PHYSICAL REVIEW C, VOLUME 63, 054303

SU(3) density matrix theory

Ts. Dankova and G. Rosensteel
Department of Physics, Tulane University, New Orleans, Louisiana 70118
(Received 5 January 2001; published 4 April 2p01

The irreducible representations of the Lie algebra su(3) describe rotational bands in the context of the
nuclear shell and interacting boson models. The density matrices associated with su(3) provide an alternative
theoretical framework for obtaining these bands. The su(3) density matrix formulation is mathematically
simpler than representation theory, yet it yields similar results. Bands are solutions to a system of polynomial
equations defined by the quadratic and cubic su(3) Casimirs. Analytic solutions are found in many physically
important cases including rotation about principal axes and spheroids. Numerical solutions are reported in other
cases including tilted rotors. The physics of su(3) rotational bands is more transparent in the density formalism
than in representation theory.
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[. INTRODUCTION active valence neutrons and protons, the factorially growing
dimension of the antisymmetric irrep is astronomical. More-
The physics of many-particle systems is dominated inover the rotation group is not canonically embedded in)uU(

many cases by a relatively small number of degrees of free- A way around this difficulty is self-consistent mean field
dom. The quintessence of the physics is clarified by modeltgheory. In Hartree-Fock, the mean field Hamiltonian must be
which ignore minor effects and focus on the principal dy-diagonalized in the single-particle space of dimensieano
namical factors. When the set of relevant observables closdgatter how many particles are in the valence space. The set
under commutation to form a Lie algebra, it is called a specpf admissible states in the Hartree—.Fock apprOX|mat|on.|s the
trum generating or dynamical symmetry algefta3), and a set of Slater determinants or, equivalently, the set of idem-

group theoretical model is suggested as the natural explanROtent Hermitian density matriceg = p, with trace equal to
tory framework. the numberk of valence nucleons gr=Kk. The density ma-

If g is a spectrum generating Lie algebra of Hermitianrices are defined by the expectation of the one-body Hermit-

operators, then its irreducible unitary representatigmsps lan operators in uf). Mathematically, the set of density ma-

define group theoretical models. The decomposition of thénceS spans the dual space of the algebra) uThe set of

. . . . missible idem n nsities is n v r
reducible representation gf on Fock space into its irreduc- admissible idempotent densities is not a vector space, but a

iol b ides the mi i int tati fthsurface of dimension K n—k) contained within the vector
ible subspaces provides the microscopic interpretation o gpace of all Hermitian density matricgs2].

models. Although an irrep of simplifies the original Fock The surface of idempotent densities is a level surface of
space problem, its dimension may still be too large to allowhe Casimirs. There are Casimirs for the unitary algebra
an easy analysis of the physics, e.g., noncompact algebr@%n) given by the trace of powers of the densly=tr p" for
such as sp(8) of the symplectic collective modé#—6] or  r—1 " n. On the idempotent density surface, the Casimirs
u(6,6) of the extended interacting boson mofie] have  are evidently constard, =k for all r. Conversely, the level
infinite-dimensional irreducible representations. Intractablesyrface in the dual space of the CasinGfs=k for integral
models also may arise when the rotation group algebra so(3e[0,n] consists of the Hartree-Fock densities.

is not canonically embedded ghand the angular momentum  The idempotent densities transform among themselves by
decomposition is not multiplicity free, e.g., the compactthe elements of the unitary group: a unitary magixrans-
symplectic group sp(i2+1) which describes seniority in a forms a densityp into gpg~*. U(n) is a transformation
singlej shell[8,9], or thesdg-boson model based on u(15) group on each level surface of the Casimirs.

[10,11]. Thus there is a common algebraic structure for both the
The relationships among the shell model, Hartree-Fockshell model and Hartree-Fock. The distinctions arise from
and the group Uf) of unitary transformations in the the way the algebra determines the model states. For the
n-dimensional single-particle space suggest a solyti@®-  shell model, the quantum states span an irreducible unitary

14]. The shell model may be regarded as a group theoreticakpresentation of the group b). For Hartree-Fock, the role
model in which the spectrum generating algebra is the set a#f the unitary group and its Lie algebra has three essential
all one-body Hermitian operators m). Throughout this ar- aspects(1) the densities in mean field theory are elements of
ticle, Lie algebras are denoted gye.g., uf), su(3), so(3), the dual space of the Lie algebr@) the allowed Hartree-
while the corresponding Lie group is written & e.g., Fock densities are a level surface for the Casimirs, @nd
uU(n), SU(3), SO(3) Each Lie group is the exponentiation the unitary group transforms the allowed densities among
of its Lie algebra, e.g., U()=exp(u(n)). For k identical themselves. These are the three ingredients for a mean field
valence fermions, the shell model space is the totally antitheory that may be implemented for any Lie algebra.
symmetric irreducible representation of ij(with dimen- The aim of this article is to construct a density matrix or
sionn!/[k!(n—k)!]. Already for medium mass nuclei with mean field theory for the test case of the SU(3) model that
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underlies the algebraic theory of nuclear rotational motion. [ = \/ﬁd‘rxa](l)
SU(3) is a paradigm algebraic theory since it is the simplest K "
nontrivial dynamical symmetry in nuclear structure physics.
The relationship between SU(3) irreducible representations 0@ —q’s+sd 1ﬂ[dfxa](z) (2.6)
and their mean field approximations is investigated. It is # # w2 g '
shown that there is a close correspondence between the re-
sults from these two models. But the SU(3) density matrixwhere & corresponds to particle and hole bosons, respec-
theory is mathematically simpler and provides a clear physitively. This IBM algebra of Hermitian operators is also iso-
cal interpretation of the rotational bands found in the irrepsmorphic to the algebra of matrices(8).
Mathematically, all isomorphic copies of an algebra are
Il. su(3) DENSITY MATRICES indistinguishable. The su(3) algebra of matrices is more con-
o venient to use for calculations than either the Elliott or IBM
A. Algebra definition operator algebras.
Let (X4j,P,j) denote the Cartesian components of the di-
mensionless position and momentum Hermitian operators of B. Dual space
particle« in a system ok particles. They obey the canonical
commutation relatiofix ,; ,pgk] =i, - The traceless El-
liott quadrupole operatdrl5]

Consider an algebra of Hermitian operators acting on the
Hilbert spacet which is isomorphic to §8), e.g., the El-
liott or IBM representations. For each normalized state vec-
tor ¥ e H the expectations of the operators

ij:<‘I’|QJ(£)|‘P>,

QJ(E): %[Xajxak+ paj Pak— % 5jk(xa,uxa/.l.+ pay,pa,u,)]

(2.9

and the vector angular momentum operator
- = (V|| W) (2.7)
Lik=XajPak™ XakPaj »
. . define a real symmetric traceless mattiand a real antisym-
Li=z&ijLj (2.2 metric matrixl. The “density” matrix corresponding t& is
defined as the Hermitian traceless matgixq—3il. In

(summation over repeated indigegenerate an eight- (ormgs of it the expectation of a general element of the op-
dimensional real Lie algebra of one-body Hermitian operay4tor algebra is

tors

I Jkm=m:

for Z=Y+iXesu(3).

[Q,(ff) Lel=i (‘°’fSJ'Q(srf<)Jr 8rskggi))' (2.3 In fact each traceless Hermitian density magrigefines a
. R . . R real-valued linear functional on the matrix Lie algebré3u
[Q}f),Qg)Fi%(5krsjsaLa+ OksEjral ot Ojreksala viz., (p,Z)=tr(pZ) for all Zesu(3). The set of alsuch
. linear functionals is called the dual space of su(3) and is
+ js€kral o), denoted by su(3). In Dirac quantum mechanics the dual

o . -~ space is the space of “bras.” The mapping from the Hilbert
that is isomorphic to the algebra of Hermitian traceless Magpace to the dual space is called the moment Mg
trices —su(3) where the density corresponding to the veakois
p=M(V) [19-21].

The density retains only part of the entire information
If X andY are real 3¢3 matricesZ=Y+iX e su(3) if and gbout the system that the wave function carries, but a very

T T ” . . important part—the expectations of the su(3) observables.
only if X'=—X, Y'=Y, and trY=0. The isomorphismr - - . .

. ..._The dimension of the dual space is the same as the dimen-
between the algebra of matrices and the algebra of Hermitian : - R
operators is given explicitly by sion of the su(3) algebra and is a significant simplification of

the quantum problem in the Hilbert spagé It reduces all

the degrees of freedom incorporated in the wave function to
just those most relevant to the physics of su(3) rotational
RV _ states.
for 2=Y+iX < su(3).Note that[ #(2),o(W) ] = o([2,W]) When ¥, is a highest weight vector for an irreducible

for 2,We s_u(3). - representation of $8), thecorresponding density is a diag-
Alternatively, the algebra of Hermitian operators may be . L : :
onal matrix. To see this, express the Elliott generators in

defined as the su(3) dynamical symmetry algebra of the inf f th “bod t
teracting boson modél.6—1§. If d” ands' denote the bo- o> OF the Ohe-body operators

son creation operators, then the generators are the angular . Lt .

momentum and quadrupole operator Cik=12 (agj@aktBak@qj), (2.9

su3)={ZeM,(()|2"=2Z,trz=0}. (2.9

O'(Z):ijQJ(E)_%Xjkl:jk (2.9
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where a,, a!, are the harmonic oscillator bosona,,  Hence the density transforms intogpg™?, a product of
=Xkt i Par)/ V2, @l = (Xo—i Pa)/ 2. The Elliott su(3)  three matrices. The group transformation in the dual space is
generators are given by called the coadjoint action and it is denoted by gAd

=gpg ' [22].
0P =1 (C +Cpi— 2 8 H
ez ( Ik ki3 Tk o D. Casimir invariants
L= —i(Ch—Cy) (2.10 The Casimir invariants, or Casimirs, are polynomials in
L Jk ki ' the algebra generators that commute with all Lie algebra el-
R ements. su(3) has two independent Casimirs of quadratic
whereH, is the harmonic oscillator Hamiltoniald,=C;; . and cubic orders,
By definition, the highest weight state is annihilated by the }
raising operators and is an eigenvector of the su(3) Cartan Ci(p)=trp", for r=23. (2.14

subalgebra . . . .
These are functions on the dual space that are invariant with

. ) respect to the coadjoint transformatiaih(Adfg]c p)=C(p).
CikWhw=0, when j<k, Whenp=q— %il, the invariant functions are

(Ca= CoViw=\ Vi, (2.19 Calp)=trg®—Gtrl?,

A Ca(p)=trq®=3tr(ql?). (2.19
(C11—=C)Vhw=pu Vi,

In particular the values of the Casimirs at the diagonal den-
when the weights\,u are non-negative integers. Therefore Sity corresponding to a highest weight vector are evaluated to

the density of the highest weight state is be
At 0 0 Copiry) = 5N+ Nt u?),
1 o\ —
pow=z5| Nzw 00 219 Calpu) = §(203+3N°u =3’ ~2u%). (216
0 0 2N+

In quantum mechanics, observables are Hermitian linear op-

erators, while in density matrix theory, observables are real-
A similar argument for the IBM su(3) algebra yields the valued functions on the dual space. The expectations of the
same diagonal density matrix for the highest weight vectorCasimir operators with respect to a highest weight state dif-
Indeed the derivation is independent of the specific realizafer from the density matrix functior (p) by terms of lower
tion of the su(3) operator algebra. degree. The ultimate reason for the discrepancy is that quan-
tum fluctuations are not included in the density matrix
theory. A mathematically rigorous presentation of the rela-
tionship between polynomial operators in the enveloping al-

The group SU(3) consists of the complex 3 unitary  gebra and functions of the density matrices is given in the

matrices with unit determinant. By exponentiation, a repre-Appendix.
sentationo of the Lie algebra su(3) extends to a represen- It is important to maintain consistency within the density
tation, also denoted by, of the group S3). Even when matrix theory and not replace the values of the Casimir func-
the Lie algebra representation is known, it is very difficult totions, Eq.(2.16), by their quantum expectations in hopes of
determine explicitly the group representation. However thean improved theoretical description. Similarly the square of
corresponding group transformation of the densities ighe total angular momentum i§ in the density matrix

C. SW(3) group transformation

simple. theory, notl (I +1).
Suppose¥ is a normalized vector in the Hilbert space
that carries the unitary representationof SU(3). Letp E. Admissible densities
=M (V) denote its corresponding density in the dual space. . L . -
The group SU(3) transform¥ into o(g)W while the den- In the mean field approximation the admissible densities
sity is transformed intoM[(g)W]. For the transformed are restricted to those that lie on a level surface of the Ca-
density we have ' simirs, i.e., a surface on which the two Casimir functions are
constant. The SU(3) group transformationsSAldave each
M(o(9)V),Z2)=(o(9)V|o(Z)|o(g)V level surface invariant. Since any Hermitian matrj
(g (9)¥|a(2)|o(g _ _ y Hern ix
_ e su(3) may be diagonalized by some unitary transforma-
=(¥[a(g) o(2)a(g)|¥) tion g e SU(3), each level surface contains a traceless diag-
—(V|o(g~1Zg)| W) =tr(p g~ 1Zg) onal matrix. Because eigenvalues are unique, each level sur-
face contains a unique diagonal matrix up to ordering of the
=(gpg~1,2). (2.13  real eigenvalues, which may be parametrized by non-

054303-3



Ts. DANKOVA AND G. ROSENSTEEL PHYSICAL REVIEW (53 054303

negativeN and u as in Eg.(2.12. Note that a diagonal Eg. (2.15 that are quadratic in the angular momentum ma-
density only corresponds to a highest weight vector wken trix may be expressed in terms of the vector components
and u are also integers.

In the typical case, a level surface is six dimensional, trl2=—21yl,,
because there are two functionally independent conditions 5 )
imposed in the eight-dimensional dual space. In the special tr(gq %) = oyl . (3.9
cases ofu or A equal zero, the level surface of admissible
densities is four dimensional. A. Angular momenta and deformations

The range of possible angular momenta and deformations
is restricted because the admissible densities lie on a level
. . . surface of the Casimirs. Since any admissible density may be

The rotation group SO(3) is a subgroup of the specialotated to the principal axis frame, it is sufficient to solve for
unitary group SW@3). A density p=qg—zil in su(3)" is  the admissible body-fixed densities. Such densities with total
transformed by a rotatioRe SO(3) into the density Atb  angular momentunh are simultaneous solutions to the alge-
=RpR"=RqR - 3i RIR". Since any real symmetric matrix praic system
can be diagonalized by a rotation matrix, there isRa
e SO(3) such that the rotated quadrupole moment is diago- g;+0d2+03=0, (3.9
nal,

. su(3) ROTOR STATES

1
_ 2 2__
q=RqR =diag(d;,dz2,0s). (3.2) 2 Git5l?=Cs, 3.7

The eigenvalues are unique, up to their order, which we fix 3

to beqgz=q,=0q,. From a geometrical viewpoinR rotates 2 qﬁ__z %'E:Cs, (3.9
the laboratory frame into the body-fixed frame in which, by k 4%

definition, the system’s quadrupole momeris diagonal. At 2 2 2 o

the same time the laboratory angular momentuis trans- T+ 1+13=1" (3.9

formed tol =R | R, which is the system’s angular momen- his is the fund | f alaebrai . f
tum projected onto the body-fixed principal axes. The matrix! S IS the fun a;lmenta set of algebraic equations for SU(3]2
| is antisymmetric, but otherwise arbitrary. In general, thedenSIty matrix theory. It is an underdetermined system o

angular momentum vector is not aligned with a principalf0Ur €quations for six unknownsy(,d,,gs;l1.12,13). The
axis. fundamental system imposes the constraint that a density is

. L= . admissible and has total angular momentum
The diagonal entries off define the 3,y) deformation _ : ;
parameters in the body-fixed frarfi23)] The system(3.6)—(3.9) determines the change in the

shape of a rotating body as the angular momentum increases.
20 Since it is a system of four equations for six unknowns
k=P cos( v— k? , k=1,2,3. (3.2 (qx,ly), analytic solutions are given uniquely only when ad-
ditional assumptions are imposed. Several important special

Note that the deformation parameters are defined for th&olutions can be. derived i_ncluding rotation about principal
SU(3) quadrupole operator, E€2.1), and not for the true @Xes and spheroidal nuclei.

microscopic quadrupole operator. The chosen ordering for ExPressed in terms of thes(y) collective coordinates
the eigenvalues, corresponds t@=0 andy e [0,7/3]. The and spherical coordinates for the angular momentum in the

trace of any power of is a rotational scalar; the quadratic Pody-fixed frame, I,=1cos¢siné, I,=Isingsing, I3

and cubic scalars simplify to =l cos6, ¢e[0,7], #[0,7/2], the system3.6—(3.9) is
equivalent to
tr(g?) =357 (3.3 -
3B2+12=2C,, (3.10
tr(q®) = B°cog3y), 3.4

3B3coq3y)+3B1%A(¢,0,y)=4Cs, (3.11
which are model-independent measures of deformafidh Acod3y P 0.7 s

The angular momentum is a pseudovector. The vectofyhere
components of the angular momentum are given lpy
=e&ijil i in the laboratory frame and bly= ;1 in the A(,0,v)=31[(23 sirfp—3)sirtdsiny
body-fixed frame. The rotation of the vector angular momen- ir?
tum =R is equivalent to the matrix transformation +(3simo—2)cosy]. (312
=RIR". A principaleaxis rotation requires that two of the  tpe deformationg is a unique function of the angular
three components df are zero. A tilted rotation in a princi- momentuml. This is a kinematical property of the su(3)
pal plane requires that one componentfd‘s zero. But, in  model which is due to the shell model compactification of
general, all three components of the angular momentum ithe rotational algebra, i.e., the replacement of the exact quad-
the principal axis frame are nonzero. The rotational scalars olupole operator by the in-shell Elliott expression. The energy
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is irrelevant to theB(l) functional relationship. In contrast
the triaxiality y and the direction of the angular momentiim

are not determined uniquely by the fundamental system of
equations. Additional assumptions are required to derive so

lutions, either kinematica(rotation about principal axis or
spheroidal shapeor dynamical(energy functionakE[ p]).

To these four equations, two more must be added to deP
termine the quadrupole moments and angular momentum. It
the following two sections, the critical points of an energy
functional are used to supply the missing equations. But, in
this section, many simple kinematical solutions are derived
that are independent of the energy functional. Principal axis
rotations require that two body-fixed components of the an-

PHYSICAL REVIEW C 63 054303

Bmax

B min

gular momentum vanish. Spheroidal solutions are obtainec0 T

when two moments are equal. First, however, the range 00 0 |

the angular momentum that is compatible with the funda-

mental set, Eq93.6)—(3.9), is determined.

The functionA(¢, 8,y) ranges from—1 to +1. Within
the chosen interval for the angle ye[0,7/3], siny>0 and
cosy>0. The maximum values for sish and sirfg are 1, so
Amax=costy—n/3)=1 when y=/3. Similar argument
leads toA,;,=—1.

Solution 11l.1. The minimum angular momentum is=0

and the principal axis quadrupole moments of a nonrotating

body are

_2)\+,u At —\N—2u

B="3 ZU=—3 ZWL=—3 (3.13

Note that any permutation of the three axis lengths are solu-

tions to the systen(3.6)—(3.9) when|=0.
The system(3.10), (3.11) has a solution for the intrinsic

angular momenturhat both ends of the allowed intervals of

values for ¢, 6, and y: I|=\N+pu when y=0, 6=0, ¢
e[0,7] and A<u; I=N+u when y==«/3, 6=7/2, ¢
=7/2 and\> u.

Proposition 1.The maximum allowed angular momentum

FIG. 1. The deformatiorg is a unique function of the total
angular momentun. At the maximum angular momentuin=\
+ u, the deformation is a minimung ,i,=\—u|/3.

SO+p) (A= p)? dlcog3y)]
L()\_M)Z # 9 dl y=ml3
dA
+(>\+y,)2m (3.15
I=N+pu

Assumingy(l) is a differentiable functiory/dl+ >~ and

d[coq3 d
% -3 sin(3«y)d—|7 ~0. (3.16
y=ml3 y=l3
Therefore
2dA (N+pu)
N+ )= =12——Au>0, (3.17

dl I=\+pu (7\_,”«)2

is the same as the upper bound found in representatiodr the functionA increases as the angular momentum in-

theory, | =\ + u.

Proof: Reductio ad absurdunsuppose the angular mo-
mentum can have values bigger tharm u. Consider the
behavior of (1) andA(l) in Egs.(3.10,(3.11) as the angu-
lar momentum increases.

For the case of oblate spheroids= /3 and rotation
around the symmetry axisf¢(= /2, 0= /2) the trigono-
metric functionA=A,,=1. ForA> u the angular momen-
tum isl=\+ u, and the deformation is@=\ — w. Differ-
entiating Eq.(3.10 with respect to the angular momentum
and evaluating the result for=\ + 1 shows that as the an-
gular momentum increases, the deformation parangtiz-
creases:

dB
dl

N+
- 2o

- ﬁ (3.19

I=N+pun

Differentiation of Eq.(3.11) with respect td and evaluating
the result forl =\ + u leads to

creases beyont=\+ . But this contradicts the fact that
| =N+ u is a solution to the system when the functitas
its maximum allowed valuéA,,,=1. Thus, the maximum
value of the angular momentum ist .

Solution 111.2. When| =\ + u, there is a unique solution
to Egs.(3.6)—(3.9) with three possible cases for the deforma-
tion: (@) A>u, y=m/3, B=(\—u)/3 and noncollective ob-
late rotation;(b) A<u, y=0, B=(u—\)/3 and noncollec-
tive prolate rotation{c) A= w, 8=0, y and the rotation axis
for the sphere are undetermined.

From EQ.(3.10 for the quadratic Casimir, the deforma-
tion B and the total angular momentuin are evidently
bounded. For no rotatiorl,=0, the deformation attains its
maximum Ba=2VA2+ A+ u%/3. Although3=0 is a so-
lution to the quadratic Casimir equation, itrist generally a
solution to the cubic Casimir, Ed3.11). The exception is
N=pu. Thus, the cubic Casimir invariant is essential to the
upper bound for the angular momentum and the lower bound
for the deformation. As proven above, the maximum angular
momentuml =\ + u corresponds to the minimum deforma-
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tion Bmin=A—ul/3. In Fig. 1,8 is plotted versus; the so-

lution curve

is an ellipse.

B. Analytical solutions for rotation around one

The systen(3.6)—(3.9) can be solved analytically for the 0
case of general\, ) and rotation around one of the princi-
pal axes, say the one axis. Assume that the angular mome-

of the principal axes

tum is directed along the principal one axis=1;=0, I,

=1. In this section, in contrast to the prior convention, thel
quadrupole moments of the principal axis solutions are noZ
ordered. Thus the rotation axis is fixed, hjt may corre-

spond to the short, long, or middle length axis.

Solution 111.3. For rotations about the principal one axis,
there are three analytical solutions of the algebraic system

(3.6—(3.9):
N+2u AN2u 1
W=""3 U= T3 AE—12,
O<I=<N\, short axis rotation, (3.18
2Nt 2Nt up 1
Q1=+t —%— O23=— FoVp =17,
3 6 2
0=<I=ypu, long axis rotation, (3.19
A—p A—pu 1
W=—"3 " Gz g TV )15
O<I=<\+pu, middle axis rotation. (3.20

Note that, sinceq; is the deformation along the rotation
axis—short, long, or middle—the formulas fgs andqg; can

be written as

60

g, 1
q2,3:_5i§\/|r2nax_|2' (3.21)

50 1

Y (deg)

Aw=(8.4)

— — Rotation about long axis
—— Rotation about short axis

FIG. 2. The triaxiality parametey as a function of the total
angular momentunh for rotation around the long and short princi-

pal axes whenX,u)=(8,4).

PHYSICAL REVIEW (53 054303

TABLE I. Deformations for rotation around the one axjs,
=0.

I\ g /N d/N gs/\ v°
1 1 2
21 1 2 0.00
3 3 *3
1 1 15 1 Ji5
1 L1 V15 1 V15 0.81
4 3 6 8 68
1 1 43 1 3
_1 1B SR 3.69
3 6 4 612
3 1 1 47 1 7
3 21 R R 11.12
z 3 6 8 68
1 1 1
1 1 1 60.00
3 *5 *5

The following can be seen immediately.

(1) The quadrupole momem; along the rotation axis is
independent of the angular momentdim

(2) At the maximall, viz., | nax=Ns T mase s | maxce N+ s
these solutions are non-collective spheroidal, i.e., axially
symmetric with respect to the axis of rotation.

(3) The three solutions correspond to bands rotating about
the short, long, and middle axes of the 0 nonrotating so-
lution. For\> u, the yrast band is described by the system
rotating collectively about its short axiss <\. When the
system rotates collectively about its long axis, the densities
correspond to the band headssD=K=y. It is unclear if
the densities describing rotation about the middle axis are
found in nature; recall that such rotations are unstable in
classical mechanics.

(4) Triaxiality is indicated by they parameter. In Fig. 2,
the triaxiality is plotted versus the total angular momentum
for short and long axes rotation in tha,u)=(8,4) irrep.
Each band terminates in a phase transition to a noncollective
rotation. For short and long axis rotations, the general ex-
pression for triaxiality is

ﬁmzﬂ— N

3 short,
A 2u+3\2—12
tany= \/_2_2 (3.22
me—l1
AL long.
\/§ 2Ntpu g

(5) When ©=0, C,=3\?, C3=35\3, 0<I=<\, and the
solutions scale as:

1 1.1 ( [ )2

N 37 N 62 1 N (323
Whenl =0, the nucleus is a prolate spheroid. For small val-
ues of the angular momenturing\, the rotation is approxi-
mately collective prolate, but the shape is slightly triaxial.
When the nucleus rotates with the maximum allowed angular
momentuml .=\, it is an oblate spheroid rotating around
its symmetry axignoncollective oblate rotatignThe results

for the deformation as a function of the angular momentum
are summarized in Table I.
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TABLE II. Deformations for rotation around the one axis, the two equal quadrupole momentsdpgnd the unequal axis

=0. moment by—2qg. The quadratic Casimir, Eq3.7), deter-
mines the deformation as a function of the angular momen-
p a1/ Py s/ 7° tum
1
1 1 2 2 2_
0 - - _Z 60.00 69°+ s 1°=0C,. 3.27
"3 "3 3 2
1 1 1 15 1 15
a +3 -5 +g ~3 —g 59.19 Let K denote the component of the angular momentum along
1 1 13 13 c6.41 the symmetry axis.
2 "3 "6 "6 4 '
1. Spheroids rotating around one principal axis
3 1 1 7 1 7 48.88 _ _ ) .
I t3 st 8 5§ : Solution 11.4. K=0: Collective rotation perpendicular to
the symmetry axis. A solution must satisfy the cubic Casimir
1 L 1 1 0.00 :
+3 s ~5 : equation(3.8)

—24q3-3q1%2=4C;. (3.28

(6) When\=0, C,=35u? C3=—3u3 0<I<pu, and the
solutions scale ag: Eliminating the angular momentumfrom Egs.(3.27) and
(3.29 yields a single equation for the deformationg®6

qr 1 o3 11 e —3C,q—2C3;=0. There is only one physical solution:
oo R Ca1-[-]. G2
mo 3 M 6 2 "
_ MR gy 3.2
The initial shapegat 1 =0) is an oblate spheroid. For small a= 3 Tk (329

values of the angular momenturi< u, the rotation is ap-

proximately collective oblate, but the shape is slightly tri- When\ > u, this is a prolate spheroid; for< u, the solu-

axial. When | reaches its maximum valuéy,,=u, the  tion is an oblate spheroid. The other two solutions to the

nucleus is a prolate spheroid rotating around its symmetrgystem(3.27), (3.28 , q=3(2\+u) andg=—3(\+2u),

axis (noncollective prolate rotationThe deformation as a are unphysical because they imply negative

function of the angular momentum is given in Table II. Solution 111.5. K=1: Noncollective rotation about the
(7) WhenA=pu, C,=2\%, C3=0. For a given angular symmetry axis. A solution satisfies the cubic Casimir equa-

momentuml, when @;,95,q3) is a solution, so is {q4, tion (3.9

—02,—03).
;=0 and O<I<2\: —12q3+3q1%=2C;. (3.30
1 Eliminating the angular momentumfrom Egs.(3.27) and
4+ a\2_,2 Lo,
G2= =5 VAN, (3.30 yields a single equation for the deformation,q34
—3C,q+C3=0. All three solutions here are physical:
Js3=—0>. (3.29
g=(\+2u)/6, |=A, (3.3)
Here, the nucleus begins as a triaxial shape rotating around
the middle axis. Al ,,,=2\ the nucleus turns into a sphere. q=—(2N+p)l6, 1=pu, (3.32
.=\ and O<I=<N\:
N1 g=(N—w)l6, I1=\+pu. (3.33
o=~ 5+ VA" =17, o . .
2 2 Wheng>0 the solution is an oblate spheroid; whg+ 0, it
is prolate. Note that these noncollective spheroids are the
Al band terminations of the principal axis solutio(3.18
- 2_ 12 y
Ga=— 5~ VA= 1% (326 (319, and(3.20.
In this case the nucleus is triaxiallat 0 and begins rotating 2. Tilted rotation of spheroids

around its long axis. At the maximum value of the angular Solution 111.6. Kis between 0 and. ie.. the rotation is
momentumi =\ the nucleus is a prolate spheroid rotating jtaq. Using the cubic Casimir equation, E3.9), the

noncollectively. squared projectioi 2 may be solved for as a function of the

angular momentunh,
C. Spheroidal solutions

Analytical solutions can be found for spheroids either ro- , 12+4C,  4Cs
; L . . .t K= —_—. (3.39
tating about a principal axis or in a principal plane. Denote 9 9q
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57 and the deformation are given for this case. Note that the
projection is approximately constaKkt~4 until | nears the
top of the band; this is evident from the Taylor expansion
(3.36. Thus there is &~ u band of prolate states fqu

K <|<2\J\u. The band may be viewed from the top down:
% (. w=(8,4) Start with a collective rotation of a prolate spheroid with
Tilted prolate spheroid =2\u. As the body rotates more slowly, it rapidly ac-

quires a componer~4 along the symmetry axis. As the
magnitude of the angular momentum becomes smaller, its
direction becomes more aligned with the symmetry axis. The
1 band terminates in a noncollective rotation wHenK = .
When A> u there are also tilted oblate solutions fer
<|=<\+u. The two end points correspond to noncollective
rotation and termination of the short and middle axes bands
(3.31) and (3.33.
When A <pu, an oblate spheroidg>0) rotates with the
FIG. 3. For (\,u)=(8,4) the projectiork onto the symmetry projection
axis of the total angular momentulof a rotating prolate spheroid

; 1 8
is plotted versus the angular momentum. 23240 T2 2y
Ke=\ +9(| \°) 27()\ w)(pw+2N)
When\ > u, a prolate spheroidg<<0) solution exists in the
interval u<1=<+/4\ u with the squared projection of the an- «|1- 2p+A (3.37
gular momentum on the symmetry axis J2u+1)Z2=3(17=2\?) '
1 8 2
K?=pu2+ (12— u®)+ 55 (A=) (N +2
M 9( M ) 27( lu)( lu) :A2+(2M/T)\)2(|2_)\2)
2h+ (N— ) (+2\)
1- (3.35 G NTRART AN 2 22
VN +p)?=3(17 = u?) FIESVAR - @3
w? For 1=\, the solution is an oblate spheroid rotating noncol-
:M2+—(|2_M2) . . . . \/—
(2N+p)? lectively about its symmetry axis. At a maximurs 4\ u,

the oblate spheroid is rotating perpendicularly to its symme-
try axis. When\<I<y4\u, K is approximatelyx. From
(3.36 the Taylor expansioli3.38, the projection is approximately
constantK~ X\ until one nears the top of the band.
For | =pu, the prolate spheroid rotates noncollectively about |f A=, the cubic Casimir is zero, and
its symmetry axis, Eq3.32. At a maximuml = 4\ u, the
prolate spheroid is rotating perpendicularly to its symmetry
axis. In Fig. 3 the projectiorK is plotted versud for the
(\,u)=(8,4) prolate spheroids; in Table Ill the projection
As the angular momentum varies from a minimumgy to a
TABLE lll. Tilted rotation of spheroids for thé8,4) su(3) rep- maximumI=2u, the projection of the angular momentum
resentation. The projection of the angular momentum on the symen the symmetry axis varies from=u to K=1% u.
metry axis isK.

(N=p)(N+2p)
BECST

IZ_IMZ

9

K?=u?+ (3.39

IV. ENERGY FUNCTIONAL |

Prolate Oblate
I q K q K The particular solutions enumerated in Sec. Ill correspond
to simple kinematical situations. The actual physical densi-
4 —3.33 4.00 ties must be determined from a dynamical argument. An
> —-3.22 4.04 equilibrium density for a rotating body in the su(3) model is
6 —3.07 4.07 a critical point of the energy function&[p] on the surface
7 —2.89 4.10 of admissible densities. For a body with constant moments of
8 —267 4.07 2.67 8.0 inertia, the energy is
9 —2.39 3.96 2.39 8.3
10 -2.03 3.62 2.03 8.7 E[p]=A112+ A 15+ Aq13, 4.1
11 —1.54 2.34 1.54 9.4
12 0.67 12.0 whereA;,A,,A; are real constants. Suppose the total angu-

lar momentum is, the admissible densities lie on the surface

054303-8



SU(3) DENSITY MATRIX THEORY PHYSICAL REVIEW C 63 054303

determined by the quadratic and cubic Casirdirs andp is origin of the extra solutions is the different constraint system
a critical point of E[p] on the surface. By the Lagrange for the admissible SU(3) surfaces. The physical origin is re-
multiplier theorem, there are four real constaatb,c,d as- lated ultimately to the shell model, which is responsible for
sociated with each of the constraint equatidBs)—(3.9)  the su(3) quadrupole operat¢e.1) instead of the major

such thatp is a critical point of the functional shell-mixing quadrupole operatair2Y?(Q,,).
L Suppose the kinematical solutions correspondingato
_ 2,52 =b=c=0 are excluded from consideration. In this case a
Flpl=Elp]+alartaz+qs) +b 2k: Gict3 | Cz) solution to Eq.(4.3) requires

0=4(d2—01)(d3—d1)(4z—d2) +13(d— )
+15(03—0dy) +15(d.—a). (4.6

“.2 In conjunction with Eqs.(3.8),(3.9) this condition enables
with a free variation on d;,d,,q3,11,12,13). Altogether the determination of the body-fixed angular momentum com-
there are ten unknowns, including the Lagrange multipliersponents in terms of the quadrupole moments
that must satisfy the system of ten equations,

3
+c ; qij—zik‘, Ol 2—Cg | +d(12+12+12—1?)

P 4(d3+20203+2 0303+ 03) —2q1Cs

3
3q§_Z|§), 4.3 b3 3(a3+ 0,05+ 03)

JF (4.7)
0=—-—=a+2bgtc

0k
. 3 and similarly forl,,l5 by cyclic permutation of 1,2,3. After
_dF eliminating the Lagrange multipliers the system reduces to a
0= aTk_ZI k( A Zch+d) (4.4 single independent equation

plus the four constraint equations. Although the number of ~ 0=1,[(A;—A3)q;+ (Az— A1)+ (A —Az)ds],
equations in the system is large, each is just a polynomial of (4.9

low degree in the variables. Thus analytic solutions may be
- o wherel,l; are assumed nonzero. There are two cases to
determined rather easily in many cases.

Indeed each of the kinematical solutions enumerated ir(]:on5|der as one of the two factors in the above equation must

Sec. lll are particular solutions to the Lagrange multipliervaniSh' . o . o .
systém Solution IV.1.Principal plane rotations of triaxial bodies.

(1) Rotations about a principal axis, say the one axisone of the components of the angular momentum vanishes,

. - - . 'say the two axis projectioh,=0. Every critical point of the
\g/]leggdbzfq:r(lg.;? b(_3.029)0are critical points of Eq(4.2) principal plane system is determined by a real @ppbdf the
=A, =pb=c=0. . ;
(2) Spheroidal solutionsg,=q3;=q+#0 andq,=—2q, eighth degree polynomial
are obtained whea=b=c=0 and 0=57605+28812—2C,)q5+192C5q5 + (3614~ 168C,I?

1(Ay—d)=15(A—d)=13(A3—d)=0. (4.9 +192C3)q5+(72C 512~ 144C,C5) Q3+ (—12C,1*

Principal axis rotation is one type of solution. When two 4+ 48¢212+16C2—48C3)q2+ (8 C2C3—4C,C5l?)q,
energy parameters are equal, #gy= A, tilted rotations are
also critical points fod=A, andl,=0. +C514+(4C5-4C))12-8CC5+4C). 4.9

It is interesting to compare the classical rigid rotor to an .
su(3) rotor. A classical rigid rotor in equilibrium is a critical Whenda is a real root, the other two quadrupole moments
point of the energy4.1) subject to the constrairﬁ:lﬁzlz. and angular momentum components are given by

This is mathematically equivalent to the su(3) constraint (12-2C,)(6 q2—C,)
problem whera=b=c=0, viz., Eq.(4.5). The su(3) prob- g,= 3 ! 0s=—0,—0; (4.10
lem allows for additional critical points. The mathematical 4(6q1+Ca)

2 (02~ 00)1*~ 4[01(d2— 09) +A3(Ge—A) T A3 —G)] 5 ,
_ 2=z

2
2 T 12. (4.12)

A valid solution is attained whenever the squares of the angular momentum comptfneim;re non-negative.

Sincel ,=0 there is a reflection symmetry: when is a valid solutiong; also satisfies the eighth degree polynomial. Thus,
solutions come in pairs except in the spheroidal egseqs. To eliminate this trivial redundancy, we choasg=qs. In Table
IV two sequences of solutions are given for the casgu)=(8,4). There are no valid solutions for angular momentuess
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TABLE IV. Principal plane rotationd,,=0, for the(8,4) su(3)  coefficients are all distinct, the system may be solved for the

representation. guadrupole moments: Farj,k cyclic,
| gz a2 as I3 a1 a2 93 I3 gi=(2A—A;—AJu, (4.13
4,00 —3.33 —3.33 6.67 4.00
5.00 —3.33 —3.10 6.44 4.05 - 20,17
6.00 —3.33 —2.80 6.14 4.11 12(A§+A%+A§_A1A2_A2A3_A3A1).
700 —334 —242 576 4.19 (4.14)

8.00 —3.35 —-192 527 431 —533 267 2.67 0.00

9.00 —3.37 —1.24 461 448 —4.76 2.07 268 3.47 Since the ratios among the quadrupole moments are constant,
10.00 —3.54 0.06 3.48 4.80-3.88 0.93 295 4.78 the triaxiality parametety is fixed and independent of the
10.08 —3.68 050 3.18 4.84-3.68 0.50 3.18 4.84 angular momentum. The angular momentum components in
the intrinsic frame are determined from E@.7); a valid

) ~ solution demands that the square of each angular momentum

(3.32 begins a band of principal plane triaxial solutions thatstart at rather large angular momentum and terminate at the
terminates at ~10.08. Whenl =8 a second band emerges maximum angular momentuir= \ + .

starting from the noncollective oblate std®31) and also
terminating atl ~=10.08. Above the critical angular momen-
tum 1 ~10.08, the pair of real roots turns into a pair of com-
plex conjugate roots. A second natural choice for the energy functional is a
There is a third band of principal plane triaxial rotors thatpolynomial in the so(3) integrity basis of (). By defini-
begins atl = 4\ u which is the termination of the sequence tion, any rotationally invariant polynomial in the su(3) en-
of prolate spheroidal solution8.29. This band terminates veloping algebra is a function of the so(3) integrity basis.
at | =N+ u in the noncollective oblate state. In Fig. 4 the The basis consists of five functionally independent polyno-
projectionl; of the angular momentum on the short axis for mials: the two Casimirs},,Cs, the square of the total angu-
this band is plotted versus the angular momentufor the  lar momenturrL?, and two scalars of degrees three and four
case {,u)=(8,4). In Fig. 3 this band is shown as the con-[25],
tinuation of the prolate spheroid band to triaxial principal

V. ENERGY FUNCTIONAL I

plane rotors when>\4xu; 1,=K=0 is the projection of Xz=LQ{PL;, (5.1
the angular momentum on the long axis.
Solution IV.2.Constanty bands. If all three components X,4= LiQi(jZ)nglf)Lk- (5.2

of the angular momentum are nonzerp# 0, then

_ The eigenvalues of the Hermitian operatatgand X, in a
(A2~ Ag)trt (As=A))dzF (A1~ A2)45=0. (412 represgntation are not integdis). 0?1 a Ie\il surface the
When two of the energy coefficients are equal, 8ay As, Casimirs are constants and the other three integrity basis
this equation forces a spheroidal solutiop=gs. When the ~members may be evaluated in the principal axis franme
=12, Xg=qulZ, X,=0qZlZ. A simple energy functional used
127 in nuclear structure applications is a linear combination of
A =6.4) 12, X3, and Xy,
1, = projection on short axis

E[p]=Al?+BX3+CX,, (5.3

whereA,B,C are real constan{27]. Note that the moments

l 10 - of inertia for this energy functional are not constant, and they
depend on the deformation. Whéh~ 0, the energy may be
expressed conveniently as

E[p]=Al12+C(vXa+Xy), (5.4)

wherev=B/C. Sincel? is constant on the constraint surface
?47~u)”2 s 6 s 12.0 and C determines an energy scaling, t_h_e critic_al points de-
pend only on the real parameter The critical points of Eq.

(5.4) on the constraint hypersurfa¢d.6)—(3.9) in the dual
FIG. 4. For (\,x)=(8,4) the projection of the angular momen- Space are determined by the Lagrange multiplier theorem in

tum on the short axis is plotted versus the total angular momentur@ way similar to Eq(4.2).

for a sequence of triaxial tilted rotors which are critical points of ~Once again, the kinematical solutions of Sec. Ill are criti-

energy functional I. cal points of Eq(5.4).
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(1) Rotations about a principal axis, viz., Eq&8.18- 10
(3.20), are critical points for the multipliera=3cq,qs, b 0.9
=3cq4/2, d=q,(g,+v+3c/4), and

0.8 4

0.7 1

12(2q,+ v
c= 2( Gt v) . (5.5 o 081
3(2q3+ 0203~ 1%/4) S
When the denominator in the above expressiorcfis zero, RETE

there is still a principal axis solution, but only when the 0.3 1
parameterv=—2q,. For example, the band given by Eq.
(3.18 for O<I<\ yields

0.2 1

0.1 1

12(2N+4u—3v) 0.0 » ! ' ' ‘
cC=———-———. (56) 0 2 . 4 6 8 10 12
Iu(N+p) |
When =0 the energy parameter must be 2\ /3.

(2) Spheroidal solutions are critical points only whin
=15. In this case the Lagrange multipliers may be chosen t(
yield the spheroidal solutions.

The equations for general triaxial rotors are obtained afte
eliminating the Lagrange multipliers from the system. Ignor- 40 1
ing the special case of spheroidal solutions, a solution re
quires that the rotation is in a principal plane.

Solution V.1.Principal plane rotations. Whelp=0 the
body-fixed angular momentum componehisl ; are deter- 20
mined from Egs.(3.9),(3.9). In addition to the constraint
equationg3.6),(3.7), the quadrupole moments satisfy 10 1

50 -

Y (deg)

30 A

0=12(q}+q3—40,0,03) — 31%d,+ 6v(43—dj) 0

0 2 4 6 8 10 12
X (d1—03) +2Cs. (5.7 |
FIG. 5. For (\,u)=(8,4), sequences of triaxial principal plane

'rotors are shown as plots afand (,/1)? versus the angular mo-
mentuml when v=20/3 for energy functional II.

Critical points of the energy functional are shown in Figs. 5
6, 7 for (\, ) =(8,4) and for three values of. 20/3, 0, and
—4/3. For each chosen there are two plots in the figure:
one of the triaxiality parametey versus the angular momen-
tum, and the other of the square of the rdtjdl versus the ment with the short axisl = 12).
angular momentum. .

In these figures only the principal plane Solutions V.1 are When v=—4/3 there are two bands, but there is a gap

drawn. There are, of course, the usual kinematical bands f(ﬁetween them. The first band begins as a triaxial maximally

principal axis rotations and spheroids which are not showntlltéd rotor atl =0 and ends as a noncollective prolate spher-

The equations are symmetrical under a simultaneous inteP—i‘_j atl =4._There Is a sharp pha$e transitipn to thed
change ofg; andqs, 1; andl5. As a result, the plots of principal axis rotor from a highly tilted configuration. The
(1,/1)2 are ?eﬂectiosr; S)llmmetr?é with respec7t 0 thig [1)2 second band is oblatelike frohs=8 to | =12 while the rota-

=0.5 horizontal line. One of the curves may be regarded alion is slightly tilted. .
a plot for (I,/1)2 while its reflection is a plot of I/1)2. If v=0 there are two bands, no solutions below4, and
When (,/1)2=0.5 the tilting of the rotation axis in the 1 & 98P betwgaen the bands. The first ban.d begins as a triaxial,
—3 plane is a maximum; whein /I =0 or 1, the rotation is maximally tilted rotor gﬂ =4, Increases n gngular momen-
about a principal axis. tum_ tol~6 before fglllng back to the principal axis nqncol-

If v=20/3, there are two bands, Fig. 5. The first banolIectlve prolate solution at=4. The second band begins at

begins at the triaxial =0 state and ends &8 as a non- I =8 and ends at=12; these oblatelike states are only par-

collective oblate spheroid. Note that maximal tilting is at- tally tilted.
tained for the =0 density—in vivid contrast to the principal
axis solution. The second band start$ a4 as a noncollec-
tive prolate spheroid and ends lat 12 as a noncollective
oblate spheroid. Although the two end points of this band are The correspondence between density matrix theory and
principal axis rotations, the densities in between are tilted athe irreducible representations of su(3) is quite close, but not
the direction of the angular momentum vector varies conperfect. In this section the similarites and differences

tinuously from alignment with the long axi$€4) to align-

VI. COMPARISON WITH REPRESENTATION THEORY
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FIG. 7. For (\,u)=(8,4), sequences of triaxial principal plane
FIG. 6. For (\, 1) =(8,4), sequences of triaxial principal plane rotors are shown as plots gfand (/1) versus the angular mo-
rotors are shown as plots efand (,/1)2 versus the angular mo- mentuml whenv=—4/3 for energy functional II.
mentuml whenv=0 for energy functional II.

integer. Similar reasoning fog=diag(1e'’,e'%) shows
between the two are discussed. Among the continuous familfat # must be an integer. A level surface of the Casimir
of surfaces of admissible densities, a representation may variants s_atlsﬂes the Bohr-Somm_erfe_Id quantization rules
associated only with those that satisfy a generalized Boht" and only If A a_ndH are non-negative integers. Hencc_a thg
Sommerfeld quantization rulgL9]. Consider the diagonal surfaces of admissible densities that satisfy thg quantization
density matrix p(,,,, Eq. (2.12, which is contained condition are in one-to-one correspondence with the irreps.
)\’u, ] . . )

uniquely in each surface. For each group element in the sub- The irreducible representations of the compact algebra

group of diagonal matrices su(3) are finite dimensional; hence, the spectrum of any Her-
mitian operator acting on the representation space is
g=diage’s,el% e’%), detg=1 (6.1) bounded. On a surface of admissible densities, the range of

any real-valued continuous function is bounded from above
where 6, ,6,, 6, are real numbers, define the complex num-and below, because these surfaces are closed and bounded

ber manifolds. Thus the values of physical su(3) observables
have a bounded range, whether Hermitian operators acting

YM9(g) = expli (2N + w) O1/3+ i (— N+ w) 6,/3 on irreducible representation spaces or real-valued functions

on surfaces of admissible densities. In particular, the range of

—i(N+2u)64/3}. (6.2 the total angular momentum is the same bounded interval,

O<I=<\+u, in an irrep of su(3) and on the corresponding
The quantization condition is that*#)(g) is a character of level surface of the Casimirs in the dual space sti(3)
the diagonal subgroup, i.e., whenegis the identity ele- The differences between representation theory and density
ment of the group,x»#)(g) must equal one. Whemy matrix theory are more evident from a comparative analysis
=diage'’,e '?,1) is a closed circle, € <2, the charac- of the angular momentum decompositions. For both SU(3)
ter ¥ (g)=e""? must equal one a#=2, or A is an irreducible representations and the adiabatic rotational
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model, the decomposition is achieved by angular momenturbands, Eq(6.4). The Elliott K=0 band corresponds to the
projection from a fixed intrinsic state. When the intrinsic density matrices which describe bodies rotating about the
state has a sharp quadrupole deformation, as it does in ttehort principal axis, Eq(3.18); this band terminates dt

adiabatic rotational model, the projected state6éM) are =\ when an oblate spheroid rotates about its symmetry axis,
orthogonal. In addition, each projected state is an eigenstat&g. (6.5).
belonging to the eigenvalu€?, of the Hermitian operatdr; For K#0 bands, the relationship between density matrix
that corresponds to the square of the third component of thand representation theory is not as clear. An obvious candi-
body-fixed angular momentufi28], date for the ElliottK=pu band is the sequence of prolate
spheroid densities which attains a maximum/4A ., Sec.
(43— 91 (93— 02)13=X,+q3X3+q10.12, (6.3 1l C 2. At this maximall the body rotates collectively about

its short axis. Because the projection of the angular momen-

where the quadrupole moments;(q,,qs) are real con- tum on the symmetry axis does not maintain a constant value
stants determined by the intrinsic state. K=u, Fig. 3, the geometrical interpretation as a fixi€d

In contrast, angular momentum projection from a su(3)band is not supported. In addition the density matrix band
highest weight vector yields a nonorthogonal basis that reterminates beforé=\+ . In Sec. IV a sequence of triaxial
quires Gram-Schmidt orthogonalizati9®9]. MoreoverK?  principal plane rotational densities which starts ht
is not an eigenvalue df which, indeed, is no longer well- = V4Au and terminates &t=\ + u was found. In our view
defined for s(3). These difficulties arise because the su(3)the density matrix theory indicates that the Elligtt=u
intrinsic state, the highest weight vector in an irrep, does noPand in a su(3) irrep does not exist in the strict geometrical
have sharp values for the quadrupole moments. Howevefodel sense, although it is a useful concept whesl
when a vector’'s angular momentunis small compared ta <VA4Ap.
and/or u, its deformation is little changed from that of the ~ For the otherK bands, there are more discrepancies. In
highest weight vector, Eq3.7). Thus, forl <max(\,u), the  particular, K bands in the density matrix theory need not
su(3) projected states are approximately orthogonalkehd terminate at =K+\. However, when is large compared
is an approximately good quantum number. According toto bothu and the angular momentumapproximate analytic
Elliott [15], the possible values df in an su(3) irrep §,x)  Solutions to the fundamental system, E(56)—(3.9), can be

are found that describe tilted rotation of triaxial rotors. For
>|>K, there are approximate solutions for which the quad-
K=min(\,u),min(\,ux)—2,...,1 or 0. (6.4 rupole moments in the principal axis frame are

The sequence of angular momentum states associated with a 2htp 12—K?

K band is 1= 3 22N+p)’
K=O:|=ma>()\,,u),ma>()\,u)—2,...,1 or O, B 2)\+M+\/;TK2+ 12_K2 66

K#0:1=K,K+1, ... K+max\,w). (6.5) z 6 2 42N+p)’ '
The density matrix theory shares some properties with 2N+u  JuP—-K? o 12—K?2
both the geometrical rotational model and su(3) irreducible U=~~~ 2 +4(2)\+M)

representations. The densities have well-defined values for

the deformation, but, on a level surface of the su(3) Caand the body-fixed projections of the angular momentum are

simirs, the deformation depends on the angular momentum.

In su(3) density matrix theory, E¢6.3) for I§ is an identity w?

when the operators are replaced by their corresponding func- 1=K?+ — (I 2—K?),

tions on the dual space and, instead of remaining constant, (2N +p)

the quadrupole moments now vary. For small angular mo-

mentum, as long as the deformation is constant, the geo- 2 s 2 %

metrical model, the density matrix theory, and the irreducible 12 E(I —K%) 1_m

representations of su(3) are equivalent theoretical descrip-

tions. For larger angular momentum, the connection between

the su(3) and geometrical models breaks down. Yet, because 12 E(IZ—KZ) 1— M

the deformation changes on a surface of admissible densities, 32 (2N +pu)?

the matrix theory maintains its correspondence with su(3)

irreps. The quadratic Casimir equation is satisfiedaio, ~?) and
Supposer> . In the density matrix theory, the band the cubic Casimir equation @\ ~3). For\ large compared

heads B=| =K<= pu are densities rotating about the long prin- to | and u, these triaxial rotors are approximately prolate

cipal axis, Eq.(3.19; the last bandhead is &K= u when  spheroids. The solutions form a band in which the compo-

the body is a prolate spheroid rotating about its symmetnynent of the angular momentum along the long near-

axis. The band heads correspond to the Elliott labeling of symmetry axis is approximatel.

: (6.7)

2
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TABLE V. X3 values for the ‘K=0" band of (8,4). The values TABLE VI. X3 values for the ‘'K=4" band of prolate sphe-
for q4,0,,q3 are calculated from Eq3.18). roids for (8,4).
I d1 4z ds Y° #(Xa3) X3 | q #(Xa3) X®
density eigenvalue density eigenvalue
0 —-533 6.67 —133 19.11 0.00 0.00 4 -3.33 106.56 108.18
2 -533 654 -121 2002 -21.33 —24.52 5 -3.22 77.17 72.06
4 -533 6.13 -080 23.13 —85.33 —93.90 6 -3.07 42.04 31.94
6 —-533 531 0.02 30.20 —191.98 —214.23 7 —2.89 4.13 —16.23
8 —533 267 2.67 60.00 —341.31 —383.81 8 —2.67 —38.20 —54.89
9 —2.39 —81.20 —123.64
10 —2.03 —123.20 —141.88
To distinguish among basis vectors with the same total —154 —161.04 —250.00

angular momentum in an su(3) irrep, states may be chosen
to be simultaneously eigenstates of some element of the

su(3)0so(3) integrity basis, e.gXs, X4 or some more  The “K=2" band in the representation space is taken as
complicated function of the integrity badig5]. Diagonaliz-  the sequence of states with intermediate values forxthe
ing justXg is the simplest choicg30]. For axially symmetric  gjgenvalue, see Table VII. In this case the geometrical den-

states the Hermitian operatbf is related toX; [28], sities are assumed to be principal plane triaxial rotbss,
=0 andl;=K=2 where the three-axis is the long axis. The
fgz 1 (idetQ@) 3, +12, (6.9 complex values at the end of tike=2 band for the values of

the quadrupole matrix are due to the restriction of the rota-

A stringent test for the density matrix method is to comparetion in one plane. They show that the assumptigr 0 is

the eigenvalues oK calculated in representation theory Not correct. There are nonzero projections of the angular mo-
with the simple geometrical densities. In Table V, the small-mentum on all three intrinsic axes. . .

est eigenvalues of; for each angular momentum state from ~ When =0, e.g.,*Ne for which (8,0) is the dominant
=0 tol =8 in the (8,4) irrep are compared to thg values  irrép, the angular momentum is multiplicity-free|

for K=0 geometrical densitie€3.18. SinceXs is a cubic  =0.2,... A. In this case, Bargmann and Moshingi,32
polynomial in the enveloping algebra and not an element ohave given an analytic formula for thé; eigenvaluesXs;

the algebra itself, the evaluati@r(X;) of this functioninthe =(N/3+1/2)I(1+1). The density matrix approximation is
dual space must be defined now. These values are calculat¥d=q,12=(\/3)I2. The difference is due to the omission of

for rotation about the short principal one axis by commutator terms of lower degree in the density matrix
approximation—+2 instead of the quanturh(l+1), and 0
¢(X3)=qyl?. (6.9 instead of 1/2.

The error in the density matrix calculation rises to a maxi- co so c SOTROPIC
mum of just 10% for the =8 state. VII. MPARISON WITH CRANKED ANISOTROPI

For thel =12 state of the (8,4) irrep, the eigenvaluexaf OSCILLATOR
is —234; for the noncollective rotation of the oblate spheroid |n conventional mean field theory nuclear rotational mo-
density, ¢(X3)=(u—\)(A+u)?3=—-192. For the band tion is modeled in a simple way by cranking the anisotropic

heads =K=0,2,4, the states in the representation space amgarmonic oscillator around one axis. For rotation with con-
taken to be the eigenvectors belonging to the maximal eigen-

values ofX3, 0,25,108, respectively. For the corresponding TABLE VII. X, values for the 'K=2" band of (8,4). The

geometrical densities given by rotation about the long prinfundamental system is solved for rotations in the 1-3 plane.
cipal axis ¢(X3)=0,27,107, as calculated via the analytic

formula(3.19. The error is negligible for small angular mo- | q; g, s v° ®(Xs3) X3
mentum. density  eigenvalue
In the representation space thK=4" band is chosen to
be the sequence of angular momentum states belonging &6  —5.06 —-1.60 6.67 16.70 26.67 24.52
the maximal eigenvalue of; for each angular momentum. 3 -507 -144 651 1783 0.69 0.00
In Table VI, these eigenvalues are compared to the values gf  —5.08 —121 6.28 1957 -3578  —14.28
¢(X3) for the sequence of tilted prolate spheroids 5 —-5.08 —-0.88 596 2214 -8290 —72.00
6 —509 —-043 553 2596 —140.86 —70.71
@(X3)=q(1?—3K?), (610 7 -511 021 490 3204 —210.35 —183.10
8 -5.13 132 3.82 4427 —29252 —159.29
whereq is the moment for the equal short axes a&is the g eC eC eC —336.36
component of the angular momentum along the long symmezg cC eC cC —201.45
try axis.
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stant angular velocityw around the one axis, the Hamil-
tonian (Routhian for one nucleon with mass in the rotat-
ing frame is

72 1 .
ho=— A+ Em(wfx%r w33+ w33 —wly, (7.0

wherew, (k=1,2,3) are the oscillator frequencies. For many2
fermions the model wave function is a Slater determinant

given by occupying the orbitals ¢, and it is an eigenstate
of the one-body operatdi “=3> ,h®, where the sum is over

PHYSICAL REVIEW C 63 054303

TABLE VIIl. Deformations for ?°Ne calculated with the
cranked anisotropic oscillator and the density matrix method.

| A1 4z ds
cranking density cranking density cranking density

0 —-267 —267 —267 —267 5.33 5.33
—-267 —267 —258 -—254 5.25 5.21
-269 -—-267 —231 -—213 5.00 4.80

6 -272 -—-267 -—-178 -—131 4.50 3.98
—-2.67 —2.67 1.33 1.33 1.33 1.33

the particles. When the deformation is not too large, mixing

between major oscillator shells can be ignof2a,33 and,

as a function of the total angular momentunthe energy of

a system of many nucleons in the anisotropic potential sim
plifies to

E(N)=fhoi3+ 5 hwySy+ 33— Iga— 1)
+ 3 hws(So+ Sa+ Vlaa— 1),

whereZ, denotes the sum of the quanta {- 1/2) over all
occupied orbitalsl ,,=[2,—24 is the maximum angular
momentum of the rotational band<d <1 ,,,,. Applying Fey-
nman’s lemma

the expectations of the dimensionless quadrupole moment
the rotating frame are

(7.2

IH®
(9(1)k

_0E

PR (7.3

(01)=3(231-3,-33), (7.9
(A2)=3(— 3(25,-3,-33) - $VIZ 1D, (7.5
(Aa)=3(— 3 (231—3,—33)+ 3\12,—19). (7.6

These expectations are exactly the values of the quadrupole

moment found with the density matrix method, E(&18—
(3.20. For example, whern¥;=3,=3,, the rotation is
about the long axis, Eq3.19, whereA=3,—-3,, u=3%,
—33=Imax- But their derivations involve different assump-
tions. The su(3) density derivation shows that principal axi
solutions are an immediate consequence of kinematics a

the restriction to su(3) admissible densities. The constraint
imposed by the quadratic and the cubic Casimirs are essefl

tial. The principal axis solutions are critical points for both

energy functionals | and Il. The natural inference is that the

principal axis solutions should be critical points for any

nonical (symplectic group transformation and expressing
the su(3) generators in the transformed basis, the Hamil-
tonian of the cranked anisotropic oscillai@AO) becomes

an element of the algebra. Hence the su(3) density predic-
tion for the quadrupole deformation is expected. Note,
though, that the energy of the cranked anisotropic oscillator
is not proportional td 2. When the oscillator frequencies are
optimized, the self-consistent energy of the cranked aniso-
tropic oscillator is

Ecao=3fiwo[21(2,53+7 1913, (7.9
wherew3= w,w,w3 is constant.

When the deformation is large the assumption of no
major-shell mixing is not valid. The anisotropic oscillator
energy and the expectations of the angular momentum and
fuadrupole moment can be evaluated analytically in terms of
the angular velocityw [34]. The final results cannot be ex-
pressed as analytic functions of the angular momentum, but
numerical calculations are elementary. For rotation around
the one-axis, the numerical values for the quadrupole defor-
mations from density matrix theory, Eq8.18—(3.20, and
from the exact problem of the cranked anisotropic harmonic
oscillator are compared for two even-evds-shell nuclei
20Ne and?Mg.

The case of the highly deformed nucled®Ne is pre-
sented in Table VIII. This nucleus is described by the (8,0)
SU(3) representation, which, for collective rotation around
the short one-axis, correspondside=3,=14,3;=22. The
deformations from the density matrix method are calculated

5]‘rom EQ.(3.18. These are compared to the values calculated

merically with exact cranking of the anisotropic oscillator

5]. The agreement is excellent. In particular, the band end
oints—prolate spheroid dt=0 and noncollective oblate
spheroid ai =8—are in perfect agreement.
The case of the triaxially deformed nuclet®g is more
interesting. The dominant SU(3) representation for this

physically reasonable energy functional. In the density malucleus is (8,4), which corresponds k=28, %,=20,

trix theory the energy is proportional 8 for both function-
als I and 11,

E()=a112 Ey(I)=(A+Bq+Cg)I% (7.7

1=16. In Table IX the deformations from the cranked an-
isotropic oscillator are compared to the values from Eq.
(3.18 for collective rotation around its short one axis. The

differences between the two theories are negligible.
In Table X the deformations from the cranked anisotropic

In contrast the anisotropic oscillator derivation is based oroscillator are compared to the values from E8.19. The
a specific assumption about the energy. When major shetigreement is excellent and shows that 319 can be in-
mixing is ignored, the cranked anisotropic oscillator is com-terpreted as the formula for the band heads: The nucleus
patible with su(3) dynamical symmetry. By making a ca-rotates around its long axis. At=4 the nucleus is a prolate
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TABLE IX. Deformations for the ‘K=0" band of *Mg cal-  to compute, yet the values from density matrix theory are a
culated with the cranked anisotropic oscillator and 8918 from  pack-of-the-envelope calculation. This illustrates the power

the density matrix method. of the density matrix theory and indicates its potential for
analyzing more complex algebraic models.

' W . Q2 . ds . Density matrix theory transforms the angular momentum

cranking density cranking density cranking density decomposition problem into a geometrical analysis of the

0 -533 -533 —133 —133 6.67 6.67 range of the angular momentum fur)ct'ion on gdmissiblg sur-

5  _534 -533 -123 —121 6.56 6.54 faces. In many cases, such ag3y this is tec_hn'lcall'y easier
than the mathematical procedure of identifying irreducible

4 —-534 —-533 -090 -0.80 6.25 6.13 S . - .
subspaces of SO(3) within an irreducible representation of

6 ~536 —533 ~026 0.02 562 >:31 the model's algebray. The latter is a difficult task when

8 —533 -533 267 267 267 267 gebray.

SO(3) is not canonically embeddedgn
In density matrix theory, the cubic su(3) Casimir plays a
role equal to the quadratic Casimir in determining the set of
dmissible densities. In the usual su(3) model, the quadratic
asimir has a distinguished part because the quadrupole-
quadrupole interaction is a linear combinationCafand 2.
The density theory allows for many solutions, including
VIIl. CONCLUSION tilted rotation in a principal plane and more intricate rota-

. . . . ._tional configurations. The physical interpretation of these so-
__The density matrix method provides a simple geometrica|, sjons js simple and may be adopted for the corresponding
interpretation for the rotational states in su(3) irreduciblegiaie vectors in irreducible representations.

representations. Each density in the dual space has a direct 1o density matrix method may be applied to any dy-

physical interpretation as the expectation of observables iR, mical symmetry algebmg. The admissible densities of the

the algebra. But the quantum superposition principle angh,qe| are a level surface of the Casimirs in the algebra’s
state fluctuations are not incorporated directly into the deng, space. For a semisimple Lie algebra, the dimension of

sity theory because the admissible de_nsities do not form fhe generic level surfac®, equals the dimension of the
vector space. Nevertheless, the density formulation reproéllgebra minus the rank of the algebra. There are also singular

duces mar:]y properties of th? quantized irreduli;ibledrepreslelpe-vel surfaces whose dimension is even smaller, kg0 or
tations. This situation is similar to Hartree-Fock and its rela- _ : : PR
tionship to the quantized shell model. Although Hartree—'u_(-) Ie.vel surfaces are just four dimensional. In .nuclear

. ’ X '~ applications the angular momentum algebra so(3) is a sub-
Fock was founded on the independent fermion assumptio

. . ; r};llgebra ofg. Hence, a rotationally invariant energy func-
density matrix theory shows that, when viewed from an aPtional enables a further reduction in the dimension to

propriate perspective, the essential character of the me mO,—4 after rotation of the system to an intrinsic frame

ﬁ?'d met_hod does not demanq this asgumption. In fact den(—a reduction by 3, the dimension of the rotation group, and
sity matrix theory can be applied effectively to describe COI'restriction to fixed angular momentun). For the SU(3)

lective rotational states. : . ! . )
. . . roblem, the dimension of the algebra is 8, its rank is 2, and
SU(3) density theory is more tractable than either th he effective dimension is 2 for a rotational scalar energy

irreducible representation theory or the cranked anismmpi?unctional
oscillator. The densities are solutions to a system of alge- In futur.e work the method will be applied to other alge-
braic equations that are given immediately by the model Yoras relevant to nuclear structure science, e.g., the general

ansatz. In contrast, even for p”’ic'pa' axis rotations, thec llective motion algebra gcm(3) corresponding to the ex-
cranked anisotropic oscillator requires an extended argume@éO

involving energy minimization to attain the same conclu- nded Bohr-Mottelson model, which includes guantum vor-
sions. The irreducible representations, determined from inlcity [36], the symplectic algebra sp(d, [4,6], and the in-

theory of highest weights, are difficult to work with in the eracting boson model u(6) and its subalgebres) Liso(6),

. ; and so(5)17]. It should be emphasized that the only restric-
noncanonical angular momentum basis. For example, the eJ-

genvalues o3 in an irreducible representation are difficult tion Is that the physically relevant degrees of freedom span a
Lie algebra of observables.

The Hohenberg-Kohn theorem of density functional
theory was generalized to establish the existence of an en-
ergy functional for arbitrary dynamical algebras whose mini-
mum is the density of the exact ground stg@&]. But, like
the original Hohenberg-Kohn res(iB8], this is an existence
theorem for which an explicit construction of the density
functional from the Hamiltonian is not known. Nevertheless,
0 6.67 667 —-533 —-533 —133 -1.33 similar to the Hohenberg-Kohn theorem, it suggests a prom-
2 6.66 667 —-509 -507 —158 —1.60 ising avenue of research to solve complex many-body prob-
4 6.67 6.67 —333 -333 -333 -—3.33 lems. Two energy functionals for su(3) were considered in
this paper, one motivated by the classical theory of rigid

spheroid rotating noncollectively. This is the maximum an-
gular momentum at which a band occurs for the dominan
representatioii8,4) according to the Elliott model.

TABLE X. Deformations for the band heads #Mg calculated
with the cranked anisotropic oscillator and E8.19 from the den-
sity matrix method.

I da a2 ds
cranking density cranking density cranking density
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rotations, the other from the mathematics of integrity basis Polynomials in the algebra generators are relevant for
theory. many physical applications, e.g., the Casimir invariants and
The surface of admissible states is, in fact, an orbit of théhe cubic and quartic scalaxg andX,. In this appendix the
coadjoint action of the Lie group in the dual spgé@,39.  extension ofe from the domain of Lie algebra elements to
These orbit surfaces are equipped with a Poisson bracket atide domain of polynomials is defined.
symplectic structure. In particular, each surface is always First, the domain ofp is extended to the symmetric alge-
even-dimensional and admits canonical coordinates. An erpraS(g) of the Lie algebray. S(g) is a commutative asso-
ergy functional defines a Hamiltonian function, and, from theciative algebra with elements that are symmetric polynomials
Poisson bracket, a Hamiltonian dynamical system. Hence thef elements ofy (the order of multiplying the elements gf
dynamics of density matrices is well defined. Even thoughs not importank [43]. The extension
this paper studies equilibrium densities in the su(3) theory,

. © *
normal mode and other dynamical properties may be inves- ¢:5(9)—C" (g™, K) (A2)
tigated too. These are the analogs of the random phase ag-defined in the following way: fZ,,Z,, . .. ,Z,} is a basis
proximation and time-dependent Hartree-Fock from convenfor the Lie algebray and (e;, €5, . . . ,€,) is a set of integers,

tional mean field theory. then

Finally the surfaces that satisfy the generalized Bohr-
Sommerfeld quantization condition may be used to construct  @(Z{Z32 - - Z") = @(Z1)“1p(Z,) 2+ - - @(Zp)) 0. (A3)
explicit irreducible representations. The procedure to obtain ) ) )
the irreps is called geometric quantizatifit9,40,41. The The symmetric algebr&(g) and the universal enveloping
method was applied in prior work to determine the irreduc-2lgebral/(g) are related through a map, called symmetri-
ible representations of the rotational and Bohr-MottelsorZation:

theories[42]. A:S(9)—U(Q). (A4)

ACKNOWLEDGMENT Given thatX andY are elements of the Lie algebtg XY
. _ will denote their product irS(g) (XY=YX), andX-Y will
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cussions and suggestions. {Z2,,Z,, ...,Z,} is a basis forg, the symmetrization map-
ping is, by definition,
APPENDIX: DUAL SPACE FUNCTIONS

1
One important concept in density matrix theory is that of ANZ3Z2 ... 2= o > Zip(l)Zip(2)~ . 'Zip(m)*
a coordinate function. For each Lie algebra elem@nt ' (A5)
e su(3) there is a real-valued “coordinate” functias(Z2)
defined on the dual space: the value of the functi¢d) at wherem=2X¢;, (i1,i,, ... .,y IS a set ofmintegers such
the pointp e su(3)* is defined by that exactlye; of them are equal tp(1<j=n), and the sum
is over all permutationp of themintegers (1,2...,m). For
e(Z)(p)=(p.Z)=t(p Z). (A1) example,A(Z,Z,)=2%(Z;-Z,+Z,Z;). The symmetrization
A is a vector space isomorphista canonical linear bijec-

These functions separate points, i.egfandp, are distinct
densities, then there exists a Lie algebra elenZesuich that ; TS ; ; G ;

’ o : . Since symmetrization is an isomorphism, its inverse is
?(Z)(pl)?go(Z)(lpz)l. Tk(;efphysmal mterpretagon q;f(Z% IS defined H)e/nce the extension of the dF())maingoofrom the
that it is the real-valued function corresponding to the Her- . : . o
mitian operatoro(Z). The value of the observable at the Lie algebra to the enveloping algebra is given by
densityp is the numbero(Z)(p). oo A" 1:U(g)—C”(g* ,R). (AB)

tion) [43].
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