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Liquid-gas phase transition in nuclei in the relativistic Thomas-Fermi theory
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The equation of stattEOS of finite nuclei is constructed in the relativistic Thomas-Fermi theory using the
nonlinearo-w-p model. The caloric curves are calculated by confining the nuclei in the freeze-out volume
taken to be a sphere of size about 4-8 times the normal nuclear volume. The results obtained from the
relativistic theory are not significantly different from those obtained earlier in a nonrelativistic framework. The
nature of the EOS and the peaked structure of the specifidhealbtained from the caloric curves show clear
signals of a liquid-gas phase transition in finite nuclei. The temperature evolution of the Gibbs potential and the
entropy at constant pressure indicate that the characteristics of the transition are not too different from the
first-order one.
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[. INTRODUCTION mistakable signals of the liquid-gas phase transition in finite
size nuclear systems.

Nuclear caloric curves have been obtained from a number Relativistic mean fieldRMF) theories have been applied
of experiments in recent times from energetic nucleussuccessfully to explain the ground state properties of nuclei
nucleus collisions. In the GSI dafa] for Au+Au at 600A  over the entire periodic tabl€10]. This theory has also
MeV, the temperature was found to be practically constant gproved to be very fruitful in explaining various details of
a value ofT~5 MeV over the excitation energy?t) range  exotic nuclei near the drip lingisl1,12. In contrast to the
of 3—10 MeV per nucleon, after whick* was found to nonrelativistic models, the RMF theory uses a single set of
increase linearly with temperature as in a classical gas. Thigarameters to explain all these properties. It would therefore
is suggestive of a sharp liquid-gas type phase transition. Thiee very interesting to investigate the EOS of finite nuclei and
caloric curve obtained from the collision of Au on C aA1 the related exotic phenomena like the liquid-gas phase tran-
GeV in the EOS Collaboration experimefi®] also shows a sition in the relativistic approach. The present paper aims at
plateau atT~6 MeV; this is not as prominent as in the understanding these thermodynamic properties of hot nuclei
earlier case. However, the heat capa€yderived from this  in a relativistic Thomas-FermiRTF) theory.
caloric curve of the EOS group shows a peaked structure at In Sec. Il, we briefly outline the formalism used. The
T~6 MeV, indicating existence of a phase transition. Evenresults and discussions are presented in Sec. Ill. The sum-
at a relatively low bombarding energy of #MeV [3] for ~ mary and conclusions are given in Sec. IV.
several reactions, it has been seen recently that the caloric
curves show plateau dt~7 MeV in the excitation energy Il. FORMALISM
range of~3.5—7 MeV per nucleon. It would be interesting ) ) )
to know whether this is a precursor to the liquid-gas phase A brief outline of the calculations of the relevant thermo-
transition in the finite nuclei. Theoretical analysis of infinite dynamic quantities in the relativistic Thomas-Fermi approxi-
nuclear mattesymmetric as well as asymmetrjdoth in ~ mation is presented in this section. The Lagrangian density
the nonrelativistic[4,5] and relativistic frameworkg6,7], ~ used is given by10]
predicts van der Waals—type isotherms in their equation of
state (EOS, implying the coexistence of liquid and gas
phases. Finite size effects and the Coulomb interaction be-
tween protons might change such a behavior, but the EOS of
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realistic nuclei, calculated only recentl8] in the nonrela- 1o 1 T w

tivistic Thomas-Ferm{TF) theory, display the same kind of 4Q Dt 2 M@ @y 9o Viv e, Vi

isotherms, liquid-gas coexistence, and a liquid-gas phase 1

transition at a temperature quite below the critical tempera- RMVR 4 27,7 O oonl 2
L " - ,2F=m -9, Vivtp, TV,

ture for infinite nuclear matter. The calculated transition tem- 4 wr T Ml Pu = GpEi Y P

peratures are still somewhat higher than the observed ones, 1—
and the caloric curves do not match exactly the ones derived _ZEAE  _eV. y#( 73) AW, (1)
from experiments, but the calculations in REJ] give un- 4 mr ' 2 wot

The meson fields included are those of the isoscalane-
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the nuclear surface properti€$3], a scalar self-interaction P2 29
termU(o) of the o meson is included in the Lagrangian, 57 Eeri d(r)=Sy(r), (14
ar
1 2 2 1 3 1 4 .
U(0)=5m,0o"+ 30207+ 7g30™. (2)  wherem, are the meson masses f¢r= o, , andp and is

zero for the photon. The source te®y(r) is given by the
The quantitiesM, m,,, m,,, andm, are the nucleong-, w-, right-hand side of Eqsi10)—(13) for o,w,p and Coulomb
and thep-meson masses, respectively, whilg, g,,, g, flelds.’The a_bove equatiofll4) can be solved using the
ande%/4m=1/137 are the corresponding coupling constants>reen’s functior{10]
for the mesons and the photon. The field tensors of the vector

mesons and of the electromagnetic fields have the following B(r)= fmr’2G¢(r,r’)S¢(r’)dr’, (15
structure: °
QOH7= gt p? — 5 wh, (3) where
RAY= k5" — 3"p* — g, (5" X p"), (4) Gy(r,r')= [e-mdrrI—e mdrr'l] (16)
2myrr’
FHY=grAY— g A, (5

) ) ) ~ for the massive fields, and
The equations of motion are obtained from the variational

principle. The mean field approximation is introduced at this 1 ,

stage by treating the fields @snumbers or classical fields. T for r>r’,

This results in a set of coupled equations, namely, the Dirac Gy(r,r')= (17)
. . . i P\ s 1

equation with potential terms for the nucleons and the Klein 2 for r<r

Gordon-type equations with sources for the mesons and the

photon. Time reversal invariance and charge conservation

simplify the equations in the static case. The resulting equafor the Coulomb field.

tionS, known as relativistic mean-field equations, have the The quantities)s, P P3 andpc appearing on the nght-

following form. The Dirac equation for the nucleon is hand side of Eqg10)—(13) are the scalar, baryon, isovector,
(i VA V(rs.r)+ BIM+S() 1 = & W, © and charge densities, respectively. They can be obtained as

!

r

where Ps(r)I% ps(73.1),
V(Ts,r)=gwwo(r)+gp73po(r)+e(1_273) Ao(r)  (7)
po(1) =2 py(73,1),
and N
S(r)=g,o(r) 8) p3<r>=§3 73po(73,1),
are thevector and thescalar potentials, respectively. The
scalar potential contributes to the effective mass as p(D=> ( % py(73,6). (18)
73

M*(r)=M+8(r). (9
In the Thomas-Fermi approximation, the quantifieérs,r)
The Klein-Gordon equations for the mesons and the elecand py(5,r) are given as
tromagnetic fields with the nucleon densities as sources are

{=A+mZ}lo(r)=—g,ps(r) —9204(r) —gza>(r), (10) PU(Ts,f)ZZ—;/J:f(E,T)kde, (19
{=A+m2}g(r)=gup,(r), (11)
, o= [ MO Tedk @0
{=A+m}po(r)=g,p3(r), (12) S om2)o kB MFR(r) ’

—AAy(r)=ep.(r). (13  where the spin degenaracy factpris equal to 2. The self-
consistent occupancy functidife, T) is obtained through the
While considering a finite nucleus, for simplicity, we assumeminimization of the thermodynamic potential
it to be spherically symmetric. The above field equations
then can be written in a general form G=E-TS-uN (21
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and is given by The free energy is given by E—TS) where the entropy
S can be calculated from the Landau quasiparticle approxi-
mation,

f(e,T)= (22

1+ele=m)IT’ 2 r o
= szdrf K2[fInf+(1—f)In(1-f)]dk.
T 13 0 0

(33

with

e(r3,k,r)=V(73,r)+\/k2+M*2(r). (23

The specific heaC, and the pressur® can be calculated

The chemical potentiak is adjusted to get the desired num- 1OM
ber of particlegneutrons and protongiven by dE
Fmax Co=g7 J (34)
n(73)=4wf r2p,(75,r)dr. (24)
0
B dF
In Eq. (24), r 12y determines the confining volumétaken to P=-4v . (39

be spherical. From Eq$19) and(22), it can be seen that at

large distances the baryon density ~ e*~™'T and is  The baryonic density and the mesonic and Coulomb fields
therefore a nonzero constant at finite temperature. The soligre obtained iteratively through the following scheme.

tion to the baryon density and hence the various observables (j) An initial guess is made for the fields(r), w(r),
depends on the choice of the size of the box in which the,(r) andA(r).

calculation is performed. At zero temperature, however, the  (jj) The effective massM* and the energy given by
solution is independent of the choice of the confining volumegqgs, (9) and (23), respectively, are calculated with the
once it is larger than the normal nuclear volulg Exactly  gyessed fields. The proton and neutron chemical potentials

the same characteristic is seen in the nonrelativistic casg,) are adjusted to reproduce the given number of nucleons
[14,15. The choice of the volume for the evaluation of the of each kind.

thermodynamic variables will be discussed in the next sec- (jji) From Eq.(18), the various densities and hence the

tion. . source terms are calculated.
For a nuclear system with mass numigerthe total en- (iv) These source terms are used in H4§)—(13) for the
ergy E(T) is given by[10] generation of the new fields.
Steps(ii)—(iv) are repeated until the desired accuracy is
E(T)=Epartt Es+Eonit EoTE,+Ect+Ecm—AM, reached.
(29) The expressions for the EOS for nuclear matter can be
with obtained as a special case of a finite nucleus by ignoring the
gradient terms in the field equations. This simplifies the ex-
2y o - pressions for the relevant observables and are given in Ref.
Epar=—" 23 . r2drf0 k2e(73,k,r)f (e, T)dk, [6].

(26 Ill. RESULTS AND DISCUSSIONS
E—_ 1 48 27) In this section, the results of our calculations for the EOS
7 2 9o fps(ro(r), of infinite symmetric and asymmetric nuclear matter as well
as of a few finite nuclear systems are first given. We have
1 1 1 chosen“Ca, %Ag, and **°Sm as the reprersentative sys-
Eone=— Ef daf(ggzas(fH 59304(0], (28)  tems. The results of our calculations of the caloric curve for
these nuclei are next presented. A host of parameter sets for
1 the nonlinearo-w-p model are available which produce al-
Eo=— _gwj d3r p, (1 ’(r), (29 most similar ground state properties of nuclei over the whole
2 periodic table but with widely different values of nuclear
1 incompressibility K..). To study the effects of differeri.,
_ - 3 0 on the results of our calculations, we have chosen the param-
Ep= 29”[ drps(1)p7(r), (30 eter sets NL1, NL3, and NLSHLO,16], havingK.. equal to
212, 272, and 356 MeV, respectively.

o2
__ % 0
Ec= 877,[ d*rpe(NAT(Y), 3D A. Nuclear EOS

The EOS of symmetric and asymmetric nuclear matter in
ST DL Py T (32 the RTF theory has already been calculated byllédiand
cm. 0 ' Serot[7]. For comparison of results for finite nuclei obtained
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0.4 and dotted lines in the figure are the liquid-gas coexistence
Nuclear Matter line and the spinodal line, respectively. With the other pa-
03 | rameter sets, the results are very similar; however, the criti-
cal temperature is found to increase and the critical volume
becomes smaller for the parameter set which gives larger
02 incompressibility. The critical temperature and the critical
volume for the different parameter sets are given in Table I.
01 I For the symmetric infinite system, the liquid-gas coexist-
ence line is obtained from the Maxwell construction as it is
— effectively a one-component system. Here the pressure and
£ 0 the chemical potential in the two phases are the same at a
> fixed temperaturdGibbs criteria throughout their coexist-
203l ence for any value of where\ is the liquid volume fraction
(the gas volume fraction is-2\). Then the neutron-proton
asymmetry is zero in both phases for all values\ofThe
02| asymmetric nuclear matter is a two-component system; here,
for any \, not only do the Gibbs criteria need to be fulfilled
01 1 for the thermodynamical coexistence of the liquid and gas
phases, the overall asymmeffiyeutron-proton ratiphas to
be conserved which introduces added complications. Now,
0.0 0 > 7 5 s 10 the pressure, chemical potentials, and the neutron-proton ra-

N, tio in both phases are in general changing functions of the
volume fraction[7]. We have taken these factors into ac-
FIG. 1. The equation of state for symmetric nuclear mgtmp ~ count to determine the liquid-gas coexistence region. The
pane) and of asymmetric nuclear mattésottom panel with NL3 spinodals shown in Fig. 1 are the isothermal spinodals refer-
parameter set. The temperatutgsMeV) for the isotherms are as ring to mechanical instability. The diffusive spinodar] for
marked in the figure. The dotted lines are the spinodals and thehe asymmetric matter is not shown here.
dashed lines are the coexistence curves. Finite nuclei (even symmetric ongswith the Coulomb
interaction switched on behave like two-component systems.
with a given set of parameters and also for completeness, wdowever, the ideas expounded earlier for asymmetric
have repeated the calculations for infinite systems with th@uclear matter for the construction of the liquid-gas coexist-
same given parameter set. In Fig. 1, the isotherms of symence lines cannot be employed to the case of finite systems.
metric nuclear matteftop panel and asymmetric nuclear The density in finite nuclei is not uniform unlike infinite
matter(bottom panelwith X=0.2 are displayed. The asym- nuclear matter which is homogeneous in either the liquid or
metry parameter is defined a&=(p,—pp)/(pntpp)- The  gas phase. For an asymmetric infinite system, we have found
abscissa refers tpg/p (=VIV,) wherepg is the saturation that for liquid-gas coexistence, in general, the neutron-proton
density of normal nuclear matter given by 0.15finThe ratio in the gas phase is much larger than that in the liquid
isotherms are calculated with the NL3 parameter set and anghase. There is thus a phase separation between the neutrons
shown for a few temperatures, at and around the critical temand protons. For the construction of the isotherms for finite
peratureT .. For symmetric mattefT. is 14.2 MeV, whereas nuclei, the system is enclosed in a finite volume; then the
for the asymmetric matter considered, it is 13.6 MeV. Theself-consistent solution of the density profiles does not allow
isotherms resemble closely those obtained for the van deny significant neutron-proton phase separation because of
Waals systems and are not quantitatively very different fronthe strong attractive unlike pair interactions compared to the
those found in the nonrelativistic approa@]. The dashed interaction among like pairs. Indeed, from numerical calcu-

TABLE |. Critical temperature and critical volume for a few systems in the RTF model with parameter
sets NL1, NL3, and NLSH, and in the NRTF model with the SBM interaction.

Systems T. (MeV) V./Vq

NL1 NL3 NLSH SBM NL1 NL3 NLSH SBM
Sym. NM 134 142 15.4 145 3.9 3.3 2.9 2.8
Asy. NM 12.7 136 14.7 14.1 4.1 34 3.0 2.9
(X=0.2)
“Cca 11.1 11.6 12.4 - 6.7 6.5 5.8 -
1505m 114 120 13.0 11.8 5.4 5.0 4.4 4.9
(with Coulomb interaction
1505 m 123 129 14.0 12.5 6.4 6.0 5.2 6.2

(no Coulomb interaction
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FIG. 2. The equation of state for the nuclet’€a for the NL3 FIG. 3. Same as in Fig. 2 but for the nucletf$Sm.
parameter set. The different notations used have the same meaning . o
as in Fig. 1. parameter sets are shown in Table I. The finite size effects as

well as the Coulomb interaction tend to reduce the critical

lations, we find that theN/Z ratio throughout the nuclear temperature. To isolate the Coulomb effect, the critical pa-
volume is nearly the sam@ot varying by more than 10pat  rameters for'°Sm are also displayed in Table | switching
all temperatures beyonifi~3.0 MeV. For a two-component off the Coulomb interaction. It is seen that the Coulomb
thermodynamic system, liquid-gas coexistence occurs alonigteraction lowersT; for 1°°Sm by about 1 MeV. The nature
the Maxwell line (constant pressure, equal areas in the unef the EOS shows that it is possible to have a liquid-gas
stable phases in the-V diagram if the ratios of the concen- phase transition in a finite nuclear system below the critical
trations of the components are the same in the two phases, ssmperatureT . if it is prepared suitably in thermodynamic
it is then effectively a one-component system. It is knownequilibrium.
that for small finite one-component systems, the pressure in To make a quantitative comparison of the results in the
the coexistence region may have a small negative Jlbe = RTF theory with those obtained in the nonrelativistic
in the P-V plane, but for symmetric nuclei with the Coulomb Thomas-Ferm{NRTF) framework[8], the NRTF results for
interaction switched off, we find numerically that the con- the critical temperatures and the critical volumes for nuclear
ventional Maxwell construction is an excellent approxima-matter and for the nucleu$°Sm are also given in Table I.
tion as the differences in the chemical potentials on bothThe NRTF calculations were performed with a modified
ends of the Maxwell line are negligibly small. It is found that Seyler-Blanchard SBM) effective interaction which gives
for the asymmetric finite nuclei under studgven with the K_~240 MeV. This lies in between those obtained with
Coulomb interaction on the difference in the neutron or the NL1 and NL3 parameter sets. However, it is seen that the
proton chemical potentials at the ends of the Maxwell line iscritical parameters for the SBM calculations are in between
typically ~0.2 MeV only, which is around 30-40 times NL3 and NLSH for infinite nuclear matter and close to those
smaller compared to that for infinite nuclear matter with theobtained with the NL3 parameter set for finite systems. The
same asymmetry. We therefore expect that for these finitaature of the EOS and critical parameters is controlled by the
systems, for the determination of the liquid-gas coexistencesingle-particle potential and the effective mass. To compare
a conventional Maxwell construction may not be a poor apthese quantities in the RTF and in the NRTF models, we
proximation to which we have resorted to in the present caldisplay in Fig. 4 the nucleon single-particle potential as a
culations for the nuclei considered. function of the nuclear densityscaled with the normal

The isotherms for the lightest nucle®a and the heavi- nuclear density,) for symmetric nuclear matter as given in
est nucleus'®°sm that we consider are shown in Figs. 2 andthe two models. The single-particle potential in the RTF is
3, respectively, for the parameter set NL3. The results withtaken to beV+S as given by Eqgs(7) and (8). The corre-
the other parameter sets are not displayed as they look vegponding effective masses are shown in Fig. 5. It is seen that
similar. The finite size effects and the Coulomb interactionghe SBM single-particle potential is very close to that ob-
between protons do not change the qualitative character a&ined with the NL1 parameter set at lower densities which
the isotherms; the only effects are the lowering of the criticalevolves towards that generated with the NL3 parameter set
temperature and raising of the critical volume to some exwith increasing density. The effective mass in the NRTF
tent. The coexistence lines and the isothermal spinodal linesiodel is only a few percent lower at low densities and near
are shown by the dashed and dotted lines, respectively. Thbe normal nuclear matter density it becomes somewhat
critical temperatures and the critical volumes for differenthigher compared to those obtained in the RTF model. The
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FIG. 4. Plot for the relativistic and nonrelativistic mean field

potentials as a function of density for symmetric nuclear matter at -85 0 > 4 6 8 1‘0 12
zero temperature.

single-particle potentials for protons as a function of distance FIG. 6. Relativistic and nonrelativistic mean field potentials for
from the center of the nucleus®fSm) in the two models Protons at temperaturds=0 MeV (top panel andT=8 MeV (bot-
corresponding to the ground state and at a temperature tom panel for the nucleus'*Sm.

=8 MeV are shown in the top and bottom panels of Fig. 6,

respectively. The neutron single-particle potentidteot  above results clearly demonstrate the closeness of the single-
shown have very similar behavior. It is seen that the poten-particle potential and the effective mass in the nonrelativistic
tials obtained in the NRTF model and those obtained withand relativistic frameworks. So it is natural to expect that the
the different parameter sets in the RTF models are quitEOS and the related thermodynamic properties would not be
close. The effective mass for finite nuclei in the two modelsvery different.

is consistent with that shown in Fig. 5; i.e., the NRTF model

yields an effective mass which is a little higher at the center B. Caloric curve

and lower at the surface compared to the RTF ones. The

We have remarked before that the density and hence the
observables depend on the volume in which the nucleus at
finite temperature is confined. The calculation of the excita-

0.95 - ] tion energy as a function of temperat\tiee caloric curvgis
Nuclear Matter

thus volume dependent. In the experimental situation with
energetic heavy ion collisions, it is generally assumed that
the hot nuclear system prepared after the collision expands
substantially beyond its normal size-@—8 timesV,) and
then undergoes fragmentation due to density instabilities.
Guided by the practice that many theoretical calculations for
heavy ion collisions are done by imposing that thermaliza-
tion occurs in a freeze-out volume, we fix a volume and then
find the caloric curve. The freeze-out volunweis deter-
mined byr ., OCcurring in Eqs(26)—(33) asV/Vy=(1/A)

X (rmax/To)>. Herer is the radius parameter corresponding
to the normal nuclear volum¥; it is taken to be 1.2 fm.

In order to see the signature of liquid-gas phase transition,
it is evident that the freeze-out volume is to be chosen be-
055 - 53 57 8 Y / yond the _critica_l volume/,. It is_ seen from Table I_ that for

’ ' oip, : ’ the nuclei considered/,~5—-6 timesV,,. We have f_|xed the
freeze-out volume as\g, for our calculations. In Fig. 7, the
FIG. 5. Density dependence of nucleon effective mass for symcaloric curves for the nuclef°Ca, *®Ag, and **°Sm are
metric nuclear matter at zero temperature calculated within the reledisplayed with the three different parameter sets. The caloric
tivistic and nonrelativistic frameworks. curves are seen to be nearly independent of the parameter

0.85

M/M

0.75

0.65
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Sm <
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FIG. 8. The specific heat fdt°Ca at freeze-out volume equal to

10

20

4V, (upper pangland 8V, (lower panel with different parameter
sets as labeled.

£ (MeV)

FIG. 7. Caloric curves for the systemi&a, 1%°Ag, and *5%Sm.

Open circles and solid squares in the bottom panel represent theansition.

experimental data for ALADIN and EOS Collaborations.

The evolution of the density distributions for the three

gas phase transition; it possibly signals a precursor to the

systems around the phase transition temperalyrés dis-

sets. At lower temperatures, the excitation energy per particle
€* increases quadratically with temperature similar to that in
a Fermi gas; foil between 5 and 10 MeV, the caloric curve
exhibits a shoulder and beyond that with a kiak rises
linearly with temperature as observed for a classical gas. Ir
the bottom panel of Fig. 7 the data for experimental caloric
curves for the ALADIN and EOS Collaborations are also
shown. It is noted that the calculated caloric curves show
shoulders at temperatures significantly higher than those ob
tained from experiments. This may be attributed(ifothe

neglect of fluctuations in the theory which is expected tog

play important role near the transition temperature énd ©
the neglect of collective flow which lowers the transition
temperature appreciably as seen in the nonrelativistic calcu
lations[8]. The specific hea€, defined by Eq(34) for the
three parameter sets is shown in Figs. 8 and 9 for the thre:
systems studied. Except for the top panel in Fig. 8, the cal-
culations reported are done at the freeze-out volurdg. 8
The heat capacity shows a sharp peak, signaling the liquid:
gas phase transition, the peaks occurring at those temper:
tures where the caloric curve exhibits a kink. It is found that
the harder the EOS, the larger the transition temperaiye (
and the sharper the peak. In the top panel of Fig. 8, the
specific heat for*®Ca with a freeze-out volume4, is dis-

10

5

0

1 0 150, 7
Sm |
i
i
il
|
i
5 ik T
sl
=2
-;/"‘;- é. |
4.
0 L L
5 10
T(MeV)

played. Instead of a sharp peak, it shows a broad bump at FIG. 9. The specific heat for the nucled®Ag (upper panel
T~10 MeV. Here the freeze-out volume is less than theand '°Sm (lower panel at the freeze-out volume\g, with differ-

critical volume. We do not associate this bump with a liquid-ent parameter sets.
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0.00 ‘ ‘ STty F T
0.00 ‘ ‘
0 : ; ° s 0 5 10

FIG. 10. Density distributions around transition temperatures
T,=10.1 and 10.3 MeV at a freeze-out volume Sfor 40Ca with
parameter sets NL@ipper pangland NLSH(lower panel, respec-
tively.

FIG. 11. Density distribution around the transition temperatures
T,=10.2 and 10.3 MeV for®Ag (upper panéland **°Sm (lower
pane), respectively, with NL3 parameter set at a freeze-out volume
8V0.

played in Figs. 10 and 11. The calculations are done in &t different temperatures; then the kink in the Gibbs free
freeze-out volume 8,. In Fig. 10, the density distribution energyg disappears and the entropy function becomes con-
for “°Ca with the parameter sets NI®p panel and NLSH  tinuous with kinks at the end points of the transition. The
(bottom panelis shown. At low temperatures, the density is liquid-gas phase transition thus occurs over a finite tempera-
more like a Woods-Saxon profile; with increasing temperature interval. For finite nuclei, the exact calculation of the
ture, the central density depletes and a long tail spreading tthermodynamic functions in the coexistence region is non-
the boundary develops as is shown by the dashed liffe at trivial and still not known, but as explained earlier in the
=0.9T,. With further increase in temperature 1¢ and a

little beyond, the density distribution tends to be uniform as 44
is evident from the solid lineT=T,) and the dotted line

(T=1.1T,). It is found that the evolution of density with 1%°5m
temperature is nearly independent of the parameter sets ar 35 | //
therefore for the nuclet®Ag and °%Sm calculations with

only NL3 parameter sets are shown in Fig. 11. For these
nuclei too the evolution of density is very similar to that in 39 ]
40Ca. The rapid change in the density distribution towards a
uniform one as the temperature approachigds a further — _
indication of a liquid-gas phase transition in these finite sys-® 25
tems.

For symmetric nuclear matter, at a fixed temperature, the 50 | |
pressure remains constant over the whole coexistence regiolr /
The Gibbs free energy per partigighen shows a kink at the
transition temperature when the pressure is held constant. It {5 | .
derivative with respect to temperature, the entropy function, P=0.087 MeV/fm
then shows a discontinuity there. For asymmetric nuclear
matter, it has been shown in RgT] that the liquid-gas phase 1.0 ‘ ‘ ‘ ‘
transition is second order, the continuous transition becom- 98 10.0 10'2T(Mev)1°'4 106 108
ing more conspicuous with increasing asymmetry. There the
pressure is not constant but shows a negative slope in the FiG. 12. The temperature evolution of entropy per particle for
coexistence region for an isotherm in tRe/ plane. Thus, at  the system**°Sm at a constant pressure0.087 MeV/fn?). The
constant pressure, the end points of the coexistence line ats@shed line shows the discontinuity at the transition temperature.
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beginning of this section, we expect the pressure in this reauclear systems has been applied for the first time in evalu-
gion to remain close to a constant; it is then obvious that thating the equation of state of finite nuclei in this paper. We
entropy at constant pressure wou_Id S.hOW a.dis'cor!tinuity. at have resorted to a relativistic self-consistent Thomas-Fermi
transition temperqtyre as shoyvn in Fig. 12 indicating a fII’St‘theory with the nonlineatr-w-p version of the Lagrangian.
order phase transition. A precise statement about the order ¢f is found that the results do not differ qualitatively from
the phase transition in finite nuclei can be made only if exacthose obtained in a nonrelativistic approach. This is due to
calculayons _of the partition functions and hence the thermohe fact that the single-particle potential and the effective
dynamic variables are rendered posssible. The present meaf,ss which control the relevant observables are very similar.
field theory shows that the liquid-gas phase transition in firhe caiculations have been done with three parameter sets
[nte _{?“C'e+h.h6!5 . characteristics 'ft!o;er to Ita E:St_'orge_rwith very different nuclear incompressibilities; still the EOS
ransition. 1his IS in consonance wi € Tesulls obtained iy, nearly the same and the critical parameters are not too
the lattice gas mod¢9]. No definite conclusion can, how- . " T .

. . different. The critical parameters for finite nuclei are appre-
ever, be reached from the experimental data; the GSl[data . . S

SPny different from those of the infinite system. The spe-

indicate a first-order phase transition whereas the analyses OF. .

the EOS datd20] show that the transition may be second cific heatC, (_:alcu_lated f_“’”_‘ the caloric curve s_r_]ow_s peaked

order. structures, signaling a liquid-gas phase transition in the nu-

clei studied. The near uniformity of the density distribution

as the system approaches the transition temperature confirms

this further. Analysis of the thermodynamical quantities in-
The relativistic mean-field theory which has been verydicates that this liquid-gas phase transition in the finite nuclei

successful in describing the ground state properties ofs more compatible with a first-order one.

IV. CONCLUSIONS
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