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Many-body perturbation calculation of spherical nuclei with a separable monopole interaction
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We present calculations of ground state properties of spherical, doubly closed-shell nuclei from16O to 208Pb
employing the techniques of many-body perturbation theory using a separable density-dependent monopole
interaction. The model gives results in Hartree-Fock order that are of similar quality to other effective density-
dependent interactions. In addition, second and third order perturbation corrections to the binding energy are
calculated and are found to contribute small, but non-negligible corrections beyond the mean-field result. The
perturbation series converges quickly, suggesting that this method may be used to calculate fully correlated
wave functions with only second or third order perturbation theory. We discuss the quality of the results and
suggest possible methods of improvement.
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I. INTRODUCTION

The central problem of nuclear structure theory is the
lution of the many-body Schro¨dinger equation~MBSE!. For
Hamiltonians of interest in the nuclear case, an analytic
lution is impossible and one is compelled to use some
proximation, either in the numerical solution of the equati
or the specification of the Hamiltonian, or both.

Approaching the problem with the aim of using as rea
tic a representation of the potential as possible usually me
fitting a combination of a meson exchange and phenome
logical interactions to low-energy nucleon-nucleon scatter
data and properties of few-body systems. To get good ag
ment with experiment both two- and three-body forces se
to be necessary. Recent examples of such potentials inc
the Bonn@1#, the Argonne two-body@2# with Urbana three-
body @3#, Nijmegen@4#, and Moscow@5# potentials, the last
of which also incorporates quark degrees of freedom. Th
forces share the property of having a hard repulsive core
is a natural consequence of meson exchange. It is this
core that presents the difficulty in solving the MBSE. F
instance, Hartree-Fock~HF! mean-field calculations with
such interactions result in unbound nuclei. Treating corr
tions beyond the HF approximation order-by-order in pert
bation theory is also unsuccessful since the interactions u
are nonperturbative. One has to solve the full MBSE num
cally in as exact a way as possible using techniques suc
variational Monte Carlo@6#, Green’s function Monte Carlo
~GFMC! @7#, the coupled-cluster method@8,9#, or the fer-
mion hypernetted chain model@10#. Using effective interac-
tions derived from realistic potentials, no-core shell-mo
calculations have been made in light nuclei@11#, and heavier
nuclei close to closed shells have been treated@12#.

The computational difficulty of performing numericall
exact solutions of the MBSE has limited the techniques
light nuclei, for instanceA58 results have been publishe
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recently using the Argonnev18 and Urbana IX potentials in
the GFMC framework@13#. In this work, it is seen that al-
though the lightest nuclei are reproduced very well, t
quantitative comparison of theory to data gets worse aA
increases. This may be due to the necessarily phenom
logical nature of the three-body potential, a problem th
may be overcome with refitting. On the other hand, it is n
obvious that either higher-body forces will not prove nec
sary or that the concept of a bare interaction between nu
ons is valid for small distances.

Attempts were made in the late 1960s primarily by Ke
man and co-workers at MIT to parametrize the nucleo
nucleon interaction in such a way that it is weak in the se
of being perturbative, while still providing a good fit to sca
tering data. Such a weak interaction allows one to perfo
Hartree-Fock calculations to obtain a reasonable approxi
tion to the full wave function and then to calculate corre
tions in perturbation theory. While this technique seems v
attractive, the results obtained were only moderately succ
ful at reproducing experimental data@14–18#, a fact that was
presumed to be due to inadequacies in the potentials u
The efficacy of developing a suitable interaction when sim
lar, though more complicated techniques were available
realistic interactions has been questioned@19# and no better
interaction was developed. Separable parametrizations,
ticularly the quadrupole-quadrupole force@20,21#, have how-
ever retained currency as residual interactions@22#. Even
when the potentials are too strong for regular perturbat
theory, separable interactions requiring a solution of Bru¨ck-
ner Hartree-Fock equations have proved fruitful@23# because
of their simplicity.

On the other hand, interactions have been developed
are not intended for use in the full MBSE, but rather to gi
good results with a mean-field calculation alone. Good qu
titative success came with the zero-range density-depen
force of Ehlers and Moszkowski@24# and Skyrme’s interac-
©2001 The American Physical Society09-1
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tion @25#, used in HF calculations by Vautherin and Brin
@26# and subsequently by many others, and also Decha
and Gogny’s finite-range interaction@27#. Skyrme’s interac-
tion has been particularly successful, in part due to its sim
form, that of a delta function, which leads to easy calcu
tion, even of the exchange part of the force. This compu
tional simplicity has allowed extensive study of the prop
ties of nuclei to be made with the Skyrme interaction acr
the entire range of nuclei in the periodic table@28–30#. Re-
lated somewhat to the Skyrme-Hartree-Fock model is
relativistic mean-field~RMF! approach@31,32#, which also
gives single-particle motion in a mean field, but as a solut
to the Dirac equation as opposed to the Schro¨dinger equa-
tion. The RMF approach has some nice features such as
natural occurrence of the spin-orbit splitting without recou
to an assumed spin-orbit interaction.

The Hartree-Fock model alone is a purely single-parti
model. That is to say, the many-body wave function is
single Slater determinant. This is a good approximation
closed-shell nuclei. Away from closed shells one usua
needs to augment theph mean field with a pairing interac
tion @33#, which smears out the Fermi surface and bre
particle number symmetry. Observables with a classical a
log, such as energy and shape, can be well reproduce
such mean field calculations. To obtain observables that
inherently quantum mechanical in nature, such as the
crete energy spectrum of excited states and transition p
abilities, it is necessary to go beyond the mean field. O
technique used is to restore the broken symmetries to ob
states with desired good quantum numbers. Restoratio
the center-of-mass symmetry, broken in all mean field ca
lations, is a standard technique@34#. Particle number sym-
metry can be restored by projection techniques@35#. The
restoration of angular momentum by projection has b
shown to be important in the correct description of lig
nuclei in which shape coexistence occurs@36,37#.

Another common approach to go beyond the mean fiel
to continue the perturbation expansion of which the HF
proximation is equivalent to first order. Partial summation
higher order diagrams in the perturbation series can be
05430
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ried out by means of the random phase approximation@38#,
which is particularly used to describe giant resonances bu
applied also to residual interactions and ground state co
lations @39#.

While these methods of going beyond the mean field
all valid, we feel that it is desirable to be able to use norm
perturbation theory to solve the MBSE. The HF approxim
tion appears naturally in the hierarchy of perturbations a
the ability to improve on the HF result, by using the sam
interaction that generates the mean field to complete the
lution, has a desirable elegance and consistency.

We revisit the idea that it is possible to parametrize
nuclear interaction in such a way that it is weak enough w
which to perform perturbation theory, thereby allowing co
related wave functions and observables to be calculated.
ing the separable ansatz of previous weak interactions
have developed a density-dependent interaction, which
hope will provide some insight into the correlation structu
of nuclear wave functions while retaining the quantitati
power of contemporary effective interactions used in
Hartree-Fock method. In contrast to previous work with p
turbative forces, the interaction is designed to be an effec
interaction with parameters fitted to the properties of fin
nuclei within the calculation framework for which it is in
tended.

The paper is organized as follows. In Sec. II we ment
the relevant results from many-body perturbation theory u
in this work. The separable interaction is given and discus
in Sec. III. Results of the calculation for doubly magic nuc
are summarized in Sec. IV. Derivation of the HF energy a
potential is outlined in the Appendix.

II. MANY-BODY PERTURBATION CALCULATION

We calculate terms in the perturbation series for the
ergy to third order, using the Hartree-Fock solution as a st
ing point. The perturbation theory techniques are stand
@40# and we state here the terms we calculate, namely,
one second-order contribution to the energy and the th
third-order terms,
E25
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in which the tildes over the potential indicate that the mat
element is antisymmetrized. The potentialV is the two-body
part of the Hamiltonian of the system. The state vectors la
HF single-particle states, whose energies are given by
subscriptede ’s.

In the present work, the Hartree-Fock problem is solv
in a basis of spherical harmonic oscillator states. This yie
along with the hole states, a large number of particle sta
with which to directly evaluate the above sums. A sufficie
number of states is used so that the positive energy par
states are oscillatory over the size of the nucleus and
both the HF solution and the perturbation corrections
reasonably converged.

It is important to note that our interaction is not intend
to fit scattering data, having as it does, density depende
On the level of the perturbation theory it is necessary to tr
the density functions as just the spatial form of the inter
tion, rather than a representation of a many-body force. T
is to be considered a part of the present model. To do ot
wise would be to surrender the simplifications our we
separable potential affords.

III. INTERACTION

We have developed an interaction written in the form o
sum of separable terms, which is to say it is in the fo
V(r 1 ,r 2);(g(r 1)g(r 2). The functionsg carry no angular
momentum (l 50), and the force is dubbed a monopol
monopole interaction. For future applications, it is intend
to include higher multipole forces, withl 51,2, . . . ,within
our framework as these will presumably be necessary
calculation of excited states and deformed nuclei. Althou
higher multipole forces will give contributions in spheric
nuclei from the exchange term in Hartree-Fock order and
correlations in perturbation theory, they are not included
the present calculation since it seems unwise to attempt t
the parameters of such forces to ground states of sphe
nuclei alone.

In coordinate space, the monopole interaction is written

V~rW1 ,rW2!5Waf arba~rW1!rba~rW2!

3@11aa~ t1
1t2

21t1
2t2

1!14bat1zt2z#

1Wr f rr
br~rW1!rbr~rW2!

3@11ar~ t1
1t2

21t1
2t2

1!14brt1zt2z#

1k¹1
2r~rW1!¹2

2r~rW2!, ~5!

where the functionf j is defined as

f j5F E drWraj~rW !G21

~6!

for subscriptsj5a and j5r . The operatorst1, t2, and tz
are isospin raising, lowering, andz axis projection operators
respectively. Throughout this work, the three terms in Eq.~5!
are referred to, in the order in which they appear in the ab
expression, as the attractive, repulsive, and derivative te
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In addition, the spin-orbit force is taken to be

Vs-o~rW !5c
1

r

]r

]r
lW•sW, ~7!

which is similar to that used in the modified delta interacti
@24#.

The parametersWa , aa , ba , aa , ba , Wr , a r , b r , ar ,
br , k, andc are to be fitted to experimental data.

One notices that the two-body interaction consists o
sum of terms, each of which is separable in form and that
expressions for the attractive and repulsive terms in Eq.~5!
differ only by the values of their parameters.

The energyEpot due to the interaction~5! in the Hartree-
Fock approximation is derived in the Appendix@Eqs. ~A2!,
~A3!, and~A15!# and is presented here,

EHF5T1ECoul1Epot

5T1ECoul1 (
j5a,r

H 1

2
Wj f jNj

22
1

2
Wj f jM j

1
1

2
Wjbj f j~DNj!

22
1

2
Wj f j@bjM j1ajM j

(tt̄)#J
1

1

2
kNd

21cNw , ~8!

whereT is the kinetic energy,ECoul is the direct Coulomb
energy plus exchange in the Slater approximation. The
lowing quantities have been defined:

Nj5E drWrbj11~rW !, ~9!

M j5E E drW1drW2@rp~rW1 ,rW2!rbj~rW1!rbj~rW2!rp~rW1 ,rW2!

1rn~rW1 ,rW2!rbj~rW1!rbj~rW2!rn~rW1 ,rW2!#, ~10!

DNj5E drWrbj~rW !dr~rW !, ~11!

M j
(tt̄)5E E drW1drW2@rp~rW1 ,rW2!rbj~rW1!rbj~rW2!rn~rW1 ,rW2!

1rn~rW1 ,rW2!rbj~rW1!rbj~rW2!rp~rW1 ,rW2!#, ~12!

Nd5E drWr~rW !¹2r~rW !, ~13!

Nw5E drW
1

r

]r

]r
rw~rW !, ~14!

and the following densities are used:

r~rW !5rp~rW !1rn~rW !

5 (
i ,eFPp

w i* ~rW !w i~rW !1 (
i ,eFPn

w i* ~rW !w i~rW !, ~15!
9-3
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r~rW1 ,rW2!5rp~rW1 ,rW2!1rn~rW1 ,rW2!

5 (
i ,eFPp

w i* ~rW1!w i~rW2!1 (
i ,eFPn

w i* ~rW1!w i~rW2!,

~16!

dr~rW !5rp~rW !2rn~rW !, ~17!

rw~rW !5 (
i ,eF

1

2
@ j i~ j i11!2 l i~ l i11!23/4#w i* ~rW !w i~rW !.

~18!

The variation of the total energy is carried out in the Appe
dix @see Eqs.~A9!, ~A11!, ~A13!, and~A18!#. The resulting
local Hartree-Fock potential is

UL,t~xW !5 (
j5a,r

$Wj f j@Nj~bj11!1bjDtNj#r
bj~xW !

2Wj~aj/2! f j
2@Nj

21bj~DNj!
22~11bj!M j

2ajM j
(tt̄)#raj21~xW !2Wj f jbj@~11bj!Gj~xW !

1ajGj
(tt̄)~xW !#rbx21~xW !1@Wjbjbj f jDNj#

3rbx21~xW !dr~xW !%12kNd¹2r~xW !, ~19!

which differs for protons (t5p) and neutrons (t5n)
through the function

DtNj5H DNj , t5p

2DNj , t5n.
~20!

The other newly introduced functions in Eq.~19! are

Gj~xW !5Gj
(pp)~xW !1Gj

(nn)~xW !

5E drW@rp~rW,xW !rbj~r !rp~xW ,rW !

1rn~rW,xW !rbj~rW !rn~xW ,rW !#,

Gj
(tt̄)~xW !5Gj

(pn)~xW !1Gj
(np)~xW !

5E drW@rp~rW,xW !rbj~r !rn~xW ,rW !

1rn~rW,xW !rbj~rW !rp~xW ,rW !#. ~21!

In addition, the nonlocal component to the mean field is@see
Eq. ~A14!#

UNL,t~xW ,xW8!5 (
j5a,r

Wxf xr
bj~xW !rbj~xW8!$~11bj!rt~xW ,xW8!

1ajrt̄~xW ,xW8!%, ~22!

and there is a state-dependent potential from the spin-o
interaction of the form
05430
-

it

Uso~xW !w i~xW !5cS wi

1

x

]r

]x
2

1

x

]rw

]x
2

1

x2
rw~xW !D w i~xW !,

~23!

where wi51/2@ j i( j i11)2 l i( l i11)23/4# is the spin-orbit
weight factor.

Note that the one-body spin-orbit term could be taken
either a one-body force, or as a one-body potential deri
from a two-body force. Since the latter approach would re
der the perturbation calculation problematic due to the
sence of a suitable form of the two-body force, we choo
the former approach. Hence, since the force is density de
dent, we have also included the rearrangement contribu
to the HF potential. Only the nonrearrangement term actu
gives rise to the spin-orbit splittings, but the rearrangem
terms, coming as they do from a variational principle, res
in a lowering of the HF energy. Combining the potentia
~19!, ~22!, and~23! gives us the HF equation

UL,t~xW !w i~xW !1E dxW8UNL,t~xW ,xW8!w i~xW8!1Uso~xW !w i~xW !

5« iw i~xW !. ~24!

In this potential as well as in the expression for the to
energy@Eq. ~8!#, the exchange contribution from the deriv
tive term is omitted. While it would, in principle, be desi
able to include this term, the calculational complexity i
volved in doing so has forced the omission in the pres
case. However, for the main attractive and repulsive ter
the exchange part is much smaller than the direct, and
direct derivative term gives a rather small contribution to t
mean field and the binding energy in comparison to the ot
direct terms, so it is not considered an unwarranted appr
mation to neglect the effects of this term.

The interaction has some interesting or unusual charac
istics. Its separability means that it does not satisfy Gallile
invariance. This choice was motivated by the desire to
sure that the force is perturbative and is justified by the
sults. Since our calculation is based upon a mean field, G
lilean invariance is bound to be broken anyway. It may
possible to adapt one of the standard techniques of symm
restoration to our case@34#, although a rigorous correction
would destroy the mean field and would necessitate a re
mulation of the perturbation calculation.

Also, we use an unusual form for the isospin exchan
operator in which we stretch the more familiart1•t2 form to
allow a different strength in thez direction in isospin space
than in thex andy directions. This gives us extra degrees
freedom in fitting parameters to the data.

The choice of omitting a spin-spin (s1•s2) type force yet
having an isospin-isospin type force is motivated by the
clei under study. All the closed-shell nuclei are spin sa
rated and would contribute only through the exchange te
in the HF order. For this separable interaction, the spa
exchange terms are rather small and a spin-spin force w
add little to the results. In addition, even if the effects
closed-shell nuclei are important, it does not seem reason
9-4
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to fit this term to closed-shell nuclei alone. It remains
open question whether such a force will prove necessar
useful in open-shell nuclei.

It is interesting to compare the leading terms in the
mean field to that of other models. The first term of Eq.~19!
gives us this as

U~xW !; (
j5a,r

Cj~ f jNj!r
bj~xW !, ~25!

whereCj is a combination of constants. The productf jNj is

f jNj5

E drWrbj11~rW !

E drWraj~rW !

. ~26!

If bj115aj then the productf jNj is unity and the leading
mean-field terms go like

U~xW !;Carba~xW !1Crr
br~xW !, ~27!

which for the special caseba51, are the same as the term
in the Skyrme mean field proportional to the parameterst0
and t3, which give the bulk of the binding energy and sat
ration properties. In this work, we do not strictly keepbj

115aj , thus allowing for someA dependence of the coe
ficients in the mean-field potential. The fact that one can
similar results in a mean-field calculation from two very d
ferent interactions will be reflected in different results in t
full perturbation series.

IV. DOUBLY „SEMI …MAGIC NUCLEI

In order to find the best set of parameters for the inter
tion ~5!, calculations have been made of 14 doubly clos
shell nuclei across the periodic table. They are16O, 34Si,
40,48Ca, 48,56,68,78Ni, 90Zr, 100,114,132Sn, 146Gd, and 208Pb.
The nuclei represent a selection of doubly closed~sub!shell
nuclei both close to and far from stability. There is limite
experimental information about48Ni @41# and 100Sn @42#.
The ability to reproduce the properties of such exotic nuc
will be important for the applications of our technique a
discrepancies will help direct refinements.

A Hartree-Fock code assuming spherical symmetry
representing wave functions in a basis of spherical harmo
oscillator states was used to calculate uncorrelated w
functions. Perturbation corrections to the binding ene
were directly evaluated using the results of the HF calcu
tion. The results presented here were obtained in a bas
12 expansion coefficients per single-particle wave funct
and iterated until the HF energy had converged to within
keV. The parameters of the force were fitted to binding
ergies to second order and charge radii, charge density
tributions, single-particle energies and spin-orbit splittings
HF order of the nuclei listed above where experimental d
were available and are presented in Table I.

The results of the calculated energies, in HF order an
each order of perturbation theory are presented in Table
05430
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The differences between the HF energy~8!, Ecal5EHF and
the experimental ground state energyEexp and between HF
and second order perturbation correction~1!, Ecal5EHF
1E2 and experiment are shown in Fig. 1. The experimen
energies are taken from the mass table of Audi and Wap
@43# with two exceptions—an estimate of the mass of t
recently observed nucleus48Ni @44# and the measured mas
of 100Sn @45#. The energy for78Ni was taken from@43# in
which extrapolated values are given, which are thought to
in error by less than 0.2%.

One sees from Fig. 1 that most of the nuclei fit the bin
ing energy to within;2%. The most obvious exception i
16O, which is quite underbound. This may be due to t
omission of a center-of-mass correction. It was not cal
lated in this case as discussed in Sec. III. We also men
that the correlation energy, as we shall shortly see, is gre
per particle in the lightest nuclei, so correlations from high
multipole forces may play a significant role in correcting th
discrepancy.

A general trend can be seen in which lighter nuclei a
somewhat overbound and the heaviest are underbound.
the exceptions that conspire to stop the fitting algorithm fr
doing better, but the somewhat systematic nature of this
crepancy suggests that a better mass or isospin depend
may improve matters. It is unclear as yet the extent to wh
multipole correlations or a spin-spin force would impro
the fit to spherical nuclei. That question awaits the study
deformed nuclei and excited states.

In Table III a comparison is made of the quality of the
to the binding energy to properties of the same nuclei ca
lated with a selection of Skyrme parametrizations. The
rametrizations used are SIII@46#, SkP @29#, SLy4 @47#, and
SkI4 @30#. In this comparison, it is seen that the energ
from the different Skyrme parametrizations are of a simi
quality, all reproducing the binding energies of closed-sh
nuclei very well, with only a few binding energies bein
reproduced no better than 1%—including48Ni whose experi-
mental value is in any case not well known. It is clear th
the results from the separable force are somewhat wo
Particularly problematic is16O, whose large underbinding
was mentioned above, and also48Ni, which is as with the
Skyrme parametrizations, overbound although more so w
the separable interaction.

Results for one-body properties in HF order are also p
sented. Comparison of the rms radii to experiment@48# and
to the selection of Skyrme interactions is made in Table
One-body observables are generally reproduced better in

TABLE I. Monopole force parameters.

Wa aa ba aa ba

21543.8 MeV fm3 2.0 1.0 20.4295 20.4448
Wr a r b r ar br

1778.0 MeV fm3.8265 2.2165 1.246 21.4788 20.3146
c k

160.0 MeV fm5 16.0 MeV fm10
9-5
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TABLE II. Hartree-Fock energy~8! and corrections from perturbation theory~1!–~4! compared with
experimental values from@43#. All energies are in MeV.

Nucleus EHF E(2) E(3)hh E(3)pp E(3)ph EHF1213 k Expt.

16O 2109.32 23.31 20.1365 20.3624 10.921 2112.21 0.063 2127.68
34Si 2280.88 27.37 20.0384 20.4830 11.223 2287.55 0.232 2283.43
40Ca 2334.53 22.51 20.0323 20.1114 10.233 2336.95 0.052 2342.00
48Ca 2417.01 25.97 20.0189 20.2725 10.273 2422.70 0.202 2416.16
48Ni 2360.69 26.57 20.0130 20.2058 10.427 2367.05 0.234 2348.33
56Ni 2481.25 22.31 20.0210 20.0643 10.123 2483.52 0.046 2483.99
68Ni 2593.33 26.00 20.0109 20.2091 10.484 2598.85 0.221 2590.43
78Ni 2651.90 28.34 20.0053 20.1458 10.477 2659.92 0.342 2641.38
90Zr 2782.70 23.91 20.0070 20.1257 10.103 2786.51 0.149 2783.89
100Sn 2825.65 21.71 20.0060 20.0220 10.048 2827.35 0.039 2826.81
114Sn 2963.20 24.04 20.0046 20.1093 10.226 2967.12 0.162 2971.57
132Sn 21097.65 26.17 20.0023 20.0864 10.209 21103.70 0.287 21102.92
146Gd 21190.32 23.42 20.0026 20.0699 10.142 21193.66 0.146 21204.44
208Pb 21599.04 24.51 20.0013 20.0664 10.108 21603.51 0.233 21636.45
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HF calculation alone than the binding energies. The comp
son of the calculated charge radii with experiment is gen
ally more favorable than the energy data. The radius of o
gen is too large by about 5%, which is consistent with
underbinding. It can be seen that the agreement with exp
ment is of the same level as the Skyrme interactions. Pe
bative corrections to the one-body observables such as
densities, and hence radii, will be calculated in future wo

Figures 2 and 3 show the calculated electron scatte
form factors for a representative light nucleus,40Ca, and a
heavy one,208Pb, compared to experiment@48#. The proton
density from the HF calculation was corrected for the fin
proton size by folding with a Gaussian to give the cha
density, from which the radii and form factors were calc
lated. The form factors agree with experiment rather w
which is expected given the generally correct radii.

Single-particle energies are shown in Figs. 4 and 5
40Ca and208Pb, respectively. The single-particle energies
a density-dependent Hartree-Fock calculation do not dire
correspond to an experimental observable, so caution sh

FIG. 1. Deviation of Hartree-Fock energy from experime
Negative errors denote underbinding. Note that16O and the second
order result for48Ni are beyond the scale.
05430
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be used in comparing values. It can be seen that the l
spacings and shell closures are better reproduced in208Pb,
which is true of heavy nuclei in general. The comparative
poorer results in light nuclei seem to be common to me
field approaches@49#.

Table V shows spin-orbit splittings for some cases wh
the experimental values are known. The ‘‘experimenta
data presented represent that used in previous work for fit
effective interactions to data@47,50,51#. Clearly the split-
tings are all systematically small. This could be remedied
an increase in the spin-orbit coefficientc. In a previous work
@52#, a value 10% higher than ours was used for the sa
spin-orbit interaction and hence the spin-orbit splittings w
more realistic. The lower value used in our work is the res
of a compromise between the reproduction of the spin-o
splittings and the total binding energies. This is an indicat
that a more suitable spin-orbit potential needs to be soug

.

TABLE III. Percentage error in binding energy. Negative valu
are underbound. Separable force is HF1perturbations, Skyrme cal
culations are HF1pairing.

Nucleus Sep. SIII SkP SLy4 SkI4

16O 212.10 0.36 20.12 0.19 0.57
34Si 1.45 0.43 0.92 1.08 1.06
40Ca 21.49 20.18 0.21 0.50 0.51
48Ca 1.61 0.40 20.04 20.63 0.31
48Ni 5.37 1.52 1.22 0.74 1.58
56Ni 20.10 20.22 21.11 0.09 20.29
68Ni 1.43 20.25 0.09 0.81 0.26
78Ni 2.89 0.58 20.05 20.29 0.21
90Zr 0.33 20.14 20.14 20.11 0.13
100Sn 0.07 0.14 20.51 0.75 0.28
114Sn 20.46 20.71 20.48 0.09 20.56
132Sn 0.07 0.10 20.31 0.14 20.12
146Gd 20.90 20.33 20.41 20.20 20.24
208Pb 22.01 20.17 20.27 0.21 20.24
9-6
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MANY-BODY PERTURBATION CALCULATION OF . . . PHYSICAL REVIEW C 63 054309
The perturbation corrections to the energy are seen to
rather small in all nuclei considered. This is consistent w
our goal that the mean-field solution should be close to
exact solution of the MBSE. The size of the second or
correlation is roughly constant across the periodic table.
characterized by a dimensionless strength parameterk de-
fined as

k5
1

4 (
ab<eF

(
rs.eF

^abuṼurs&^rsuṼuab&

~ea1eb2e r2es!
2

, ~28!

which is related to thewound integral@53# and is propor-
tional to the number of 2p2h states excited due to the seco
order perturbation.

Figure 6 shows the correlation structure from the sec
order correction in theN5Z nucleus 40Ca and the nucle
48Ca and208Pb. The contribution to the second order ener
is defined as a function of one of the particle statesr,

FIG. 2. Charge form factor in40Ca.

TABLE IV. Comparison of charge radii between experime
the separable interaction, and a selection of Skyrme interacti
The model-dependent experimental values are from@48#.

Nucleus Exp. Sep. SIII SkP SLy4 SkI4

16O 2.69 2.85 2.71 2.80 2.76 2.72
34Si 3.19 3.23 3.25 3.23 3.21
40Ca 3.48 3.54 3.48 3.52 3.49 3.45
48Ca 3.48 3.47 3.52 3.53 3.51 3.45
48Ni 3.88 3.77 3.82 3.79 3.80
56Ni 3.78 3.84 3.80 3.80 3.78 3.74
68Ni 3.89 3.94 3.93 3.91 3.81
78Ni 3.87 4.02 3.99 3.98 3.97
90Zr 4.27 4.29 4.31 4.30 4.28 4.23
100Sn 4.60 4.53 4.52 4.50 4.45
114Sn 4.60 4.65 4.66 4.62 4.62 4.59
132Sn 4.66 4.78 4.74 4.73 4.70
146Gd 4.96 5.02 5.03 5.00 4.99 4.94
208Pb 5.50 5.50 5.57 5.52 5.51 5.48
05430
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z^abuṼurs& z2
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. ~29!

The plot shows the contribution to the total second or
energy correction as a function of the single particle ene
e r in 5-MeV wide bins. In all three cases particles are dom
nantly excited to low-lying states above the Fermi level. T
results in a ground state with occupation probabilities sim
to those that result from pairing forces. It is also a furth
indication that perturbation theory makes sense for our in
action since it does not predict excitation of particles in t
ground state to extremely high energies.

Since the calculations were made using only a monop
force, the correlation structure is not expected to be co
plete. Only corrections involving simultaneousl 50 scatter-
ing of two particles is included. An indication of this incom
pleteness is seen in the difference between the results foN
5Z andNÞZ nuclei. The second order correction in48Ca is
much larger than that in40Ca, due to the possibility of anf 7/2
neutron exciting to thef 7/2 proton state while another proto
excites to a neutron state. This extra excitation is the labe
peak in Fig. 6. As well as having large wave function ove
laps, the energy denominator in this case is smaller tha

FIG. 3. Charge form factor in208Pb.

FIG. 4. Single-particle energies in40Ca compared to experimen
@49#.

,
s.
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any other possible monopole excitation, which must exc
any particle across major shells to keep all angular and i
pin quantum numbers the same. When general excitat
are permitted by higher multipole forcesl 51,2, . . . ,this dif-
ference between correlations inN5Z andNÞZ nuclei will
be smoothed out. For this reason, the correlation ener
should not be considered too quantitatively at this stage
rather as an indication of the perturbative properties of
interaction.

Comparing the form of our interaction to that of Skyrme
suggests other possible sources of improvement to
model. One such may come from a better parametrizatio
the spin-orbit interaction. A two-body form that fits the ph
losophy of the separable effective interaction has not b
found, but may be necessary to give the correct contribu
to the binding energy and provide the best isospin dep
dence. It may also prove fruitful to explore a more gene
term, dependent upon the derivatives of the density, than
single term with parameterk, as is found in the Skyrme
interaction, which has two terms with parameterst1 and t2
that often carry further exchange parametersx1 andx2.

V. CONCLUSION

We have presented a new effective nuclear interac
that is designed for use in calculations that go beyond
mean field. The technique of using perturbation theory
build correlations on top of the Hartree-Fock result is app
cable to our interaction and results in small corrections to
single-particle behavior. A monopole-monopole force alo
gives reasonable results for the ground state propertie

TABLE V. Spin-orbit splittings in HF calculation. For source o
experimental values, see text.

Levels Splitting~HF! Splitting ~exp!

16O, 0p(p) 4.2 6.3
16O, 0p(n) 4.3 6.1
40Ca, 0d(p) 5.3 7.2
40Ca, 0d(n) 5.3 6.3
208Pb, 2p(n) 0.67 0.89

FIG. 5. Single-particle energies in208Pb compared to experi
ment @49#.
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spherical doubly magic nuclei. It is expected that the ad
tion of multipole forces will improve these results, partic
larly through the completion of the correlation structur
Such multipole forces will also presumably be important
giving the correct shapes of deformed nuclei, which are
subject of a forthcoming study, and the correct description
excited states.
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APPENDIX: HF ENERGY AND POTENTIAL

The interactionV is given in Eq.~5!. Its expectation value
is the contribution it makes to the total energy and is

Epot5
1

2 (
i j ,eF

^ i j uV$u i j &2u j i &%. ~A1!

If we consider just theattractive term—that is, the term
whose parameters have the subscripta—then we will obtain
the contribution from the repulsive term by simply substitu
ing the subscripta by r:

Ea5
1

2
Waf a (

i j ,eF

^ i j urba~rW1!rba~rW2!$u i j &2u j i &%

1
1

2
Waf aaa (

i j ,eF

^ i j urba~rW1!rba~rW2!~ t1
1t2

21t1
2t2

1!

3$u i j &2u j i &%1
1

2
Waf aba

3 (
i j ,eF

^ i j urba~rW1!rba~rW2!4t1zt2z$u i j &2u j i &%. ~A2!

FIG. 6. Second order ground state correlation structure in40Ca,
48Ca, and208Pb.
9-8



propriate,
of wave

e isoscalar

le 1 is
the

ilar to that

case

MANY-BODY PERTURBATION CALCULATION OF . . . PHYSICAL REVIEW C 63 054309
Taking the first line, the matrix element is represented in space~and spin and isospin! coordinates,

1

2
Waf a (

i j ,eF

E drW1E drW2f i* ~rW1!f j* ~rW2!rba~rW1!rba~rW2!f i~rW1!f j~rW2!

2
1

2
Waf a (

i j ,eF

E drW1E drW2f i* ~rW1!f j* ~rW2!rba~rW1!rba~rW2!f j~rW1!f i~rW2!

5
1

2
Waf aE drW1rba11~rW1!E drW2rba11~rW2!2

1

2
Waf aE drW1E drW2rp~rW1 ,rW2!rba~rW1!rba~rW2!rp~rW2 ,rW1!

2
1

2
Waf aE drW1E drW2 ,rn~rW1 ,rW2!rba~rW1!rba~rW2!rn~rW2 ,rW1!

5
1

2
Waf aNa

22
1

2
Waf aMa , ~A3!

where quantities defined in Sec. III are used. Note that integrals include sums over spinors and isospinors where ap
and the coordinates include spin and isospin coordinates where appropriate. Where densities are used instead
functions, the summing over isospin states has already been done and where densities do not carry isospin labels, th
density is assumed. See Eqs.~15! and ~16! for definitions.

The second term in Eq.~A2! contains isospin-flipping operators whose action is to turn an isospin state where partic
a proton and particle 2 a neutron,upn&, into unp& and vice versa. The direct contribution, in which the labels in the bra and
ket are in the same order is zero since all proton states are orthogonal to all neutron states. The exchange term is sim
in Eq. ~A3! but with a different isospin combination of the density matrices,

2
1

2
Waf aaaE drW1E drW2rp~rW1 ,rW2!rba~rW1!rba~rW2!rn~rW2 ,rW1!2

1

2
Waf aaaE drW1E drW2rn~rW1 ,rW2!rba~rW1!rba~rW2!rp~rW2 ,rW1!

52
1

2
Waf aaaMa

(tt̄) . ~A4!

The third line of Eq.~A2! contains isospin-projection operators that have a value11/2 wheni and j are like particles and
21/2 when they are unlike. In the direct term this gives an energy of

1

2
Waf abaE drW1rp~rW1!rba~rW1!E drW2rp~rW2!rba~rW2!1

1

2
Waf abaE drW1rn~rW1!rba~rW1!E drW2rn~rW2!rba~rW2!

2
1

2
Waf abaE drW1rp~rW1!rba~rW1!E drW2rn~rW2!rba~rW2!2

1

2
Waf abaE drW1rn~rW1!rba~rW1!E drW2rp~rW2!rba~rW2!

5
1

2
Waf abaF E drWrp~rW !rba~rW !G2

1
1

2
Waf abaF E drWrn~rW !rba~rW !G2

2Waf abaE drW1rn~rW1!rba~rW1!E drW2rp~rW2!rba~rW2!

5
1

2
Waf abaF E drW$rp~rW !2rn~rW !%rba~rW !G2

5
1

2
Waf aba~DNa!2. ~A5!

The exchange term gives a contribution only wheni and j have the same isospin quantum number, which is just like the
for having no isospin operator there so that the contribution is like that in Eq.~A3!,

2
1

2
Waf abaMa . ~A6!
054309-9
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The HF mean field is obtained by varying the total ene
with respect to the single-particle states. This gives, for
case of the attractive term, without the explicit isospin d
pendence,

d

dfb~xW !
S 1

2
Waf aNa

22
1

2
Waf aMaD

5
1

2
Wa

d f a

dfb* ~xW !
Na

21Waf aNa

dNa

dfb* ~xW !

2
1

2
Wa

d f a

dfb* ~xW !
Ma2

1

2
Waf a

dMa

dfb* ~xW !
. ~A7!

The variation of the functionf a is given by

d f a

dfb* ~xW !
5

d

dfb* ~xW !
F E raa~rW !drW G21

52 f a
2E drW

draa~rW !

dfb* ~xW !

52 f a
2aaE drWraa21~rW !

dr~rW !

dfb* ~xW !

52 f a
2aaraa21~xW !fb~xW !, ~A8!
m

05430
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so that the contributions of the two terms in Eq.~A7! involv-
ing the variation off a give a contribution to the HF mea
field of

2Wa~aa/2! f a
2~Na

22Ma!raa21~xW !. ~A9!

The functionNa is similar in form to f a and the functional
variation proceeds in a similar manner,

dNa

dfb* ~xW !
5

d

dfb* ~xW !
E drWrba11~rW !5~ba21!rba~xW !fb~xW !

~A10!

and the contribution from the second term in Eq.~A7! to the
mean field is

Waf aNa~ba21!rba~xW !. ~A11!

Finally, the functional variation of the exchange matrix e
mentMa is
dMa

dfb* ~xW !
5

d

dfb* ~xW !
S (

i j ,eF

E E drW1drW2f i* ~rW1!f j* ~rW2!rba~rW1!rba~rW2!f j~rW1!f i~rW2! D
52 (

i j ,eF

E E drW1drW2

df i*

dfb* ~xW !
f j~rW2!rba~rW1!rba~rW2!f j~rW1!f i~rW2!

12 (
i j ,eF

E E drW1drW2f i* ~rW1!f j* ~rW2!
drba~rW1!

dfb* ~xW !
rba~rW2!f j~rW1!f i~rW2!

52 (
j ,eF

E drW2f j* ~rW2!rba~xW !rba~rW2!f j~xW !fb~rW2!

12 (
i j ,eF

E drW2f i* ~xW !f j~rW2!barba21~xW !fb~xW !rba~rW2!f j~xW !f i~rW2!, ~A12!
l

at-
of
an
where use is made of the symmetry of the integral to co
bine the four terms into two. The last term in Eq.~A12! gives
rise to a local term in the mean field of

2Waf aba (
i ,eF

F E drWr~rW,xW !rba~rW !r~xW ,rW !Grba21~xW !

52Waf abaGa~xW !rba21~xW !, ~A13!

whereGa(xW ) has been defined as in Eq.~21!.
- The other term in Eq.~A12! gives rise to a truly nonloca
Fock term in the mean field,

U~xW ,xW8!fb~xW !52Waf a (
i ,eF

rba~xW !f i~xW !

3F E drWf i* ~rW !rba~rW !fb~rW !G . ~A14!

This completes the non-isospin-dependent part of the
tractive force, and so also the repulsive part by change
subscript. The isospin-dependent terms are obtained in
9-10
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analogous way, except that when the variation applies to
density of a single nucleon species, the contribution to
mean field applies only to that species.

For the final term in Eq.~5!, the so-calledderivativeterm,
only the direct part of the energy is at present considered
is

Ederiv5
1

2
k (

i j ,eF

^ i j u“1
2r~rW1!“2

2~rW2!u i j &

5
1

2
kE drW1r~rW1!“1

2r~rW1!E drW2r~rW2!“2
2r~rW2!

5
1

2
kNd

2 . ~A15!

The functional variation proceeds as
0543
the
he

. It

dEderiv

dfb* ~xW !
5kNd

d

dfb* ~xW !
E drWr~rW !“2r~rW !

5kNdE drWH dr~rW !

dfb* ~xW !
J“2r~rW !1kNdE drWr~rW !

3H d

dfb* ~xW !
“

2r~rW !J . ~A16!

The first term gives a contribution to the mean field of

kNd“
2r~xW !. ~A17!

By integrating the second term by parts twice, one in f
gets exactly the same contribution to the mean field again
that the total contribution to the mean field from the dire
term of the derivative interaction is

2kNd¹2r~rW !. ~A18!

The exchange part of this term is not calculated.
r.

v,

.

l.
@1# R. Machleidt, K. Holinde, and Ch. Elster, Phys. Rep.149, 1
~1987!.

@2# R. B. Wiringa, V. G. J. Stoks, and R. Schiavilla, Phys. Rev.
51, 38 ~1995!.

@3# J. Carlson, V. R. Pandharipande, R. B. Wiringa, Nucl. Ph
A401, 59 ~1983!.

@4# V. G. J. Stoks, R. A. M. Klomp, C. P. F. Terheggen, and J.
de Swart, Phys. Rev. C49, 2950~1994!.

@5# V. I. Kukulin, V. N. Pomerantsev, and Amand Faessler, Ph
Rev. C59, 3021~1999!.

@6# R. B. Wiringa, Phys. Rev. C43, 1585~1991!.
@7# B. S. Pudliner, V. R. Pandharipande, and J. Carlson, Ph

Rev. C56, 1720~1997!.
@8# F. Coester, Nucl. Phys.7, 421 ~1958!.
@9# B. Mihaila and J. Heisenberg, Phys. Rev. C59, 1440~1999!.

@10# A. Fabrocini, F. Arias de Saavedra, G. Co’, and P. Folgara
Phys. Rev. C57, 1668~1998!.

@11# D. C. Zheng, B. R. Barrett, J. P. Vary, W. C. Haxton, an
C.-L. Song, Phys. Rev. C52, 2488~1995!.

@12# L. Coraggio, A. Covello, A. Gargano, N. Itaco, and T. T. S
Kuo, Phys. Rev. C58, 3346~1998!.

@13# R. B. Wiringa, Steven C. Pieper, J. Carlson, and V.
Pandharipande, Phys. Rev. C62, 014001~2000!.

@14# A. Kerman, Cargese Lect. Phys.3, 396 ~1969!.
@15# C. N. Bressel, A. K. Kerman, and B. Rouben, Nucl. Phy

A124, 624 ~1969!.
@16# B. Rouben, Ph.D. thesis, MIT, 1969.
@17# J. Zipse, Ph.D. thesis, MIT, 1970.
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