eqs(B2) and  where the azimuth of the reaction plagg+ 0. The gener-

(B3) to orderz*?z, one finds, for instance, ating function in this coordinate system is deduced from Eq.

(B7) by the substitutiorz—z€?r. Averaging the new ex-
(Q%Q*)=(Q%Q*)—(Q?}{Q*)— 2(Q)(QQ*) pression over all possiblég, under the assumption that the
5 distribution of ¢ is uniform, one obtains
+2(Q)%Q*), (B4)
1 (2= , .

which can be checked by inverting E4B1) order by order. Go(2)= ﬂf exd (z€%"+z*e ') (Q) dor

Note that we are working in a coordinate system where the 0

reaction plane correponds to theaxis, and is unknown. In =14(2|Z)(Q)). (B8)

this coordinate system, the generating functiBg) is not a

measurable quantity. Gathering the results obtained in Eq&6) and (B8), we
obtain

2. Isotropic source
We now consider specifically an isotropic source, i.e., o 7 2k _
without flow. In that case, the mome(@*Q*') vanishes if kzo (k!)2<<|Q| N=InGo(2)=In10(2Z(Q)). (BY)

k1. The connected partaQ“Q*'). enjoy the same prop-

erty. Therefore, in the diagrammatic expansion, one only reExpanding Eq(B9) to order|z|%, one obtains an equation

. .. o
tains terms containing as many powerspés ofQ*, i.e., as relating (Q)2¢ to the cumulant((|Q|%)). However, when

many dots on the left as on the right. The quantity repre- .~ . ; :
sented in Fig. 7 does not satisfy this property, and therefort\évrltlng Eq. (B7), we have neglected direckaparticle cor

) . . . - ; relations and autocorrelations. As explained in Sec. B 1, both
it vanishes. A decomposition with nonvanishing terms is rep- I ; K
resented in Fig. 3. give a contribution of magnitudé/ to the cumulant

i - i : {{(|Q|?)). Thus, Eq.(B9) at order|z|?* is valid up to a cor-
becKc?rﬁglsng only the termk=1, the generating functio(B2) rrection of orde -k

4. Removing autocorrelations

® 12k
gO(Z):kzo (|Ii|T)2<|Q|2k>:<IO(2|ZQ|)>’ (BS)

Equation(B9) can be somewhat refined. In the case &f a
vector defined with unit weights, as in Ed.7), autocorrela-
wherel, is the modified Bessel function of order 0. Note tions can be calculated and subtracted explicitly, which is the

that now the generating functio, itself is isotropic, since Purpose of this section. _

Go(2) =G,(z€%). The consequence is that it can be evaluated This calculation has already been done in Sec. Il for the
in the laboratory coordinate system rather than in the coorloWest order=1 andk=2: we have seen in E¢20) that
dinate system associated with the reaction plane: it thus béi_laggnal terms give a contribution 1 in the expansion of
comes a measurable quantity. We define the cumulandQl®). In this paper, we refer to these diagonal terms as

through “autocorrelations.” Similarly, they give a contribution
—1/M to the fourth-order cumulanf(|Q|*)), see Eq.(27)
L and Appendix A.
2k\\ — — To calculate the contribution of autocorrelations to the
— =In Go(2)=In{ly(2|z . (B6
kgo (k!)2<<|Q| Z Go(2)=IClo(2[2Q))- (BE) cumulant at an arbitrary order, we once again make use of

the generating functiogy(z), Eqg. (B2). Neglecting correla-

They coincide with the connected mometit®|?¥) defined  tions for simplicity, the contributions of th#l particles to
in Eq. (B3) if the source is isotropic. Note that for an isotro- Yo(2) factorize, leading to

pic system, the raw momertQ|?*) is of order unity, as _ . M

noted in Sec. Il B. The corresponding cumulé(Q|¥)) is Go(2) = (exr(2x cosp+2y sing)/\M)];),  (B10)

of order M™%, Equation (B6) corresponds to Eq(25), _
where we have set=|z|. where we have set=x+iy, and the brackets here denote an

average ovetp. Assuming for simplicity that the distribu-
tion is isotropic, one obtains

3. Flow
Let us now calculate the cumulants in the case of colli- <2|z|) M
sions with flow. Neglecting for simplicity nonflow correla- Go(2)=| lg| —= . (B11
tions between particles, we can writ®@*Q* ') =(Q)X(Q*)' ™
=(Q)**!. The generating functiofB2) thus becomes
This is the expression of the generating function if there are
go(z)=e(2”*)<Q>. (B7) only autocorrelationgno direct correlations, no flow If
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FIG. 8. Decomposition ofQ Q* eZ“ﬂ) in connected parts, see EE10. As in Fig. 7, the dot on the leftight) of the dashed line stands

for Q (Q*). The linked crosses represent the proton, the number of crosses being chosen equal to the harmonic under sh#g, here
Circled subsetgconnected diagramsorrespond to connected moments.

there is flow, we assume that autocorrelations and flow giv@roton bym crosses on the left, for reasons that will become

additive contributions to the cumulants, which yields insteadclear below, when we consider the specific case of an isotro-

of Eq. (B9) pic source. For instance, E¢C10 can be represented dia-
grammatically by Fig. 8.

” |Z)2* o In order to express in a compact way the relations be-
> ——{QI*)=InGo(2)=In 14(2]2|{Q)) tween the momentgQ“Q*'e™”) and the corresponding
k=0 (kh) connected momentéQQ*'em”)., we introduce the fol-
2|7 lowing generating function
+Minly| —]. B12
O( N) (512 . pakvd .
Gm(2)=(exp(z* Q+2Q* )e™)= >, W (QQ*'e™).
o k!

This formula is equivalent to Eq28), which we use in Sec.
[l B. It removes exactly all autocorrelations when the event-
flow vectorQ is defined with unit weights, as in E¢L7).

(C2

Expandingg,(z) to orderz* kZ', one obtains all the moments
(Q*Q*'e™¥). In order to obtain the generating function of
the connected moments, we note that each diagram in Fig. 8
can be written as the product of a connected diagram con-

In this appendix, we follow closely the same procedure adaining the crosses, i.e., the proton, times an arbitrary dia-
in Appendix B, applied to differential flow. In Secs. C 1 and 9ram (not necessarily connectednvolving only pions,
C2, we first construct the relevant cumulantsWhich corresponds to the terni®“Q*') considered in Ap-
{(|Q|?*Q*'e™¥)), as a function of the measured momentspenqix B. For instance, using Eq®1a) and(Blc), one can
(Q*Q*'e™”). Here, ¢ denotes the azimuthal angle of the rewrite Eq.(C19 as
particle under studywhich we call a protop and m the . A .
order of the harmonic measured for this particle. Then, we (QQ*€™)=(QQ*)(e™’)+(Q)(Q*e™’)+(Q*)
relate the cumulants to the integrated flojy (Sec. C 3, and imy * aimy
show how to remove autocorrelatiof8ec. C 4. X(Qe™)e+{QQ e ™). €3

APPENDIX C: A GENERATING EQUATION FOR
DIFFERENTIAL FLOW

Therefore, the generating function of the diagrams with
1. Cluster decomposition pions and protongexp@E* Q+zQ* +imy)) is the product of
A quantity such a¢Q*Q*'e™) involves correlations be- the generating function of graphs with only pions, i&(2)
tweenk+1+1 particlesk+1 “pions” (according to the ter- defined in Eq(B2), by the generating function of connected
minology introduced in Sec. IVand a proton. This quantity graphs with pions and protons. This latter is therefore
can therefore be decomposed, in the coordinate system

where the reaction plane is fixed, into a sum of terms involv- 5 2l ima _ In(2) (g7 QreQ Himiy
ing lower-order correlations, plus a connected term of relalm(2) = Skl (QQre™)c= Go(z) <ez*Q+zQ*>
tive order 1IN¥"!. For instance, we can write (Ca)

imyy _ / Aimyr
() =(e™c, (Cl3 As in Eq.(B3), the normalization coefficient kY 1! has been

- - - chosen so thatQ*Q*'e'™¥) .. appears with a unit coefficient
(QE™)=(Q)(e™)+(Qe™).,  (CLy P S e e ey

(QQ*e™)=(Q)e(Q*)(e™")c+(QQ* ) (™),

* AlMys * Imys
H{Q):(Q e™)c+(Q):(Qe™)e We now consider the particular case of an isotropic
+(QQ*e™),, (Clg  source, without flow. Then the mome(®@*Q*'e'™¥) van-
ishes wherk+m#1, and so do the corresponding connected

where, in the third equation, the last term is of orded?/ parts. This is the reason why we chose to represent the pro-
relative to the first one. Such decompositions can be repraen with m crosses: in the isotropic case, only diagrams with
sented diagrammatically, in a way similar to the decomposithe same number of poin(srosses and doten each side of
tion of (Q*Q*') in Appendix B. We choose to represent the the dashed line do not vanish.

2. Isotropic source
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Expanding the generating functié€2) and keeping only
the nonvanishing terms, one finds

B o |Z|2kzm
gm“)—éo K (K+m)!

el

wherel, is the modified Bessel function of order.

We define the cumulanig|Q|?*Q*Me'™¥)) so that they
coincide with the connected moments in EG4) when the
source is isotropic. Using E@B5), this gives

(IQQ*mem™)

(CH

|Z|2kzm

Cn(2)= 2>, m<<|Q|2kQ* MMy )

k=0

sl
= . (C6)

(1o(2]2QD)

This equation is equivalent to E5), settingx=|z|.

3. Flow

Finally, we turn to the more general case of collisions
with flow. Neglecting for simplicity nonflow correlations be-

tween particles, the generating functi@@®2) becomes

Gml(z) =67y (%))

As explained in Sec. B3, this quantity is measured in theE
laboratory coordinate system, therefore one must reptace
by zér and average the new expression over all possible

¢r. That yields

Im(2) =vr’nJ02wqu'(Zé¢R+ z* e_i¢R)]<Q>eim¢R dZ(:R
Z m
=1m(2|2{Q)) <H U (c8)

Using Eq.(B8), the generating function of cumulant€4)
takes the form

Cm(z)_ |0(2|Z|<Q>) |Z| Um- (Cg)
Gathering Eqs(C6) and(C9), we obtain
o0 |Z|2kzm o
S e (100t em)
- _M(i>m ,
_Cm(z)_|o(2|Z|<Q>) EIRGE (C10

PHYSICAL REVIEW C 63 054906

pendently the integrated flogQ), one thus obtains the dif-
ferential flow v, from the cumulant. As discussed in Sec.
IV, the corresponding error from nonflow correlations is of

order (Q)M) Kk~ (m2),

4. Removing autocorrelations

In the case when the “proton” is included in the con-
struction of the event flow vectd,, i.e., if & is one of the
angles¢; in Eq. (17), the resulting autocorrelations can be
removed at the level of the generating functig(z) in Eq.
(C6): this subtraction is similar to that performed in Sec. B4
for the integrated flow.

Neglecting correlations for simplicity, the generating
function of the cumulants, defined by Egf4), becomes

(exd (2x cosy+ 2y sing+imy)/YMT),,
Cm(2)= :
(exd (2x cosy+ 2y sing) /M),

(C1D)

where we have set=x-+iy, and the brackets denote an
average ovety. Assuming for simplicity that thes distribu-
tion is isotropic, one obtains

(C12

(2 |m<2|z|/N>(z)m
z)=———F—— 17| -
ml 1o(2]2|/yM) 12l

This is the value of the generating function if there are only
autocorrelations. If there is flow in addition, we assume that
the contributions of autocorrelations and flow are additive.
guation(C10) is then replaced by

*° |Z|2kzm

S el

_[1n(212(Q)) , | Tw(2lzl/ VM)
10(2(ZKQ) ™™ 14(2]2|/M)

ol

|2|) -
(C13

This equation is equivalent to E¢66), settingx=|z|. This

formula removes exactly all autocorrelations when the vector
Q, is defined with unit weights.

APPENDIX D: INTERPOLATION FORMULAS

In this appendix, we give interpolation methods to calcu-
late numerically the cumulants from their generating func-
tions.

1. Integrated flow

The cumulants used for the measurement of the integrated
flow are defined by Eq(78). In order to compute numeri-

Expanding this equation to ordge|?*z™, one obtains a cally the cumulantg(|Q?<'|)) for k’=1, ... k from the gen-

proportionality  relation between  the

cumulant erating function, one can for instance tabulate the generating

((|QI%*Q*Me'™”y) and(Q)?** ™y . Having measured inde- function at the following points:
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=

) o

ax

(D1) Xp,qERe[ (ro\/ﬁcos ro\/ﬁsm

for p=1,... kandq=0,... gQma— 1. In this equationr is

a real number that should be chosen small enough for the Ypq=Im (rO\/BCOS ro\/Bsm
series expansion to converge rapidly, typicalfy-0.1, and

Omax 1S the number of angles at which the generating functiorfor p=1,... k+1 andq=0,... Omax— 1. The number of
is evaluated, which should satisfy the conditigp, 2K. anglesq ., must satisfy the conditiog,,,> 2 (k+m), as we

One then averages over the angle, thereby eliminatingee below.

nonisotropic terms up to ordéz|?: One then multiplie€,,(z) by z*™, takes the real part and
averages over azimuthal angles. Provided., is large

7T
Gpq=InGo ro\/ﬁcosq—ro\/ﬁsmq

max

q"% ! enough, one thus eliminates all nonisotropic terms up to or-

Gp= Umax &0 Gp.a- D2 gerz+kzk+m in the generating function:
max~ 1

Then, theG,,, with p=1,... k, are related to the cumulants c— (rovp)™* D [cos( 2m qﬂ) X

{(1QJZ'Y) with k' =1,... k by the following linear system P Omax  d-0 Omax /9

of equations:

S [2mqgm
K 2k’ +sin q ) Yp,q}. (D6)
max
=2 ({IQP*))——p" 1=p=k. (D3
K'=1 (k")2 Then, the values o€, for p=1,.. k+1 are related to the

cumulants((|Q|?'Q*Me'™#)) for k'=0,... k by the fol-

For practical purposes, it is enough to take3, as ex- R S
lowing linear system of equations:

plained in Sec. Il D. In this case, the solution of the above

system reads k 2(k +m)pk +m

1 3 1 =2 (lQl*Q*me 'm‘”))m, 1<p<k+1.
J— k'=0

<<|Q|2>>:% 361_§G2+ §G3 , (D7)

5 Takingk=1 is sulfficient for most purposes, as shown in Sec.
Q4= r_4(_561+4 G,— Ga), IV C. For m=1, the solution of this system is
0

_ = 1 1
__ 6 <<Q*e'“f>>=;z(2cl—§c2),
«lQl%)= ;3(3 G;—3G,+Gy). (D4) 0

— 1
(|QlPQ*e"))=4(-2C1+Cy), (D8)
2. Differential flow o
The cumulants used for the measurement of the harmoniwhile for m=2,
v,, are defined from the generating function by E8g). In
order to compute numerically the cumulants <<Q*2 2.¢,>>_ (4C1 EC )
{(|Q|*' Q*me™”)) for k'=0,...k, from the generating
function, we first tabulate the real and imaginary parts of the B 1 3
generating function, defined by E(82), at the following ((|QJ2Q* 2%y = r_G( —6C,+ ECZ)' (D9)
points: 0
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