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Three-dimensional Langevin calculations of fission fragment mass-energy distribution
from excited compound nuclei
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A stochastic approach to fission dynamics based on three-dimensional Langevin equations was applied to
calculate fission fragment mass-energy distribution from a number of excited compound nuclei formed in
reactions induced by heavy ions. Evaporation of prescission light particles along Langevin fission trajectories
from the ground state of the compound nucleus to its scission has been taken into account using a Monte Carlo
simulation technique. Inclusion of the third collective coordinate in Langevin dynamics leads to a considerable
increase of the variance of the mass and the kinetic-energy distributions of fission fragments as compared with
two-dimensional Langevin calculations. A liquid-drop model with finite range of nuclear forces and a modified
one-body mechanism for nuclear dissipation have been used in the calculations. The results of the calculations
are compared with the available experimental data. The calculations performed using the three-dimensional
Langevin dynamics reproduce sufficiently well all the parameters of the two-dimensional fission fragment
mass-energy distribution and their dependence on various parameters of the compound nucleus. The mean
prescission neutron multiplicities are also reproduced with good accuracy. In order to reproduce simulta-
neously the measured prescission neutron multiplicities and the variance of the fission fragment mass-energy
distribution, the reduction coefficient of the contribution from a wall formula has to be decreased at least by
half of the one-body dissipation strength (0.25<ks<0.5).
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I. INTRODUCTION

During the last two decades a stochastic approach@1–4#
based on the multidimensional Fokker-Planck equat
~FPE! @5–8# or on the set of multidimensional Langev
equations, which is equivalent@9# to the multidimensional
FPE, has been extensively and rather successfully use
solve many problems of collective nuclear dynamics in su
reactions as fusion-fission, deep-inelastic heavy-ion co
sions, induced fission, and quasifission~see reviews@3–6#
and references therein!. Almost all the problems of collective
nuclear dynamics are essentially multidimensional, but
multidimensional FPE can be solved only using approxim
methods@5–8#, while numerical solution of the equivalen
system of Langevin equations is possible nearly without
approximations. Therefore, although at the beginning of
1980s application of the stochastic approach to nuclear
namics was based mainly on the FPE, an obvious prefere
has been given recently to the Langevin equations@3,4#. It
should be noted that the computation time and the amoun
calculation increase extremely fast with the increasing nu
ber of collective coordinates in the Langevin equations. B
cause of this the stochastic approach based on the Lang
equations had not been applied so far in its full extent
study the characteristics of induced fission. Up to now o
one-dimensional @4,10# and two-dimensional @11–16#
Langevin calculations have been carried out. The la
makes it possible to calculate the mass and the kine
energy distributions of fission fragments, as well as the m
prescission neutron multiplicities and fission probabili
whereas the main subject of the one-dimensional calculat
@4,10# is only the analysis of the mean prescission multipl
0556-2813/2001/63~5!/054610~15!/$20.00 63 0546
n

to
h
i-

e
e

y
e
y-
ce

of
-
-
vin
o
y

r
c-
n

,
ns
-

ity of light particles and fission probability. But even in th
two-dimensional Langevin calculations the problem of t
mass and the kinetic-energy distributions was solved@11–
16# only in a restricted form. First, attention was paid
computation of only the first and second moments of
distributions. Second, these were the parameters of the
dimensional distributions. The kinetic-energy distributio
was computed@11–14# for symmetric fission, whereas th
mass distribution corresponded to the most probable kin
energy. Furthermore, the correlation of the parameters
these distributions was ignored.

The characteristics of the experimentally observed tw
dimensional mass-energy distribution~MED! of fission frag-
ments are usually discussed in terms of the first and sec
moments of the one-dimensional distribution, which can
obtained from the two-dimensional MED of fission fra
ments by integration over the proper parameter. Con
quently, the theoretical approaches used to interpret the
perimental data, including the Langevin dynamics, sho
also guarantee the possibility of computation of the fiss
fragment MED and, on the basis of this distribution, t
one-dimensional fission fragment mass and kinetic-ene
distributions and their moments. So far, the two-dimensio
MED of fission fragments has been investigated sufficien
fully for the first time in the studies of Nix and Swiatecki i
their dynamical model@17# with zero viscosity, and later by
Adeev and co-workers@6,18# in the framework of a diffusion
model based on the multidimensional FPE. In addition to
possibility of adequate comparison with the experimen
data, the theoretical investigation of the two-dimensio
MED of fission fragments is of great interest from the po
of view of studying correlation of the distribution param
eters. The correlation of the fission fragment masses and
©2001 The American Physical Society10-1
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netic energies contains additional information about sciss
configuration of the fissioning nucleus.

In the present paper we report the results of system
calculations of the fission fragment MED performed usi
the stochastic approach based on the three-dimens
Langevin equations. It should be mentioned that qualita
estimations of the influence that the third collective coor
nate~mass asymmetry coordinate! in the Langevin dynamics
exerts on the parameters of the fission fragment kine
energy distribution, as well as some computational resu
were first presented in Ref.@3#, but a systematic study of th
two-dimensional MED of fission fragments had not be
done there.

The purpose of the paper is to study fission dynam
consistently from the ground state of the compound nucl
to its scission under discrete cooling due to evaporation
light prescission particles and to calculate the mean mu
plicities of these particles, particularly of neutrons, as well
the parameters of the two-dimensional MED of fission fra
ments. We hope to draw some conclusions about the d
pation mechanism of nuclear collective motion in fission
excited nuclei by comparison of the theoretically calcula
values of the observable quantities with the experime
data. Our research in this paper is restricted to a fission
sufficiently excited nuclei formed in reactions of comple
fusion in the entrance channel of reactions. Our model ne
further development for reactions of quasifission~fast fis-
sion!. A detailed description of dynamics in the entran
channel of the reactions is necessary. The paper is organ
as follows: the model and basic equations are descr
in Sec. II; the calculations and numerical results are d
cussed in Sec. III; finally, the concluding remarks are giv
in Sec. IV.
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II. THE MODEL AND BASIC EQUATIONS

A. Parametrization of nuclear surface and collective
coordinates

A felicitous parametrization of the shape of a fissioni
nucleus is very important when investigating its dynami
evolution. Optimal for our purposes is the well-know
@19,20# ‘‘funny hills’’ parametrization$c,h,a%. Actually, in
our dynamical calculations we used a slightly modified fo
of the$c,h,a% parametrization. This conveniently provides
three-parametric family of shapes that have been emplo
in numerous studies of static@19,20# as well as dynamica
@6,13–15# characteristics of fissioning nuclei. It was show
@19,20# that this simple parametrization describes with rath
a good quantitative accuracy the properties of the sad
point shapes obtained in liquid-drop model~LDM ! calcula-
tions, where practically no restrictions were imposed
nuclear shapes@21,22#.

In cylindrical coordinates the surface of the nucleus
given by

rs
2~z!55 c22~c22z2!S Asc

21Bz21
a8z

c2 D , B>0

c22~c22z2!S Asc
21

a8z

c2 D exp~Bcz2!, B,0,

~1!

wherez is the coordinate along the symmetry axis andrs is
the radial coordinate of the nuclear surface. In Eq.~1! the
quantitiesAs and B are defined by means of the shape p
rameters as
B52h1
c21

2
,

As55
c232

B

5
, B>0

2
4

3

B

exp~Bc3!1S 11
1

2Bc3DA2pBc3erf~A2Bc3!

,
B,0.

~2!
etry

r in-
In Eqs.~1! and~2! c denotes the elongation parameter~the
length of the nucleus is equal to 2c in units of the spherica
nucleus radiusR0), the parameterh describes a variation in
the thickness of the neck for a given elongation of t
nucleus, and the parameter of the ‘‘mirror’’~mass! asymme-
try a8 determines the ratio of the volumes~masses! of future
fragments. In the symmetrical casea850 a family of sym-
metric shapes is obtained, ranging from the spherical sh
(c51,h50) to the two-fragment shapes (As,0). For the
case ofa8Þ0 different asymmetric shapes are obtained.
pe

careful comparison of the Eq.~1! with the equation of the
surface function in the original$c,h,a% parametrization
shows that we have introduced a different mass asymm
parameter scaled with elongation

a85ac3. ~3!

The advantages of using this mass asymmetry paramete
0-2
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THREE-DIMENSIONAL LANGEVIN CALCULATIONS OF . . . PHYSICAL REVIEW C 63 054610
stead ofa in the framework of the$c,h,a% parametrization
were pointed out and discussed by Pauli@23# many years
ago.

Within the framework of the chosen parametrization o
can introduce collective coordinates that are more nat
from the physical point of view. These coordinates for fi
sion process areR @19,21# that is the distance between th
centers of mass of future fragments, andh @24–26# that is
equal to the ratio of the difference of the fragments mas
their sumh5(A12A2)/(A11A2). The coordinatesR andh
have been often used@6,13–15,23–26# as the elongation and
the mass asymmetry collective coordinates. It is particula
convenient to useR and h when one is investigating th
energy and mass distributions of fission fragments.

The mass asymmetry parametera8 is proportional to the
mass asymmetry coordinateh, as

h5
3

8
a8. ~4!

Furthermore, the mass asymmetry parametera8 is simply
related to the mass~volume! ratio of forming fragments

A1

A2
5

V1

V2
5

11
3

8
a8

12
3

8
a8

, ~5!

which is defined as the ratio of the volumes of two parts
the nucleus obtained when the latter is intersected by
planez50 @23,27#.

It is also interesting to note thatR andh are the first two
collective coordinates in the theoretical scheme@28# that
uses the multipole moments of nuclear density for specify
the collective coordinates. However, the use of the collec
coordinates (R,h,h) instead of the coordinates (c,h,a8)
leads in three-dimensional Langevin calculations to seri
computational problems. It is evident that there are no
plicit expressions for dependence of the shape parame
(c,h,a8) on the coordinates (R,h,h). Therefore it is neces
sary to carry out tiresome recalculations that substanti
increase the computational time. Because of these disad
tages and computational difficulties, we have chosen the g
metrical shape parameters as the collective coordina
(c,h,a8)5(q1 ,q2 ,q3). The most important advantage o
this choice is the possibility to enlarge considerably the
mension of the grid with respect to the constriction para
eter h and the elongation parameterc. This enlargement is
very desirable for modeling the fission dynamics in the s
chastic approach, but it is impossible in the original vers
of the $c,h,a% parametrization.

B. Basic equations

In the stochastic approach evolution of the collective
ordinates is@1–4# considered as motion of Brownian pa
ticles that interact stochastically with a large number of
ternal degrees of freedom, constituting the surround
‘‘heat bath.’’ The hydrodynamical friction force is assume
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to be derived from the random force averaged over a t
larger than the collisional time scale between collective a
internal degrees of freedom. The random part is modeled
a Gaussian white noise that causes fluctuations of the co
tive variables, and, as a final result, fluctuations of the phy
cal observables in fission process. The coupled Lange
equations used in the dynamical calculations have the fo

q̇i5m i j pj ,

ṗi52
1

2
pj pk

]m jk

]qi
2

]V

]qi
2g i j m jkpk1u i j j j , ~6!

where q5(c,h,a8) are the collective coordinates,p
5(pc ,ph ,pa8) are the conjugate momenta,V(q) is the po-
tential energy,mi j (im i j i5imi j i21) is the tensor of inertia,
g i j is the friction tensor,u i j j j is a random force, andj j is a
random variable satisfying the relations

^j i&50,

^j i~ t1!j j~ t2!&52d i j d~ t12t2!. ~7!

Thus, the Marcovian approximation is assumed to be va
In these equations, and further in this paper, we use the
vention that repeated indices are to be summed over fro
to 3, and the angular brackets denote averaging over an
semble.

Eigenvalues and eigenvectors of the diffusion matrixDi j ,
which are used@4# for calculation of the strength of random
force, have been calculated by the Jacoby method@29#. The
strengths of the random force are related to the diffus
tensorDi j by the equation

Di j 5u ikuk j , ~8!

which, in turn, satisfies the Einstein relation

Di j 5Tg i j . ~9!

HereT is the temperature of the ‘‘heat bath’’ which is dete
mined by the Fermi-gas model@30# formula

T5@Eint /a~q!#1/2, ~10!

whereEint is the internal excitation energy of the nucleu
anda(q) is the level density parameter that depends on
collective coordinates as follows:

a~q!5avA1asA
2/3Bs~q!, ~11!

whereA is the mass number of the compound nucleus, a
Bs is the dimensionless functional of the surface energy
the LDM with a sharp surface@19,22#. The values of the
parametersav50.073 MeV21, as50.095 MeV21 in Eq.
~11! have been taken from the work of Ignatyuket al. @31#.

During a random walk along the Langevin trajectory
space of the collective coordinates, the energy conserva
law has been used in the form

E* 5Eint1Ecoll1V~q!1Eevap~ t !, ~12!
0-3
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KARPOV, NADTOCHY, VANIN, AND ADEEV PHYSICAL REVIEW C 63 054610
whereE* is the total excitation energy of the nucleus,Ecoll is
the kinetic energy of the collective degrees of freedom, a
Eevap(t) is the energy carried away by evaporated partic
by the timet.

The Langevin trajectories are simulated starting from
ground state with the excitation energyE* of the compound
nucleus. The initial conditions were chosen by the Neum
method with the generating function

P~q
0
,p

0
,l ,t50!;expH 2

V~q
0
!1Ecoll~q

0
,p

0
!

T J
3d~q2q0!F~ l !. ~13!

In the used approach it is necessary to choose the initial s
of the fissioning system at its ground state for each pa
wave l. But for large values ofl a potential energy pocke
disappears, and the choice of initial collective coordina
becomes undefined. Therefore, we start modeling fission
namics from a spherical nucleus, i.e.,q05(c051.0,h0

50.0,a0850.0). The initial state is assumed to be charac
ized by the thermal equilibrium momentum distribution, a
by a spin distributionF( l ) for heavy-ion complete fusion
This choice of the initial conditions means that we restr
ourselves to a situation where an equilibrated compo
nucleus has been formed in a heavy-ion fusion reaction
fore the fission process starts. Therefore, the formalism
the present model is not suitable to describe quasifission~fast
fission! reactions. Contrary to the calculations@13,14,16#
performed for zero angular momentum, the spin distribut
has been taken into account in these calculations. We h
parametrized the compound nuclei spin distributionF( l ) ac-
cording to the scaled prescription@4,10#, which reproduces
to a certain extent the dynamical results of the surface f
tion model@32# for fusion of two heavy ions. At the end o
the discussion concerning the initial conditions given by E
~13! it should also be noted that for fusion-fission reactio
at high excitation energies, and especially at a high ang
momentum, the traditional concept of an equilibrated co
pound nucleus with fixed excitation energy appears to b
rather unrealistic idealization of the real complicated sit
tion.

The potential energy of the nucleus was calculated wit
the framework of a macroscopic model with finite range
the nuclear forces@33,34#. The potential energy was obtaine
as a sum of the Coulomb energy, the generalized sur
energy ~the nuclear interaction energy!, and the rotational
energy, as usual. The parameters of the model were ta
from Ref. @34#. In contrast to Refs.@6,18#, where the poten-
tial energy was calculated in the harmonic approximati
V(c,h,a)5V(c,h,a50)1Ca

2/2, using the local stiffness
Ca with respect to the mass asymmetry coordinatea, similar
assumptions have not been done in the present work.
potential energy, as well as the other transport coefficient
the Langevin equations, have been calculated on the unif
three-dimensional grid with 1513101351 grid points and
cP@0.7,3.7#, hP@20.6,0.4#, and a8P@21,1#. Interpolation
between the grid points has been performed using
Lagrange formulas.
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It is well known @30,35# that in order to calculate the
conservative part of the driving forces governing the colle
tive motion of the thermodynamical system one should us
thermodynamical potential~for instance the free energy@2#
or the entropy@4#! rather than the bare potential. Unfortu
nately, there is a large uncertainty in the temperatu
dependent parameters of the LDM with a sharp surface@36–
38#. Just recently@39# the finite-range LDM with a Yukawa-
plus-exponential nucleon-nucleon interaction has b
generalized to describe the temperature dependence o
free energy. Therefore, it is more reliable and reasonable
our opinion, to use for the first three-dimensional Lange
calculations, presented in this paper, the potential energy
stead of the free energy. Possible improvements in this
rection could be made in future studies.

The potential energy surfaces for the nuclei206Po and
260Rf in the coordinatesc andh are shown in Figs. 1 and 2
with the mean dynamical trajectories of the fissioning syst
during its evolution from the ground state to scission. T
mean dynamical trajectory is a trajectory obtained in o
dynamical Langevin calculations by averaging over a traj
tory ensemble. In this case the Langevin equations coinc
with the generalized Hamilton equations, since the term
sponsible for fluctuations~the random force! drops out after
averaging. The initial conditions were chosen at the sad
point, with a850 and pa850. For 260Rf the saddle point
coincides practically with the ground state. While the syst
evolves from the saddle point to scission, the averaged
ues of the mass asymmetry parameter and the conjugate
mentum are identically equal to zero, due to the initial co
ditions. So the mean dynamical trajectories lie in the (c,h)
plane and are identical to those obtained from the solution
the generalized Hamilton equations@40#. Figure 3 shows
some selected shapes resulting from Eqs.~1! and ~2! for a

FIG. 1. The potential energy surface for the compound nucl
206Po in the case ofa850 at zero angular momentum. The thic
solid curve is the mean dynamical trajectory. The thin line is
scission line determined from the intersection of the scission
face ~see text for explanation! and the planea850. The mean dy-
namical trajectory was calculated with the reduction coefficientks

50.25.
0-4
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THREE-DIMENSIONAL LANGEVIN CALCULATIONS OF . . . PHYSICAL REVIEW C 63 054610
few valuesc and h, as well as an illustrative sequence
shapes along the mean dynamical trajectory from the gro
state of the fissioning nucleus through the saddle point to
scission. As was noted above, the main distinction of t
figure from the analogous figures in Refs.@19,20# is the con-
siderably enlarged dimension of the grid with respect to
constriction parameterh and the elongation parameterc. It is
desirable for modeling of random walk of Brownian particl
in the collective coordinate space.

Intersection of a mean dynamical trajectory with a sci
ion surface determines the mean scission point. In our ca
lations made with the potential energy surfaces shown
Figs. 1 and 2, and the reduction coefficientks50.25, this
point has the following values of coordinates:csc52.1, hsc
520.07 for the nucleus206Po andcsc52.2, hsc520.11 for
the nucleus260Rf. It is in a good agreement with our prev
ous calculations in the diffusion model@6#. The values of the
repulsive Coulomb and the nuclear attractive energies
gether with the prescission kinetic energy determine
value of the total kinetic energy of fission fragments. Flu
tuations of the scission points of the individual stochas
Langevin trajectories around the mean scission point de
mine the value of the variance of the fission fragment m
and kinetic-energy distributions~see a more detailed quant
tative discussion in Sec. III!.

The inertia tensor is calculated by means of the Wern
Wheeler approximation for incompressible irrotational flo
Description of the method is given, for example, in Ref.@40#.
It was shown in Ref.@41# that the Werner-Wheeler metho
allows, with surprisingly high accuracy, to perfom calcu
tion of the inertia tensor for almost all shapes of the fissi
ing nucleus, with the exception of the zero neck radius c
figurations.

A modified one-body mechanism of nuclear dissipat
@42,43# has been used for determination of the dissipat
part of the driving forces. The expression applied to calcu
the friction tensor for so-called surface-plus-window dissip
tion reads as follows:

FIG. 2. The same as in Fig. 1, but for the compound nucl
260Rf. The mean dynamical trajectory was calculated with the
duction coefficientks50.25.
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1

2
rmv̄H]R

]qi

]R

]qj
Ds1

32

9

1

Ds

]V1

]qi

]V1

]qj

1kspF E
zmin

zN S ]rs
2

]qi
1

]rs
2

]z

]D1

]qi
D S ]rs

2

]qj
1

]rs
2

]z

]D1

]qj
D

3Xrs
21S 1

2

]rs
2

]z D 2C21/2

dz1E
zN

zmaxS ]rs
2

]qi
1

]rs
2

]z

]D2

]qi
D

3S ]rs
2

]qj
1

]rs
2

]z

]D2

]qj
D Xrs

21S 1

2

]rs
2

]z D 2C21/2

dzGJ, ~14!

whererm is the mass density of the nucleus,v̄ is the average
nucleon speed inside the nucleus,Ds is the area of window
between two parts of the system,D1 , D2 are the positions of
mass centers of two parts of the fissioning system relativ
the center of mass of the whole system,zmin andzmax are the
left and right ends of the nuclear shape,zN is the position of
the neck plane that divides the nucleus into two parts.
have chosen the position of thezN at minimum ofrs

2(z), but
not at thezN50, as it was assumed in Refs.@23,27#. This
formula is reduced for the symmetrical forms and b

FIG. 3. Illustration of the parametrization of the nuclear shap
obtained from Eq.~1!. The asymmetry parametera8 is fixed to zero
to yield shapes with reflection symmetry about the planez50. The
thick solid curve indicates the mean dynamical trajectory for
compound nucleus260Rf from the saddle point to the ground sta
and from the saddle point to the scission point. The reduction
efficient ks50.25.
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KARPOV, NADTOCHY, VANIN, AND ADEEV PHYSICAL REVIEW C 63 054610
comes similar to the one presented in Ref.@44#; ks is the
reduction coefficient of the contribution from the wall fo
mula in Refs.@44,45#. The valueks51 corresponds to the
classic wall-and-window dissipation formula@45#. A quan-
tum treatment of one-body dissipation showed@46# that the
nuclear viscosity is only about 10% of the value calculated
accordance with the wall expression, although the functio
dependence of the one-body dissipation on a change in
nuclear shape is correctly reproduced by the wall express
Therefore, in the modified variant of one-body dissipatio
proposed in Refs.@42,43#, which is called the surface-plus
window dissipation, the contribution to the dissipation due
collisions of nucleons with the nuclear surface was appre
bly reduced~by almost four times; the reduction coefficie
ks50.27). This value ofks was obtained@42# from analyzing
experimental data on the widths of giant resonances. H
ever, comparison of the calculated results with the exp
mental data of the mean values of the total kinetic energy
fission fragments for all fissioning nuclei throughout the p
riodic system suggests@43# the limits 0.2<ks<0.5. Elucida-
tion of the mechanism of nuclear viscosity in fission and
reliable estimation of its value continue to be essentia
open questions.

In Eq. ~14! the original wall-and-window formula@45#
was completed by an additional term, following@5,47# @the
second term in bold curly braces in Eq.~14!#, which takes
into account the dissipation associated with the rela
changes of two interacting nascent fragments. From Fig
one can see that this term gives an appreciable contribu
to the diagonal mass asymmetry component of the frict
tensorga8a8 and, hence, to the corresponding componen
the diffusion tensorDa8a8 . And, as a final result, this term
strongly influences the values of the variance of the fiss
fragment mass distribution. Dynamical calculations witho
this term would be strongly inadequate, as it is mentioned
@47#. Our two-dimensional calculations@16# of the fission
fragment mass distribution agree with this statement.

For strongly necked-in shapes the friction tensor has b

FIG. 4. The components of the friction tensor along the me
dynamical trajectory for the compound nucleus260Rf as the func-
tions of the elongation parameterc. The dashed curve is thega8a8
component without additional term in Eq.~14!. The components
gca8 and gha8 are equal to zero in the case wherea850. The re-
duction coefficientks50.25.
05461
n
al
he
n.
,

o
a-

-
i-
f

-

a
y

e
4

on
n
f

n
t
in

n

calculated using the wall-and-window formula, Eq.~14!. For
compact mononuclear shapes only the wall formula has b
used with the reduction factorks . In the intermediate case
for the shapes that are neither compact nor stron
necked-in a smooth interpolation@48# between the wall and
the wall-and-window formulas has been used, with a fo
factor going to 1 for mononuclearlike shapes, and going t
for the shapes with zero neck radius.

Figures 4 and 5 show the components of the friction a
the inertia tensors as functions of the elongation parametc
from the ground state of the fissioning system to its sciss
along the mean dynamical trajectory. It can be seen tha
components of the both tensors have smooth behavio
should be noted that the both friction tensor and the ine
tensor are essentially nondiagonal over a great part of e
lution of the fissioning system from the ground state to sc
ion. This is the reason for an appreciable deviation of
mean dynamical trajectory from the bottom of the fissi
valley ~see Figs. 2 and 3!. The diagonal components in
crease, especiallymhh andghh , while the fissioning system
approaches to scission. The main features of the depende
of mi j andg i j are rather similar to those described earlier
Refs. @6,14#. Figures 2 and 3 draw attention to the fact th
from the very beginning of descent from the saddle point
mean dynamical trajectory deviates appreciably from
bottom of the fission valley~line h50 fits approximately the
bottom of the fission valley!. The reason for this is obviously
the strong nondiagonality of the inertia and friction tensors
the (c,h) coordinates~see Figs. 4 and 5!. The calculated
components of the inertia tensor show that these coordin
are not normal coordinates, and thec andh modes cannot be
considered as independent. This is indicated by the valu
the nondiagonal component of the inertia tensormch being,
on the average, of the same order of magnitude as the p
uct of the diagonal components of the inertia tensormcc and
mhh , i.e., mch

2 /(mccmhh)'1. In an ideal parametrization in
which the collective coordinates are normal~or almost nor-
mal! this ratio should be small, and the mean dynami
trajectory should pass near the bottom of the fission valley
was pointed out in Ref.@19# that the coordinates (R,h) are

n FIG. 5. The components of the inertia tensor along the m
dynamical trajectory for the compound nuclei260Rf as the functions
of the elongation parameterc. The componentsmca8 andmha8 are
equal to zero in the case wherea850.
0-6
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THREE-DIMENSIONAL LANGEVIN CALCULATIONS OF . . . PHYSICAL REVIEW C 63 054610
more natural dynamical coordinates and can be regarde
approximately independent. As the calculations showed,
nondiagonality of the tensorsmi j andg i j is expressed much
less strongly in the coordinates (R,h) than in the coordinates
(c,h), and therefore the mean dynamical trajectories sho
pass closer to the corresponding bottom of the fission val

Study of deep-inelastic collisions gives much informati
on nuclear dissipation. These are grazing collisions wh
the dinuclear systems are connected by a relatively thin n
There is a little mass transfer on the average, and interpr
tion of the data, although indicating high dissipation, is a
biguous. Study of dissipation in fusion-fission and quasi
sion reactions is of great interest because it might@36# shed
light on dissipation in the mononuclear systems, perhap
might give information on the effects of symmetries@49#,
and on the role of chaos@50#, particularly at the stage of th
process before the saddle point is reached.

Evaporation of the prescission light particles is incorp
rated in the present model as follows. During the tempo
evolution of the fission trajectory the internal excitation e
ergy is calculated at each time step. Correspondingly,
partial evaporation widthsG j ( j 5n,p,d,t,3He,a,g), the to-
tal width G tot5( jG j , and the mean evaporation timet tot

5\/G tot are calculated by the Weisskopf formula@51,52#.
The Langevin equations are integrated by means of
Heuen finite difference scheme@4,12# of the first order. The
step of integration isDt. Knowing the time step of the dif-
ference scheme we can determine the probability for
nucleus to evaporate a particle using the following proced
@53,54#: a random numberz uniformly distributed in the in-
terval (0,1) is generated and compared with the ratio of
time stepDt to the mean evaporation timet tot . It is assumed
that one of the particles (n,p,d,t,3He,a,g) is evaporated if
z,Dt/t tot . A specific particle is chosen by means of Mon
Carlo sampling, the probability of emitting a given particle
proportional to the relevant partial widthG j . This procedure
allows one to treat particle evaporation discretely, and no
the continuous approximation@11,12#, and simulates the law
of radioactive decay with half-lifet tot . Among the prescis-
sion light particles neutrons play a special role@55#, because
their number is much greater than the number of evapor
charged particles (p,d,t,3He, anda particles! or g quanta.
The mean multiplicity of the prescission neutrons is a m
sure of the time scale of the fission process. It is a kind
nuclear clock@55,56# that enables one to evaluate the tim
spent by the fissioning nucleus between its ground state
scission configurations. A direct confrontation of the expe
mental data on prescission neutron multiplicities with t
calculated results in the framework of the stochastic
proach based on the Langevin or the Fokker-Planck eq
tions has allowed@3,12# a qualitative determination of th
key parameter, entering this description, namely the nuc
friction. Therefore, one of the main goals of the present c
culations is to determine the value of the reduction factorks
of surface-plus-window dissipation by comparing the expe
mental data on the MED of fission fragments and the pres
sion neutron multiplicities with our calculated results.
05461
as
e

ld
y.

re
k.

ta-
-
-

it

-
l

-
e

e

e
re

e

in

ed

-
f

nd
-

-
a-

ar
l-

i-
s-

III. RESULTS AND DISCUSSIONS

A. Discussion of calculated results of the fission fragment
MED

We have carried out calculations of the observables
fission of the compound nuclei206Po, 224Th, 244Cm, and
260Rf formed in the following heavy-ion reactions:

~1! 12C1194Pt→206Po ~Elab599 MeV!;

~2! 16O1208Pb→224Th ~Elab5108 MeV!;

~3! 12C1232Th→244Cm ~Elab597 MeV!;

~4! 20Ne1240Pu→260Rf ~Elab5142 and 174 MeV!.

Our calculated results and the experimental data fr
Refs.@57–60# are summarized in Tables I and II.

The fullest and clearest representation of the calculati
of the fission fragment MED is in the form of contour dia
grams of the distributionY(EK ,M ). The typical diagrams
calculated in the stochastic approach based on the th
dimensional Langevin equations are shown in Figs. 6 an
for example, for the compound nucleus260Rf for two exci-
tation energies. For comparison, Figs. 6 and 7 also show
experimental diagrams taken from Ref.@57#. We first must
note a good agreement in the general behavior of the c
tours in the experimental and theoretical diagrams. The c
tour diagrams calculated in the present study are comple
similar to those obtained in Ref.@17# in the framework of the
dynamical model with zero viscosity, although the method
calculatingY(EK ,M ) in Ref. @17# and that applied in the
present work were different. It can be seen from Figs. 6 a
7 that near the maximum ofY(EK ,M ) the shapes of the
contours are nearly ellipsoidal, whereas in the region
small Y(EK ,M ) the contours become similar to triangle
with rounded corners. The same change in the shape o
contours was noted in Refs.@17,18#. In Figs. 6 and 7 one can
see how with increasing of the excitation ener
the width of the fission fragment MED increases~for a
quantitative analysis of this increasing of the variance
the fission fragment mass distributionsM

2 and the fission
fragment kinetic-energy distributionsEK

2 see the next section

and Table II!. The contour diagrams also clearly show t
existing liquid-drop correlation of the ratio of mass
and kinetic energies of fission fragments. One of charac
istic manifestations of this correlation is the presence,
fixed M, of maxima in the distributionsY(EK ,M ) in the
region of smallEK . No doubt, such a shape of these loc
distributions does not indicate an asymmetric fission,
existence of which would be reflected quite differently
the shape of theY(EK ,M ) contours ~see, for example,
Ref. @61#!.

Using the calculated distributionY(EK ,M ) we can find
all the parameters that characterize it, and in terms of wh
the experimental data are usually discussed and comp
with the predictions of theoretical approaches. These
first and foremost, the first and second moments of the o
dimensional mass and energy distributions, which are
0-7
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TABLE I. Calculated results for the fission of206Po, 224Th, and 244Cm formed in the reactions12C1194Pt→206Po (Elab599 MeV!;
16O1208Pb→224Th (Elab5108 MeV!; 12C1232Th→244Cm (Elab597 MeV!. The columns contain~from left to right! the compound nucleus
~CN!, the excitation energy (E* ), the reduction coefficient of surface-plus-window dissipationks , the variance of the mass and kineti
energy distributions of fission fragments (sM

2 andsEK

2 ), the average total kinetic energy (^EK&), the mean prescission neutron multiplicit
(^npre&), the average time of collective motion of the compound nucleus from its formation to the scission configurations (^t f&), and the
average temperature of the compound nucleus at its scission (^Tsc&).

E* sM
2 sEK

2 ^EK& ^t f& ^Tsc&
CN ~MeV! ks (u2) (MeV2) ~MeV! ^npre& (10221 s! ~MeV!

206Po 76.6
0.10 341631 375634 144.960.6 1.5 26 1.97
0.25 280626 180617 144.560.4 2.8 111 1.82
0.50 234624 121612 143.060.4 3.6 213 1.73
1.00 222625 114613 131.060.4 3.9 305 1.69

Expt. @57# 16564 10663 146.560.8 2.8

224Th 53.8
0.10 322621 158610 154.760.3 0.7 22 1.75
0.25 272617 12168 154.360.2 1.5 65 1.67
0.50 243613 10566 154.160.2 2.2 141 1.59
1.00 203621 9669 154.060.4 2.7 258 1.53

Expt. @59,60# a 213 137 162.461. 2.5

244Cm 69.2
0.10 364619 210611 172.660.3 1.4 13 1.92
0.25 315614 15567 172.460.2 2.0 24 1.88
0.50 271623 132611 172.160.3 3.2 64 1.76
1.00 233635 120618 172.060.5 4.2 154 1.65

Expt. @58# 366 259 178 3.0

aThe experimental values of^npre& have been taken from@59#. Experimental values of the variance and the mean kinetic energies have
taken from@60# for 224Th compound nucleus.
n

ent
D
the
are
it
tained by integratingY(EK ,M ) overEK andM, respectively.
Of interest then are the functions^EK(M )&, sEK

2 (M ), and
sM

2 (EK) ~the mean value of the fragment kinetic energy a
its variance at a fixed value ofM and the variance of fission
fragment mass distribution at a fixed value ofEK), which
05461
d

reflect correlation of the parameters of the fission fragm
MED. All information about the characteristics of the ME
of fission fragments will be discussed later on in terms of
one-dimensional mass and energy distributions, which
obtained from the fission fragment MED by integrating
TABLE II. The same as in Table I, but for the fission of260Rf formed in the reactions20Ne1240Pu→260Rf (Elab5142 and 174 MeV!.

E* sM
2 sEK

2 ^EK& ^t f& ^Tsc&
CN ~MeV! ks (u2) ~MeV2! ~MeV! ^npre& (10221 s! ~MeV!

260Rf 74.2
0.10 41767 36266 199.560.1 0.7 7 2.13
0.25 365612 21767 201.160.2 1.3 15 2.11
0.50 315614 18768 201.060.2 2.0 30 2.06
1.00 254625 173617 200.360.5 2.9 69 1.98

Expt. @57# 506612 372613 19562 3.5

260Rf 103.8
0.10 506610 581612 197.160.2 1.1 6 2.33
0.25 404615 280610 201.360.2 2.0 12 2.29
0.50 325613 21566 200.360.2 3.1 26 2.21
1.00 281613 201610 195.860.2 4.3 60 2.1

Expt. @57# 620617 424615 19662 5.7
0-8
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THREE-DIMENSIONAL LANGEVIN CALCULATIONS OF . . . PHYSICAL REVIEW C 63 054610
over kinetic energy or mass, respectively. We shall also c
sider the correlation of theY(EK ,M ) parameters.

B. First and second moments of the fission fragment energy
and mass distributions

The energy distributionY(EK) has the form of a curve
with one maximum and is usually approximated in both
experimental and the theoretical studies by a Gaussian f
tion characterized by the mean value^EK& and the variance
sEK

2 . Similarly, the mass distributionY(M ) is also approxi-

FIG. 6. The theoretical~a! and experimental~b! MED of fission
fragments of260Rf at the total excitation energyE* 574.2 MeV.
The numbers at the contour lines in percents indicate the yi
which is normalized to 200%. The theoretical diagram was ca
lated with the reduction coefficientks50.1. The experimental dia
gram was taken from Ref.@57#.

FIG. 7. The same as in Fig. 6, but forE* 5103.8 MeV.
05461
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mated at a sufficiently high excitation energy by the Gau
ian function with the mean valuêM & and the variancesM

2 .
Approximation of these one-dimensional distributions by t
Gaussian functions is convenient and standard, but its a
racy may often be unsatisfactory@62#.

Figures 8 and 9 show the mass and energy distributi
for the compound nucleus260Rf. For comparison, Fig. 8 also
shows the experimental mass distribution taken from R
@57#. Unfortunately, the figure showing the experimental e
ergy distribution of fission fragments is not presented in R
@57#, and we could not compare directly the calculated a
the experimental distributions, in contrast to the case of
mass distribution. One can see that the calculated kine
energy distribution of fission fragments shown in Fig. 9 n
ticeably differs from the Gaussian distribution. The extent
the deviation of these distributions from the Gaussian dis
butions can be expressed in terms of asymmetry coeffic
and excess@6,13,17,62#, i.e., quantities associated with th
third and fourth moments of the distributions. The calcula
excess of the energy distribution indicates that it has

d,
-

FIG. 8. The theoretical~a! and experimental~b! mass distribu-
tions of fission fragments of260Rf, E* 574.2 MeV. The theoretical
histogram was calculated with the reduction coefficientks50.1.
The experimental distribution was taken from Ref.@57#.

FIG. 9. The calculated energy distribution of fission fragme
of 260Rf, E* 574.2 MeV. The reduction coefficientks50.1.
0-9
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KARPOV, NADTOCHY, VANIN, AND ADEEV PHYSICAL REVIEW C 63 054610
sharper peak than the Gaussian function~the excess is abou
one!. Furthermore, there is no symmetry of the energy d
tribution with respect tôEK&—the asymmetry coefficient is
significantly nonzero and negative. In comparison with
energy distribution the mass distribution of fission fragme
~shown in Fig. 8! has a more Gaussian-like form~the asym-
metry coefficient and the excess are almost zero!.

The first and the second moments of the fission fragm
kinetic-energy distribution are sensitive to the nature of
scent of the fissioning nucleus from the saddle point to sc
ion, and to the shape of scission configurations. Theref
the experimental values of the mean fragment kinetic ene
^EK& are traditionally used as one of the most importa
sources of data from which estimates of the nuclear visco
are made@40,44,62,63#.

It was assumed in calculations of the parameters of
energy distribution that the total kinetic energyEK of fission
fragments is the sum of the Coulomb repulsion energyVc ,
the nuclear attractive energyVn of the nascent fragments
and the kinetic energy of their relative motion~prescission
kinetic energyEps). All parts of this sum are calculated a
the moment of scission. Then the mean value of the t
kinetic energŷ EK& is found as

^EK&5^Vc&1^Vn&1^Eps&, ~15!

and the expression for its variance is

sEK

2 5s Ṽc

2
1sEps

2 12s ṼcEps
, ~16!

where

s Ṽc

2
5^Ṽc

2&2^Ṽc&
2,

sEps

2 5^Eps
2 &2^Eps&

2, ~17!

s ṼcEps
5^ṼcEps&2^Ṽc&^Eps&,

where

Ṽc5Vc1Vn .

The last equation means that a part of the Coulomb re
sion energy is used to overcome nuclear attraction betw
the nascent fragments. A simple estimation of this quan
as the surface energy of two sides of the neck has been
in Refs.@14,64#. We have exactly calculatedVn in the finite-
range LDM by performing numerical evaluation of the co
responding integrals@65#.

The scission configuration is determined by the inters
tion points of the stochastic Langevin trajectories of the
sioning system, with the scission surface in the coordin
subspace. When making three-dimensional Langevin ca
lations of the MED of fission fragments, especially of t
fission fragment kinetic-energy distribution, the crucial pro
lem is how to define the scission surface. For an arbitr
dimensional model it is a well-known problem of choice
the scission criterion that determines the set of configurat
ensuring scission of the nucleus into fragments.
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In fact, at the present time there is no unambiguous cr
rion of the scission condition. The condition of zero ne
radius can be considered as one~the simplest! of the scission
conditions. Such a definition of the scission condition is o
viously unsatisfactory, since description of the nucleus in
liquid-drop model becomes meaningless when the neck
dius becomes comparable with the distance between nu
ons. Therefore, it has been often supposed@19,21,66# that the
scission occurs at the critical deformation with a relative
thick neck. From the physical point of view it is attractive
determine the scission surface as the locus of points at w
the following equation is satisfied:

S ]2V

]h2 D
c5const,a85const

50. ~18!

This means that stability against variations in the ne
thickness is lost. Such a criterion of scission can be ca
the criterion of instability of the nucleus with respect
variations in the thickness of its neck@6,13,19#. It should be
noted that this scission condition corresponds to the sha
of the fissioning nucleus with a finite neck radius, with 0.3R0
on the average@14,19,21#. Another acceptable and physical
sensible criterion is based on the equality of the Coulo
repulsion and the nuclear attraction forces between fu
fragments. It was shown in Ref.@63# that this scission con-
dition leads to scission configurations for the actinide nuc
with approximately the same neck radius equaling 0.3R0. For
these reasons we have chosen the scission surface as loc
points where configurations of the fissioning nucleus are
shapes with a finite neck radius of 0.3R0. We recognize that
this intricate problem of the fission physics needs furth
detailed investigation in the framework of the finite-ran
LDM @33,34#.

Comparing the mean fragment kinetic energy^EK& calcu-
lated in the two-dimensional Langevin dynamics@11–14# for
M5A/2 with the values of the quantity found on the basis
the two-dimensional MED of fission fragments, we mu
note that for light fissioning nuclei the value of^EK& ob-
tained by integrating the MED of fission fragments overM is
less than thê EK& for M5A/2 by 2–3 MeV. For heavy
fissioning nuclei this difference increases up to 6–7 MeV.
make a careful comparison with the experimental data
calculation of^EK& in the framework of the stochastic ap
proach must be made using the three-dimensional Lang
equations. Our calculated results for^EK& are in a fairly
good agreement with the experimental data, as well as w
the fission systematics given by Ref.@62#, which is more
appropriate in the regionZ2/A1/3.900 than one given by
Viola @67#.

As regards the calculated values of the variance of
fission fragment kinetic-energy distributionsEK

2 it should be

stressed that the inclusion of the third collective coordin
~the mass asymmetry coordinate! leads to a considerable in
crease~up to 40%! of this quantity, in comparison with the
two-dimensional Langevin calculations@11–14# of the fis-
sion fragment energy distribution. Qualitative estimations
the influence the mass asymmetry collective coordinate
0-10
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THREE-DIMENSIONAL LANGEVIN CALCULATIONS OF . . . PHYSICAL REVIEW C 63 054610
erts on the parameters of the energy distribution presente
Ref. @3# are in a good agreement with our numerical resu
The results listed in tables also show that the observed
preciable growth ofsEK

2 is sufficiently well reproduced in the

three-dimensional Langevin dynamics, as the compo
nucleus becomes heavier. The dynamical model@17# with
zero viscosity that does not take into account fluctuations
the collective variables during the temporal evolution of t
fissioning nucleus from the ground state to its scission, f
completely, even in the case of qualitative description of
dependencesEK

2 (Z2/A).

Let us proceed to discuss the results of the computatio
the variance of the fission fragment mass distribution
tained by integrating the fission fragment MED overEK . It
is clear that the mean value of the mass fragment^M & equals
to A/2 without taking into account evaporation of the lig
prescission particles. Incorporation of the evaporation of
light prescission particles into the model shifts slightly t
value of ^M & with respect toA/2. As can be seen from
tables, the stochastic approach based on the th
dimensional Langevin equations leads to a good agreem
between the calculated and the experimentalsM

2 (Z2/A) val-
ues, including the regionZ2/A.35. At such values of the
fissility parameter the dynamical model with zero viscos
@17# and the Fong’s statistical model@68# fail, as in the case
of description of the dependencesEK

2 (Z2/A). The steep rise

of the calculated dependencesM
2 (Z2/A) as the fissility pa-

rameterZ2/A increases is the result of two opposite tende
cies. On one hand, during evolution of the fissioning syst
from the ground state to scission the stiffnessCa8 grows
monotonically, and fluctuations of the mass asymmetry
ordinate, accordingly, fall down. But, on the other han
when reaching the scission configuration the system
keeps in ‘‘memory’’ the former larger fluctuations. More
over, the faster the descent of the nucleus from the sadd
scission is, the larger the remembered values of the varia
of the mass asymmetry will be. Consequently, in fission
the heavier nuclei with a longer descent a larger part of
trajectory is remembered, and the variance grows rapi
Such an interpretation of the ‘‘memory’’ of the fissionin
system of its prehistory was discussed in detail at a qua
tative level in Ref.@6#. Therefore, the calculated values
sM

2 will strongly depend on the velocity of descent from t
saddle point to scission and, finally, on the magnitude
nuclear viscosity. Wada and Abe@69# have come to the sam
conclusions about the consequences of the dynamical ev
tion from the saddle to scission, especially for heavy fissi
ing systems. The calculated values of the variancesM

2 in the
present three-dimensional Langevin calculations are la
than the corresponding values ofsM

2 obtained in the two-
dimensional Langevin calculation@16# by up to 40–50 %.
This considerably improves agreement with the experime
data.

Errors of the calculated parameters of the fission fragm
MED arise due to the finite number of trajectories in t
Langevin calculations. These purely statistical errors are
culated according to the formulas given in Ref.@70# and are
presented in Tables I and II.
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C. Correlation of the parameters of the fission fragment MED

Correlation of the fission fragment MED parameters c
ries additional information about the dynamics of descen
the fissioning system, and its very last stage, just bef
scission of the nucleus into fragments, in comparison w
the information contained in the first and second moment
the one-dimensional mass and energy distributions. In p
ticular, dependence of the shape of the scission configura
on the fragment mass ratio is directly reflected in correlat
of the parameters of the fission fragment MED. Figures
11, 12, and 13 show the dependences^EK(M )&, sEK

2 (M ),

sM
2 (EK) calculated in the stochastic approach, based on

three-dimensional Langevin equations. They reflect the c
relation of the parameters of the fission fragment MED.

In a first approximation, the dependence^EK(M )& can be
described by the parabolic expression@71,6#

^EK~M !&5^EK~A/2!&F12bS 12
2M

A D 2G . ~19!

It reflects mainly dependence of the Coulomb repuls
energy and the distance between the centers of mass of fu

FIG. 10. The theoretical~a! and experimental~b! dependences
of the mean kinetic energŷEK(M )& on the fragment massM for
the compound nucleus260Rf at the total excitation energyE*
574.2 MeV. The reduction coefficientks50.1.

FIG. 11. The calculated dependences of the mean kinetic en
^EK(M )& on the fragment massM for the compound nuclei:~a!
206Po and~b! 244Cm. The reduction coefficientks50.25.
0-11
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KARPOV, NADTOCHY, VANIN, AND ADEEV PHYSICAL REVIEW C 63 054610
fragments at the time of scission on the fragment mass.
note that the dependence Eq.~19! for b51 follows from the
dynamical model@17# with zero viscosity. The valueb51 in
Eq. ~19! corresponds to the case where the kinetic energ
the fragments is determined by their Coulomb repulsion
ergy at the time of scission with a simplified assumption t
the distance between the centers of mass of the fragm
does not depend on the mass asymmetry. As was note
Ref. @71#, the experimentally observed dependence^EK(M )&
at excitation energyE* .20 MeV corresponds to a valu
b,1 for the fissioning nuclei lighter than213At. This value
depends both on the fissility parameter and onE* . The cal-
culated dependences^EK(M )& correspond to the values ofb
that vary fromb50.7 for 206Po tob51.6 for 260Rf, although
they decrease faster than the experimentally observed de
dences with increasingM. Allowance for the dependence o
the distance between the centers of mass of the fragmen

FIG. 12. The calculated dependences of the fission fragm
kinetic-energy variancesEK

2 on the fragment massM for the com-
pound nuclei:~a! 206Po and~b! 244Cm. The reduction coefficien
ks50.25.

FIG. 13. The calculated dependences of the fission fragm
mass variancesM

2 on theEK for the compound nuclei:~a! 206Po and
~b! 244Cm. The reduction coefficientks50.25.
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the time of scission on the mass asymmetry in the follow
approximations with respect to the parametera8 or (1
22M /A) leads to appearance in the expression~19! of terms
for ^EK(M )& that are proportional to (122M /A)4. The
analysis of^EK(M )& made in Ref.@72# shows that the ex-
perimentally observed dependences, indeed, contain te
proportional to (122M /A)4.

The calculated variancesEK

2 (M ) is practically constant up

to a certain value of the mass ratioM /(A2M ) that varies
slightly when the parameters of the compound nucleus
the reduction factorks are changed. Such behavior o
sEK

2 (M ) agrees well with the experimental data, whose

curacy becomes much poorer with increasingM. In accor-
dance with the experimental data the variancesM

2 (EK) of the
mass distribution exhibits a characteristic decreasing dep
dence with increasing kinetic energy. Figure 13 shows t
the theoretical description of the observed almost ‘‘hyp
bolic’’ dependencessM

2 (EK) is very good. Qualitatively, the
dependencessM

2 (EK) andsEK

2 (M ) can be understood from

the form of the fission fragment MED forM5const and for
EK5const. While the former distributions have much t
same width in a wide interval ofM, the width and even the
general form of the latter distributions strongly depend
the value ofEK .

D. The prescission neutron multiplicity, mean fission time,
and deduced value of the reduction coefficientks

As was mentioned above, one of the ultimate objectiv
of these calculations is to deduce the value of the reduc
coefficient of the surface-plus-window dissipation from t
confrontation of the existing data on the MED of fissio
fragments and the prescission neutron multiplicity with t
results calculated for these observables.

The results of the calculations forks50.1, 0.25, 0.5, and 1
are listed in Tables I and II. One can see that all calcula
quantities are rather sensitive to the value of the coeffic
ks . The analysis of the results presented in Tables allows
to make the following conclusions. For206Po all the observ-
ables are reproduced at the valueks50.5; for 224Th and
244Cm quite a good reproduction of data is achieved atks
50.25–0.5. For the heaviest compound nucleus260Rf the
problem of data reproduction is more complicated. The la
values of the variancesEK

2 andsM
2 are reproduced better in

calculations atks50.1 andks50.25. But these values of th
friction lead to a strong underestimation of the mean neut
multiplicity ( ^npre&). Agreement between the calculated a
the experimental values of^npre& becomes better atks51
that corresponds to the full wall-and-window formula and
highly overdamped collective motion, but such a strong fr
tion leads to considerably underestimated values of the v
ance of the fission fragment MED. But even atks51 for the
reaction 20Ne1240Pu→260Rf (Elab5174 MeV! the experi-
mental values of the prescission neutron multiplicity prov
to be underestimated in the calculations. We arrived a
discrepancy in one and a half neutron~see Table II!.

Thus, simultaneous description of the data on the^npre&
and on the MED of fission fragments is problematic a

nt

nt
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may even be impossible for the fissioning nuclei heavier t
244Cm in the framework of the developed model. A fact
that might have strong influence on the calculated value
^npre& is contribution of the evaporated neutrons during f
mation of the equilibrated compound nucleus, i.e., in
entrance channel of the considered reactions. The entr
channel effects have been recently discussed in Refs.@73–
75#. It was shown that for some combinations of the coll
ing heavy ions~the reaction 20Ne1240Pu belongs to this
case! the contribution of the evaporated neutrons during f
mation of the equilibrated compound nucleus can be an
preciable part of thênpre&.

Tables I and II also contain the calculated values of
mean fission timê t f&. They have been calculated by ave
aging over a trajectory ensemble as the mean time of co
tive motion of the fissioning nucleus from the moment of
formation to the scission configuration. Experimentally^t f&
is rarely measured directly, but it can be deduced from
measured multiplicities of particles emitted prior to fissio
Therefore, such deduced time scales of fusion-fission re
tions are dependent rather strongly on the assumpt
adopted in statistical model calculations of the presciss
neutron multiplicities~see, as an example, Ref.@73#!. The
deduced values of time scales for fusion-fission reacti
constitute at least several 10219 s @55#. From the calculated
values of ^t f& presented in tables one can see that atks
>0.5 they are of the same order of magnitude, although t
decrease, with increase of the fissility parameter, faster
the experimental values@55,59#.

IV. CONCLUSIONS

We have implemented three-dimensional Langevin ca
lations to study simultaneously the parameters of the fiss
fragment MED from excited compound nuclei and the me
prescission multiplicities of the light evaporated partic
that dynamically compete with fission and accompany it.
these fission characteristics are rather sensitive to the ma
tude of nuclear viscosity in fission process. We have cho
the shape parameters of the well-known ‘‘funny hills’’ p
rametrization as collective coordinates for the solution of
dynamical Langevin equations. The finite-range LD
which takes into account the finite range of the nuclear for
and the diffuseness of the nuclear surface, has been us
calculations as a macroscopic model for determination of
conservative driving forces. The modified one-body mec
nism of nuclear dissipation~so-called surface-plus-window
dissipation! has been used to determine the friction force

The number of free~adjustable! parameters of the mode
n

ep
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has been reduced to a minimum. Under assumption of
surface-plus-window dissipation mechanism of nuclear v
cosity, the only really variable parameter is the reduct
coefficient,ks in Eq. ~14! that we have discussed above. O
course, it must be kept in mind that the definition of t
scission surface adopted in the model is not unique.

The consistent calculation of the distribution paramet
^EK&, sEK

2 , sM
2 , ^EK(M )&, sEK

2 (M ), and sM
2 (EK) carried

out on the basis of the two-dimensional MED of fission fra
ments shows that the stochastic approach to the fission
namics reproduces sufficiently well the characteristics of
fission fragment MED and their dependence on the vari
parameters of the compound nucleus. Almost all characte
tics of the MED of fission fragments depend essentially
the magnitude of the reduction coefficient of the contributi
from the wall formula. Consequently, the experimental d
on the variances of the fission fragment distributions can
employed together with the traditionally used^EK& data for
determination of the magnitude and mechanism of nuc
dissipation in fission.

The calculated parameters of the fission fragment M
and the mean prescission neutron multiplicity are found to
in a good quantitative agreement with the experimental d
at the value of the reduction coefficientks50.25–0.5. This
value ofks is close to the value that was found@42# indepen-
dently of fission. The value ofks51 corresponds to the ful
wall-and-window formula, and to a highly overdamped co
lective motion, as well. It leads to considerably undere
mated values of the variance of the fission fragment ME
An extension of the model for calculating the fission fra
ment MED in quasifission reactions induced by heavy ion
desirable.
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