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Liquid-gas phase transition in nuclei in the relativistic Thomas-Fermi theory
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The equation of state~EOS! of finite nuclei is constructed in the relativistic Thomas-Fermi theory using the
nonlinears-v-r model. The caloric curves are calculated by confining the nuclei in the freeze-out volume
taken to be a sphere of size about 4–8 times the normal nuclear volume. The results obtained from the
relativistic theory are not significantly different from those obtained earlier in a nonrelativistic framework. The
nature of the EOS and the peaked structure of the specific heatCv obtained from the caloric curves show clear
signals of a liquid-gas phase transition in finite nuclei. The temperature evolution of the Gibbs potential and the
entropy at constant pressure indicate that the characteristics of the transition are not too different from the
first-order one.
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I. INTRODUCTION

Nuclear caloric curves have been obtained from a num
of experiments in recent times from energetic nucle
nucleus collisions. In the GSI data@1# for Au1Au at 600A
MeV, the temperature was found to be practically constan
a value ofT;5 MeV over the excitation energy (e* ) range
of 3–10 MeV per nucleon, after whiche* was found to
increase linearly with temperature as in a classical gas. T
is suggestive of a sharp liquid-gas type phase transition.
caloric curve obtained from the collision of Au on C at 1A
GeV in the EOS Collaboration experiment@2# also shows a
plateau atT;6 MeV; this is not as prominent as in th
earlier case. However, the heat capacityCv derived from this
caloric curve of the EOS group shows a peaked structur
T;6 MeV, indicating existence of a phase transition. Ev
at a relatively low bombarding energy of 47A MeV @3# for
several reactions, it has been seen recently that the ca
curves show plateau atT;7 MeV in the excitation energy
range of;3.5–7 MeV per nucleon. It would be interestin
to know whether this is a precursor to the liquid-gas ph
transition in the finite nuclei. Theoretical analysis of infini
nuclear matter~symmetric as well as asymmetric!, both in
the nonrelativistic@4,5# and relativistic frameworks@6,7#,
predicts van der Waals–type isotherms in their equation
state ~EOS!, implying the coexistence of liquid and ga
phases. Finite size effects and the Coulomb interaction
tween protons might change such a behavior, but the EO
realistic nuclei, calculated only recently@8# in the nonrela-
tivistic Thomas-Fermi~TF! theory, display the same kind o
isotherms, liquid-gas coexistence, and a liquid-gas ph
transition at a temperature quite below the critical tempe
ture for infinite nuclear matter. The calculated transition te
peratures are still somewhat higher than the observed o
and the caloric curves do not match exactly the ones der
from experiments, but the calculations in Ref.@9# give un-
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mistakable signals of the liquid-gas phase transition in fin
size nuclear systems.

Relativistic mean field~RMF! theories have been applie
successfully to explain the ground state properties of nu
over the entire periodic table@10#. This theory has also
proved to be very fruitful in explaining various details o
exotic nuclei near the drip lines@11,12#. In contrast to the
nonrelativistic models, the RMF theory uses a single se
parameters to explain all these properties. It would theref
be very interesting to investigate the EOS of finite nuclei a
the related exotic phenomena like the liquid-gas phase t
sition in the relativistic approach. The present paper aim
understanding these thermodynamic properties of hot nu
in a relativistic Thomas-Fermi~RTF! theory.

In Sec. II, we briefly outline the formalism used. Th
results and discussions are presented in Sec. III. The s
mary and conclusions are given in Sec. IV.

II. FORMALISM

A brief outline of the calculations of the relevant therm
dynamic quantities in the relativistic Thomas-Fermi appro
mation is presented in this section. The Lagrangian den
used is given by@10#

L5C̄ i~ igm]m2M !C i1
1

2
]ms]ms2U~s!2gsC̄ isC i

2
1

4
VmnVmn1

1

2
mv

2 vmvm2gvC̄ ig
mvmC i

2
1

4
RW mnRW mn1

1

2
mr

2rW mrW m2grC̄ ig
mrW mtWC i

2
1

4
FmnFmn2eC̄ ig

m
~12t3!

2
AmC i . ~1!

The meson fields included are those of the isoscalars me-
son, the isoscalar-vectorv meson, and the isovector-vectorr
meson. The arrows in Eq.~1! denote the isovector quantities
The z component of isospin,t3, is taken to be11 for neu-
trons and21 for protons. For an appropriate description
©2001 The American Physical Society04-1
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the nuclear surface properties@13#, a scalar self-interaction
term U(s) of the s meson is included in the Lagrangian,

U~s!5
1

2
ms

2s21
1

3
g2s31

1

4
g3s4. ~2!

The quantitiesM, ms , mv , andmr are the nucleon,s-, v-,
and ther-meson masses, respectively, whilegs , gv , gr ,
ande2/4p51/137 are the corresponding coupling consta
for the mesons and the photon. The field tensors of the ve
mesons and of the electromagnetic fields have the follow
structure:

Vmn5]mvn2]nvm, ~3!

R¢ mn5]mrW n2]nrW m2gr~rW m3rW n!, ~4!

Fmn5]mAn2]nAm. ~5!

The equations of motion are obtained from the variatio
principle. The mean field approximation is introduced at t
stage by treating the fields asc numbers or classical fields
This results in a set of coupled equations, namely, the D
equation with potential terms for the nucleons and the Kle
Gordon-type equations with sources for the mesons and
photon. Time reversal invariance and charge conserva
simplify the equations in the static case. The resulting eq
tions, known as relativistic mean-field equations, have
following form. The Dirac equation for the nucleon is

$2 ia•¹1V~t3 ,r !1b@M1S~r !#%C i5e iC i , ~6!

where

V~t3 ,r !5gvv0~r !1grt3r0~r !1e
~12t3!

2
A0~r ! ~7!

and

S~r !5gss~r ! ~8!

are thevector and thescalar potentials, respectively. Th
scalar potential contributes to the effective mass as

M* ~r !5M1S~r !. ~9!

The Klein-Gordon equations for the mesons and the e
tromagnetic fields with the nucleon densities as sources

$2D1ms
2%s~r !52gsrs~r !2g2s2~r !2g3s3~r !, ~10!

$2D1mv
2 %v0~r !5gvrv~r !, ~11!

$2D1mr
2%r0~r !5grr3~r !, ~12!

2DA0~r !5erc~r !. ~13!

While considering a finite nucleus, for simplicity, we assum
it to be spherically symmetric. The above field equatio
then can be written in a general form
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S 2
]2

]r 2
2

2

r

]

]r
1mf

2 D f~r !5Sf~r !, ~14!

wheremf are the meson masses forf5s, v, andr and is
zero for the photon. The source termSf(r ) is given by the
right-hand side of Eqs.~10!–~13! for s,v,r and Coulomb
fields. The above equation~14! can be solved using the
Green’s function@10#

f~r !5E
0

`

r 82Gf~r ,r 8!Sf~r 8!dr8, ~15!

where

Gf~r ,r 8!5
1

2mfrr 8
@e2mfur 2r 8u2e2mfur 1r 8u#, ~16!

for the massive fields, and

Gf~r ,r 8!55
1

r
for r .r 8,

1

r 8
for r ,r 8,

~17!

for the Coulomb field.
The quantitiesrs , rv , r3, andrc appearing on the right-

hand side of Eqs.~10!–~13! are the scalar, baryon, isovecto
and charge densities, respectively. They can be obtained

rs~r !5(
t3

rs~t3 ,r !,

rv~r !5(
t3

rv~t3 ,r !,

r3~r !5(
t3

t3rv~t3 ,r !,

rc~r !5(
t3

S 12t3

2 D rv~t3 ,r !. ~18!

In the Thomas-Fermi approximation, the quantitiesrv(t3 ,r )
andrs(t3 ,r ) are given as

rv~t3 ,r !5
g

2p2E0

`

f ~e,T!k2dk, ~19!

rs~t3 ,r !5
g

2p2E0

` M* ~r !

Ak21M* 2~r !
f ~e,T!k2dk, ~20!

where the spin degenaracy factorg is equal to 2. The self-
consistent occupancy functionf (e,T) is obtained through the
minimization of the thermodynamic potential

G5E2TS2mN ~21!
4-2
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and is given by

f ~e,T!5
1

11e(e2m)/T
, ~22!

with

e~t3 ,k,r !5V~t3 ,r !1Ak21M* 2~r !. ~23!

The chemical potentialm is adjusted to get the desired num
ber of particles~neutrons and protons! given by

n~t3!54pE
0

r max
r 2rv~t3 ,r !dr. ~24!

In Eq. ~24!, r max determines the confining volumeV taken to
be spherical. From Eqs.~19! and ~22!, it can be seen that a
large distances the baryon densityrv ; e(m2M )/T and is
therefore a nonzero constant at finite temperature. The s
tion to the baryon density and hence the various observa
depends on the choice of the size of the box in which
calculation is performed. At zero temperature, however,
solution is independent of the choice of the confining volu
once it is larger than the normal nuclear volumeV0. Exactly
the same characteristic is seen in the nonrelativistic c
@14,15#. The choice of the volume for the evaluation of th
thermodynamic variables will be discussed in the next s
tion.

For a nuclear system with mass numberA, the total en-
ergy E(T) is given by@10#

E~T!5Epart1Es1EsNL1Ev1Er1EC1Ec.m.2AM,
~25!

with

Epart5
2g

p (
t3

E
0

r max
r 2drE

0

`

k2e~t3 ,k,r ! f ~e,T!dk,

~26!

Es52
1

2
gsE d3rrs~r !s~r !, ~27!

EsNL52
1

2E d3r H 1

3
g2s3~r !1

1

2
g3s4~r !J , ~28!

Ev52
1

2
gvE d3rrv~r !v0~r !, ~29!

Er52
1

2
grE d3rr3~r !r0~r !, ~30!

EC52
e2

8pE d3rrC~r !A0~r !, ~31!

Ec.m.52
3

4
\v052

3

4
41A21/3. ~32!
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The free energyF is given by (E2TS) where the entropy
S can be calculated from the Landau quasiparticle appro
mation,

S52
2g

p (
t3

E
0

r max
r 2drE

0

`

k2@ f ln f 1~12 f !ln~12 f !#dk.

~33!

The specific heatCv and the pressureP can be calculated
from

Cv5
dE

dTU
V

, ~34!

P52
dF

dVU
T

. ~35!

The baryonic density and the mesonic and Coulomb fie
are obtained iteratively through the following scheme.

~i! An initial guess is made for the fieldss(r ), v(r ),
r(r ), andA0(r ).

~ii ! The effective massM* and the energye given by
Eqs. ~9! and ~23!, respectively, are calculated with th
guessed fields. The proton and neutron chemical poten
(m) are adjusted to reproduce the given number of nucle
of each kind.

~iii ! From Eq. ~18!, the various densities and hence t
source terms are calculated.

~iv! These source terms are used in Eqs.~10!–~13! for the
generation of the new fields.

Steps~ii !–~iv! are repeated until the desired accuracy
reached.

The expressions for the EOS for nuclear matter can
obtained as a special case of a finite nucleus by ignoring
gradient terms in the field equations. This simplifies the
pressions for the relevant observables and are given in
@6#.

III. RESULTS AND DISCUSSIONS

In this section, the results of our calculations for the EO
of infinite symmetric and asymmetric nuclear matter as w
as of a few finite nuclear systems are first given. We ha
chosen40Ca, 109Ag, and 150Sm as the reprersentative sy
tems. The results of our calculations of the caloric curve
these nuclei are next presented. A host of parameter set
the nonlinears-v-r model are available which produce a
most similar ground state properties of nuclei over the wh
periodic table but with widely different values of nucle
incompressibility (K`). To study the effects of differentK`

on the results of our calculations, we have chosen the par
eter sets NL1, NL3, and NLSH@10,16#, havingK` equal to
212, 272, and 356 MeV, respectively.

A. Nuclear EOS

The EOS of symmetric and asymmetric nuclear matte
the RTF theory has already been calculated by Mu¨ller and
Serot@7#. For comparison of results for finite nuclei obtaine
4-3
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with a given set of parameters and also for completeness
have repeated the calculations for infinite systems with
same given parameter set. In Fig. 1, the isotherms of s
metric nuclear matter~top panel! and asymmetric nuclea
matter~bottom panel! with X50.2 are displayed. The asym
metry parameter is defined asX5(rn2rp)/(rn1rp). The
abscissa refers tor0 /r (5V/V0) wherer0 is the saturation
density of normal nuclear matter given by 0.15 fm23. The
isotherms are calculated with the NL3 parameter set and
shown for a few temperatures, at and around the critical t
peratureTc . For symmetric matter,Tc is 14.2 MeV, whereas
for the asymmetric matter considered, it is 13.6 MeV. T
isotherms resemble closely those obtained for the van
Waals systems and are not quantitatively very different fr
those found in the nonrelativistic approach@8#. The dashed

FIG. 1. The equation of state for symmetric nuclear matter~top
panel! and of asymmetric nuclear matter~bottom panel! with NL3
parameter set. The temperatures~in MeV! for the isotherms are a
marked in the figure. The dotted lines are the spinodals and
dashed lines are the coexistence curves.
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and dotted lines in the figure are the liquid-gas coexiste
line and the spinodal line, respectively. With the other p
rameter sets, the results are very similar; however, the c
cal temperature is found to increase and the critical volu
becomes smaller for the parameter set which gives la
incompressibility. The critical temperature and the critic
volume for the different parameter sets are given in Tabl

For the symmetric infinite system, the liquid-gas coexi
ence line is obtained from the Maxwell construction as it
effectively a one-component system. Here the pressure
the chemical potential in the two phases are the same
fixed temperature~Gibbs criteria! throughout their coexist-
ence for any value ofl wherel is the liquid volume fraction
~the gas volume fraction is 12l). Then the neutron-proton
asymmetry is zero in both phases for all values ofl. The
asymmetric nuclear matter is a two-component system; h
for any l, not only do the Gibbs criteria need to be fulfille
for the thermodynamical coexistence of the liquid and g
phases, the overall asymmetry~neutron-proton ratio! has to
be conserved which introduces added complications. N
the pressure, chemical potentials, and the neutron-proton
tio in both phases are in general changing functions of
volume fraction@7#. We have taken these factors into a
count to determine the liquid-gas coexistence region. T
spinodals shown in Fig. 1 are the isothermal spinodals re
ring to mechanical instability. The diffusive spinodal@17# for
the asymmetric matter is not shown here.

Finite nuclei ~even symmetric ones! with the Coulomb
interaction switched on behave like two-component syste
However, the ideas expounded earlier for asymme
nuclear matter for the construction of the liquid-gas coex
ence lines cannot be employed to the case of finite syste
The density in finite nuclei is not uniform unlike infinit
nuclear matter which is homogeneous in either the liquid
gas phase. For an asymmetric infinite system, we have fo
that for liquid-gas coexistence, in general, the neutron-pro
ratio in the gas phase is much larger than that in the liq
phase. There is thus a phase separation between the neu
and protons. For the construction of the isotherms for fin
nuclei, the system is enclosed in a finite volume; then
self-consistent solution of the density profiles does not all
any significant neutron-proton phase separation becaus
the strong attractive unlike pair interactions compared to
interaction among like pairs. Indeed, from numerical calc

e

eter
TABLE I. Critical temperature and critical volume for a few systems in the RTF model with param
sets NL1, NL3, and NLSH, and in the NRTF model with the SBM interaction.

Systems Tc ~MeV! Vc /V0

NL1 NL3 NLSH SBM NL1 NL3 NLSH SBM

Sym. NM 13.4 14.2 15.4 14.5 3.9 3.3 2.9 2.8
Asy. NM 12.7 13.6 14.7 14.1 4.1 3.4 3.0 2.9
(X50.2)
40Ca 11.1 11.6 12.4 – 6.7 6.5 5.8 –
150Sm 11.4 12.0 13.0 11.8 5.4 5.0 4.4 4.9
~with Coulomb interaction!
150Sm 12.3 12.9 14.0 12.5 6.4 6.0 5.2 6.2
~no Coulomb interaction!
4-4
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LIQUID-GAS PHASE TRANSITION IN NUCLEI IN . . . PHYSICAL REVIEW C63 054604
lations, we find that theN/Z ratio throughout the nuclea
volume is nearly the same~not varying by more than 10%! at
all temperatures beyondT;3.0 MeV. For a two-componen
thermodynamic system, liquid-gas coexistence occurs a
the Maxwell line ~constant pressure, equal areas in the
stable phases in theP-V diagram! if the ratios of the concen
trations of the components are the same in the two phase
it is then effectively a one-component system. It is kno
that for small finite one-component systems, the pressur
the coexistence region may have a small negative slope@18#
in theP-V plane, but for symmetric nuclei with the Coulom
interaction switched off, we find numerically that the co
ventional Maxwell construction is an excellent approxim
tion as the differences in the chemical potentials on b
ends of the Maxwell line are negligibly small. It is found th
for the asymmetric finite nuclei under study~even with the
Coulomb interaction on!, the difference in the neutron or th
proton chemical potentials at the ends of the Maxwell line
typically ;0.2 MeV only, which is around 30–40 time
smaller compared to that for infinite nuclear matter with t
same asymmetry. We therefore expect that for these fi
systems, for the determination of the liquid-gas coexisten
a conventional Maxwell construction may not be a poor
proximation to which we have resorted to in the present c
culations for the nuclei considered.

The isotherms for the lightest nucleus40Ca and the heavi-
est nucleus150Sm that we consider are shown in Figs. 2 a
3, respectively, for the parameter set NL3. The results w
the other parameter sets are not displayed as they look
similar. The finite size effects and the Coulomb interactio
between protons do not change the qualitative characte
the isotherms; the only effects are the lowering of the criti
temperature and raising of the critical volume to some
tent. The coexistence lines and the isothermal spinodal l
are shown by the dashed and dotted lines, respectively.
critical temperatures and the critical volumes for differe

FIG. 2. The equation of state for the nucleus40Ca for the NL3
parameter set. The different notations used have the same me
as in Fig. 1.
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parameter sets are shown in Table I. The finite size effect
well as the Coulomb interaction tend to reduce the criti
temperature. To isolate the Coulomb effect, the critical
rameters for150Sm are also displayed in Table I switchin
off the Coulomb interaction. It is seen that the Coulom
interaction lowersTc for 150Sm by about 1 MeV. The nature
of the EOS shows that it is possible to have a liquid-g
phase transition in a finite nuclear system below the criti
temperatureTc if it is prepared suitably in thermodynami
equilibrium.

To make a quantitative comparison of the results in
RTF theory with those obtained in the nonrelativis
Thomas-Fermi~NRTF! framework@8#, the NRTF results for
the critical temperatures and the critical volumes for nucl
matter and for the nucleus150Sm are also given in Table I
The NRTF calculations were performed with a modifi
Seyler-Blanchard~SBM! effective interaction which gives
K`'240 MeV. This lies in between those obtained wi
NL1 and NL3 parameter sets. However, it is seen that
critical parameters for the SBM calculations are in betwe
NL3 and NLSH for infinite nuclear matter and close to tho
obtained with the NL3 parameter set for finite systems. T
nature of the EOS and critical parameters is controlled by
single-particle potential and the effective mass. To comp
these quantities in the RTF and in the NRTF models,
display in Fig. 4 the nucleon single-particle potential as
function of the nuclear density~scaled with the norma
nuclear densityr0) for symmetric nuclear matter as given
the two models. The single-particle potential in the RTF
taken to beV1S as given by Eqs.~7! and ~8!. The corre-
sponding effective masses are shown in Fig. 5. It is seen
the SBM single-particle potential is very close to that o
tained with the NL1 parameter set at lower densities wh
evolves towards that generated with the NL3 parameter
with increasing density. The effective mass in the NR
model is only a few percent lower at low densities and n
the normal nuclear matter density it becomes somew
higher compared to those obtained in the RTF model. T

ing
FIG. 3. Same as in Fig. 2 but for the nucleus150Sm.
4-5
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TAPAS SIL, B. K. AGRAWAL, J. N. DE, AND S. K. SAMADDAR PHYSICAL REVIEW C63 054604
single-particle potentials for protons as a function of dista
from the center of the nucleus (150Sm) in the two models
corresponding to the ground state and at a temperatuT
58 MeV are shown in the top and bottom panels of Fig.
respectively. The neutron single-particle potentials~not
shown! have very similar behavior. It is seen that the pote
tials obtained in the NRTF model and those obtained w
the different parameter sets in the RTF models are q
close. The effective mass for finite nuclei in the two mod
is consistent with that shown in Fig. 5; i.e., the NRTF mod
yields an effective mass which is a little higher at the cen
and lower at the surface compared to the RTF ones.

FIG. 4. Plot for the relativistic and nonrelativistic mean fie
potentials as a function of density for symmetric nuclear matte
zero temperature.

FIG. 5. Density dependence of nucleon effective mass for s
metric nuclear matter at zero temperature calculated within the r
tivistic and nonrelativistic frameworks.
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above results clearly demonstrate the closeness of the sin
particle potential and the effective mass in the nonrelativis
and relativistic frameworks. So it is natural to expect that
EOS and the related thermodynamic properties would no
very different.

B. Caloric curve

We have remarked before that the density and hence
observables depend on the volume in which the nucleu
finite temperature is confined. The calculation of the exc
tion energy as a function of temperature~the caloric curve! is
thus volume dependent. In the experimental situation w
energetic heavy ion collisions, it is generally assumed t
the hot nuclear system prepared after the collision expa
substantially beyond its normal size (;4 –8 timesV0) and
then undergoes fragmentation due to density instabilit
Guided by the practice that many theoretical calculations
heavy ion collisions are done by imposing that thermali
tion occurs in a freeze-out volume, we fix a volume and th
find the caloric curve. The freeze-out volumeV is deter-
mined byr max occurring in Eqs.~26!–~33! asV/V05(1/A)
3(r max/r 0)3. Herer 0 is the radius parameter correspondin
to the normal nuclear volumeV0; it is taken to be 1.2 fm.

In order to see the signature of liquid-gas phase transit
it is evident that the freeze-out volume is to be chosen
yond the critical volumeVc . It is seen from Table I that for
the nuclei considered,Vc;5 –6 timesV0. We have fixed the
freeze-out volume as 8V0 for our calculations. In Fig. 7, the
caloric curves for the nuclei40Ca, 109Ag, and 150Sm are
displayed with the three different parameter sets. The cal
curves are seen to be nearly independent of the param

t

-
a-

FIG. 6. Relativistic and nonrelativistic mean field potentials f
protons at temperaturesT50 MeV ~top panel! andT58 MeV ~bot-
tom panel! for the nucleus150Sm.
4-6
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LIQUID-GAS PHASE TRANSITION IN NUCLEI IN . . . PHYSICAL REVIEW C63 054604
sets. At lower temperatures, the excitation energy per par
e* increases quadratically with temperature similar to tha
a Fermi gas; forT between 5 and 10 MeV, the caloric curv
exhibits a shoulder and beyond that with a kinke* rises
linearly with temperature as observed for a classical gas
the bottom panel of Fig. 7 the data for experimental calo
curves for the ALADIN and EOS Collaborations are al
shown. It is noted that the calculated caloric curves sh
shoulders at temperatures significantly higher than those
tained from experiments. This may be attributed to~i! the
neglect of fluctuations in the theory which is expected
play important role near the transition temperature and~ii !
the neglect of collective flow which lowers the transitio
temperature appreciably as seen in the nonrelativistic ca
lations @8#. The specific heatCv defined by Eq.~34! for the
three parameter sets is shown in Figs. 8 and 9 for the th
systems studied. Except for the top panel in Fig. 8, the
culations reported are done at the freeze-out volume 8V0.
The heat capacity shows a sharp peak, signaling the liq
gas phase transition, the peaks occurring at those temp
tures where the caloric curve exhibits a kink. It is found th
the harder the EOS, the larger the transition temperatureTp)
and the sharper the peak. In the top panel of Fig. 8,
specific heat for40Ca with a freeze-out volume 4V0 is dis-
played. Instead of a sharp peak, it shows a broad bum
T;10 MeV. Here the freeze-out volume is less than
critical volume. We do not associate this bump with a liqu

FIG. 7. Caloric curves for the systems40Ca, 109Ag, and 150Sm.
Open circles and solid squares in the bottom panel represen
experimental data for ALADIN and EOS Collaborations.
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gas phase transition; it possibly signals a precursor to
transition.

The evolution of the density distributions for the thre
systems around the phase transition temperatureTp is dis-

he

FIG. 8. The specific heat for40Ca at freeze-out volume equal t
4V0 ~upper panel! and 8V0 ~lower panel! with different parameter
sets as labeled.

FIG. 9. The specific heat for the nucleus109Ag ~upper panel!
and 150Sm ~lower panel! at the freeze-out volume 8V0 with differ-
ent parameter sets.
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played in Figs. 10 and 11. The calculations are done i
freeze-out volume 8V0. In Fig. 10, the density distribution
for 40Ca with the parameter sets NL3~top panel! and NLSH
~bottom panel! is shown. At low temperatures, the density
more like a Woods-Saxon profile; with increasing tempe
ture, the central density depletes and a long tail spreadin
the boundary develops as is shown by the dashed lineT
50.9Tp . With further increase in temperature toTp and a
little beyond, the density distribution tends to be uniform
is evident from the solid line (T5Tp) and the dotted line
(T51.1Tp). It is found that the evolution of density with
temperature is nearly independent of the parameter sets
therefore for the nuclei109Ag and 150Sm calculations with
only NL3 parameter sets are shown in Fig. 11. For th
nuclei too the evolution of density is very similar to that
40Ca. The rapid change in the density distribution toward
uniform one as the temperature approachesTp is a further
indication of a liquid-gas phase transition in these finite s
tems.

For symmetric nuclear matter, at a fixed temperature,
pressure remains constant over the whole coexistence re
The Gibbs free energy per particleg then shows a kink at the
transition temperature when the pressure is held constan
derivative with respect to temperature, the entropy functi
then shows a discontinuity there. For asymmetric nucl
matter, it has been shown in Ref.@7# that the liquid-gas phas
transition is second order, the continuous transition bec
ing more conspicuous with increasing asymmetry. There
pressure is not constant but shows a negative slope in
coexistence region for an isotherm in theP-V plane. Thus, at
constant pressure, the end points of the coexistence line

FIG. 10. Density distributions around transition temperatu
Tp510.1 and 10.3 MeV at a freeze-out volume 8V0 for 40Ca with
parameter sets NL3~upper panel! and NLSH~lower panel!, respec-
tively.
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at different temperatures; then the kink in the Gibbs fr
energyg disappears and the entropy function becomes c
tinuous with kinks at the end points of the transition. T
liquid-gas phase transition thus occurs over a finite temp
ture interval. For finite nuclei, the exact calculation of t
thermodynamic functions in the coexistence region is n
trivial and still not known, but as explained earlier in th

FIG. 11. Density distribution around the transition temperatu
Tp510.2 and 10.3 MeV for109Ag ~upper panel! and 150Sm ~lower
panel!, respectively, with NL3 parameter set at a freeze-out volu
8V0.

FIG. 12. The temperature evolution of entropy per particle
the system150Sm at a constant pressure (P50.087 MeV/fm3). The
dashed line shows the discontinuity at the transition temperatu

s
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beginning of this section, we expect the pressure in this
gion to remain close to a constant; it is then obvious that
entropy at constant pressure would show a discontinuity
transition temperature as shown in Fig. 12 indicating a fi
order phase transition. A precise statement about the ord
the phase transition in finite nuclei can be made only if ex
calculations of the partition functions and hence the therm
dynamic variables are rendered posssible. The present m
field theory shows that the liquid-gas phase transition in
nite nuclei has characteristics closer to a first-or
transition. This is in consonance with the results obtained
the lattice gas model@19#. No definite conclusion can, how
ever, be reached from the experimental data; the GSI dat@1#
indicate a first-order phase transition whereas the analyse
the EOS data@20# show that the transition may be seco
order.

IV. CONCLUSIONS

The relativistic mean-field theory which has been ve
successful in describing the ground state properties
. D

hy

c
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nuclear systems has been applied for the first time in ev
ating the equation of state of finite nuclei in this paper. W
have resorted to a relativistic self-consistent Thomas-Fe
theory with the nonlinears-v-r version of the Lagrangian
It is found that the results do not differ qualitatively from
those obtained in a nonrelativistic approach. This is due
the fact that the single-particle potential and the effect
mass which control the relevant observables are very sim
The calculations have been done with three parameter
with very different nuclear incompressibilities; still the EO
look nearly the same and the critical parameters are not
different. The critical parameters for finite nuclei are app
ciably different from those of the infinite system. The sp
cific heatCv calculated from the caloric curve shows peak
structures, signaling a liquid-gas phase transition in the
clei studied. The near uniformity of the density distributio
as the system approaches the transition temperature con
this further. Analysis of the thermodynamical quantities
dicates that this liquid-gas phase transition in the finite nu
is more compatible with a first-order one.
hys.
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