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New forms of deuteron equations and wave function representations
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A recently developed helicity basis for nucleon-nucleon (NN) scattering is applied to the deuteron bound
state. Here the total spin of the deuteron is treated in such a helicity representation. For the bound state, two
sets of two coupled eigenvalue equations are developed, where the amplitudes depend on two variables and one
variable, respectively. Numerical illustrations based on the realistic Bonn-BNN potential are given. In addi-
tion, an ‘‘operator form’’ of the deuteron wave function is presented, and several momentum dependent spin
densities are derived and shown, in which the angular dependence is given analytically.
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I. INTRODUCTION

In a recent paper@1# we developed a three-dimension
approach in momentum space for nucleon-nucleon (NN)
scattering. The motivation is that for higher energies
many partial waves contribute and a direct solution see
more natural and economic. As relevant variables mom
tum vectors appear, specifically their magnitudes and
angles between them. The formulation in Ref.@1# is based on
a helicity representation with respect to the total spin of
two nucleon system. This representation is different from
often used helicity basis referring to the individual nucleo
@2,3#. A further important advantage of a three-dimensio
approach is that a sometimes tedious partial wave expan
of a complexNN force is no longer needed. Instead o
introduces a helicity representation of theNN force, which is
perfectly adapted to the set of six operators completely
scribing the most generalNN force compatible with genera
invariance principles. Thus, for anyNN force given in op-
erator form this scheme is applicable.

The helicity representation developed forNN scattering
can also be applied to the boundNN system. It may appea
unnecessary to extend this particular formulation to study
nonrelativistic deuteron, which only containsSandD waves.
However, the standard practice requires a partial wave
resentation of theNN force, which we avoid. It is straight
forward to extend the helicity formulation developed f
scattering to investigate the deuteron, calculate its bind
energy, and wave function properties. This is the purpos
the present investigation. In addition we study the vario
wave function properties in momentum space in a thr
dimensional fashion. Our numerical example is based on
Bonn-B potential@4#. A graphical study of similar characte
has been carried out in configuration space@5# based on the
AV18 nuclear force@6#. In addition we derive and displa
probability densities of various spin configurations for
overall polarized deuteron. These densities are based on
lytical expressions, which we think are new.

*Permanent address: Jurusan Fisika, FMIPA, Universitas Ind
sia, Depok 16424, Indonesia.
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In Sec. II we introduce the expansion of the deuteron s
into helicity basis states as defined in Ref.@1#. Then we
project the deuteron eigenvalue equation on these sta
Since the deuteron has spin 1 there are three possible va
for the helicity projections, namely,L51,0,21. Symmetry
properties allow one to consider onlyL51, 0. Thus we ob-
tain a set of two coupled equations in two variables,
magnitudeuqu of the relative momentum vector and the ang
between q and the arbitrarily chosenz axis. This two-
dimensional form of the deuteron wave function is then co
nected to the standard partial wave representation. We d
onstrate that this set of two coupled two-dimension
equations can be readily solved and display various w
function properties.

In Sec. III we derive the deuteron wave function in ‘‘op
erator form.’’ In a configuration space representation suc
form has been given before@7#. For our purpose an operato
form is an ideal starting point, since the spin degrees
freedom appear explicitly as spin operators, and thus fit p
fectly into our helicity formulation. The projection of th
wave function on the helicity basis leads to deuteron wa
function components with an analytical angular behavi
which is different from the familiar one. The ‘‘radial’’ par
of the wave function satisfies a set of two coupled (L
51, 0), one-dimensional eigenvalue equations inuqu. Based
on this more analytical insight the connection to the stand
S andD waves forms started in Sec. II can be finalized.

There are various possibilities that the two nucleons in
deuteron have a specific orientation of their spins for
overall polarized deuteron. For instance, both nucleons
have their spins up, or one nucleon can have its spin up
the other down. In Sec. IV we derive analytic expressions
the corresponding probabilities and display the results. T
may have applications for electron scattering on the d
teron. Finally we summarize in Sec. V.

II. FORMULATION I

A. Deuteron wave function in the helicity basis

Let uCd
Md& represent the deuteron state. HereMd is the

projection of the total angular momentum along a chos
e-
©2001 The American Physical Society03-1
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axis, e.g., thez axis. The deuteron state will now be repr

sented in the helicity basisuq;q̂SL;t&pa defined in Ref.@1#.
Hereq stands for the relative momentum of the two nuc
ons,S for the total spin,L for its projection alongq, and t
for the total isospin. The indexp denotes the parity of the
state, anda indicates the state being antisymmetric. Th
results in

uCd
Md&5

1

4 (
L521

1 E dquq;q̂1L;0&1a 1a^q;q̂1L;0uCd
Md&.

~2.1!

Here we took into account that for the deuteronS51,t50
and the parity is even. The general form of the helicity eig
state is given by@1#

uq;q̂SL;t&pa5~ uq&1hpu2q&)uq̂SL&ut&, ~2.2!

where hp denotes the parity eigenvalue. Usingu2q̂SL&
5(2)Suq̂S2L& one verifies the following properties:

uq;q̂SL;t&pa5hp~2 !S~ u2q&1hpuq&)u2q̂S2L&ut&

5hp~2 !Su2q;2q̂S2L;t&pa. ~2.3!

With the above relations one obtains for the integral in E
~2.1!

E dquq;q̂121;0&1a 1a^q;q̂121;0uCd
Md&

5E dq u2q;2q̂11;0&1a 1a^2q;2q̂11;0uCd
Md&

5E dquq;q̂11;0&1a 1a^q;q̂11;0uCd
Md&. ~2.4!

Hence, Eq.~2.1! simplifies to
05400
-

-

.

uCd
Md&5E dqH 1

2
uq;q̂11;0&1a 1a^q;q̂11;0uCd

Md&

1
1

4
uq;q̂10;0&1a 1a^q;q̂10;0uCd

Md&J
[E dqH 1

2
uq;q̂11;0&1aw1

Md~q!

1
1

4
uq;q̂10;0&1aw0

Md~q!J , ~2.5!

where we defined

wL
Md~q![1a^q;q̂1L;0uCd

Md&. ~2.6!

The azimuthal dependency of the amplitude defined
Eq. ~2.6! can be found as follows. The stateuq;q̂SL& is
obtained by rotating the stateuqẑ; ẑSL& from thez axis into
the direction ofq as

uq;q̂SL&5R~ q̂!uqẑ; ẑSL&, ~2.7!

whereR(q̂)5exp2iJzf exp2iJyu, andJ5L1S is the opera-
tor of total angular momentum. It follows that

1a^q;q̂SL;tuCd
Md&51a^qẑ; ẑSL;tueiJyueiJzfuCd

Md&

5eiM df1a^qẑ; ẑSL;tueiJyuuCd
Md&.

~2.8!

Thus, we can redefinewL
Md(q) such that the azimuthal de

pendency is factored out

wL
Md~q![wL

Md~q,u!eiM df. ~2.9!

This leads to the final expression of the deuteron state in
helicity basis

uCd
Md&5E dqH 1

2
uq;q̂11;0&1aw1

Md~q,u!

1
1

4
uq;q̂10;0&1aw0

Md~q,u!J eiM df. ~2.10!

The normalization of the wave function componen
wL

Md(q,u) can be calculated as
3-2
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^Cd
MduCd

Md&5E dq8E dqH 1

2
1a^q8;q̂811;0uw

1
Md* ~q8,u8!1

1

4
1a^q8;q̂810;0uw

0
Md* ~q8,u8!%

3H 1

2
uq;q̂11;0&1aw1

Md~q,u!1
1

4
uq;q̂10;0&1aw0

Md~q,u!J
5E dq8E dqH 1

4
1a^q8;q̂811;0uq;q̂11;0&1aw

1
Md* ~q8,u8!w1

Md~q,u!

1
1

16
1a^q8;q̂810;0u.q;q̂10;0&1aw

0
Md* ~q8,u8!w0

Md~q,u!1
1

8
1a^q8;q̂811;0uq;q̂10;0&1aw

1
Md* ~q8,u8!w0

Md~q,u!

1
1

8
1a^q8;q̂810;0uq;q̂11;0&1aw

0
Md* ~q8,u8!w1

Md~q,u!J
52pE

0

`

dq q2E
21

1

d cosu H 1

2
uw1

Md~q,u!u21
1

4
uw0

Md~q,u!u2J . ~2.11!

Here we used that

p8a^q8;q̂8S8L8;t8uq;q̂SL;t&pa5@12hp~2 !S1t#d t8tdhp8hp
dS8S@d~q82q!dL8L1hp~2 !Sd~q81q!dL8,2L#. ~2.12!

From the normalization calculated using Eq.~2.1! we define a deuteron momentum densityrMd(q) as

rMd~q![
1

4
uw1

Md~q!u21
1

4
uw0

Md~q!u21
1

4
uw1

Md~2q!u25
1

4
uw1

Md~q,u!u21
1

4
uw0

Md~q,u!u21
1

4
uw1

Md~q,p2u!u2. ~2.13!

B. The deuteron eigenvalue equation in the helicity basis

The deuteron stateuCd
Md& satisfies the eigenvalue equation

~H02Ed1V!uCd
Md&50, ~2.14!

with Ed being the deuteron binding energy andV the NN potential. This eigenvalue equation is projected on the basis s
uq;q̂1L;0&1a introduced in the previous section. Using Eq.~2.10! for representinguCd

Md& one obtains

1a^q;q̂1L;0u~H02Ed1V!uCd
Md&5 1a^q;q̂1L;0u~H02Ed!uCd

Md&1 1a^q;q̂1L;0uVE dq8H 1

2
uq8;q̂811;0&1aw1

Md~q8,u8!

1
1

4
uq8;q̂810;0&1aw0

Md~q8,u8!J eiM df8

5S q2

m
2EdDwL

Md~q,u!eiM df1
1

2E dq81a^q;q̂1L;0uVuq8;q̂811;0&1aw1
Md~q8,u8!eiM df8

1
1

4E dq81a^q;q̂1L;0uVuq8;q̂810;0&1aw0
Md~q8,u8!eiM df8

5S q2

m
2EdDwL

Md~q,u!eiM df1E dq8H 1

2
VL1

110~q,q8!w1
Md~q8,u8!

1
1

4
VL0

110~q,q8!w0
Md~q8,u8!J eiM df8, ~2.15!
054003-3
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where VLL8
pSt (q,q8)[pa^q;q̂SL;tuVuq8;q̂8SL8;t&pa. Thus,

the eigenvalue equation for deuteron binding energy cons
in the helicity basis of a set of two coupled integral equatio

S q2

m
2EdDwL

Md~q,u!

1E dq8e2 iM d(f2f8)H 1

2
VL1

110~q,q8!w1
Md~q8,u8!

1
1

4
VL0

110~q,q8!w0
Md~q8,u8!J 50, ~2.16!

where the indexL corresponds to 1 or 0. Since the wa
function componentswL

Md(q,u) have no azimuthal depen
dence, thef8 integral in Eq.~2.16! can be carried out inde
pendently. Defining

v
LL8

pSt,Md~q,q8,u,u8![E
0

2p

df8e2 iM d(f2f8)VLL8
pSt

~q,q8!,

~2.17!

the coupled integral equations are actually only tw
dimensional and their final form reads

S q2

m
2EdDwL

Md~q,u!1
1

2E0

`

dq8 q82E
21

1

d cosu8

3vL1
110,Md~q,q8,u,u8!w1

Md~q8,u8!

1
1

4E0

`

dq8 q82E
21

1

d cosu8 vL0
110,Md~q,q8,u,u8!

3w0
Md~q8,u8!50. ~2.18!

The eigenvalue equation, Eq.~2.18!, is consistent with our
treatment of theNN continuum of Ref.@1#, where we de-
rived coupled integral equations in two variables for theNN
scattering equation. We would like to add the remark tha
is not necessary to use any specific information about the
deuteron, namely, spin, isospin, and parity. The set of eq
tions, Eq. ~2.16!, is valid for arbitraryS, hp , and t. Any
calculation based on a realisticNN potential will then reveal
that a solution of the eigenvalue problem exists only for
well known quantum numbers. Therefore, the scheme
out above automatically provides full insight, noa priori
05400
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knowledge needs to be employed. At this level the ques
of total angular momentum of that bound state is unde
mined and will be considered in Sec. III.

C. Partial wave projection of the deuteron wave function

In this subsection we want to relateuCd
Md& as given in Eq.

~2.10! to the standard partial wave representation of the d
teron. The standard representation of the total angular
mentum basisuq( lS) jm;t& with the normalization

^q8~ l 8S8! j 8m8uq~ lS! jm&5
d~q82q!

q8q
d l 8 ldS8Sd j 8 jdm8m

~2.19!

is used for projecting the wave functionuCd
Md&. Again, we

use the fixed spin and isospin of the deuteron. The quan
numbersl , j , m remain arbitrary, and we obtain

c l~q![^q~ l1! jm;0uCd
Md&

5
1

2E dq8^q~ l1! jm;0uq8;q̂811;0&1aw1
Md~q8,u8!

3eiM df81
1

4E dq8^q~ l1! jm;0uq8;q̂810;0&1a

3w0
Md~q8,u8!eiM df8. ~2.20!

Recalling the explicit representation of the helicity state@1#,

uq;q̂SL&5uq&uq̂SL&

5(
l jm

uq~ lS! jm&(
m

C~ lS j;m,m2m,m!

3Ylm* ~ q̂!e2 i (m2m)fdm2m,L
S ~u!, ~2.21!

and using Eq.~2.2!, the scalar product of partial wave an
helicity basis can be worked out as
3-4
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^q8~ lS8! jm;t8uq;q̂SL;t&pa5~^q8~ lS8! jmuq&uq̂SL&1hp^q8~ lS8! jmu2q&uq̂SL&)^t8ut&

5
d~q82q!

q8q
dS8Sd t8t(

m
C~ lS j;m,m2m,m!@Ylm* ~ q̂!1hpYlm* ~2q̂!#e2 i (m2m)fdm2m,L

S ~u!

5@11hp~2 ! l #
d~q82q!

q8q
dS8Sd t8t(

m
C~ lS j;m,m2m,m!Ylm* ~ q̂!e2 i (m2m)fdm2m,L

S ~u!

5@11hp~2 ! l #A2l 11

4p

d~q82q!

q8q
dS8Sd t8te

2 imf(
m

C~ lS j;m,m2m,m!dm0
l ~u!dm2m,L

S ~u!

5@11hp~2 ! l #
d~q82q!

q8q
dS8Sd t8tA2l 11

4p
e2 imfC~ lS j;0LL!dmL

j ~u!. ~2.22!
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Here we used the relation

Ylm* ~ q̂!eimf5A2l 11

4p
dm0

l ~u! ~2.23!

together with an addition theorem for Wigner’sD functions

(
m

C~ lS j;m,m2m,m!dm0
l ~u!dm2m,L

S ~u!

5C~ lS j;0LL!dmL
j ~u!. ~2.24!

Hence, the projection of the deuteron state on the pa
wave basis as defined in Eq.~2.20! is given by

c l~q!5@11~2 ! l #A2l 11

4p E
0

2p

df8e2 i (m2Md)f8

3E
21

1

d cosu8H 1

2
C~ l1 j ;011!dm1

j ~u8!w1
Md~q,u8!

1
1

4
C~ l1 j ;000!dm0

j ~u8!w0
Md~q,u8!J

5@11~2 ! l #Ap~2l 11!dmMd

3E
21

1

d cosu8H 1

2
C~ l1 j ;011!dm1

j ~u8!w1
Md~q,u8!

1
1

4
C~ l1 j ;000!dm0

j ~u8!w0
Md~q,u8!J . ~2.25!

This projection exists only form5Md and evenl, as en-
forced by the even deuteron parity, and one obtains

c l~q!52Ap~2l 11!E
21

1

d cosu8H 1

2
C~ l1 j ;011!dMd1

j ~u8!

3w1
Md~q,u8!1

1

4
C~ l1 j ;000!dMd0

j ~u8!w0
Md~q,u8!J .

~2.26!
05400
al

At this point the remaining properties for the projectio
c l(q) can be found by explicit calculation. In other word
the fact thatl has to be 0 and 2, and consequentlyj 51, has
to be inferred numerically from the solution of Eq.~2.26!. Of
course an analytical investigation can be added once
adopt the deuteron wave function with the well-establish
analytical angular behavior~see Sec. III C!.

D. Explicit solution of the deuteron eigenvalue equation

The numerical solution of the set of two coupled eige
value equations, Eq.~2.18!, poses no specific difficulty. We
employ an iterative, Lanczo’s type technique@8,9#, which
provides both, eigenvalue and eigenvector. Following R
@10# the method is modified to avoid unphysical solutio
corresponding to bound states in the repulsive core reg
All numerical calculations are carried out with the Bonn
potential@4#.

For the discretization of Eq.~2.18! we employ Gaussian
grids. The f8 integration over the potential, Eq.~2.17!,
needs only 10 quadrature points, whereas the cosu8 integra-
tion requires at least 32 grid points and theq8 integration 72
grid points, depending on the desired accuracy. Theq8 inte-
gration interval can safely be cut off at 30 fm21. Using these
numerical parameters, we obtain the deuteron binding ene
2.224 MeV.

In Fig. 1 the two deuteron wave function componen
wL

Md(q,u), L50,1, are shown forMd50 as functions ofq
and cosu. Both drop quickly with increasing relative mo
mentum between the two nucleons inside the deuteron.
wave functionw0

0(q,u) shows a cosinelike behavior ind
cated by the straight line atq50 connecting the highes
point atu50 with the lowest point atu5180° through zero
at u590°. This cosinelike behavior is confirmed to be tr
when considering the analytical angular behavior of
wave functions in Sec. III B. The functionw1

0(q,u), in con-
trast, displays a sinelike behavior, which also will prove
be its correct analytical form. It peaks atu590° and van-
ishes atu50 and 180°. The maximum ofw0

0(q,u) is larger
than that ofw1

0(q,u).
3-5
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For Md51 and 21 the wave function component
wL

Md(q,u) are shown as functions ofq and cosu in Fig. 2.
They also drop quickly as the relative momentum betwe
the two nucleons inside the deuteron increases. In the u
part of the figure we see that bothw0

1(q,u) and w0
21(q,u)

vanish atu50 and 180° but have a different sign for th
other u values. At u590° w0

1(q,u) reaches its minimum
whereasw0

21(q,u) reaches its maximum. In the lower part
the figure we see thatw1

1(q,u) peaks atu50 and vanishes a
u5180°. On the contraryw1

21(q,u) peaks atu5180° and
vanishes atu50. This angular behavior ofwL

1 (q,u) and
wL

21(q,u) suggests a relation between the two functio
This relation is explicitly given in Sec. III B. ForMd51 and
21 the maximum of w1

Md(q,u) is larger than that of

w0
Md(q,u).
In Fig. 3 the deuteron densitiesrMd(q) as given in Eq.

~2.13! for Md50 ~top row! and Md51 ~bottom row! are
shown. On the left side the two densities are displayed
functions ofq and cosu, and on the right side as functions o
the Cartesian projections ofq, qx , andqz . Since the wave
functions are invariant under rotations around thez axis, we
show a vertical cut through thex-z plane. The densities
r0(q) andr1(q) have uniform angular distributions with re
spect to the azimuthal angleu for the momentum range
shown, and thus the equidensity surfaces as function of
momentum between the two nucleons have a sphe
shape. The densities are largest at small relative momen

FIG. 1. The deuteron wave function componentsw0
0(q,u) ~a!

andw1
0(q,u) ~b! in units 1023 MeV21.5 as functions ofq and cosu.
05400
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q. Though not shown here the deuteron density forMd
521 also has a similar shape. In Figs. 1–3 the densi
have their maximum atq50, indicating that the two nucle
ons being at rest with respect to each other is the most p
able configuration for the deuteron.

Using Eq.~2.26! we extract the usualSandD wave com-
ponents. They agree very well with the ones obtained fr
standard partial wave calculations.

III. FORMULATION II

A. Deuteron wave function in operator form

In order to study the different spin orientations of the tw
nucleons in the deuteron in relation to the vector of relat
momentum a representation of the deuteron wave functio
operator form is ideal. It is also desirable to derive anot
set of two coupled, one-dimensional equations, in the b
of total helicity.

In terms of the partial wave basis states given in E
~2.19! the deuteron state has the well-known form

uCd
Md&5ut& (

l 50,2
E

0

`

dq q2uq~ l1!1Md&c l~q!. ~3.1!

Here ut& indicates the isospin, which is 0 for the deutero
The explicit reference tot will be omitted in the following
considerations. Again, we would like to point out that w
work in the basis of total helicity, and thus our final expre
sions will differ from the ones given in Ref.@3#. Carrying out
the angular momentum expansion explicitly and us

^q̂u lm&5Ylm(q̂) one obtains

Cd
Md~q!5u1Md&

1

A4p
c0~q!

1$u11&C~211;Md21,1Md!Y2,Md21~ q̂!

1u10&C~211;Md0Md!Y2Md
~ q̂!1u121&

3C~211;Md11,21,Md!Y2,Md11~ q̂!%c2~q!.

~3.2!

Inserting the explicit expressions for the Clebsch-Gordon
efficients@11# leads to

Cd
Md~q!5u1Md&

1

A4p
c0~q!

1H u11&A~22Md!~32Md!

20
Y2,Md21~ q̂!

2u10&A~22Md!~21Md!

10
Y2Md

~ q̂!

1u121&A~21Md!~31Md!

20

3Y2,Md11~ q̂!J c2~q!. ~3.3!
3-6
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FIG. 2. The deuteron wave
function componentsw0

1(q,u) ~a!,
w1

1(q,u) ~b!, w0
21(q,u) ~c!, and

w1
21(q,u) ~d! in units 1023

MeV21.5 as functions ofq and
cosu. The relation between the
different components is discusse
in Sec. II D.
a

on
pl

n
um

o

th
Now we would like to express the wave function in
simple way such that

Cd
Md~q!5$c0c0~q!1c2c2~q!%u1Md&, ~3.4!

and wherec0 and c2 are operators acting on the deuter
spin stateu1Md&. For this purpose we choose as an exam
Md51 which yields

Cd
1~q!5u11&

1

A4p
c0~q!1H u11&A 1

10
Y20~ q̂!

2u10&A 3

10
Y21~ q̂!1u121&A3

5
Y22~ q̂!J c2~q!

5u11&
1

A4p
c0~q!1$u11&~q0

21q1q21!2u10&3q0q1

1u121&3q1
2%

1

2q2
A 1

2p
c2~q!. ~3.5!

In the last step we expressed the spherical harmonic fu
tions in terms of the spherical components of the moment
q1 , q0, andq21 @11#. Since the stateu1Md& in Eq. ~3.4! has
already the correct transformation property under rotation
the deuteron state, the operatorsc0 and c2 must be scalars
under rotation. Those scalars have to be formed out of
spherical components ofs(1) ands(2) which at the same
time will connect the given statesu121&, u10&, and u11& to
u1Md&. Therefore we consider
05400
e

c-
,

f

e

s~1!•q s~2!•qu11&

5@s0~1!q02s1~1!q212s21~1!q1#U12 1

2L
3@s0~2!q02s1~2!q212s21~2!q1#U12 1

2L
5q0

2u11&22q0q1u10&12q1
2u121&. ~3.6!

The l 50 admixture can be projected out by subtracting1
3 q2,

which leads to

S s~1!•q s~2!•q2
1

3
q2D u11&5

2

3
~q0

21q1q21!u11&

22q0q1u10&12q1
2u121&.

~3.7!

A comparison to the terms in Eq.~3.5! reveals thatCd
1(q)

can be written as

Cd
1~q!5H 1

A4p
c0~q!1Fs~1!•q s~2!•q

2
1

3
q2G 3

4q2
A 1

2p
c2~q!J u11&

5H c̄0~q!1Fs~1!•q s~2!•q2
1

3
q2G c̄2~q!J u11&,

~3.8!
3-7
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FIG. 3. The deuteron density
for Md50 @~a! and ~b!# and Md

51 @~c! and ~d!# in units 1026

MeV23 as functions of q and
cosu @~a! and ~c!# and as func-
tions of qx and qz @~b! and ~d!#.
For the momentum range show
the deuteron densities display
uniform angular behavior. The
contours represent equidensi
lines along a vertical section in th
x-z plane.
rre
R
an

to

e

ron
iv-
where

c̄0~q![
1

A4p
c0~q!, ~3.9!

c̄2~q![
3

4q2

1

A2p
c2~q!. ~3.10!

We denote the expression in Eq.~3.8! as ‘‘operator form’’ of
the deuteron wave function in momentum space. A co
sponding expression in coordinate space can be found in
@7#. In a fashion similar to the above derivation, one c
show that the form given in Eq.~3.8! is also valid forMd
50 and21. Hence, the deuteron wave function in opera
form is given in momentum space as

Cd
Md~q!5H c̄0~q!1Fs~1!•q s~2!•q2

1

3
q2G c̄2~q!J u1Md&.

~3.11!

Here the positive parity is manifest, sinceCd
Md(q)

5Cd
Md(2q). It is a straightforward algebra to work out th

normalization ofuCd
Md& as given in Eq.~3.11! and one ob-

tains
05400
-
ef.

r

^Cd
MduCd

Md&5E dq^1Mdu H c̄0~q!1Fs~1!•q s~2!•q

2
1

3
q2G c̄2~q!J H c̄0~q!1Fs~1!•q s~2!•q

2
1

3
q2G c̄2~q!J u1Md&

54pE
0

`

dq q2H c̄0
2~q!1

8

9
q4c̄2

2~q!J
5E

0

`

dq q2$c0
2~q!1c2

2~q!%. ~3.12!

The last form is the standard normalization of the deute
wave function in terms of partial wave components. In arr
ing at this result we used that

^1Mdus~1!•q s~2!•qu1Md&5H q0
2 , Md561,

q222q0
2 , Md50,

~3.13!

and

E dq̂ ^1Mdus~1!•q s~2!•qu1Md&5
4p

3
q2. ~3.14!
3-8
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As we shall show in Sec. IV based on the form given in E
~3.11! one can express the angular dependencies of all
sible spin orientations in the deuteron analytically.

B. Analytical angular behavior of the deuteron wave function
and the deuteron eigenvalue equation

With the operator form, Eq.~3.11!, at hand we revisit the
deuteron wave function component in the helicity basis
given in Eq.~2.6!:

wL
Md~q![1a^q;q̂1L;0uCd

Md&

5^q̂1Lu~^qu1^2qu!Cd
Md&

52^q̂1LuCd
Md~q!

52^q̂1Lu H c̄0~q!

1Fs~1!•q s~2!•q2
1

3
q2G c̄2~q!J u1Md&.

~3.15!

The operators(1)•q s(2)•q can be expressed in terms
the total helicityS•q as

s~1!•q s~2!•q52~S•q!22q2, ~3.16!

where S5 1
2 @s(1)1s(2)#. Therefore, the helicity wave

function component is given by

wL
Md~q!52^q̂1Lu H c̄0~q!1F2~S•q!22

4

3
q2G c̄2~q!J u1Md&

52H c̄0~q!1F2L22
4

3Gq2c̄2~q!J ^q̂1Lu1Md&

52H c̄0~q!1F2L22
4

3Gq2c̄2~q!J DMdL
1* ~fu0!

52H c̄0~q!1F2L22
4

3Gq2c̄2~q!J eiM dfdMdL
1 ~u!.

~3.17!

This shows that the angular behavior of the wave funct
component is given byeiM dfdMdL

1 (u), where thed matrix is

explicitly given as@11#
05400
.
s-

s

n

dMdL
1 ~u!5S 11cosu

2
2

sinu

A2

12cosu

2

sinu

A2
cosu 2

sinu

A2

12cosu

2

sinu

A2

11cosu

2

D .

~3.18!

Finally, we define an angle independent functionFL(q)
via

FL~q![c̄0~q!1F2L22
4

3Gq2c̄2~q!

5
1

A4p
c0~q!1@3L222#

1

A8p
c2~q!, ~3.19!

so that the deuteron wave function component can be
pressed as

wL
Md~q!52FL~q!eiM dfdMdL

1 ~u!

[wL
Md~q,u!eiM df. ~3.20!

HerewL
Md(q,u) are the wave function components which w

determined previously numerically and which are display
in Figs. 1 and 2.

Employing the above given form of the deuteron wa
function, we can derive a one-dimensional eigenvalue eq
tion, starting from the eigenvalue equation forwL

Md(q,u)

5wL
Md(q)exp(2iMdf). Inserting Eq.~3.20! into Eq. ~2.16!

gives

S q2

m
2EdDFL~q!dMdL

1 ~u!

1E dq8e2 iM d(f2f8)H 1

2
VL1

110~q,q8!F1~q8!dMd1
1 ~u8!

1
1

4
VL0

110~q,q8!F0~q8!dMd0
1 ~u8!J 50, ~3.21!

an equation which is valid for any directionu. Choosingq̂

5 ẑ simplifies the equation, since the azimuthal dependen
of the potential can be factored out as

VLL8
pSt

~qẑ,q8![eiL(f2f8)VLL8
pSt

~q,q8,u8!. ~3.22!

The d matrix in the first term givesdMdL , and thef8 inte-

gration requiresL to be equalMd , leading to
S q2

m
2EdDFMd

~q!1pE
0

`

dq8 q82E
21

1

d cosu8H VMd1
110 ~q,q8,u8!F1~q8!dMd1

1 ~u8!1
1

2
VMd0

110 ~q,q8,u8!F0~q8!dMd0
1 ~u8!J 50.

~3.23!
3-9
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ChoosingMd51 and 0 leads to a closed system of tw
coupled equations for the amplitudesF1 andF0. The cosu8
integration can be worked out independent of the amplitu
FL(q8), so that Eq.~3.23! is in fact a set of two coupled
equations in one variable, namely,q

S q2

m
2EdDFMd

~q!1pE
0

`

dq8 q82H VMd1
110 ~q,q8!F1~q8!

1
1

2
VMd0

110 ~q,q8!F0~q8!J 50, ~3.24!

with

VMdL8
110

~q,q8![E
21

1

dcosu8 VMdL8
110

~q,q8,u8!dMdL8
1

~u8!.

~3.25!

The set of two coupled eigenvalue equations~3.24! can be
easily solved using the same method as described in
II D. The Gaussian grids for theq8 integration and the cosu8
integration in Eq.~3.25! are taken to be the same, and w
obtain the same value for the deuteron binding energy,Ed
52.224 MeV. The solutionsF0(q) andF1(q) are displayed
in Fig. 4. This figure shows that both functions are of t
same magnitude forq50, and both drop by about one ord
of magnitude withinq of '200 MeV/c. F1(q) has its first
node already forq'300 MeV/c, while the first node of
F0(q) occurs forq'800 MeV/c. In general, the magnitud
of F0(q) falls off slightly slower than the one forF1(q) as
a function ofq.

In Figs. 1 and 2 the wave function componentswL
Md(q,u)

are obtained from numerically solving Eq.~2.18!. With the
help of Eqs.~3.20! and ~3.18! we can express their angula
behavior as

Md50:w0
0~q,u!52F0~q!cosu, ~3.26!

w1
0~q,u!5A2F1~q!sinu, ~3.27!
05400
s

ec.

Md51:w0
1~q,u!52A2F0~q!sinu, ~3.28!

w1
1~q,u!5F1~q!~11cosu!. ~3.29!

Obviously, the angular behavior extracted numerica
agrees with the analytical one.

We mentioned in Sec. II D that the maximum o
wL

Md(q,u) with L5Md is larger than that withLÞMd .
Equations ~3.26!–~3.29! show that the ratio
uwMd

Md(q,u)max/wLÞMd

Md (q,u)maxu is exactlyA2. This can be

understood as follows. According to Eq.~3.19! the compo-
nent wL

Md(q,u) is determined for smallq dominantly by
c0(q), i.e., theS wave.

The analytical angular behavior of the deuteron densi
given in Eq. ~2.13! can now easily be derived. ForMd
50,1 we find

r0~q!5F1
2~q!sin2u1F0

2~q!cos2u, ~3.30!

r1~q!5
1

2
F1

2~q!~11cos2u!1
1

2
F0

2~q!sin2u. ~3.31!

From these expressions we can deduce thatr0(q) andr1(q)
are only perfect spheres for smallq, whereF0(q) andF1(q)
are almost identical. For larger momenta the spheres are
formed according the ratiouF0(q)/F1(q)u.

C. Relation to the conventional partial wave representation

Before completing the considerations about the anal
behavior of the angular behavior of the deuteron wave fu
tion in the helicity basis, we want to make contact with t
standard representation of the deuteron wave function
Sec. II C we derived the projection of the deuteron state
the partial wave basis. We ended up with Eq.~2.26! and left
the remaining quantum numbersj and l to be determined
numerically. The wave function componentswL(q,u) to-
gether with their analytical angle behavior allows to calc
late the projection and to determine the remaining conditi
for their existence. Inserting Eq.~3.20! into Eq.~2.26! yields
c l~q!52Ap~2l 11!E
21

1

d cosu8H C~ l1 j ;011!dMd1
j ~u8!F1~q!dMd1

1 ~u8!1
1

2
C~ l1 j ;000!dMd0

j ~u8!F0~q!dMd0
1 ~u8!J

5
4

3
d j 1Ap~2l 11!H C~ l1 j ;011!F1~q!1

1

2
C~ l1 j ;000!F0~q!J . ~3.32!
ow
Here we use the orthogonality property of thed matrix

E
21

1

d cosu dm1m1

j 1 ~u!dm2m2

j 2 ~u!5
2

2 j 111
d j 1 j 2

dm1m2
dm1m2

.

~3.33!

The projection exists only for a total angular momentumj
51. Furthermore, the Clebsch-Gordan coefficients all
only l 50 andl 52 and we obtain explicitly for theS andD
wave

c0~q!5
2

3
Ap$2F1~q!1F0~q!%, ~3.34!
3-10
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c2~q!5
2

3
A2p$F1~q!2F0~q!%, ~3.35!

which is consistent with Eq.~3.19!. We extracted theS and
D waves from Eqs.~3.34! and~3.35! and found to be in very
good agreement with the ones obtained from a standard
tial wave solution of the deuteron eigenvalue problem.

IV. PROBABILITY DENSITIES FOR DIFFERENT SPIN
CONFIGURATIONS

The operator form of the deuteron wave function given
Eq. ~3.11! is an ideal tool to express probabilities for diffe

FIG. 4. The wave functionsuF0(q)u and uF1(q)u in units
MeV21.5.
05400
ar-

ent spin configurations within the deuteron. This provid
analytical insight into the shape of these configurations.
an example we choose a polarized deuteron withMd51.
Cases of interest are if~1! both nucleons have their spins u
~2! both nucleons have their spins down,~3! one nucleon has
spin up and the other has spin down,~4! one nucleon has
spin up and the other has arbitrary spin orientation, and~5!
one nucleon has spin down and the other has arbitrary
orientation. For these five cases the probability densities
given below. For clarity the final expressions are given
terms of the standardS andD waves.

~1! Probability density for both nucleons having the
spins up:

r↑↑
1 ~q![Cd

1 * ~q!
1

2
@11sz~1!#

1

2
@11sz~2!#Cd

1~q!

5
1

4p H c0
2~q!1

3

A2
S cos2u2

1

3Dc0~q!c2~q!

1
9

8 S cos2u2
1

3D 2

c2
2~q!J . ~4.1!

~2! Probability density for both nucleons having the
spins down:
r

n

r-
FIG. 5. The probability densi-
ties r↑↑

1 (q) in units 1026 MeV23

for both nucleons having thei
spins up@~a! and ~b!# and r↓↓

1 (q)
in units 10210 MeV23 for both
nucleons having their spins dow
@~c! and ~d!#. The contours repre-
sent equidensity lines along a ve
tical section in thex-z plane.
3-11
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r↓↓
1 ~q![Cd

1 * ~q!
1

2
@12sz~1!#

1

2
@12sz~2!#Cd

1~q!

5
9

32p
sin4u c2

2~q!. ~4.2!

~3! Probability density for one nucleon having spin up a
the other having spin down:

r↑↓
1 ~q![Cd

1 * ~q!
1

2
@11sz~1!#

1

2
@12sz~2!#Cd

1~q!

5
9

32p
cos2usin2u c2

2~q!. ~4.3!

~4! Probability density for one nucleon having spin up a
the other having arbitrary spin orientation:

FIG. 6. Two selected equidensity surfaces of the probab
densityr↓↓

1 (q) for both nucleons having their spins down. The im
age is created by rotating two of the equidensity lines of Fig. 5~d!
around thez axis. Note that thez axis is stretched with respect to th
other two axes.
05400
r↑(1)
1 ~q![Cd

1 * ~q!
1

2
@11sz~1!#Cd

1~q!

5
1

4p Fc0
2~q!1

3

A2
S cos2u2

1

3Dc0~q!c2~q!

1
9

8 H S cos2u2
1

3D 2

1cos2usin2uJ c2
2~q!G

5r↑↑
1 ~q!1r↑↓

1 ~q!. ~4.4!

~5! Probability density for one nucleon having spin dow
and the other having arbitrary spin orientation:

r↓(1)
1 ~q![Cd

1 * ~q!
1

2
@12sz~1!#Cd

1~q!

5
9

32p
sin2uc2

2~q!

5r↑↓
1 ~q!1r↓↓

1 ~q!. ~4.5!

In Figs. 5–9 those five different probability densities a
shown. In each figure the left side displays the probabi
densities as functions ofq and cosu, whereas the right side
depicts the probability densities as functions ofqx and qz .
The contour lines represent a vertical section in thex-z plane
through equidensity surfaces. Rotating this section aro
the qz axis gives a three-dimensional image of the equid
sity surfaces.

The probability densities for the first two cases, whe
both nucleons have the same spin orientations, are give
Fig. 5. The top row representsr↑↑

1 (q). The density peaks a
q50, indicating that the largest densities occur at small m
menta. This density has a spherical shape, since Eq.~4.1! is
dominated by theS wave, and in the momentum rang
shown has little dependence on the angleu. The figures in
the bottom row representr↓↓

1 (q). As Eq.~4.2! suggests, this
density is only determined by the deuteronD wave times a
function of the angleu. Thus atq50 it is zero, and reache
two maxima atuqmaxu'100 MeV/c along theqx axis (u
5p/2). If a measurement could be carried out on a deute
at rest the two nucleons would have momenta back to b

y

d

ty
e

FIG. 7. The probability density
r↑↓

1 (q) in units 10210 MeV23 for
one nucleon having spin up an
the other having spin down. The
contours represent equidensi
lines along a vertical section in th
x-z plane.
3-12
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perpendicular to the polarization axis of the deuteron. Ro
ing the vertical section given in Fig. 5~d! around thez axis
will show a toroidal shape of the equidensity surfaces of
probability density in this configuration. For the image
Fig. 6, two equidensity surfaces, one with a high value, be
closed in the section of Fig. 5~d!, and one with a small value
are picked and rotated around thez axis resulting in a torus
being cut open vertically. The surface of lower density is l
half open at the outer side. The image displays a shape c
acteristic for the spherical harmonics withl 52, m52.

FIG. 8. Two selected equidensity surfaces of the probab
densityr↑↓

1 (q) for one nucleon having spin up and the other hav
spin down. The image is created by rotating two of the equiden
lines of Fig. 7~b! around thez axis.
05400
t-

e

g

t
ar-

For the case where the spins of the two nucleons poin
opposite directions, the probability density is shown
Fig. 7. According to Eq.~4.3!, this density is also given
solely by the deuteronD wave and a function of the angl
u. It has four peaks of equal height in each quadrant
the qx2qz plane at uqxu5uqzu5qmaxcos(p/4). Rotating
the vertical section in thex-z plane around thez axis
will reveal a double toroidal structure. For the image
Fig. 8 two equidensity surfaces are picked and rota
around thez axis, resulting in a double torus being cut op
vertically. The inner tubes represent surfaces of higher d
sity compared to the outer ones. The shape is character
for a spherical harmonics withl 52, m51. Again, a mea-
surement on the deuteron at rest would see in the maxima
two nucleons with momenta back to back pointing atu
545°.

For the remaining two cases given by Eqs.~4.4! and~4.5!,
where only one of the two nucleons is polarized, the pro
ability densities are presented in Fig. 9. The figures in the
row representr↑(1)

1 (q). For the momentum range shown i
properties are very similar tor↑↑

1 (q) given in the top row of
Fig. 5. The reason is thatr↑↑

1 (q) is larger thanr↑↓
1 (q) and

thus dominates. The figures in the bottom row dep
r↓(1)

1 (q). This density has the same maxima asr↓↓
1 (q) given

in Fig. 5~d!, but a slightly different angular behavior. For
fixed q the changes withu are slower than forr↓↓

1 (q). This
is caused by the linear dependence on sin2u, whereasr↓↓

1 (q)
has a quadratic one.

y

ty
y

y

ty
e

FIG. 9. The probability densi-
tiesr↑(1)

1 (q) in units 1026 MeV23

for one nucleon having spin up
whereas the other having arbitrar
spin orientation@~a! and ~b!# and
r↓(1)

1 (q) in units 10210 MeV23

for one nucleon having spin down
whereas the other having arbitrar
spin orientation@~c! and ~d!#. The
contours represent equidensi
lines along a vertical section in th
x-z plane.
3-13
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V. SUMMARY

As an object with internal structure it is tempting to i
vestigate the deuteron properties three dimensionally. To
aim we study the deuteron properties in a representa
based on the total helicity of the two-body system tak
along the relative momentum of the two particles. Thou
originally developed for describingNN scattering, the
method is general and can be used to solve bound state p
lems as well.

We introduce deuteron wave function components in
helicity basis. They depend on the magnitudeq of the rela-
tive momentum and the angleu of the relative momentumq
to the z axis. Deriving an ‘‘operator form’’ of the deutero
wave function one obtains insight into the analytical angu
behavior of those components.

We derived two sets of two coupled eigenvalue equati
for deuteron wave functions. The first set of equations d
not use anya priori knowledge of the quantum numbers
the deuteron, and theNN potential representation in helicit
basis is used similarly as forNN scattering. As a conse
quence one has coupled two-dimensional equations. In
second set of equations, the well-known deuteron prope
of a S and D waves content is built in and the analytic
angular behavior of those amplitudes is taken into acco
explicitly. In this case, one arrives at one-dimensional eq
tions. This second derivation bears some similarity to par
wave methods. The two one-dimensional amplitude com
nents are each linear combination of the standardS and D
wave function components.

The calculated deuteron binding energy determined
both ways agrees perfectly with the value determined in s
dard calculations based on partial wave representations o
deuteron eigenvalue equation. The newly defined heli
, R

C

05400
at
n

n
h

ob-

e

r

s
s

he
es

nt
-
l

o-

n
n-
he
y

wave function components depend on Wigner’sd function
and theq dependent part are linear combinations of the st
dardS andD waves of the deuteron. We display their pro
erties for different projections of the total angular mome
tum Md . As for NN scattering we can connect the helici
amplitudes to the standardS and D waves and find perfec
numerical agreement with the partial wave components
termined in a standard manner.

Finally we evaluate various spin and momentum dep
dent probabilities in a fashion which is exact with respect
the angular dependence. This is made possible by using
‘‘operator form’’ of the deuteron state. It is conceivable th
in quasielastic electrodisintegration of the deuteron one m
be able to see those momentum dependent spin distribut

Summarizing, we extended a recently introduced helic
representation forNN scattering to theNN bound state. This
formulation leads to new forms for deuteron wave functi
components, which can be determined by two coupled eq
tions.
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