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SU„3… density matrix theory

Ts. Dankova and G. Rosensteel
Department of Physics, Tulane University, New Orleans, Louisiana 70118

~Received 5 January 2001; published 4 April 2001!

The irreducible representations of the Lie algebra su(3) describe rotational bands in the context of the
nuclear shell and interacting boson models. The density matrices associated with su(3) provide an alternative
theoretical framework for obtaining these bands. The su(3) density matrix formulation is mathematically
simpler than representation theory, yet it yields similar results. Bands are solutions to a system of polynomial
equations defined by the quadratic and cubic su(3) Casimirs. Analytic solutions are found in many physically
important cases including rotation about principal axes and spheroids. Numerical solutions are reported in other
cases including tilted rotors. The physics of su(3) rotational bands is more transparent in the density formalism
than in representation theory.

DOI: 10.1103/PhysRevC.63.054303 PACS number~s!: 21.60.Fw
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I. INTRODUCTION

The physics of many-particle systems is dominated
many cases by a relatively small number of degrees of f
dom. The quintessence of the physics is clarified by mod
which ignore minor effects and focus on the principal d
namical factors. When the set of relevant observables clo
under commutation to form a Lie algebra, it is called a sp
trum generating or dynamical symmetry algebra@1–3#, and a
group theoretical model is suggested as the natural expl
tory framework.

If g is a spectrum generating Lie algebra of Hermiti
operators, then its irreducible unitary representations~irreps!
define group theoretical models. The decomposition of
reducible representation ofg on Fock space into its irreduc
ible subspaces provides the microscopic interpretation of
models. Although an irrep ofg simplifies the original Fock
space problem, its dimension may still be too large to all
an easy analysis of the physics, e.g., noncompact alge
such as sp(3,R) of the symplectic collective model@4–6# or
u(6,6) of the extended interacting boson model@7# have
infinite-dimensional irreducible representations. Intracta
models also may arise when the rotation group algebra so
is not canonically embedded ing and the angular momentum
decomposition is not multiplicity free, e.g., the compa
symplectic group sp(2j 11) which describes seniority in
single j shell @8,9#, or thesdg-boson model based on u(15
@10,11#.

The relationships among the shell model, Hartree-Fo
and the group U(n) of unitary transformations in the
n-dimensional single-particle space suggest a solution@12–
14#. The shell model may be regarded as a group theore
model in which the spectrum generating algebra is the se
all one-body Hermitian operators u(n). Throughout this ar-
ticle, Lie algebras are denoted byg, e.g., u(n), su(3), so(3),
while the corresponding Lie group is written asG, e.g.,
U(n), SU(3), SO(3).Each Lie group is the exponentiatio
of its Lie algebra, e.g., U(n)5exp„u(n)…. For k identical
valence fermions, the shell model space is the totally a
symmetric irreducible representation of U(n) with dimen-
sion n!/ @k!(n2k)! #. Already for medium mass nuclei with
0556-2813/2001/63~5!/054303~18!/$20.00 63 0543
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active valence neutrons and protons, the factorially grow
dimension of the antisymmetric irrep is astronomical. Mo
over the rotation group is not canonically embedded in U(n).

A way around this difficulty is self-consistent mean fie
theory. In Hartree-Fock, the mean field Hamiltonian must
diagonalized in the single-particle space of dimensionn—no
matter how many particles are in the valence space. The
of admissible states in the Hartree-Fock approximation is
set of Slater determinants or, equivalently, the set of ide
potent Hermitian density matricesr25r, with trace equal to
the numberk of valence nucleons trr5k. The density ma-
trices are defined by the expectation of the one-body Herm
ian operators in u(n). Mathematically, the set of density ma
trices spans the dual space of the algebra u(n). The set of
admissible idempotent densities is not a vector space, b
surface of dimension 2k(n2k) contained within the vector
space of all Hermitian density matrices@12#.

The surface of idempotent densities is a level surface
the Casimirs. There aren Casimirs for the unitary algebra
u(n) given by the trace of powers of the densityCr5tr r r for
r 51, . . . ,n. On the idempotent density surface, the Casim
are evidently constantCr5k for all r. Conversely, the leve
surface in the dual space of the CasimirsCr5k for integral
kP@0,n# consists of the Hartree-Fock densities.

The idempotent densities transform among themselves
the elements of the unitary group: a unitary matrixg trans-
forms a densityr into grg21. U(n) is a transformation
group on each level surface of the Casimirs.

Thus there is a common algebraic structure for both
shell model and Hartree-Fock. The distinctions arise fr
the way the algebra determines the model states. For
shell model, the quantum states span an irreducible uni
representation of the group U(n). For Hartree-Fock, the role
of the unitary group and its Lie algebra has three essen
aspects:~1! the densities in mean field theory are elements
the dual space of the Lie algebra,~2! the allowed Hartree-
Fock densities are a level surface for the Casimirs, and~3!
the unitary group transforms the allowed densities amo
themselves. These are the three ingredients for a mean
theory that may be implemented for any Lie algebra.

The aim of this article is to construct a density matrix
mean field theory for the test case of the SU(3) model t
©2001 The American Physical Society03-1
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underlies the algebraic theory of nuclear rotational moti
SU(3) is a paradigm algebraic theory since it is the simp
nontrivial dynamical symmetry in nuclear structure physi
The relationship between SU(3) irreducible representati
and their mean field approximations is investigated. It
shown that there is a close correspondence between th
sults from these two models. But the SU(3) density ma
theory is mathematically simpler and provides a clear ph
cal interpretation of the rotational bands found in the irre

II. su„3… DENSITY MATRICES

A. Algebra definition

Let (xa j ,pa j ) denote the Cartesian components of the
mensionless position and momentum Hermitian operator
particlea in a system ofk particles. They obey the canonic
commutation relation@xa j ,pbk#5 idabd jk . The traceless El-
liott quadrupole operator@15#

Q̂jk
(2)5 1

2 @xa j xak1pa j pak2 1
3 d jk~xamxam1pampam!#

~2.1!

and the vector angular momentum operator

L̂ jk5xa j pak2xakpa j ,

L̂ i5
1
2 « i jk L̂ jk ~2.2!

~summation over repeated indices! generate an eight
dimensional real Lie algebra of one-body Hermitian ope
tors

@ L̂ j ,L̂k#5 i« jkmL̂m ,

@Q̂jk
(2) ,L̂ r #5 i ~« rs jQ̂sk

(2)1« rskQ̂s j
(2)!, ~2.3!

@Q̂jk
(2) ,Q̂rs

(2)#5 i 1
4 ~dkr« jsaL̂a1dks« j r aL̂a1d j r «ksaL̂a

1d js«kraL̂a!,

that is isomorphic to the algebra of Hermitian traceless m
trices

su~3!5$ZPM3~C!uZ†5Z,tr Z50%. ~2.4!

If X andY are real 333 matrices,Z5Y1 iXPsu(3) if and
only if XT52X, YT5Y, and trY50. The isomorphisms
between the algebra of matrices and the algebra of Herm
operators is given explicitly by

s~Z!5YjkQ̂jk
(2)2 1

2 XjkL̂ jk ~2.5!

for Z5Y1 iXPsu(3).Note that@s(Z),s(W)#5s(@Z,W#)
for Z,WPsu(3).

Alternatively, the algebra of Hermitian operators may
defined as the su(3) dynamical symmetry algebra of the
teracting boson model@16–18#. If d† ands† denote the bo-
son creation operators, then the generators are the an
momentum and quadrupole operator
05430
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L̂m5A10@d†3d̃#m
(1)

Q̂m
(2)5dm

† s1s†d̃m7
A7

2
@d†3d̃#m

(2) , ~2.6!

where 7 corresponds to particle and hole bosons, resp
tively. This IBM algebra of Hermitian operators is also is
morphic to the algebra of matrices su(3).

Mathematically, all isomorphic copies of an algebra a
indistinguishable. The su(3) algebra of matrices is more c
venient to use for calculations than either the Elliott or IB
operator algebras.

B. Dual space

Consider an algebra of Hermitian operators acting on
Hilbert spaceH which is isomorphic to su(3), e.g., the El-
liott or IBM representations. For each normalized state v
tor CPH the expectations of the operators

qjk5^CuQ̂jk
(2)uC&,

l jk5^CuL̂ jkuC& ~2.7!

define a real symmetric traceless matrixq and a real antisym-
metric matrixl. The ‘‘density’’ matrix corresponding toC is
defined as the Hermitian traceless matrixr5q2 1

2 i l . In
terms of it, the expectation of a general element of the
erator algebra is

^r,Z&5tr~rZ!5^Cus~Z!uC&, ~2.8!

for Z5Y1 iXPsu(3).
In fact each traceless Hermitian density matrixr defines a

real-valued linear functional on the matrix Lie algebra su(3),
viz., ^r,Z&5tr(rZ) for all ZPsu(3). The set of allsuch
linear functionals is called the dual space of su(3) and
denoted by su(3)* . In Dirac quantum mechanics the du
space is the space of ‘‘bras.’’ The mapping from the Hilb
space to the dual space is called the moment mapM :H
→su(3)* where the density corresponding to the vectorC is
r5M (C) @19–21#.

The density retains only part of the entire informatio
about the system that the wave function carries, but a v
important part—the expectations of the su(3) observab
The dimension of the dual space is the same as the dim
sion of the su(3) algebra and is a significant simplification
the quantum problem in the Hilbert spaceH. It reduces all
the degrees of freedom incorporated in the wave function
just those most relevant to the physics of su(3) rotatio
states.

WhenCHW is a highest weight vector for an irreducib
representation of su(3), thecorresponding density is a diag
onal matrix. To see this, express the Elliott generators
terms of the one-body operators

Ĉjk5 1
2 ~aa j

† aak1aakaa j
† !, ~2.9!
3-2
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where aak , aak
† are the harmonic oscillator bosons,aak

5(xak1 i pak)/A2, aak
† 5(xak2 i pak)/A2. The Elliott su(3)

generators are given by

Q̂jk
(2)5 1

2 ~Ĉjk1Ĉk j2
2
3 d jkH0!

L̂ jk52 i ~Ĉjk2Ĉk j!, ~2.10!

whereH0 is the harmonic oscillator HamiltonianH05Ĉj j .
By definition, the highest weight state is annihilated by t
raising operators and is an eigenvector of the su(3) Ca
subalgebra

ĈjkCHW50, when j ,k,

~Ĉ332Ĉ11!CHW5l CHW , ~2.11!

~Ĉ112Ĉ22!CHW5m CHW ,

when the weightsl,m are non-negative integers. Therefo
the density of the highest weight state is

r (lm)5
1

3 S 2l1m 0 0

0 2l22m 0

0 0 2l1m
D . ~2.12!

A similar argument for the IBM su(3) algebra yields th
same diagonal density matrix for the highest weight vec
Indeed the derivation is independent of the specific real
tion of the su(3) operator algebra.

C. SU„3… group transformation

The group SU(3) consists of the complex 333 unitary
matrices with unit determinant. By exponentiation, a rep
sentations of the Lie algebra su(3) extends to a repres
tation, also denoted bys, of the group SU(3). Even when
the Lie algebra representation is known, it is very difficult
determine explicitly the group representation. However
corresponding group transformation of the densities
simple.

SupposeC is a normalized vector in the Hilbert spac
that carries the unitary representations of SU(3). Let r
5M (C) denote its corresponding density in the dual spa
The group SU(3) transformsC into s(g)C while the den-
sity is transformed intoM @s(g)C#. For the transformed
density we have

^M „s~g!C…,Z&5^s~g!Cus~Z!us~g!C&

5^Cus~g!21s~Z!s~g!uC&

5^Cus~g21Zg!uC&5tr~r g21Zg!

5^grg21,Z&. ~2.13!
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Hence the densityr transforms intogrg21, a product of
three matrices. The group transformation in the dual spac
called the coadjoint action and it is denoted by Adg* r
5grg21 @22#.

D. Casimir invariants

The Casimir invariants, or Casimirs, are polynomials
the algebra generators that commute with all Lie algebra
ements. su(3) has two independent Casimirs of quadr
and cubic orders,

Cr~r!5tr r r , for r 52,3. ~2.14!

These are functions on the dual space that are invariant
respect to the coadjoint transformation,Cr(Adg* r)5Cr(r).

Whenr5q2 1
2 i l , the invariant functions are

C2~r!5tr q22 1
4 tr l 2,

C3~r!5tr q32 3
4 tr~ql2!. ~2.15!

In particular the values of the Casimirs at the diagonal d
sity corresponding to a highest weight vector are evaluate
be

C2~r (lm)!5 2
3 ~l21lm1m2!,

C3~r (lm)!5 1
9 ~2l313l2m23lm222m3!. ~2.16!

In quantum mechanics, observables are Hermitian linear
erators, while in density matrix theory, observables are re
valued functions on the dual space. The expectations of
Casimir operators with respect to a highest weight state
fer from the density matrix functionsCr(r) by terms of lower
degree. The ultimate reason for the discrepancy is that qu
tum fluctuations are not included in the density mat
theory. A mathematically rigorous presentation of the re
tionship between polynomial operators in the enveloping
gebra and functions of the density matrices is given in
Appendix.

It is important to maintain consistency within the dens
matrix theory and not replace the values of the Casimir fu
tions, Eq.~2.16!, by their quantum expectations in hopes
an improved theoretical description. Similarly the square
the total angular momentum isI 2 in the density matrix
theory, notI (I 11).

E. Admissible densities

In the mean field approximation the admissible densit
are restricted to those that lie on a level surface of the
simirs, i.e., a surface on which the two Casimir functions
constant. The SU(3) group transformations Adg* leave each
level surface invariant. Since any Hermitian matrixr
Psu(3)* may be diagonalized by some unitary transform
tion gPSU(3), each level surface contains a traceless di
onal matrix. Because eigenvalues are unique, each level
face contains a unique diagonal matrix up to ordering of
real eigenvalues, which may be parametrized by n
3-3
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Ts. DANKOVA AND G. ROSENSTEEL PHYSICAL REVIEW C63 054303
negativel and m as in Eq. ~2.12!. Note that a diagona
density only corresponds to a highest weight vector whel
andm are also integers.

In the typical case, a level surface is six dimension
because there are two functionally independent conditi
imposed in the eight-dimensional dual space. In the spe
cases ofm or l equal zero, the level surface of admissib
densities is four dimensional.

III. su „3… ROTOR STATES

The rotation group SO(3) is a subgroup of the spec
unitary group SU(3). A density r5q2 1

2 i l in su(3)* is
transformed by a rotationRPSO(3) into the density AdR* r
5RrRT5RqRT2 1

2 i RlRT. Since any real symmetric matri
can be diagonalized by a rotation matrix, there is aR
PSO(3) such that the rotated quadrupole moment is dia
nal,

q̄5RqRT5diag~q1 ,q2 ,q3!. ~3.1!

The eigenvalues are unique, up to their order, which we
to be q3>q1>q2. From a geometrical viewpoint,R rotates
the laboratory frame into the body-fixed frame in which,
definition, the system’s quadrupole momentq̄ is diagonal. At
the same time the laboratory angular momentuml is trans-
formed toI 5R l RT, which is the system’s angular mome
tum projected onto the body-fixed principal axes. The ma
I is antisymmetric, but otherwise arbitrary. In general, t
angular momentum vector is not aligned with a princip
axis.

The diagonal entries ofq̄ define the (b,g) deformation
parameters in the body-fixed frame@23#

qk5b cosS g2k
2p

3 D , k51,2,3. ~3.2!

Note that the deformation parameters are defined for
SU(3) quadrupole operator, Eq.~2.1!, and not for the true
microscopic quadrupole operator. The chosen ordering
the eigenvaluesqk corresponds tob>0 andgP@0,p/3#. The
trace of any power ofq is a rotational scalar; the quadrat
and cubic scalars simplify to

tr~q2!5 3
2 b2, ~3.3!

tr~q3!5 3
4 b3cos~3g!, ~3.4!

which are model-independent measures of deformation@24#.
The angular momentum is a pseudovector. The ve

components of the angular momentum are given byl i
5 1

2 « i jk l jk in the laboratory frame and byI i5
1
2 « i jk I jk in the

body-fixed frame. The rotation of the vector angular mom
tum IW5RlW is equivalent to the matrix transformationI
5RlRT. A principal axis rotation requires that two of th
three components ofIW are zero. A tilted rotation in a princi
pal plane requires that one component ofIW is zero. But, in
general, all three components of the angular momentum
the principal axis frame are nonzero. The rotational scalar
05430
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Eq. ~2.15! that are quadratic in the angular momentum m
trix may be expressed in terms of the vector components

tr l 2522 I kI k ,

tr~q l2!5qkI k
2 . ~3.5!

A. Angular momenta and deformations

The range of possible angular momenta and deformat
is restricted because the admissible densities lie on a l
surface of the Casimirs. Since any admissible density ma
rotated to the principal axis frame, it is sufficient to solve f
the admissible body-fixed densities. Such densities with t
angular momentumI are simultaneous solutions to the alg
braic system

q11q21q350, ~3.6!

(
k

qk
21

1

2
I 25C2 , ~3.7!

(
k

qk
32

3

4(k
qkI k

25C3 , ~3.8!

I 1
21I 2

21I 3
25I 2. ~3.9!

This is the fundamental set of algebraic equations for SU
density matrix theory. It is an underdetermined system
four equations for six unknowns (q1 ,q2 ,q3 ,I 1 ,I 2 ,I 3). The
fundamental system imposes the constraint that a densi
admissible and has total angular momentumI.

The system~3.6!–~3.9! determines the change in th
shape of a rotating body as the angular momentum increa
Since it is a system of four equations for six unknow
(qk ,I k), analytic solutions are given uniquely only when a
ditional assumptions are imposed. Several important spe
solutions can be derived including rotation about princip
axes and spheroidal nuclei.

Expressed in terms of the (b,g) collective coordinates
and spherical coordinates for the angular momentum in
body-fixed frame, I 15I cosf sinu, I 25I sinf sinu, I 3
5I cosu, fP@0,p#, uP@0,p/2#, the system~3.6!–~3.9! is
equivalent to

3b21I 252C2 , ~3.10!

3b3cos~3g!13bI 2A~f,u,g!54C3 , ~3.11!

where

A~f,u,g!5 1
2 @~2A3 sin2f2A3!sin2u sing

1~3 sin2u22!cosg#. ~3.12!

The deformationb is a unique function of the angula
momentumI. This is a kinematical property of the su(3
model which is due to the shell model compactification
the rotational algebra, i.e., the replacement of the exact qu
rupole operator by the in-shell Elliott expression. The ene
3-4
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is irrelevant to theb(I ) functional relationship. In contras
the triaxialityg and the direction of the angular momentumIW
are not determined uniquely by the fundamental system
equations. Additional assumptions are required to derive
lutions, either kinematical~rotation about principal axis o
spheroidal shape! or dynamical~energy functionalE@r#).

To these four equations, two more must be added to
termine the quadrupole moments and angular momentum
the following two sections, the critical points of an ener
functional are used to supply the missing equations. But
this section, many simple kinematical solutions are deriv
that are independent of the energy functional. Principal a
rotations require that two body-fixed components of the
gular momentum vanish. Spheroidal solutions are obtai
when two moments are equal. First, however, the range
the angular momentum that is compatible with the fun
mental set, Eqs.~3.6!–~3.9!, is determined.

The functionA(f,u,g) ranges from21 to 11. Within
the chosen interval for the angleg, gP@0,p/3#, sing.0 and
cosg.0. The maximum values for sin2f and sin2u are 1, so
Amax5cos(g2p/3)51 when g5p/3. Similar argument
leads toAmin521.

Solution III.1.The minimum angular momentum isI 50
and the principal axis quadrupole moments of a nonrota
body are

q35
2l1m

3
>q15

2l1m

3
>q25

2l22m

3
. ~3.13!

Note that any permutation of the three axis lengths are s
tions to the system~3.6!–~3.9! when I 50.

The system~3.10!, ~3.11! has a solution for the intrinsic
angular momentumI at both ends of the allowed intervals o
values for f, u, and g: I 5l1m when g50, u50, f
P@0,p# and l,m; I 5l1m when g5p/3, u5p/2, f
5p/2 andl.m.

Proposition 1.The maximum allowed angular momentu
is the same as the upper bound found in representa
theory,I 5l1m.

Proof: Reductio ad absurdum.Suppose the angular mo
mentum can have values bigger thanl1m. Consider the
behavior ofb(I ) andA(I ) in Eqs.~3.10!,~3.11! as the angu-
lar momentum increases.

For the case of oblate spheroidsg5p/3 and rotation
around the symmetry axis (f5p/2, u5p/2) the trigono-
metric functionA5Amax51. For l.m the angular momen
tum is I 5l1m, and the deformation is 3b5l2m. Differ-
entiating Eq.~3.10! with respect to the angular momentumI
and evaluating the result forI 5l1m shows that as the an
gular momentum increases, the deformation parameterb de-
creases:

db

dI U
I 5l1m

52
l1m

l2m
,0. ~3.14!

Differentiation of Eq.~3.11! with respect toI and evaluating
the result forI 5l1m leads to
05430
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~l1m!

~l2m!2
lm5

~l2m!2

9

d@cos~3g!#

dI U
g5p/3

1~l1m!2
dA

dI U
I 5l1m

. ~3.15!

Assumingg(I ) is a differentiable functiondg/dIÞ` and

d@cos~3g!#

dI U
g5p/3

523 sin~3g!
dg

dI U
g5p/3

50. ~3.16!

Therefore

~l1m!2
dA

dI U
I 5l1m

512
~l1m!

~l2m!2
lm.0, ~3.17!

or the functionA increases as the angular momentum
creases beyondI 5l1m. But this contradicts the fact tha
I 5l1m is a solution to the system when the functionA has
its maximum allowed valueAmax51. Thus, the maximum
value of the angular momentum isl1m.

Solution III.2.When I 5l1m, there is a unique solution
to Eqs.~3.6!–~3.9! with three possible cases for the deform
tion: ~a! l.m, g5p/3, b5(l2m)/3 and noncollective ob-
late rotation;~b! l,m, g50, b5(m2l)/3 and noncollec-
tive prolate rotation;~c! l5m, b50, g and the rotation axis
for the sphere are undetermined.

From Eq.~3.10! for the quadratic Casimir, the deforma
tion b and the total angular momentumI are evidently
bounded. For no rotation,I 50, the deformation attains its
maximumbmax52Al21lm1m2/3. Althoughb50 is a so-
lution to the quadratic Casimir equation, it isnot generally a
solution to the cubic Casimir, Eq.~3.11!. The exception is
l5m. Thus, the cubic Casimir invariant is essential to t
upper bound for the angular momentum and the lower bo
for the deformation. As proven above, the maximum angu
momentumI 5l1m corresponds to the minimum deforma

FIG. 1. The deformationb is a unique function of the tota
angular momentumI. At the maximum angular momentumI 5l
1m, the deformation is a minimumbmin5ul2mu/3.
3-5
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tion bmin5ul2mu/3. In Fig. 1,b is plotted versusI; the so-
lution curve is an ellipse.

B. Analytical solutions for rotation around one
of the principal axes

The system~3.6!–~3.9! can be solved analytically for th
case of general (l,m) and rotation around one of the princ
pal axes, say the one axis. Assume that the angular mom
tum is directed along the principal one axis,I 25I 350, I 1
5I . In this section, in contrast to the prior convention, t
quadrupole moments of the principal axis solutions are
ordered. Thus the rotation axis is fixed, butq1 may corre-
spond to the short, long, or middle length axis.

Solution III.3.For rotations about the principal one axi
there are three analytical solutions of the algebraic sys
~3.6!–~3.9!:

q152
l12m

3
, q2,35

l12m

6
6

1

2
Al22I 2,

0<I<l, short axis rotation, ~3.18!

q151
2l1m

3
, q2,352

2l1m

6
6

1

2
Am22I 2,

0<I<m, long axis rotation, ~3.19!

q152
l2m

3
, q2,35

l2m

6
6

1

2
A~l1m!22I 2,

0<I<l1m, middle axis rotation. ~3.20!

Note that, sinceq1 is the deformation along the rotatio
axis—short, long, or middle—the formulas forq2 andq3 can
be written as

q2,352
q1

2
6

1

2
AI max

2 2I 2. ~3.21!

FIG. 2. The triaxiality parameterg as a function of the tota
angular momentumI for rotation around the long and short princ
pal axes when (l,m)5(8,4).
05430
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The following can be seen immediately.
~1! The quadrupole momentq1 along the rotation axis is

independent of the angular momentumI.
~2! At the maximalI, viz., I max5l, I max5m, I max5l1m,

these solutions are non-collective spheroidal, i.e., axia
symmetric with respect to the axis of rotation.

~3! The three solutions correspond to bands rotating ab
the short, long, and middle axes of theI 50 nonrotating so-
lution. For l.m, the yrast band is described by the syste
rotating collectively about its short axis, 0<I<l. When the
system rotates collectively about its long axis, the densi
correspond to the band heads, 0<I 5K<m. It is unclear if
the densities describing rotation about the middle axis
found in nature; recall that such rotations are unstable
classical mechanics.

~4! Triaxiality is indicated by theg parameter. In Fig. 2,
the triaxiality is plotted versus the total angular momentu
for short and long axes rotation in the (l,m)5(8,4) irrep.
Each band terminates in a phase transition to a noncollec
rotation. For short and long axis rotations, the general
pression for triaxiality is

tang55 A3
l12m2Al22I 2

l12m13Al22I 2
short,

A3
Am22I 2

2l1m
long.

~3.22!

~5! When m50, C25 2
3 l2, C35 2

9 l3, 0<I<l, and the
solutions scale asl:

q1

l
52

1

3
,

q2,3

l
5

1

6
6

1

2
A12S I

l D 2

. ~3.23!

When I 50, the nucleus is a prolate spheroid. For small v
ues of the angular momentum,I !l, the rotation is approxi-
mately collective prolate, but the shape is slightly triaxi
When the nucleus rotates with the maximum allowed angu
momentumI max5l, it is an oblate spheroid rotating aroun
its symmetry axis~noncollective oblate rotation!. The results
for the deformation as a function of the angular moment
are summarized in Table I.

TABLE I. Deformations for rotation around the one axis,m
50.

I /l q1 /l q2 /l q3 /l g°

0 2
1
3

2
1
3

1
2
3

0.00

1
4

2
1
3

1
1
6

2
A15

8
1

1
6

1
A15

8
0.81

1
2

2
1
3

1
1
6

2
A3
4

1
1
6

1
A3
4

3.69

3
4

2
1
3

1
1
6

2
A7
8

1
1
6

1
A7
8

11.12

1 2
1
3

1
1
6

1
1
6

60.00
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~6! Whenl50, C25 2
3 m2, C352 2

9 m3, 0<I<m, and the
solutions scale asm:

q1

m
5

1

3
,

q2,3

m
52

1

6
6

1

2
A12S I

m D 2

. ~3.24!

The initial shape~at I 50) is an oblate spheroid. For sma
values of the angular momentum,I !m, the rotation is ap-
proximately collective oblate, but the shape is slightly t
axial. When I reaches its maximum valueI max5m, the
nucleus is a prolate spheroid rotating around its symm
axis ~noncollective prolate rotation!. The deformation as a
function of the angular momentum is given in Table II.

~7! When l5m, C252l2, C350. For a given angular
momentumI, when (q1 ,q2 ,q3) is a solution, so is (2q1 ,
2q2 ,2q3).

q150 and 0<I<2l:

q256
1

2
A4l22I 2,

q352q2 . ~3.25!

Here, the nucleus begins as a triaxial shape rotating aro
the middle axis. AtI max52l the nucleus turns into a spher

q15l and 0<I<l:

q252
l

2
1

1

2
Al22I 2,

q352
l

2
2

1

2
Al22I 2. ~3.26!

In this case the nucleus is triaxial atI 50 and begins rotating
around its long axis. At the maximum value of the angu
momentumI max5l the nucleus is a prolate spheroid rotati
noncollectively.

C. Spheroidal solutions

Analytical solutions can be found for spheroids either
tating about a principal axis or in a principal plane. Deno

TABLE II. Deformations for rotation around the one axis,l
50.

I /m q1 /m q2 /m q3 /m g°

0 1
1
3

1
1
3

2
2
3

60.00

1
4

1
1
3

2
1
6

1
A15

8
2

1
6

2
A15
8

59.19

1
2

1
1
3

2
1
6

1
A3
4

2
1
6

2
A3
4

56.31

3
4

1
1
3

2
1
6

1
A7
8

2
1
6

2
A7
8

48.88

1 1
1
3

2
1
6

2
1
6

0.00
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the two equal quadrupole moments byq and the unequal axis
moment by22q. The quadratic Casimir, Eq.~3.7!, deter-
mines the deformation as a function of the angular mom
tum

6q21
1

2
I 25C2 . ~3.27!

Let K denote the component of the angular momentum al
the symmetry axis.

1. Spheroids rotating around one principal axis

Solution III.4. K50: Collective rotation perpendicular t
the symmetry axis. A solution must satisfy the cubic Casim
equation~3.8!

224q323qI254C3 . ~3.28!

Eliminating the angular momentumI from Eqs.~3.27! and
~3.28! yields a single equation for the deformation, 6q3

23C2q22C350. There is only one physical solution:

q52
l2m

3
, I 254lm. ~3.29!

When l.m, this is a prolate spheroid; forl,m, the solu-
tion is an oblate spheroid. The other two solutions to
system~3.27!, ~3.28! , q5 1

3 (2l1m) and q52 1
3 (l12m),

are unphysical because they imply negativeI 2.
Solution III.5. K5I : Noncollective rotation about the

symmetry axis. A solution satisfies the cubic Casimir eq
tion ~3.8!

212q313qI252C3 . ~3.30!

Eliminating the angular momentumI from Eqs.~3.27! and
~3.30! yields a single equation for the deformation, 24q3

23C2q1C350. All three solutions here are physical:

q5~l12m!/6, I 5l, ~3.31!

q52~2l1m!/6, I 5m, ~3.32!

q5~l2m!/6, I 5l1m. ~3.33!

Whenq.0 the solution is an oblate spheroid; whenq,0, it
is prolate. Note that these noncollective spheroids are
band terminations of the principal axis solutions~3.18!,
~3.19!, and~3.20!.

2. Tilted rotation of spheroids

Solution III.6. K is between 0 andI, i.e., the rotation is
tilted. Using the cubic Casimir equation, Eq.~3.8!, the
squared projectionK2 may be solved for as a function of th
angular momentumI,

K25
I 214C2

9
1

4C3

9q
. ~3.34!
3-7
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Whenl.m, a prolate spheroid (q,0) solution exists in the
intervalm<I<A4lm with the squared projection of the an
gular momentum on the symmetry axis

K25m21
1

9
~ I 22m2!1

8

27
~l2m!~l12m!

3F12
2l1m

A~2l1m!223~ I 22m2!
G ~3.35!

5m21
m2

~2l1m!2 ~ I 22m2!

2
~l2m!~l12m!

~2l1m!4 ~ I 22m2!22•••. ~3.36!

For I 5m, the prolate spheroid rotates noncollectively abo
its symmetry axis, Eq.~3.32!. At a maximumI 5A4lm, the
prolate spheroid is rotating perpendicularly to its symme
axis. In Fig. 3 the projectionK is plotted versusI for the
(l,m)5(8,4) prolate spheroids; in Table III the projectio

FIG. 3. For (l,m)5(8,4) the projectionK onto the symmetry
axis of the total angular momentumI of a rotating prolate spheroid
is plotted versus the angular momentum.

TABLE III. Tilted rotation of spheroids for the~8,4! su(3) rep-
resentation. The projection of the angular momentum on the s
metry axis isK.

Prolate Oblate
I q K q K

4 23.33 4.00
5 23.22 4.04
6 23.07 4.07
7 22.89 4.10
8 22.67 4.07 2.67 8.0
9 22.39 3.96 2.39 8.3

10 22.03 3.62 2.03 8.7
11 21.54 2.34 1.54 9.4
12 0.67 12.0
05430
t

y

and the deformation are given for this case. Note that
projection is approximately constantK'4 until I nears the
top of the band; this is evident from the Taylor expansi
~3.36!. Thus there is aK'm band of prolate states form
<I ,2Alm. The band may be viewed from the top dow
Start with a collective rotation of a prolate spheroid withI
52Alm. As the body rotates more slowly, it rapidly ac
quires a componentK'4 along the symmetry axis. As th
magnitude of the angular momentum becomes smaller
direction becomes more aligned with the symmetry axis. T
band terminates in a noncollective rotation whenI 5K5m.

When l.m there are also tilted oblate solutions forl
<I<l1m. The two end points correspond to noncollecti
rotation and termination of the short and middle axes ba
~3.31! and ~3.33!.

When l,m, an oblate spheroid (q.0) rotates with the
projection

K25l21
1

9
~ I 22l2!2

8

27
~l2m!~m12l!

3F12
2m1l

A~2m1l!223~ I 22l2!
G ~3.37!

5l21
l2

~2m1l!2 ~ I 22l2!

1
~l2m!~m12l!

~2m1l!4 ~ I 22l2!22•••. ~3.38!

For I 5l, the solution is an oblate spheroid rotating nonc
lectively about its symmetry axis. At a maximumI 5A4lm,
the oblate spheroid is rotating perpendicularly to its symm
try axis. Whenl,I !A4lm, K is approximatelyl. From
the Taylor expansion~3.38!, the projection is approximately
constantK'l until one nears the top of the band.

If l5m, the cubic Casimir is zero, and

K25m21
I 22m2

9
. ~3.39!

As the angular momentum varies from a minimumI 5m to a
maximum I 52m, the projection of the angular momentu
on the symmetry axis varies fromK5m to K5 4

3 m.

IV. ENERGY FUNCTIONAL I

The particular solutions enumerated in Sec. III correspo
to simple kinematical situations. The actual physical den
ties must be determined from a dynamical argument.
equilibrium density for a rotating body in the su(3) model
a critical point of the energy functionalE@r# on the surface
of admissible densities. For a body with constant moment
inertia, the energy is

E@r#5A1I 1
21A2I 2

21A3I 3
2 , ~4.1!

whereA1 ,A2 ,A3 are real constants. Suppose the total an
lar momentum isI, the admissible densities lie on the surfa

-
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determined by the quadratic and cubic CasimirsCk , andr is
a critical point of E@r# on the surface. By the Lagrang
multiplier theorem, there are four real constantsa,b,c,d as-
sociated with each of the constraint equations~3.6!–~3.9!
such thatr is a critical point of the functional

F@r#5E@r#1a~q11q21q3!1bS (
k

qk
21

1

2
I 22C2D

1cS (
k

qk
32

3

4 (
k

qkI k
22C3D 1d~ I 1

21I 2
21I 3

22I 2!

~4.2!

with a free variation on (q1 ,q2 ,q3 ,I 1 ,I 2 ,I 3). Altogether
there are ten unknowns, including the Lagrange multiplie
that must satisfy the system of ten equations,

05
]F

]qk
5a12bqk1cS 3qk

22
3

4
I k

2D , ~4.3!

05
]F

]I k
52I kS Ak2

3

4
cqk1dD ~4.4!

plus the four constraint equations. Although the number
equations in the system is large, each is just a polynomia
low degree in the variables. Thus analytic solutions may
determined rather easily in many cases.

Indeed each of the kinematical solutions enumerated
Sec. III are particular solutions to the Lagrange multipl
system.

~1! Rotations about a principal axis, say the one ax
given by Eqs.~3.18!–~3.20! are critical points of Eq.~4.2!
whend5A1 anda5b5c50.

~2! Spheroidal solutions,q25q35qÞ0 and q1522q,
are obtained whena5b5c50 and

I 1~A12d!5I 2~A22d!5I 3~A32d!50. ~4.5!

Principal axis rotation is one type of solution. When tw
energy parameters are equal, sayA15A3, tilted rotations are
also critical points ford5A1 and I 250.

It is interesting to compare the classical rigid rotor to
su(3) rotor. A classical rigid rotor in equilibrium is a critica
point of the energy~4.1! subject to the constraint(I k

25I 2.
This is mathematically equivalent to the su(3) constra
problem whena5b5c50, viz., Eq.~4.5!. The su(3) prob-
lem allows for additional critical points. The mathematic
05430
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origin of the extra solutions is the different constraint syst
for the admissible su(3) surfaces. The physical origin is
lated ultimately to the shell model, which is responsible
the su(3) quadrupole operator~2.1! instead of the major
shell-mixing quadrupole operator(r a

2Ym
(2)(Va).

Suppose the kinematical solutions corresponding toa
5b5c50 are excluded from consideration. In this case
solution to Eq.~4.3! requires

054~q22q1!~q32q1!~q32q2!1I 1
2~q22q3!

1I 2
2~q32q1!1I 3

2~q12q2!. ~4.6!

In conjunction with Eqs.~3.8!,~3.9! this condition enables
the determination of the body-fixed angular momentum co
ponents in terms of the quadrupole moments

I 1
25

I 2

3
1

4~q3
412 q2 q3

312 q2
3q31q2

4!22 q1C3

3~q3
21q2q31q2

2!
~4.7!

and similarly forI 2 ,I 3 by cyclic permutation of 1,2,3. After
eliminating the Lagrange multipliers the system reduces t
single independent equation

05I 2@~A22A3!q11~A32A1!q21~A12A2!q3#,
~4.8!

where I 1 ,I 3 are assumed nonzero. There are two case
consider as one of the two factors in the above equation m
vanish.

Solution IV.1.Principal plane rotations of triaxial bodies
One of the components of the angular momentum vanis
say the two axis projectionI 250. Every critical point of the
principal plane system is determined by a real rootq1 of the
eighth degree polynomial

05576q1
81288~ I 222 C2!q1

61192C3q1
51~36I 42168C 2I 2

1192C 2
2!q1

41~72C 3I 22144C2C3!q1
31~212C 2I 4

148C 2
2I 2116C 3

2248C 2
3!q1

21~8 C 2
2 C324 C2 C 3I 2!q1

1C 2
2I 41~4 C 3

224 C 2
3!I 228 C2C 3

214 C 2
4 . ~4.9!

When q1 is a real root, the other two quadrupole momen
and angular momentum components are given by

q25
~ I 222 C2!~6 q1

22C2!

4~6 q1
31C3!

, q352q22q1 ~4.10!
us,
I 3
25

~q22q3!I 224@q1
2~q22q3!1q2

2~q32q1!1q3
2~q12q2!#

3 q2
, I 1

25I 22I 3
2 . ~4.11!

A valid solution is attained whenever the squares of the angular momentum componentsI 1
2 ,I 3

2 are non-negative.
SinceI 250 there is a reflection symmetry: whenq1 is a valid solution,q3 also satisfies the eighth degree polynomial. Th

solutions come in pairs except in the spheroidal caseq15q3. To eliminate this trivial redundancy, we chooseq1<q3. In Table
IV two sequences of solutions are given for the case (l,m)5(8,4). There are no valid solutions for angular momentumI less
3-9
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than m54. When I 54 the noncollective prolate solutio
~3.32! begins a band of principal plane triaxial solutions th
terminates atI'10.08. WhenI 58 a second band emerge
starting from the noncollective oblate state~3.31! and also
terminating atI'10.08. Above the critical angular momen
tum I'10.08, the pair of real roots turns into a pair of com
plex conjugate roots.

There is a third band of principal plane triaxial rotors th
begins atI 5A4lm which is the termination of the sequenc
of prolate spheroidal solutions~3.29!. This band terminates
at I 5l1m in the noncollective oblate state. In Fig. 4 th
projectionI 1 of the angular momentum on the short axis f
this band is plotted versus the angular momentumI for the
case (l,m)5(8,4). In Fig. 3 this band is shown as the co
tinuation of the prolate spheroid band to triaxial princip
plane rotors whenI .A4lm; I 25K50 is the projection of
the angular momentum on the long axis.

Solution IV.2.Constant-g bands. If all three component
of the angular momentum are nonzero,I kÞ0, then

~A22A3!q11~A32A1!q21~A12A2!q350. ~4.12!

When two of the energy coefficients are equal, sayA25A3,
this equation forces a spheroidal solution,q25q3. When the

TABLE IV. Principal plane rotations,I 250, for the~8,4! su(3)
representation.

I q1 q2 q3 I 3 q1 q2 q3 I 3

4.00 23.33 23.33 6.67 4.00
5.00 23.33 23.10 6.44 4.05
6.00 23.33 22.80 6.14 4.11
7.00 23.34 22.42 5.76 4.19
8.00 23.35 21.92 5.27 4.31 25.33 2.67 2.67 0.00
9.00 23.37 21.24 4.61 4.48 24.76 2.07 2.68 3.47

10.00 23.54 0.06 3.48 4.80 23.88 0.93 2.95 4.78
10.08 23.68 0.50 3.18 4.84 23.68 0.50 3.18 4.84

FIG. 4. For (l,m)5(8,4) the projection of the angular momen
tum on the short axis is plotted versus the total angular momen
for a sequence of triaxial tilted rotors which are critical points
energy functional I.
05430
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coefficients are all distinct, the system may be solved for
quadrupole moments: Fori , j ,k cyclic,

qi5~2 Ai2Aj2Ak!u, ~4.13!

u25
2 C22I 2

12~A1
21A2

21A3
22A1A22A2A32A3A1!

.

~4.14!

Since the ratios among the quadrupole moments are cons
the triaxiality parameterg is fixed and independent of th
angular momentum. The angular momentum component
the intrinsic frame are determined from Eq.~4.7!; a valid
solution demands that the square of each angular momen
component is non-negative. These fixed-g bands typically
start at rather large angular momentum and terminate at
maximum angular momentumI 5l1m.

V. ENERGY FUNCTIONAL II

A second natural choice for the energy functional is
polynomial in the so(3) integrity basis of su(3). By defini-
tion, any rotationally invariant polynomial in the su(3) e
veloping algebra is a function of the so(3) integrity bas
The basis consists of five functionally independent polyn
mials: the two Casimirs,C2 ,C3, the square of the total angu
lar momentumL2, and two scalars of degrees three and fo
@25#,

X35LiQ i j
(2)L j , ~5.1!

X45LiQ i j
(2)Q jk

(2)Lk . ~5.2!

The eigenvalues of the Hermitian operatorsX3 andX4 in a
representation are not integers@26#. On a level surface the
Casimirs are constants and the other three integrity b
members may be evaluated in the principal axis frameL2

5I 2, X35qkI k
2 , X45qk

2I k
2 . A simple energy functional used

in nuclear structure applications is a linear combination
I 2, X3, andX4,

E@r#5AI21BX31CX4 , ~5.3!

whereA,B,C are real constants@27#. Note that the moments
of inertia for this energy functional are not constant, and th
depend on the deformation. WhenCÞ0, the energy may be
expressed conveniently as

E@r#5AI21C~nX31X4!, ~5.4!

wheren5B/C. SinceI 2 is constant on the constraint surfac
and C determines an energy scaling, the critical points d
pend only on the real parametern. The critical points of Eq.
~5.4! on the constraint hypersurface~3.6!–~3.9! in the dual
space are determined by the Lagrange multiplier theorem
a way similar to Eq.~4.2!.

Once again, the kinematical solutions of Sec. III are cr
cal points of Eq.~5.4!.

m
f
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~1! Rotations about a principal axis, viz., Eqs.~3.18!–
~3.20!, are critical points for the multipliersa53cq2q3 , b
53cq1/2, d5q1(q11n13c/4), and

c5
I 2~2q11n!

3~2q1
21q2q32I 2/4!

. ~5.5!

When the denominator in the above expression forc is zero,
there is still a principal axis solution, but only when th
parametern522q1. For example, the band given by E
~3.18! for 0<I<l yields

c52
I 2~2l14m23n!

9m~l1m!
. ~5.6!

Whenm50 the energy parameter must ben52l/3.
~2! Spheroidal solutions are critical points only whenI 2

5I 3. In this case the Lagrange multipliers may be chosen
yield the spheroidal solutions.

The equations for general triaxial rotors are obtained a
eliminating the Lagrange multipliers from the system. Ign
ing the special case of spheroidal solutions, a solution
quires that the rotation is in a principal plane.

Solution V.1.Principal plane rotations. WhenI 250 the
body-fixed angular momentum componentsI 1 ,I 3 are deter-
mined from Eqs.~3.8!,~3.9!. In addition to the constrain
equations~3.6!,~3.7!, the quadrupole moments satisfy

0512~q1
31q3

324q1q2q3!23I 2q216n~q32q2!

3~q12q2!12C3 . ~5.7!

Critical points of the energy functional are shown in Figs.
6, 7 for (l,m)5(8,4) and for three values ofn: 20/3, 0, and
24/3. For each chosenn there are two plots in the figure
one of the triaxiality parameterg versus the angular momen
tum, and the other of the square of the ratioI 1 /I versus the
angular momentum.

In these figures only the principal plane Solutions V.1 a
drawn. There are, of course, the usual kinematical bands
principal axis rotations and spheroids which are not sho
The equations are symmetrical under a simultaneous in
change ofq1 and q3 , I 1 and I 3. As a result, the plots o
(I 1 /I )2 are reflection symmetric with respect to the (I 1 /I )2

50.5 horizontal line. One of the curves may be regarded
a plot for (I 1 /I )2 while its reflection is a plot of (I 3 /I )2.
When (I 1 /I )250.5 the tilting of the rotation axis in the 1
23 plane is a maximum; whenI 1 /I 50 or 1, the rotation is
about a principal axis.

If n520/3, there are two bands, Fig. 5. The first ba
begins at the triaxialI 50 state and ends atI 58 as a non-
collective oblate spheroid. Note that maximal tilting is a
tained for theI 50 density—in vivid contrast to the principa
axis solution. The second band starts atI 54 as a noncollec-
tive prolate spheroid and ends atI 512 as a noncollective
oblate spheroid. Although the two end points of this band
principal axis rotations, the densities in between are tilted
the direction of the angular momentum vector varies c
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tinuously from alignment with the long axis (I 54) to align-
ment with the short axis (I 512).

When n524/3 there are two bands, but there is a ga
between them. The first band begins as a triaxial maxima
tilted rotor atI 50 and ends as a noncollective prolate sphe
oid at I 54. There is a sharp phase transition to theI 54
principal axis rotor from a highly tilted configuration. The
second band is oblatelike fromI 58 to I 512 while the rota-
tion is slightly tilted.

If n50 there are two bands, no solutions belowI 54, and
a gap between the bands. The first band begins as a triax
maximally tilted rotor atI 54, increases in angular momen
tum to I'6 before falling back to the principal axis noncol
lective prolate solution atI 54. The second band begins a
I 58 and ends atI 512; these oblatelike states are only pa
tially tilted.

VI. COMPARISON WITH REPRESENTATION THEORY

The correspondence between density matrix theory a
the irreducible representations of su(3) is quite close, but n
perfect. In this section the similarities and difference

FIG. 5. For (l,m)5(8,4), sequences of triaxial principal plane
rotors are shown as plots ofg and (I 1 /I )2 versus the angular mo-
mentumI whenn520/3 for energy functional II.
3-11
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between the two are discussed. Among the continuous fam
of surfaces of admissible densities, a representation ma
associated only with those that satisfy a generalized Bo
Sommerfeld quantization rule@19#. Consider the diagona
density matrix r (lm) , Eq. ~2.12!, which is contained
uniquely in each surface. For each group element in the s
group of diagonal matrices

g5diag~eiu1,eiu2,eiu3!, detg51, ~6.1!

whereu1 ,u2 ,u3 are real numbers, define the complex num
ber

x (l,m)~g!5exp$ i ~2l1m!u1/31 i ~2l1m!u2/3

2 i ~l12m!u3/3%. ~6.2!

The quantization condition is thatx (l,m)(g) is a character of
the diagonal subgroup, i.e., wheneverg is the identity ele-
ment of the group,x (l,m)(g) must equal one. Wheng
5diag(eiu,e2 iu,1) is a closed circle, 0<u<2p, the charac-
ter x (l,m)(g)5eilu must equal one atu52p, or l is an

FIG. 6. For (l,m)5(8,4), sequences of triaxial principal plan
rotors are shown as plots ofg and (I 1 /I )2 versus the angular mo
mentumI whenn50 for energy functional II.
05430
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integer. Similar reasoning forg5diag(1,eiu,e2 iu) shows
that m must be an integer. A level surface of the Casim
invariants satisfies the Bohr-Sommerfeld quantization ru
if and only if l andm are non-negative integers. Hence t
surfaces of admissible densities that satisfy the quantiza
condition are in one-to-one correspondence with the irre

The irreducible representations of the compact alge
su(3) are finite dimensional; hence, the spectrum of any H
mitian operator acting on the representation space
bounded. On a surface of admissible densities, the rang
any real-valued continuous function is bounded from abo
and below, because these surfaces are closed and bou
manifolds. Thus the values of physical su(3) observab
have a bounded range, whether Hermitian operators ac
on irreducible representation spaces or real-valued funct
on surfaces of admissible densities. In particular, the rang
the total angular momentum is the same bounded inter
0<I<l1m, in an irrep of su(3) and on the correspondin
level surface of the Casimirs in the dual space su(3)* .

The differences between representation theory and den
matrix theory are more evident from a comparative analy
of the angular momentum decompositions. For both SU
irreducible representations and the adiabatic rotatio

FIG. 7. For (l,m)5(8,4), sequences of triaxial principal plan
rotors are shown as plots ofg and (I 1 /I )2 versus the angular mo
mentumI whenn524/3 for energy functional II.
3-12
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model, the decomposition is achieved by angular momen
projection from a fixed intrinsic state. When the intrins
state has a sharp quadrupole deformation, as it does in
adiabatic rotational model, the projected statesuIKM & are
orthogonal. In addition, each projected state is an eigens
belonging to the eigenvalueK2, of the Hermitian operatorÎ 3

2

that corresponds to the square of the third component of
body-fixed angular momentum@28#,

~q32q1!~q32q2! Î 3
25X̂41q3X̂31q1q2I 2, ~6.3!

where the quadrupole moments (q1 ,q2 ,q3) are real con-
stants determined by the intrinsic state.

In contrast, angular momentum projection from a su(
highest weight vector yields a nonorthogonal basis that
quires Gram-Schmidt orthogonalization@29#. MoreoverK2

is not an eigenvalue ofÎ 3
2 which, indeed, is no longer well

defined for su(3). These difficulties arise because the su(
intrinsic state, the highest weight vector in an irrep, does
have sharp values for the quadrupole moments. Howe
when a vector’s angular momentumI is small compared tol
and/orm, its deformation is little changed from that of th
highest weight vector, Eq.~3.7!. Thus, forI !max(l,m), the
su(3) projected states are approximately orthogonal andK2

is an approximately good quantum number. According
Elliott @15#, the possible values ofK in an su(3) irrep (l,m)
are

K5min~l,m!,min~l,m!22, . . . ,1 or 0. ~6.4!

The sequence of angular momentum states associated w
K band is

K50:I 5max~l,m!,max~l,m!22, . . . ,1 or 0,

KÞ0:I 5K,K11, . . . ,K1max~l,m!. ~6.5!

The density matrix theory shares some properties w
both the geometrical rotational model and su(3) irreduci
representations. The densities have well-defined values
the deformation, but, on a level surface of the su(3) C
simirs, the deformation depends on the angular moment
In su(3) density matrix theory, Eq.~6.3! for I 3

2 is an identity
when the operators are replaced by their corresponding f
tions on the dual space and, instead of remaining cons
the quadrupole moments now vary. For small angular m
mentum, as long as the deformation is constant, the g
metrical model, the density matrix theory, and the irreduci
representations of su(3) are equivalent theoretical desc
tions. For larger angular momentum, the connection betw
the su(3) and geometrical models breaks down. Yet, bec
the deformation changes on a surface of admissible dens
the matrix theory maintains its correspondence with su
irreps.

Supposel.m. In the density matrix theory, the ban
heads 0<I 5K<m are densities rotating about the long pri
cipal axis, Eq.~3.19!; the last bandhead is atI 5K5m when
the body is a prolate spheroid rotating about its symme
axis. The band heads correspond to the Elliott labeling oK
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bands, Eq.~6.4!. The Elliott K50 band corresponds to th
density matrices which describe bodies rotating about
short principal axis, Eq.~3.18!; this band terminates atI
5l when an oblate spheroid rotates about its symmetry a
Eq. ~6.5!.

For KÞ0 bands, the relationship between density mat
and representation theory is not as clear. An obvious ca
date for the ElliottK5m band is the sequence of prola
spheroid densities which attains a maximumI 5A4lm, Sec.
III C 2. At this maximalI the body rotates collectively abou
its short axis. Because the projection of the angular mom
tum on the symmetry axis does not maintain a constant va
K5m, Fig. 3, the geometrical interpretation as a fixedK
band is not supported. In addition the density matrix ba
terminates beforeI 5l1m. In Sec. IV a sequence of triaxia
principal plane rotational densities which starts atI
5A4lm and terminates atI 5l1m was found. In our view
the density matrix theory indicates that the ElliottK5m
band in a su(3) irrep does not exist in the strict geometr
model sense, although it is a useful concept whenm<I
,A4lm.

For the otherK bands, there are more discrepancies.
particular, K bands in the density matrix theory need n
terminate atI 5K1l. However, whenl is large compared
to bothm and the angular momentumI, approximate analytic
solutions to the fundamental system, Eqs.~3.6!–~3.9!, can be
found that describe tilted rotation of triaxial rotors. Forl
@I .K, there are approximate solutions for which the qua
rupole moments in the principal axis frame are

q15
2 l1m

3
2

I 22K2

2~2 l1m!
,

q252
2 l1m

6
1

Am22K2

2
1

I 22K2

4~2 l1m!
, ~6.6!

q352
2 l1m

6
2

Am22K2

2
1

I 22K2

4~2 l1m!

and the body-fixed projections of the angular momentum

I 1
25K21

m2

~2 l1m!2
~ I 22K2!,

I 2
25

1

2
~ I 22K2!S 12

m2

~2 l1m!2D , ~6.7!

I 3
25

1

2
~ I 22K2!S 12

m2

~2 l1m!2D .

The quadratic Casimir equation is satisfied too(l22) and
the cubic Casimir equation too(l23). For l large compared
to I and m, these triaxial rotors are approximately prola
spheroids. The solutions form a band in which the com
nent of the angular momentum along the long ne
symmetry axis is approximatelyK.
3-13
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To distinguish among basis vectors with the same to
angular momentum in an su(3) irrep, states may be cho
to be simultaneously eigenstates of some element of
su(3).so(3) integrity basis, e.g.,X3 , X4 or some more
complicated function of the integrity basis@25#. Diagonaliz-
ing justX3 is the simplest choice@30#. For axially symmetric
states the Hermitian operatorÎ 3

2 is related toX3 @28#,

Î 3
25 1

3 ~ 1
2 detQ(2)!21/3X31 1

3 I 2. ~6.8!

A stringent test for the density matrix method is to comp
the eigenvalues ofX3 calculated in representation theo
with the simple geometrical densities. In Table V, the sm
est eigenvalues ofX3 for each angular momentum state fro
I 50 to I 58 in the (8,4) irrep are compared to theX3 values
for K50 geometrical densities~3.18!. SinceX3 is a cubic
polynomial in the enveloping algebra and not an elemen
the algebra itself, the evaluationw(X3) of this function in the
dual space must be defined now. These values are calcu
for rotation about the short principal one axis by

w~X3!5q1I 2. ~6.9!

The error in the density matrix calculation rises to a ma
mum of just 10% for theI 58 state.

For theI 512 state of the (8,4) irrep, the eigenvalue ofX3
is 2234; for the noncollective rotation of the oblate sphero
density, w(X3)5(m2l)(l1m)2/352192. For the band
headsI 5K50,2,4, the states in the representation space
taken to be the eigenvectors belonging to the maximal eig
values ofX3 , 0,25,108, respectively. For the correspondi
geometrical densities given by rotation about the long p
cipal axis w(X3)50,27,107, as calculated via the analy
formula ~3.19!. The error is negligible for small angular mo
mentum.

In the representation space the ‘‘K54’’ band is chosen to
be the sequence of angular momentum states belongin
the maximal eigenvalue ofX3 for each angular momentum
In Table VI, these eigenvalues are compared to the value
w(X3) for the sequence of tilted prolate spheroids

w~X3!5q~ I 223K2!, ~6.10!

whereq is the moment for the equal short axes andK is the
component of the angular momentum along the long sym
try axis.

TABLE V. X3 values for the ‘‘K50’’ band of ~8,4!. The values
for q1 ,q2 ,q3 are calculated from Eq.~3.18!.

I q1 q2 q3 g° w(X3) X̂3

density eigenvalue

0 25.33 6.67 21.33 19.11 0.00 0.00
2 25.33 6.54 21.21 20.02 221.33 224.52
4 25.33 6.13 20.80 23.13 285.33 293.90
6 25.33 5.31 0.02 30.20 2191.98 2214.23
8 25.33 2.67 2.67 60.00 2341.31 2383.81
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The ‘‘K52’’ band in the representation space is taken
the sequence of states with intermediate values for theX3
eigenvalue, see Table VII. In this case the geometrical d
sities are assumed to be principal plane triaxial rotors,I 2
50 andI 35K52 where the three-axis is the long axis. Th
complex values at the end of theK52 band for the values o
the quadrupole matrix are due to the restriction of the ro
tion in one plane. They show that the assumptionI 250 is
not correct. There are nonzero projections of the angular
mentum on all three intrinsic axes.

When m50, e.g., 20Ne for which (8,0) is the dominan
irrep, the angular momentum is multiplicity-free,I
50,2, . . . ,l. In this case, Bargmann and Moshinsky@31,32#
have given an analytic formula for theX̂3 eigenvaluesX3
5(l/311/2)I (I 11). The density matrix approximation i
X35q1I 25(l/3)I 2. The difference is due to the omission o
commutator terms of lower degree in the density mat
approximation—I 2 instead of the quantumI (I 11), and 0
instead of 1/2.

VII. COMPARISON WITH CRANKED ANISOTROPIC
OSCILLATOR

In conventional mean field theory nuclear rotational m
tion is modeled in a simple way by cranking the anisotro
harmonic oscillator around one axis. For rotation with co

TABLE VI. X3 values for the ‘‘K54’’ band of prolate sphe-
roids for ~8,4!.

I q w(X3) X̂(3)

density eigenvalue

4 23.33 106.56 108.18
5 23.22 77.17 72.06
6 23.07 42.04 31.94
7 22.89 4.13 216.23
8 22.67 238.20 254.89
9 22.39 281.20 2123.64
10 22.03 2123.20 2141.88
11 21.54 2161.04 2250.00

TABLE VII. X3 values for the ‘‘K52’’ band of ~8,4!. The
fundamental system is solved for rotations in the 1-3 plane.

I q1 q2 q3 g° w(X3) X̂(3)

density eigenvalue

2 25.06 21.60 6.67 16.70 26.67 24.52
3 25.07 21.44 6.51 17.83 0.69 0.00
4 25.08 21.21 6.28 19.57 235.78 214.28
5 25.08 20.88 5.96 22.14 282.90 272.00
6 25.09 20.43 5.53 25.96 2140.86 270.71
7 25.11 0.21 4.90 32.04 2210.35 2183.10
8 25.13 1.32 3.82 44.27 2292.52 2159.29
9 PC PC PC 2336.36
10 PC PC PC 2291.45
3-14
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SU~3! DENSITY MATRIX THEORY PHYSICAL REVIEW C 63 054303
stant angular velocityv around the one axis, the Hami
tonian ~Routhian! for one nucleon with massm in the rotat-
ing frame is

hv52
\2

2m
D1

1

2
m~v1

2x1
21v2

2x2
21v3

2x3
2!2v Î 1 , ~7.1!

wherevk (k51,2,3) are the oscillator frequencies. For ma
fermions the model wave function is a Slater determin
given by occupying the orbitals ofhv, and it is an eigenstate
of the one-body operatorHv5(ahv, where the sum is ove
the particles. When the deformation is not too large, mix
between major oscillator shells can be ignored@23,33# and,
as a function of the total angular momentumI, the energy of
a system of many nucleons in the anisotropic potential s
plifies to

E~ I !5\v1S11 1
2 \v2~S21S32AI max

2 2I 2!

1 1
2 \v3~S21S31AI max

2 2I 2!, ~7.2!

whereSk denotes the sum of the quanta (nk11/2) over all
occupied orbitals.I max5uS22S3u is the maximum angula
momentum of the rotational band 0<I<I max. Applying Fey-
nman’s lemma

K ]Hv

]vk
L 5

]E

]vk
, ~7.3!

the expectations of the dimensionless quadrupole mome
the rotating frame are

^q1&5 1
3 ~2S12S22S3!, ~7.4!

^q2&5 1
3 ~ 2 1

2 ~2S12S22S3!2 3
2 AI max

2 2I 1
2!, ~7.5!

^q3&5 1
3 ~2 1

2 ~2S12S22S3!1 3
2 AI max

2 2I 1
2!. ~7.6!

These expectations are exactly the values of the quadru
moment found with the density matrix method, Eqs.~3.18!–
~3.20!. For example, whenS1>S2>S3, the rotation is
about the long axis, Eq.~3.19!, wherel5S12S2 , m5S2
2S35I max. But their derivations involve different assump
tions. The su(3) density derivation shows that principal a
solutions are an immediate consequence of kinematics
the restriction to su(3) admissible densities. The constra
imposed by the quadratic and the cubic Casimirs are es
tial. The principal axis solutions are critical points for bo
energy functionals I and II. The natural inference is that
principal axis solutions should be critical points for a
physically reasonable energy functional. In the density m
trix theory the energy is proportional toI 2 for both function-
als I and II,

EI~ I !5q1I 2, EII ~ I !5~A1Bq11Cq1
2!I 2. ~7.7!

In contrast the anisotropic oscillator derivation is based
a specific assumption about the energy. When major s
mixing is ignored, the cranked anisotropic oscillator is co
patible with su(3) dynamical symmetry. By making a c
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nonical ~symplectic group! transformation and expressin
the su(3) generators in the transformed basis, the Ha
tonian of the cranked anisotropic oscillator~CAO! becomes
an element of the algebra. Hence the su(3) density pre
tion for the quadrupole deformation is expected. No
though, that the energy of the cranked anisotropic oscilla
is not proportional toI 2. When the oscillator frequencies ar
optimized, the self-consistent energy of the cranked an
tropic oscillator is

ECAO53\v0@S1~S2S31 1
4 I 2!#1/3, ~7.8!

wherev0
35v1v2v3 is constant.

When the deformation is large the assumption of
major-shell mixing is not valid. The anisotropic oscillato
energy and the expectations of the angular momentum
quadrupole moment can be evaluated analytically in term
the angular velocityv @34#. The final results cannot be ex
pressed as analytic functions of the angular momentum,
numerical calculations are elementary. For rotation arou
the one-axis, the numerical values for the quadrupole de
mations from density matrix theory, Eqs.~3.18!–~3.20!, and
from the exact problem of the cranked anisotropic harmo
oscillator are compared for two even-evends-shell nuclei
20Ne and 24Mg.

The case of the highly deformed nucleus20Ne is pre-
sented in Table VIII. This nucleus is described by the (8
SU(3) representation, which, for collective rotation arou
the short one-axis, corresponds toS15S2514, S3522. The
deformations from the density matrix method are calcula
from Eq.~3.18!. These are compared to the values calcula
numerically with exact cranking of the anisotropic oscillat
@35#. The agreement is excellent. In particular, the band e
points—prolate spheroid atI 50 and noncollective oblate
spheroid atI 58—are in perfect agreement.

The case of the triaxially deformed nucleus24Mg is more
interesting. The dominant SU(3) representation for t
nucleus is (8,4), which corresponds toS3528, S2520,
S1516. In Table IX the deformations from the cranked a
isotropic oscillator are compared to the values from E
~3.18! for collective rotation around its short one axis. Th
differences between the two theories are negligible.

In Table X the deformations from the cranked anisotro
oscillator are compared to the values from Eq.~3.19!. The
agreement is excellent and shows that Eq.~3.19! can be in-
terpreted as the formula for the band heads: The nuc
rotates around its long axis. AtI 54 the nucleus is a prolate

TABLE VIII. Deformations for 20Ne calculated with the
cranked anisotropic oscillator and the density matrix method.

I q1 q2 q3

cranking density cranking density cranking densi

0 22.67 22.67 22.67 22.67 5.33 5.33
2 22.67 22.67 22.58 22.54 5.25 5.21
4 22.69 22.67 22.31 22.13 5.00 4.80
6 22.72 22.67 21.78 21.31 4.50 3.98
8 22.67 22.67 1.33 1.33 1.33 1.33
3-15
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spheroid rotating noncollectively. This is the maximum a
gular momentum at which a band occurs for the domin
representation~8,4! according to the Elliott model.

VIII. CONCLUSION

The density matrix method provides a simple geometr
interpretation for the rotational states in su(3) irreduci
representations. Each density in the dual space has a d
physical interpretation as the expectation of observable
the algebra. But the quantum superposition principle a
state fluctuations are not incorporated directly into the d
sity theory because the admissible densities do not for
vector space. Nevertheless, the density formulation re
duces many properties of the quantized irreducible repre
tations. This situation is similar to Hartree-Fock and its re
tionship to the quantized shell model. Although Hartre
Fock was founded on the independent fermion assumpt
density matrix theory shows that, when viewed from an
propriate perspective, the essential character of the m
field method does not demand this assumption. In fact d
sity matrix theory can be applied effectively to describe c
lective rotational states.

SU(3) density theory is more tractable than either
irreducible representation theory or the cranked anisotro
oscillator. The densities are solutions to a system of a
braic equations that are given immediately by the mod
ansatz. In contrast, even for principal axis rotations,
cranked anisotropic oscillator requires an extended argum
involving energy minimization to attain the same conc
sions. The irreducible representations, determined from
theory of highest weights, are difficult to work with in th
noncanonical angular momentum basis. For example, the
genvalues ofX3 in an irreducible representation are difficu

TABLE IX. Deformations for the ‘‘K50’’ band of 24Mg cal-
culated with the cranked anisotropic oscillator and Eq.~3.18! from
the density matrix method.

I q1 q2 q3

cranking density cranking density cranking densi

0 25.33 25.33 21.33 21.33 6.67 6.67
2 25.34 25.33 21.23 21.21 6.56 6.54
4 25.34 25.33 20.90 20.80 6.25 6.13
6 25.36 25.33 20.26 0.02 5.62 5.31
8 25.33 25.33 2.67 2.67 2.67 2.67

TABLE X. Deformations for the band heads of24Mg calculated
with the cranked anisotropic oscillator and Eq.~3.19! from the den-
sity matrix method.

I q1 q2 q3

cranking density cranking density cranking densi

0 6.67 6.67 25.33 25.33 21.33 21.33
2 6.66 6.67 25.09 25.07 21.58 21.60
4 6.67 6.67 23.33 23.33 23.33 23.33
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to compute, yet the values from density matrix theory ar
back-of-the-envelope calculation. This illustrates the pow
of the density matrix theory and indicates its potential
analyzing more complex algebraic models.

Density matrix theory transforms the angular moment
decomposition problem into a geometrical analysis of
range of the angular momentum function on admissible s
faces. In many cases, such as su(3), this is technically easier
than the mathematical procedure of identifying irreducib
subspaces of SO(3) within an irreducible representation
the model’s algebrag. The latter is a difficult task when
SO(3) is not canonically embedded ing.

In density matrix theory, the cubic su(3) Casimir plays
role equal to the quadratic Casimir in determining the se
admissible densities. In the usual su(3) model, the quadr
Casimir has a distinguished part because the quadrup
quadrupole interaction is a linear combination ofC2 and I 2.

The density theory allows for many solutions, includin
tilted rotation in a principal plane and more intricate rot
tional configurations. The physical interpretation of these
lutions is simple and may be adopted for the correspond
state vectors in irreducible representations.

The density matrix method may be applied to any d
namical symmetry algebrag. The admissible densities of th
model are a level surface of the Casimirs in the algebr
dual space. For a semisimple Lie algebra, the dimension
the generic level surfaceOr equals the dimension of th
algebra minus the rank of the algebra. There are also sing
level surfaces whose dimension is even smaller, e.g.,l50 or
m50 level surfaces are just four dimensional. In nucle
applications the angular momentum algebra so(3) is a s
algebra ofg. Hence, a rotationally invariant energy fun
tional enables a further reduction in the dimension
dimOr24 after rotation of the system to an intrinsic fram
~a reduction by 3, the dimension of the rotation group, a
restriction to fixed angular momentumI ). For the SU(3)
problem, the dimension of the algebra is 8, its rank is 2, a
the effective dimension is 2 for a rotational scalar ene
functional.

In future work the method will be applied to other alg
bras relevant to nuclear structure science, e.g., the gen
collective motion algebra gcm(3) corresponding to the
tended Bohr-Mottelson model, which includes quantum v
ticity @36#, the symplectic algebra sp(3,R) @4,6#, and the in-
teracting boson model u(6) and its subalgebras u(5), so(6),
and so(5)@17#. It should be emphasized that the only restr
tion is that the physically relevant degrees of freedom spa
Lie algebra of observables.

The Hohenberg-Kohn theorem of density function
theory was generalized to establish the existence of an
ergy functional for arbitrary dynamical algebras whose mi
mum is the density of the exact ground state@37#. But, like
the original Hohenberg-Kohn result@38#, this is an existence
theorem for which an explicit construction of the dens
functional from the Hamiltonian is not known. Nevertheles
similar to the Hohenberg-Kohn theorem, it suggests a pro
ising avenue of research to solve complex many-body pr
lems. Two energy functionals for su(3) were considered
this paper, one motivated by the classical theory of rig
3-16
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rotations, the other from the mathematics of integrity ba
theory.

The surface of admissible states is, in fact, an orbit of
coadjoint action of the Lie group in the dual space@22,39#.
These orbit surfaces are equipped with a Poisson bracke
symplectic structure. In particular, each surface is alw
even-dimensional and admits canonical coordinates. An
ergy functional defines a Hamiltonian function, and, from t
Poisson bracket, a Hamiltonian dynamical system. Hence
dynamics of density matrices is well defined. Even thou
this paper studies equilibrium densities in the su(3) theo
normal mode and other dynamical properties may be inv
tigated too. These are the analogs of the random phase
proximation and time-dependent Hartree-Fock from conv
tional mean field theory.

Finally the surfaces that satisfy the generalized Bo
Sommerfeld quantization condition may be used to const
explicit irreducible representations. The procedure to ob
the irreps is called geometric quantization@19,40,41#. The
method was applied in prior work to determine the irredu
ible representations of the rotational and Bohr-Mottels
theories@42#.
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APPENDIX: DUAL SPACE FUNCTIONS

One important concept in density matrix theory is that
a coordinate function. For each Lie algebra elementZ
Psu(3) there is a real-valued ‘‘coordinate’’ functionw(Z)
defined on the dual space: the value of the functionw(Z) at
the pointrPsu(3)* is defined by

w~Z!~r!5^r,Z&5tr~r Z!. ~A1!

These functions separate points, i.e., ifr1 andr2 are distinct
densities, then there exists a Lie algebra elementZ such that
w(Z)(r1)Þw(Z)(r2). The physical interpretation ofw(Z) is
that it is the real-valued function corresponding to the H
mitian operators(Z). The value of the observableZ at the
densityr is the numberw(Z)(r).
lie
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Polynomials in the algebra generators are relevant
many physical applications, e.g., the Casimir invariants a
the cubic and quartic scalarsX3 andX4. In this appendix the
extension ofw from the domain of Lie algebra elements
the domain of polynomials is defined.

First, the domain ofw is extended to the symmetric alge
bra S(g) of the Lie algebrag. S(g) is a commutative asso
ciative algebra with elements that are symmetric polynom
of elements ofg ~the order of multiplying the elements ofg
is not important! @43#. The extension

w:S~g!→C`~g* ,R! ~A2!

is defined in the following way: if$Z1 ,Z2 , . . . ,Zn% is a basis
for the Lie algebrag and (e1 ,e2 , . . . ,en) is a set of integers,
then

w~Z1
e1Z2

e2
•••Zn

en!5w~Z1!e1w~Z2!e2
•••w~Zn!en. ~A3!

The symmetric algebraS(g) and the universal envelopin
algebraU(g) are related through a mapL, called symmetri-
zation:

L:S~g!→U~g!. ~A4!

Given thatX and Y are elements of the Lie algebrag, XY
will denote their product inS(g) (XY5YX), andX•Y will
denote their product inU(g) (X•Y5Y•X1@X,Y#). If
$Z1 ,Z2 , . . . ,Zn% is a basis forg, the symmetrization map
ping is, by definition,

L~Z1
e1Z2

e2 . . . Zn
en!5

1

m! ( Zi p(1)
Zi p(2)

•••Zi p(m)
,

~A5!

wherem5( ie i , (i 1 ,i 2 , . . . ,i m) is a set ofm integers such
that exactlye j of them are equal toj (1< j <n), and the sum
is over all permutationsp of them integers (1,2, . . . ,m). For
example,L(Z1Z2)5 1

2 (Z1•Z21Z2Z1). The symmetrization
L is a vector space isomorphism~a canonical linear bijec-
tion! @43#.

Since symmetrization is an isomorphism, its inverse
defined. Hence the extension of the domain ofw from the
Lie algebra to the enveloping algebra is given by

w+L21:U~g!→C`~g* ,R!. ~A6!
nt
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