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The transition strength for Coulomb breakup®fe into “He+ n+ n three-body unbound states is studied in
the framework of the complex scaling meth6@SM). We propose a method to analyze the three-body
unbound states in which CSM is utilized to decompose the three-body transition strengths into resonance and
continuum components. We calculate the contributionEbfandE2 transitions, not only from three-body
resonances, but also from two-bodyFe+n" and three-body ““He+n+n” continuum states. From the
calculated strength distributions, we discuss the characteristic structufetedh the positive energy region,
and also the Coulomb breakup mechanismPefe. We show that the two-body >He+n” component is
dominant in the total Coulomb breakup cross section.
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. INTRODUCTION halo nuclei such a$He (*He+n-+n) [8] and *'Li(°Li+n
+n) [9-11]. The result of*'Be on the Pb target shows a low

The development of radioactive beams provides us withenergy enhancement in thgl transition strength distribu-
many interesting phenomena of unstable nuclei near the drifion of the two-body breakup reaction. The dipole enhance-
lines[1-3]. The most typical example is the discovery of a ment observed just above the breakup threshold energy has
neutron halo structure in several neutron-rich nuclei such abeen explained by a large low-momentum component in the
6He, Li, and 'Be[1,2]. One of the common features of ground state that has a spatially extended one-neutron distri-
unstable nuclei is the weak binding; the neutron halo nuclebution characteristic of the halo structy@]. On the other
have extremely small binding energies against one- or twohand, breakup reactions involving two-neutron halo nuclei,
neutron emission. This property of halo nuclei indicates avhich have a coré n+n three-body structure, provide us
local breaking of the density and the binding-energy saturawith richer information on the strength distribution of vari-
tions observed in stable nuclei. In unstable nuclei, most obus kinds of the three-body configurations. From the struc-
the excited states are unbound; resonances and continuunre of the cross section, not only the dipole resonance but
states. Here we define resonances and continuum states @so other kinds of resonances or continuum effects have
the eigenstates belonging to discrete and continuum spectragen discussed foPHe [8] and 'Li [9-11]. To see the
respectively, obtained with given boundary conditions. Inneutron-neutron and the neutron-core correlations in the halo
some of the drip line nuclei, even the ground states are resstate, breakup reactions have been studied in experimental
nances. It is expected that the weakly bound halo states hawdservations[8—14] of neutron-neutron and neutron-core
a strong influence on the properties of unbound states. Theomponents in breakup cross section. Furthermore, it is in-
soft-dipole giant resonandd,5] is one of the most interest- teresting to investigate experimentally the reaction mecha-
ing problems concerning a characteristic excitation modeism of direct three-body breakup or sequential breakup
arising from the weak-binding energy of neutron halo nuclei.through two-body processes.

The weak-binding energy of unstable nuclei is also re- From the theoretical side, it is necessary to treat weakly
sponsible for large breakup cross sections. Through breakupound states, resonances, and also continuum states, simul-
reactions involving neutron halo nuclei, one obtains impor-taneously to investigate breakup reactions. Since there is no
tant information not only about the ground state propertiesdifficulty in the treatment of two-body problems, one-
but also about the fundamental excitation mechanism of unaeutron halo nuclei, especially thHéBe nucleus, have been
stable nuclei above the threshold energy. In particular, whemvestigated in detail15,16. However, although many use-

a highZ nucleus such as Pb is used as a target, the Coulonfiol methods such as the Faddeev method, the hyperspherical
interaction is considered to give a large contribution to theharmonics approach, and the sophisticated variational
breakup cross reaction. In such a case, we can learn electrmethod[17] have been developed and applied to e
magnetic properties such as the soft-dipole resonance fromn+n and °Li+n+n systems, we are still having difficult
the Coulomb breakup reaction. problems, in the description of three-body breakup reactions,

Many experimental data on Coulomb breakup reactiongo take into account the effects of three-body resonances and
have been obtained so far for one-neutron halo nuclei such dsnary components such aHe+n in ®He. Danilin et al.

HBe (1%Be+n) [6] and °C (**C+n) [7], and two-neutron [18] investigated theE1l transition strength in Coulomb
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breakup reactions ofHe into *He+n+n unbound states 3 2

using the hyperspherical harmonics approach. Their result ofH ZZ ti_TG+,Z V() +Vant Van+ N dpe)( el
the strength distribution shows a low energy enhancement ' =1 1)
and a shoulderlike structure, but no Iesonance is ob-

tained. On the other hand, Col@sal.[19] discussed a reso- N . .
[19] wheret; and T are kinetic energies of each particle and the

nancelike structure caused by *esonances iffHe by ap- ter of £ the th bod ¢ ivelv. A rel
plying the method similar to that of Daniliet al. There are center o crjnass ob € rrffHe' 0 )ésys ehm, rtlaspec IVely. A rela-
some conflicts in the theoretical understanding of the CoullVe coordinate betweeriHe and each valence neutron Is

- 4 .
lomb breakup offHe. It is therefore necessary to solve theseg'vezl by 1; . The_ He_core cIu;ter IS assumed_to haye
0s)“*-closed configuration described by a harmonic oscilla-

roblems and to obtain a correct understanding of breaku
b g or wave function with the length parameter=1.4 fm that

reactions involving®He that is the simplest and the most X X
g P reproduces the experimental charge radiuéié. The two-

typical Borromean nucleus. . ) .
In our previous paperf0,21, we have shown that the body interactionsv,, and V,,, are given by the so-called

. 4 .
complex scaling methotCSM) [22] is a very useful method KKNN potential[37] for “He-n and the so-called Minnesota

to solve many-body resonances and weakly bound states. FBPtential [38] for n-n, respectively. These potentials well

SHe, using a three-body*He+n+n model with CSM reproduce the low-energy scattering data of each two-body
b L 3

Aoyamaet al. [20] discussed the spectroscopy of the low System. The three-bod§Hen-n interactionV;,, is intro-
excitation energy region including the halo structure of theduced to fit the binding energy of the ground state as is
ground state. In the present paper, we develop the investig&xplained later. The last term|gpe)( dpr| presents a pro-
tion of the three-body unbound structure %fie by using Jection operator to remove the Pauli forbidden st4ies)
CSM. For this purpose, we carefully study the structure ofState in this cagefrom the *He-n relative motior{39], and\
the transition strength distribution in the three-body Cou-is taken as 10MeV in this calculation.
lomb breakup reaction O?He, by pay|ng attention not 0n|y The Weak-blndlng motion of valence neutrons -around the
to the contribution of resonances but also to the contribution He core must be solved accurately on the basis of recent
of continuum states. developments of few-body problems. We employ here a

About CSM, there have been many studies of resonancegriational  method, the so-called hybrid-TV model
for several light stable and unstable nu¢29,21,23-32 In  [5,20,40,41, where relative wave functions dfHe+n+n
those studies, however, interest was focused on resonance® expanded on basis states of the cluster orbital shell model
only. On the other hand, we have shown that CSM is appli{COSM; V type [42,43, and on the additional basis of the
cable to discuss physical quantities associated with unbourtended cluster mod¢ECM; T type [5,40,41 for the 0
states including resonances and continuum states, such Si&tes. The wave function of the three-body model is ex-
transition strengthg33—35. In our previous papdB5], tran-  pressed as follows:
sition strengths of two-body unbound states such as the
1°Be_+ n system, are exactly decomposed into resonance and @7 (°He) = (*He) x*"(nn), 2
continuum components, and we discussed which component
contributes to the strength distribution explicitly. The de- o
composition of the strengths based on the extended com- (o) xv (&) (Vtypefor J7#07)
pleteness relatiofECR) proposed by Berggref86] is per- X =) g g7 . .
formed reasonably in the framework of CYI84,35. Using xv (&) +xt (§r)  (hybrid TV for 07). 3
this approach, we discuss the structure of the strengths with- ®)
out any ambiguity to distinguish resonance and continuum .
states. Here, X€/,T(§V,T) express the wave functions of two valence

In Sec. Il, we calculate the wave function &fle withina  neutrons, and, and & are V-type and T-type coordinate
“He+n+n three-body model and explain CSM, ECR and sets, respectively, of the relative motion in the three-body
how to decompose the transition strength. In Sec. Ill, wesystem. The radial component of each relative wave function
decompose th&1 andE2 transition strengths into the vari- is expanded with a finite number of Gaussian functions cen-
ous breakup processes. From the results, we discuss whitéred at the origin, and the length parameters are chosen as
components dominate the obtained total strength and thgeometric progressiof4].
structure of®He in the positive energy region through the It has been shown that this model reproduces well the

transition strength. A summary is given in Sec. IV. basic properties ofHe [20]. However, as is well known as
the underbinding problem, the three-body model without the
Il. METHOD three-body interaction cannot reproduce the experimental
6 binding energy0.975 Me\j of the ground state ofHe. The
A. Three-body model of "He theoretical resul{0.784 Me\) is lower by about 200 keV

We describe’He with a *He+ n+n three-body model as as discussed in our previous analyi6]. This underbinding
shown in Ref[20]. Here we briefly recapitulate the impor- has been studied as a result of a froZete core assumption.
tant properties of the model. The Hamiltonian of the model isBy taking into account the excitation or the dissociation of
the same as in Ref20] except for the introduction of a the *He core, this underbinding problem fiHe is believed
three-body interaction: to be solved45,46.
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(a) (b) Im(E) 3-body Scattering (6=0)
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FIG. 1. (a) Diagram of the three-body interaction between Continuum

“He-n-n. (b) Diagram of the two-body interaction betweéHen. 5He(3/2')+n

“He+n+n

In the present study, as mentioned above, in order to over-
come the underbinding problem, we introduce the three-body £ 5 schematic distribution of energy eigenvalues of the
interaction assuming a single Gaussian function to fit theyje 4 system with CSM where the origin of energy is chosen
experimental binding energy and the rms radius of the 55 the three-body threshold.
ground state

erned by the ABC theorerf22]. In Fig. 2, we present an
eigenvalue distribution for thBHe+ n+ n system schemati-
5 cally. When =0 (without applying CSM, unbound(scat-

v=(0.1b¢)" fm~=. (4) tering) states are obtained on a real energy égyiay straight

In th dv of break . I . line) corresponding to the cut of the Riemann sheet.
n the study of breakup reactions, It is very Important 10— pq. o finite value o), the Riemann cuts are rotated down
reproduce the threshold energies of three-body and two-bo

h s W der that this th body int " f y 26 and continuum states are obtained on these cuts. In the
channels. We consider that this three-body Intéraction efie ollowing discussions, we call these rotated continuum states
tively represents a renormalization of the internal degree o

. 4 . imply as the continuum ones. When we take a laigee
freedom |n'the Hg core, and the coupllng qf two vale'nce obtain the three-body unbound states decomposed into three
heutrons with exc_:lte_d state_s of titele core IS m_cluded vir- categories of discrete three-body resonances, two-body con-
tually through this interaction as shown in Fig@l The tinuum states ofHe(3/2°, 1/2°)+n, and three-body con-

cpmponent of excited or diffusetHe conﬂguratpns IS CON" tinuum states ofHe+n+n. The two-body continuum states
sidered to be very small, and then we treat this effect as af SHetn are expressed by the two straight lines whose
effective three-body interaction eliminating the excitide origins are resonance positions e(3/2,1/2")

chan_nel. The effect on théHen inter_action showr_l in Fig. Using the decomposed resonances, two-body continuum,
1(b) IS alr'eady taken into account in the. effectifeien and three-body continuum states in thide+n-+n system
potential fitted to the observetHe-n scattering data, we introduce the extended three-body completeness relation

The three-body eigenstates are obtained by solving thﬁECR) of the complex-scaled Hamiltonid#(6) as a natural
eigenvalue problem of the complex-scaled Hamiltonian. We, . \«ion of ECR in the two-body caf@4—36,47—49
use 30 Gaussian basis functions for one radial component in '

order to stabilize the calculations for the position of reso-

nances, distributions of continuum states and their transition -
matrix elements. The maximum range of Gaussian basis 1:2 f|¢f>(¢f|
function is about 40 fm. .

V3 —Ve 1) V,=—0.218 MeV,

ann

={three-body bound state diHe}
B. Complex scaling method and extended
completeness relation

In CSM for the *He+n+n model, we transform coordi- +{two-body continuum states ofHe+n}
hate, momentum and wave function as +{three-body continuum states 6He+n+n}, (6)

+ {three-body resonance dHe}

r—rie? k,—k,e'

0/ &1 _ (302)i0-f i0 where{®* ®°} are complex-scaled wave functions and form
(§—-dU(H=e (&), ® a set of biorthogonal bases. As the definition of the bior-
wherek,, is a momentum of continuum states measured fronjn0g0onal bases is written in our previous papé,39, we
the threshold energy of each chanaebuch as*He+n+n only briefly explain it here. When the wave numberilm;f is
and ®He(3/27,1/2")+n (there is no physical threshold in K, for discrete bound and resonance states, thab pfis
the *He-2n channel. Here,f is a number of degrees of free- defined as,=—k* that leads to the relationp,=(®,)*
dom of the systenffor a three-body systerfi=2) and# isa  [36]. This relation is used in the so-calledoroduct[50] of
scaling angle to rotate the cuts of the Riemann sheets. bra and ket states in CSM. For continuum states, since we
Using CSM, we obtain the energy eigenvalues of allemploy a discretized representation, the same rule of the
bound and unbound states on a complex energy plane, gotsiorthogonal relation of resonances is adopted.
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In Eqg. (6), the contours of integral for two- and three- 1 _ R
body continuum states are taken over complex energies dis- S\(E)=~— ;'mU d&dg'[DF (91%0))"
played in Fig. 2. In the*He+n+n model, sincen-n does
not have any bound states either physical resonances, con-
tinuum states of the'He-2n channel are included in the
three-body continuum component &fle+n+n.

xg@(E,§,§'>©f®{’<§'>}, (11)

=2 f Syl E). (12)
C. Decomposition of the strength function

Thus, the transition strength function is decomposed into

Before explanation of the strength function, we first dis- .
P g each componen$, ,(E) for the final statev as

cuss Green'’s functiog(E, &,£&') in CSM, which is useful to
evaluate each final state contribution in breakup reactions.

O AT\O N/ 0l AC %
Here, we define the complex-scaled Green's function g (E)=- ilm (@T1(0))°|® (D] Oy| D7) 13
GYE,£¢) as follows: " ™ E-E*
, P o 1 , Due to this decomposition of unbound final states, we can
G(E,§€&)—G(E &)= g—E—H(ﬁ) £, (7)) unambiguously investigate which state affects the structure

of the transition strength function. This is a prominent point
of the present method.
0 ot Fw s B Here, it should be noticed that the total transition strength
= f P, (H[P, (9] S, (E) defined in Eq.(9) being an observable, it is positive
v E— Ef definite for any energy and value. On the other hand, the
partial strengthS, ,(E) given in Eq.(13), such as a three-
:2 f GUE.££) ®) body resonance component, is not necessarily positive defi-
~ viTSrS nite at all energies. This means ti&t,(E) can have some-
times negative values. This property of the partial strength
function taking negative values are understood as follows:
In derivation from Eq(7) to Eq. (8), we insert ECR of Eq. Since the complex-scaled Hamiltonian is non-Hermitian, and

(6). Summation and integration overare performed for a since resonances and continuum states are solved as eigen-

finite number of resonances, two-body continuum states oftates fgr 09mplex energy eigenvalues, transition matrix ele-
5He(3/2°, 1/27)+n, and three-body continuum states of ments(®7|O|d7) of these states are also complex num-
“He+n+n. There is no bound state except for thé 0 bers. The strength function for the final statés given by
ground state. In this expression of Green’s functBfiis the the imaginary part of the squared value of transition matrix

energy associated to the wave functidf(£). It should be eIemenFs, not of absolute ones for a Hermite operatpas .
noticed that thed dependence oE’ appears in the con- shown in Eq.(13). Therefore, negative values may occur in
. L v the partial transition strength functiasy ,(E). In general, a
tinuum spectra, not in discrete bound states and resonances, - e distribution IS (E) fre uentI’V appears whenis
In addition to the initial state, all kinds of final states of the g v 9 y app

et n+ ; btained b ing the ei et broad resonance that has a large resonance width and a
ernwTn system are obtained by solving the eigenva ueIarge imaginary part of the transition matrix element. Fur-
problem with a common value df.

N thermore, when negative values appeasjn,(E) for con-
The transition strength function for the opera@y with  tinuum states, it is considered that its origin comes from
rank \ is defined in usual cases without CSM as follows: resonance poles that have very large imaginary energies and
are located below the continuum stat@stated Riemann
cuts.
~ At ~ The stability of the calculation of transition matrix ele-
SA(E):EV f (Di|Ox[®,)(P,| O\ D) S(E~E,), ©) ments for resonances using CSM has been already checked
in our previous paperf33—35. For continuum states, we
adopt the discretized representation and evaluate the transi-
tion matrix between them as for resonances. To see the reli-
_ ilm“ d§d§’$f(§)©IQ(E,§, gl)é)\q,i(g/) _ ability .of discretization of continuum states, we checked the
™ transition strength by changing parameters of the Gaussian
(10 basis functions. In those calculations, we see negligible
changes in the calculated transition strength, and then we
consider that the representation of continuum states in our
We operate the complex scaling on the transition strengtinodel gives a good approximation quantitatively. This sta-
function of Eq.(10) and insert the complex-scaled Green’s bility of the matrix elements for continuum states seems to
function of Eq.(8), where the physical quantity, (E) itself =~ come from the fact that we solve continuum states with a
is invariant under the complex scaling: large basis set to describe their spatially extended behavior.
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TABLE I. Results of the binding energy of the ground state, positions of resonakgeE)( (unit in
MeV) and matter radiugunit in fm) in our model and experimental data of th¢fi,53—55.

Ref.[20] Present Main component Experiment
0; 0.784 0.975 031> 0.975°
2 (1.02, 0.26 (0.81, 0.13 (Pa)? (0.822+25, 0.113-20)2
2, (2.64, 4.75 (2.35, 4.22 (P32 (P112)
1" (2.98, 6.39 (2.67,6.13 (P32 (P1/2)
0, (3.91, 9.45 (3.69, 9.14 (P1p)?
Rm 2.50 2.46 2.480.03°
2.33+0.04°
2.50¢
aReferencd51].
bReferencd53].
‘Referencd54].
dReferencd55].
IIl. RESULTS SHe+n and the three-body continuum states*efe+n+n.

First we compare the present spectroscopic resulfef The transi?ior_\ str_ength corresponds to the reduceq transition
with the previous onep20]. In Table I, we list the binding ;trength d|str|but|ord_ B(EA)/dE where\ |s.the multipolar-
energy of the ground state, the energies and resonance widths' W.e analyze which components .dommate th_e ob;erved
of the 2!, and predicted resonanceg, (I'), main compo- ehavior of the strength distribution in each multipolarity.
nents of each level, and matter radius of the ground state in -
comparison with experimental data. We can see a good A. E1 transitions
agreement between our calculations and experimental data. |n Fig. 4, we show the eigenvalue distribution for 1
The present calculation does not predictresonances in the  states. This result is obtained by diagonalization of the
low excitation energy region in agreement with the previouscomplex-scaled Hamiltonian of théHe+n+n model with
one[20]. This result is consistent with the experimental situ- 9=35°. As basis states of COSM, we used p-, and
ation [51 52. In our calculation, the occupation probability d-waves betweerfHe and each valence neutron, because it
of (p32)” in the ground state is 90.2%, and other levels args confirmed that the effect of other higher partial waves is
also mainly described bp? configurations of two valence very small in the transition strength. From Fig. 4, we see that
neutrons. This indicates that thig coupling scheme is well gl eigenvalues are obtained along three lines of rotated Rie-
established infHe over this energy region. It is found that mann cuts corresponding to two two-body and one three-
the three-body interaction noticeably improves the positiorhody continuum channels. There is no fesonance. There-
of the 2; state. For other resonances, the energies and widttsre, these results indicate that thé inbound states above
in the present calculation are lower by about few hundredhe 4He+n+n threshold are classified into two-body con-
keV than in the previous on20]. The whole energy level tinuum states of°He(3/27,1/27)+n and three-body con-

scheme of®He is displayed in Fig. 3. tinuum states ofHe+n+n.
Next, we investigate the contributions in the electric mul-
tipole transition strengths not only from the three-body reso- 0= —
nances, but also from the two-body continuum states of - %@ — SHe(@/24n 1- i
> % E‘.‘
5} s O 21 i
®He = 3 a4 %He(1/2)
= 3r ] e(1/2)+n 1
4k 0+(3.69,9.14) _,__M) 4 = 4 !}& /
- - c) - - -
S (2.98,6.39) 5 @
= 3 1+(2.67,6.13) e — =] 3 c -5F i
= ot ————""" (2.64,4.75) \LI_J/
§ 2l (E.D (2.35,4.22) 4 2 g -6 F. ‘ b
7] (1.02,0.26) 7} R
| (0.822,0.113 81,0.1 R LLCLL \
UCJ 1 ( ) 2+(08 0 3) - 1 8 1 1 .‘ho| “l“‘l ) A
obe o oo ____ *He+n+n| 0 05 1 15 2 25 3 35 4
G| oes ge0o7s ST | Re(Energy) [MeV]
Exp. Present Aoyama et al. FIG. 4. Energy eigenvalues of 1states calculated with CSM

where 6 is 35°. Squares and triangles indicate the two-body con-
FIG. 3. Energy levels ofHe. Unit of energies and resonance tinuum states ofPHe(3/2°)+n and SHe(1/2°)+n, respectively.
widths is MeV. Circles indicate the three-body continuum stategléé+n+n.
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0.4 T T

> o~ 5 Vapy e %‘ SHe@2)sn —==|  SHe@2)sn ----
% B [P 5:9(3/2-)+n __________ 1 s 5He(1/2')+n U 3 5He(1/2')+n .......... -
! e(1/2)+n < ot
S O03F NG 4 1 oZ oot | e+N+n )
N ! He+n+n = Total =——
E o Total — 7 o ! ]
“o 02/ . 2
o 02
—_ |/ w 0.1
Worttl T 2
= ] W 0.0
LLI s —: % i 1 1 L 1 1 | B 1 L L L L
@ OO0 [ e Ot 2345 01 23456
© S — He(3/2')+n
0 11 5 3 4 5 6 Energy [MeV] Energy [MeV]
®He@2)+n Energy [MeV] FIG. 6. E1 transition strength distributions with limited Icon-

. o figurations. The left panel shows'He+ ny)+ng configurations
FIG. 5. E1 transition strength distributions where dashed, dot-here subscript means the orbital angular momentum of each va-
ted, and dash-dotted lines are contributions from the two- and thre§ance neutron. The right panel showdHe+ ne)+Ny configura-
body continuum states. The thick solid line indicates the totalijyns
strength distribution. The position of the arrow stands for the two-
body threshold energy of thtHe(3/27)+n channel. state are hardly excited simultaneously in the breakup reac-
t5ion. Another two-body continuum component of
. . - He(1/Z") +n hardly contributes to the strength because the
Using these solutions, we calculate the transition Strengt?)rob(abilitg/ of @1/2)2)15 very small in the groungd state, nearly
from the ground state to all components of ftates. The a few percent. Furthermore, a large resonance wigita4
cglculategiEl transition strquth distribution is displayed in_ MeV) of SHe(1/2°) also redljces and broadens the strength,
Fig. 5. Itis found that there is a low energy enhancement inyq then we cannot see a distinguishable structure of the
the total strength at around 1 MeV measured from the thre€g,5.hody component ofHe(1/2 )+ n in the E1 transition
body threshold energy. This energy is just above the twogirength.
body threshold(0.74 MeV) of °He(3/2")+n [20], and the The second point is to see what kinds of final-state con-
E1 transition strength slowly decreases with the excitatioigyrations give large contributions to the strength function.
energy. The most interesting result is that the dominant trangor this purpose, we calculate the transition components of
sition strength comes from the two-body continuum compo-yominant 1 final-state configurations such apaf,Sy),
nent of °He(3/27) + n showing the low energy enhancement, (P312,0d325/9, (P1/2:51/2), OF (P1/2,03251) Of two valence
and that contributions from the other components are relaneytrons. When one of the valence neutrons ispieebital
tively very small. This result indicates that the three-bodyresonance, the final-state configurations are expressed as
Coulomb breakup strength ¢He is dominated by the se- Spe(3/2° 1/27) +ngy where the subscript means the orbital
quential breakup of §He—°He+n—*He+n+nprocess. It angular momentum of the last neutron, because the
is consistent with the discussion of the observed invariang,, . .-orbital neutron around théHe core already forms the
mass spectrum of théHe-n system[8,12,14. resonance ofHe(3/2,1/27). The results are shown in Fig.
Our calculatedel distribution is very similar to that of g From these results, it is found that tele(3/2°) +n;
Danilin et al.[18] where there is a low energy enhancementcomponent gives the main contribution and makes a large
in the transition strength. On the other hand, the experimensphancement at low energies in the total strength. The
tal data[8] do not show a sharp enhancement in the lowSHg(3/27)+n, component also gives a large contribution
excitation energy region. However, the error bars in the exang produces a broad peak around 2—3 MeV in the total
perimental data are rather large. Further experimental daigrength.
are desired. _ , As was shown above, the transition strengths are very
_ We investigate more d_etalled structures of Eﬂ_atran5|- weak for three-body continuum states e+ Np+Nsq, but
tion strength from two points of view; configurations of the strong for two-body continuum states 8He(3/27) + ngg.
initial ground state and 1 final ones of®He. The first point Here we show that the two-body continuum states of
is to see the relation between the structure of the ground statgye(3/27)+n are approximately described by plane waves.
and theE1 transition strength. AlthougitHe(3/2') is @  For the 1 final states, we assume a free motion between the
resonance, the wave function OFH9(3/2)_ in the  yegonant®He(3/2°) nucleus and the residual neutron with
He(3/2") +n channel has a large overlap with tH‘(b'-Ie the relatives- andd-angular momenta, and calculate th#
+n,,, configuration that is a dominant component in theyansition strength from the ground state 8fle to these
®He ground state. The result of the large transition strengtizonfigurations. The obtained strength distributions are shown
into the °He(3/2°) +n channel indicates that one of the neu- in Fig. 7, and are very similar to the results shown in Fig. 6.
trons of (p5,)? in the ®He ground state is excited to a con- Thus, the low energy enhancement is interpreted as a thresh-
tinuum state ofs- or d-wave orbit by theE1 external field. old effect of the two-body continuum in théHe(3/2")
Furthermore, we can see that the three-body continuurs- (s-orbital neutron) channel. The similar plane-wave de-
states of*He+n+n do not contribute strongly. This result scription of the strength distribution is seen in the breakup
indicates that twops,-orbital neutrons in the’He ground  reaction of the one-neutron halo nucleti8e [6]. This low-
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FIG. 7. E1 transition strength distributions with limited Icon-
figurations. Any interactions fos- and d-orbital valence neutrons
are cut off. The left panel is*He+ Np) + Ng free CONfigurations, and
the right panel is {He+n p) T Ng rree CONfigurations.

FIG. 8. E1 transition strength distributions without any final
state interactions between clusters.

interpreted as a result of the halo structure of $He ground
state. If the interactions between clusters are very weak and
the three-body plane wave approximation is acceptable, the
%1 transition strength distribution may be described by the
[esult of Fig. 8. However, as was shown above, the interac-
ion between clusters, especially the final state interaction
between “Hen, plays an important role in the 1 final
states. It is shown that the final state interaction betwk-¢s
"andn not only changes the shape of the strength distribution,
but also increases the strength of the distribution.

momentum peak of'Be is explained as a result of the one-
neutron halo structure of the ground state. However, in th
present case, since the ground statéré has a two-neutron
halo structure, the reaction process is different from that o
Be. We have the following interpretation on tHel
breakup process ofHe: The ®He nucleus is broken up to
“He+n-+n, where three particles are not free but have a
interaction betweerfHe and one neutron. Furthermore, in
final 1~ states, the interactinfHe and one neutron form the
resonance oPHe(3/2"), but the residual neutron has no in-
teraction with the resonantHe system. The low angular
momentums- andd-components dominate and their summa- E2 transitions are also important in the low energy
tion almost reproduces the total transition strength of thestrength of the Coulomb breakup reaction. Its strength is ex-
SHe(3/2°) +n breakup. pected to show a behavior very different fréi transitions

It is noticed in Figs. 5—7 that transition strength ampli- because there arefg resonances of théHe+n+n system
tudes remain even below the two-body threshold energyn the low excitation energy region as shown in Table I.
(0.74 MeV) in the two-body continuum component of Fig. 9, we show the obtamedfg resonances and contlnuum
°He(3/2°) +n. This result is explained by the fact that the solutions that are decomposed into two- and three-body con-
wave function of the °He(3/2") resonance in the tinuum states. Although we saw that tH&L transition
®He(3/2°) +n channel, has a spread over the energy rangetrength distribution does not have any resonant structure, it
beyond the threshold energy due to the resonance width. Fuis very interesting to see the resonant contribution ingge
thermore, it is found that the three-body continuum strengthransition strength.
presents negative values in the energy region lower than 2 Before discussing the results of tB transition strength
MeV. This result does not contradict the observation becauseistribution into three-body unbound states, we show the
the observed strengtlithe total strength keeps positive
value, as was explained in Sec. Il C. The dynamical origin of 0 g—x
n_egative values in the three-_body continuum strength is con- R 1 ‘ %m 5He(3/2')+n 2+_
sidered to come from the existence of some broad resonance %W oo
poles hidden below the three-body continuum states. The
same situation appearst?® transitions as shown in the next
subsection.

B. E2 transitions

x ]

m{Energy) [MeV]

-4+ .
If there are no two-body or three-body resonances with no 5l |

final state interaction, the three-body continuum strength

shows a positive distribution as shown in Fig. 8. Th# 6T S

transition strength of Fig. 8 is calculated for the three-body - 7t N A ]

plane wave functions as the final states under the assumption 8 -4 VS

of no interactions between all clusters. As mentioned above, 0 05 1 15 2 25 3 35 4

this strength distribution does not include any resonance con- Re(Energy) [MeV]

tribution that arises from the interactions between clusters.

Similar calculation was also shown fotLi by Pushkinet al. FIG. 9. Energy eigenvalues of2states calculated with CSM

[56]. In the calculated distribution, we see a broad enhancewhere two crosses are 2resonances and other marks indicate the
ment with a bump at around 2 MeV. This enhancement isame meanings as those in Fig. 4.
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>~ 2.0 7 T T nent mainly contributes to make a shoulder in the total
O He@E2)n === strength at around 1.5 MeV measured from thée+n+n
= 15 He(1/2+n 1 threshold energy. The reason why the two-body component
*E He+n+n === of °He(3/2°)+n makes a peak at around 1 MeV is as fol-
& 1.0 lows: This two-body component consists GHe(3/2")
2, + (p-orbital continuum neutron) channels dominantly due to
w 05 orthogonality to the 2 and 2 resonances. Furthermore, we
g can confirm that thig-orbital continuum neutron has a simi-
ﬁ 0.0 lar structure to the-orbital plane wave, and a peak at around
o ) 2} 1 MeV is interpreted as a two-body threshold effect as in the
T -05 1 —_ case of theE1 transition.
50 1_ 2 3 4 5 6 The effect of another two-body continuum component of
He@32)+n Energy [MeV] SHe(1/2°)+n is very small as well as the case of tR4

» o _transition. It is found that the three-body continuum compo-
FIG. 10. E2 transition strength distributions where two thin et of4He+n+n relatively gives a larger contribution than
e e ot . esonances and deced. he case o1 ransiion. T hree-body componen ais
P . oo contributes to make a shoulder at around 1.5 MeV in the
body continuum states. Thick solid line indicates the total strengti}Otal transition strenath. A simil truct btained b
distribution. t gth. A similar structure was obtained by
Danilin et al. [18], though their shoulder structure is more
isolated and has a larger strength. This difference of the
transition matrix elements between the initial ground statehoulder behavior from our result may come from the rather
and 2, resonances, whose squared valugsansition small resonance width of thej2resonance in comparison
strengthsB(E2)] are 2.78-10.43 for 2 and—1.5+i0.9 for  with our result.
25, respectively(units in e?fm*). Transition strengths are In the present calculation, it is found that tB@ transi-
obtained as complex numbers, as well as the eigenvalue &pn strength distribution shows a distinguishable resonance
energies. It is found that the absolute values of the transitiohehavior of the 2 state, but not of the 2 state directly. It
strengths of 2 and 2 resonances are of the same ordermay be hard to observe experimentally the existence of the
because the configurations of 2are dominantly described 2, state by using Coulomb breakup reactions. On the other
by the commorp orbitals. One must be careful to compare hand, the continuum strengths consistingsfe(3/2°) +n
the calculated complex values with observati¢bg], be- and *He+n+n channels make a shoulderlike structure.
cause what we observe is for scattering states, not for puréhrough an observation of this structure, the continuum ef-
resonances of complex energies. However, for tfjeréso- fect is expected to be confirmed in tB2 transition strength
nance, the large real part of the transition strength in comin addition to that of resonances.
parison with the imaginary one seems to correspond to the
experimental value 3:20.6e?fm* reported by Aumann C. Cross section
et al. [8]. When the resonance pole is very close to the real

energy axis, its matrix glements show large real parts thgésing E1l andE2 transition strengths obtained in the former
may Sorrespond well with observables. On .the other handy pqections. The cross section is expressed by multiplying
the 2 resonance has a large resonance widt22 MeV) the reduced transition probabilidB(E\,E)/dE and the vir-
and a large imaginary part of the transition strength. Then, if o, photon numbemg, (E) from the equivalent photon
may be difficult to correspond directly its transition strength ., othqq [58,59. In Fig. 11, we show the calculated cross
with the observable. o _ section in comparison with the experimental one, where tar-
The obtainedE2 transition strength distribution including ot is Pb and the incident energy e projectile is 240
resonance and continuum states is displayed in Fig. 1Guev/nucleon. In this calculation the minimum value of the
There are five kinds of components: transitions {o 8BS0~ jmpact parameter is taken as 12 fm. We also calculate the
nances, two-body continuum states ¥e(3/2°,1/27)+n,  convoluted cross section in addition to the original one. The
and three-body continuum ones 8He+n-+n. From Fig.  parameter set for the convolution with respect to the energy
10, we can see that the 2resonance gives the main contri- resolution and detector response is the same as used in Ref.
bution showing a sharp peak around the resonance energg.
(0.81 MeV) due to the small resonance width. On the other The whole shape of our cross section is very similar to the
hand, the contribution from the,2resonance is very small experimental data except for the too large peak at around 1
due to the large width in comparison with th¢ 2esonance, MeV that is mainly coming from thé&1 component. It is
in spite of the same order of the transition matrix elementsfound that theE2 component is quite small and that its struc-
The components associated to two-, or three-body continuture cannot be seen in the total cross section even if there is
are smaller than those of;2 However, in the continuum a 2; resonance. Of course our result does not include the
transitions, the two-body continuum component ofnuclear interaction at this stage, however, our analysis shows
SHe(3/2°)+n shows a peak at around 1 MeV, just abovethat the contribution from th&1 transition strength domi-
the two-body threshold energy of this channel. This compohantly determines the shape of the dissociation cross section

We calculate the Coulomb dissociation cross section by
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ANALYSIS OF ®He COULOMB BREAKUP IN THE . ..
T tailed structures in the characteristic distribution of the tran-
sition strength ofHe. It was found that for thE&1 transition

200 ’Iu\ T T T
Original ------
150 L \ Conv. — | strength, the sequential breakup process through the
H Exp. +=— SHe(3/2°)+n channel is mostly favored rather than other
H #Hii processes, and makes a low energy enhancement due to the
\ 7 two-body threshold effect. For tHg2 transition strength, in
addition to the contributions of the;2 resonances, those

L] from the continuum states were calculated separately. We
found two kinds of structure¢peak and shouldgrin the

do/dE [mb/MeV]
3
(=)

sord RS
. . . . . ) calculated strength; one comes from the contribution from
0 0 1 5 3 4 5 & 27 resonance, and another from the two- and the three-body
continuum components. In the Coulomb dissociation cross

section consisting cE1 andE2 dominantly, it is not pos-
sible to see the detailed structures of B2 transition be-

Energy [MeV]

FIG. 11. Coulomb dissociation cross sections®6fe into the ™
“*He+n+n system with and without the convolution. Experimental Cause of much largef1 transition. _
Based on the present successful results, we are going to

extend this method to the analysis of an influence from the

in the low excitation energy region, though there is no 1 nuclear interaction in the breakup reaction®fe. It is also
interesting to apply the present approach to other types of

reactions such as charge exchange With proton scatter-

ing and so on. In these reactions, we may see the different

IV. SUMMARY na < .
contributions of resonance and continuum state®Hsf from

We analyzed the structure of three-body unbound states ifhe case of the Coulomb excitation. The knowledge obtained
the two-neutron halo nuclelHe, by focusing on the tran-  from these reactions is important in manifesting the varieties
sition strength of the Coulomb breakup reaction. In additiongf the structure of the unbound states®fe. We also have
to the halo structure in the ground state, the understanding ¢f plan to study the breakup reactions of other unstable nuclei
three-body unboundHe+n+ n states is important to clarify guch as!iLi. Since the MLi nucleus is suggested to have a
the excitation mechanism dfHe concerning breakup reac- large mixture ofs waves in the ground stafé0,61], unlike

the case offHe, it is very interesting to investigate the pos-

tions.
In the study of the transition strength of three-bodysipjlity of a soft-dipole resonance.

data are taken from Reffg].

resonance.

breakup reactions, it is necessary to determine the associated
resonances and continuum states smultaneou;ly, and to ex- ACKNOWLEDGMENTS
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