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We present calculations of ground state properties of spherical, doubly closed-shell nucl&@rtmt°%Ph
employing the techniques of many-body perturbation theory using a separable density-dependent monopole
interaction. The model gives results in Hartree-Fock order that are of similar quality to other effective density-
dependent interactions. In addition, second and third order perturbation corrections to the binding energy are
calculated and are found to contribute small, but non-negligible corrections beyond the mean-field result. The
perturbation series converges quickly, suggesting that this method may be used to calculate fully correlated
wave functions with only second or third order perturbation theory. We discuss the quality of the results and
suggest possible methods of improvement.

DOI: 10.1103/PhysRevC.63.054309 PACS nunter21.10.Dr, 21.10.Ft, 21.30.Fe, 21.60.Jz

[. INTRODUCTION recently using the Argonnel8 and Urbana IX potentials in
the GFMC frameworK13]. In this work, it is seen that al-
The central problem of nuclear structure theory is the sothough the lightest nuclei are reproduced very well, the
lution of the many-body Schdinger equatiofMBSE). For  quantitative comparison of theory to data gets worseias
Hamiltonians of interest in the nuclear case, an analytic soincreases. This may be due to the necessarily phenomeno-
lution is impossible and one is compelled to use some aplogical nature of the three-body potential, a problem that
proximation, either in the numerical solution of the equationmay be overcome with refitting. On the other hand, it is not
or the specification of the Hamiltonian, or both. obvious that either higher-body forces will not prove neces-
Approaching the problem with the aim of using as realis-sary or that the concept of a bare interaction between nucle-
tic a representation of the potential as possible usually mearmns is valid for small distances.
fitting a combination of a meson exchange and phenomeno- Attempts were made in the late 1960s primarily by Ker-
logical interactions to low-energy nucleon-nucleon scatteringnan and co-workers at MIT to parametrize the nucleon-
data and properties of few-body systems. To get good agreewcleon interaction in such a way that it is weak in the sense
ment with experiment both two- and three-body forces seenof being perturbative, while still providing a good fit to scat-
to be necessary. Recent examples of such potentials includering data. Such a weak interaction allows one to perform
the Bonn[1], the Argonne two-body2] with Urbana three- Hartree-Fock calculations to obtain a reasonable approxima-
body[3], Nijmegen[4], and Moscow 5] potentials, the last tion to the full wave function and then to calculate correc-
of which also incorporates quark degrees of freedom. Thestons in perturbation theory. While this technique seems very
forces share the property of having a hard repulsive core thatttractive, the results obtained were only moderately success-
is a natural consequence of meson exchange. It is this hafdl at reproducing experimental dqté4—18, a fact that was
core that presents the difficulty in solving the MBSE. Forpresumed to be due to inadequacies in the potentials used.
instance, Hartree-FockHF) mean-field calculations with The efficacy of developing a suitable interaction when simi-
such interactions result in unbound nuclei. Treating correctar, though more complicated techniques were available for
tions beyond the HF approximation order-by-order in perturrealistic interactions has been questiof&él] and no better
bation theory is also unsuccessful since the interactions usedteraction was developed. Separable parametrizations, par-
are nonperturbative. One has to solve the full MBSE numeriticularly the quadrupole-quadrupole fori&0,21], have how-
cally in as exact a way as possible using techniques such &ver retained currency as residual interactippg]. Even
variational Monte Carld6], Green’s function Monte Carlo when the potentials are too strong for regular perturbation
(GFMC) [7], the coupled-cluster methd®,9], or the fer- theory, separable interactions requiring a solution ofcRsu
mion hypernetted chain modElQ]. Using effective interac- ner Hartree-Fock equations have proved fruif28] because
tions derived from realistic potentials, no-core shell-modelof their simplicity.
calculations have been made in light nuglel], and heavier On the other hand, interactions have been developed that
nuclei close to closed shells have been treqlex. are not intended for use in the full MBSE, but rather to give
The computational difficulty of performing numerically good results with a mean-field calculation alone. Good quan-
exact solutions of the MBSE has limited the techniques tditative success came with the zero-range density-dependent
light nuclei, for instanceA=8 results have been published force of Ehlers and Moszkowsk24] and Skyrme’s interac-

0556-2813/2001/63)/05430911)/$20.00 63 054309-1 ©2001 The American Physical Society



P. STEVENSON, M. R. STRAYER, AND J. RIKOVSKA STONE PHYSICAL REVIEW &3 054309

tion [25], used in HF calculations by Vautherin and Brink ried out by means of the random phase approximdt&a,
[26] and subsequently by many others, and also Dechargehich is particularly used to describe giant resonances but is
and Gogny’s finite-range interactig@7]. Skyrme’s interac- applied also to residual interactions and ground state corre-
tion has been particularly successful, in part due to its simpléations[39].
form, that of a delta function, which leads to easy calcula- While these methods of going beyond the mean field are
tion, even of the exchange part of the force. This computaall valid, we feel that it is desirable to be able to use normal
tional simplicity has allowed extensive study of the proper-perturbation theory to solve the MBSE. The HF approxima-
ties of nuclei to be made with the Skyrme interaction acrossion appears naturally in the hierarchy of perturbations and
the entire range of nuclei in the periodic tap8—-30. Re-  the ability to improve on the HF result, by using the same
lated somewhat to the Skyrme-Hartree-Fock model is thénteraction that generates the mean field to complete the so-
relativistic mean-field RMF) approach[31,32, which also lution, has a desirable elegance and consistency.
gives single-particle motion in a mean field, but as a solution We revisit the idea that it is possible to parametrize a
to the Dirac equation as opposed to the Sdimger equa- nuclear interaction in such a way that it is weak enough with
tion. The RMF approach has some nice features such as thehich to perform perturbation theory, thereby allowing cor-
natural occurrence of the spin-orbit splitting without recourserelated wave functions and observables to be calculated. Us-
to an assumed spin-orbit interaction. ing the separable ansatz of previous weak interactions we
The Hartree-Fock model alone is a purely single-particlehave developed a density-dependent interaction, which we
model. That is to say, the many-body wave function is ahope will provide some insight into the correlation structure
single Slater determinant. This is a good approximation irof nuclear wave functions while retaining the quantitative
closed-shell nuclei. Away from closed shells one usuallypower of contemporary effective interactions used in the
needs to augment theh mean field with a pairing interac- Hartree-Fock method. In contrast to previous work with per-
tion [33], which smears out the Fermi surface and breakgurbative forces, the interaction is designed to be an effective
particle number symmetry. Observables with a classical ananteraction with parameters fitted to the properties of finite
log, such as energy and shape, can be well reproduced mmuclei within the calculation framework for which it is in-
such mean field calculations. To obtain observables that atended.
inherently quantum mechanical in nature, such as the dis- The paper is organized as follows. In Sec. Il we mention
crete energy spectrum of excited states and transition prolthe relevant results from many-body perturbation theory used
abilities, it is necessary to go beyond the mean field. Onén this work. The separable interaction is given and discussed
technique used is to restore the broken symmetries to obtain Sec. lll. Results of the calculation for doubly magic nuclei
states with desired good quantum numbers. Restoration @fre summarized in Sec. IV. Derivation of the HF energy and
the center-of-mass symmetry, broken in all mean field calcupotential is outlined in the Appendix.
lations, is a standard technig(ig4]. Particle number sym-
metry can be restored by projection techniqiids]. The
restoration of angular momentum by projection has been
shown to be important in the correct description of light We calculate terms in the perturbation series for the en-
nuclei in which shape coexistence occ{38,37). ergy to third order, using the Hartree-Fock solution as a start-
Another common approach to go beyond the mean field isng point. The perturbation theory techniques are standard
to continue the perturbation expansion of which the HF ap{40] and we state here the terms we calculate, namely, the
proximation is equivalent to first order. Partial summation ofone second-order contribution to the energy and the three
higher order diagrams in the perturbation series can be cathird-order terms,

II. MANY-BODY PERTURBATION CALCULATION
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in which the tildes over the potential indicate that the matrix In addition, the spin-orbit force is taken to be
element is antisymmetrized. The potendais the two-body
part of the Hamiltonian of the system. The state vectors label
HF single-particle states, whose energies are given by the
subscriptece’s.

In the present work, the Hartree-Fock problem is solveghich is similar to that used in the modified delta interaction
in a basis of spherical harmonic oscillator states. This yields[24]-
along with the hole states, a large number of particle states The parameterV,, a,, Ba, @a, ba, Wy, o, Br, &,
with which to directly evaluate the above sums. A sufficientbr, k, andc are to be fitted to experimental data.
number of states is used so that the positive energy particle One notices that the two-body interaction consists of a
states are oscillatory over the size of the nucleus and th&um of terms, each of which is separable in form and that the
both the HF solution and the perturbation corrections aré€Xpressions for the attractive and repulsive terms in(&x.
reasonably converged. differ only by the values of their parameters.

It is important to note that our interaction is not intended ~ The energyE, due to the interactioKd) in the Hartree-
to fit scattering data, having as it does, density dependencE0ck approximation is derived in the Appendixgs. (A2),
On the level of the perturbation theory it is necessary to treatA3), and(A15)] and is presented here,
the density functions as just the spatial form of the interac-
tion, rather than a representation of a many-body force. This
is to be considered a part of the present model. To do other- 1 1
wise would be to surrender the simplifications our weak, =T+Ecout > Ewgngé—EWgéMg
separable potential affords. f=ar

Vg =csPp g 7
S'O(r)_crﬁ_r - S, (7)

Envp=T+Ecout Epot

1 1 =
lll. INTERACTION + S Webf (AN = SW,f [bM+aME™]

We have developed an interaction written in the form of a
sum of separable terms, which is to say it is in the form
V(rq,ro)~29g(rq)g(r,). The functionsg carry no angular
momentum [(=0), and the force is dubbed a monopole-whereT is the kinetic energyEc, is the direct Coulomb
monopole interaction. For future applications, it is intendedenergy plus exchange in the Slater approximation. The fol-

1 2
+ 5 kNGHCN,, ©)

to include higher multipole forces, with=1,2, ... ,within  lowing quantities have been defined:
our framework as these will presumably be necessary for
calculation of excited states and deformed nuclei. Although N.= | droBfeti(r
. . e L= T . ¢ pPET(T), 9
higher multipole forces will give contributions in spherical

nuclei from the exchange term in Hartree-Fock order and via
correlations in perturbation theory, they are not included in M _J jd+ b > BTN B >
: : . ' : ) = rodr rq,r &(r g(r rq,r
the present calculation since it seems unwise to attempt to fit — © 1ol pp(ra,r2) PRI ) po(ra) pp(raira)
the parameters of such forces to ground states of spherical R R - -
nuclei alone. T pn(r1,r2)pPE(ry) pPe(ra) pa(ra,ra)l, (10
In coordinate space, the monopole interaction is written as

.. . R AN :f drpPe(r)dp(r), (11)
V(T1,T2)=W,f apPa(r ) pPa(r,) ¢

X[1+a(tit; +t7t)+4b.t, t = . - . . . .
[ 8atyty T1 1) 4Dalaat] MS;T)=ffdrldrz[ppm,r2>pﬁé(rl>pﬁé(rz>pn(r1,r2>

+W, f, pPr(ry) pPr(ry)

+ 0Ty, 1) pPe(r ) pPe(r 1], 12
><[1+ar(t1+t2‘+t1_t§)+4brtlzt22] Pn(r1,12) pPe(r) pP«( 2)Pp( 1,12)] (12
+KV2p(F)V2p(T), (5) Ng= J A7 p(F)V2p (), 13

where the functiorf, is defined as 19
1 Nw=f A= =2 pu(1), (14

f§: (6)

J drp®«(r)
and the following densities are used:
for subscriptsé=a and é&=r. The operators™, t~, andt,

are isospin raising, lowering, arhxis projection operators, p(r)=pp(r)+pn(r)

respectively. Throughout this work, the three terms in (Gy.

are referred to, in the order in which they appear in the above = > oNeN+ X e (Nei(r), (19
expression, as the attractive, repulsive, and derivative terms. i<epep i<epen
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p(ra,r2)=pp(ri,ra)+pn(ry,ra)

= 2 o (reir)+ X ¢oF(r)ei(ry),

|<e,:ep i< €EgEN

(16)

8p(r)=pp(1)—pn(r), (17)

Li(L+1) —3/4]¢F (1) ().
(18)

1
§[Ji(li+1)—

pul()= 2,

1<ep
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so(x)(P|(X) C

where W= 1/2[] |(J i 1)_
weight factor.

Note that the one-body spin-orbit term could be taken as
either a one-body force, or as a one-body potential derived
from a two-body force. Since the latter approach would ren-
der the perturbation calculation problematic due to the ab-
sence of a suitable form of the two-body force, we choose
the former approach Hence, since the force is density depen—

l(I;+1)—3/4] is the spin-orbit

dix [see Eqs(A9), (All), (A13), and(A18)]. The resulting
local Hartree-Fock potential is

.,

ULAR)= 2 AW INL(Bet1) +DeA Nl (%)

—We(ad2)FNZ+Db(ANy)?— (1+b )M,
—a Mo (%)~ Wf B (14D Gy(X)
+agegﬂ(i)]pﬁxﬂ(iw[wgbg,egngNg]
p(X)}+2kNgV2p(X),

Xpﬁx_l()Z) (19)

which differs for protons f=p) and neutrons £=n)
through the function

AN,
_ANg,

T=p

=n. (20

.
The other newly introduced functions in E{.9) are
G(X)=GPP(x)+ G (X)
= f drlpy(r,X)pPe(r) pyp(X,1)
+ pa(F,X)pPE(r) pr(X,1)],
GUI(X)=GP(X) + G ()
= f drlpy(rX)pP4r)pa(X,1)

+pn(FX)pPE(r) pp(X,1)]. (2D

In addition, the nonlocal component to the mean fieltbee
Eq. (Al4)]

UniA(X,X")= 2 X)pPEX ) (1+Dg)p(X,X")

+a0706X)}, (22

to the HF potential. Only the nonrearrangement term actually
gives rise to the spin-orbit splittings, but the rearrangement
terms, coming as they do from a variational principle, result
in a lowering of the HF energy. Combining the potentials

(19), (22), and(23) gives us the HF equation

U (X)@i(x)+ f dX' Upp 06X @i(X") + U X) @i(X)

=&ii(X). (29)

In this potential as well as in the expression for the total
energy[Eq. (8)], the exchange contribution from the deriva-
tive term is omitted. While it would, in principle, be desir-
able to include this term, the calculational complexity in-
volved in doing so has forced the omission in the present
case. However, for the main attractive and repulsive terms,
the exchange part is much smaller than the direct, and the
direct derivative term gives a rather small contribution to the
mean field and the binding energy in comparison to the other
direct terms, so it is not considered an unwarranted approxi-
mation to neglect the effects of this term.

The interaction has some interesting or unusual character-
istics. Its separability means that it does not satisfy Gallilean
invariance. This choice was motivated by the desire to en-
sure that the force is perturbative and is justified by the re-
sults. Since our calculation is based upon a mean field, Gal-
lilean invariance is bound to be broken anyway. It may be
possible to adapt one of the standard techniques of symmetry
restoration to our casg84], although a rigorous correction
would destroy the mean field and would necessitate a refor-
mulation of the perturbation calculation.

Also, we use an unusual form for the isospin exchange
operator in which we stretch the more familiar 7, form to
allow a different strength in the direction in isospin space
than in thex andy directions. This gives us extra degrees of
freedom in fitting parameters to the data.

The choice of omitting a spin-spirr - o) type force yet
having an isospin-isospin type force is motivated by the nu-
clei under study. All the closed-shell nuclei are spin satu-
rated and would contribute only through the exchange term
in the HF order. For this separable interaction, the space-
exchange terms are rather small and a spin-spin force would

and there is a state-dependent potential from the spin-orbédd little to the results. In addition, even if the effects in

interaction of the form

closed-shell nuclei are important, it does not seem reasonable
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to fit this term to closed-shell nuclei alone. It remains an TABLE I. Monopole force parameters.
open question whether such a force will prove necessary GF
useful in open-shell nuclei. W, Qa Ba a, ba
It |s_|nterest|ng to compare the Ieadmg terms in the HF_ 1543.8 MeV f? 20 10 0.4295 04448
mean field to that of other models. The first term of Ekf)
; ; W, ay Br a; b,
gives us this as
1778.0 MeV #8285 22165 1.246 —1.4788  —0.3146
U~ 2 CelfNypPe(x), (25) c k
=a,r
e 160.0 MeV fn? 16.0 MeV fmt?
whereC; is a combination of constants. The prodéigi, is
J' deggﬂ(;) The differences between the HF ener@®), E.,=Eyr and
the experimental ground state eneigy,, and between HF

feNe= (26 and second order perturbation correctiot), E.,=Eyr

f drp®(r) +E, and experiment are shown in Fig. 1. The experimental
energies are taken from the mass table of Audi and Wapstra
If B:+1= e, then the product N, is unity and the leading [43] with two exceptions—an estimate of the mass of the

mean-field terms go like recently observed nucleu$Ni [44] and the measured mass
of 109%5n[45]. The energy for’®Ni was taken from[43] in
U()_())Ncapﬁa()_())+crpﬁr()_()), (27)  Which extrapolated values are given, which are thought to be

in error by less than 0.2%.

which for the special casg,=1, are the same as the terms  One sees from Fig. 1 that most of the nuclei fit the bind-
in the Skyrme mean field proportional to the parametgrs ing energy to within~2%. The most obvious exception is
andts, which give the bulk of the binding energy and satu- *°0, which is quite underbound. This may be due to the
ration properties. In this work, we do not strictly ke@p omission of a center-of-mass correction. It was not calcu-
+1=ay, thus allowing for someé\ dependence of the coef- lated in this case as discussed in Sec. Ill. We also mention
ficients in the mean-field potential. The fact that one can gethat the correlation energy, as we shall shortly see, is greater
similar results in a mean-field calculation from two very dif- per particle in the lightest nuclei, so correlations from higher
ferent interactions will be reflected in different results in themultipole forces may play a significant role in correcting this

full perturbation series. discrepancy.
A general trend can be seen in which lighter nuclei are
IV. DOUBLY (SEMI)MAGIC NUCLEI somewhat overbound and the heaviest are underbound. It is

the exceptions that conspire to stop the fitting algorithm from

In order to find the best set of parameters for the interaceloing better, but the somewhat systematic nature of this dis-
tion (5), calculations have been made of 14 doubly closederepancy suggests that a better mass or isospin dependence
shell nuclei across the periodic table. They &f®, 3'Si,  may improve matters. It is unclear as yet the extent to which
4048Cq, 4856687Rj 90z 1001141354 146Gq and 2°%Pb.  multipole correlations or a spin-spin force would improve
The nuclei represent a selection of doubly clogeahshell  the fit to spherical nuclei. That question awaits the study of
nuclei both close to and far from stability. There is limited deformed nuclei and excited states.
experimental information about®™Ni [41] and °%Sn [42]. In Table Il a comparison is made of the quality of the fit
The ability to reproduce the properties of such exotic nucleto the binding energy to properties of the same nuclei calcu-
will be important for the applications of our technique andlated with a selection of Skyrme parametrizations. The pa-
discrepancies will help direct refinements. rametrizations used are S[46], SkP[29], SLy4 [47], and

A Hartree-Fock code assuming spherical symmetry and@kl4 [30]. In this comparison, it is seen that the energies
representing wave functions in a basis of spherical harmonifrom the different Skyrme parametrizations are of a similar
oscillator states was used to calculate uncorrelated wavguality, all reproducing the binding energies of closed-shell
functions. Perturbation corrections to the binding energynuclei very well, with only a few binding energies being
were directly evaluated using the results of the HF calculareproduced no better than 1%—includiffiNi whose experi-
tion. The results presented here were obtained in a basis afiental value is in any case not well known. It is clear that
12 expansion coefficients per single-particle wave functiorthe results from the separable force are somewhat worse.
and iterated until the HF energy had converged to within 1Particularly problematic is®0, whose large underbinding
keV. The parameters of the force were fitted to binding enwas mentioned above, and al§&Ni, which is as with the
ergies to second order and charge radii, charge density diSkyrme parametrizations, overbound although more so with
tributions, single-particle energies and spin-orbit splittings tathe separable interaction.
HF order of the nuclei listed above where experimental data Results for one-body properties in HF order are also pre-
were available and are presented in Table I. sented. Comparison of the rms radii to experime® and

The results of the calculated energies, in HF order and ino the selection of Skyrme interactions is made in Table IV.
each order of perturbation theory are presented in Table 1lOne-body observables are generally reproduced better in the
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TABLE Il. Hartree-Fock energy8) and corrections from perturbation theof})—(4) compared with
experimental values frorf¥3]. All energies are in MeV.

Nucleus Enr E® E®hn E®ep L K Expt.

160 -109.32 —-3.31 -—0.1365 -0.3624 +0.921 —112.21 0.063 —127.68
345 —-280.88 —7.37 —0.0384 —0.4830 +1.223 —287.55 0.232 —283.43
4ca —33453 -251 -—0.0323 -0.1114 +0.233 —336.95 0.052 —342.00
“8Ca —417.01 -597 -—0.0189 -0.2725 +0.273 —422.70 0.202 —416.16
48Nj -360.69 —6.57 —0.0130 —0.2058 +0.427 —367.05 0.234 —348.33
SeNj —481.25 —2.31 —0.0210 —0.0643 +0.123 —483.52 0.046 —483.99
68Nj —-593.33 —-6.00 —0.0109 -0.2091 +0.484 —-598.85 0.221 —590.43
T8N -651.90 —8.34 —0.0053 -—0.1458 +0.477 —659.92 0.342 —641.38
907y —-782.70 —-391 -—0.0070 -0.1257 +0.103 —786.51 0.149 —783.89
1005 —825.65 —1.71 —0.0060 —0.0220 +0.048 —827.35 0.039 —826.81
14gn —963.20 —4.04 -—0.0046 —0.1093 +0.226 —967.12 0.162 —971.57
1325 —1097.65 —6.17 —0.0023 —0.0864 +0.209 —1103.70 0.287 —1102.92
148Gd —1190.32 —3.42 -—0.0026 —0.0699 +0.142 —1193.66 0.146 —1204.44
208pp —1599.04 —451 -—0.0013 -—0.0664 +0.108 —1603.51 0.233 —1636.45

HF calculation alone than the binding energies. The comparibe used in comparing values. It can be seen that the level
son of the calculated charge radii with experiment is generspacings and shell closures are better reproducetb,
ally more favorable than the energy data. The radius of oxywhich is true of heavy nuclei in general. The comparatively
gen is too large by about 5%, which is consistent with itspoorer results in light nuclei seem to be common to mean-
underbinding. It can be seen that the agreement with experfield approachef49].
ment is of the same level as the Skyrme interactions. Pertur- Table V shows spin-orbit splittings for some cases where
bative corrections to the one-body observables such as tliee experimental values are known. The “experimental”
densities, and hence radii, will be calculated in future work.data presented represent that used in previous work for fitting
Figures 2 and 3 show the calculated electron scatteringffective interactions to datpd7,50,5]1. Clearly the split-
form factors for a representative light nucled§Ca, and a tings are all systematically small. This could be remedied by
heavy one,2°%®Pb, compared to experimept8]. The proton  an increase in the spin-orbit coefficientin a previous work
density from the HF calculation was corrected for the finite[52], a value 10% higher than ours was used for the same
proton size by folding with a Gaussian to give the chargespin-orbit interaction and hence the spin-orbit splittings were
density, from which the radii and form factors were calcu-more realistic. The lower value used in our work is the result
lated. The form factors agree with experiment rather well,of a compromise between the reproduction of the spin-orbit
which is expected given the generally correct radii. splittings and the total binding energies. This is an indication
Single-particle energies are shown in Figs. 4 and 5 fothat a more suitable spin-orbit potential needs to be sought.
40Ca and?*® b, respectively. The single-particle energies of o .
a density-dependent Hartree-Fock calculation do not directly TABLE Ill. Percentage error in binding energy. Negative values

correspond to an experimental observable, so caution shoufife underbound. Separable force is-Hferturbations, Skyrme cal-
culations are HF-pairing.

! o ] Nucleus Sep. Sill SkP SLy4  Ski4
4t O HF .
s o fFro@l ] 160 ~1210 036 -012 019 057
oL ] s 1.45 0.43 0.92 1.08 1.06
= 4L T 7 i 1 40cq -1.49 —0.18 0.21 0.50 0.51
N o . “*Ca 1.61 040 —0.04 -0.63 0.31
a or (L 3 o % ) % ] 48N 5.37 1.52 1.22 0.74 1.58
w® [ % L ] SoNj -0.10 -022 -1.11 0.09 —0.29
-2[ ] B8N 143 -0.25 0.09 0.81 0.26
3 1 oNi 2.89 058 —0.05 —0.29 0.21
-4t . 07y 033 -014 -014 -0.11 0.13
Y U N N 1005 0.07 0.14 -0.51 0.75 0.28
0 80 y 1°°N 180 200 L4 —046 —071 —0.48 009 —0.56
ass Number 1325 0.07 010 -031 014 -0.12
FIG. 1. Deviation of Hartree-Fock energy from experiment. 46Gd -0.90 -0.33 -041 -020 -—0.24
Negative errors denote underbinding. Note tHa@ and the second 208 -201 -017 -0.27 0.21 -0.24

order result for*®Ni are beyond the scale.
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TABLE IV. Comparison of charge radii between experiment,
the separable interaction, and a selection of Skyrme interactions.
The model-dependent experimental values are fré&j.

PHYSICAL REVIEW C 63 054309

— HF
O Experiment

N | N 1 L
1 2 3 4
qlfm ™

FIG. 3. Charge form factor if°%Pb.

Nucleus Exp. Sep. Sl SkP SLy4 Skl4
160 269 285 271 280 2.76 272 _
g 319 323 325 3.23 3.21 f:
4ca 348 354 348 352 3.49 345 ~
“8Ca 348 347 352 353 3.51 3.45
48Nj 388 377 382 3.79 3.80
56N 3.78 384 380 3.80 3.78 3.74
68Nj 3.89 394 393 3.91 3.81
78N 3.87 4.02 3.99 3.98 3.97
907Zr 427 429 431 430 4.28 4.23
1005 460 453 452 450 4.45
14gn 460 465 466 4.62 4.62 4.59
1325 466 478 474 4.73 4.70
148Gd 496 502 503 500 4.99 4.94
20%pp 550 550 557 552 5.51 5.48

> Kab|V|rs)?

ab<ep s>ep 6a+ €Ep— €~ €Eg

1
Ex(|r))= 1 (29

The perturbation corrections to the energy are seen to b&he plot shows the contribution to the total second order
rather small in all nuclei considered. This is consistent withenergy correction as a function of the single particle energy
our goal that the mean-field solution should be close to the, in 5-MeV wide bins. In all three cases particles are domi-
exact solution of the MBSE. The size of the second ordenantly excited to low-lying states above the Fermi level. This
correlation is roughly constant across the periodic table. It igesults in a ground state with occupation probabilities similar
characterized by a dimensionless strength parametde-

fined as

(ab|V|rs)(rs|V|ab)

K=

1
4 ab<ep rs>ep (Ea+ €Ep— € — ES)

(28)

which is related to thevound integral[53] and is propor- _ _ .
tional to the number of @2h states excited due to the second pleteness is seen in the difference between the results for

order perturbation.

to those that result from pairing forces. It is also a further
indication that perturbation theory makes sense for our inter-
action since it does not predict excitation of particles in the
ground state to extremely high energies.

Since the calculations were made using only a monopole
force, the correlation structure is not expected to be com-
plete. Only corrections involving simultaneolss O scatter-
ing of two particles is included. An indication of this incom-

=Z andN# Z nuclei. The second order correction{fCa is

Figure 6 shows the correlation structure from the secondnuch larger than that ifi°Ca, due to the possibility of afy,,
order correction in theN=2Z nucleus “°Ca and the nuclei
48Ca and?°%b. The contribution to the second order energyeXcites to a neutron state. This extra excitation is the labeled

is defined as a function of one of the particle states

neutron exciting to thé-,, proton state while another proton

peak in Fig. 6. As well as having large wave function over-
laps, the energy denominator in this case is smaller than in

T T T
40
Ca T cal exp cal exp
Q© Experiment oF —
| e 1p
-1 _ Ve 172
10 | O, @ 1p,, |
Is,,
| 0 dy; =?\ .
= -0 . o, 7 _
Z 2| i — —_—
5 10 > 0d,
= 2 sz | —
Z B od,, e _
= —_—
0"1/2 —
= 0d,
1071 T S0k, s i
P
(f\ i o, i
[e) 40
10" ' . ® ® Ca
0 3 4
qlfm™] -
FIG. 4. Single-particle energies fiCa compared to experiment

FIG. 2. Charge form factor iff°’Ca.

[49].

054309-7



P. STEVENSON, M. R. STRAYER, AND J. RIKOVSKA STONE PHYSICAL REVIEW &3 054309

cal exp cal exp 7 -4 | | :
oF ., 3s 2y, -
o - 255/,137/2 .. | “Ca
lf‘f,n — T e N — b 48
0}19’/“ 12y, A — — B *Ca
L i ] S 208
a3 Pb
e @ . D g ]
o 22 e == =
—10_ e 912 <2 — (=}
) 08— o - =
% 281/2 _8
E lpw 1dz/z = —
= — ?59/“: ohyin 1 e
w £ ld_w c
of — 0g;) 8
562
=201 Of,, 02, - 3
ls”_ Il'r’)m E ]
[ Oty &
208 i
® ® Pb .
-30 % N L
: - e . 5 10 15 20 25 30 35
FIG. 5. Single-particle energies iff®Pb compared to experi- _
ment[49] particle state energy [MeV]

FIG. 6. Second order ground state correlation structur®@a,

any other possible monopole excitation, which must excite Cca, and***pb.
any particle across major shells to keep all angular and isos- ) . o ,
pin quantum numbers the same. When general excitationg’herical doubly magic nuclei. It is expected that the addi-
are permitted by higher multipole forces 1,2, . . . ,this dif- tion of multipole forces W|I_I improve these res_,ults, particu-
ference between correlations =2 andN % Z nuclei will larly through the completion of the correlation structure.
be smoothed out. For this reason, the correlation energiesuch multipole forces will also presumably be important in
should not be considered too quantitatively at this stage b!ving the correct shapes of deformed nuclei, which are the
rather as an indication of the perturbative properties of theUPject of a forthcoming study, and the correct description of
interaction. excited states.

Comparing the form of our interaction to that of Skyrme’s ACKNOWLEDGMENTS
suggests other possible sources of improvement to the
model. One such may come from a better parametrization of The authors would like to acknowledge useful discussions
the spin-orbit interaction. A two-body form that fits the phi- with D. Vautherin, P.-G. Reinhard, D. M. Brink, and D. J.
losophy of the separable effective interaction has not beeRPean. This research was sponsored by the Division of
found, but may be necessary to give the correct contributiofNuclear Physics, U.S. Department of Energy under Contract
to the binding energy and provide the best isospin depenNo. DE-AC05-000R 22725 managed by UT-Battelle, LLC,
dence. It may also prove fruitful to explore a more generagnd the UK EPSRC, and by U.S. DOE Grant No. DE-FG02-
term, dependent upon the derivatives of the density, than ol#4ER40834.
single term with parametek, as is found in the Skyrme
interaction, which has two terms with parametersandt, APPENDIX: HF ENERGY AND POTENTIAL

that often carry further exchange parameterandx,. . . L . .
The interactiorV is given in Eq.(5). Its expectation value

is the contribution it makes to the total energy and is
V. CONCLUSION

We have presented a new effective nuclear interaction Epot:E RGIVAISIINE (A1)
that is designed for use in calculations that go beyond the 2 i<

mean field. The technique of using perturbation theory to If we consider just thettractive term—that is, the term
build correlations on top of the Hartree-Fock result is appli-whose parameters have the subsaaiptthen we will obtain

cable to our interaction and results in small corrections to thehe contribution from the repulsive term by simply substitut-
single-particle behavior. A monopole-monopole force alonéing the subscripa by r:

gives reasonable results for the ground state properties of

1 . N g ..
TABLE V. Spin-orbit splittings in HF calculation. For source of Ea:iwafaij;€ (ij|pPa(r)pPa(r){lij)y—1ji)}
experimental values, see text. F

1 . R R o
Levels splitting(HF) splitting (exp) + EWafaaaij; (ij|pPa(ry) pPa(ry) (tity +1 t5)
€F
160, Op(p) 4.2 6.3 1
10, 0p(n) 43 6.1 (i)~ ji)}+ 5 Waf oby
40ca, ad(p) 5.3 7.2 2
4Ca, ad(n) 5.3 6.3
20%p, 2p(n) 0.67 0.89 Xij; (ijlpPa(ry) pPa(ro)dtytoflif) — i)} (A2)
€F
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Taking the first line, the matrix element is represented in sacd spin and isospjrcoordinates,

1 - - - - - - - -
EWafa__Z JdﬁJ dr2¢i*(rl)f/’j*(rz)PBa(rl)PBa(rz)ﬁbi(rl)¢j(r2)

1| <egp
1 - - - - - - - -
—gwta [ d [ it (8] FopPF PP (0 i)

1 . R R . 1 - - . - - - - -
= EWafaf drlp'gaﬂ(rl)f dropfati(ry) - EWafaf d"lf erPp(rler)PBa(rl)pBa(rZ)pp(rz:rl)

1 N - N - - - -
_EWafaf drlf drzrPn(rl:rz)Pﬂa(rl)P'ga(rz)Pn(rZ:rl)

1 , 1
= EWafaNa_ EWafaMav (A3)

where quantities defined in Sec. Il are used. Note that integrals include sums over spinors and isospinors where appropriate,
and the coordinates include spin and isospin coordinates where appropriate. Where densities are used instead of wave
functions, the summing over isospin states has already been done and where densities do not carry isospin labels, the isoscala
density is assumed. See E@$5) and (16) for definitions.

The second term in EqA2) contains isospin-flipping operators whose action is to turn an isospin state where particle 1 is
a proton and partiel 2 a neutronpny), into |np) and vice versa. The direct contribution, in which the labels in the bra and the
ket are in the same order is zero since all proton states are orthogonal to all neutron states. The exchange term is similar to that
in Eqg. (A3) but with a different isospin combination of the density matrices,

1 - - . - - .. 1 R - - - R - .
_E\Nafaaaf drlf drzpp(rlyrz)Pﬁa(rl)Pﬁa(rZ)Pn(rZyrl)_E\Nafaaaf drlf drzpn("l,rz)PBa(rl)P’Ba(rz)Pp(rz,rl)

1 (77)
=~ 5WafaaaMy™”. (A4)

The third line of Eq.(A2) contains isospin-projection operators that have a valdé2 wheni andj are like particles and
—1/2 when they are unlike. In the direct term this gives an energy of

1 - - - - - - 1 - - - - - -
EWafabaj drlpp(rl)PBa(rl)f drzpp(rz)p'ga(rz)'l'EWafabaJ drlpn(rl)PBa(rl)J erPn(rZ)PBa(rz)

1 - - - - - - 1 - - - - - -
— SWaab [ dFapy(Fu)pPas) [ diapn(To) (7o)~ 5 Wafabs [ OFspn(Fpty) [ dapy(Fo)par)

1
= Ewaf aba

- . 121 - - . ]? - - - -
fdfpp(r)pﬁa(r)} + 5 Wafaba fdfpn(f)pﬁa(f)} _Wafabaf dflpn(rl)pﬁa(fl)f draopp(ra)pfa(ry)

1 R R R R 2
:Ewafaba fdr{Pp(r)_Pn(r)}Pﬁa(r)}
1
:Ewafaba(ANa)z- (Ab)

The exchange term gives a contribution only whemdj have the same isospin quantum number, which is just like the case
for having no isospin operator there so that the contribution is like that ifAR),

1
— 5 WafbaMs. (A6)
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The HF mean field is obtained by varying the total energyso that the contributions of the two terms in E47) involv-

with respect to the single-particle states. This gives, for théng the variation off, give a contribution to the HF mean
case of the attractive term, without the explicit isospin de-field of

pendence
5 2 2/ N2 -
S0 |2 WL LM, ~Wa( @D TAN-Ma)p®a (). (A9)
1 ofa ¢ SN, The functionN, is similar in form tof, and the functional
=5W, NZ+WafaNa——= variation proceeds in a similar manner,
2 %50 1T sk (x) P
Ly a1 M, a7
27sghx) T 2 T T egi(0) e _ f drpfa* 1(1) = (Ba=1)pP(X) (%)
* /O * /O a b
The variation of the functiori, is given by 0y (X) Oy (X)
(A10)
S5t f () }1
—= = “a(r)dr
S (x)  Sdh(x) and the contribution from the second term in E47) to the
s> mean field is
zf -op“a(r)
=—f3| dr——
Oy (X)
3p(r) WafaNa(Ba—1)pPa(x). (A11)

f drp®a=i(r)———

5y (X)
5 o ° Finally, the functional variation of the exchange matrix ele-
= f2aap"a (%) p(X), (A8)  mentM, is

M, P
5¢E§(X) 8¢t (X)

( J f f drldr2¢| (r1)¢, (r2)p BE"("l)P’Bf’(rz)flS (r)ei(ry)
i <€

=2 > Hdrl = ¢J(rz>pﬁa<r )pPa(r ) (1) il )

1| <egp

+2 > Hdrldr2¢. (rl>¢1(z>

ij<ep

( 1) - - -
Ba i(r i(r
567 (X ) pra(ra) ¢i(ri) éi(r)

=22 | drye¥(r)pPa(x)pPa(ry) dj(X) dy(T2)

J<e€p

+2 D | dragf (X)¢i(2) BapPa™HX) dp(X) pPa(r ) i(X) (T ), (A12)

|]<e,:

where use is made of the symmetry of the integral to com- The other term in EqA12) gives rise to a truly nonlocal
bine the four terms into two. The last term in E412) gives  Fock term in the mean field,
rise to a local term in the mean field of

U(X,X") dp(X) = — W,f E pPa(X) i(X)
—wafaﬁaiE [ f drp(r,x)pPa(r)p(x,r) [pPa=1(x)

<ep

X fdf¢r<F>pﬁa<F>¢b<F>. (A14)

== WafaBaGa(x)pfa (%), (A13)
This completes the non-isospin-dependent part of the at-
R tractive force, and so also the repulsive part by change of
whereG,4(x) has been defined as in EQ1). subscript. The isospin-dependent terms are obtained in an
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analogous way, except that when the variation applies to the sg 5 o R
density of a single nucleon species, the contribution to the *de”)’ =kNg—— f drp(r)V2p(r)
mean field applies only to that species. O¢pp (X) Oy (X)

For the final term in Eq(5), the so-calledlerivativeterm, R
_only the direct part of the energy is at present considered. It :kNdf dF| 6'0*”1 ]VZP(F)+kNdf de(F)
s 3¢5 (X)

1 . . . X . v2p(F)]. (A16)
Eserv=3K 2 (11[Vip(r)V3(r2)li}) {fw;(x)
€F

The first term gives a contribution to the mean field of

1 I - I . 2
=5k f drip(f) Vip(r) f diop(15)V30(72) KNaV7p(x). (AL7)
By integrating the second term by parts twice, one in fact
gets exactly the same contribution to the mean field again, so

_ E 2 that the total contribution to the mean field from the direct
= =kNj. (A15) TR o
2 term of the derivative interaction is
2kNgV2p(r). (A18)
The functional variation proceeds as The exchange part of this term is not calculated.
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