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New forms of deuteron equations and wave function representations
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A recently developed helicity basis for nucleon-nucledi\) scattering is applied to the deuteron bound
state. Here the total spin of the deuteron is treated in such a helicity representation. For the bound state, two
sets of two coupled eigenvalue equations are developed, where the amplitudes depend on two variables and one
variable, respectively. Numerical illustrations based on the realistic BoNriNBpotential are given. In addi-
tion, an “operator form” of the deuteron wave function is presented, and several momentum dependent spin
densities are derived and shown, in which the angular dependence is given analytically.
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[. INTRODUCTION In Sec. Il we introduce the expansion of the deuteron state
into helicity basis states as defined in REf]. Then we
In a recent papell] we developed a three-dimensional project the deuteron eigenvalue equation on these states.
approach in momentum space for nucleon-nucletfNY  Since the deuteron has spin 1 there are three possible values
scattering. The motivation is that for higher energies toofor the helicity projections, namelyy=1,0,—1. Symmetry
many partial waves contribute and a direct solution seemproperties allow one to consider only=1,0. Thus we ob-
more natural and economic. As relevant variables momentain a set of two coupled equations in two variables, the
tum vectors appear, specifically their magnitudes and thenagnitudgg| of the relative momentum vector and the angle
angles between them. The formulation in Héf.is based on betweenq and the arbitrarily choserz axis. This two-
a helicity representation with respect to the total spin of thedimensional form of the deuteron wave function is then con-
two nucleon system. This representation is different from thenected to the standard partial wave representation. We dem-
often used helicity basis referring to the individual nucleonsonstrate that this set of two coupled two-dimensional
[2,3]. A further important advantage of a three-dimensionalequations can be readily solved and display various wave
approach is that a sometimes tedious partial wave expansidanction properties.
of a complexNN force is no longer needed. Instead one In Sec. lll we derive the deuteron wave function in “op-
introduces a helicity representation of tRé\ force, which is  erator form.” In a configuration space representation such a
perfectly adapted to the set of six operators completely deform has been given befof&]. For our purpose an operator
scribing the most gener&lN force compatible with general form is an ideal starting point, since the spin degrees of
invariance principles. Thus, for arfyN force given in op- freedom appear explicitly as spin operators, and thus fit per-
erator form this scheme is applicable. fectly into our helicity formulation. The projection of the
The helicity representation developed fN scattering wave function on the helicity basis leads to deuteron wave
can also be applied to the bouhtN system. It may appear function components with an analytical angular behavior,
unnecessary to extend this particular formulation to study thavhich is different from the familiar one. The “radial” part
nonrelativistic deuteron, which only contai8aindD waves.  of the wave function satisfies a set of two coupledl (
However, the standard practice requires a partial wave rep=1, 0), one-dimensional eigenvalue equationsgn Based
resentation of thédN force, which we avoid. It is straight- on this more analytical insight the connection to the standard
forward to extend the helicity formulation developed for SandD waves forms started in Sec. Il can be finalized.
scattering to investigate the deuteron, calculate its binding There are various possibilities that the two nucleons in the
energy, and wave function properties. This is the purpose afeuteron have a specific orientation of their spins for an
the present investigation. In addition we study the variousverall polarized deuteron. For instance, both nucleons can
wave function properties in momentum space in a threehave their spins up, or one nucleon can have its spin up and
dimensional fashion. Our numerical example is based on ththe other down. In Sec. IV we derive analytic expressions of
Bonn-B potential4]. A graphical study of similar character the corresponding probabilities and display the results. This
has been carried out in configuration spfSkbased on the may have applications for electron scattering on the deu-
AV18 nuclear force[6]. In addition we derive and display teron. Finally we summarize in Sec. V.
probability densities of various spin configurations for an
overall polarized deuteron. These densities are based on ana-
lytical expressions, which we think are new. [l. FORMULATION |

A. Deuteron wave function in the helicity basis

M .
*Permanent address: Jurusan Fisika, FMIPA, Universitas Indone- Let |¥ ;%) represent the deuteron state. Hédg is the
sia, Depok 16424, Indonesia. projection of the total angular momentum along a chosen
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axis, e.g., the axis. The deuteron state will now be repre- My 1 . T My
sented in the helicity basis};qSA;t)™ defined in Ref[1]. Wy >:f dq[§|q;qll;0> (9:91L;00% )
Here g stands for the relative momentum of the two nucle-

ons, S for the total spin,A for its projection alongy, andt + Elq.alo.@la 1a<q‘€110'0|\1r'\"d>]
for the total isospin. The index denotes the parity of the 400 e

state, anda indicates the state being antisymmetric. This 1
results in EJ dq{glq;qll;ofa@iﬂd(q)

1 .
1 +Z|q;q10;0>1acp3”"(q)}, (2.9
|\I;Md>:£ E d | ."1A.O>1a1a< 'AlA‘O|‘I’Md>
¢ 177 &, | ddlaalr; 9;q1A;0[W ).

(2.))  where we defined

O(q)="%(q;qLA;0[ W), (2.6)

Here we took into account that for the deute®a 1,t=0
and the parity is even. The general form of the helicity eigen-

state is given by1] The azimuthal dependency of the amplitude defined in

Eq. (2.6) can be found as follows. The statg;qSA) is

obtained by rotating the statgz;zSA) from the z axis into
the direction ofq as

0:aSA; )2 =(|a)+ 7.~ @) [aSA)[t), (2.2 ) o
|g;qSA)Y=R(q)|qzzSA), 2.7

) ] N whereR(fq) =exp—iJp exp—iJ 0, andJ=L + Sis the opera-
where n denotes the parity eigenvalue. UsingqSA)  tor of total angular momentum. It follows that
=(—)%gS—A) one verifies the following properties:

(0 GSAH Wy o) = (qZ;ZSA ;| ey lel | Wi
. . o
:eIMdd)1a<qZ;ZSA;tlelJy0|'\de d>.

1GSA;D) ™= 7,(=)%(| = a)+ 7,|a))| —aS- A
|0;aSA;t) ™= (=) -a)+ n,la))|—q )t 2.8

=7.(—)%—q;—qS— A;t)™. 2.3

Thus, we can redefine“A"d(q) such that the azimuthal de-
pendency is factored out

With the above relations one obtains for the integral in Eq. _
2.1 eri(a)= g\ (q,0)eMe, 2.9

This leads to the final expression of the deuteron state in the

- - helicity basis
fdqlq;ql—1:0>1“a<q:ql—1;0|‘1’2”“> ’
. _A~a1.a\lala . A1 My My 1 AN11-n\1a Mg
= | da |-g;—q1L,0" *(—a;—q11;0W ) [Wg9)= | daj5]a:911,0)%e; %(q,0)
. . 1. 4
=fdqlq;q11;0>1""1a<q;q11;0|‘1'2”">- (2.4) +Z|q;q10;0>1a<p3”"(q.0) eMda? (2.10

The normalization of the wave function components
Hence, Eq(2.1) simplifies to go'\A"d(q,e) can be calculated as
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1 - * 1 N *
<‘I’Z”"|‘I’Z”">=f dq’f dq(513<q’:q’11:0|<p2”“(q’.0’)+ 7 (0'50'20;0/¢g % (q7,6")}

1 . 1 .
X glq;q11;0>laso§"d(q,0)+Zlq;q10;0>1aso3"“(q,0)}
_ ’ lla oA . A .n\la ME ot My
—qu qu{z (9';0"11;00;911;0) ¢, 9(q",0") ¢, °(q, 6)
1 1
+ 16 0":0'10;01.0;010; 0) %03 (a',6) of *(q,0)+ ¢ g (a’:0'11;0;910; 0)%6}'3 (a,6") o1 (a,6)
11a 1o 2 1a M§. 1 iy My
+g7%0':0"10;0/0;911;,0) e, (A", 6") @1 °(q, )
o 1 1 1
:zwfo dq qZJ_ld c050{§|(p2"d(q,a)|2+ Z|<pg"d(q,9)|2}_ (2.11
Here we used that
Q0" S A |4 qSA ) =1 7,(—)5T1808, ., Ssrd 8"~ D) Snat na(—)%(A' +A)Sxr, a1 (212
From the normalization calculated using Ef.1) we define a deuteron momentum dengit{d(q) as
p“"“‘(q)Ell<pMd(q)|2+EI(PMd(Q)I2 +7ler (- OI)|2=—|<P (9,0)[*+ —|<P 9%q,0)>+ —|<0 g, 7= 0% (213
4'71 4'70 1 0 1 :

B. The deuteron eigenvalue equation in the helicity basis
The deuteron statkelfg"d> satisfies the eigenvalue equation

(Ho—Eg+V)| w9 =0, (2.14

with E4 being the deuteron binding energy avidhe NN potential. This eigenvalue equation is projected on the basis states
|q;q1A;0)* introduced in the previous section. Using E8.10) for representinQ\P(’;"% one obtains

12(q;GLA; 0| (Ho— Eq+ V)| W4y =

—Ey)|wMay+ 1aiq:q1A:0|V | dg’ 1 q' 110 2oMa(q’, ¢’
)Wg )+ %a;q1A;0[V | da'y 5]a":9"11;0) e, (q",6")

1. s
+419710'10,0) g (g’ 0') peMe?

2
q__Ed)‘PAd(q g)e'Mad+ qu’l"’%q q1A;0[V|q’;q'11;0)* %) (q’,6")eMa?’

1 - - . ,
+Zf da'*%(q;q1A;0|V|q’;q’ 10;0) %¢y %(q’, 6" )eMa?
q° M i M
E—Ed)w(q,me'“”mf dg’ { Vir(a.a)e;(a’.6")

1 -
+- Vkloo(qq)<p3”d(q’,0’)]e'“”d"’, (2.15
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where VXit,(q,q’)E’Ta<q;quA;t|V|q’;(Aq’SA’;tWa. Thus, Kknowledge needs to be employed. At this level the question
the eigenvalue equation for deuteron binding energy consis@f total angular momentum of that bound state is undeter-

in the helicity basis of a set of two coupled integral equationgnined and will be considered in Sec. III.

C. Partial wave projection of the deuteron wave function

2
(E - Ed) <pX'd(q, 0) In this subsection we want to reldwg"d> as given in Eq.
(2.10 to the standard partial wave representation of the deu-

Cimaa—on] Lon1o M teron. The standard representation of the total angular mo-
+f dg'e” ™M@= 5Vi1(a,0") e a’,0") mentum basi$q(IS)jm;t) with the normalization
1 110, ’ My, 1 ’
+2Vao(a,a") e, (a’,0") (=0, (2.19
o(q'—q)

(q'(1's")j 'm’|Q(|S)J'm>:T 01165/50)1;6m'm

where the indexA corresponds to 1 or 0. Since the wave (219
function componentsP'\A"d(q,G) have no azimuthal depen-

dence, thep' integral in Eq.(2.16 can be carried out inde-
pendently. Defining

is used for projecting the wave functid»ﬂfg"d). Again, we
use the fixed spin and isospin of the deuteron. The quantum

numberd, j, m remain arbitrary, and we obtain
7StMy

2 . N o ,
Upar (q,q',e,0'>zjo dgp’e ™M= ¢OVTT(a,q'),
(2.1
(@)=(q(11)jm;0[w}'e)

the coupled integral equations are actually only two- 1 , ) L, 1a Mg, o
dimensional and their final form reads :zf da’(q(11)jm;0[q’;q'11;0)*%¢; %(q",6")

iMgo' E ’ [P, reyt .n\1la
xeMa? + 7] dg’(q(l11)jm;0|q’;q"10;0)

q2 E My 1 ocd ’ 12 ! d ’ Md/~1 1\ aiM g’
m Eajesi(@0)+ 5] da'q™ [ dcosd X ¢y %q’,6)eMd?, (2.20
xv i Mi(q,0,6,0')9)%q’,6")

1(= 1
- I ~!2 r 110Mgy ’ ’
+ 4JO dg’q J,ld cost’ vy, (a.q",6,6") Recalling the explicit representation of the helicity stdtg

X end(q’,0')=0. (2.18
The eigenvalue equation, E@®.18), is consistent with our |q;aSA)=]|q)|qSA)
treatment of theNN continuum of Ref[1], where we de-
rived coupled integral equations in two variables for s _ 1S)im CUSi w.M-w.m
scattering equation. We would like to add the remark that it IJEm 1a(9)j >§ (ISipm=pm)

is not necessary to use any specific information about the the o

deuteron, namely, spin, isospin, and parity. The set of equa- XYr (e (Mmmeds L (6), (2.2
tions, Eq.(2.16), is valid for arbitraryS, ., andt. Any

calculation based on a realistitN potential will then reveal

that a solution of the eigenvalue problem exists only for the

well known quantum numbers. Therefore, the scheme laiéind using Eq(2.2), the scalar product of partial wave and
out above automatically provides full insight, rgo priori helicity basis can be worked out as
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(q'(1S")im;t'[g;qSA;t) ™= ((q’(1S")im|a)[gSA) + 7,(q’ (IS") jm| — a)|aSA))(t’ |t)

5(q'—q) ~ i
?5@3%2 CUSj M=, MIYE(Q) + 7, Y, (—a)]e (MM (6)
5(q'—a) . * (AN a—i(m—u)dqS
=[1+7,()—— 7 Ssrsdui CUS|um=—pu,mYf,(a)e CHEN()
o
21+168(9'—0q) . )
=1+ 72 IN o st ™ E COS M= o 6)dh (0
o
8(9'—q) 21+1 . )
=[1+ 7. (=) ]—— 8550 2. € MSC(1Sj;0AA)dL \(6). (2.22
a'q
|
Here we used the relation At this point the remaining properties for the projections
I #1(q) can be found by explicit calculation. In other words
. [21+1 :
* O\ aipd I the fact that has to be 0 and 2, and consequentiyl, has
Yiu(ae A Aol 6) 2.23 to be inferred numerically from the solution of EQ.26). Of

course an analytical investigation can be added once we

together with an addition theorem for WigneBsfunctions  adopt the deuteron wave function with the well-established
analytical angular behavidsee Sec. Il ¢

2 CIS]; M=, m)d,,o(0)d5_,, A(6)

D. Explicit solution of the deuteron eigenvalue equation

=C(ISj;0AA)d}, (6). (2.29 : . .

The numerical solution of the set of two coupled eigen-

Hence, the projection of the deuteron state on the partiatalue equations, Eq2.18, poses no specific difficulty. We

wave basis as defined in E.20 is given by employ an iterative, Lanczo’s type techniql&9], which

provides both, eigenvalue and eigenvector. Following Ref.

| 21+1 (2m im-My) e’ [10] the method is modified to avoid unphysical solutions
(@) =[1+(=)]y ?J’O do'e d corresponding to bound states in the repulsive core region.
All numerical calculations are carried out with the Bonn-B
1 ) potential[4].
X Jfld cosé [ C(11j;01)d}y (6") ¢} '(q,6") For the discretization of E¢(2.18 we employ Gaussian
grids. The ¢’ integration over the potential, Eq2.17),

1 ) needs only 10 quadrature points, whereas thedtogegra-
+4C1j :000)d)o(6") g (a6’ )] tion requires at least 32 grid points and tifeintegration 72
grid points, depending on the desired accuracy. hete-
=[1+(—)"]Vm(2l+ 1)5,“,\,Id gration interval can safely be cut off at 30 fh Using these
numerical parameters, we obtain the deuteron binding energy
1 1 o 2.224 MeV.
Xf_ld c0s0'{ 5 C(11j;011)dhy (6" )‘Pl (a,6") In Fig. 1 the two deuteron wave function components
L (pxd(q,ﬁ), A=0,1, are shown foM4=0 as functions ofj
d and co9. Both drop quickly with increasing relative mo-
"2 C(Ilj 000)dio( ¢ )(’DO (G.6 )] (2.29 mentum between the two nucleons inside the deuteron. The

) o _ wave functione9(q,6) shows a cosinelike behavior indi-
This projection exists only fom=Mgy and evenl, as en-  cated by the straight line aj=0 connecting the highest

forced by the even deuteron parity, and one obtains point at =0 with the lowest point ag=180° through zero
1 1 . at 6=90°. This cosinelike behavior is confirmed to be true
¢|(q):2\/mf d cosa’[—C(I 1j;01Ddl, ,(6") when considering the analytical angular behavior of the
-1 2 ¢ wave functions in Sec. Il B. The functioa’(q, ), in con-

1 trast, displays a sinelike behavior, which also will prove to
X, d(q 0')+ — C(|lj OOO)d 0(0’)<pg"d(q,0’)]_ _be its correct analytical form. It peaks atO: 90° :?md van-
ishes at¥=0 and 180°. The maximum af(q, ) is larger
(2.26  than that of}(q, 6).
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g. Though not shown here the deuteron density Kby
=—1 also has a similar shape. In Figs. 1-3 the densities
have their maximum af=0, indicating that the two nucle-
ons being at rest with respect to each other is the most prob-
able configuration for the deuteron.

Using Eq.(2.26) we extract the usu&@ andD wave com-
ponents. They agree very well with the ones obtained from
standard partial wave calculations.

Ill. FORMULATION I
A. Deuteron wave function in operator form

In order to study the different spin orientations of the two
nucleons in the deuteron in relation to the vector of relative
momentum a representation of the deuteron wave function in
operator form is ideal. It is also desirable to derive another
set of two coupled, one-dimensional equations, in the basis
of total helicity.

In terms of the partial wave basis states given in Eq.
(2.19 the deuteron state has the well-known form

ey =1t fwdqqzlq(u)lmdw.(q). (3.1
1=0,2 J0

Here |t) indicates the isospin, which is O for the deuteron.
The explicit reference to will be omitted in the following
= considerations. Again, we would like to point out that we
S2 o~ © work in the basis of total helicity, and thus our final expres-
FIG. 1. The deuteron wave function componenf{q,6) (8  sions will differ from the ones given in R€f3]. Carrying out
and¢(q, ) (b) in units 10" MeV~*®as functions ofjand cost. ~ the angular momentum expansion explicitly and using

(allw)=Y,,(q) one obtains

For My=1 and —1 the wave function components
go“A"d(q,e) are shown as functions af and co9 in Fig. 2. \I'M“(q)=|1M
They also drop quickly as the relative momentum between d
the two nucleons inside the deuteron increases. In the upper
part of the figure we see that botf(q,6) and ¢, *(q,6)
vanish atd=0 and 180° but have a different sign for the
other # values. At #=90° goé(q,a) reaches its minimum
whereasp, 1(q, §) reaches its maximum. In the lower part of . _ -
the figure we see thai}(q,6) peaks a®=0 and vanishes at X C(211Mg+ 1= 1Ma)You (D)) 2(Q)-
6=180°. On the contrary; (q,6) peaks at9=180° and (3.2
Véﬂ'Shes ay=0. This angular behavior 0b3(q.6) and  hserting the explicit expressions for the Clebsch-Gordon co-
¢ °(9,0) suggests a relation between the two functionsgfficients[11] leads to
This relation is explicitly given in Sec. Ill B. Favl4=1 and
—1 the maximum quoi/ld(q,ﬁ) is larger than that of

1
d)\/T—ﬂ_ Po(d)
+H{[1)C(211Mg—1,1Mg) Yo, -1(q)

+]10)C(211;MqOMg) Yy (@) +]1— 1)

1
W) =]|1M g)—
(Pgld(q,a)- d (Q) | d>\/ﬂlﬁo(Q)
In Fig. 3 the deuteron densitigs”d(q) as given in Eq. (2—=My)(3—My)
(2.13 for My=0 (top row and My=1 (bottom row are +[|11)\/ d20 d YZ,Md_l(fq)
shown. On the left side the two densities are displayed as

functions ofg and cos), and on the right side as functions of (2—Mg)(2+My) A
the Cartesian projections a@f, q,, andq,. Since the wave —110) \/ 10 Ysz(Q)
functions are invariant under rotations around zhexis, we

show a vertical cut through thg-z plane. The densities (2+Mg)(3+My)

p°(q) andp'(q) have uniform angular distributions with re- +|1-1) \/

spect to the azimuthal anglé for the momentum range 20

shown, and thus the equidensity surfaces as function of the

momentum between the two nucleons have a spherical ><Y2,Md+1(&)} Po(q). (3.3
shape. The densities are largest at small relative momentum
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cos 8 q[1p2
( ) Q '3 4 Me\// C]
C
0
il 5
S .
s
Ul \\\““‘\“8\\“”"0'(, 20 15
il 'o- N
1 0% iy,
I”"i%""l‘, s
|

FIG. 2. The deuteron wave
[ function componenta:é(q,a) (a),
o n & ¢1(a,6) (b), ¢5%(a,6) (c), and
©:%q,0) (d) in units 103
MeV 1% as functions ofq and
cosd. The relation between the
different components is discussed

(b) in Sec. Il D.
Now we would like to express the wave function in a o(1)-qo(2)-q|11)
simple way such that
11
Mg =loo(1)ao—01(1)q-1—0-1(1)a] §§>
W ) ={cotho(q) + Cotho(q)}|1IMy), (3.4
11
X[o0(2)do~01(2)q-1~0-41(2) ]——>
and wherec, and c, are operators acting on the deuteron ol o™ 1l &)1 {72

spin statg1M 4). For this purpose we choose as an example =0q2|12) — 2q09:/10) +292|1—1). (3.6
M 4= 1 which yields
Thel =0 admixture can be projected out by subtractug,

1 \/T which leads to
Lo 1, -
Vi(a)=[11) _\/E o(Q)+111) 10Y20(Q) 1 )
3 3 (a(l)-qa(Z)-q—ng 11D = 5 (a5+q19-1)[1D)
—[10) \E)Yzl(Q)ﬂl_D \/%Yzz(Q)]'ﬂz(Q) )
—2000:1|10)+2q7]1—-1).
! 2 (3.7
:|11>\/T—W¢0(Q)+{|11>(%+ d19-1)—[10)3900; :
1 1 A comparison to the terms in E@3.5) reveals that‘lfclj(q)
_ AN B can be written as
+1 1>3q1}2q2\/277¢2<q>. (35

o(1)-qo(2)-q

1

1
In the last step we expressed the spherical harmonic func- wd(q):‘\/T—W%(QH
tions in terms of the spherical components of the momentum,
d1, 9o, andq_, [11]. Since the statelMy) in Eq. (3.4) has 1 3 /1
already the correct transformation property under rotation of - §q2}—2 E%(Q)] [11)
the deuteron state, the operatagsand c, must be scalars 49
under rotation. Those scalars have to be formed out of the o
spherical components af(1) ando(2) which at the same ={ Yo(q) +
time will connect the given statdé —1), |10), and|11) to
|1Mg). Therefore we consider (3.8

1 _
o(1)-qo(2)-q— 5@4 wz(q)] 112),
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a, [10% MeV/c]

FIG. 3. The deuteron density
for My=0 [(@ and (b)] and M4
=1 [(c) and (d)] in units 10°®
MeV~2 as functions ofq and
G [10% MeV/c) cosé [(a) and (c)] and as func-

tions of g, and g, [(b) and (d)].
5 For the momentum range shown
qa [10” MeV/c] the deuteron densities display a
uniform angular behavior. The
contours represent equidensity
lines along a vertical section in the
x-z plane.

g [10% MeV/c)

where

<‘1’2Ad|‘l’zﬂd>=fdq{lMdl(%(QH o(1)-qo(2)-q

=

o(1)-qo(2)-q

_ 1
'/fo(Q)E\/T—Trl/fo(Q)a (3.9 —§QZ}E2(Q)HEO(Q)+

1 _
_ 3 1 _§q2}l/fz(CI)]|lMd>
ba(q)= 4_qz \/T—ﬂ_lﬂz(Q)- (3.10

- 8
=4wa dq qz[%(qH 5(1%((1)]

We denote the expression in E8.8) as “operator form” of
the deuteron wave function in momentum space. A corre- _ Jm 2 2
sponding expression in coordinate space can be found in Ref. 0 da a{yo(a) + (e} (3.12
[7]. In a fashion similar to the above derivation, one can

show that the form given in Eq3.8) is also valid forMy
=0 and—1. Hence, the deuteron wave function in operato
form is given in momentum space as

The last form is the standard normalization of the deuteron
"'wave function in terms of partial wave components. In arriv-
ing at this result we used that

g5 Mg==1,

9’205, Mg¢=0,

_ 1 _
‘l’gﬂd(q)=( o(d) +| 0(1)-qo(2)-q— §q2}wz(q)J [1Myg). (IMylo(1)-qo(2)-q|IM )=

Here the positive parity is manifest, sincdfz"d(q) and
=\If2"d(—q). It is a straightforward algebra to work out the

normalization of M9 as given in Eq(3.11) and one ob- A 4w
tains Wit as HILD fdq<1Md|0'(l)'q0'(2)'Q|1Md>:?q2. (3.14
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As we shall show in Sec. IV based on the form .given in Eq. 1+ cosd singd 1—cosé
(3.11) one can express the angular dependencies of all pos- > — >
sible spin orientations in the deuteron analytically. V2

db (0)= siné cosd sinég
B. Analytical angular behavior of the deuteron wave function MgA \/5 \/E

and the deuteron eigenvalue equation

With the operator form, Eq3.11), at hand we revisit the 1-cos§ sind 1+cosd

deuteron wave function component in the helicity basis as 2 J2 2
given in Eq.(2.6): (3.18
Finally, we define an angle independent functibn(q)
e\ (@) =1%q;q1A; 0| Wy via
- M — 4]
=(a1A[({al+{=ah¥y*)  ,(9)=oo(q) +| 242~ §}q2w2<q>

=2(q1A|P}'(q)

1 1
=— A2-2 .

so that the deuteron wave function component can be ex-
pressed as

=2<a1Al[%<q>

1 _
+o(1)-qo(2)- —§q2}w2<q>]|md>.
Y o(a) =20 (q)eMe?dy \(6)

(3.15
= Md 0 eIMd(/) 3.2
The operatore(1)-q o(2)-g can be expressed in terms of =¢xa.0) (3.20
the total helicityS-q as Herecp'\A"d(q,H) are the wave function components which we
determined previously numerically and which are displayed

o(1)-qa(2)-q=2(S-q)%—g?, (3.1 inFigs. 1 and 2.
(1)-q0(2)-0=2(59"~q Employing the above given form of the deuteron wave

function, we can derive a one-dimensional eigenvalue equa-
tion, starting from the eigenvalue equation fgbf\\/'d(Q.a)
=<pxd(q)exp(—iMd ). Inserting Eq.(3.20 into Eq. (2.16
gives

where S=3[o(1)+0(2)]. Therefore, the helicity wave
function component is given by

4 ]
2(S-q)?- ng} iﬁz(Q)] |1Mg)

¢Xd<q>=2<a1A|(%<q>+ i
R (%—Ed)%m)d%ﬂﬂ(e)
:2[¢0(Q)+ 2A2—§ qzwz(q)]<q1AI1Md>

: . 1
B i A qu e Ma(s—¢’ )[ Vit(a,q)®(q")dy 1 (6")
=2[z/fo<q)+ 20%— 5 q2w2<q>]DMdA (460)

1 110 AL '
+2Vao(a,9)Po(q )deo(ﬁ)]=0, (3.21

=2[%<q>+ 2A2—‘§1 q%(q)] eMatdy

) ’ an equation which is valid for any directiah Choosingq

(3.17 =7 simplifies the equation, since the azimuthal dependencies
of the potential can be factored out as

VIS(qzq)=er¢ W (q,q7,6").  (3.22

This shows that the angular behavior of the wave function
component is given bg'Md‘f’dbdA(a), where thed matrixis  The d matrix in the first term givessy,  , and thes' inte-

explicitly given as[11] gration requires\ to be equaMy, leading to

2
q * ! ! ! ! ! ! ! ! !
(E—Ed)%d(q)wfodq q?fldcoso[vw’l(q,q 0')P1(q)diy (6 +5 v“°<qq 0" Po(q’)diy o(6") | =
(3.23
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ChoosingM4=1 and O leads to a closed system of two Md=1;¢(1)(q,0)=—\/§<I>0(q)sin6, (3.28
coupled equations for the amplitudés and®,. The cos’

integration can be worked out independent of the amplitudes cpi(q,a) =®4(q)(1+cosh). (3.29
®,(q’), so that Eq.(3.23 is in fact a set of two coupled ) ) )
quu(gtigns in one vgr(iabl:é), namely, P Obviously, the angular behavior extracted numerically

agrees with the analytical one.
We mentioned in Sec. [ID that the maximum of

2 w ¢"'9(q,0) with A=M, is larger than that withA # M.
q ® da’ 12 110 Y ’ A
™ Ed|Puy @)+ ,aad Via1(9,9")®1(a’) Equations (3.26—(3.29 show that the ratio
|<Pﬂj(q,0)maxl<p“A"iMd(q,0)ma4 is exactly \2. This can be
+ %Vbl:o(an')q)o(Q')] =0, (3.24 unders’aood as follows. AF:cording to E.19 the compo-
nent ¢, %(q, ) is determined for smallj dominantly by

with ¥o(Q), i.e., theSwave.
The analytical angular behavior of the deuteron densities

' ! , e , given in Eq.(2.13 can now easily be derived. Fdvl
Vi/l:l:/\/(q,q )EJlldcosﬂ Vi‘/ll:A,(qu 0 )diAdA’(e ) =0,1 we find
3.2
929 p(q)=Y(q)sir 9+ df(a)coss, (330

The set of two coupled eigenvalue equatig®.24) can be
easily solved using the same method as described in Sec. 1 1
[l D. The Gaussian grids for thg' integration and the ca® pl(q)= E(I)i(q)(l+co§0)+ E(I)S(q)sinza. (3.3)
integration in Eq.(3.25 are taken to be the same, and we
obtain the same value for the deuteron binding enekyy, From these expressions we can deduceﬁﬂm) andpl(q)
=2.224 MeV. The solutiondy(q) and®,(q) are displayed are only perfect spheres for smgllwhered(q) andd,(q)
in Fig. 4. This figure shows that both functions are of theare almost identical. For larger momenta the spheres are de-
same magnitude fay=0, and both drop by about one order formed according the ratisPo(q)/®,(q)|.
of magnitude withing of ~200 MeV/c. ®(q) has its first
node already forg~300 MeV/c, while the first node of C. Relation to the conventional partial wave representation
d(q) occurs forg~800 MeV/c. In general, the magnitude

of ®o(q) falls off slightly slower than the one faby(q) as  pehayior of the angular behavior of the deuteron wave func-
a function ofq. tion in the helicity basis, we want to make contact with the
In Figs. 1 and 2 the wave function componet$(9,6)  standard representation of the deuteron wave function. In
are obtained from numerically solving E(.18. With the  Sec. Il C we derived the projection of the deuteron state on
help of Egs.(3.20 and(3.18 we can express their angular the partial wave basis. We ended up with E226) and left

Before completing the considerations about the analytic

behavior as the remaining quantum numbejsand | to be determined
0 numerically. The wave function componengs, (q,0) to-
Mq=0:¢0(q, 0) =2Po(q)cosd, (320 gether with their analytical angle behavior allows to calcu-
0 ) late the projection and to determine the remaining conditions
¢2(0,0)= 2@ (q)sino, (327 for their existence. Inserting E¢8.20 into Eq. (2.26 yields

1 ) 1 )
p(@)=2\m(21+1) Ld cose'[culj;011>d'Mdl<e'><I>1<q>dbdl<0'>+Ecmj;000>dmdo<e'><bo<q)dbdo<e')

4 . 1 .
= §5j1\/77(2| + 1){ C(11j;01)d4(q)+ EC(I 1j;000®y(q) ;. (3.32
|
Here we use the orthogonality property of tthenatrix =1. Furthermore, the Clebsch-Gordan coefficients allow
only =0 andl =2 and we obtain explicitly for th&andD

1 . , 2
i i 2 wave
f_ld cosfd, ., (0)d 7 (6)= 2j,+1 0431, P11, Omymy

(3.33

2
The projection exists only for a total angular momentjim Yolq)= 5\/;{2<I>1(q)+<l>o(q)}, (334
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0.01

ent spin configurations within the deuteron. This provides
analytical insight into the shape of these configurations. As
an example we choose a polarized deuteron With=1.
Cases of interest are (L) both nucleons have their spins up,
(2) both nucleons have their spins dov{8) one nucleon has
spin up and the other has spin dow#) one nucleon has
spin up and the other has arbitrary spin orientation, @hd
one nucleon has spin down and the other has arbitrary spin
orientation. For these five cases the probability densities are
le-10 . given below. For clarity the final expressions are given in
le11 ' ' ! L ] terms of the standar8 and D waves.

0 500 1000 1500 2000 2500 (1) Probability density for both nucleons having their

a [Mev/el spins up:

0.001
0.0001
1le-05
1e-06
le-07
le-08
1e-09

FIG. 4. The wave functiong®y(q)| and |®4(q)| in units

MeV~ 15,

2 p%T(q>=‘Ifé*(q>3[1+a<1>]3[1+a<2>]\1fé(q>

- z z
(@)= 3V2m{®4(d) = Po(a)}, (3.39 2 2
1 3 1

which is consistent with Eq.3.19. We extracted th& and = 4—{ Yi(q)+ —| cogo— §) Yo(Q) ()
D waves from Eqs(3.34) and(3.35 and found to be in very ™ V2
good agreement with the ones obtained from a standard par- 2
tial wave solution of the deuteron eigenvalue problem. +§ coLf— %) l/f%(Q)]- (4.

IV. PROBABILITY DENSITIES FOR DIFFERENT SPIN
CONFIGURATIONS

The operator form of the deuteron wave function given in  (2) Probability density for both nucleons having their
Eqg. (3.1]) is an ideal tool to express probabilities for differ- spins down:

a, [10% MeV/c]

W

FIG. 5. The probability densi-

ties p1,(q) in units 10 MeV 3
) for both nucleons having their
a [10% MeV/c] spins up[(a) and (b)] and p!(q)

in units 10°1° MeV~3 for both
aq, [10% Mev/c] nucleons having their spins down
[(c) and (d)]. The contours repre-
sent equidensity lines along a ver-
tical section in thex-z plane.

(©

g [10% MeV/c)
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1 ik L 1
pray (=T (Q)E[l"‘ (1) ]W4(a)

1, 3 2 1
=1 'ﬂo(QH‘E coso—z o(q) ¥2(Q)

+ —

2
5 (cosze— E) +coszasin29] ¢§(q)]

3

=pt (@) +pl,(Q). (4.4)

FIG. 6. Two selected equidensity surfaces of the probability
densityph(q) for both nucleons having their spins down. The im-
age is created by rotating two of the equidensity lines of Fig) 5
around thez axis. Note that the axis is stretched with respect to the

(5) Probability density for one nucleon having spin down
and the other having arbitrary spin orientation:

1
other two aes. Pl @="5* (@ 5[1- 0]V ()
9 )
1 1x 1 1 1 = 32W5|r‘29¢2(Q)
p1 (=Yg (a)5[1-0(D]5[1-04(2)]¥4(a)
=pi (@) +p] (q). 4.5

Y 2

T 327 sin'e 45(q). (4.2) In Figs. 5-9 those five different probability densities are

shown. In each figure the left side displays the probability
densities as functions af and co9, whereas the right side
depicts the probability densities as functionsogfandq,.

The contour lines represent a vertical section inx{zeplane
through equidensity surfaces. Rotating this section around
the q, axis gives a three-dimensional image of the equiden-
sity surfaces.

The probability densities for the first two cases, where
both nucleons have the same spin orientations, are given in
1 1 Fig. 5. The top row represen[r%(q). The density peaks at

Lig=wl*(gq) = Zr1— 1 g=0, indicating that the largest densities occur at small mo-
prl@=va"(@zl+ (D1~ o)W u(a) menta. This density has a spherical shape, sincé#. is
9 dominated by theS wave, and in the momentum range
= co2sirte ,/,g(q)_ 4.3 shown has little dependence on the angleThe figures in
32m the bottom row represerpth(q). As Eq.(4.2) suggests, this
density is only determined by the deuterDnwave times a
function of the angled. Thus atq=0 it is zero, and reaches
two maxima at|qma]~100 MeV/c along theq, axis (#

(4) Probability density for one nucleon having spin up and= 7/2). If a measurement could be carried out on a deuteron

the other having arbitrary spin orientation: at rest the two nucleons would have momenta back to back

(3) Probability density for one nucleon having spin up and
the other having spin down:

g, [10% MeV/c]

FIG. 7. The probability density
pt,(q) in units 10°1° MeV 3 for
one nucleon having spin up and
the other having spin down. The
contours represent equidensity
lines along a vertical section in the
x-z plane.

g [10° MeV/c)
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For the case where the spins of the two nucleons point in
opposite directions, the probability density is shown in
Fig. 7. According to Eq.(4.3), this density is also given
solely by the deutero wave and a function of the angle
0. It has four peaks of equal height in each quadrant of
the g,—q, plane at|g,|=|d,/=0maxCOSE/4). Rotating
the vertical section in thex-z plane around thez axis
will reveal a double toroidal structure. For the image in
Fig. 8 two equidensity surfaces are picked and rotated
around thez axis, resulting in a double torus being cut open
vertically. The inner tubes represent surfaces of higher den-
sity compared to the outer ones. The shape is characteristic
for a spherical harmonics with=2, m=1. Again, a mea-
FIG. 8. Two selected equidensity surfaces of the probabilitysyrement on the deuteron at rest would see in the maxima the

densityp%l(q) for one nucleon having spin up and the other havindywo nucleons with momenta back to back pointing éat
spin down. The image is created by rotating two of the equidensity_ 45°

lines of Fig. 1b) around thez axis.

For the remaining two cases given by E@s4) and(4.5),
where only one of the two nucleons is polarized, the prob-
ability densities are presented in Fig. 9. The figures in the top

_perpendicul_ar to the_ pola_rizati(_)n a_xis of the deuteron. _Rotatfow represenp%(l)(q). For the momentum range shown its
Ny the vertical section given in F|g.(® aro_und thez axis roperties are very similar to*,(q) given in the top row of
will show a toroidal shape of the equidensity surfaces of the._. . i 1

probability density in this configuration. For the image in ig. 5. Th(_a reason IS thz_;iﬁ(q) IS larger tharpy, (q) and )
Fig. 6, two equidensity surfaces, one with a high value, beingﬁhlus dominates. The figures in the bottom row depict
closed in the section of Fig(8), and one with a small value P(1)(d)- This density has the same maximapgs(q) given

are picked and rotated around thaxis resulting in a torus, in Fig. 5(d), but a slightly different angular behavior. For a
being cut open vertically. The surface of lower density is leftfixed q the changes witl® are slower than fop] (). This
half open at the outer side. The image displays a shape chas caused by the linear dependence oﬁasiwhereasoh(q)

acteristic for the spherical harmonics witk 2, m=2. has a quadratic one.

a, [10% MeV/c]

FIG. 9. The probability densi-
tiesp}(1)(q) in units 10°° MeVv 3
for one nucleon having spin up
whereas the other having arbitrary

2 spin orientation[(a) and (b)] and
G [107 MeV/c] play(@ in units 10° Mev~3

) for one nucleon having spin down
a [10* Mev/c] whereas the other having arbitrary
spin orientatior{(c) and(d)]. The
contours represent equidensity
lines along a vertical section in the
x-z plane.

g [10% MeV/c)
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V. SUMMARY wave function components depend on Wignet’'sunction
and theq dependent part are linear combinations of the stan-

As an object with internal structure it s tempting to in- qardSandD waves of the deuteron. We display their prop-
vestigate the deuteron properties three dimensionally. To th%rties for different projections of the total angular momen-

aim we study the deuteron properties in a representatio . .
based on the total helicity of the two-body system takenPum Mg. As for NN scattering we can connect the helicity

along the relative momentum of the two particles. ThougharanItUdes o the standa@land D waves and find perfect

originally developed for describingN scattering, the numerical agreement with the partial wave components de-

method is general and can be used to solve bound state rotbermined in a standard manner.
lems as wgll P Finally we evaluate various spin and momentum depen-

We introduce deuteron wave function components in the[dent probabilities in a fashion which is exact with respect to
helicity basis. They depend on the magnitugef the rela- he angular dependence. This is made possible by using the

tive momentum and the anglof the relative momentury operator form” of the deuteron state. It is conceivable that

to the z axis. Deriving an “operator form” of the deuteron in quasielastic electrodisintegration of the deuteron one may

wave function one obtains insight into the analytical an ularbe able to see those momentum dependent spin distributions.
9 y 9 Summarizing, we extended a recently introduced helicity

ber\]/\e/lt\a”grerci)\f/égc{(?/veocsoer?spgptevcéséou led eigenvalue equation representation foN N scattering to th& N bound state. This
P 9 q ?ormulation leads to new forms for deuteron wave function

for deuteron wave functions. The first set of equations doegOm onents. which can be determined by two coupled equa-
not use anya priori knowledge of the quantum numbers of tionsp ' Y ° |

the deuteron, and thidN potential representation in helicity

basis is used similarly as falN scattering. As a conse-

guence one has coupled two-dimensional equations. In the ACKNOWLEDGMENTS
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