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Atomic effects in astrophysical nuclear reactions
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Two models are presented for the description of the electron screening effects that appear in laboratory
nuclear reactions at astrophysical energies. The two-electron screening energy of the first model agrees very
well with the recent LUNA experimental result for the breakup reaction3He(3He,2p)4He, which so far defies
all available theoretical models. Moreover, multielectron effects that enhance laboratory reactions of the CNO
cycle and other advanced nuclear burning stages are also studied by means of the Thomas-Fermi model,
deriving analytical formulas that establish a lower and upper limit for the associated screening energy. The
results of the second model, which show a very satisfactory compatibility with the adiabatic approximation
ones, are expected to be particularly useful in future experiments for a more accurate determination of the CNO
astrophysical factors.
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I. INTRODUCTION

The screening enhancement effect in laboratory nuc
reactions at astrophysical energies has attracted a lot o
tention recently, especially after the recent accomplishme
of the LUNA collaboration at Gran Sasso@1#. The very
low energies attained for the breakup reacti
3He(3He,2p) 4He, which is extremely important to the sola
neutrino production@2#, revealed the real magnitude of th
problem, as the screening energy obtained in that experim
still exceeds all available theoretical predictions. Other lo
energy experiments of the proton-proton chain@3–9# ~past,
current, or planned! still need a theoretical model that cou
account for the observed enhancement.

On the other hand, the astrophysical factors for the re
tions of the CNO chain have been obtained by perform
measurements well above the Gamow peaks~@10# and refer-
ences therein! and extrapolating to lower energies witho
correcting for screening, thus committing a notable error
certain cases as will become apparent in this work.

Various theoretical models have been proposed so
some of which are in conflict with each other~e.g., accepting
@7# or rejecting @11# the influence of the spectator nucle!
while others@12# were applied at a time when experimen
measurements@4# were too sparse and inaccurate, thus th
actual validity has been obscured.

There have even been suggestions@13,14# that this dis-
crepancy between theoretical and experimental results is
to an overestimation of the energy losses in the experim
which cause that apparent enhancement of the cross sec
The most recent relevant experiment@1# reports no such
energy-loss deficit which means that all energy losses h
been taken into account, and yet the observed screening
ergy is still higher than the adiabatic limit.

Nevertheless, the prevalent belief nowadays is tha
model is needed which could give a screening energy hig
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than the adiabatic limit. Although the adiabatic limit@15,16#
is generally accepted, in a recent paper@17# a simple and
efficient model was proposed for the study of the screen
effect on low-energy nuclear fusion reactions which e
ceeded that limit. In that model, the fusing atoms were c
sidered hydrogenlike atoms whose electron probability d
sity was used in Poisson’s equation in order to derive
corresponding screened Coulomb potential energy. That
atomic excitations and deformations of the reaction part
pants could also be taken into account. The derived me
field potentials were then treated semiclassically, by me
of the WKB, in order to derive the screening enhancem
factor which was also shown to be compatible with the e
periment. In that work the screened Coulomb potentials w
given without details of their derivation. However, a detail
derivation is necessary here before two-electron configu
tions are studied, such as the2H( 2H,n)3He reaction with a
neutral projectile or the breakup reaction3He(3He,2p) 4He.
This need arises from the fact that the conventional use
screened Coulomb potential is that of a Yukawa one. Nev
theless, the Yukawa one is only an approximation~trunca-
tion! of the complete screened potential arising from the
lution of Poisson’s equation, as will soon become appar
Disregardinga priori higher-order terms can possibly induc
errors, especially when the experiment takes place at as
physical energies of a few keV.

The layout of the paper is as follows. In Sec. II th
screened Coulomb potentials for hydrogenlike atoms are
rived in a detailed fashion, which turns out to be very use
in Sec. III, where those potentials are modified in order
account for two-electron effects in nuclear reactions at as
physical energies. Notably, in Sec. III, the screening ene
for the 3He(3He,2p) 4He reaction, which so far remains in
explicably @18# high, is reproduced to a very good approx
mation. Section IV deals with multielectron effects by mea
of the Thomas-Fermi model, which enables us to derive a
lytical formulas for the screening enhancement factors
reactions encountered in advanced nuclear burning stage
©2001 The American Physical Society01-1
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stellar evolution. A final concluding section summarizes
novelties and the results of the present work.

II. ONE-ELECTRON SCREENING EFFECTS

Let us consider a hydrogenlike atom with atomic numb
Z1. When the wave function of the electron is given
Cnl(r ,u) then the charge density around the pointli
nucleus is

rnl~r ,u!52euCnl~r ,u!u2. ~1!

Assuming spherically symmetric wave functions for simpl
ity we can solve the equation of Poisson for the above cha
density in order to derive a screened Coulomb poten
F(r ) around the nucleus. Note that this potential will ta
into account the repulsive effects of the pointlike nucleus,
imposing the appropriate boundary conditions,

F~`!50, F~0!5
Z1e

r
. ~2!

The second boundary condition indicates that if a posit
projectile (Z2e) is in contact with the nucleus (Z1e) at the
center of the electron cloud, then there is no negative cha
between them to reduce the Coulomb barrier.

Let us define the screening form factor of the scree
Coulomb as a functionf (r ) so that

F~r !5
Z1e

r
f ~r !. ~3!

If we insert Eq.~3! and Eq.~1! into the equation of Poisso
we obtain

d2f nl~r !

dr2
5

4p

Z1
r uCnl~r !u2, ~4!

which is to be solved with the boundary conditions

f nl~`!5finite, f nl~0!51. ~5!

Equation ~4! with the corresponding boundary condition
constitutes a generator of screened Coulomb poten
which correspond to a particular excitation and ionization
the atomic target. According to the quantum state of the
drogenlike atom we can use Eq.~4! in order to obtain the
corresponding screened Coulomb potentials.

Actually in the above treatment there is an implicit a
sumption of independence between the nuclear and e
tronic degrees of freedom. This assumption can be expre
in a quantitative form by the formula

Vsc~r !5Vc~r !1Fe~r !. ~6!

The above formula states that the screened Coulomb po
tial is actually the sum of the bare nucleus Coulomb poten
Vc(r ) plus the electrostatic potential energy of the elect
cloud. Therefore one can calculateFe(r ) and then add it to
the bare nucleus potential which simplifies the calculatio
especially when multielectron atoms are considered. We n
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proceed to give an alternative approach according to
above assumption, which will be particularly useful in o
study of two-electron effects.

Let us assume a hydrogenlike atomZ1 in its ground state,
whose electron charge distribution of Eq.~1! can be written

r~r !5r~0!exp~2r /r 0!, ~7!

wherer 05a0 /(2Z1).
The charge density at the center of the electron cloud

r~0!52
e

p S Z1

a0
D 3

~8!

while the electrostatic potential of the distribution is given
the solution of Poisson’s equation,

1

r 2

d

dr S r 2
dFe~r !

dr D524pr~0!exp~2r /r 0!. ~9!

Upon integration we obtain

Fe~r !5C11
C2

r
24pr~0!r 0

2 expS 2
r

r 0
D S 112

r 0

r D .

~10!

The electrostatic potentialFe(r ) must go to zero at infinity
which givesC150. At very large distancesr @r 0, due to the
spherical symmetry of the distribution, any projectile im
pinging on that cloud will actually ‘‘see’’ a Coulomb poten
tial of the form

Fe~r @r 0!5
2e

r
~11!

so thatC252e. Inserting the values of the parametersr 0
andr(0) into the above equation we obtain the formula us
without details of its derivation in Ref.@17#,

Fe~r !52
e

r
1

e

r S 11
r

2r 0
Dexp~2r /r 0!. ~12!

If a positive projectileZ2e impinges onto the above hydro
genlike atom, the total interaction potential energyV(r ) be-
tween the two nuclei will be due to the above electrosta
potential, that isZ2eFe , plus the repulsive potential of th
nucleusZ1e,

Vsc~r !5
Z1Z2e2

r
2

Z2e2

r
1

Z2e2

r S 11
r

2r 0*
D exp~2r /r 0* !,

~13!

where

r 0* 5
a0

2~Z11Z2!
. ~14!

The reason for replacingr 0 with r 0* is that, at astrophysica
energies, the electrons move at higher velocities than
nuclei themselves. For example, in laboratoryd2D reac-
1-2
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ATOMIC EFFECTS IN ASTROPHYSICAL NUCLEAR REACTIONS PHYSICAL REVIEW C63 045801
tions the relative nuclear velocity equals the typical elect
velocity ve5ac for E525 keV. Although the above as
sumption is particularly valid at such low-energy collisio
between hydrogen nuclei, when reactions between hea
nuclei are considered~see Sec. III!, an inevitable small error
is involved at intermediate energies~e.g., in the vicinity of
the Gamow peak!. As will soon become clear the WKB
treatment of the penetration factor disregards all effects
yond the classical turning point. Therefore, inside the tunn
ing region the wave function of the electron actually cor
sponds to a combined nuclear molecule (Z11Z2) instead of
the initial Z1 atom. Of course this is an approximation an
in our model, the intermediate stages of the wave-funct
deformations are assumed to play a minor role. When
electron of the target atom/ion is in an excited state, we
obtain in the same way the corresponding potential ene
used in Ref.@17#.

III. TWO-ELECTRON SCREENING EFFECTS

Let us now assume that a hydrogenlike atomZ2e im-
pinges on a resting target nucleusZ1e. Let us further assume
that the target atom has two electrons orbiting the nucleus
a Hartree-Fock approximation the total potential energy
the interaction will be

Vsc~r !5Vc~r !1Vn2e1
~r !1Vn2e2

~r !1Vn1e~r !

1Ve1e2
1Ve1e1Ve2e , ~15!

which is the sum of~a! the Coulomb potential energyVc(r )
between the two bare nuclei plus~b! the interaction between
the projectile (n2) and the electrons (e1,2) of the target
nucleus plus~c! the interaction between the target nucle
(n1) and the electron of the projectile~e! plus ~d! the inter-
action between the electrons of the targetVe1e2

and, of

course, the interaction (e1e,e2e) between the electron of th
projectile and those of the target. In the above equation o
the terms associated with the nuclei will be considered fu
tions of the relative internuclear distance, while the electr
electron interactions will be treated as perturbations wh
will actually raise the Coulomb barrier between the two
acting nuclei. We consider the following channels.

~a! The nucleus-nucleus channel. That interaction has
been thoroughly studied in most textbooks@10# and needs no
further elaboration.

~b! The atom-atom channel for hydrogenlike atoms. In
most experiments, the projectile has been considered f
stripped of its electrons, which is the case at relatively h
energies. However, when the projectile is in a neutral st
or at least not fully ionized, its electron cloud has to be tak
into account@7#.

For such an interaction the total potential energy can
written

Vsc~r !5Vc~r !1Vn2e1
~r !1Vn1e~r !1Ve1e . ~16!

When the two electron clouds interact, their mutual grou
state wave function must be antisymmetric since the e
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trons are identical fermions. The spatial wave function
necessarily symmetric, therefore antisymmetry is arran
by considering an antisymmetric spin singlet state. Since
still work with hydrogenlike atoms, the electron-electro
spatial wave function is

Ce1e~rW1 ,rW2!5C00~rW1!C00~rW2!, ~17!

whereC00(rW) is actually the usual ground-state wave fun
tion of hydrogenlike atoms.

The electrostatic potential energy of the two electrons

Ve1e5E
1
E

2

e2

urW12rW2u
uC00~rW1!u2uC00~rW2!u2d3r 1d3r 2 ,

~18!

whererW1,2 are the positions of the two electrons. As will soo
become apparent, the effective interaction between the
participants of the reaction begins upon reaching the cla
cal turning point. At astrophysical energies the classical tu
ing point is hundreds of times smaller than the atomic rad
therefore, we can safely assume that throughout the Coul
barrier the two colliding nuclei constitute a combine
nuclear molecule. Under that assumption the above inte
can be calculated@19# so that forZ15Z25Z we obtain

Vee5
5

8

Ze2

a0
. ~19!

That positive energy will be transferred to the relati
nuclear motion, increasing the height of the Coulomb barr

The equal charge assumption combined with the fact
during tunneling the reacting nuclei practically coincide w
respect to the electron cloud dimensions yieldsVn2e1

(r )

.Vn1e(r ). On the other hand, each of the two electrons
actually subject to the repulsive effect of a screened nuc
due to the presence of the other electron. For the comb
nuclear molecule, we haveZt5Z11Z2, while the usual
variational procedure yields an effective atomic number
each electronZ** 5Zt25/16.

Therefore for the low-energy reaction of two hydroge
like atoms in their ground state, with equal atomic numb
Z, the interaction potential energy is

Vsc~r !5
Z2e2

r
22FZe2

r
1

Ze2

r S 11
r

2r 0** D exp~2r /r 0** !G
1

5

8

Z** e2

a0
, ~20!

where

r 0** 5
a0

2Z**
. ~21!

In the same way we can calculate the potential energy w
one ~or both! atoms are in an excited state.
1-3
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~c! The nucleus-atom channel. For the hydrogenlike atom
target an extensive study has already been given@17#. How-
ever, for a two-electron target atom further elaboration
needed. In that case the potential energy is

V~r !5Vc~r !1Vn2e1
~r !1Vn2e2

~r !1Ve1e2
. ~22!

If we compare Eq.~16! with Eq. ~22! we see that the two
potentials must be approximately the same. Therefore
potential energy~20! can account for the nucleus-atom cha
nel with a two-electron target atom as well.

The penetration factorP(E) multiplied by the astrophysi-
cal factorS(E) in the s-wave cross-section formula

s~E!5
S~E!

E
P~E! ~23!

is given by the WKB method

P~E!5expF2
2A2m

\ E
R

r c(E)
AVsc~r !2EdrG , ~24!

where the classical turning point is given by

Vsc~r c!5E. ~25!

At astrophysical energies the potential energy is found to
shifted by a constant screening energyUe which is added to
the relative energy of the collision.

For the nucleus-nucleus channel the calculation is triv
leading toP(E)5exp(22pn), wheren is the Sommerfeld
parameter andUe50. For the nucleus-hydrogenlike ato
channel the screening energy has already been calcu
@17#

Ue52~Z11Z2!Z2

e2

a0
. ~26!

For two hydrogenlike atoms with equal charges (Ze) we
have performed numerical integrations of Eq.~24! and nu-
merical solutions of Eq.~25!. At astrophysical energie
where screening becomes important the screened Cou
potential can be safely replaced by the quantity

Vsc~r !5
Z2e2

r
1Ue , ~27!

where

Ue522ZS 2Z2
5

16D e2

a0
1

5

8 S 2Z2
5

16D e2

a0
, ~28!

which is also the screening energy for the collision of a b
nucleus (Ze) with a two-electron target atom.

For the astrophysical reaction3He(3He,2p)4He we have
Z15Z25Z52 and the corresponding screening energy
tained through the above model isUe52338 eV. Our result
is very close to the experimental result of the LUNA Co
laboration @1# Ue

ex52294647 eV. The small difference
could be plausibly attributed to energy losses and experim
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tal errors had it not been for another, as yet unidentifi
uncertainty source for the screening energies and the as
ated astrophysical factors, which causes a small increas
the uncertainty for the solar neutrino fluxes. In fact t
LUNA experimental results were first@18# fitted using three
different approaches:~a! fixing the screening energy at th
value given by the adiabatic limit,~b! allowing all three pa-
rameters„S(0),S8(0),S9(0)… of the astrophysical factor an
the screening energyUe to vary simultaneously, and~c! us-
ing higher-energy data to fix the parameters of the as
physical factor while varying the screening energy. The t
model independent methods~b! and ~c! gave considerably
different screening energies in that work, which areUe

(b)5

2323651 eV and Ue
(c)52432629 eV, respectively. In

their final paper@1# only the ~b! method was used, yielding
the above-mentioned value ofUe

ex5294647 eV. It is obvi-
ous that if the~c! method had been used, the screening
ergy would have been higher, and the adiabatic limit wo
have been considerably exceeded again. The two meth
~b! and~c! gave, respectively@18#, the following zero-energy
astrophysical factors:S(b)(0)55.3060.08 andS(c)(0)55.1
60.1, which is a 3.9% difference. Regarding the solar n
trino problem, that percentage admittedly leads to a ne
gible neutrino flux uncertainty for thepp andhep neutrinos
~0.1%!. However, the uncertainty for the8B and 7Be ones
can be as high as 1.5%, which should not be disregard
Although the author agrees that method~b! seems more plau
sible than method~c!, a better justification is needed for th
choice of the fitting method when such low-energy expe
ments are considered since it obviously constitutes a so
of uncertainty.

On the other hand, for the reaction2H(d,p)3H, where the
projectile is considered neutral and the target is in an ato
form, we haveZ51; therefore@Eq. ~28!#, Ue5263 eV. If
we compare that screening energy with the correspond
one for a bare projectile deuteron@17# (Ue5254) we arrive
at an anticipated result. The screening energy is ind
higher in the neutral projectile case but not twice as much
the screening energy of the bare nucleus case. That is du
the repulsive effect between the two electrons, which
roughly Vee5129 eV, and the screening of the combine
nuclear molecule by the second electron, which of cou
yields an effective charge that is lower than the sum of
two separate nuclei and consequently a sparser charge d
bution.

IV. MULTIELECTRON SCREENING EFFECTS

In the framework of the Thomas-Fermi~TF! model the
screened Coulomb potential for a neutral multielectron at
Z1 is @20#

Vsc
TF~r !5

Z1e

r
f~r !. ~29!

The dimensionless functionf(r ) can be obtained by the so
lution of the universal differential equation
1-4
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d2f~x!

dx2
5

f3/2~x!

Ax
, ~30!

where x5r /a and the screening radius isa
50.8853Z1

21/3a0.
In our approach instead of solving numerically the diffe

ential equation, we will make use of an analytic approxim
tion of the functionf(r ) given by Tietz@21#. Namely,

f~x!5
1

~11bx!2
~31!

with b50.536.
At first we will consider the interaction of very light nu

clei with a heavy multielectron atom so that we can disreg
the perturbation induced by the impinging particle to t
average electron density of the target atom, which is
sudden limit~SL! approximation.

If we expand the TF screened potential using Tietz’s
proximation we obtain the screened potential energy of
interaction

Vsc
TF5

Z1Z2e2

r
22

bZ1Z2e2

a
13

Z1Z2b2e

a2
r 1O~r 2!.

~32!

The third term of the above potential, as well as terms O(r 2),
are negligible with respect to the constant screening ene
shift given by the second term. For example, for relat
energies of 20 keV the tunneling region for ap1 14N reac-
tion begins at a classical turning point ofr c5500 fm. At
such a distance the second term is 440 eV while the thir
only 7 eV. Therefore, inside the barrier, wherer ,r c , terms
proportional to the scaled distancer /a practically vanish.

Inserting the above screened Coulomb potential~32! with
Tietz’s approximation into the WKB integral of Eq.~24! and
working in the same way as with the potentials of the p
ceding section we obtain the screening energy for the c
sion of a light bare nucleus (Z2e) with a neutral multielec-
tron atom (Z1e),

UTF
SL521.21Z1

4/3Z2

e2

a0
. ~33!

Let us now suppose that the impinging nucleus~not neces-
sarily a light one! has been neutralized so that it can also
considered a TF atom. We can obtain the maximum scre
ing energy transferred to the relative nuclear motion by us
the formula for the total energy of a TF atom. In fact the
are three contributions to the total energy of the atom: T
kinetic energy of the electrons, the potential energy of th
interaction with the nucleus, and the potential energy of th
mutual interaction. For a neutral TF atom with chargeZ1e
the total energy is given by@20#

ETF
tot52

Z1
2e2

a S 2

5
m2

J

10D , ~34!
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wherem52f8(0) and

J5E
0

`S df

dx D 2

dx. ~35!

Numerically,

ETF
tot5220.93Z1

7/3 eV. ~36!

It is therefore plausible to assume that for an adiabatic li
~AL ! interaction of two neutral TF atoms the screening e
ergy UTF

AL will be the difference between the total energy
the combined molecule and that of the two separate atom

UTF
AL5220.93@~Z11Z2!7/32Z1

7/32Z2
7/3# eV. ~37!

We can compare the results of Eqs.~33! and ~37! with the
ones obtained in Ref.@16#. For a reactionp1Z

AX between a
bare protonp and neutral atomZ

AX, see Table I.
We observe that Eq.~33! practically reproduces the sud

den limit Ue
SL of Ref. @16#, while Eq. ~37! gives a higher

adiabatic limit than the one (Ue
AL) given in Ref.@16#. De-

spite the fact that for the reaction3He(3He,2p)4He the elec-
trons involved are too few to justify use of the above form
las, it will give a sense of the validity of the present mode
if we apply our formulas on that reaction as well. In fact E
~33! givesUTF

SL5166 eV while Eq.~37! givesUTF
AL5426 eV,

which are admittedly reasonable bounds.
Regarding the acceleration effects produced by the ab

screening energies on the nonresonant wings of astrophy
nuclear reactions, we can apply the usual enhancement fa
@22#

f TF
(SL,AL)~E!5expS pn

UTF
(SL,AL)

E D , ~38!

wheren is the Sommerfeld parameter andE is the center-of-
mass energy. We obtain for the sudden and the adiab
limit, respectively,

f TF
SL~E!.expS Z1

7/3Z2
2A1/2

2E(keV)
3/2 D ~39!

and

TABLE I. The screening energies for various proton-induc
astrophysical reactions as obtained through the sudden (Ue

SL) and
the adiabatic (Ue

AL) limit of Ref. @16# versus the screening energie
obtained through the present TF sudden (UTF

SL) and adiabatic (UTF
AL)

limit.

p1 3
7L p15

11B p16
12C p17

14N p18
18O

Ue
AL ~eV! 186 347 441 544 653

Ue
SL ~eV! 134 281 366 462 570

UTF
SL ~eV! 142 281 359 441 527

UTF
AL ~eV! 259 474 592 717 847
1-5
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f TF
AL~E!.expFZ1Z2@~Z11Z2!7/32Z1

7/3#A1/2

3E(keV)
3/2 G , ~40!

whereA5A1A2(A11A2)21 is the reduced mass number.
The above formula will be particularly useful in labor

tory experiments where such nuclear reactions are invo
as those of the CNO cycle and the ones encountered in
final stages of stellar evolution~e.g., supernova nucleosyn
thesis!. In such reactions it is often impossible to measur
nonresonant cross section in the laboratory at a sufficie
low energy due to technical difficulties@10# ~large back-
ground of counts, beam instability, etc.!. Therefore, the as
sociated astrophysical factor cannot be accurately extra
lated to zero energies as required for the calculation of
effective astrophysical factorSe f f that appears in the thermo
nuclear reaction rate formulas~Ref. @23# and references
therein!. However, the recent accomplishments of the LUN
Collaboration with the 3He(3He,2p) 4He reaction inspire
hope that similar low-energy experiments will soon be co
ducted for heavier nuclei~multielectron atoms! as well, in
which case the above formula will help correct the lo
energy cross-section measurements.

Let us consider, for example, the first member of the CN
cycle, namely the radiative direct capture reacti
12C(p,g) 13N. The low-energy cross section is dominated

an s-wave resonance (1
2

1) at Ec.m.5424 keV, while its
Gamow peak at central solar conditions is 24.5 keV. T
usually employedSe f f for that reaction is the one obtaine
by an experiment@24# which measured cross sections at e
ergies as low asEc.m.5138 keV disregarding all screenin
effects. According to the present models the screening
hancement of the cross section at such an energy woul
between 2% and 3.4%, which is not a negligible correcti
It is now obvious that in any future attempt to improve t
accuracy of the extrapolation by lowering the energy of
experiment the proposed model of this work will be ve
useful.

The corrections are even more important for the ot
reaction of the CNO cycle, such as the slowest react
which controls the energy generation of the CNO cyc
which is 14N(p,g)15O. Various investigations@25# ~and ref-
erences therein! have obtained data for that reaction
center-of-mass energies as low as 93 keV without correc
for screening. The error committed at such low energies
that particular reaction can be as high as 9%~AL !. Finally,
the corrections can be dramatic if we consider very low re
nances such as the 66 keV resonance of the17O(p,a) 14N
reaction, namely of the order of 12%~AL !. Such consider-
able enhancement could presumably lead even to shift
the resonance energies themselves, compared to the bar
clei measurements.

In Figs. 1 and 2 there is plotted the screening enhan
ment factor for the most important astrophysical nuclear
actions of the CNO bi-cycle with respect to the center-
mass energy. Close to the Gamow peaks of those reac
~Fig. 1! the predicted enhancement of the nonresonant c
section is already 5%~at least! while at very low energies
~Fig. 2! 2<Ec.m.<5 keV, the nonresonant cross section
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the screened reaction is expected to be several times la
than that of the bare nucleus one.

Before concluding this section we should emphasize t
our results agree well with the results obtained by the ad
batic assumption@15# according to which the screening en
ergy of the reaction between atomsA andB is given by the
formula

Ue
BE5Eel~A1B!2Eel~A!2Eel~B!, ~41!

whereEel(A1B) is the total binding energy of the electron
in the combined atomA1B, andEel(A),Eel(B) are the total
electronic binding energies of the asymptotically separa
atomic reaction partnersA,B. For example, for the
12C(p,g) 13N and the 14N(p,g) 15O reactions, respectively
the latter model gives screening energiesUe

BE5444 eV and
546 eV, which are bracketed by the energies derived thro
the present models~see Table I!.

FIG. 1. The screening enhancement factorf TF(E) for the most
important astrophysical nuclear reactions of the CNO bi-cycle w
respect to the center-of-mass energyE in the region of the Gamow
peaks (EGP) as calculated for central solar conditions. The low
~upper! solid curve represents the enhancement of the13C(p,g) 14N
reaction (EGP524.5 keV! as calculated by the above TF sudd
~adiabatic! limit. Likewise, the dashed curves stand for th
14N(p,g) 15O reaction (EGP527.2 keV!, while the dotted ones
stand for the16O(p,g) 17F reaction (EGP529.8 keV!. Lower and
upper curves always indicate sudden and adiabatic limits, res
tively.
1-6
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V. CONCLUSIONS

Two very efficient models are presented here which
produce the screening enhancement effects that appe
laboratory nuclear reactions at astrophysical energies.
first model, which describes two-electron effects, relies
the Hartree-Fock approximation and agrees very well w
the recent LUNA experimental screening energy for the
action 3He(3He,2p) 4He, which so far remains unexplaine

The second model is based on the Thomas-Fermi the
and yields the screening energies for reactions encount
in advanced nuclear burning stages of stellar evoluti
where multielectron effects dominate. To the autho
knowledge, for multielectron laboratory effects, there ha
never been any closed formulas such as Eqs.~39! and ~40!,
which can be readily used in order to correct the cro
section measurements. Moreover, the latter model comp
well with other available theories and its use is expected
be particularly useful in any future attempt to improve t
accuracy of the CNO astrophysical factors by lowering
energy of the experiment.

FIG. 2. The screening enhancement factorf TF(E) for the most
important astrophysical nuclear reactions of the CNO bi-cycle w
respect to the center-of-mass energy in the region 2<E<5 keV.
The enhancement effect is particularly accentuated at such low
ergies. The notation is the same as in Fig. 1.
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Finally, the fitting method used in the determination of t
astrophysical factor is identified here as a source of un
tainty for the solar neutrino fluxes, which needs furth
elaboration and justification.
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APPENDIX

The screened potential model approach needs s
elaboration regarding its actual effects. In Refs.@10,15# the
screening energy for a collision between t
atomic target (Z1e) and the projectile (Z2e) was identified
as

Ue5
Z1Z2e2

Ra
, ~A1!

where the screening radius was set equal to the radius o
innermost electrons of the target (Ra5a0 /Z1), labeling it as
the ‘‘worst case.’’ In that model the electron cloud is a
sumed to be unperturbed, which is the definition for the s
den limit, and there is no special consideration for multiele
tron effects, either.

However, in our study of hydrogenlike atomic targets@17#
we have shown that the screening radiusRa for the
same sudden limit is actually independent of t
atomic numberZ1 and equal to the Bohr radiusRa5a0,
thus obtaining a smaller screening energy whenZ1.1
than the one used in Refs.@10,15#. Note that if we adopt the
worst case approach for the reaction12C(p,g) 13N, then Eq.
~A1! gives the unrealistic screening energyUe51000 eV
which is beyond the present TF adiabatic limit value, too

On the contrary, it is easy to show our approximation
valid for most practical purposes. The screening termUe

(r )

that we disregarded when treating Eq.~13! via the WKB is
actually proportional to the scaled relative internuclear d
tancer /a0,

Ue
(r )522Z1

2Z2

e2

a0

r

a0
. ~A2!

For a typical classical turning pointr c;1022a0 we have,
throughout the barrier,r ,1022a0. Hence, in the sudden
limit, the ratio of the term that we considered significantUe
@Eq. ~26!# to the insignificant one, given by Eq.~A2!, is
Ue /Ue

(r ).50Z1
21 . Obviously for smallZ1, which is usually

the case in astrophysical reactions, our formulas beco
increasingly accurate.
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