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A stochastic approach to fission dynamics based on three-dimensional Langevin equations was applied to
calculate fission fragment mass-energy distribution from a number of excited compound nuclei formed in
reactions induced by heavy ions. Evaporation of prescission light particles along Langevin fission trajectories
from the ground state of the compound nucleus to its scission has been taken into account using a Monte Carlo
simulation technique. Inclusion of the third collective coordinate in Langevin dynamics leads to a considerable
increase of the variance of the mass and the kinetic-energy distributions of fission fragments as compared with
two-dimensional Langevin calculations. A liquid-drop model with finite range of nuclear forces and a modified
one-body mechanism for nuclear dissipation have been used in the calculations. The results of the calculations
are compared with the available experimental data. The calculations performed using the three-dimensional
Langevin dynamics reproduce sufficiently well all the parameters of the two-dimensional fission fragment
mass-energy distribution and their dependence on various parameters of the compound nucleus. The mean
prescission neutron multiplicities are also reproduced with good accuracy. In order to reproduce simulta-
neously the measured prescission neutron multiplicities and the variance of the fission fragment mass-energy
distribution, the reduction coefficient of the contribution from a wall formula has to be decreased at least by
half of the one-body dissipation strength (026<0.5).
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I. INTRODUCTION ity of light particles and fission probability. But even in the
two-dimensional Langevin calculations the problem of the
During the last two decades a stochastic apprdaet] mass and the kinetic-energy distributions was solyEt-
based on the multidimensional Fokker-Planck equatioriL6] only in a restricted form. First, attention was paid to
(FPB [5-8] or on the set of multidimensional Langevin computation of only the first and second moments of the
equations, which is equivalefi] to the multidimensional distributions. Second, these were the parameters of the one-
FPE, has been extensively and rather successfully used gimensional distributions. The kinetic-energy distribution

solve many problems of collective nuclear dynamics in suchv@s computed11-14 for symmetric fission, whereas the

reactions as fusion-fission, deep-inelastic heavy-ion collimass distribution corresponded to the most probable kinetic

sions, induced fission, and quasifissi@ee reviewd3—6] energy. Fgrthgrmore, the correlation of the parameters of
and references thergimAimost all the problems of collective these distributions was ignored.

nuclear dynamics are essentially multidimensional, but the,. The 'charactensncs of thg: gxpe_rlmentally 'ob'served two-
. ) . - dimensional mass-energy distributidlED) of fission frag-
multidimensional FPE can be solved only using approximat

thodsI5—8l. whil ical solut £ th valent fnents are usually discussed in terms of the first and second
methods{5-8], w '€ humerical solution ot the equivalent 5 mants of the one-dimensional distribution, which can be
system of Langevin equations is possible nearly without any,pioined from the two-dimensional MED of fission frag-

approximations_. Therefore, althou_gh at the beginning of thg,ants by integration over the proper parameter. Conse-
1980s application of the stochastic approach to nuclear dygently, the theoretical approaches used to interpret the ex-
namics was based mainly on the FPE, an obvious preferenggsrimental data, including the Langevin dynamics, should
has been given recently to the Langevin equatidd]. It also guarantee the possibility of computation of the fission
should be noted that the computation time and the amount gfagment MED and, on the basis of this distribution, the
calculation increase extremely fast with the increasing numegne-dimensional fission fragment mass and kinetic-energy
ber of collective coordinates in the Langevin equations. Bedistributions and their moments. So far, the two-dimensional
cause of this the stochastic approach based on the LangeVinED of fission fragments has been investigated sufficiently
equations had not been applied so far in its full extent tdfully for the first time in the studies of Nix and Swiatecki in
study the characteristics of induced fission. Up to now onlytheir dynamical mod€]l17] with zero viscosity, and later by
one-dimensional [4,10] and two-dimensional [11-1§  Adeev and co-workers$,18] in the framework of a diffusion
Langevin calculations have been carried out. The lattemodel based on the multidimensional FPE. In addition to the
makes it possible to calculate the mass and the kineticpossibility of adequate comparison with the experimental
energy distributions of fission fragments, as well as the meadata, the theoretical investigation of the two-dimensional
prescission neutron multiplicities and fission probability, MED of fission fragments is of great interest from the point
whereas the main subject of the one-dimensional calculationsf view of studying correlation of the distribution param-
[4,10] is only the analysis of the mean prescission multiplic-eters. The correlation of the fission fragment masses and ki-
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netic energies contains additional information about scission Il. THE MODEL AND BASIC EQUATIONS
configuration of the fissioning nucleus.

In the present paper we report the results of systematic
calculations of the fission fragment MED performed using
the stochastic approach based on the three-dimensional A felicitous parametrization of the shape of a fissioning
Langevin equations. It should be mentioned that qualitativéucleus is very important when investigating its dynamical
estimations of the influence that the third collective coordi-evolution. Optimal for our purposes is the well-known
nate(mass asymmetry coordinatie the Langevin dynamics [19,20 “funny hills” parametrization{c,h,a}. Actually, in
exerts on the parameters of the fission fragment kineticour dynamical calculations we used a slightly modified form
energy distribution, as well as some computational resultsyf the{c,h,a} parametrization. This conveniently provides a
were first presented in Rdf3], but a systematic study of the three-parametric family of shapes that have been employed
two-dimensional MED of fission fragments had not beenin numerous studies of stat[d9,2Q as well as dynamical
done there. [6,13—19 characteristics of fissioning nuclei. It was shown

The purpose of the paper is to study fission dynamic$19,20 that this simple parametrization describes with rather
consistently from the ground state of the compound nucleug good quantitative accuracy the properties of the saddle
to its scission under discrete cooling due to evaporation opoint shapes obtained in liquid-drop modeDM) calcula-
light prescission particles and to calculate the mean multitions, where practically no restrictions were imposed on
plicities of these particles, particularly of neutrons, as well agiuclear shapef21,22,.
the parameters of the two-dimensional MED of fission frag- In cylindrical coordinates the surface of the nucleus is
ments. We hope to draw some conclusions about the diss@iven by
pation mechanism of nuclear collective motion in fission of

A. Parametrization of nuclear surface and collective
coordinates

excited nuclei by comparison of the theoretically calculated o 9 2 2 a' -
values of the observable quantities with the experimental c (e -Z)| AL +BZZ+? , B=0
data. Our research in this paper is restricted to a fission of pg(z)z

sufficiently excited nuclei formed in reactions of complete 2, 9 2 , a'z

fusion in the entrance channel of reactions. Our model needs ¢ (-2 AL 2 expBeZ), B<O,
further development for reactions of quasifissigast fis- 1)

sion). A detailed description of dynamics in the entrance

channel of the reactions is necessary. The paper is organized

as follows: the model and basic equations are describedherezis the coordinate along the symmetry axis ands

in Sec. II; the calculations and numerical results are disthe radial coordinate of the nuclear surface. In EQ.the
cussed in Sec. llI; finally, the concluding remarks are givenmjuantitiesAg and B are defined by means of the shape pa-
in Sec. IV. rameters as

B=2h+ S 1
- 5
( B
-3_ _ B=0
c =
A=q 4 B 2
3 1 " B<O.
expBc®)+| 1+ J— mBclerf({—Bc®)
L 2B¢3

In Egs.(1) and(2) c denotes the elongation parame(ikie
length of the nucleus is equal ta2n units of the spherical
nucleus radiu}y), the parameteh describes a variation in

careful comparison of the Eq1l) with the equation of the
surface function in the origina{c,h,a} parametrization
shows that we have introduced a different mass asymmetry

the thickness of the neck for a given elongation of theparameter scaled with elongation

nucleus, and the parameter of the “mirrotthasg asymme-
try o’ determines the ratio of the voluménassepof future
fragments. In the symmetrical cagé=0 a family of sym-

()

a'=acd.

metric shapes is obtained, ranging from the spherical shape

(c=1,h=0) to the two-fragment shapef\{<0). For the

case ofa’#0 different asymmetric shapes are obtained. AThe advantages of using this mass asymmetry parameter in-
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stead ofa in the framework of thdc,h,a} parametrization to be derived from the random force averaged over a time
were pointed out and discussed by P4@B] many years larger than the collisional time scale between collective and
ago. internal degrees of freedom. The random part is modeled as
Within the framework of the chosen parametrization onea Gaussian white noise that causes fluctuations of the collec-
can introduce collective coordinates that are more naturdive variables, and, as a final result, fluctuations of the physi-
from the physical point of view. These coordinates for fis-cal observables in fission process. The coupled Langevin
sion process ar® [19,2]] that is the distance between the equations used in the dynamical calculations have the form
centers of mass of future fragments, and24-2§ that is

equal to the ratio of the difference of the fragments mass to i = mijPj,
their sum#n=(A;—A,)/(A;+A,). The coordinate® and
have been often usg¢6,13—15,23—-2pas the elongation and pi=— Ep»p Ik ﬂ_ Pt O & 6)
the mass asymmetry collective coordinates. It is particularly T PPk T g TIPSy
convenient to us&k and » when one is investigating the
energy and mass distributions of fission fragments. where q=(c,h,e") are the collective coordinatesp
The mass asymmetry parameter is proportional to the = (Pc.Ph.P.) are the conjugate momentd(q) is the po-
mass asymmetry coordinaig as tential energymy; (|| ;;[l=[Im;;ll~*) is the tensor of inertia,
vij is the friction tensorg;;¢; is a random force, ang; is a
3 random variable satisfying the relations
n=ga'. 4
(&)=0,
Furthermore, the mass asymmetry parameteris simply
related to the mas@olume ratio of forming fragments (&i(t)§(t2)) =26 6(t1—tp). @)
3 Thus, the Marcovian approximation is assumed to be valid.
AV 1+ ga' In these equations, and further in this paper, we use the con-
a0 (5)  Vvention that repeated indices are to be summed over from 1
A V; 3 to 3, and the angular brackets denote averaging over an en-
=g« semble.

Eigenvalues and eigenvectors of the diffusion mailrjx,
which is defined as the ratio of the volumes of two parts ofwhich are usedl4] for calculation of the strength of random
the nucleus obtained when the latter is intersected by thérce, have been calculated by the Jacoby mefl28il The
planez=0 [23,27]. strengths of the random force are related to the diffusion

It is also interesting to note th& and » are the first two  tensorD;; by the equation
collective coordinates in the theoretical schefi@8] that
uses the multipole moments of nuclear density for specifying Dij= Ok by, (8)
the collective coordinates. However, the use of the collective = o ] ) ]
coordinates R,h,7) instead of the coordinatesc,n,a’) which, in turn, satisfies the Einstein relation
leads in three-dimensional Langevin calculations to serious D.—T 9
computational problems. It is evident that there are no ex- i = i - ©)

plicit e,Xpressions for .dependence of the sha_pe parametefg, o1 is the temperature of the “heat bath” which is deter-
(c,h,a’) on the coerdmatesR,h,r;). Therefore itis neces- .o by the Fermi-gas mod80] formula
sary to carry out tiresome recalculations that substantially

increase the computational time. Because of these disadvan- T=[E;, /a(q)]"? (10)
tages and computational difficulties, we have chosen the geo-

metrical shape parameters as the collective coordinateginereE;,, is the internal excitation energy of the nucleus,
(c,h,a’)=(01,92,93). The most important advantage of anda(q) is the level density parameter that depends on the
this choice is the possibility to enlarge considerably the dicollective coordinates as follows:

mension of the grid with respect to the constriction param-

eter h and the elongation parameter This enlargement is a(q)=a,A+ aSA2/3BS(q), (11
very desirable for modeling the fission dynamics in the sto-

chastic approach, but it is impossible in the original versionwhereA is the mass number of the compound nucleus, and
of the{c,h,a} parametrization. Bs is the dimensionless functional of the surface energy in
the LDM with a sharp surfac€l9,22. The values of the
parametersa,=0.073 MeV !, a,=0.095 MeV ! in Eq.

(11) have been taken from the work of Ignatyakal. [31].

In the stochastic approach evolution of the collective co- During a random walk a|ong the Langevin trajectory in

ordinates is[1-4] considered as motion of Brownian par- space of the collective coordinates, the energy conservation
ticles that interact stochastically with a large number of in-|jgw has been used in the form

ternal degrees of freedom, constituting the surrounding
“heat bath.” The hydrodynamical friction force is assumed E* =Ejnt Econt V(Q) + Eeyadt), (12

B. Basic equations
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whereE* is the total excitation energy of the nucles, is

the kinetic energy of the collective degrees of freedom, and
Eevaft) is the energy carried away by evaporated particles
by the timet.

The Langevin trajectories are simulated starting from the
ground state with the excitation energy of the compound
nucleus. The initial conditions were chosen by the Neumann
method with the generating function

V( qo) + Ecoll(qoa po)
P(qo,po,l,t=0)~ex — T

X 6(q—aoF(l). 13

In the used approach it is necessary to choose the initial state
of the fissioning system at its ground state for each partial
wave |. But for large values of a potential energy pocket
disappears, and the choice of initial collective coordinates FIG. 1. The potential energy surface for the compound nucleus
becomes undefined. Therefore, we start modeling fission dy* %o in the case of’=0 at zero angular momentum. The thick
namics from a spherical nucleus, i.eqo=(co=1.0hg solid curve is the mean dynamical trajectory. The thin line is the
=0.0(=0.0). The initial state is assumed to be characterscission line determined from the intersection of the scission sur-
ized by the thermal equilibrium momentum distribution, andface (see text for explanatiorand the planer’=0. The mean dy-
by a spin distributionF(l) for heavy-ion complete fusion. namical trajectory was calculated with the reduction coefficignt
This choice of the initial conditions means that we restrict~ 02>
ourselves to a situation where an equilibrated compound
nucleus has been formed in a heavy-ion fusion reaction be- It is well known [30,35 that in order to calculate the
fore the fission process starts. Therefore, the formalism ofonservative part of the driving forces governing the collec-
the present model is not suitable to describe quasifigéést  tive motion of the thermodynamical system one should use a
fission reactions. Contrary to the calculatiof$3,14,1§ thermodynamical potentigfor instance the free enerdg]
performed for zero angular momentum, the spin distributioror the entropy{4]) rather than the bare potential. Unfortu-
has been taken into account in these calculations. We haveately, there is a large uncertainty in the temperature-
parametrized the compound nuclei spin distributiqh) ac-  dependent parameters of the LDM with a sharp surfaée-
cording to the scaled prescriptidd,10], which reproduces 38]. Just recently39] the finite-range LDM with a Yukawa-
to a certain extent the dynamical results of the surface fricplus-exponential nucleon-nucleon interaction has been
tion model[32] for fusion of two heavy ions. At the end of generalized to describe the temperature dependence of the
the discussion concerning the initial conditions given by Eqfree energy. Therefore, it is more reliable and reasonable, in
(13) it should also be noted that for fusion-fission reactionsour opinion, to use for the first three-dimensional Langevin
at high excitation energies, and especially at a high angulegalculations, presented in this paper, the potential energy in-
momentum, the traditional concept of an equilibrated comstead of the free energy. Possible improvements in this di-
pound nucleus with fixed excitation energy appears to be eection could be made in future studies.
rather unrealistic idealization of the real complicated situa- The potential energy surfaces for the nucf@Po and
tion. 260Rf in the coordinates andh are shown in Figs. 1 and 2,
The potential energy of the nucleus was calculated withirwith the mean dynamical trajectories of the fissioning system
the framework of a macroscopic model with finite range ofduring its evolution from the ground state to scission. The
the nuclear forcef33,34. The potential energy was obtained mean dynamical trajectory is a trajectory obtained in our
as a sum of the Coulomb energy, the generalized surfacgynamical Langevin calculations by averaging over a trajec-
energy (the nuclear interaction energyand the rotational tory ensemble. In this case the Langevin equations coincide
energy, as usual. The parameters of the model were takanith the generalized Hamilton equations, since the term re-
from Ref.[34]. In contrast to Refd.6,18|, where the poten- sponsible for fluctuationthe random forcedrops out after
tial energy was calculated in the harmonic approximationaveraging. The initial conditions were chosen at the saddle
V(c,h,@)=V(c,h,a=0)+C2/2, using the local stiffness point, with «’=0 and p, =0. For 2°Rf the saddle point
C, with respect to the mass asymmetry coordinatsimilar ~ coincides practically with the ground state. While the system
assumptions have not been done in the present work. Thevolves from the saddle point to scission, the averaged val-
potential energy, as well as the other transport coefficients afies of the mass asymmetry parameter and the conjugate mo-
the Langevin equations, have been calculated on the unifornrmentum are identically equal to zero, due to the initial con-
three-dimensional grid with 154101x51 grid points and ditions. So the mean dynamical trajectories lie in tlhehj
ce[0.7,3.1, he[—-0.6,0.4, and o’ €[—1,1]. Interpolation plane and are identical to those obtained from the solution of
between the grid points has been performed using théhe generalized Hamilton equatiofg0]. Figure 3 shows
Lagrange formulas. some selected shapes resulting from Eds.and (2) for a
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FIG. 2. The same as in Fig. 1, but for the compound nucleus L
260Rf. The mean dynamical trajectory was calculated with the re- 2.5 <> R
duction coefficienk,=0.25. / Scission line
2.8 <> b
few valuesc and h, as well as an illustrative sequence of
shapes along the mean dynamical trajectory from the ground 3.1
state of the fissioning nucleus through the saddle point to its '
scission. As was noted above, the main distinction of this
figure from the analogous figures in Ref$9,2( is the con- 34 7
siderably enlarged dimension of the grid with respect to the ">

constriction parametdr and the elongation parameterlt is

desirable for modeling of random walk of Brownian particles th_'G' dgf |||usérat1ionTch]f the parar?etrization ?frthefpucgfiar shapes

in the collective coordinate space. (0 vield shapes with refletion symmalry about the pan@. The
Intersection of a mean dynamical trajectory with a sciss- Y nap - y y ; P :

ion surface determines the mean scission point. In our caIcuthCk solid curve indicates the mean dynamical trajectory for the

lati de with th ential ; ’ h “compound nucleug®Rf from the saddle point to the ground state

ations made wi € potential energy surtaces SNown 1,4 trom the saddle point to the scission point. The reduction co-

Figs. 1 and 2, and the reduction coefficidqt=0.25, this

! . . efficientks=0.25.
point has the following values of coordinates,.=2.1, hg,

= —0.07 for the nucleug®®Po andc.=2.2, hs,= —0.11 for

the nucleus?®®Rf. It is in a good agreement with our previ- _, _ 1+ ;{ﬁ EA(H— 32 1 9Vy vy

ous calculations in the diffusion modd]. The values of the YT Pm dq; dq; 9 Ao dq; dq

repulsive Coulomb and the nuclear attractive energies to- 5 ’ ) 5
gether with the prescission kinetic energy determine the ko IZN (% %&)(% %(9_[)1)
value of the total kinetic energy of fission fragments. Fluc- g\ a9z 99i )\ dq; 9z dq
tuations of the scission points of the individual stochastic

Langevin trajectories around the mean scission point deter- , (1 aps\ 2| Znas{ Ip5  Ips 9D,
mine the value of the variance of the fission fragment mass pst 579z dz+ JZN (9—qi+ o &—qi

and kinetic-energy distributionsee a more detailed quanti-
tative discussion in Sec. )i aps 9ps aD,\[ , (1 9p5\?|V?
The inertia tensor is calculated by means of the Werner- a9, T aq, |\Ps7\2 9z dz
Wheeler approximation for incompressible irrotational flow. J :
Description of the method is given, for example, in Rd0)]. _
It was shown in Ref[41] that the Werner-Wheeler method Wherep, is the mass density of the nucleusis the average
allows, with surprisingly high accuracy, to perfom calcula- nucleon speed inside the nucledsr is the area of window
tion of the inertia tensor for almost all shapes of the fissionbetween two parts of the systed; , D, are the positions of
ing nucleus, with the exception of the zero neck radius conmass centers of two parts of the fissioning system relative to
figurations. the center of mass of the whole systery;, andz,, ., are the
A modified one-body mechanism of nuclear dissipationleft and right ends of the nuclear shapg,is the position of
[42,43 has been used for determination of the dissipativéhe neck plane that divides the nucleus into two parts. We
part of the driving forces. The expression applied to calculatdiave chosen the position of tlag at minimum ofp2(z), but
the friction tensor for so-called surface-plus-window dissipa-not at thezy=0, as it was assumed in Ref®3,27. This
tion reads as follows: formula is reduced for the symmetrical forms and be-

], (14)
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FIG. 4. The components of the friction tensor along the mean FlG_‘ . The components of the inertia tensor along th_e mean
dynamical trajectory for the compound nucletiRf as the func- dynamical trajectory for the compound nuctéfRf as the functions

tions of the elongation parameterThe dashed curve is thg,.,,  ©f the elongation parameter The components,: andm, are
component without additional term in E14). The components €dual to zero in the case whese=0.
Ve @nd yp, are equal to zero in the case where=0. The re-
duction coefficienks=0.25. calculated using the wall-and-window formula, Eti). For
compact mononuclear shapes only the wall formula has been
comes similar to the one presented in Ref4]; k. is the used with the reduction factd. In the intermediate case
reduction coefficient of the contribution from the wall for- for the shapes that are neither compact nor strongly
mula in Refs.[44,45. The valueks=1 corresponds to the necked-in a smooth interpolatig#8] between the wall and
classic wall-and-window dissipation formu[45]. A quan- the wall-and-window formulas has been used, with a form
tum treatment of one-body dissipation showd8] that the  factor going to 1 for mononuclearlike shapes, and going to 0
nuclear viscosity is only about 10% of the value calculated irfor the shapes with zero neck radius.
accordance with the wall expression, although the functional Figures 4 and 5 show the components of the friction and
dependence of the one-body dissipation on a change in ttBe inertia tensors as functions of the elongation paraneeter
nuclear shape is correctly reproduced by the wall expressiofifom the ground state of the fissioning system to its scission
Therefore, in the modified variant of one-body dissipation,along the mean dynamical trajectory. It can be seen that all
proposed in Refd42,43, which is called the surface-plus- components of the both tensors have smooth behavior. It
window dissipation, the contribution to the dissipation due toshould be noted that the both friction tensor and the inertia
collisions of nucleons with the nuclear surface was appreciatensor are essentially nondiagonal over a great part of evo-
bly reduced(by almost four times; the reduction coefficient lution of the fissioning system from the ground state to sciss-
ke=0.27). This value ok, was obtainedi42] from analyzing ion. This is the reason for an appreciable deviation of the
experimental data on the widths of giant resonances. Howmean dynamical trajectory from the bottom of the fission
ever, comparison of the calculated results with the experivalley (see Figs. 2 and)3 The diagonal components in-
mental data of the mean values of the total kinetic energy o¢rease, especiallyn,, and y, while the fissioning system
fission fragments for all fissioning nuclei throughout the pe-approaches to scission. The main features of the dependences
riodic system suggesf43] the limits 0.2<k.<0.5. Elucida-  of m;; and y;; are rather similar to those described earlier in
tion of the mechanism of nuclear viscosity in fission and aRefs.[6,14]. Figures 2 and 3 draw attention to the fact that
reliable estimation of its value continue to be essentiallyfrom the very beginning of descent from the saddle point the
open questions. mean dynamical trajectory deviates appreciably from the
In Eq. (14) the original wall-and-window formulg45]  bottom of the fission valleyline h=0 fits approximately the
was completed by an additional term, followif§,47] [the  bottom of the fission vallgy The reason for this is obviously
second term in bold curly braces in Ed.4)], which takes the strong nondiagonality of the inertia and friction tensors in
into account the dissipation associated with the relativéhe (c,h) coordinates(see Figs. 4 and)5 The calculated
changes of two interacting nascent fragments. From Fig. 4omponents of the inertia tensor show that these coordinates
one can see that this term gives an appreciable contributioare not normal coordinates, and thandh modes cannot be
to the diagonal mass asymmetry component of the frictiorconsidered as independent. This is indicated by the value of
tensory,, and, hence, to the corresponding component othe nondiagonal component of the inertia tensgy, being,
the diffusion tensoD ., . And, as a final result, this term on the average, of the same order of magnitude as the prod-
strongly influences the values of the variance of the fissionict of the diagonal components of the inertia tensgg and
fragment mass distribution. Dynamical calculations withoutmyy,, i.e., mgh/(mccmhh)~l. In an ideal parametrization in
this term would be strongly inadequate, as it is mentioned irwhich the collective coordinates are norngat almost nor-
[47]. Our two-dimensional calculationsl 6] of the fission mal) this ratio should be small, and the mean dynamical
fragment mass distribution agree with this statement. trajectory should pass near the bottom of the fission valley. It
For strongly necked-in shapes the friction tensor has beewas pointed out in Ref.19] that the coordinatesR;h) are
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more natural dynamical coordinates and can be regarded as lll. RESULTS AND DISCUSSIONS
approximately independent. As the calculations showed, the A. Discussion of calculated results of the fission fragment
nondiagonality of the tensors;; and y;; is expressed much MED

less strongly in the coordinateR () than in the coordinates i i i
(c,h), and therefore the mean dynamical trajectories shoulg W€ have carried out calculaélons ng the &bservables In
ission of the compound nucléi®®Po, 2?4Th, 2*Cm, and

pass closer to the corresponding bottom of the fission valle)f26 , . ; .
Study of deep-inelastic collisions gives much information *Rf formed in the following heavy-ion reactions:

on nuclear dissipation. These are grazing collisions where (1) 2C+19%Pt- %P0  (E,,=99 MeV):
the dinuclear systems are connected by a relatively thin neck.

There is a little mass transfer on the average, and interpreta- (2) 160+ 28,2247 (E,,, =108 Me\):;
tion of the data, although indicating high dissipation, is am-

biguous. Study of dissipation in fusion-fission and quasifis- (3) PC+2¥Th—**Cm  (Ej,,=97 MeV);

sion reactions is of great interest because it mj@6{ shed

light on dissipation in the mononuclear systems, perhaps, it (4) 20Ne+24%py—26Rf  (E,,,=142 and 174 MeY.

might give information on the effects of symmetrip$9],

and on the role of chad$0], particularly at the stage of the Our calculated results and the experimental data from
process before the saddle point is reached. Refs.[67-6( are summarized in Tables | and II.

Evaporation of the prescission light particles is incorpo- The fullest and clearest representation of the calculations
rated in the present model as follows. During the temporabf the fission fragment MED is in the form of contour dia-
evolution of the fission trajectory the internal excitation en-grams of the distributionY (Ex ,M). The typical diagrams
ergy is calculated at each time step. Correspondingly, thealculated in the stochastic approach based on the three-
partial evaporation widthE; (j =n,p,d,t,*He,e,y), the to-  dimensional Langevin equations are shown in Figs. 6 and 7,
tal width T, =3;T;, and the mean evaporation timg,,  for example, for the compound nucled®Rf for two exci-
—#IT, are calculated by the Weisskopf formulal,52. tauon_energles: For comparison, Figs. 6 and 7 glso show the
The Langevin equations are integrated by means of th&XPerimental diagrams taken from Rg57]. We first must

Heuen finite difference schenfié,12] of the first order. The NOte @ gﬁOd agre'ementlin thehgeneral Ibe'havior of tne con-
step of integration is\t. Knowing the time step of the dif- tours in the experimental and theoretical diagrams. The con-

ference scheme we can determine the probability for thé(.)ur diagrams calculated in the present study are completely

. ; . Similar to those obtained in R€flL7] in the framework of the
nucleus to evaporate a particle using the following proceduré&

) . o . . dynamical model with zero viscosity, although the method of
[53,54]: a random numbef uniformly distributed in the in- calculatingY(E« ,M) in Ref. [17] and that applied in the

t_erval (0.1) is generated and compargd with j[he ratio of th'?)resent work were different. It can be seen from Figs. 6 and
time stepAt to the mean evaporation timegy. Itis assumed 7 ¢ hoar the maximum Of (Ex,M) the shapes of the

that one of the particles(p,d,t,’He.a, ) is evaporated if  ¢ontours are nearly ellipsoidal, whereas in the region of
{<At/mq. A specific particle is chosen by means of Monte sma)| Y(E, ,M) the contours become similar to triangles
Carlo sampling, the probability of emitting a given particle is with rounded corners. The same change in the shape of the
proportional to the relevant partial widify . This procedure  contours was noted in Refisl7,18. In Figs. 6 and 7 one can
allows one to treat particle evaporation discretely, and notilee how with increasing of the excitation energy
the continuous approximatidri1,12, and simulates the law the width of the fission fragment MED increaséer a

of radioactive decay with half-life,;. Among the prescis- quantitative analysis of this increasing of the variance of
sion light particles neutrons play a special rf#&], because the fission fragment mass distributicn"r,%,I and the fission
their number is much greater than the number of evaporateflagment kinetic-energy distributio:mEK see the next section

charged particlesf,d,t,°He, anda particles or y quanta.  and Table I). The contour diagrams also clearly show the
The mean multiplicity of the prescission neutrons is a meagyisting liquid-drop correlation of the ratio of masses
sure of the time scale of the fission process. It is a kind ofand kinetic energies of fission fragments. One of character-
nuclear clock[55,56 that enables one to evaluate the timeistic manifestations of this correlation is the presence, at
spent by the fissioning nucleus between its ground state arftked M, of maxima in the distribution/(E,M) in the
scission configurations. A direct confrontation of the experi-region of smallEy . No doubt, such a shape of these local
mental data on prescission neutron multiplicities with thedistributions does not indicate an asymmetric fission, the
calculated results in the framework of the stochastic apexistence of which would be reflected quite differently in
proach based on the Langevin or the Fokker-Planck equdhe shape of theY(Ey,M) contours (see, for example,
tions has allowed3,12] a qualitative determination of the Ref.[61]).

key parameter, entering this description, namely the nuclear Using the calculated distributiod(Ex ,M) we can find
friction. Therefore, one of the main goals of the present calall the parameters that characterize it, and in terms of which
culations is to determine the value of the reduction faktor the experimental data are usually discussed and compared
of surface-plus-window dissipation by comparing the experi-with the predictions of theoretical approaches. These are,
mental data on the MED of fission fragments and the prescidirst and foremost, the first and second moments of the one-
sion neutron multiplicities with our calculated results. dimensional mass and energy distributions, which are ob-
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TABLE |. Calculated results for the fission 6P%o, 22Th, and 2*ACm formed in the reaction&’C+ *Pt—2%Po (E,,,=99 MeV);
160+ 298P 224Th (E =108 MeV); 2C+232Th—2%Cm (E,,,= 97 MeV). The columns contaitfrom left to right the compound nucleus
(CN), the excitation energyH*), the reduction coefficient of surface-plus-window dissipatign the variance of the mass and kinetic-
energy distributions of fission fragmentsﬁg and aéK), the average total kinetic energyHy)), the mean prescission neutron multiplicity
({npre)), the average time of collective motion of the compound nucleus from its formation to the scission configuatignsagd the
average temperature of the compound nucleus at its scisSlQp ).

E* oh ot (Ex) (t) (Teo
CN (MeV) Ke (u?) (MeV?) (MeV) (Npre) (1002 9 (MeV)
208pg 76.6
0.10 34131 375+ 34 144.9-0.6 1.5 26 1.97
0.25 280 26 180+17 144.5-0.4 2.8 111 1.82
0.50 23424 121+12 143.0:0.4 3.6 213 1.73
1.00 222+ 25 114+13 131.0:0.4 3.9 305 1.69
Expt. [57] 165+ 4 106+ 3 146.5-0.8 2.8
224Th 53.8
0.10 322:21 158+ 10 154.7-0.3 0.7 22 1.75
0.25 27217 121+8 154.30.2 1.5 65 1.67
0.50 24313 105+ 6 154.1£0.2 2.2 141 1.59
1.00 20321 96+ 9 154.0-0.4 2.7 258 1.53
Expt.[59,60 @ 213 137 162.41. 25
24Ccm 69.2
0.10 364+ 19 21011 172.6:0.3 1.4 13 1.92
0.25 315-14 155+7 172.4-0.2 2.0 24 1.88
0.50 27123 132+11 172.1-0.3 3.2 64 1.76
1.00 233:35 120+18 172.0:0.5 4.2 154 1.65
Expt. [58] 366 259 178 3.0

®The experimental values ¢,,.) have been taken frof59]. Experimental values of the variance and the mean kinetic energies have been
taken from[60] for ?Th compound nucleus.

tained by integrating/ (E«,M) overEy andM, respectively. reflect correlation of the parameters of the fission fragment
Of interest then are the functiof€y(M)), o¢ (M), and  MED. All information about the characteristics of the MED
o5 (Ex) (the mean value of the fragment kinetic energy andof fission fragments will be discussed later on in terms of the
its variance at a fixed value & and the variance of fission one-dimensional mass and energy distributions, which are
fragment mass distribution at a fixed value Bf), which  obtained from the fission fragment MED by integrating it

TABLE Il. The same as in Table |, but for the fission 8PRf formed in the reactioné®Ne+ 2*%Pu—26Rf (E,,,= 142 and 174 MeY.

E* o ot (Ex) (t) (Tso
CN (MeV) Ke (u?) (MeV?) (MeV) (Npre) (102 g) (MeV)
260Rf 74.2
0.10 4177 362+ 6 199.5:0.1 0.7 7 2.13
0.25 365-12 2177 201.1+0.2 1.3 15 2.11
0.50 315-14 1878 201.0:0.2 2.0 30 2.06
1.00 254+ 25 173:17 200.3:0.5 2.9 69 1.98
Expt. [57] 506+ 12 372+13 195+-2 35
260Rf 103.8
0.10 506+ 10 581+ 12 197.1-0.2 1.1 6 2.33
0.25 404+ 15 280+ 10 201.3:0.2 2.0 12 2.29
0.50 325-13 215+6 200.30.2 3.1 26 2.21
1.00 28113 201+10 195.8:0.2 4.3 60 2.1
Expt. [57] 620+17 424+ 15 196+ 2 5.7
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Fragment mass () tions of fission fragments of®’Rf, E* =74.2 MeV. The theoretical
histogram was calculated with the reduction coefficikgt0.1.

FIG. 6. The theoreticala) and experimentalb) MED of fission The experimental distribution was taken from Rig7].

fragments of?6Rf at the total excitation energi* =74.2 MeV.

The numbers at the contour lines in percents indicate the yield
which is normalized to 200%. The theoretical diagram was calcuIlnated at a sufficiently high excitation energy by the Gauss'

lated with the reduction coefficiel,=0.1. The experimental dia- 10 function with the mean valugM) and the variancery; .
gram was taken from Ref57]. Approximation of these one-dimensional distributions by the

Gaussian functions is convenient and standard, but its accu-
over kinetic energy or mass, respectively. We shall also contaCcy may often be unsatisfactof§2].
sider the correlation of th¥(Ey ,M) parameters. Figures 8 and 9 show the mass and energy distributions
for the compound nucleu®Rf. For comparison, Fig. 8 also
shows the experimental mass distribution taken from Ref.
[57]. Unfortunately, the figure showing the experimental en-
ergy distribution of fission fragments is not presented in Ref.
The energy distributiorY(Ex) has the form of a curve [57], and we could not compare directly the calculated and
with one maximum and is usually approximated in both thethe experimental distributions, in contrast to the case of the
experimental and the theoretical studies by a Gaussian fungnass distribution. One can see that the calculated kinetic-
“0” characterized by the mean val(fex) and the variance energy distribution of fission fragments shown in Fig. 9 no-
. Similarly, the mass distributiol(M) is also approxi- ticeably differs from the Gaussian distribution. The extent of
the deviation of these distributions from the Gaussian distri-

B. First and second moments of the fission fragment energy
and mass distributions

' ' ' butions can be expressed in terms of asymmetry coefficient
250 - (@) 1 and exces$6,13,17,62, i.e., quantities associated with the
third and fourth moments of the distributions. The calculated
200 - Cf ’3 _ excess of the energy distribution indicates that it has a
0,16
0066‘61’"
\’_‘__/-f’ T T T T T T T
150 | ) s
260
sl Rf
£ 100 : : :
g 250f (8) - |
= §, 3
L i >
200 0.16 2
0.06 Al
150 B 0.01 T
100 0 1;0 160 1&0 2l‘IJU 22IO 240
50 100 150 200 E, MeV)

Fragment mass (u)
FIG. 9. The calculated energy distribution of fission fragments

FIG. 7. The same as in Fig. 6, but f&* =103.8 MeV. of 2°0Rf, E* =74.2 MeV. The reduction coefficieht,=0.1.
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sharper peak than the Gaussian funcfidre excess is about In fact, at the present time there is no unambiguous crite-
one. Furthermore, there is no symmetry of the energy dis+ion of the scission condition. The condition of zero neck
tribution with respect tq Ex)—the asymmetry coefficient is radius can be considered as dttee simplestof the scission
significantly nonzero and negative. In comparison with theconditions. Such a definition of the scission condition is ob-
energy distribution the mass distribution of fission fragmentsviously unsatisfactory, since description of the nucleus in the
(shown in Fig. 8 has a more Gaussian-like for(the asym-  liquid-drop model becomes meaningless when the neck ra-
metry coefficient and the excess are almost zero dius becomes comparable with the distance between nucle-

The first and the second moments of the fission fragmentns. Therefore, it has been often suppd€éj21,64 that the
kinetic-energy distribution are sensitive to the nature of descission occurs at the critical deformation with a relatively
scent of the fissioning nucleus from the saddle point to scissthick neck. From the physical point of view it is attractive to
ion, and to the shape of scission configurations. Thereforajetermine the scission surface as the locus of points at which
the experimental values of the mean fragment kinetic energthe following equation is satisfied:
(Ex) are traditionally used as one of the most important
sources of data from which estimates of the nuclear viscosity
are madd€40,44,62,63

It was assumed in calculations of the parameters of the
energy distribution that the total kinetic energy of fission
fragments is the sum of the Coulomb repu|sion ene/gy This means that Stablllty against variations in the neck
the nuclear attractive energy, of the nascent fragments, thickness is lost. Such a criterion of scission can be called
and the kinetic energy of their relative motigprescission the criterion of instability of the nucleus with respect to
kinetic energyE,). All parts of this sum are calculated at Variations in the thickness of its nef§,13,19. It should be
the moment of scission. Then the mean value of the totanoted that this scission condition corresponds to the shapes

9V

e, =0. (18

c=const,a’ =const

kinetic energy(Ex) is found as
<EK>:<VC>+<Vn>+<Eps>! (15

and the expression for its variance is

2
agK =05 + a§p5+ 209, (16)
where
2 ~ ~
UVC: <V§> - <Vc>2!
UEPS:<E$)5>_<Eps>Zr (17)
UVCEPSZ <vcEps> - <vc>< Eps>v
where

Ve=V.+V,.

The last equation means that a part of the Coulomb repu
sion energy is used to overcome nuclear attraction betweef
the nascent fragments. A simple estimation of this quantit

of the fissioning nucleus with a finite neck radius, withR,3
on the averagEl4,19,21. Another acceptable and physically
sensible criterion is based on the equality of the Coulomb
repulsion and the nuclear attraction forces between future
fragments. It was shown in R€ff63] that this scission con-
dition leads to scission configurations for the actinide nuclei
with approximately the same neck radius equalindrg.For
these reasons we have chosen the scission surface as locus of
points where configurations of the fissioning nucleus are the
shapes with a finite neck radius of R3 We recognize that
this intricate problem of the fission physics needs further
detailed investigation in the framework of the finite-range
LDM [33,34.

Comparing the mean fragment kinetic ene{&y) calcu-
lated in the two-dimensional Langevin dynamftd—14 for
M = A/2 with the values of the quantity found on the basis of
the two-dimensional MED of fission fragments, we must
note that for light fissioning nuclei the value ¢E«) ob-
tained by integrating the MED of fission fragments olkis
less than the/Eyx) for M=A/2 by 2—-3 MeV. For heavy
fissioning nuclei this difference increases up to 6—7 MeV. To
ake a careful comparison with the experimental data, a

);:alculation of(Ex) in the framework of the stochastic ap-

as the surface energy of two sides of the neck has been doR&P@ch must be made using the three-dimensional Langevin

in Refs.[14,64]. We have exactly calculated, in the finite-
range LDM by performing numerical evaluation of the co

responding integrals5].

equations. Our calculated results f0Ey) are in a fairly

r. good agreement with the experimental data, as well as with

the fission systematics given by Ré62], which is more

The scission configuration is determined by the intersec@PPropriate in the regio@?/AY*>900 than one given by
tion points of the stochastic Langevin trajectories of the fis-viola [67]. ,
sioning system, with the scission surface in the coordinate AS regards the calculated values of the variance of the
subspace. When making three-dimensional Langevin calcdission fragment kinetic-energy distributiarf it should be
lations of the MED of fission fragments, especially of the stressed that the inclusion of the third collective coordinate
fission fragment kinetic-energy distribution, the crucial prob-(the mass asymmetry coordinateads to a considerable in-
lem is how to define the scission surface. For an arbitrargrease(up to 40% of this quantity, in comparison with the
dimensional model it is a well-known problem of choice of two-dimensional Langevin calculatiod1-14 of the fis-
the scission criterion that determines the set of configurationsion fragment energy distribution. Qualitative estimations of

ensuring scission of the nucleus into fragments.

the influence the mass asymmetry collective coordinate ex-
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erts on the parameters of the energy distribution presented in s
Ref.[3] are l?n a good agreement v?i)t/h our numeri%al results. - 190 - ,-fﬁ\‘s_'_ (@
The results listed in tables also show that the observed ap- = I = =
preciable growth otréK is sufficiently well reproduced in the § 40 ;-'-' . . -‘_"-.
three-dimensional Langevin dynamics, as the compound 5 ] )
nucleus becomes heavier. The dynamical mqdé] with ~ 190 | /w"‘\..
zero viscosity that does not take into account fluctuations of . - “"‘..,
the collective variables during the temporal evolution of the ol
fissioning nucleus from the ground state to its scission, fails 40 90 140 190
completely, ezven in the case of qualitative description of the Fragment mass (u)

2
dependenceEK(Z IA). FIG. 10. The theoreticala) and experimentalb) dependences

Let us proceed to discuss the results of the computation qft the mean kinetic energyEx(M)) on the fragment massl for
the variance of the fission fragment mass distribution obthe compound nucleug®®Rf at the total excitation energf*

tained by integrating the fission fragment MED ogs . It =74.2 MeV. The reduction coefficiett=0.1.

is clear that the mean value of the mass fragni&ht equals

to A/2 without taking into account evaporation of the light C. Correlation of the parameters of the fission fragment MED
prescission particles. Incorporation of the evaporation of the

X . . ! ; ) Correlation of the fission fragment MED parameters car-
light prescission particles into the model shifts slightly the g P

) ries additional information about the dynamics of descent of

value of (M) with respect toA/2. As can be seen from o fisqioning system, and its very last stage, just before
ta}bles, . the StOCha.St'C ap_proach based on the threggiggion of the nucleus into fragments, in comparison with

dimensional Langevin equations Iead; toa go;)d agreemefla information contained in the first and second moments of
between the calculated an2d the experimenfa(Z%/A) val-  {he one-dimensional mass and energy distributions. In par-
ues, including the regioZ“/A>35. At such values of the tjcylar, dependence of the shape of the scission configuration
fissility parameter the dynamical model with zero viscosity o the fragment mass ratio is directly reflected in correlation

[17] and the Fong's statistical modeg] fail, as in the case of the parameters of the fission fragment MED. Figures 10,

of description of the dependenoéK(ZzlA). The steep rise 17 12 and 13 show the dependen¢Eg(M)), UEK(M),

2 . oy
of the caécula_lted deper)dena{',,(z IA) as the fissility pa- 2 (E, ) calculated in the stochastic approach, based on the
rameterZ“/A increases is the result of two opposite tenden+nree-dimensional Langevin equations. They reflect the cor-
cies. On one hand, during evolution of the fissioning systemeg|ation of the parameters of the fission fragment MED.

from the ground state to scission the stiffnéss grows In a first approximation, the depender{&(M)) can be
monotonically, and fluctuations of the mass asymmetry coyescribed by the parabolic express|di, 6]

ordinate, accordingly, fall down. But, on the other hand,

when reaching the scission configuration the system still 2M\?

keeps in “memory” the former larger fluctuations. More- (Ex(M))=(Ex(A/2)) 1_B<1_T) :

over, the faster the descent of the nucleus from the saddle to

scission is, the larger the remembered values of the variance It reflects mainly dependence of the Coulomb repulsion
of the mass asymmetry will be. Consequently, in fission ofenergy and the distance between the centers of mass of future
the heavier nuclei with a longer descent a larger part of the

(19

trajectory is remembered, and the variance grows rapidly. 160t

Such an interpretation of the “memory” of the fissioning (a)

system of its prehistory was discussed in detail at a quanti- 150l _.}Jh'&ﬁ‘;x

tative level in Ref.[6]. Therefore, the calculated values of __.f.fh "Lﬁ-lﬁ-'

af,, will strongly depend on the velocity of descent from the 140 ‘W- ) I‘V

saddle point to scission and, finally, on the magnitude of § )

nuclear viscosity. Wada and Apg9] have come to the same p 1307

conclusions about the consequences of the dynamical evolu- E 180 e o

tion from the saddle to scission, especially for heavy fission- -~ . .-x-'i""" "',*"u‘;_ (b)

ing systems. The calculated values of the variangen the = 1707 N n

present three-dimensional Langevin calculations are larger hd _,r"r" l‘Tl""._

than the corresponding values of, obtained in the two- 160 ¢ _.J 1-’1 .

dimensional Langevin calculatiofl6] by up to 40-50 %. J Lu-,‘f

This considerably improves agreement with the experimental 150 ; . . . .

data. 60 80 100 120 140 160
Errors of the calculated parameters of the fission fragment Fragment mass (u)

MED arise due to the finite number of trajectories in the

Langevin calculations. These purely statistical errors are cal- FIG. 11. The calculated dependences of the mean kinetic energy
culated according to the formulas given in Rgf0] and are  (E«(M)) on the fragment maskl for the compound nucleita)
presented in Tables | and II. 20 and(b) 2**Cm. The reduction coefficierit;=0.25.
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400 ; - ; - ; the time of scission on the mass asymmetry in the following
300: (a) | approximations with respect to the parameter or (1
I ] —2M/A) leads to appearance in the expresgit®) of terms
200f 1. ] for (Ex(M)) that are proportional to (£2M/A)*. The
~ AV . JL 1 analysis of(Ex(M)) made in Ref[72] shows that the ex-
> 100 v,ﬂ_,’lﬂ_)\,f_‘.-fk‘r-kﬂj_ : perimentally observed dependences, indeed, contain terms
S ol . : : : proportional to (£ 2M/A)*.
oo I G 11 The calculated varianczeéK(M) is practically constant up
6’1 soor ] to a certain value of the mass ratié/(A—M) that varies
200l o] slightly when the parameters of the compound nucleus and
I k . r/'\ﬂ il the reduction factorks are changed. Such behavior of
100¢ """"-f"'r-'{’-'ﬁ.f“ﬂ-..ﬂ..,-'- pr R O'EK(M) agrees well with the experimental data, whose ac-
0' ) , ) , ] curacy becomes much poorer with increasigIn accor-
80 100 120 140 160 dance with the experimental data the varian¢gEy) of the
Fragment mass (u) mass distribution exhibits a characteristic decreasing depen-

dence with increasing kinetic energy. Figure 13 shows that
Yhe theoretical description of the observed almost “hyper-
bolic” dependenceSrZM(EK) is very good. Qualitatively, the
dependences;(Ex) andag (M) can be understood from

the form of the fission fragment MED fdvl = const and for
EK=const. While the former distributions have much the
same width in a wide interval d¥l, the width and even the
general form of the latter distributions strongly depend on
ofhe value ofEy .

FIG. 12. The calculated dependences of the fission fragme
kinetic-energy variamceréK on the fragment mads! for the com-
pound nuclei:(@ 2%Po and(b) 2*4Cm. The reduction coefficient
ks=0.25.

fragments at the time of scission on the fragment mass. W
note that the dependence E9) for 8=1 follows from the
dynamical mode]17] with zero viscosity. The valug=1 in
Eq. (19) corresponds to the case where the kinetic energy
the fragments is determined by their Coulomb repulsion en-

ergy at the time of scission with a simplified assumption that D- The prescission neutron multiplicity, mean fission time,
the distance between the centers of mass of the fragments  and deduced value of the reduction coefficienk

does not depend on the mass asymmetry. As was noted in As was mentioned above, one of the ultimate objectives
Ref.[71], the experimentally observed depende(Eg(M))  of these calculations is to deduce the value of the reduction
at excitation energyE*>20 MeV corresponds to a value coefficient of the surface-plus-window dissipation from the
B<1 for the fissioning nuclei lighter thaf'*At. This value  confrontation of the existing data on the MED of fission
depends both on the fissility parameter andedn The cal-  fragments and the prescission neutron multiplicity with the
culated dependenceEg(M)) correspond to the values f  results calculated for these observables.
that vary fromB=0.7 for o to 8=1.6 for *°Rf, although The results of the calculations flag=0.1, 0.25,0.5, and 1
they decrease faster than the experimentally observed depesye listed in Tables | and IIl. One can see that all calculated
dences with increasiniyl. Allowance for the dependence of quantities are rather sensitive to the value of the coefficient
the distance between the centers of mass of the fragmentsjat. The analysis of the results presented in Tables allows us
to make the following conclusions. F8P%Po all the observ-

2000 - - - ables are reproduced at the valkg=0.5; for ?Th and
1600+ (a) | 24Cm quite a good reproduction of data is achievedkat
s _ =0.25-0.5. For the heaviest compound nucléf&Rf the
1200 problem of data reproduction is more complicated. The large
800 Y values of the variancez anday, are reproduced better in
.:; 4001 “\"r."\_“ .. 1 calculations ak;=0.1 andks=0.25. But these values of the
~ 0 e : friction lead to a strong underestimation of the mean neutron
sz 1600} . (») multiplicity ((npe)). Agreement between the calculated and
the experimental values dh,) becomes better dt,=1
12001 & ] that corresponds to the full wall-and-window formula and a
800 T"’l__ : highly overdamped collective motion, but such a strong fric-
400} ‘--"'..“Hth tion leads to considerably underestimated values of the vari-
e Y ance of the fission fragment MED. But evenkat 1 for the
0 . . \
120 140 160 180 200 reaction 2'Ne+ 2*Pu—2Rf (Ej,p=174 MeV) the experi-
mental values of the prescission neutron multiplicity prove
Ex (MCV) tal val f th t Itiplicit d

to be underestimated in the calculations. We arrived at a
FIG. 13. The calculated dependences of the fission fragmerfliscrepancy in one and a half neutr@ee Table .
mass variancez, on theE, for the compound nucleia) 2°®Po and Thus, simultaneous description of the data on (thg.)
(b) ?*"Cm. The reduction coefficierit;=0.25. and on the MED of fission fragments is problematic and
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may even be impossible for the fissioning nuclei heavier thamas been reduced to a minimum. Under assumption of the
244Cm in the framework of the developed model. A factor surface-plus-window dissipation mechanism of nuclear vis-
that might have strong influence on the calculated values ofosity, the only really variable parameter is the reduction
(Nnyre) is contribution of the evaporated neutrons during for-coefficient,ks in Eqg. (14) that we have discussed above. Of
mation of the equilibrated compound nucleus, i.e., in thecourse, it must be kept in mind that the definition of the
entrance channel of the considered reactions. The entranseission surface adopted in the model is not unique.
channel effects have been recently discussed in Réss- The consistent calculation of the distribution parameters
75]. It was shown that for some combinations of the collid-(E), O'EK, o2, (Ex(M)), O'EK(M), and o,(Ex) carried

ing heavy ions(the reaction*Ne+**%u belongs to this oyt on the basis of the two-dimensional MED of fission frag-
case the contribution of the evaporated neutrons during for-ments shows that the stochastic approach to the fission dy-
mation of the equilibrated compound nucleus can be an agyamics reproduces sufficiently well the characteristics of the
preciable part of th¢npe). fission fragment MED and their dependence on the various
Tables I and Il also contain the calculated values of thgyarameters of the compound nucleus. Almost all characteris-
mean fission timgty). They have been calculated by aver- tics of the MED of fission fragments depend essentially on
aging over a trajectory ensemble as the mean time of colleghe magnitude of the reduction coefficient of the contribution
tive motion of the fissioning nucleus from the moment of itSfrom the wall formula. Consequently, the experimental data
formation to the scission configuration. Experimentdlly)  on the variances of the fission fragment distributions can be
is rarely measured directly, but it can be deduced from th%mployed together with the traditionally usé#) data for
measured multiplicities of particles emitted prior to fission. determination of the magnitude and mechanism of nuclear
Therefore, such deduced time scales of fusion-fission reagissipation in fission.
tions are dependent rather strongly on the assumptions The calculated parameters of the fission fragment MED
adopted in statistical model calculations of the prescissioRng the mean prescission neutron multiplicity are found to be
neutron multiplicities(see, as an example, R¢73]). The 5 3 good quantitative agreement with the experimental data
deduced values of time scales for fusion-fission reactiongt the value of the reduction coefficieki=0.25-0.5. This
constitute at least severall 18 s[55]. From the calculated value ofks is close to the value that was fouft?] indepen-
values of(t;) presented in tables one can see thakat gently of fission. The value dé;=1 corresponds to the full
=0.5 they are of the same order of magnitude, although theya|-and-window formula, and to a highly overdamped col-
decrease, with increase of the fissility parameter, faster thagctive motion, as well. It leads to considerably underesti-

the experimental valug$5,59. mated values of the variance of the fission fragment MED.
An extension of the model for calculating the fission frag-
IV. CONCLUSIONS ment MED in quasifission reactions induced by heavy ions is

desirable.
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these fission characteristics are rather sensitive to the magrgussions, and correspondence. We are grateful to Professor
tude of nuclear viscosity in fission process. We have choseN. G. ltkis for permanent support of this study. We are in-
the shape parameters of the well-known “funny hills” pa- debted to Dr. V. V. Mikheev for a careful reading of the
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and the diffuseness of the nuclear surface, has been usedwhom he has had the pleasure of collaborating for the past
calculations as a macroscopic model for determination of theeveral years and also for his encouragement without which
conservative driving forces. The modified one-body mechathe present paper would never have been written. This work
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