PHYSICAL REVIEW C, VOLUME 63, 054305
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We compute the magnetic quadrupole strength function in heavy spherical and deformed nuclei in proton-
neutron random-phase approximation using a separable Hamiltonian that couples magnetic and electric chan-
nels and adopting a technique that avoids the diagonalization of the eigenvalue matrix. We intend to check if
the different sensitivity of the spin dipole and orbital responses to the multipole terms of the Hamiltonian leads
to an energy separation of the two modes sufficient for the identification afvisemode. We explore also the
possibility of aK splitting induced by deformation, in analogy to the electric giant dipole resonance, also
briefly studied for the sake of completeness.
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[. INTRODUCTION of the spin strengthi23]. A quite important and promising
The massive studies of magnetic dipoM 1) transitions advance toward the understanding of the nature ofMie
have contributed to clarify the origin of quenching and frag-transitions and the identification and characterization of the
mentation of the spin strength in nucldi], a longstanding twist mode has been made recently by von Neumann-Cosel
problem that seems to have made important advances in ret al. [33]. In a high-resolution electron scattering experi-
cent yeard2—4]. Moreover, they have led to the detection ment, they have determined ti2 strength distribution in
and the subsequent characterization of the orbital scisso¥Ca and®®Zr and analyzed the spectra by means of calcu-
mode[5-7]. lations carried out in second RPA that accounts for the cou-
The knowledge about spin and orbital motion in nucleipling with the 2p-2h space. They found that the quenching
can be further enriched by the study of magnetic quadrupolef the M2 spin-dipole strength is comparable to thel
(M2) transitions. Indeed, the spin component of M@  case. Moreover, they showed that the orbital contribution is
operator induces relative displacements between spin-up ar@gppreciable and crucial for the reproduction of the experi-
spin-down nucleons giving rise to spin-dipole excitations. Itsmental data. This would therefore be a strong indirect evi-
orbital part correlates the relative displacement of the prodence of the existence of thwist mode.
tons with their magnetic orbits generating the so catledt All experimental and theoretical studies were focused on
mode. Such a mode, predicted for spherical nuclei in a fluidheavy spherical nuclei. Th&2 transitions in heavy de-
dynamic model8,9], can be viewed as arising from a mutual formed nuclei have attracted little attention. To our knowl-
rotation among different layers of the nuclear fluid aroundedge, this subject was touched only[BO] and confined to
the z axis by an angle proportional to tlxecoordinate. Since low-lying M2 spectra. On the other hand, there are good
no restoring force would be generated by such a rotation imeasons to stud2 transitions in deformed nuclei. Since
an ideal fluid, the observation of such a mode would indicatehe possibility of detecting the twist mode relies on the sepa-
that the nucleus behaves as an elastic medium. ration of the orbital from the spin-dipole excitations, it is of
Experimentally, electron scattering is specially suitableinterest to check if the, probably selective, fragmentation of
for a clean and complete study &2 transitions. These the orbital and the spiM2 strengths induced by deforma-
experiments, however, do not distinguish between orbitation favors such a splitting. In a strict sense, axial deformed
and spin motion. One has, therefore, to rely also on theoretauclei should be ideal systems for the occurrence of the or-
ical analyses. bital twistmode. In fact, they provide naturally their symme-
The few experimental data available until recerftlp—  try axis as rotational axis for such a motion.
14] showed that thif 2 spin strength is fragmented and even  There is another aspect that linkk2 transitions to defor-
more quenched than in tHd1 case. Theoretical investiga- mation. Given their analogy to the electric dipole excitations,
tions were carried out in several approachE#s-32. Some  we might expect a splitting of thm2 strength induced by
of them were devoted to the study of theist mode[22—  deformation similar to the one observed for th& giant
24,29. It was found that for a correct description of tNE2 resonanc¢34.
spectra it is necessary to go beyond the random-phase ap- In this paper we carry out a study of tM2 transitions by
proximation (RPA) by coupling one-particle—one-hole adopting a strength-function technique developed for proton-
(1p-1h) to two-particle—two-hole (@-2h) configurations. neutron quasiparticle RPA in the signature formalig35].
Such a coupling, while leaving the orbital strength distribu-This technique avoids lengthy diagonalizations and therefore
tion almost unchanged, induces a pronounced fragmentaticallows to cover the full-energy range of thé2 transitions.
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We adopt a two-body potential composed of dipole and spinwWhen a single field is considered as in the schematic case,
dipole separable pieces. This choice enables us to carry the RPA equations are turned into dispersion equations by a
unified study of bothE1l andM2 spectra and to point out straightforward proceduresee, for instancg37]). Following
possible analogies between the two modes. In the case ah analogous procedure also for our more general Hamil-
deformed nuclei it allows to study possible interferences betonian we get a homogeneous system of four equations in the
tween electric and magnetic channels. Due to the simplenknownsR;,
structure of the interaction, we are able to test the sensitivity

of spin dipole and orbitaM 2 spectra to the strength of the m T
interaction. This latter issue is quite relevant to the possible|” MM 2,
identification of thetwist mode, which relies on the separa-

tion between the two different excitation modes. We do not )
include explicitly the 2-2h configurations. We account for EmFMmRLT
the spreading of the strength by smoothing the transition

Ri+ém FWM Ry + Fg\?,)ERS"' fEF(h?,)Eth: 0,

1
F{ —m) Ry+ &eF(PeRs+ F{PeR,=0,

lines through the use of a Lorentzian weight in the strength 1
function. F{PeR1+ EmF IRy + F(En')E_Z_XE Ra+ &eF LR, =0,
Il. BRIEF OUTLINE OF THE PROCEDURE ® ®) ®) ®) 1
FPR, +FPLR, + écFPLR; + | FPL— =—|R,=0.
We give a brief outline of the procedure developed in Ref. éwFmeR+ FueRot éeFeERs+| FEE 2XE) 4

[35] to derive the strength function for the simple case of one (2.9
electric and one magnetic multipole fields. In this case, the he ab . h
Hamiltonian adopted has the structure In the above equations we have put

H=Hgy+ Vpairt Ve+ Vi 2.1) ; _ ; X
. . . . . M Ky : XE
Hgpis a deformed axially symmetric one-body Hamiltonian,
Vpair the monopole pairing interactioVg andVy, are the and
electric multipole and magnetic spin-multipole separable
two-body potentials of the form (site)Trdi
Fid=> ————=, X=M,E, (2.6
XE t + xeP) t T ke (eite o
Ve=—S[M{RM{+MEME] - —=—[M{) M) e
+ MM FO= S & 2.7
Ao T ' i,ke‘r(si-i-sk)z—wz
KM a(mt a(n) (P 1 (p) Kmp) (Nt <(p) where
VM:_T[S)\’,ua)\’p,dl—sl)\’,ug)\’,u]_ 2 [S)\’ua)\’u
Fomi DG MK (Uiv i+ Ugo), 2.8
+sPSO . (2.2 Pl (HIMy L[k} (Uit Uyw;) (2.9
- . )
The multipole and spin-multipole fields!{?) and S\, (r Fa=1" WIS LK) (U= uw)).

=n,p) have the form o ) ) )
Nontrivial solutions of the equations system are obtained

M) =rry, (1), from the request that the determinant of the corresponding
” K matrix vanishes. One may notice that the electric dipole or
S({L=f'[0®Y|(?)]xﬂ- 2.3 magnetic quadrupole channels are mutually coupled. Be-

cause of the proton-neutron formalism, the matrix so ob-
The strength constants are related to the isoscalar and isoved@in€d is not symmetric. A simple trick, however, has en-

tor corresponding strengths by abled us to turn this matrix into a new oleof symmetric
form, so as to enforce the strength function technigi.
xe=xa[01+ x\[1], X(Enp):Xx[O]_X)\[l]a Dealing with axially symmetric nuclei at low rotational

frequencies, we have assumed the strong-coupling limit to be
k= Ki[0]+ k[ 1], K(h?p): ki [0]— ki [1]. (2.4 valid and adopted the total wave function

Multipole and spin-multipole fields of good signature were - _ 21+1
constructed, so as to allow for the extension of the technique [vKTIM) = 2

. . . : 167°(1+ dko)
to fast rotating nuclei, and, accordingly, the Goodman basis
[36] was adopted. Pairing was treated in BCS approximation. +(—1)'Dy_(OR| P )], (2.9
The RPA formalism was developed so as to attain the sepa-
ration of the spurious state by setting their energies to zeravhere

[D\k(0)| P )
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@)= Q12210) =3 (0B8]~ eliBbT1I0) f “dxpa(=1, limps(0=809. (216

(2.10
) L . It is usually taken of Gaussian or Lorentzian form. The two
is the one-phonon intrinsic state corresponding to #e  ,ions yield similar resulti38]. Consistently with previous

RPA root. ForK =07, the intrinsic state is an eigenfunction |4y [38—40, we chose a function of the Lorentzian form
of the signature operatd®, with eigenvaluer=(—)'. The
total wave function then becomes A 1
PAX)=5— ——72 (2.17
m w T 2 A
[vK™=0"I=M=0)=0")._ [0). (2.1 Tt

2

For such &, only angular momentgfulfilling the condition . i . ]
r=(—)' are allowed. This implies that signature and paritythat has only two simple poles. By virtue of this ch0|ce, the
coincide or are opposite according to whether the transitio$'€ngth function came out to be the result of the integral of

is electric or magnetic, respectively. In our case, the negativé functiqnf(z) around_the po!ez: w,, bei_n_gwy_the RPA
signatureK™=0" states (=1,3,5...) describe thek™  roots. Since the function fulfills the condition lim...f(2)

—0" branch of the gianE1 resonancéproton-neutron os- =0, We could substitute the integral around the RPA poles
cillation along the axial symmetry ajisThe positive signa- With the sum of integrals around all other poles taken with
ture K™=0" bands (=0,2,4...) contribute to thek™  OPPOsite sign. The final outcormeee Ref[35] for detail9

=0~ branch of the gianM2 resonance and describe spin- Was
dipole oscillations along the symmetry axis or the orbital N
twist mode. In a strict sense, the geometrical picture under- S(w: XN, K™= — Elmde(B(Z))
lying the twist mode applies only to th€™=0" mode. Our Y T de(D(z))

aim was to compute the strength function zmwtial2
A 1
S(@; XN, K™~ Sy (XN, K™) 52 (P2 X
! [(sit8)— 0]+ 5
= B,(X\ K™ pr(0—w,), (2.12
1
wherep, (o —w,) is a weight for the reduced probability - Azl (2.19

2
B,(X\,K™)=B(X\:gr— vK™) Weite)+ol+ 7
) In the above formulag; are the quasiparticle energies and

- 1+—5K05’\'|<¢VWK“|M(X)"“:K)|O>| pi);—are the single-particle matrix elements of ##& or M2
(2.13 operators, the term c(é](z)) denqtes the deteArminant of the

symmetrized RPA secular matrR, while detB(z)) is the
of the transition from the groundgf) to an excited state determinant of a matri(z) that can be obtained by simply

with quantum numberdvK7l}. In the long wavelength . A . .
limit, the multipole operators, of electricX& E) or magnetic addmg_ to th? RPA matrlp(z) afirst row and cp_lumn with
(X=M) type, are terms involving the electric or magnetic transition operator.
' For the electric transitions we havB{;=0)
A

M(Exp) =2, €SIy, (1), (2.14 Boi=FIM+ EnFPh . Bar=éuFin+ 7, (2.19
=1 .
A By=FUL+ £ FPL | Bgy= e FUL+ FPL .
MN . ) 41=JEETSESEE Po1TSEYEETYEE
MMAp) =N+ D 2 1} 1(9&3”(')
=1 For the magnetic ones we obtaiB;=0)
. 4
X[Ui®Yx—l(ri)]Au+gl(,}\e)ff“)m Bor=Fu+ éuFim: Ba=émFbut Fibu ’(2 20
X[Iimx_l(ﬂﬂm), (2.19 Bu=Fi et éeFile, Bor=E&e et A

. T)
whereel}(i) is the nucleon effective charge of multipolarity The quanuuesf(x’Y are

N, uy is the nuclear magnetog$d; (i) andg(Y(i) are the (e1+ e pE
effective spin and orbital gyromagnetic ratios, respectively. A= w X=M.E, (2.21)
The weighting factop ,(w— w,) fulfills the conditions T iker (gt 8% 02

054305-3



J. KVASIL et al. PHYSICAL REVIEW C 63 054305

E IIl. NUMERICAL CALCULATIONS AND RESULTS

M
wp; i

A _— 2 Kk . .
M.E ) .
BT, (8i+8k)2—w2 A. Details of the calculation

We adopted a Nilsson one-body potential with standard
parameter$41] and took into account all major shells up to
oP;ific Nmax=7. This space is adequate for our purposes. As we
shall see, th&1 andM 2 energy-weighted sum rules consid-
ered in the paper are satisfied. We included a proton-proton
and neutron-neutron pairing interaction with the pairing con-
They can be derived from the corresponding expressionstants fixed so as to reproduce the mass differences. We then
(2.6) and (2.7) by replacing one of the matrix elemerftlf% added a two-body separable interaction of the fa@r?)
given by Eqgs(2.8) with the corresponding matrix elements With electric dipole and magnetic spin-dipole fields
pix; of the electric K=E) and magnetic X=M) multipole
operators given by Eq$2.15).

The first term on the right-hand side of E&.18 results () -
from integrating along a path that encloses the pateso i, =Lo@Ya(r) ]y,
+iA/2 of the Lorentzian function. The second one is ob-
tained from integrating along a path enclosing the pales

- L S S
EM™. '
iker (8i+8,)°— w?

M{)=rY (1),

We do not include a spin-octupole interaction. Such a term
should be present in principle. Indeed, the structure of the

=*(g;+eg;) for all possible quasiparticle indexég. The lectromaanetic  multinole  moment ‘ in
first piece accounts for the interaction while the second getg ectromagnetic - multipole - moments - suggests - a - spin-
multipole field of the form

the contribution coming from the unperturbed single-particle
spectrumNo RPA roots appear in Eqg. (2.18Jhis is a cru-
cial point. It implies, in fact, that the strength function

S(w;X\,K™) can be determinesvithout solving the RPA which, for A =2, yields in general a spin-dipole and a spin-

e|genyalue equations. Qne has to know only th? quas.'part'dgctupole term. Having adopted a Nilsson one-body potential,
energiese; and the matrix elements of the multipole fields.

SR however, we took consistently a field with no radial nodes
Once we have evaluated the strength function, it is imme-
. . and put
diate to compute the non-energy- and energy-weighted sum

of the E1 or the M2 strengths by simply computing the fo(r)y=r>. (3.2
integral

SYELAY(N(NIW] (3.2

Under this zero-node assumption, the spin-octupole compo-
o nent vanishes. It is also to be noticed that the spin-octupole
&(XX,K“):f o S(w" ;XN KM do' component disappears also from & operator in the long
0 wavelength limit considered here. As we shall argue in the
concluding remarks(Sec. 1), the inclusion of a spin-
:E o"B,(X\,K™) (n=0,1). (2.22 octupole interaction would have been irrelevant for our pur-
v poses in any case.
The chosen interaction couples magnetic and electric
For the energy-weighted sum the values obtained from thehannels foK™=0",r=—1 andK"=1",r==*1. The isos-
above equation can be compared with the correspondingalar constanty;[0] of the dipole-dipole interaction was

ones derived from the double commutator, fixed by the request of getting a vanishing value for the
lowest RPA root so as to decouple the spurious translational

1 oscillation mode from the physical intrinsic states. We have
S, (XA, K™) = =(0|[ M T(X)\,K),[H,M(X)\,K)]]IO). in_deed _checked that the strength of the cent_er-of-mass coor-
2 dinate is concentrated at zero energy. The isovector dipole
(2.23 constanty4[1] was chosen so as to reproduce as close as
possible the energies of tli&l peaks. The above procedure
One can also easily compute the photoabsorption cross se¥ielded X1[0_]2= 0.049 Mer_m*24 and  x[1]=
tion. For theE1+ M2 transitions we have S|mp|y —0.085 MeV fm “ for the Spherlcall 4Sm In the deformed
1%4Sm we gotK-dependent constanig,x, hamely, x;14 0]
, =0.039 MeVim 2 and y;d1]=—0.071 MeVfm 2 for
32m°a 3 KT™=0" 10]=0.047 MeVifm 2  and 11]=
- . 3 . , X1 X1
ox(@)= 9¢?2 wS(0;ELK)+ 100%c)2 Sl@;M2K) —0.10 MeV fm 2 for K"=1". The isovector constants can
be compared with the values deduced from the formula de-
=0.40230S(w;E1K)+0.3428 10 8w3S(w; M2 K), rived in schematic modelg}2]

where oy (w) is i2n fm:, S(w;lEl,K) in efm?MeV ™! and ad1]= V1 (1-35)=472A" 51— 25) MeVim 2,
S(w;M2K) in uy fm*MeV ™1 A(r?)
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VvV

il 1]= ——(1+28)=472A"5%(1+ 26) MeVfm 2,
Alr?)
(3.3

having putV,;=130 MeV. In the spherical cas&€0) our
values are slightly smaller than the ones deduced from these
formulas. In the deformed case, dr=0 strength is close to
the value deduced from the above formula, while ie 1
constant is somewhat weaker.

The available experimental data do not allow to fix the
strength constants of the spin-dipole interaction. We have
therefore adopted the formula

ko=Ki\[0]= K1 [1] Co<r2> A (3.4)
borrowed from Ref[16] apart from the factoc, that we
included in order to allow for variations in the strength con- F
stant so as to study the sensitivity of thi2 response to the ok i AP IPURY POPRPRT PR o
spin-dipole interaction. As indicated in the above equation, 5> 75 10125 15 175 20 2E2.(%evz)5
we have assumed equal values for isoscalar and isovector
strengths. This is a common practice. Some authors, how- FIG. 1. Theoretical versus experimenfal cross sections in
ever, have assumed a vanishing, or negligible, isoscalar cort*’Sm (upper panéland *>*Sm (bottom). The computations were
stant[18]. The two options yield results that are similar and, made for two Lorentzian widths.
therefore, equivalent for our purposes.

In computing theE1 transition strength we chose for the tirely due to theK™=0" excitations and the second solely

effective charges the values due to theK™=1" transitions, we can partly improve the
agreement with experiments by adopting a larger Lorentzian
1 N—-Z width for computing th&K™=1" strength function. By doing
Cef=— E( 73T A )e so0, we implicitly assume that the coupling with the-2h

configurations induces a larger spreading of Heé=1"
that accounts for the recoil effef39]. For 5Sm the above strength. The resulting profile of the cross section is indeed
formula yieldse(7=0.59% ande(};= —0.403%. For theM2  closer to the experimental orfapper panel of Fig. 2 This
transitons we took the gyromagnetic factorg{?, reflects the fact that, because of the larger spreading of the
=0.79ee andg{2=0(? oo ’ K7™=1" strength, the overlap between tK€=1" andK~

our calculations have shown that, even in deformed nu=0 PUmMps has been enhancgubttom panel of Fig. P

clei, theE1 strength function is completely unaffected by the EVEN With these new widths, however, the computed cross
spin-dipole interaction and is sensitive solely to the dipole-S€Ction is smaller atlow and larger at high energy, though to
dipole interaction that pushed the unperturbed resonance uf-'€SS extent. _ _

ward in energy by about 7 MeV. Thkl2 transitions are A key for a partial removal of the discrepancy may be
insensitive to the dipole-dipole interaction and respond onlyfound by observing that the fragmentation of &e strength

to the spin-dipole interaction. We have therefore studied” deformed nuclei is due not so much to the coupling with
the 2p-2h configurations, but is the result of the dramatic

:ggﬁ;aetsly electric dipole and magnetic quadrupole reincrease of the density of the single-particle levels. How such
a large density of states enhances the fragmentation of the
strength can be inferred from the analysis of the energy-
weighted sum ruléTable ). The computed quantities can be
We computed théE1l photoabsorption cross section for compared with the values obtained from the Thomas-Reich-
the sphericat*‘sm and the deformet*Sm nuclei and com- Kuhn sum rule

pared with experimentg4]. In the sphericaf*‘Sm we got

B. E1 giant resonance

2
one broad peak that follows closely the experimental data for S, (ELK™=0")= ES (ELK™=1") :i h_ N_Zez
a Lorentzian widthA=2 MeV (top panel of Fig. 1 In the v 271 8 m A
deformed '*Sm, the resonance is split into two bumps as (3.5

requested by the experimenisottom panel of Fig. 1 For

the A=2 MeV, the two peaks are smooth and reach theithat accounts only for the one-body Hamiltonian. In the
maxima at the observed energies. On the other hand, thepherical'*Sm the sum is slightly lower than the sum-rule
calculation underestimates the experimental low-lying peakalue. In the deformed®*Sm, the energy-weighted sum
and overestimates the high-lying one. Since the first is enef the E1 strengths computed up to 30 MeV, is
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< % 30F o k.= 0.0 MeV fm™
N2 = [
— L 154
o N
é 2 50k Sm
G
N 10}
g
wn

o

30F (b) K,=—3.0x107 MeV fm™

-~ 0

>

§ 7 total

N — K=0, A=2.0 MeV

o . K=1,A=3.0 MeV N

T 5 C

\E/ 4 O-||||I||||I||||I||||I||||I||||I||||I||||||||
3 30F (o) K,=—9.8x107 MeV frn2
) :

— tot.

rhrarir Ll X
5 75 10 12.5 15 175 20 22.5 25
E (MeV)

FIG. 2. Theoretical and experimenfal cross sections if**Sm
(upper pangland the unfolding of the corresponding compule 0o 2. 5 5 7 5 10 12 5 15 17 5 20
strength function into th&™=0" andK™=1" contributions(bot- E (MeV)
tom). Different widths were used for the tw™ transitions.

FIG. 3. The orbital, spin and total2 strength functions in

5o o . 1545m computed for increasing values of the spin-dipole interaction.
S,(E1)=518e"fm-MeV and increases to S;(E1l)

=539 e? fm? Mev if computed up 50 Mev. This latter num- turbed strength function exhibits one peak that results from
ber is close to the sum-rule value. Apparently, deformatiorthe constructive interference between the orbital and the
induces a strong fragmentation of the strength. More in despin-dipole transition amplitude$Fig. 3(@]. The corre-
tail, the computedK”=0" sum is appreciably smaller than sponding strengths are almost equally fragmented and spread
the corresponding sum-rule value, while ti€=1" sumis over the same energy range around a common centroid.
larger. It seems, therefore, that we need a modest redistrib®@nly, the spin strength is larger and dominant at high energy.
tion of the strength among the single-particle levels that alAs we turn on the interaction, the orbital spectrum is practi-
lows for the transfer of a small part of the strength from thecally unaffected. The spin-dipole strength, instead, gets more
KT™=0" to theK”=1" transition lines. fragmented and quenched and is shifted at higher energy
We must also point out that our calculation does not ac{Fig. 3(b)]. When the coupling constant of the interaction
count for contributions coming from exchange mixtures ofreaches the value normally adopted in literat{ité] and
the two-body interaction, so that the comparison with theobtained from Eq(3.4) for c,=1, theM 2 strength function
total photoabsorption cross section is not completely approsplits into two separate peaks, one at low energy around 7.5
priate specially at high energy. MeV and another at high energy with a broad maximum
extending from 15 to 18 MeVFig. 3(c)]. The first is almost
entirely of orbital nature, the second is utterly due to spin-
dipole excitations.
1. Interplay between orbital and spin-dipole transitions The complete overlap between orbital and spin-dipole
strength in the unperturbed case proves that the splitting has
little to do with deformation. It is induced solely by the spin-
dipole interaction. Indeed, also in the spheri¢4Sm (Figs.
4) we get overlapping orbital and spin-dipole spectra in the
absence of interaction and an increasing splitting between
the two as we increase the strength of the interaction. Defor-

C. M2 transitions

The sensitivity of theM2 spectrum to the spin-dipole
interaction is illustrated in Figs. 3 fof®Sm. The unper-

TABLE |. Energy-weighted sums of thEl reduced strengths.
The corresponding sum rule values obtained from Bdp) are in

parentheses. mation has the effect only of inducing more fragmentation.
145 1545m In fact the peaks are broad in the defornfé_ﬂBm and much
sharper in the sphericaf“sm. In both nuclei, the interaction
S,(E1,K=0)(e?fm? MeV) 172 (175 153(183 does not affect the orbital strength distribution and has a
Si(E1K=1) (e?fm?MeV) 344(350 386 (367 severe quenching effect on the spin-dipole transitions.
S{P9(E1) (e? fm2 MeV) 516 (525 539 (550) The results obtained are compatible with the available ex-

perimental data. We computed th2 strength function in
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k,= 0.0 MeV fm™

144
Sm

30F (o) — A=0.5 MeV

& €XP. 9OZ r

N

(@]
T

NA

T T

S(M2) (1r? b/MeV)
lal T

Ol i b L T

14F — total k,=—0.24 MeV fm™
[ ... spin i

30}@ K(,——1‘1x10 MeV fm™

S(M2) (ua’ b/MeV)

T 'T..:..I —||.|.|'||||| ...... PN SR AN SR i
07255 75 10 125 15 17.5 20 0 25 5 7.5 1012.51517.52022.5 25

FIG. 4. The same as in Fig. 3 but féf‘Sm.

FIG. 5. Theoretical and experimentis2 strength function in
%07y (top) and its spin and orbital conteftvottom).

9zr for two values of the spin-dipole strength. In both cases,
we reproduced fairly well the electron scattering dgg8]
(top panel of Figs. 5 and)6Maybe the larger coupling con-

of Fig. 5. The observed low-lyingM 2 transitions should
therefore be viewed as a mere manifestation of the orbital 4
twist mode. In the second case instead, the spin contribution,
though smaller than the orbital one, is apprecialbettom

panel of Fig. 6 and contaminateghe twist character of the 0

_ _ > 40 — A=0.5 MeV
stant seems to do better, at least in the higher energy partof 2 "'t 9OZ
the experimental spectrum. In our opinion, however, the o120 r
comparison does not allow a clear-cut discrimination be- “$ 1O:_
tween the two choices. On the other hand, using a larger or ~r
smaller constant is not a neutral choice. In the first case, the g 8fF
spin contribution to the strength is negligiblleottom panel w 6:—

M2 peak. This second spectrum would be more consistent %14-_ k,=—0.1 MeV fm™? i __ total
with the findings of the analysis carried out in REB3], 3 a ] .. spin
where different one-body and two-body potentials were stz
adopted. S0k
Our calculation predicts strong spin-dipole transitions at ~ E
higher energies packed around some high peaks. Experimen- = 8:‘
tal information on these excitations would probably enable Y sk
us to fix the spin-dipole strength constant and therefore to .
make a more reliable assessment on the exact nature of the 4
observed low-lyingi2 peaks. The analysis of the available oL
experimental data carried out here allows to state that, for OE ........

any choice of the spin-dipole constant, the orbital motion ! :

gives a large contribution to the observed low-lyiivy2 07255 7510125 15 17 520E2(%/|S\/2)5
strength distribution and plays a primary role in shaping the

M2 spectrum and in determining the magnitude of the FIG. 6. The same as in Fig. 5 but for a smaller spin-dipole
strength. We therefore fully support the findings of R88].  coupling constant.
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= . Accounting for the fact that the energy change induced by
3 | .1 is negligible compared téd w, we can make the same
:117‘55 simplifying assumption also for the oth&r transitions ob-
SN taining
g 12,5
& 10 ) , w2 ,
7.5¢ B(M2gr—K7=2")(r{ oc;(r ),
5F L
2.5¢
oE w? o’
B(M2,gr—>K”=1‘)oc<22>+<ri>oc(—2+—2)<r2>z<r2>.
20p w, o
17.5E (3.8
15E
125k According to the equations written above, tie=0 and the
10F K=2 M2 components, in perfect analogy to tke=0 and
Ty the K=1 E1 operators, excitep-h states aroundiw,
< =hw(1—2/35) andhw, =hw(1+1/35), respectively. The
: K™=0" and theK™=2" M2 excitations are therefore the
analog of theK=0 and theK=1 E1 modes. TheM2 op-

25 e 75 20 erator, however, through tHé=1 component, excites other
E (Mev) levels around the energyw. These levels fall between the
K™=0" and theK™=2" peaks and therefore tend to fill the
gap between them. This heuristic procedure yield for the
centroids of the differentk transitions the values€,-
=6.3 MeV, E;-=7.6 MeV, andE,-=8.3 MeV. They are
close to the energies obtained in the full calculations. We
The effects of deformation become manifest if we carrymay notice an appreciable discrepancy only for thé
out a fine-tuned analysis of thé2 spectrum in*>*Sm. Since =2~ case. On the whole, the agreement is quite satisfactory,
the results are similar for a wide range of values of the spingiven the rough nature of the schematic estimate.
dipole constant, we present only those obtained by adopting Mainly because of th&™=1" intruders, the splitting of
the standard one. In the low-lying bump one may noticethe low-lying, mainly orbital,M2 resonance is not as pro-
three distinct peaks falling around the energy centréfiddg.  nounced as in thE1 giant resonance. Nonetheless, the split-
7). These are almost completely split for the Lorentzianting should be observed in high-resolutios ') scattering
width A=0.2 MeV (top panel of Fig. Y. The nature of these experiments. In such a case, in a strict sense, we would be
peaks is easily understood once we unfold the bump into itable to identify the twist mode as the low-lying™=0"
K components. Th&™=0" strength is concentrated mostly transition lines enveloped into the lowest peak and, more-
in the lowest energy peak &,-=5.5 MeV, theK™=1" over, to distinguish this from the othé&t modes. All these
transitions generate the middle peakEt-=7.5 and the excitations, however, have alike properties. For instance all
K7™=2" ones the upper peak B,-=9.5(Fig. 7). This fine-  of them are sensitive only to the one-body potential. We,
tuned splitting of theM 2 resonance reflects the close corre-therefore, prefer to consider all thr&" peaks on the same
spondence between electric dipole and magnetic quadrupofeoting. In the most pessimistic hypothesis of insufficient
transitions. Indeed, in the unperturbed case we have schexperimental resolution, the splitting should get manifest in-
matically directly as a broadening of the resonance with respect to the
spherical case. This would be the analog of the broadening of
2 the E2 giant resonance in deformed nudléB].
B(M2,gr—>K"=0)oc<0|<2 z(i)IZ(i)> |0) No K splitting is obtained in the region of the spin exci-
! tations. We observe, in fact, a large overlap between the
energy domains of the differerd transitions. Apparently,
=2 (aA|z?|aA)A?, (3.6)  theK regularities we would have expected on the ground of
an the schematic model are wiped out by the large fragmenta-
tion of the strength induced by the high density of the single-
where a stand for all required quantum numbers. Singe particle states. Also the use of the same coupling constant for
does not yield any energy change, for our heuristic argumerdll K channels, at variance with the case of thgé giant

we can replace\? with a mean value\2. We then get resonance, contributes to destroy these regularities.

FIG. 7. The unfolding of the RPAM2 strength function in
154Sm into itsk™ components.

2. Splitting of the M2 strength in deformed nuclei

3. Running sums and sum rule analysis

2
B(M2gr—K™=0")ox(z%)o w—2<r2>. (3.7 The global properties of thigl 2 transitions can be studied
Wy efficiently by computing the running sum of the correspond-
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S 200 MeV fm= TABLE II. Nonenergy- and energy-weighted sums of i
“g175F T reduced strengths. In parentheses the orbital energy-weighted sum
~1s0f — tote! rule values obtained from E¢3.11).

3\2:125; i 90zr 1445m 1545m
Pr00k T S eees -
75 - SP(M2) (u2b) 14.7 40.8 46.9
sof S(M2) (u2b) 30.3 57.5 61.9
i SHeY(M2) (u?b) 47.7 103.6 118.5
25 SD(M2) (u2b MeV) 142(139  349(350  425(428
0 i e S(M2) (uib MeV) 487 868 913
175F K=79.8x107 MeV fm™ 184G 1 S{9(M2)(u2b MeV) 651 1251 1413
150; — total
1250 77 P A was expected since in heavier nuclei higher angular mo-
100F menta are involved. It confirms earlier suggestif®3] that
75k the heavier the nucleus the easier it should be to identify the
N twist mode. No appreciable differences are noticeable in go-
E S ing from the spherical*‘Sm to the deformed>*Sm.
25t 2 The energy-weighted sums can be compared with the cor-
0(;' - -5'-""'-10' B T T responding sum-rule values obtained by computing the
E (MeV) double commutator of Eq2.23 for the M2 operator. We

will do this for the orbital motion that is more interesting for
FIG. 8. The orbital, spin and total nonenergy-weighted runningour purposes. The calculation yields for the differintran-
sum of theM 2 reduced strength if>*Sm in the absencétop) and  sijtions
in the presencébottom) of the spin-dipole interaction.

2 z

ing reduced strengths. This can be extracted from the S (M2K=0)= S ﬁ_<o| > 12(k)|0),
strength function through the use of the formula 2m m =
SOM2K)= | o' S0 :M2K)d '—ﬁ "B (M2K 5 12w a2

n (M2,K)= . ¢ (0" ;M2K)do'= 2, @) A M2K). Sl(MZ’K:l):EHth:l [312(k) +12(K)]|0),

(3.9

The plot in Fig. 8 for'®*Sm shows that, in the unperturbed 72z ) 5
case, orbital and spin strengths grow almost together up to  Si(M2K=2)=== H<O|k21 [21%(k) —315(k)][0).
the saturation point of the orbital strength. From this point (3.10

on, only the spin strength keeps growing smoothly until it

reaches the plateau around 1617 MeV. The spin-dipole runcghirary to theE1 energy weighted sum rule that is inde-
ning sum is larger than the orbital one at any energy. In theyongent of deformatiofEq. (3.5)], theM2 sum isK depen-
presence of the interaction, the orbital running sum remainggnt |t is easy to check that the three sums converge to a
unchanged. The spin sum, instead, increases slowly up t0 &mmaon expression in the spherical limit. It is easy to check

small value in the domain of the orbital transitions and thenas well that the total sum rule has the same form for both
raises rapidly to a saturation value that is only slightly larger,

X ) ; ?pherical and deformed nuclei

than the corresponding orbital sum. The quenching effect o

the interaction on the spin-dipole transitions is thereby 2 z

clearly proven. The same trend is observed in the spherical Sl(M2)=E ﬁ_<o|2 12(k)|0). (3.1

144Sm. Only the rising of both strengths is sharper. Qualita- 67 m' &)

tively similar results are obtained for the energy-weighted

running sum. Only, the saturation value of the spin sum isA rather detailed comparison between the energy-weighted

much higher because of the energy weight that privileges theums and the corresponding sum-rule values is presented in

spin excitations falling at higher energies. Table I for 1*Sm. One may observe from this and Table II
The asymptotic values of the running sums coincide withthat the computed orbital 2 strengths fully satisfy the sum

the total nonenergy- and energy-weighted sums. These arale in both spherical and deformed nuclei. Concerning the

shown in Table Il for the spherica®2r and *Sm and the deformed®“Sm (Table Ill), the orbital sum rule is satisfied

deformed'>Sm. The summed strengths grow as we movefor eachK. Consistent with Eqs(3.10, the sum changes

from %%Zr to the heavier*’sSm and?®*Sm. This is especially appreciably withK. By contrary the spin-dipole sums are the

true for the orbital transitions. The orbital strength is aboutsame for alK. This was also expected since, for instance, the

30% of the total in®%Zr and about 40% in Sm isotopes. The contribution to the spin-dipole sum rule coming from the

increasing importance of the orbital motion with increasingkinetic energy is
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TABLE lll. Nonenergy- and energy-weighted sums of & reduced strength¥‘Sm for differentk
quantum numbers. The orbital energy-weighted sum rule values obtained froit8E@sare in parentheses.

K7™=0" K7=1" K7=2" Sum overK’s
sP(M2) (u2b) 7.7 19.1 20.1 46.9
S(M2) (42b) 12.8 24.9 24.2 61.9
ng)(MZ) (Mﬁb) 22.7 47.8 48.1 118.5
S(M2) (u2b MeV) 55.0(56.4) 163.4(166.0 206.3(206.1) 424.7428.4
S{(M2) (u2b MeV) 187.3 364.3 361.1 912.7
S{°9(M2) (uib MeV) 253.0 557.8 602.0 1413.0

5 #2 transitions in the same energy domain and, therefore, should
5(1”)(M2,K”=07)=8— —(95Z+9iN)  (3.12  give useful information on the spin-dipole coupling constant.

m m . L

Such a constant would be completely determined if the ex-

periments could cover the high-energy range so as to allow
a thorough comparative analysis of thNE2 spectrum.
Deformation does not play a major role in the interplay
between orbital and spin motion. On the other hand, it in-
duces &K splitting of the orbitalM2 strength analogous to
IV. CONCLUSIONS the one observed in thel giant resonance. The separation

Our calculation shows that the interference between diPetween the peaks is smaller than in tG& resonance
pole and spin-dipole channels induced by deformation ignainly because of thatrusion of the K”=1" component,
negligible. E1 andM2 strength functions can therefore be Which does not have an electric counterpart, between the
computed separately using dipole-dipole and spin-dipole in: =0 i”dK_ =2 peawks, tiorre_qundmg respectlv_ely, to
teractions, respectively. As regards thE2 transitions, the theE1l K"=0" and theK"=1 excitations. Such as_pht,tlng
spin-dipole response is very sensitive to the interaction. ThiSS,hO“Id.be none;heless observable in high-resolute’]
by contrary, does not affect the orbital excitations, Which’scatterlng experiments.
beyond any underlying geometrical picture, represent a re- The main conclus_,lons _drawn on the ground of the present
markable example of collisionless mode in nuclei. Becaus&esults should remain valid even if we ext_end the calculation
of the different sensitivity of the two modes to the interac-SCheme so as to allow for the coupling with the-2h con-

tion, the shape of the resulting12 spectrum depends figurations. The explicit inclusion of these configurations,
strongly on its intensity. Independently of deformation, thewhile leaving the orbitaM?2 strength distribution basically

orbital and spin-dipole strengths overlap or get split accordynChang‘?dzﬂ' ShQUId havehthe ef:]ect of quelvching and
ing that the coupling constant of the spin-dipole interaction isfragme?]tlngft e spin strength. Weﬁ ave actua 3(] acc?]unrt]ed
weaker than or comparable to the value normally adopted if°" SUCh a fragmentation in an effective way through the
literature. In the latter case the orbitsl2 mode would be W'dth. entering into the Lorentzian weight of the sirength
almost completely separated and would be easily identifieof.un\;:\;'on' h lusi hold also if | h
For any value of the spin-dipole strength constant, howeverN_I € expeé:tt \(/avse (éong usions to 0 |asg " Wle (rjep aceF €
the orbital contribution to the totall2 strength at low en- lisson with a Woods-Saxon potential and include a spin-
ergy is comparable if not stronger than the spin-dipole onefctupole interaction. The_spln-octupole interaction is ex-
We therefore support the conclusion of the analysis made iReCted to leave th12 orbital spectrum unchanged and to

Ref. [33]. pus_h theM 2 spin str_ength further up in energy, there_by en-
We may make the more compelling statement that, ifO¢iNg our conclusions. The Woods-Saxon potential wil

virtue of the constructive interference between orbital andert@inly modify the strength distribution. The induced

spin M2 amplitudes, the theoretical orbital strength shouIdChangeS' however, should be of minor importance in thg Iow-

provide a lower bound for the magnitude of the measure§nergy part Qf the spectrum and, therefore, should not invali-

M2 strength. The theoretical uncertainties on such a bounﬂate our main results.

should come only from the single-particle basis adopted. In ACKNOWLEDGMENTS

fact, it is very difficult to think of any quenching mechanism

for the orbital transitions, given their insensitivity to the in-  The work was partly supported by the Prin 99 of the Ital-

teraction. The measured low-lyind2 strength should there- ian MURST (N.L. and P.A), the Czech Republic Grant No.

fore be larger than the theoretical orbitdl2 strength. The 202/99/1718J.K. and A.M), and the RFBR Grant No. 00-

difference between the two should come only from the spir0217194(V.O.N.)

for K™=0" and is the same for the oth& quantum num-
bers. This expression is quite similar to the correspondinéor
E1 energy-weighted suifEg. (3.5)].
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