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Two models are presented for the description of the electron screening effects that appear in laboratory
nuclear reactions at astrophysical energies. The two-electron screening energy of the first model agrees very
well with the recent LUNA experimental result for the breakup reactide(He, 2p)*He, which so far defies
all available theoretical models. Moreover, multielectron effects that enhance laboratory reactions of the CNO
cycle and other advanced nuclear burning stages are also studied by means of the Thomas-Fermi model,
deriving analytical formulas that establish a lower and upper limit for the associated screening energy. The
results of the second model, which show a very satisfactory compatibility with the adiabatic approximation
ones, are expected to be particularly useful in future experiments for a more accurate determination of the CNO
astrophysical factors.
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I. INTRODUCTION than the adiabatic limit. Although the adiabatic lifilt5,16]
is generally accepted, in a recent paper] a simple and

The screening enhancement effect in laboratory nucleagfficient model was proposed for the study of the screening
reactions at astrophysical energies has attracted a lot of agffect on low-energy nuclear fusion reactions which ex-
tention recently, especially after the recent accomplishmentseeded that limit. In that model, the fusing atoms were con-
of the LUNA collaboration at Gran Sasgd]. The very sidered hydrogenlike atoms whose electron probability den-
low energies attained for the breakup reactionsity was used in Poisson’s equation in order to derive the
®He(°He,20) “He, which is extremely important to the solar corresponding screened Coulomb potential energy. That way
neutrino productiorf2], revealed the real magnitude of the atomic excitations and deformations of the reaction partici-
problem, as the screening energy obtained in that experimeplnts could also be taken into account. The derived mean-
still exceeds f_:lll available theoretical predictions. Other low-ig|q potentials were then treated semiclassically, by means
energy experiments of the proton-proton chg8a-9] (past, ¢ the WKB, in order to derive the screening enhancement
current, or plannedstill need a theoretical model that could factor which was also shown to be compatible with the ex-
account for the observed enhancem_ent. Cperiment. In that work the screened Coulomb potentials were

On the other hand, the astrophysical factors for the rea given without details of their derivation. However, a detailed

tions of the CNO chain have been obtained by performin% T h bef | f
measurements well above the Gamow peg@k8] and refer- .er|vat|on IS necessary here betore two-e ectr'on contigura-
tions are studied, such as tRel( 2H,n)3He reaction with a

ences thereljnand extrapolating to lower energies without L .
n P g d eutral projectile or the breakup reactihe(*He,2p) “He.

correcting for screening, thus committing a notable error in1e ) ;
certain cases as will become apparent in this work. This need arises from the fact that the conventional use of a

Various theoretical models have been proposed so fascreened Coulomb potentigl is that of a Yukgwa one. Never-
some of which are in conflict with each othexg., accepting _theless, the Yukawa one is only an approximatitmnca-
[7] or rejecting[11] the influence of the spectator nuglei tion) of the complete screened potential arising from the so-
while others[12] were applied at a time when experimental lution of Poisson’s equation, as will soon become apparent.
measurementist] were too sparse and inaccurate, thus theiDisregardinga priori higher-order terms can possibly induce
actual validity has been obscured. errors, especially when the experiment takes place at astro-
There have even been suggestiph8,14 that this dis- physical energies of a few keV.
crepancy between theoretical and experimental results is due The layout of the paper is as follows. In Sec. Il the
to an overestimation of the energy losses in the experimenscreened Coulomb potentials for hydrogenlike atoms are de-
which cause that apparent enhancement of the cross sectiaived in a detailed fashion, which turns out to be very useful
The most recent relevant experimdii] reports no such in Sec. lll, where those potentials are modified in order to
energy-loss deficit which means that all energy losses havaccount for two-electron effects in nuclear reactions at astro-
been taken into account, and yet the observed screening ephysical energies. Notably, in Sec. I, the screening energy
ergy is still higher than the adiabatic limit. for the *He(®He,2p) “He reaction, which so far remains in-
Nevertheless, the prevalent belief nowadays is that @xplicably[18] high, is reproduced to a very good approxi-
model is needed which could give a screening energy highanation. Section 1V deals with multielectron effects by means
of the Thomas-Fermi model, which enables us to derive ana-
lytical formulas for the screening enhancement factors for
*Electronic address: theoliol@physics.auth.gr reactions encountered in advanced nuclear burning stages of
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stellar evolution. A final concluding section summarizes theproceed to give an alternative approach according to the

novelties and the results of the present work. above assumption, which will be particularly useful in our
study of two-electron effects.
Il. ONE-ELECTRON SCREENING EFFECTS Let us assume a hydrogenlike at@min its ground state,

) ] ) ) whose electron charge distribution of E@) can be written
Let us consider a hydrogenlike atom with atomic number

Z,. When the wave function of the electron is given by p(r)=p(0)exp(—r/ry), @)
¥, (r,0) then the charge density around the pointlike
nucleus is wherero=a,/(2Z,).
The charge density at the center of the electron cloud is
pi(r,0)=—€[ ¥y (r,0)% (1) 13
Assuming spherically symmetric wave functions for simplic- p(0)=— - a_: ®

ity we can solve the equation of Poisson for the above charge

density in order to derive a screened Coulomb potentialvhile the electrostatic potential of the distribution is given by
®(r) around the nucleus. Note that this potential will takethe solution of Poisson’s equation,

into account the repulsive effects of the pointlike nucleus, by

imposing the appropriate boundary conditions, 1d dd(r

p g pprop y —_— I’2—e< ) =—4mp(0)exp(—r/ry). 9

7.6 r2dr dr
O(x)=0, ®(0)=——. ) . . .
r Upon integration we obtain

The second boundary condition indicates that if a positive C, r Mo
projectile (Z,€) is in contact with the nucleusZ¢e) at the P(r)=Cy+ T—4wp(0)r§ex;{ - 1+ 27 .
center of the electron cloud, then there is no negative charge 0 (10)
between them to reduce the Coulomb barrier.

Let us define the screening form factor of the screenedhe electrostatic potentiab.(r) must go to zero at infinity
Coulomb as a functiori(r) so that which givesC,;=0. At very large distances>r, due to the

7 spherical symmetry of the distribution, any projectile im-
d(r)= jf(r). (3) pinging on that cloud will actually “see” a Coulomb poten-
r tial of the form
If we insert Eq.(3) and Eq.(1) into the equation of Poisson —e
we obtain Pe(r>ro)=—— (1)
2
dfri(r) _ 4_7Tr|q, (N2 4) so thatC,= —e. Inserting the values of the parametegs
2 nl ’ - . .
dr Zy andp(0) into the above equation we obtain the formula used

without details of its derivation in Ref17],
which is to be solved with the boundary conditions

r
1+ -—

T exp(—r/ryp). (12

e e
fu(oe) =finite, fy(0)=1. 5) Delr)=—

Equation (4) with the corresponding boundary conditions

constitutes a generator of screened Coulomb potential enlike atom, the total interaction potential enekéfy) be-

which correspond oa partlcular excitation and ionization o tween the two nuclei will be due to the above electrostatic
the atomic target. According to the quantum state of the hy-

drogenlike atom we can use E@) in order to obtain the potential, that isZ,e®., plus the repulsive potential of the
) . nucleusZ.e,
corresponding screened Coulomb potentials.
Actually in the above treatment there is an implicit as- 2 2 2
X . Z,2,e° Z,e° Z,e
sumption of independence between the nuclear and elec-y_(r)= — +

If a positive projectileZ,e impinges onto the above hydro-

r
1+ —Jexp—r/r}),
2r*) p( 0)

tronic degrees of freedom. This assumption can be expressed r r r 0

in a quantitative form by the formula (13
V(1) =Ve(r) + Dg(r). (6)  where

The above formula states that the screened Coulomb poten- * 8o (14)

tial is actually the sum of the bare nucleus Coulomb potential fo= 2(Z,+2Z5)°

V(r) plus the electrostatic potential energy of the electron

cloud. Therefore one can calculabe(r) and then add it to The reason for replacing, with r is that, at astrophysical
the bare nucleus potential which simplifies the calculationenergies, the electrons move at higher velocities than the
especially when multielectron atoms are considered. We nowuclei themselves. For example, in laborataly D reac-
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tions the relative nuclear velocity equals the typical electrortrons are identical fermions. The spatial wave function is
velocity v.=ac for E=25 keV. Although the above as- necessarily symmetric, therefore antisymmetry is arranged
sumption is particularly valid at such low-energy collisions by considering an antisymmetric spin singlet state. Since we
between hydrogen nuclei, when reactions between heavietill work with hydrogenlike atoms, the electron-electron
nuclei are considere@ee Sec. I, an inevitable small error spatial wave function is

is involved at intermediate energiés.g., in the vicinity of

the Gamow peak As will soon become clear the WKB Ve ol1,12)=Woo 1) Wog(T ), (17
treatment of the penetration factor disregards all effects be-

yond the classical turning point. Therefore, inside the tunnel;

: . ! where‘lfOO(F) is actually the usual ground-state wave func-
ing region the wave function of the electron actually COIMe-tinn of hydrogenlike atoms

spor_1d_s_ to a combined nuclear r_no_lecul’q{—zz) |_nste_ad of The electrostatic potential energy of the two electrons is
the initial Z, atom. Of course this is an approximation and,
in our model, the intermediate stages of the wave-function 2
deformations are assumed to play a minor role. When the v/, ezf fﬁ|\POO(F1)|2|\I,00(F2)|2d3r1d3r2!
electron of the target atom/ion is in an excited state, we can ! 1J2fr =1y
obtain in the same way the corresponding potential energy (18
used in Ref[17]. .
wherer ; , are the positions of the two electrons. As will soon

. TWO-ELECTRON SCREENING EFFECTS becpme apparent, the gffective_ interaction bet_ween the two
participants of the reaction begins upon reaching the classi-
cal turning point. At astrophysical energies the classical turn-

pinges on a resting target nuclefige. Let us further assume 'ngrg?é?é'swheugggeg:f;f tggjnsqr;?rl]laetr ttl’?:)rl].l tmijg?t?;'%fﬂg;;b
that the target atom has two electrons orbiting the nucleus. Ig‘ ' Y 9

a Hartree-Fock approximation the total potential energy of S1°7 e b, GSTEIG ol BorSitle. & Sombier
the interaction will be . p g

can be calculatefil9] so that forZ,=Z,=Z we obtain

Let us now assume that a hydrogenlike atdge im-

Vsdr)=V(r)+ Vnzel(r) + Vnzez(r) +Vn1e(r)

Veem=g —- 19
+Velez+vele+vezei (195 °¢ 8 dp (19

which is the sum ofa) the Coulomb potential energy.(r) That positive energy will be transferred to the relative
between the two bare nuclei plds) the interaction between nhuclear motion, increasing the height of the Coulomb barrier.
the projectile () and the electronseg ;) of the target The equal charge assumption combined with the fact that
nucleus plus(c) the interaction between the target nucleusduring tunneling the reacting nuclei practically coincide with
(n,) and the electron of the projectile) plus (d) the inter- ~ respect to the electron cloud dimensions yieMge (r)
action between the electrons of the targét., and, of =Vp e(r). On the other hand, each of the two electrons is

course, the interactiore(e,e,e) between the electron of the actually subject to the repulsive effect of a screened nucleus
projectile and those of the target. In the above equation onlgue to the presence of the other electron. For the combined
the terms associated with the nuclei will be considered funcauclear molecule, we hav&,=Z,+Z,, while the usual
tions of the relative internuclear distance, while the electronvariational procedure yields an effective atomic number for
electron interactions will be treated as perturbations whickeach electrorz** =Z7,—5/16.
will actually raise the Coulomb barrier between the two re- Therefore for the low-energy reaction of two hydrogen-
acting nuclei. We consider the following channels. like atoms in their ground state, with equal atomic numbers
(@ The nucleus-nucleus channeéThat interaction has Z, the interaction potential energy is
been thoroughly studied in most textbod&€] and needs no
further elaboration. Z2%e?
(b) The atom-atom channel for hydrogenlike atorirs Vsc(r)=T—
most experiments, the projectile has been considered fully
stripped of its electrons, which is the case at relatively high 5§ 7** g2
energies. However, when the projectile is in a neutral state, + 3 a (20)
or at least not fully ionized, its electron cloud has to be taken 0
into account7]. where
For such an interaction the total potential energy can be
written

76 Zé?

r r

;
1+ exp(—r/rg*)
2r3*) X 0

prx 90 (21)
Vsc(r):Vc(r)+Vn2e1(r)+vnle(r)+vele- (16) 0 27*%* .

When the two electron clouds interact, their mutual grounddn the same way we can calculate the potential energy when
state wave function must be antisymmetric since the elecene (or both atoms are in an excited state.
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(c) The nucleus-atom channéior the hydrogenlike atom tal errors had it not been for another, as yet unidentified,
target an extensive study has already been git&h How-  uncertainty source for the screening energies and the associ-
ever, for a two-electron target atom further elaboration isated astrophysical factors, which causes a small increase in
needed. In that case the potential energy is the uncertainty for the solar neutrino fluxes. In fact the

LUNA experimental results were fir§1 8] fitted using three
V(r)=Ve(r)+ Ve (N +Vne (N +Vee, (22 different approachesa) fixing the screening energy at the
value given by the adiabatic limitb) allowing all three pa-
If we compare Eq(16) with Eq. (22) we see that the two rameterg(S(0),S'(0),S"(0)) of the astrophysical factor and
pOtentials must be apprOXimately the same. Therefore thﬁ]e Screening enerwe to vary Simu|taneous|y’ anﬂ:) us-
potential energ)(ZO) can account for the nucleus-atom Chan'ing higher-energy data to fix the parameters of the astro-

nel with a two-electron target atom as well. physical factor while varying the screening energy. The two
The penetration factd?(E) multiplied by the astrophysi- model independent methodb) and (c) gave considerably
cal factorS(E) in the s-wave cross-section formula different screening energies in that work, which &rg)=
S(E) —323+51 eV and U =-432+29 eV, respectively. In
o(E)= ?p(E) (23)  their final papef1] only the (b) method was used, yielding

the above-mentioned value bf$*=294+47 eV. It is obvi-
S ous that if the(c) method had been used, the screening en-
's given by the WKB method ergy would have been higher, and the adiabatic limit would
2\24 (re® have been considerably exceeded again. The two methods
P(E)= ex;{ - VVedr)— Edr}, (24  (b) and(c) gave, respectivel}18], the following zero-energy
hoJr astrophysical factorss®(0)=5.30+0.08 andS{®(0)=5.1
+0.1, which is a 3.9% difference. Regarding the solar neu-
trino problem, that percentage admittedly leads to a negli-
Vsdlre)=E. (25) gible neutrino flux uncertainty for thep andhep neutrinos
(0.19%. However, the uncertainty for thBB and ‘Be ones
At astrophysical energies the potential energy is found to béan be as high as 1.5%, which should not be disregarded.
shifted by a constant screening enetdyy which is added to  Although the author agrees that meth{biiseems more plau-
the relative energy of the collision. sible than methodc), a better justification is needed for the
For the nucleus-nucleus channel the calculation is triviachoice of the fitting method when such low-energy experi-
leading to P(E)=exp(—2mmn), wheren is the Sommerfeld ments are considered since it obviously constitutes a source
parameter andJ,=0. For the nucleus-hydrogenlike atom of uncertainty.
channel the screening energy has already been calculated On the other hand, for the reactidki(d,p)®H, where the
[17] projectile is considered neutral and the target is in an atomic
form, we haveZ=1; therefore[Eq. (28)], U,=—63 eV. If
we compare that screening energy with the corresponding
one for a bare projectile deuterph?] (U.= —54) we arrive
at an anticipated result. The screening energy is indeed
For two hydrogenlike atoms with equal chargesel we  higher in the neutral projectile case but not twice as much as
have performed numerical integrations of E84) and nu- the screening energy of the bare nucleus case. That is due to
merical solutions of EQ.25). At astrophysical energies the repulsive effect between the two electrons, which is
where screening becomes important the screened Coulonmtbughly V.= +29 eV, and the screening of the combined
potential can be safely replaced by the quantity nuclear molecule by the second electron, which of course
yields an effective charge that is lower than the sum of the
two separate nuclei and consequently a sparser charge distri-
bution.

where the classical turning point is given by

2

e
Ue:_(zl+22)22a_o. (26)

Z%e?
Vsc(r):T'l'Ue: (27)

where
IV. MULTIELECTRON SCREENING EFFECTS
2

(28) In the framework of the Thomas-FerrfitF) model the

screened Coulomb potential for a neutral multielectron atom

which is also the screening energy for the collision of a bareZ; is [20]
nucleus Ze) with a two-electron target atom.

For the astrophysical reactiotHe(*He,20)*He we have 7 e
Z,=Z,=Z=2 and the corresponding screening energy ob- VIF(H)= == (r). (29
tained through the above modellg.= —338 eV. Our result r
is very close to the experimental result of the LUNA Col-
laboration [1] Ug*=—294=47 eV. The small difference The dimensionless functio#(r) can be obtained by the so-
could be plausibly attributed to energy losses and experimeriution of the universal differential equation

Ue=—-2Z|2Z > e2+5(22 >
= 162, 8122 16

16/a, 8 ao’
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d?¢(x) _ $3%(x)
dx? X

screening

(30

where x=r/a and the radius isa

=0.885%; Ya,,.
In our approach instead of solving numerically the differ-

ential equation, we will make use of an analytic approxima-

tion of the functiong(r) given by Tietz[21]. Namely,

P(x)= 31

(1+bx)2

with b=0.536.
At first we will consider the interaction of very light nu-

clei with a heavy multielectron atom so that we can disregard

the perturbation induced by the impinging particle to the

PHYSICAL REVIEW 63 045801

TABLE |. The screening energies for various proton-induced
astrophysical reactions as obtained through the sudU@"l) (and
the adiabatic l(JQL) limit of Ref. [16] versus the screening energies
obtained through the present TF sudderff) and adiabaticl(4:
limit.

average electron density of the target atom, which is the

sudden limit(SL) approximation.

If we expand the TF screened potential using Tietz's ap-

proximation we obtain the screened potential energy of the

interaction

TF_
sc

Z,7Z,€° B 2b2122e2 . OzlzzbZe

2
r a 2 r+0(re).

(32

The third term of the above potential, as well as terms?)(

priL  p+sB  p+gC p+iN  p+5’0
Uit (ev) 186 347 441 544 653
ust (ev) 134 281 366 462 570
U3E (eV) 142 281 359 441 527
U%E (eV) 259 474 592 717 847

whereu=—¢’(0) and

= ——| dx.
J J . ( dx) d (35
Numerically,

E!%=—20.93217 evV. (36)

It is therefore plausible to assume that for an adiabatic limit
(AL) interaction of two neutral TF atoms the screening en-
ergy U%E will be the difference between the total energy of

the combined molecule and that of the two separate atoms,

URE=—20.93(Z,+2Z,)"*-21P-71® ev. (37)

are negligible with respect to the constant screening energy
shift given by the second term. For example, for relativeWe can compare the results of E¢33) and (37) with the

energies of 20 keV the tunneling region fopa *“N reac-
tion begins at a classical turning point pf=500 fm. At
such a distance the second term is 440 eV while the third i
only 7 eV. Therefore, inside the barrier, wherer_, terms
proportional to the scaled distancka practically vanish.
Inserting the above screened Coulomb poteri8a) with
Tietz's approximation into the WKB integral of E(R4) and

ones obtained in Ref16]. For a reactiorp+’§X between a
bare protorp and neutral atonﬁx, see Table I.

S We observe that E(q33) practically reproduces the sud-
den limit US" of Ref. [16], while Eq. (37) gives a higher
adiabatic limit than the oneU4") given in Ref.[16]. De-
spite the fact that for the reactiotHe(*He,2p)*He the elec-
trons involved are too few to justify use of the above formu-

working in the same way as with the potentials of the Préqas, it will give a sense of the validity of the present models

ceding section we obtain the screening energy for the colli
sion of a light bare nucleusZge) with a neutral multielec-
tron atom ¢,e€),

e2

2 (33

USt=-1.2123"37,

Let us now suppose that the impinging nuclénst neces-

if we apply our formulas on that reaction as well. In fact Eq.
(33) givesU3E= 166 eV while Eq(37) givesUSE=426 eV,
which are admittedly reasonable bounds.

Regarding the acceleration effects produced by the above
screening energies on the nonresonant wings of astrophysical
nuclear reactions, we can apply the usual enhancement factor
[22]

sarily a light ong has been neutralized so that it can also be
considered a TF atom. We can obtain the maximum screen-
ing energy transferred to the relative nuclear motion by using

the formula for the total energy of a TF atom. In fact there h s the S feld ter afds th ter-of
are three contributions to the total energy of the atom: Thd/Neren is the sommerield parameter ands the center-ot-

kinetic energy of the electrons, the potential energy of theif'3SS ENergy. \1Ve obtain for the sudden and the adiabatic
interaction with the nucleus, and the potential energy of thei}'m't’ respectively,

mutual interaction. For a neutral TF atom with chaigge

U(SLAL)

A (E)= exp( mn (38

TF
E

. . Z7/322Al/2
the total energy is given bj20] f?'ﬁ(E)zex;{ 1 ;2 (39
72e? (2 J ?Elie
EIOI:_]-_ — = = (34)
TF a \5" 10/" and
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AL le2[(zl+ 22)7/3_ ZZ/S]AUZ 4.0 '_

fTF(E):ex 3E3/2 ) (40) 3.8

(keV) i

3.6

whereA=A;A,(A;+A,) ! is the reduced mass number. 1

The above formula will be particularly useful in labora- 84

tory experiments where such nuclear reactions are involved 324
as those of the CNO cycle and the ones encountered in the
final stages of stellar evolutiote.g., supernova nucleosyn- 304"

thesig. In such reactions it is often impossible to measure a g

nonresonant cross section in the laboratory at a sufficiently |
low energy due to technical difficultieglO] (large back- 2.6 -
ground of counts, beam instability, etcTherefore, the as-

sociated astrophysical factor cannot be accurately extrapo- ]
lated to zero energies as required for the calculation of the 2.5
effective astrophysical fact@, that appears in the thermo-

2.4 1

t.(E)

2.0,

nuclear reaction rate formuladRef. [23] and references ]
therein). However, the recent accomplishments of the LUNA 1.8 -
Collaboration with the®He(®He,2p) *He reaction inspire

hope that similar low-energy experiments will soon be con- 1.6 1
ducted for heavier nucleimultielectron atomsas well, in 1
which case the above formula will help correct the low- i
energy cross-section measurements. 1.2 1

Let us consider, for example, the first member of the CNO 1
cycle, namely the radiative direct capture reaction
2C(p,») 1°N. The low-energy cross section is dominated by

an swave resonances() at E.,=424 keV, while its
Gamow peak at central solar Con,d't'o_ns Is 24.5 keV. The FIG. 1. The screening enhancement fadtgr(E) for the most
usually employedS; for that reaction is the one obtained jmnorant astrophysical nuclear reactions of the CNO bi-cycle with
by an experimenf24] which measured cross sections at en-respect to the center-of-mass enefgin the region of the Gamow
ergies as low a&.,, =138 keV disregarding all screening peaks Eqp) as calculated for central solar conditions. The lower
effects. According to the present models the screening enuppej solid curve represents the enhancement of #&p, y) 2N
hancement of the cross section at such an energy would heaction Egp=24.5 keV) as calculated by the above TF sudden
between 2% and 3.4%, which is not a negligible correction(adiabati¢ limit. Likewise, the dashed curves stand for the
It is now obvious that in any future attempt to improve the **N(p,y) *°0 reaction Egp=27.2 ke\}, while the dotted ones
accuracy of the extrapolation by lowering the energy of thestand for the'®O(p,y) 1F reaction Egp=29.8 keVj. Lower and
experiment the proposed model of this work will be very upper curves always indicate sudden and adiabatic limits, respec-
useful. tively.

The corrections are even more important for the other
reaction of the CNO cycle, such as the slowest reactionihe screened reaction is expected to be several times larger
which controls the energy generation of the CNO cyclehan that of the bare nucleus one.
which is **N(p, y) 0. Various investigationf25] (and ref- Before concluding this section we should emphasize that
erences therejnhave obtained data for that reaction to gyr results agree well with the results obtained by the adia-
center-of-mass energies as low as 93 keV without correctingatic assumptiofi15] according to which the screening en-

for screening. The error committed at such low energies fogrgy of the reaction between atorisandB is given by the
that particular reaction can be as high as @®h). Finally,  formula

the corrections can be dramatic if we consider very low reso-

nances such as the 66 keV resonance of tf@(p,a) ‘N

reaction, namely of the order of 129AL). Such consider- USE=E¢(A+B)—Eg(A)—Eq(B), (41)

able enhancement could presumably lead even to shifts of

the resonance energies themselves, compared to the bare nu-

clei measurements. whereEg(A+ B) is the total binding energy of the electrons
In Figs. 1 and 2 there is plotted the screening enhancen the combined atorA+ B, andE¢(A),E (B) are the total

ment factor for the most important astrophysical nuclear reelectronic binding energies of the asymptotically separated

actions of the CNO bi-cycle with respect to the center-of-atomic reaction partnersA,B. For example, for the

mass energy. Close to the Gamow peaks of those reactiortéC(p,y) **N and the **N(p, ) *°O reactions, respectively,

(Fig. 1) the predicted enhancement of the nonresonant crogbe latter model gives screening energib§E=444 eV and

section is already 5%at least while at very low energies 546 eV, which are bracketed by the energies derived through

(Fig. 2 2<E.,,<5 keV, the nonresonant cross section ofthe present modelsee Table )l

1.4

1.0 ——— T

L
20 22 24 26 28 30 32 34 36 38 40
E, . (keV)
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10000 5 Finally, the fitting method used in the determination of the

] astrophysical factor is identified here as a source of uncer-
tainty for the solar neutrino fluxes, which needs further
elaboration and justification.
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> APPENDIX

The screened potential model approach needs some
elaboration regarding its actual effects. In Ré¢f0,15 the
screening energy for a collision between the
atomic target Z,e) and the projectile £,e) was identified

as
Z,Z,€%
Ue_R—a' (A1)
6 7 8 o 10 where the screening radius was set equal to the radius of the

innermost electrons of the targdR{=ay/Z,), labeling it as
the “worst case.” In that model the electron cloud is as-
sumed to be unperturbed, which is the definition for the sud-

FIG. 2. The screening enhancement fadtge(E) for the most  den limit, and there is no special consideration for multielec-
important astrophysical nuclear reactions of the CNO bi-cycle withtron effects, either.

E, . (keV)

respect to the center-of-mass energy in the registEZ5 keV. However, in our study of hydrogenlike atomic targitg]
The enhancement effect is particularly accentuated at such low eRge have shown that the screening radiBs for the
ergies. The notation is the same as in Fig. 1. same sudden limit is actually independent of the

atomic numberZ,; and equal to the Bohr radiuR,=a,,
thus obtaining a smaller screening energy whep>1
V. CONCLUSIONS than the one used in Refd0,15. Note that if we adopt the

- . worst case approach for the reacti&fC(p, y) N, then Eq.
Two very efficient models are presented here which re—'Al) gives the unrealistic screening energyy=1000 eV

produce the screening enhancement effects that appear thich is beyond the present TF adiabatic limit value, too.

laboratory nuclear reactions at astrophysical energies. The On the contrary, it is easy to show our approximation is

first model, which describes two-electron effects, relies Onvali d for most practical purposes. The screening t@Jﬁ?

the Hartree-Fock approximation and agrees very well wit : ; : :
the recent LUNA experimental screening energy for the rer‘-that we disregarded when treating B43) via the WKB is

action 3He(3He,2p) *He, which so far remains unexplained. actually proportional to the scaled relative internuclear dis-
The second model is based on the Thomas-Fermi theort?ncer/ao’

and yields the screening energies for reactions encountered

in advanced nuclear burning stages of stellar evolution,

where multielectron effects dominate. To the author's

knowledge, for multielectron laboratory effects, there have

never been any closed formulas such as E8@). and (40),  For a typical classical turning point.~10"2a, we have,

which can be readily used in order to correct the crossthroughout the barrierr <10 a,. Hence, in the sudden

section measurements. Moreover, the latter model compardigit, the ratio of the term that we considered significaht

well with other available theories and its use is expected tdEq. (26)] to the insignificant one, given by EqA2), is

be particularly useful in any future attempt to improve theUe/U(er)>5021_1. Obviously for smallZ,, which is usually

accuracy of the CNO astrophysical factors by lowering thethe case in astrophysical reactions, our formulas becomes

energy of the experiment. increasingly accurate.

2

e r
e _ 572
U= —22Z, - . (A2)
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