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Orbital and spin magnetic quadrupole response in heavy nuclei
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We compute the magnetic quadrupole strength function in heavy spherical and deformed nuclei in proton-
neutron random-phase approximation using a separable Hamiltonian that couples magnetic and electric chan-
nels and adopting a technique that avoids the diagonalization of the eigenvalue matrix. We intend to check if
the different sensitivity of the spin dipole and orbital responses to the multipole terms of the Hamiltonian leads
to an energy separation of the two modes sufficient for the identification of thetwist mode. We explore also the
possibility of a K splitting induced by deformation, in analogy to the electric giant dipole resonance, also
briefly studied for the sake of completeness.
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I. INTRODUCTION

The massive studies of magnetic dipole (M1) transitions
have contributed to clarify the origin of quenching and fra
mentation of the spin strength in nuclei@1#, a longstanding
problem that seems to have made important advances i
cent years@2–4#. Moreover, they have led to the detectio
and the subsequent characterization of the orbital scis
mode@5–7#.

The knowledge about spin and orbital motion in nuc
can be further enriched by the study of magnetic quadrup
(M2) transitions. Indeed, the spin component of theM2
operator induces relative displacements between spin-up
spin-down nucleons giving rise to spin-dipole excitations.
orbital part correlates the relative displacement of the p
tons with their magnetic orbits generating the so calledtwist
mode. Such a mode, predicted for spherical nuclei in a flu
dynamic model@8,9#, can be viewed as arising from a mutu
rotation among different layers of the nuclear fluid arou
thez axis by an angle proportional to thez coordinate. Since
no restoring force would be generated by such a rotatio
an ideal fluid, the observation of such a mode would indic
that the nucleus behaves as an elastic medium.

Experimentally, electron scattering is specially suita
for a clean and complete study ofM2 transitions. These
experiments, however, do not distinguish between orb
and spin motion. One has, therefore, to rely also on theo
ical analyses.

The few experimental data available until recently@10–
14# showed that theM2 spin strength is fragmented and ev
more quenched than in theM1 case. Theoretical investiga
tions were carried out in several approaches@15–32#. Some
of them were devoted to the study of thetwist mode @22–
24,29#. It was found that for a correct description of theM2
spectra it is necessary to go beyond the random-phase
proximation ~RPA! by coupling one-particle–one-hol
(1p-1h) to two-particle–two-hole (2p-2h) configurations.
Such a coupling, while leaving the orbital strength distrib
tion almost unchanged, induces a pronounced fragmenta
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of the spin strength@23#. A quite important and promising
advance toward the understanding of the nature of theM2
transitions and the identification and characterization of
twist mode has been made recently by von Neumann-C
et al. @33#. In a high-resolution electron scattering expe
ment, they have determined theM2 strength distribution in
40Ca and90Zr and analyzed the spectra by means of cal
lations carried out in second RPA that accounts for the c
pling with the 2p-2h space. They found that the quenchin
of the M2 spin-dipole strength is comparable to theM1
case. Moreover, they showed that the orbital contribution
appreciable and crucial for the reproduction of the expe
mental data. This would therefore be a strong indirect e
dence of the existence of thetwist mode.

All experimental and theoretical studies were focused
heavy spherical nuclei. TheM2 transitions in heavy de
formed nuclei have attracted little attention. To our know
edge, this subject was touched only in@30# and confined to
low-lying M2 spectra. On the other hand, there are go
reasons to studyM2 transitions in deformed nuclei. Sinc
the possibility of detecting the twist mode relies on the se
ration of the orbital from the spin-dipole excitations, it is
interest to check if the, probably selective, fragmentation
the orbital and the spinM2 strengths induced by deforma
tion favors such a splitting. In a strict sense, axial deform
nuclei should be ideal systems for the occurrence of the
bital twist mode. In fact, they provide naturally their symm
try axis as rotational axis for such a motion.

There is another aspect that linksM2 transitions to defor-
mation. Given their analogy to the electric dipole excitatio
we might expect a splitting of theM2 strength induced by
deformation similar to the one observed for theE1 giant
resonance@34#.

In this paper we carry out a study of theM2 transitions by
adopting a strength-function technique developed for prot
neutron quasiparticle RPA in the signature formalism@35#.
This technique avoids lengthy diagonalizations and there
allows to cover the full-energy range of theM2 transitions.
©2001 The American Physical Society05-1
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We adopt a two-body potential composed of dipole and sp
dipole separable pieces. This choice enables us to car
unified study of bothE1 andM2 spectra and to point ou
possible analogies between the two modes. In the cas
deformed nuclei it allows to study possible interferences
tween electric and magnetic channels. Due to the sim
structure of the interaction, we are able to test the sensiti
of spin dipole and orbitalM2 spectra to the strength of th
interaction. This latter issue is quite relevant to the poss
identification of thetwist mode, which relies on the separ
tion between the two different excitation modes. We do
include explicitly the 2p-2h configurations. We account fo
the spreading of the strength by smoothing the transi
lines through the use of a Lorentzian weight in the stren
function.

II. BRIEF OUTLINE OF THE PROCEDURE

We give a brief outline of the procedure developed in R
@35# to derive the strength function for the simple case of o
electric and one magnetic multipole fields. In this case,
Hamiltonian adopted has the structure

H5Hsp1Vpair1VE1VM . ~2.1!

Hsp is a deformed axially symmetric one-body Hamiltonia
Vpair the monopole pairing interaction,VE and VM are the
electric multipole and magnetic spin-multipole separa
two-body potentials of the form

VE52
xE

2
@Mlm

(n)†Mlm
(n)1Mlm

(p)†Mlm
(p)#2

xE
(np)

2
@Mlm

(n)†Mlm
(p)

1Mlm
(p)†Mlm

(n)#,

VM52
kM

2
@Sll8m

(n)† Sll8m
(n)

1Sll8m
(p)† Sll8m

(p)
#2

kM
(np)

2
@Sll8m

(n)† Sll8m
(p)

1Sll8m
(p)† Sll8m

(n)
#. ~2.2!

The multipole and spin-multipole fieldsMlm
(t) and Sllm

(t) (t
5n,p) have the form

Mlm
(t)5r lYlm~ r̂ !,

Sllm
(t) 5r l@s ^ Yl~ r̂ !#lm . ~2.3!

The strength constants are related to the isoscalar and iso
tor corresponding strengths by

xE5xl@0#1xl@1#, xE
(np)5xl@0#2xl@1#,

kM5k ll@0#1k ll@1#, kM
(np)5k ll@0#2k ll@1#. ~2.4!

Multipole and spin-multipole fields of good signature we
constructed, so as to allow for the extension of the techni
to fast rotating nuclei, and, accordingly, the Goodman ba
@36# was adopted. Pairing was treated in BCS approximat
The RPA formalism was developed so as to attain the se
ration of the spurious state by setting their energies to z
05430
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When a single field is considered as in the schematic c
the RPA equations are turned into dispersion equations b
straightforward procedure~see, for instance,@37#!. Following
an analogous procedure also for our more general Ha
tonian we get a homogeneous system of four equations in
unknownsRi ,

S FM ,M
(n) 2

1

2kM
DR11jMFM ,M

(n) R21FM ,E
(n) R31jEFM ,E

(n) R450,

jMFM ,M
(p) R11S FM ,M

(p) 2
1

2kM
DR21jEFM ,E

(p) R31FM ,E
(p) R450,

FM ,E
(n) R11jMFM ,E

(n) R21S FE,E
(n) 2

1

2xE
DR31jEFE,E

(n) R450,

jMFM ,E
(p) R11FM ,E

(p) R21jEFE,E
(p) R31S FE,E

(p) 2
1

2xE
DR450.

~2.5!

In the above equations we have put

jM5
kM

(np)

kM
, jE5

xE
(np)

xE
,

and

FX,X
(t) 5 (

i ,kPt

~« i1«k! f̃ i k̄
X

f̃ i k̄
X

~« i1«k!
22v2

, X5M ,E, ~2.6!

FM ,E
(t) 5 (

i ,kPt

v f̃ i k̄
M

f̃ ik̄
E

~« i1«k!
22v2

, ~2.7!

where

f̃ i k̄
E

5 i 2(m11)^ i uMlmuk&~uivk1ukv i !, ~2.8!

f̃ i k̄
M

5 i 2(m11)^ i uSllmuk&~uivk2ukv i !.

Nontrivial solutions of the equations system are obtain
from the request that the determinant of the correspond
matrix vanishes. One may notice that the electric dipole
magnetic quadrupole channels are mutually coupled.
cause of the proton-neutron formalism, the matrix so o
tained is not symmetric. A simple trick, however, has e
abled us to turn this matrix into a new oneD̂ of symmetric
form, so as to enforce the strength function technique@35#.

Dealing with axially symmetric nuclei at low rotationa
frequencies, we have assumed the strong-coupling limit to
valid and adopted the total wave function

unKpIM &5A 2I 11

16p2~11dK0!
@D MK

I ~u!uFnKp&

1~21! IDM2K
I ~u!R1uFnKp&], ~2.9!

where
5-2
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uFnKp&5Q nKp
(r )†

u0 &5(
kl

@ck l̄
n

bk
†b l̄

†
2wk l̄

n
bkb l̄ #u0&

~2.10!

is the one-phonon intrinsic state corresponding to thenth
RPA root. ForKp50p, the intrinsic state is an eigenfunctio
of the signature operatorR1 with eigenvaluer 5(2) I . The
total wave function then becomes

unKp50pI 5M50&5Q nKp50p
(r )†

u0&. ~2.11!

For such aK, only angular momentaI fulfilling the condition
r 5(2) I are allowed. This implies that signature and par
coincide or are opposite according to whether the transi
is electric or magnetic, respectively. In our case, the nega
signatureKp502 states (I 51,3,5, . . . ) describe theKp

502 branch of the giantE1 resonance~proton-neutron os-
cillation along the axial symmetry axis!. The positive signa-
ture Kp502 bands (I 50,2,4, . . . ) contribute to theKp

502 branch of the giantM2 resonance and describe spi
dipole oscillations along the symmetry axis or the orbi
twist mode. In a strict sense, the geometrical picture und
lying the twist mode applies only to theKp502 mode. Our
aim was to compute the strength function

S~v;Xl,Kp!'SD~v;Xl,Kp!

5(
n

Bn~Xl,Kp! rD~v2vn!, ~2.12!

whererD(v2vn) is a weight for the reduced probability

Bn~Xl,Kp!5B~Xl;gr→nKpI !

5
2

11dK0
dlI z^FnpKpuM~Xl,m5K !u0& z2

~2.13!

of the transition from the ground (gr) to an excited state
with quantum numbers$nKpI %. In the long wavelength
limit, the multipole operators, of electric (X5E) or magnetic
(X5M ) type, are

M~Elm!5(
i 51

A

ee f f
(l)~ i !r i

lYlm~ r̂ i !, ~2.14!

M~Mlm!5
mN

2
Al~2l11!(

i 51

A

r i
l21S gs,e f f

(l) ~ i !

3@s i ^ Yl21~ r̂ i !#lm1gl ,e f f
(l) ~ i !

4

l11

3@ l i ^ Yl21~ r̂ i !#lmD , ~2.15!

whereee f f
(l)( i ) is the nucleon effective charge of multipolari

l, mN is the nuclear magneton,gs,e f f
(l) ( i ) andgl ,e f f

(l) ( i ) are the
effective spin and orbital gyromagnetic ratios, respective

The weighting factorrD(v2vn) fulfills the conditions
05430
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E
2`

1`

dx rD~x!51, lim
D→0

rD~x!5d~x!. ~2.16!

It is usually taken of Gaussian or Lorentzian form. The tw
options yield similar results@38#. Consistently with previous
works @38–40#, we chose a function of the Lorentzian form

rD~x!5
D

2p

1

x21S D

2 D 2 ~2.17!

that has only two simple poles. By virtue of this choice, t
strength function came out to be the result of the integra
a function f (z) around the polesz5vn , beingvn the RPA
roots. Since the function fulfills the condition limuzu→` f (z)
50, we could substitute the integral around the RPA po
with the sum of integrals around all other poles taken w
opposite sign. The final outcome~see Ref.@35# for details!
was

S~v;Xl,Kp!52
2

p
Im

det~B̂~z!!

det~D̂~z!!
U

z5v1 iD/2

1
D

2p (
i j

~pi j̄
X

!2F 1

@~« i1« j !2v#21
D2

4

2
1

@~« i1« j !1v#21
D2

4
G . ~2.18!

In the above formula,« i are the quasiparticle energies an
pi j̄

X are the single-particle matrix elements of theE1 or M2

operators, the term det„D̂(z)… denotes the determinant of th
symmetrized RPA secular matrixD̂, while det„B̂(z)… is the
determinant of a matrixB̂(z) that can be obtained by simpl
adding to the RPA matrixD̂(z) a first row and column with
terms involving the electric or magnetic transition operat
For the electric transitions we have (B1150)

B215FE,M
(n) 1jMFE,M

(p) , B315jMFE,M
(n) 1FE,M

(p) ,
~2.19!

B415FE,E
(n) 1jEFE,E

(p) , B515jEFE,E
(n) 1FE,E

(p) .

For the magnetic ones we obtain (B1150)

B215FM ,M
(n) 1jMFM ,M

(p) , B315jMFM ,M
(n) 1FM ,M

(p) ,
~2.20!

B415FM ,E
(n) 1jEFM ,E

(p) , B515jEFM ,E
(n) 1FM ,E

(p) .

The quantitiesFX,Y
(t) are

FX,X
(t) 5 (

i ,kPt

~« i1«k!pik̄
X

f ik̄
X

~« i1«k!
22v2

, X5M ,E, ~2.21!
5-3
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FM ,E
(t) 5 (

i ,kPt

vpik̄
M

f ik̄
E

~« i1«k!
22v2

,

FE,M
(t) 5 (

i ,kPt

vpik̄
E

f ik̄
M

~« i1«k!
22v2

.

They can be derived from the corresponding express
~2.6! and ~2.7! by replacing one of the matrix elementsf ik̄

X

given by Eqs.~2.8! with the corresponding matrix elemen
pik̄

X of the electric (X5E) and magnetic (X5M ) multipole
operators given by Eqs.~2.15!.

The first term on the right-hand side of Eq.~2.18! results
from integrating along a path that encloses the polesz5v
6 iD/2 of the Lorentzian function. The second one is o
tained from integrating along a path enclosing the polez
56(« i1« j ) for all possible quasiparticle indexesi , j . The
first piece accounts for the interaction while the second g
the contribution coming from the unperturbed single-parti
spectrum.No RPA roots appear in Eq. (2.18). This is a cru-
cial point. It implies, in fact, that the strength functio
S(v;Xl,Kp) can be determinedwithout solving the RPA
eigenvalue equations. One has to know only the quasipar
energies« i and the matrix elements of the multipole fields

Once we have evaluated the strength function, it is imm
diate to compute the non-energy- and energy-weighted
of the E1 or the M2 strengths by simply computing th
integral

Sn~Xl,Kp!5E
0

`

v8nS~v8;Xl,Kp!dv8

5(
n

vn
nBn~Xl,Kp! ~n50,1!. ~2.22!

For the energy-weighted sum the values obtained from
above equation can be compared with the correspon
ones derived from the double commutator,

S1~Xl,Kp!5
1

2
^0u@M †~Xl,K !,@H,M~Xl,K !##u0&.

~2.23!

One can also easily compute the photoabsorption cross
tion. For theE11M2 transitions we have simply

sK~v!5
32p3a

9e2 FvS~v;E1,K !1
3

100~\c!2
v3S~v;M2,K !G

50.4023vS~v;E1,K !10.3428 1028v3S~v;M2,K !,

wheresK(v) is in fm2, S(v;E1,K) in e2 fm2 MeV21 and
S(v;M2,K) in mN

2 fm2 MeV21.
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III. NUMERICAL CALCULATIONS AND RESULTS

A. Details of the calculation

We adopted a Nilsson one-body potential with stand
parameters@41# and took into account all major shells up
Nmax57. This space is adequate for our purposes. As
shall see, theE1 andM2 energy-weighted sum rules consi
ered in the paper are satisfied. We included a proton-pro
and neutron-neutron pairing interaction with the pairing co
stants fixed so as to reproduce the mass differences. We
added a two-body separable interaction of the form~2.2!
with electric dipole and magnetic spin-dipole fields

M̂1m
(t)5rY1m~ r̂ !,

Ŝ1lm
(t) 5r @s ^ Y1~ r̂ !#lm .

We do not include a spin-octupole interaction. Such a te
should be present in principle. Indeed, the structure of
electromagnetic multipole moments suggests a sp
multipole field of the form

Ŝlm
(t)5sW •¹„f l~r !Ylm…, ~3.1!

which, for l52, yields in general a spin-dipole and a spi
octupole term. Having adopted a Nilsson one-body poten
however, we took consistently a field with no radial nod
and put

f l~r !5r l. ~3.2!

Under this zero-node assumption, the spin-octupole com
nent vanishes. It is also to be noticed that the spin-octup
component disappears also from theM2 operator in the long
wavelength limit considered here. As we shall argue in
concluding remarks~Sec. IV!, the inclusion of a spin-
octupole interaction would have been irrelevant for our p
poses in any case.

The chosen interaction couples magnetic and elec
channels forKp502,r 521 andKp512,r 561. The isos-
calar constantx1@0# of the dipole-dipole interaction wa
fixed by the request of getting a vanishing value for t
lowest RPA root so as to decouple the spurious translatio
oscillation mode from the physical intrinsic states. We ha
indeed checked that the strength of the center-of-mass c
dinate is concentrated at zero energy. The isovector dip
constantx1@1# was chosen so as to reproduce as close
possible the energies of theE1 peaks. The above procedu
yielded x1@0#50.049 MeV fm22 and x1@1#5
20.085 MeV fm22 for the spherical144Sm. In the deformed
154Sm we gotK-dependent constantsx1K , namely,x10@0#
50.039 MeV fm22 and x10@1#520.071 MeV fm22 for
Kp502, x11@0#50.047 MeV fm22 and x11@1#5
20.10 MeV fm22 for Kp512. The isovector constants ca
be compared with the values deduced from the formula
rived in schematic models@42#

x10@1#5
pV1

A^r 2&
~12 4

3 d!.472A25/3~12 4
3 d! MeV fm22,
5-4
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x11@1#5
pV1

A^r 2&
~11 2

3 d!.472A25/3~11 2
3 d! MeV fm22,

~3.3!

having putV15130 MeV. In the spherical case (d50) our
values are slightly smaller than the ones deduced from th
formulas. In the deformed case, ourK50 strength is close to
the value deduced from the above formula, while theK51
constant is somewhat weaker.

The available experimental data do not allow to fix t
strength constants of the spin-dipole interaction. We h
therefore adopted the formula

ks5k1l@0#5k1l@1#5c0

4p

^r 2&

25

A
~3.4!

borrowed from Ref.@16# apart from the factorc0 that we
included in order to allow for variations in the strength co
stant so as to study the sensitivity of theM2 response to the
spin-dipole interaction. As indicated in the above equati
we have assumed equal values for isoscalar and isove
strengths. This is a common practice. Some authors, h
ever, have assumed a vanishing, or negligible, isoscalar
stant@18#. The two options yield results that are similar an
therefore, equivalent for our purposes.

In computing theE1 transition strength we chose for th
effective charges the values

ee f f52
1

2 S t32
N2Z

A De

that accounts for the recoil effect@39#. For 154Sm the above
formula yieldsee f f

(p)50.597e andee f f
(n)520.403e. For theM2

transitions we took the gyromagnetic factorsgs,e f f
(t)

50.7gs, f ree
(t) andgl ,e f f

(t) 5gl , f ree
(t) .

Our calculations have shown that, even in deformed
clei, theE1 strength function is completely unaffected by t
spin-dipole interaction and is sensitive solely to the dipo
dipole interaction that pushed the unperturbed resonance
ward in energy by about 7 MeV. TheM2 transitions are
insensitive to the dipole-dipole interaction and respond o
to the spin-dipole interaction. We have therefore stud
separately electric dipole and magnetic quadrupole
sponses.

B. E1 giant resonance

We computed theE1 photoabsorption cross section f
the spherical144Sm and the deformed154Sm nuclei and com-
pared with experiments@34#. In the spherical144Sm we got
one broad peak that follows closely the experimental data
a Lorentzian widthD52 MeV ~top panel of Fig. 1!. In the
deformed 154Sm, the resonance is split into two bumps
requested by the experiments~bottom panel of Fig. 1!. For
the D52 MeV, the two peaks are smooth and reach th
maxima at the observed energies. On the other hand,
calculation underestimates the experimental low-lying p
and overestimates the high-lying one. Since the first is
05430
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tirely due to theKp502 excitations and the second sole
due to theKp512 transitions, we can partly improve th
agreement with experiments by adopting a larger Lorentz
width for computing theKp512 strength function. By doing
so, we implicitly assume that the coupling with the 2p-2h
configurations induces a larger spreading of theKp512

strength. The resulting profile of the cross section is inde
closer to the experimental one~upper panel of Fig. 2!. This
reflects the fact that, because of the larger spreading of
Kp512 strength, the overlap between theKp512 andKp

502 bumps has been enhanced~bottom panel of Fig. 2!.
Even with these new widths, however, the computed cr
section is smaller at low and larger at high energy, though
a less extent.

A key for a partial removal of the discrepancy may
found by observing that the fragmentation of theE1 strength
in deformed nuclei is due not so much to the coupling w
the 2p-2h configurations, but is the result of the drama
increase of the density of the single-particle levels. How su
a large density of states enhances the fragmentation of
strength can be inferred from the analysis of the ener
weighted sum rule~Table I!. The computed quantities can b
compared with the values obtained from the Thomas-Re
Kuhn sum rule

S1~E1,Kp502!5
1

2
S1~E1,Kp512!5

3

8p

\2

m

NZ

A
e2

~3.5!

that accounts only for the one-body Hamiltonian. In t
spherical144Sm the sum is slightly lower than the sum-ru
value. In the deformed154Sm, the energy-weighted sum
of the E1 strengths computed up to 30 MeV,

FIG. 1. Theoretical versus experimentalE1 cross sections in
144Sm ~upper panel! and 154Sm ~bottom!. The computations were
made for two Lorentzian widths.
5-5
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S1(E1)5518 e2 fm2 MeV and increases to S1(E1)
5539 e2 fm2 Mev if computed up 50 Mev. This latter num
ber is close to the sum-rule value. Apparently, deformat
induces a strong fragmentation of the strength. More in
tail, the computedKp502 sum is appreciably smaller tha
the corresponding sum-rule value, while theKp512 sum is
larger. It seems, therefore, that we need a modest redist
tion of the strength among the single-particle levels that
lows for the transfer of a small part of the strength from t
Kp502 to theKp512 transition lines.

We must also point out that our calculation does not
count for contributions coming from exchange mixtures
the two-body interaction, so that the comparison with
total photoabsorption cross section is not completely app
priate specially at high energy.

C. M2 transitions

1. Interplay between orbital and spin-dipole transitions

The sensitivity of theM2 spectrum to the spin-dipol
interaction is illustrated in Figs. 3 for154Sm. The unper-

FIG. 2. Theoretical and experimentalE1 cross sections in154Sm
~upper panel! and the unfolding of the corresponding computedE1
strength function into theKp502 andKp512 contributions~bot-
tom!. Different widths were used for the twoKp transitions.

TABLE I. Energy-weighted sums of theE1 reduced strengths
The corresponding sum rule values obtained from Eq.~3.5! are in
parentheses.

144Sm 154Sm

S1(E1,K50)(e2 fm2 MeV) 172 ~175! 153 ~183!
S1(E1,K51) (e2 fm2 MeV) 344 ~350! 386 ~367!
S1

(tot)(E1)(e2 fm2 MeV) 516 ~525! 539 ~550!
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turbed strength function exhibits one peak that results fr
the constructive interference between the orbital and
spin-dipole transition amplitudes@Fig. 3~a!#. The corre-
sponding strengths are almost equally fragmented and sp
over the same energy range around a common centr
Only, the spin strength is larger and dominant at high ene
As we turn on the interaction, the orbital spectrum is prac
cally unaffected. The spin-dipole strength, instead, gets m
fragmented and quenched and is shifted at higher ene
@Fig. 3~b!#. When the coupling constant of the interactio
reaches the value normally adopted in literature@16# and
obtained from Eq.~3.4! for c051, theM2 strength function
splits into two separate peaks, one at low energy around
MeV and another at high energy with a broad maximu
extending from 15 to 18 MeV@Fig. 3~c!#. The first is almost
entirely of orbital nature, the second is utterly due to sp
dipole excitations.

The complete overlap between orbital and spin-dip
strength in the unperturbed case proves that the splitting
little to do with deformation. It is induced solely by the spin
dipole interaction. Indeed, also in the spherical144Sm ~Figs.
4! we get overlapping orbital and spin-dipole spectra in
absence of interaction and an increasing splitting betw
the two as we increase the strength of the interaction. De
mation has the effect only of inducing more fragmentatio
In fact the peaks are broad in the deformed154Sm and much
sharper in the spherical144Sm. In both nuclei, the interaction
does not affect the orbital strength distribution and ha
severe quenching effect on the spin-dipole transitions.

The results obtained are compatible with the available
perimental data. We computed theM2 strength function in

FIG. 3. The orbital, spin and totalM2 strength functions in
154Sm computed for increasing values of the spin-dipole interact
5-6
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90Zr for two values of the spin-dipole strength. In both cas
we reproduced fairly well the electron scattering data@33#
~top panel of Figs. 5 and 6!. Maybe the larger coupling con
stant seems to do better, at least in the higher energy pa
the experimental spectrum. In our opinion, however,
comparison does not allow a clear-cut discrimination
tween the two choices. On the other hand, using a large
smaller constant is not a neutral choice. In the first case,
spin contribution to the strength is negligible~bottom panel
of Fig. 5!. The observed low-lyingM2 transitions should
therefore be viewed as a mere manifestation of the orb
twist mode. In the second case instead, the spin contribut
though smaller than the orbital one, is appreciable~bottom
panel of Fig. 6! andcontaminatesthe twist character of the
M2 peak. This second spectrum would be more consis
with the findings of the analysis carried out in Ref.@33#,
where different one-body and two-body potentials we
adopted.

Our calculation predicts strong spin-dipole transitions
higher energies packed around some high peaks. Experim
tal information on these excitations would probably ena
us to fix the spin-dipole strength constant and therefore
make a more reliable assessment on the exact nature o
observed low-lyingM2 peaks. The analysis of the availab
experimental data carried out here allows to state that,
any choice of the spin-dipole constant, the orbital mot
gives a large contribution to the observed low-lyingM2
strength distribution and plays a primary role in shaping
M2 spectrum and in determining the magnitude of
strength. We therefore fully support the findings of Ref.@33#.

FIG. 4. The same as in Fig. 3 but for144Sm.
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e FIG. 6. The same as in Fig. 5 but for a smaller spin-dipo
coupling constant.

FIG. 5. Theoretical and experimentalM2 strength function in
90Zr ~top! and its spin and orbital content~bottom!.
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2. Splitting of the M2 strength in deformed nuclei

The effects of deformation become manifest if we ca
out a fine-tuned analysis of theM2 spectrum in154Sm. Since
the results are similar for a wide range of values of the sp
dipole constant, we present only those obtained by adop
the standard one. In the low-lying bump one may not
three distinct peaks falling around the energy centroids~Fig.
7!. These are almost completely split for the Lorentzi
width D50.2 MeV ~top panel of Fig. 7!. The nature of these
peaks is easily understood once we unfold the bump into
K components. TheKp502 strength is concentrated most
in the lowest energy peak atE02.5.5 MeV, theKp512

transitions generate the middle peak atE12.7.5 and the
Kp522 ones the upper peak atE22.9.5 ~Fig. 7!. This fine-
tuned splitting of theM2 resonance reflects the close cor
spondence between electric dipole and magnetic quadru
transitions. Indeed, in the unperturbed case we have s
matically

B~M2,gr→Kp502!}^0uS (
i

z~ i !l z~ i ! D 2

u0&

5(
aL

^aLuz2uaL&L2, ~3.6!

where a stand for all required quantum numbers. Sincel z
does not yield any energy change, for our heuristic argum
we can replaceL2 with a mean valueL̄2. We then get

B~M2,gr→Kp502!}^z2&}
v2

vz
2 ^r 2&. ~3.7!

FIG. 7. The unfolding of the RPAM2 strength function in
154Sm into itsKp components.
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Accounting for the fact that the energy change induced
l 11 is negligible compared to\v, we can make the sam
simplifying assumption also for the otherK transitions ob-
taining

B~M2,gr→Kp522!}^r'
2 &}

v2

v'
2 ^r 2&,

B~M2,gr→Kp512!}^z2&1^r'
2 &}S v2

v'
2

1
v2

vz
2D ^r 2&.^r 2&.

~3.8!

According to the equations written above, theK50 and the
K52 M2 components, in perfect analogy to theK50 and
the K51 E1 operators, excitep-h states around\vz
.\v(122/3d) and\v'.\v(111/3d), respectively. The
Kp502 and theKp522 M2 excitations are therefore th
analog of theK50 and theK51 E1 modes. TheM2 op-
erator, however, through theK51 component, excites othe
levels around the energy\v. These levels fall between th
Kp502 and theKp522 peaks and therefore tend to fill th
gap between them. This heuristic procedure yield for
centroids of the differentK transitions the valuesE02

.6.3 MeV, E12.7.6 MeV, andE22.8.3 MeV. They are
close to the energies obtained in the full calculations. W
may notice an appreciable discrepancy only for theKp

522 case. On the whole, the agreement is quite satisfact
given the rough nature of the schematic estimate.

Mainly because of theKp512 intruders, the splitting of
the low-lying, mainly orbital,M2 resonance is not as pro
nounced as in theE1 giant resonance. Nonetheless, the sp
ting should be observed in high-resolution (e,e8) scattering
experiments. In such a case, in a strict sense, we would
able to identify the twist mode as the low-lyingKp502

transition lines enveloped into the lowest peak and, mo
over, to distinguish this from the otherK modes. All these
excitations, however, have alike properties. For instance
of them are sensitive only to the one-body potential. W
therefore, prefer to consider all threeKp peaks on the same
footing. In the most pessimistic hypothesis of insufficie
experimental resolution, the splitting should get manifest
directly as a broadening of the resonance with respect to
spherical case. This would be the analog of the broadenin
the E2 giant resonance in deformed nuclei@43#.

No K splitting is obtained in the region of the spin exc
tations. We observe, in fact, a large overlap between
energy domains of the differentK transitions. Apparently,
the K regularities we would have expected on the ground
the schematic model are wiped out by the large fragme
tion of the strength induced by the high density of the sing
particle states. Also the use of the same coupling constan
all K channels, at variance with the case of theE1 giant
resonance, contributes to destroy these regularities.

3. Running sums and sum rule analysis

The global properties of theM2 transitions can be studie
efficiently by computing the running sum of the correspon
5-8
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ing reduced strengths. This can be extracted from
strength function through the use of the formula

Sn
(v)~M2,K !5E

0

v

v8nS~v8;M2,K !dv85(
n

v

vn
nBn~M2,K !.

~3.9!

The plot in Fig. 8 for154Sm shows that, in the unperturbe
case, orbital and spin strengths grow almost together u
the saturation point of the orbital strength. From this po
on, only the spin strength keeps growing smoothly unti
reaches the plateau around 16–17 MeV. The spin-dipole
ning sum is larger than the orbital one at any energy. In
presence of the interaction, the orbital running sum rema
unchanged. The spin sum, instead, increases slowly up
small value in the domain of the orbital transitions and th
raises rapidly to a saturation value that is only slightly larg
than the corresponding orbital sum. The quenching effec
the interaction on the spin-dipole transitions is there
clearly proven. The same trend is observed in the sphe
144Sm. Only the rising of both strengths is sharper. Qual
tively similar results are obtained for the energy-weigh
running sum. Only, the saturation value of the spin sum
much higher because of the energy weight that privileges
spin excitations falling at higher energies.

The asymptotic values of the running sums coincide w
the total nonenergy- and energy-weighted sums. These
shown in Table II for the spherical90Zr and 144Sm and the
deformed 154Sm. The summed strengths grow as we mo
from 90Zr to the heavier144Sm and154Sm. This is especially
true for the orbital transitions. The orbital strength is abo
30% of the total in90Zr and about 40% in Sm isotopes. Th
increasing importance of the orbital motion with increasi

FIG. 8. The orbital, spin and total nonenergy-weighted runn
sum of theM2 reduced strength in154Sm in the absence~top! and
in the presence~bottom! of the spin-dipole interaction.
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A was expected since in heavier nuclei higher angular m
menta are involved. It confirms earlier suggestions@23# that
the heavier the nucleus the easier it should be to identify
twist mode. No appreciable differences are noticeable in
ing from the spherical144Sm to the deformed154Sm.

The energy-weighted sums can be compared with the
responding sum-rule values obtained by computing
double commutator of Eq.~2.23! for the M2 operator. We
will do this for the orbital motion that is more interesting fo
our purposes. The calculation yields for the differentK tran-
sitions

S1~M2,K50!5
5

2p

\2

m
^0u(

k51

Z

l z
2~k!u0&,

S1~M2,K51!5
5

6p

\2

m
^0u(

k51

Z

@3l z
2~k!1 l 2~k!#u0&,

S1~M2,K52!5
5

3p

\2

m
^0u(

k51

Z

@2l 2~k!23l z
2~k!#u0&.

~3.10!

Contrary to theE1 energy weighted sum rule that is ind
pendent of deformation@Eq. ~3.5!#, theM2 sum isK depen-
dent. It is easy to check that the three sums converge
common expression in the spherical limit. It is easy to che
as well that the total sum rule has the same form for b
spherical and deformed nuclei

S1~M2!5
25

6p

\2

m
^0u(

k51

Z

l 2~k!u0&. ~3.11!

A rather detailed comparison between the energy-weigh
sums and the corresponding sum-rule values is presente
Table III for 154Sm. One may observe from this and Table
that the computed orbitalM2 strengths fully satisfy the sum
rule in both spherical and deformed nuclei. Concerning
deformed154Sm ~Table III!, the orbital sum rule is satisfied
for eachK. Consistent with Eqs.~3.10!, the sum changes
appreciably withK. By contrary the spin-dipole sums are th
same for allK. This was also expected since, for instance,
contribution to the spin-dipole sum rule coming from th
kinetic energy is

g

TABLE II. Nonenergy- and energy-weighted sums of theM2
reduced strengths. In parentheses the orbital energy-weighted
rule values obtained from Eq.~3.11!.

90Zr 144Sm 154Sm

S0
( l )(M2) (mN

2 b) 14.7 40.8 46.9
S0

(s)(M2) (mN
2 b) 30.3 57.5 61.9

S0
(tot)(M2) (mN

2 b) 47.7 103.6 118.5
S1

( l )(M2) (mN
2 b MeV) 142 ~139! 349 ~350! 425 ~428!

S1
(s)(M2) (mN

2 b MeV) 487 868 913
S1

(tot)(M2)(mN
2 b MeV) 651 1251 1413
5-9
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TABLE III. Nonenergy- and energy-weighted sums of theM2 reduced strengths154Sm for differentK
quantum numbers. The orbital energy-weighted sum rule values obtained from Eqs.~3.10! are in parentheses

Kp502 Kp512 Kp522 Sum overK’s

S0
( l )(M2) (mN

2 b) 7.7 19.1 20.1 46.9

S0
(s)(M2) (mN

2 b) 12.8 24.9 24.2 61.9

S0
(tot)(M2) (mN

2 b) 22.7 47.8 48.1 118.5

S1
( l )(M2) (mN

2 b MeV) 55.0 ~56.4! 163.4~166.0! 206.3~206.1! 424.7~428.4!

S1
(s)(M2) (mN

2 b MeV) 187.3 364.3 361.1 912.7

S1
(tot)(M2)(mN

2 b MeV) 253.0 557.8 602.0 1413.0
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S1
(s)~M2,Kp502!5

5

8p

\2

m
~gp

2Z1gn
2N! ~3.12!

for Kp502 and is the same for the otherK quantum num-
bers. This expression is quite similar to the correspond
E1 energy-weighted sum@Eq. ~3.5!#.

IV. CONCLUSIONS

Our calculation shows that the interference between
pole and spin-dipole channels induced by deformation
negligible. E1 andM2 strength functions can therefore b
computed separately using dipole-dipole and spin-dipole
teractions, respectively. As regards theM2 transitions, the
spin-dipole response is very sensitive to the interaction. T
by contrary, does not affect the orbital excitations, whic
beyond any underlying geometrical picture, represent a
markable example of collisionless mode in nuclei. Beca
of the different sensitivity of the two modes to the intera
tion, the shape of the resultingM2 spectrum depend
strongly on its intensity. Independently of deformation, t
orbital and spin-dipole strengths overlap or get split acco
ing that the coupling constant of the spin-dipole interaction
weaker than or comparable to the value normally adopte
literature. In the latter case the orbitalM2 mode would be
almost completely separated and would be easily identifi
For any value of the spin-dipole strength constant, howe
the orbital contribution to the totalM2 strength at low en-
ergy is comparable if not stronger than the spin-dipole o
We therefore support the conclusion of the analysis mad
Ref. @33#.

We may make the more compelling statement that,
virtue of the constructive interference between orbital a
spin M2 amplitudes, the theoretical orbital strength sho
provide a lower bound for the magnitude of the measu
M2 strength. The theoretical uncertainties on such a bo
should come only from the single-particle basis adopted
fact, it is very difficult to think of any quenching mechanis
for the orbital transitions, given their insensitivity to the i
teraction. The measured low-lyingM2 strength should there
fore be larger than the theoretical orbitalM2 strength. The
difference between the two should come only from the s
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transitions in the same energy domain and, therefore, sh
give useful information on the spin-dipole coupling consta
Such a constant would be completely determined if the
periments could cover the high-energy range so as to a
for a thorough comparative analysis of theM2 spectrum.

Deformation does not play a major role in the interpl
between orbital and spin motion. On the other hand, it
duces aK splitting of the orbitalM2 strength analogous to
the one observed in theE1 giant resonance. The separatio
between the peaks is smaller than in theE1 resonance
mainly because of theintrusion of the Kp512 component,
which does not have an electric counterpart, between
Kp502 and Kp522 peaks, corresponding respectively,
theE1 Kp502 and theKp512excitations. Such a splitting
should be nonetheless observable in high-resolution (e,e8)
scattering experiments.

The main conclusions drawn on the ground of the pres
results should remain valid even if we extend the calculat
scheme so as to allow for the coupling with the 2p-2h con-
figurations. The explicit inclusion of these configuration
while leaving the orbitalM2 strength distribution basically
unchanged@23#, should have the effect of quenching an
fragmenting the spin strength. We have actually accoun
for such a fragmentation in an effective way through t
width entering into the Lorentzian weight of the streng
function.

We expect these conclusions to hold also if we replace
Nilsson with a Woods-Saxon potential and include a sp
octupole interaction. The spin-octupole interaction is e
pected to leave theM2 orbital spectrum unchanged and
push theM2 spin strength further up in energy, thereby e
forcing our conclusions. The Woods-Saxon potential w
certainly modify the strength distribution. The induce
changes, however, should be of minor importance in the lo
energy part of the spectrum and, therefore, should not inv
date our main results.

ACKNOWLEDGMENTS

The work was partly supported by the Prin 99 of the It
ian MURST~N.L. and P.A.!, the Czech Republic Grant No
202/99/1718~J.K. and A.M.!, and the RFBR Grant No. 00
0217194~V.O.N.!
5-10



ice

.I.

ys

ys

es

s.

t.

ORBITAL AND SPIN MAGNETIC QUADRUPOLE . . . PHYSICAL REVIEW C 63 054305
@1# For a short review see A. Richter, Prog. Part. Nucl. Phys.34,
261 ~1995!.

@2# T. Wakasaet al., Phys. Rev. C55, 2909~1997!.
@3# T. Wakasaet al., Phys. Lett. B426, 257 ~1998!.
@4# B. Reitzet al., Phys. Rev. Lett.82, 291 ~1999!.
@5# N. Lo Iudice and F. Palumbo, Phys. Rev. Lett.41, 1532

~1978!.
@6# D. Bohleet al., Phys. Lett.137B, 27 ~1984!.
@7# For a review and references see for instance N. Lo Iud

Phys. Part. Nucl. Phys.28, 556 ~1997!.
@8# G. Holzwarth and G. Eckart, Z. Phys. A283, 219 ~1977!.
@9# G. Holzwarth and G. Eckart, Nucl. Phys.A325, 1 ~1979!.

@10# R. Freyet al., Phys. Lett.74B, 45 ~1978!.
@11# D. Meueret al., Nucl. Phys.A349, 309 ~1980!.
@12# D. Meueret al., Phys. Lett.106B, 289 ~1981!.
@13# D. Müller et al., Phys. Lett.113B, 362 ~1982!.
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