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Analysis of 6He Coulomb breakup in the complex scaling method
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The transition strength for Coulomb breakup of6He into 4He1n1n three-body unbound states is studied in
the framework of the complex scaling method~CSM!. We propose a method to analyze the three-body
unbound states in which CSM is utilized to decompose the three-body transition strengths into resonance and
continuum components. We calculate the contributions ofE1 andE2 transitions, not only from three-body
resonances, but also from two-body ‘‘5He1n’’ and three-body ‘‘4He1n1n’’ continuum states. From the
calculated strength distributions, we discuss the characteristic structures of6He in the positive energy region,
and also the Coulomb breakup mechanism of6He. We show that the two-body ‘‘5He1n’’ component is
dominant in the total Coulomb breakup cross section.
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I. INTRODUCTION

The development of radioactive beams provides us w
many interesting phenomena of unstable nuclei near the
lines @1–3#. The most typical example is the discovery of
neutron halo structure in several neutron-rich nuclei such
6He, 11Li, and 11Be @1,2#. One of the common features o
unstable nuclei is the weak binding; the neutron halo nu
have extremely small binding energies against one- or t
neutron emission. This property of halo nuclei indicates
local breaking of the density and the binding-energy satu
tions observed in stable nuclei. In unstable nuclei, mos
the excited states are unbound; resonances and contin
states. Here we define resonances and continuum stat
the eigenstates belonging to discrete and continuum spe
respectively, obtained with given boundary conditions.
some of the drip line nuclei, even the ground states are r
nances. It is expected that the weakly bound halo states
a strong influence on the properties of unbound states.
soft-dipole giant resonance@4,5# is one of the most interest
ing problems concerning a characteristic excitation mo
arising from the weak-binding energy of neutron halo nuc

The weak-binding energy of unstable nuclei is also
sponsible for large breakup cross sections. Through brea
reactions involving neutron halo nuclei, one obtains imp
tant information not only about the ground state propert
but also about the fundamental excitation mechanism of
stable nuclei above the threshold energy. In particular, w
a high-Z nucleus such as Pb is used as a target, the Coul
interaction is considered to give a large contribution to
breakup cross reaction. In such a case, we can learn ele
magnetic properties such as the soft-dipole resonance
the Coulomb breakup reaction.

Many experimental data on Coulomb breakup reacti
have been obtained so far for one-neutron halo nuclei suc
11Be (10Be1n) @6# and 19C (18C1n) @7#, and two-neutron
0556-2813/2001/63~5!/054313~10!/$20.00 63 0543
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halo nuclei such as6He (4He1n1n) @8# and 11Li ( 9Li1n
1n) @9–11#. The result of11Be on the Pb target shows a lo
energy enhancement in theE1 transition strength distribu
tion of the two-body breakup reaction. The dipole enhan
ment observed just above the breakup threshold energy
been explained by a large low-momentum component in
ground state that has a spatially extended one-neutron d
bution characteristic of the halo structure@6#. On the other
hand, breakup reactions involving two-neutron halo nuc
which have a core1n1n three-body structure, provide u
with richer information on the strength distribution of var
ous kinds of the three-body configurations. From the str
ture of the cross section, not only the dipole resonance
also other kinds of resonances or continuum effects h
been discussed for6He @8# and 11Li @9–11#. To see the
neutron-neutron and the neutron-core correlations in the h
state, breakup reactions have been studied in experime
observations@8–14# of neutron-neutron and neutron-co
components in breakup cross section. Furthermore, it is
teresting to investigate experimentally the reaction mec
nism of direct three-body breakup or sequential break
through two-body processes.

From the theoretical side, it is necessary to treat wea
bound states, resonances, and also continuum states, s
taneously to investigate breakup reactions. Since there i
difficulty in the treatment of two-body problems, one
neutron halo nuclei, especially the11Be nucleus, have bee
investigated in detail@15,16#. However, although many use
ful methods such as the Faddeev method, the hypersphe
harmonics approach, and the sophisticated variatio
method @17# have been developed and applied to the4He
1n1n and 9Li1n1n systems, we are still having difficul
problems, in the description of three-body breakup reactio
to take into account the effects of three-body resonances
binary components such as5He1n in 6He. Danilin et al.
@18# investigated theE1 transition strength in Coulomb
©2001 The American Physical Society13-1
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breakup reactions of6He into 4He1n1n unbound states
using the hyperspherical harmonics approach. Their resu
the strength distribution shows a low energy enhancem
and a shoulderlike structure, but no 12 resonance is ob
tained. On the other hand, Cobiset al. @19# discussed a reso
nancelike structure caused by 12 resonances in6He by ap-
plying the method similar to that of Danilinet al. There are
some conflicts in the theoretical understanding of the C
lomb breakup of6He. It is therefore necessary to solve the
problems and to obtain a correct understanding of brea
reactions involving6He that is the simplest and the mo
typical Borromean nucleus.

In our previous papers@20,21#, we have shown that the
complex scaling method~CSM! @22# is a very useful method
to solve many-body resonances and weakly bound states
6He, using a three-body4He1n1n model with CSM,
Aoyama et al. @20# discussed the spectroscopy of the lo
excitation energy region including the halo structure of
ground state. In the present paper, we develop the inves
tion of the three-body unbound structure of6He by using
CSM. For this purpose, we carefully study the structure
the transition strength distribution in the three-body Co
lomb breakup reaction of6He, by paying attention not only
to the contribution of resonances but also to the contribu
of continuum states.

About CSM, there have been many studies of resonan
for several light stable and unstable nuclei@20,21,23–32#. In
those studies, however, interest was focused on resona
only. On the other hand, we have shown that CSM is ap
cable to discuss physical quantities associated with unbo
states including resonances and continuum states, suc
transition strengths@33–35#. In our previous paper@35#, tran-
sition strengths of two-body unbound states such as
10Be1n system, are exactly decomposed into resonance
continuum components, and we discussed which compo
contributes to the strength distribution explicitly. The d
composition of the strengths based on the extended c
pleteness relation~ECR! proposed by Berggren@36# is per-
formed reasonably in the framework of CSM@34,35#. Using
this approach, we discuss the structure of the strengths w
out any ambiguity to distinguish resonance and continu
states.

In Sec. II, we calculate the wave function of6He within a
4He1n1n three-body model and explain CSM, ECR a
how to decompose the transition strength. In Sec. III,
decompose theE1 andE2 transition strengths into the var
ous breakup processes. From the results, we discuss w
components dominate the obtained total strength and
structure of 6He in the positive energy region through th
transition strength. A summary is given in Sec. IV.

II. METHOD

A. Three-body model of 6He

We describe6He with a 4He1n1n three-body model as
shown in Ref.@20#. Here we briefly recapitulate the impo
tant properties of the model. The Hamiltonian of the mode
the same as in Ref.@20# except for the introduction of a
three-body interaction:
05431
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Van~r i !1Vnn1Vann
3 1lufPF&^fPFu,

~1!

wheret i andTG are kinetic energies of each particle and t
center of mass of the three-body system, respectively. A r
tive coordinate between4He and each valence neutron
given by r i . The 4He core cluster is assumed to ha
(0s)4-closed configuration described by a harmonic osci
tor wave function with the length parameterbc51.4 fm that
reproduces the experimental charge radius of4He. The two-
body interactionsVan and Vnn are given by the so-called
KKNN potential @37# for 4He-n and the so-called Minnesot
potential @38# for n-n, respectively. These potentials we
reproduce the low-energy scattering data of each two-b
system. The three-body4He-n-n interactionVann

3 is intro-
duced to fit the binding energy of the ground state as
explained later. The last terml ufPF&^fPFu presents a pro-
jection operator to remove the Pauli forbidden states@(0s)
state in this case# from the 4He-n relative motion@39#, andl
is taken as 106 MeV in this calculation.

The weak-binding motion of valence neutrons around
4He core must be solved accurately on the basis of rec
developments of few-body problems. We employ here
variational method, the so-called hybrid-TV mod
@5,20,40,41#, where relative wave functions of4He1n1n
are expanded on basis states of the cluster orbital shell m
~COSM; V type! @42,43#, and on the additional basis of th
extended cluster model~ECM; T type! @5,40,41# for the 01

states. The wave function of the three-body model is
pressed as follows:

FJp
~6He!5F~4He!xJp

~nn!, ~2!

xJp
~nn!5H xV

Jp
~jV! ~V type for Jp5” 01!

xV
Jp

~jV!1xT
Jp

~jT! ~hybrid TV for 01!.
~3!

Here,xV,T
Jp

(jV,T) express the wave functions of two valen
neutrons, andjV and jT are V-type and T-type coordinat
sets, respectively, of the relative motion in the three-bo
system. The radial component of each relative wave func
is expanded with a finite number of Gaussian functions c
tered at the origin, and the length parameters are chose
geometric progression@44#.

It has been shown that this model reproduces well
basic properties of6He @20#. However, as is well known as
the underbinding problem, the three-body model without
three-body interaction cannot reproduce the experime
binding energy~0.975 MeV! of the ground state of6He. The
theoretical result~0.784 MeV! is lower by about 200 keV
as discussed in our previous analysis@20#. This underbinding
has been studied as a result of a frozen4He core assumption
By taking into account the excitation or the dissociation
the 4He core, this underbinding problem in6He is believed
to be solved@45,46#.
3-2
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ANALYSIS OF 6He COULOMB BREAKUP IN THE . . . PHYSICAL REVIEW C 63 054313
In the present study, as mentioned above, in order to o
come the underbinding problem, we introduce the three-b
interaction assuming a single Gaussian function to fit
experimental binding energy and the rms radius of the6He
ground state

Vann
3 5V3e2n(r1

2
1r2

2), V3520.218 MeV,

n5~0.1/bc!
2 fm22. ~4!

In the study of breakup reactions, it is very important
reproduce the threshold energies of three-body and two-b
channels. We consider that this three-body interaction ef
tively represents a renormalization of the internal degree
freedom in the4He core, and the coupling of two valenc
neutrons with excited states of the4He core is included vir-
tually through this interaction as shown in Fig. 1~a!. The
component of excited or diffused4He configurations is con
sidered to be very small, and then we treat this effect as
effective three-body interaction eliminating the excited4He
channel. The effect on the4He-n interaction shown in Fig.
1~b! is already taken into account in the effective4He-n
potential fitted to the observed4He-n scattering data.

The three-body eigenstates are obtained by solving
eigenvalue problem of the complex-scaled Hamiltonian.
use 30 Gaussian basis functions for one radial compone
order to stabilize the calculations for the position of res
nances, distributions of continuum states and their transi
matrix elements. The maximum range of Gaussian b
function is about 40 fm.

B. Complex scaling method and extended
completeness relation

In CSM for the 4He1n1n model, we transform coordi
nate, momentum and wave function as

r i→r ie
iu, ka→kae2 iu,

F~j!→Fu~j!5e(3/2)iu• fF~jeiu!, ~5!

whereka is a momentum of continuum states measured fr
the threshold energy of each channela such as4He1n1n
and 5He(3/22,1/22)1n ~there is no physical threshold i
the 4He-2n channel!. Here,f is a number of degrees of free
dom of the system~for a three-body systemf 52) andu is a
scaling angle to rotate the cuts of the Riemann sheets.

Using CSM, we obtain the energy eigenvalues of
bound and unbound states on a complex energy plane,

FIG. 1. ~a! Diagram of the three-body interaction betwe
4He-n-n. ~b! Diagram of the two-body interaction between4He-n.
05431
r-
y
e

dy
c-
f

n

e
e
in
-
n
is

ll
v-

erned by the ABC theorem@22#. In Fig. 2, we present an
eigenvalue distribution for the4He1n1n system schemati-
cally. Whenu50 ~without applying CSM!, unbound~scat-
tering! states are obtained on a real energy axis~gray straight
line! corresponding to the cut of the Riemann sheet.

For a finite value ofu, the Riemann cuts are rotated dow
by 2u and continuum states are obtained on these cuts. In
following discussions, we call these rotated continuum sta
simply as the continuum ones. When we take a largeu, we
obtain the three-body unbound states decomposed into t
categories of discrete three-body resonances, two-body
tinuum states of5He(3/22, 1/22)1n, and three-body con-
tinuum states of4He1n1n. The two-body continuum state
of 5He1n are expressed by the two straight lines who
origins are resonance positions of5He(3/22,1/22).

Using the decomposed resonances, two-body continu
and three-body continuum states in the4He1n1n system,
we introduce the extended three-body completeness rela
~ECR! of the complex-scaled HamiltonianH(u) as a natural
extension of ECR in the two-body case@34–36,47–49#;

15(
n
E uFn

u&^F̃n
uu

5$three-body bound state of6He%

1$three-body resonance of6He%

1$two-body continuum states of5He1n%

1$three-body continuum states of4He1n1n%, ~6!

where$F̃u,Fu% are complex-scaled wave functions and for
a set of biorthogonal bases. As the definition of the bi
thogonal bases is written in our previous papers@34,35#, we
only briefly explain it here. When the wave number ofFn is
kn for discrete bound and resonance states, that ofF̃n is
defined ask̃n52kn* that leads to the relation;F̃n5(Fn)*
@36#. This relation is used in the so-calledc product@50# of
bra and ket states in CSM. For continuum states, since
employ a discretized representation, the same rule of
biorthogonal relation of resonances is adopted.

FIG. 2. Schematic distribution of energy eigenvalues of
4He1n1n system with CSM where the origin of energy is chos
as the three-body threshold.
3-3
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MYO, KATŌ, AOYAMA, AND IKEDA PHYSICAL REVIEW C 63 054313
In Eq. ~6!, the contours of integral for two- and three
body continuum states are taken over complex energies
played in Fig. 2. In the4He1n1n model, sincen-n does
not have any bound states either physical resonances,
tinuum states of the4He-2n channel are included in th
three-body continuum component of4He1n1n.

C. Decomposition of the strength function

Before explanation of the strength function, we first d
cuss Green’s functionG(E,j,j8) in CSM, which is useful to
evaluate each final state contribution in breakup reactio
Here, we define the complex-scaled Green’s funct
G u(E,j,j8) as follows:

G~E,j,j8!→G u~E,j,j8!5 K jU 1

E2H~u!
Uj8L , ~7!

5(
n
E Fn

u~j!@F̃n* ~j!#u

E2En
u

5(
n
E G n

u~E,j,j8!. ~8!

In derivation from Eq.~7! to Eq. ~8!, we insert ECR of Eq.
~6!. Summation and integration overn are performed for a
finite number of resonances, two-body continuum states
5He(3/22, 1/22)1n, and three-body continuum states
4He1n1n. There is no bound state except for the 01

ground state. In this expression of Green’s function,En
u is the

energy associated to the wave functionFn
u(j). It should be

noticed that theu dependence ofEn
u appears in the con

tinuum spectra, not in discrete bound states and resona
In addition to the initial state, all kinds of final states of th
4He1n1n system are obtained by solving the eigenva
problem with a common value ofu.

The transition strength function for the operatorÔl with
rank l is defined in usual cases without CSM as follows:

Sl~E!5(
n
E ^F̃ i uÔl

†uFn&^F̃nuÔluF i&d~E2En!, ~9!

52
1

p
ImF E djdj8F̃ i* ~j!Ôl

†G~E,j,j8!ÔlF i~j8!G .
~10!

We operate the complex scaling on the transition stren
function of Eq.~10! and insert the complex-scaled Green
function of Eq.~8!, where the physical quantitySl(E) itself
is invariant under the complex scaling:
05431
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p
ImF E djdj8@F̃ i* ~j!#u~Ôl

†!u

3G u~E,j,j8!Ôl
uF i

u~j8!G , ~11!

5(
n
E Sl,n~E!. ~12!

Thus, the transition strength function is decomposed i
each componentSl,n(E) for the final staten as

Sl,n~E![2
1

p
ImF ^F̃ i

uu~Ôl
†!uuFn

u&^F̃n
uuÔl

u uF i
u&

E2En
u G . ~13!

Due to this decomposition of unbound final states, we c
unambiguously investigate which state affects the struc
of the transition strength function. This is a prominent po
of the present method.

Here, it should be noticed that the total transition stren
Sl(E) defined in Eq.~9! being an observable, it is positiv
definite for any energy andl value. On the other hand, th
partial strengthSl,n(E) given in Eq.~13!, such as a three
body resonance component, is not necessarily positive d
nite at all energies. This means thatSl,n(E) can have some-
times negative values. This property of the partial stren
function taking negative values are understood as follo
Since the complex-scaled Hamiltonian is non-Hermitian, a
since resonances and continuum states are solved as e
states for complex energy eigenvalues, transition matrix
ments^F̃n

uuÔl
u uF i

u& of these states are also complex nu
bers. The strength function for the final staten is given by
the imaginary part of the squared value of transition ma
elements, not of absolute ones for a Hermite operatorÔl as
shown in Eq.~13!. Therefore, negative values may occur
the partial transition strength functionSl,n(E). In general, a
negative distribution inSl,n(E) frequently appears whenn is
a broad resonance that has a large resonance width a
large imaginary part of the transition matrix element. Fu
thermore, when negative values appear inSl,n(E) for con-
tinuum states, it is considered that its origin comes fro
resonance poles that have very large imaginary energies
are located below the continuum states~rotated Riemann
cuts!.

The stability of the calculation of transition matrix ele
ments for resonances using CSM has been already che
in our previous papers@33–35#. For continuum states, we
adopt the discretized representation and evaluate the tra
tion matrix between them as for resonances. To see the
ability of discretization of continuum states, we checked
transition strength by changing parameters of the Gaus
basis functions. In those calculations, we see neglig
changes in the calculated transition strength, and then
consider that the representation of continuum states in
model gives a good approximation quantitatively. This s
bility of the matrix elements for continuum states seems
come from the fact that we solve continuum states with
large basis set to describe their spatially extended behav
3-4
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TABLE I. Results of the binding energy of the ground state, positions of resonances (Er ,G) ~unit in
MeV! and matter radius~unit in fm! in our model and experimental data of them@51,53–55#.

Ref. @20# Present Main component Experiment

01
1 0.784 0.975 (p3/2)

2 0.975a

21
1 ~1.02, 0.26! ~0.81, 0.13! (p3/2)

2 (0.822625, 0.113620) a

22
1 ~2.64, 4.75! ~2.35, 4.22! (p3/2)(p1/2)

11 ~2.98, 6.39! ~2.67, 6.13! (p3/2)(p1/2)
02

1 ~3.91, 9.45! ~3.69, 9.14! (p1/2)
2

Rm 2.50 2.46 2.4860.03b

2.3360.04c

2.50d

aReference@51#.
bReference@53#.
cReference@54#.
dReference@55#.
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III. RESULTS

First we compare the present spectroscopic results of6He
with the previous ones@20#. In Table I, we list the binding
energy of the ground state, the energies and resonance w
of the 21

1 , and predicted resonances; (Er ,G), main compo-
nents of each level, and matter radius of the ground stat
comparison with experimental data. We can see a g
agreement between our calculations and experimental d
The present calculation does not predict 12 resonances in the
low excitation energy region in agreement with the previo
one@20#. This result is consistent with the experimental si
ation @51,52#. In our calculation, the occupation probabili
of (p3/2)

2 in the ground state is 90.2%, and other levels
also mainly described byp2 configurations of two valence
neutrons. This indicates that thej -j coupling scheme is wel
established in6He over this energy region. It is found tha
the three-body interaction noticeably improves the posit
of the 21

1 state. For other resonances, the energies and wi
in the present calculation are lower by about few hund
keV than in the previous one@20#. The whole energy leve
scheme of6He is displayed in Fig. 3.

Next, we investigate the contributions in the electric m
tipole transition strengths not only from the three-body re
nances, but also from the two-body continuum states

FIG. 3. Energy levels of6He. Unit of energies and resonanc
widths is MeV.
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5He1n and the three-body continuum states of4He1n1n.
The transition strength corresponds to the reduced trans
strength distributiondB(El)/dE wherel is the multipolar-
ity. We analyze which components dominate the obser
behavior of the strength distribution in each multipolarity.

A. E1 transitions

In Fig. 4, we show the eigenvalue distribution for 12

states. This result is obtained by diagonalization of
complex-scaled Hamiltonian of the4He1n1n model with
u535 °. As basis states of COSM, we useds-, p-, and
d-waves between4He and each valence neutron, becaus
is confirmed that the effect of other higher partial waves
very small in the transition strength. From Fig. 4, we see t
all eigenvalues are obtained along three lines of rotated R
mann cuts corresponding to two two-body and one thr
body continuum channels. There is no 12 resonance. There
fore, these results indicate that the 12 unbound states abov
the 4He1n1n threshold are classified into two-body co
tinuum states of5He(3/22,1/22)1n and three-body con-
tinuum states of4He1n1n.

FIG. 4. Energy eigenvalues of 12 states calculated with CSM
whereu is 35 °. Squares and triangles indicate the two-body c
tinuum states of5He(3/22)1n and 5He(1/22)1n, respectively.
Circles indicate the three-body continuum states of4He1n1n.
3-5
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MYO, KATŌ, AOYAMA, AND IKEDA PHYSICAL REVIEW C 63 054313
Using these solutions, we calculate the transition stren
from the ground state to all components of 12 states. The
calculatedE1 transition strength distribution is displayed
Fig. 5. It is found that there is a low energy enhancemen
the total strength at around 1 MeV measured from the th
body threshold energy. This energy is just above the tw
body threshold~0.74 MeV! of 5He(3/22)1n @20#, and the
E1 transition strength slowly decreases with the excitat
energy. The most interesting result is that the dominant tr
sition strength comes from the two-body continuum com
nent of 5He(3/22)1n showing the low energy enhancemen
and that contributions from the other components are r
tively very small. This result indicates that the three-bo
Coulomb breakup strength of6He is dominated by the se
quential breakup of a6He→5He1n→4He1n1n process. It
is consistent with the discussion of the observed invar
mass spectrum of the4He-n system@8,12,14#.

Our calculatedE1 distribution is very similar to that o
Danilin et al. @18# where there is a low energy enhanceme
in the transition strength. On the other hand, the experim
tal data @8# do not show a sharp enhancement in the l
excitation energy region. However, the error bars in the
perimental data are rather large. Further experimental
are desired.

We investigate more detailed structures of theE1 transi-
tion strength from two points of view; configurations of th
initial ground state and 12 final ones of6He. The first point
is to see the relation between the structure of the ground s
and theE1 transition strength. Although5He(3/22) is a
resonance, the wave function of5He(3/22) in the
5He(3/22)1n channel has a large overlap with the4He
1np3/2

configuration that is a dominant component in t
6He ground state. The result of the large transition stren
into the 5He(3/22)1n channel indicates that one of the ne
trons of (p3/2)

2 in the 6He ground state is excited to a co
tinuum state ofs- or d-wave orbit by theE1 external field.
Furthermore, we can see that the three-body continu
states of4He1n1n do not contribute strongly. This resu
indicates that twop3/2-orbital neutrons in the6He ground

FIG. 5. E1 transition strength distributions where dashed, d
ted, and dash-dotted lines are contributions from the two- and th
body continuum states. The thick solid line indicates the to
strength distribution. The position of the arrow stands for the tw
body threshold energy of the5He(3/22)1n channel.
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state are hardly excited simultaneously in the breakup re
tion. Another two-body continuum component o
5He(1/22)1n hardly contributes to the strength because
probability of (p1/2)

2 is very small in the ground state, near
a few percent. Furthermore, a large resonance width~5.84
MeV! of 5He(1/22) also reduces and broadens the streng
and then we cannot see a distinguishable structure of
two-body component of5He(1/22)1n in the E1 transition
strength.

The second point is to see what kinds of final-state c
figurations give large contributions to the strength functio
For this purpose, we calculate the transition component
dominant 12 final-state configurations such as (p3/2,s1/2),
(p3/2,d3/2,5/2), (p1/2,s1/2), or (p1/2,d3/2,5/2) of two valence
neutrons. When one of the valence neutrons is thep-orbital
resonance, the final-state configurations are expresse
5He(3/22,1/22)1nsd where the subscript means the orbit
angular momentum of the last neutron, because
p3/2,1/2-orbital neutron around the4He core already forms the
resonance of5He(3/22,1/22). The results are shown in Fig
6. From these results, it is found that the5He(3/22)1ns
component gives the main contribution and makes a la
enhancement at low energies in the total strength. T
5He(3/22)1nd component also gives a large contributio
and produces a broad peak around 2–3 MeV in the t
strength.

As was shown above, the transition strengths are v
weak for three-body continuum states of4He1np1nsd , but
strong for two-body continuum states of5He(3/22)1nsd .
Here we show that the two-body continuum states
5He(3/22)1n are approximately described by plane wave
For the 12 final states, we assume a free motion between
resonant5He(3/22) nucleus and the residual neutron wi
the relatives- andd-angular momenta, and calculate theE1
transition strength from the ground state of6He to these
configurations. The obtained strength distributions are sho
in Fig. 7, and are very similar to the results shown in Fig.
Thus, the low energy enhancement is interpreted as a thr
old effect of the two-body continuum in the5He(3/22)
1(s-orbital neutron) channel. The similar plane-wave d
scription of the strength distribution is seen in the break
reaction of the one-neutron halo nucleus11Be @6#. This low-

-
e-
l
-

FIG. 6. E1 transition strength distributions with limited 12 con-
figurations. The left panel shows (4He1np)1ns configurations
where subscript means the orbital angular momentum of each
lence neutron. The right panel shows (4He1np)1nd configura-
tions.
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momentum peak of11Be is explained as a result of the on
neutron halo structure of the ground state. However, in
present case, since the ground state of6He has a two-neutron
halo structure, the reaction process is different from tha
11Be. We have the following interpretation on theE1
breakup process of6He: The 6He nucleus is broken up to
4He1n1n, where three particles are not free but have
interaction between4He and one neutron. Furthermore,
final 12 states, the interacting4He and one neutron form th
resonance of5He(3/22), but the residual neutron has no in
teraction with the resonant5He system. The low angula
momentums- andd-components dominate and their summ
tion almost reproduces the total transition strength of
5He(3/22)1n breakup.

It is noticed in Figs. 5–7 that transition strength amp
tudes remain even below the two-body threshold ene
~0.74 MeV! in the two-body continuum component o
5He(3/22)1n. This result is explained by the fact that th
wave function of the 5He(3/22) resonance in the
5He(3/22)1n channel, has a spread over the energy ra
beyond the threshold energy due to the resonance width.
thermore, it is found that the three-body continuum stren
presents negative values in the energy region lower tha
MeV. This result does not contradict the observation beca
the observed strength~the total strength! keeps positive
value, as was explained in Sec. II C. The dynamical origin
negative values in the three-body continuum strength is c
sidered to come from the existence of some broad reson
poles hidden below the three-body continuum states.
same situation appears inE2 transitions as shown in the ne
subsection.

If there are no two-body or three-body resonances with
final state interaction, the three-body continuum stren
shows a positive distribution as shown in Fig. 8. TheE1
transition strength of Fig. 8 is calculated for the three-bo
plane wave functions as the final states under the assum
of no interactions between all clusters. As mentioned abo
this strength distribution does not include any resonance c
tribution that arises from the interactions between clust
Similar calculation was also shown for11Li by Pushkinet al.
@56#. In the calculated distribution, we see a broad enhan
ment with a bump at around 2 MeV. This enhancemen

FIG. 7. E1 transition strength distributions with limited 12 con-
figurations. Any interactions fors- and d-orbital valence neutrons
are cut off. The left panel is (4He1np)1ns,free configurations, and
the right panel is (4He1np)1nd,free configurations.
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interpreted as a result of the halo structure of the6He ground
state. If the interactions between clusters are very weak
the three-body plane wave approximation is acceptable,
E1 transition strength distribution may be described by
result of Fig. 8. However, as was shown above, the inter
tion between clusters, especially the final state interac
between 4He-n, plays an important role in the 12 final
states. It is shown that the final state interaction between4He
andn not only changes the shape of the strength distributi
but also increases the strength of the distribution.

B. E2 transitions

E2 transitions are also important in the low ener
strength of the Coulomb breakup reaction. Its strength is
pected to show a behavior very different fromE1 transitions
because there are 21,2

1 resonances of the4He1n1n system
in the low excitation energy region as shown in Table I.
Fig. 9, we show the obtained 21,2

1 resonances and continuum
solutions that are decomposed into two- and three-body c
tinuum states. Although we saw that theE1 transition
strength distribution does not have any resonant structur
is very interesting to see the resonant contribution in theE2
transition strength.

Before discussing the results of theE2 transition strength
distribution into three-body unbound states, we show

FIG. 8. E1 transition strength distributions without any fin
state interactions between clusters.

FIG. 9. Energy eigenvalues of 21 states calculated with CSM
where two crosses are 21,2

1 resonances and other marks indicate t
same meanings as those in Fig. 4.
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transition matrix elements between the initial ground st
and 21,2

1 resonances, whose squared values@transition
strengthsB(E2)# are 2.781 i0.43 for 21

1 and21.51 i0.9 for
22

1 , respectively~units in e2 fm4). Transition strengths are
obtained as complex numbers, as well as the eigenvalu
energies. It is found that the absolute values of the transi
strengths of 21

1 and 22
1 resonances are of the same ord

because the configurations of 21,2
1 are dominantly described

by the commonp orbitals. One must be careful to compa
the calculated complex values with observations@57#, be-
cause what we observe is for scattering states, not for p
resonances of complex energies. However, for the 21

1 reso-
nance, the large real part of the transition strength in co
parison with the imaginary one seems to correspond to
experimental value 3.260.6e2 fm4 reported by Aumann
et al. @8#. When the resonance pole is very close to the r
energy axis, its matrix elements show large real parts
may correspond well with observables. On the other ha
the 22

1 resonance has a large resonance width~4.22 MeV!
and a large imaginary part of the transition strength. Then
may be difficult to correspond directly its transition streng
with the observable.

The obtainedE2 transition strength distribution includin
resonance and continuum states is displayed in Fig.
There are five kinds of components: transitions to 21,2

1 reso-
nances, two-body continuum states of5He(3/22,1/22)1n,
and three-body continuum ones of4He1n1n. From Fig.
10, we can see that the 21

1 resonance gives the main contr
bution showing a sharp peak around the resonance en
~0.81 MeV! due to the small resonance width. On the oth
hand, the contribution from the 22

1 resonance is very sma
due to the large width in comparison with the 21

1 resonance,
in spite of the same order of the transition matrix elemen
The components associated to two-, or three-body cont
are smaller than those of 21

1 . However, in the continuum
transitions, the two-body continuum component
5He(3/22)1n shows a peak at around 1 MeV, just abo
the two-body threshold energy of this channel. This com

FIG. 10. E2 transition strength distributions where two th
solid lines are the contributions from 21,2

1 resonances and dashe
dotted, and dash-dotted lines are those from the two- and th
body continuum states. Thick solid line indicates the total stren
distribution.
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nent mainly contributes to make a shoulder in the to
strength at around 1.5 MeV measured from the4He1n1n
threshold energy. The reason why the two-body compon
of 5He(3/22)1n makes a peak at around 1 MeV is as fo
lows: This two-body component consists of5He(3/22)
1(p-orbital continuum neutron) channels dominantly due
orthogonality to the 21

1 and 22
1 resonances. Furthermore, w

can confirm that thisp-orbital continuum neutron has a sim
lar structure to thep-orbital plane wave, and a peak at arou
1 MeV is interpreted as a two-body threshold effect as in
case of theE1 transition.

The effect of another two-body continuum component
5He(1/22)1n is very small as well as the case of theE1
transition. It is found that the three-body continuum comp
nent of 4He1n1n relatively gives a larger contribution tha
the case ofE1 transition. This three-body component al
contributes to make a shoulder at around 1.5 MeV in
total transition strength. A similar structure was obtained
Danilin et al. @18#, though their shoulder structure is mo
isolated and has a larger strength. This difference of
shoulder behavior from our result may come from the rat
small resonance width of the 22

1 resonance in compariso
with our result.

In the present calculation, it is found that theE2 transi-
tion strength distribution shows a distinguishable resona
behavior of the 21

1 state, but not of the 22
1 state directly. It

may be hard to observe experimentally the existence of
22

1 state by using Coulomb breakup reactions. On the ot
hand, the continuum strengths consisting of5He(3/22)1n
and 4He1n1n channels make a shoulderlike structur
Through an observation of this structure, the continuum
fect is expected to be confirmed in theE2 transition strength
in addition to that of resonances.

C. Cross section

We calculate the Coulomb dissociation cross section
usingE1 andE2 transition strengths obtained in the form
subsections. The cross section is expressed by multiply
the reduced transition probabilitydB(El,E)/dE and the vir-
tual photon numberNEl(E) from the equivalent photon
method @58,59#. In Fig. 11, we show the calculated cros
section in comparison with the experimental one, where
get is Pb and the incident energy of6He projectile is 240
MeV/nucleon. In this calculation the minimum value of th
impact parameter is taken as 12 fm. We also calculate
convoluted cross section in addition to the original one. T
parameter set for the convolution with respect to the ene
resolution and detector response is the same as used in
@8#.

The whole shape of our cross section is very similar to
experimental data except for the too large peak at aroun
MeV that is mainly coming from theE1 component. It is
found that theE2 component is quite small and that its stru
ture cannot be seen in the total cross section even if the
a 21

1 resonance. Of course our result does not include
nuclear interaction at this stage, however, our analysis sh
that the contribution from theE1 transition strength domi-
nantly determines the shape of the dissociation cross sec

e-
h

3-8
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in the low excitation energy region, though there is no2

resonance.

IV. SUMMARY

We analyzed the structure of three-body unbound state
the two-neutron halo nucleus6He, by focusing on the tran
sition strength of the Coulomb breakup reaction. In addit
to the halo structure in the ground state, the understandin
three-body unbound4He1n1n states is important to clarify
the excitation mechanism of6He concerning breakup reac
tions.

In the study of the transition strength of three-bo
breakup reactions, it is necessary to determine the assoc
resonances and continuum states simultaneously, and to
amine the role of each state. In order to describe the th
body unbound states of6He with the 4He1n1n model, we
employed the complex scaling method~CSM!. It has been
shown that CSM is useful to solve resonances and contin
states in a unified framework. We also used the comp
scaled Green’s function@Eq. ~8!#, where we applied the ex
tended completeness relation~ECR! to decompose the tran
sition strengths into every components of the unbound sta
It was verified that CSM works successfully to evaluate
transition strengths of the three-body system beyond the t
body case.

In this paper, through the decomposition of the transit
strength into three-body resonances, and two- and three-b
continuum components, we carefully investigated the

FIG. 11. Coulomb dissociation cross sections of6He into the
4He1n1n system with and without the convolution. Experimen
data are taken from Ref.@8#.
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tailed structures in the characteristic distribution of the tra
sition strength of6He. It was found that for theE1 transition
strength, the sequential breakup process through
5He(3/22)1n channel is mostly favored rather than oth
processes, and makes a low energy enhancement due t
two-body threshold effect. For theE2 transition strength, in
addition to the contributions of the 21,2

1 resonances, thos
from the continuum states were calculated separately.
found two kinds of structures~peak and shoulder! in the
calculated strength; one comes from the contribution fr
21

1 resonance, and another from the two- and the three-b
continuum components. In the Coulomb dissociation cr
section consisting ofE1 andE2 dominantly, it is not pos-
sible to see the detailed structures of theE2 transition be-
cause of much largerE1 transition.

Based on the present successful results, we are goin
extend this method to the analysis of an influence from
nuclear interaction in the breakup reaction of6He. It is also
interesting to apply the present approach to other types
reactions such as charge exchange with6Li, proton scatter-
ing and so on. In these reactions, we may see the diffe
contributions of resonance and continuum states of6He from
the case of the Coulomb excitation. The knowledge obtai
from these reactions is important in manifesting the varie
of the structure of the unbound states of6He. We also have
a plan to study the breakup reactions of other unstable nu
such as11Li. Since the 11Li nucleus is suggested to have
large mixture ofs waves in the ground state@60,61#, unlike
the case of6He, it is very interesting to investigate the po
sibility of a soft-dipole resonance.
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