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Topological susceptibility at zero temperature and finite temperature
in the Nambu—-Jona-Lasinio model

K. Fukushima K. Ohnishi] and K. Oht&
Institute of Physics, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
(Received 10 October 2000; published 19 March 2001

We consider the three flavor Nambu—Jona-Lasinio model with the 't Hooft interaction incorporating the
U(1), anomaly. In order to set the coupling strength of the 't Hooft term, we employ the topological suscep-
tibility y instead of thep’ meson mass. The value fgris taken from lattice simulations. We also calculgte
at finite temperature within the model. Comparing it with the lattice data, we extract information about the
behavior of the U(1) anomaly at finite temperature. We conclude that within the present framework, the
effective restoration of the U(%)symmetry does not necessarily take place even at high temperature where the
chiral symmetry is restored.
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- INTRODUCTION Le=—K[detq(1+ ys)q+detq(1-ys)q], ®

The U(1), anomaly of QCD plays an essential role in where the quark fieldy is a column vector in the color,

hadron physics. One o,f its most striking manifestationsﬂavor, and spinor spaces, aind is the Gell-Mann matrix in
would propably be thep’ meson mass. Since .th.e UGL) the flavor space with\°=2/3diag(1,1,1). The determi-
symmetry is broken not spontaneously but explicitly by thenants in Eq/(5) are with respect to the flavor indices.

anomaly, ' cannot be _regarded as a nearly massless The free quark Lagrangiad, contains the current quark
Nambu-Goldstone boson like the other psuedoscalar mesons. A .

e .~ “mass term withm=diag(m,,my,mg), breaking the U(3)
In fact, the mass ofy’ is as large as the nucleon mass, i.e.

m,, =958 MeV. This is the so-called U(X)problem. ®U(3)ﬁ symme_try ex_pI|C|tIy. Throu_gho_ut thls_rﬁaperr:/]vﬁe as-
The topological susceptibility is an essential quantity in sume tte etﬁac; 'S0spin fymmtle_try, |mud—_m(_,. © t?r d4 th
considering the U(1y) problem because it is related o generates the four-point couplings anc1s invariant under the

) : 7’ U(3) . ®U(3)r transformation. The six-point determinant
through the Witten-Veneziano mass form{ia2], term L is what is called the 't Hooft interaction and breaks

ON the U(1), symmetry. This interaction simulates the Ug1)
_ZfX:mE/+ mi,_Zmﬁ, (1) anomaly in our scheme, and the effective coupling constant
fo K measures its strength.

) ) ) Let us review the status of the parameter settings in the
whereN;=3 is the number of the flavors arfd is the pion  NJL model. The parameters to be fixed are the current quark
decay constant. This formula has been confirmed by calcungsses ifi,= My, My, the three-momentum cutoff\(), and
lating x directly on the lattic3]: The calculations giver  the effective coupling constantss(and K). The physical
pion decay constant and the meson masses. Thus, the toRgsed for the determination ¢f. As is well known, the NJL
logical susceptibility could tell us as much information aboutygdel lacks in confinement, and in fact in this modgl|

the U(1), anomaly as does,, . decays into asymptotiqastates due to its large mass. Thus

The tool we will employ in this work for the investigation ; ; Aaf .
of the U(1), problem is the three flavor Nambu—Jona-m”' in the NJL model is not a well-defined quantity. The

- . . alternative quantity for the determination Kfthat we will
Lasinio(NJL) model[4—7] which can be used as an effective : . oo . :
theory of QCD. The NJL Lagrangian we adopt here is use here is the topological susceptibility, which contains the

information about the U(1y) anomaly and whose value has

L=Lo+ Lo+ L, 2) been given by Igttlce Monte Carlo simulations, as mentlon_ed
above. The main purposes of the current work are to derive

the expression for the topological susceptibility within the

Lo=0(iy,d"~mq, ©) framework of the NJL model and to fix the parameiteby
8 means ofy as an input.
_ NA2 4 (i) Ay 2 Recently, the behavior of the effect of the Uglgnomaly
La Gazo [(ar"a)™+(ai ysA"a)7, @ at finite temperature has been discussed intensp&Hh12).
In particular, special attention has been paid to whether or
not the effective restoration of the U(1symmetry and the
*Electronic address: fuku@ntl.c.u-tokyo.ac.jp chiral phase transition occur simultaneously. This question is
TElectronic address: konishi@ntl.c.u-tokyo.ac.jp still controversial and is not settled yet. Here, we should
*Electronic address: ohta@nt1.c.u-tokyo.ac.jp clarify what we mean by “the effective restoration of the
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U(1), symmetry.” It means that all U(1y) violating quan-  in a path-integral _form, whenrd andT.are the space .a.nd time
tities vanish, i.e., that all order parameters of the (dym-  volumes, respectively. The topological susceptibilitis de-
metry vanish. The possibility thaj’ would degenerate with fined as a second derivative efwith respect tod at =0,

the other pseudoscalar mesons has a great deal of signifi- e
cance upon the experimental view in relativistic heavy ion Y=— :f d*x(0| TQ(x)Q(0)|0 (9)
collisions [13]. In the NJL model, the definition we gave 36 i—o (o 10 comectes

above is equivalent tK getting to zero, since finit&k makes i .
the U(1), symmetry breaking manifest in the NJL Lagrang- whgre T stands for the tlme-or_derlng operator, and th_e sub-
ian (2). Since the origin from which a finite value &farises ~ SCript “connected” means to pick out the diagrammatically
is the presence of instantons in the physical state, the effe€onnected contributions. Thus, in order to calculpt the
tive restoration of the U(1) symmetry is expected owing to NJL model, itis necessary to find a corresponder@(®) in
the naive argument that the instanton density will be supthe model. For that purpose, we consider the four-divergence
pressed at sufficiently high temperature. Thus when the magf the U(1), current,Js,=qv,¥sd. In QCD, one has
nitude of K becomes smaller, we will call it “the effective —
restoration of the U(1) symmetry.” 9"Js, = 2N(Q(X) +2iqmysq, (10

The temperature dependence Kfin the NJL model, which does not vanish due to the anomaly.
which indicates nothing but the temperature dependence of On the other hand, in the NJL modéqgs. (2)—(5)], we
the U(1), anomaly, has been set by hand and not gone befind [5]
yond phenomenolog}s]. This is both because experimental —
data form,, at finite temperature, which are necessary for 9*Js,=4AN(K Im det® +2igmysd, (11
determination ofK, are not available, and becauge be- \\hara
comes unbound completely in the model soon after we raise o
the temperature from zero. Since the topological susceptibil- ®i;=0i(1—vs)q;, (12
ity has been calculated at finite temperature on the lattice, we
will be able to determine the temperature dependendé of andi,j denote the flavor indices. Comparing these two ex-
using that data, and obtain some knowledge about the effe@ressions, we find that
tive restoration of the U(1y) symmetry. _ _ _ *

The paper is organized as follows. In Sec. Il we will de- Q00 =2K Imdet® = —iK[detd—(det®)*] (13
rive the expression fog in the NJL model. Section Ill is in the NJL model.
devoted to the parameter settings of the model and numerical With the definition ofl' .=1=* 5, we can write
calculations of the physical quantities. A summary is given

i 1 e — —
In Sec. IV. det® = =7 €*%€(qi"_qa) (0T~ Ap) (A" - Go),

Il. TOPOLOGICAL SUSCEPTIBILITY 1 — — —
IN THE NJL MODEL (detd)* :ﬁEdefflmn(mr+Qd)(QmF+OIe)(QnF+Qf)

In this section we calculate the topological susceptibility (14)
x within the framework of the NJL model. The first task is to g that
know a general expression gf. We recapitulate here the

definition of y. We begin with the QCD Lagrangian density (a)
(GL)arg) (@l o) (=)l g) (el )@l (0) < Y. >
1 a aci ‘ | = | ‘ -
——FMVFa"”'-‘rq(I‘yMD“—m)q-l- 0Q, (6)

ﬁQCD: 4

where Ff‘w is the gluon field strength tensoD,=d,

+igA, is the covariant derivative with , being the gluon  (v)

field, 6 is the QCD vacuum angle, ar@ is the topological (qro)(@re)(are)(x)@rq)@ra)arq)(0) < p ’
charge density defined by o e o
O(NM
9° _, =
X)= Fa Farv, (7)
Q) 3272 *
(C) z 0
With this Lagrangian density, the vacuum energy density ~ (@9 9@9@@l9@ 9Erad0) < %@%
is written as == ]
O(N?)
e eVT— f DA#DaDq e"d4x£QCDEZ ®) FIG. 1. Threg of various contracting ways are shown with their
corresponding diagrams.
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X= J d4X<O|TQ(X)Q(0)|0>connected

2

K 4,, _abc_ijk _def_Imn . q. . N ™ ™~ .
:_(SI)ZJ d*x €% e®Te ™0 T{(ai - da) (9;T" - ) (Al - Ae) (X) (A "~ dg) (Al - Ge) (AnL" A1) (0) — (AT )

X (T - ) (Al - 9e) () (AT +.dg) (Al 1 Ge) (Anl A1) (0) = (AT 1+ 9a) (AT 4 Ap) (A + Ao (X) (AT - dg) (Al - Ge)
X(AnT A1) (0)+ (AT 1 o) (A, T+ Ap) (Al Ge) (X) (AT 1 Ge) (Al Ge) (AT A1) (0)} 0D connected (15)

Now we must evaluate these four matrix elements. For thédentified with an element of 3-, 8-, 0-channel polarizations
time being, we pick up one term out of the four. Following with k?=0; for instance, 0-0 channel polarization is
Wick's theorem, we take full contraction in terms of the

propagatorS(x,x’') that has been constructed in the self- I155(k?=0)

consistent gap equatiofd—7]. Although several ways of y

contraction are possible, there exists only one that is the _ 2 dp .
leading order in expansion in terms of inverse powers of the _trf'aV°f§d'a —Ne (277)4”[' ¥5S'(P)iysS(p)],

number of colors, i.e., N;. The situation is demonstrated in

Fig. 1 by means of the finite range representation. d*p
The diagramga) and (b) m_Flg. 1 contal_nNC4 coming - cf (2m)°

from traces over color. The diagrafo) containsN.°> and is

trli ysSY(p)i ysSU(p) 1,

the leading order in N, expansion. Notice that) is the d“p

e>.<change Ferm fofc) and is onvered by N, as gompared _ Cf —4tr[i ysS(p)i vsS%(p)] |- (18)
with (c). Since the gap equation for the constituent quark (2m)

masses and the dispersion equations for the meson masses _ .

are derived up to the leading order of the laleexpansion Actually, there exist other diagrams that are of the same
[4], we should take only the contribution ¢f) for the con- ~ order in 1N; expansion as the diagram in Figcl They are
sistent treatment. shown in Fig. 2. They are of the same order as Fig) 1

Taking account of the four terms in E(L5), we obtain ~ because, while each four-point vertex is@fN. ) [4], it is
the following expression for the lowest order of the diagram-compensated by a factdd, coming from its neighboring

matical expansion: loop. We have to include all these diagrams for consistency

of the 1N, expansion. We will call their sung™ for they
2 are regarded as the ring diagrams to be resummed in the

(lowest)_ _ (—9) eabeelik defimny mean-field approximation.
(31)? Of course, the sum of these ring diagrams with the one-
loop diagram included can be interpreted as a propagation of
4 _ a certain meson. Note that the momentum of the propagating
X[j XN Sai(%) Y55a(X) 7] particle is zerok?=0. This is just the reflection of the fact

that y is the quantity of the zero frequency mode of the

X Ne* t Sp; (0) Jtr S 0) Tt Serr 0) 1T Syn(0) 1, Fourier transform of TQ(x)Q(0)), namely

(16)
— 4 —ik-x
where the full propagator in the Euclidean space is given as X_j d’xe (TRXIQ(0)) li=o- (19)
dép  prmt Now we calculatey("? following the Feynman rules of

Sij(x)= 5”] L_giPx, (17)  the NJL Lagrangian. We note that the diagrams in Fig. 2 are
(2m)* —p?—my2 obtained by replacing the one-loop polarization part in Fig.
1(c) with the ring diagrams. Correspondingly we can obtain

andm? denotes the constituent quark mass. x'"9 by replacing the curly bracketed part in E46) with

The object in the curly brackets in EG.6) corresponds to  the sum of the ring diagrams. We first perform the summa-
the one-loop part connecting the pointand 0 in Fig. 1c). tion over flavor indices. After that, it can be shown that the

This is basically the one-loop proper polarization insertion

IT5Y(K?) [4-7] with k?=0 although the trace over flavor is  ems _ 4 4 o) & 4 i) L) RO
not taken in this case. Especially in the caseaefi andd T @ 7 a 7 a
=, which is the condition for giving nonzero contribution to

x""es! due to thee-tensor in Eq.(16), the object can be FIG. 2. Other leading-order diagrams.
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expressions corresponding to each edge point of a diagram in
Fig. 2 are brought together into a matrix form and are ar- y=4N/K?
ranged to the linear combination ag and Ay matrices. In
other words, the 8- and O-channel vertices have been as-

|

— Ng(tr SY4(tr 35)2( 2 ! )

+
mitrS' mitrs

signed to each edge point of each ring diagram in Fig. 2.
Then following the Feynman rules, we can construct the ring
diagrams by linking 8-, O-channel polarizatiod$jg(k?

1 gg !
— trSY(trS—tr s

\/§ Igo

t
=0), HNEYK*=0)=TIgyk*=0), IIg5k*=0), and 8, L orsorsrs) o) | 1-ofik-1
0-channel vertice& ), K=K, K, in all possible * Jg”s (2trS+1rS) g0 2K| 1=21IK
ways. The result is
x itrs“(trSS—trs“)(Hgg)
1 H88 t \/§ l_[08
(9= 4AN*K 2} —=tr S(tr S~ tr " ( )
X c [\/5 ( ) g 1 Mg
+— trSY2 trSS+tr SY) . (23)
NG Moo

1 Mg\ | - ~a
+—— trSU(2 tr SS+tr SV 2K (1—211K)

\/E oo

Let us give one more comment. In general, a two-point
correlation function of gauge invariant operators may be de-
Hgg composed into the sum over multiparticle intermediate states

by inserting a complete set between two operators. It is
known that the dominant contributions of the leading order
in 1/N. expansion are those of one-particle intermediate
, (200 states. Moreover, Wittefl] and Venezian§2] have derived
their formula by assuming that, when the momentum of the
intermediate particle is zero, which is the case ygfthe
contribution of they, propagating state is the only leading

1
X{ — tr SY(tr SS—tr & (
[ﬁ ( :

1 Igo
+ —=trSY2trS+1trs)

V6

where
term in LN expansion. These statements are quite consistent
with our specific model calculation respecting lafgg ex-
Kg' K\ . [Hgg Mg pansior{althoughzg and mixing channels besideg propa-
ke ko] oo n (21)  gate in the intermediate states in our model due to the ex-
08 00 S plicit SU(3)y symmetry breakiny
are 2x2 matrices, and . NUMERICAL CALCULATION

Now that we have obtained the expression for the topo-
TIPS 2 — i 4 Qify— logical susceptibility, we proceed to numerical calculations.
[ =I(k*=0),  rS=urS(x=0). @) In Sec. Il A we set the parameters at zero temperature by
employingy. With the determined parameters, we calculate
For example, the first term in the first curly brackets of physical quantities. In Sec. Ill B we discuss the temperature
Eg. (20) produces contributions from the diagrams whosedependence of and the six-point coupling constakit
one edge point is an 8-channel vertex. And, again for ex-
ample, the second term in the second curly brackets of Eq. A. Parameter setting at zero temperature
(20) produces contributions from the diagrams the other edge
point of which is a 0-channel vertex. The 8-8 and 0-0 chan-
nel diagrams can be interpreted as the propagationgsof current quark masses me=my, mq
and 7, mesons, respectively. We see that in addition to the
ng and 7y propagations, there occur 8-0 and 0-8 mixing-
channel diagrams. four-point coupling constant G
Another comment is in order. If 8'=trS°, that is, the
SU(3), symmetry is exact, the 8-channel vertices in &)
var;ish. Isn thig case, 8- and mixing-ghannel polarizqtions As for my=my, we set them to ben,=my=5.5 MeV
I1gg, =TIz as well as 8- and mixing-channel vertices fo|lowing Ref. [5].
Kés', K=K all vanish, so that only the ring diagrams  To set the other four parameters, we use the following
constructed by those of the 0-channBls andK{}, con-  quantities as inputs:
tribute to y("™9, which are interpreted as the propagation of

The parameters to be set in the NJL model are

three-momentum cutoff A

six-point coupling constant K.

the puren, state. m,=138 MeV,
Finally, combining Eqs(16) and (20), we arrive at the
expression for the topological susceptibility, f,=93 MeV,
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TABLE |. Calculated physical quantities. Comparison of our From the above two ratios, we can say that as a WI"ml,p,
results with Hatsuda-Kunihiro and experimental data. In parentheandX are reproduced well simultaneously in the NJL model.
ses are the values used as inputs. The valuepfshown in the Now we consider parameter setting withused. The to-
square brackets is inferred by the Witten-Veneziano mass formu'%ological susceptibilityy might be a more suitable quantity

for parameter setting than,, for the following two reasons.

EE::ESS [asr]ld ours EXpe”mVear;La;/Sempmcal (i) Since ' decays into the asymptotigq state due to
lack of confinement in the NJL modet,, may be a less

m,* (MeV) 335 337 336 reliable quantity, whiley is free from such a shortcoming of
mg* (MeV) 527 523 540 the NJL model.

m, (MeV) 487 505 549 (i) The value ofy, (175 MeV)* is small enough com-
m, (MeV) (959 None[942] 958 pared with the cutoffA ~600 MeV. Thus the NJL model is
x4 (MeV) 166 (175 175 expected to describg well.

0 -21° -16.7° —20° The parameters obtained by usigg: (175 MeV)* are

m=135.7 MeV, A=631.4 MeV,

mx=495.7 MeV,
GA?=1.765, KA5=11.32.

x=(175+5 MeV)*. We note thak A® becomes larger than the case of usi
as an input, which implies that the binding f is loosened.
The fourth quantity we use here in placenof, =957.5 MeV  (The 't Hooft interaction loosens the binding of mesons, that
is, as mentioned in the Introduction, the topological suscepis, induces a repulsive force between quarks. This can be
tibility y. The numerical value of is taken from Ref[3],in  seen from the very fact thaj’ becomes massive due to the
which y is calculated in the quenched approximation. interaction) Physical quantities calculated with these param-

Initially, however, we will calculate with the parameters eters are shown in the second column of Table I. The solu-
determined by usingn, as input in order to check consis- tion for m,, in the mean-field approach does not exist, that
tency ofm,, andy in the NJL model. Parameter setting with is, »" is not bound any more. We see thmf, is improved

m, has been performed in Réb], and the results are slightly. Although %' no longer exists in the NJL model, we
could infer its mass by utilizing the Witten-Veneziano mass
m=135.7 MeV, A=631.4 MeV, formula(1); m,, =942 MeV is obtained.

We close this section by referring to the study due to
Takizawa, Nemoto, and OKd4], in which the parameters,
GA?=1.835, KA®=9.29, especially the six-point coupling constaft are determined
in a different approach. They examined the radiative decays

: - - 0
The physical quantities calculated from these parameters aff an 7 meson such ag—2y, »—yl"1", andp—m"yy,
summarized in the first column of Table I. We first check theand obtained rather strong six-point coupling constant,
Witten-Veneziano mass formuld) within the NJL model. namely, four times as large as that determined by usipg

The computed values of andm,, with those parameters of Although we cannot compare our parameters directly with
Ref.[5] are theirs due to different cutoff schemétheir scheme is the

four-momentum cutoff it is not probable that our result is
compatible with theirs. Still, we believe that our approach is

_ 4
xno=(166 MeV)*, rather straightforward to probe the(1), anomaly.

m, =487 MeV, B. Behavior of K at finite temperature

_ _ _ In this section we discuss the temperature dependence of
so that the ratio of the left-hand sideHS) to the right-hand K, comparing the NJL calculation gf with the lattice data.

side (RHS) in Eq. (1) turns out to be The lattice data for the topological susceptibilf§] are
shown in Fig. 3 with error bars. THE; in the figure denotes
2N;x the temperature of the chiral phase transition. Althoiligh
o 3 >-=0.81. (29 =260 MeV in the original Ref[3], we have rescaled it to
fo(m%,+m’, —2mj) 150 MeV. We should notice that the lattice data are com-

puted only up toT=1.4T.. Unfortunately, the lattice data

On the other hand, the ratio gfyy. t0 xiai, Which means — are apsent at high temperatures. At any rate, the data show
how much the conventional parameters determined mifh  hat y drops rapidly around’,.

reproduces the lattice data f is One comment should be noted. The fact thatrops near
T. does not always mean the effective restoration of the
XNIL_ g0 25y U(1)a symmetry afT . This can be seen by returning to the
XLat Witten-Veneziano mass formuld),
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FIG. 3. The lattice data are plotted with error bars. We have
fitted them with a Fermi functioithe dashed line The solid line
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FIG. 9. The kaon mass for Case A. FIG. 11. The pion decay constant for Case A.
2 . . . .
2Ngy=f2(m’ + mn/—Zmﬁ)- (1r)  the U(1)y, symmetry even in the chiral symmetric phase, in

principle, even though careful attention should be paid in
We realize that the pion decay constént which is associ- order to infer correct meanings.
ated with the spontaneous chiral symmetry breaking In this respect, the discussions of Schaffner-Bielit]
[SU(3), ®SU(3)r—SU(3),], has entered the formula. are obscure; the assumption is adopted ghahd the U(1)
Since f . would become zero along with the restoration of anomaly are equivalent to each other and that the dropping
the chiral symmetry,y is also expected to become zero of x atT.immediately means the effective restoration of the
aroundT.. In this sense, the lattice data which show theU(1), symmetry. This assumption is not considered as cor-
dropping of y at T, is what should be expected from the rect unless the dropping rate gfis much faster than that of
formula, and rather, we could consider that the data confirni,. To judge the validity for this prevailing assumption is
the validity of the Witten-Veneziano mass formula. Thus thewhat we pursue in the present work. In fact, as discussed
dropping of y in the lattice data should be attributed to the below, our result reveals that the assumption has no convinc-
restoration of the chiral symmetry, and does not always ining reliability, at least, within the framework of the NJL
dicate the effective restoration of the U{l3ymmetry. Itis  model.
worth noting that this behavior results from larlye expan- Now we consider the temperature dependencg of the
sion. In Ref.[15] it was pointed out tham-point correlation  NJL model. Among the four parametersi(,A,G,K), we
functions 1<<N;=3) cannot detect any effect of the U(l) might reasonably fixns and A at the values determined at
anomaly in the chiral symmetric phase. One might havezero temperature. In general, however, we should take ac-
thought that the dropping of nearT. would be regarded as count of temperature dependences of the coupling constants
x's insensitivity to the U(1) anomaly. However, that is not GA? and KA®. As for GA?, it would be hard or almost
the case becausgis not a U(1), singlet quantity. In fact, it hopeless to get information about the temperature depen-
contains contributions carrying the U(dxharge 2, 0, and dence even in some phenomenological sense. Here, we make
—2. Thusy is an appropriate quantity to observe the fate ofan assumption thaBA? does not depend on temperature.

700 T T T T 100 T T T T

600
o 80 I

N
500 gt
kY
\
,

60 [

— 400 -
> >
= 300 %
40t
200 |
20 +
100 | e
0 s s s s 0 . . . .
0 50 100 150 200 250 0 50 100 150 200 250
T [MeV] T[MeV]
FIG. 10. The kaon mass for Case B. FIG. 12. The pion decay constant for Case B.
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This might be partially justified by the fact that everGf\ 2 1000 ' ' ' '
is constant, the NJL model restores the chiral symmetry as ¢ M
consequence of its own dynamics. | T

We now pay attention to the behavior &fA°®, which
indicates the temperature dependence of the IJé@hpmaly. -
For the first case, we tre#tA°® as a constant parameter and _ 60f
fix it at the values at zero temperature. We will call this %
prescription Case A. The calculated temperature dependen
of x is shown in Fig. Jthe solid ling. We see thaj in the
NJL model drops nedf. as the dynamical consequence and
reproduces the lattice data up to T.4considerably well. 200
This result means that the U(J1 yymmetry is not restored at iz
least up to 1.%., and we conclude that the effective resto- , , , ,
ration of the U(1), symmetry does not coincide with the 0 50 100 150 200 250
chiral phase transition. T[MeV]

At high temperatures, of course, we cannot judge whether
or not the U(1) symmetry is restored, since we lack the
lattice data in those temperatures. If we believe that the in-
stanton density is suppressed exponentially at high temper&y employing x in place ofm,,, and have seen that the
tures as is expected by the Pisarski-Yaffe fa¢&r and the obtained parameters do not allow the bound state’ofAt
correlation of the topological charges, i.e:,is also sup- finite temperature, we have calculated the temperature de-
pressed exponentially, the fitted line for the lattice data withpendence ofy, and have found that the lattice data up to
a Fermi function in Fig. 3the dashed linecould be consid- 1.4T. are reproduced with a constant six-point coupling con-
ered as reasonable behavior. We notice here the deviations stiantK. This means that the U(})symmetry is not restored
the NJL calculation(the solid ling from the fitted line at up to 1.4, and we are led to the conclusion that within the
high temperatures. As Case B, weked ® have the tempera- present framework the effective restoration of the U(1)
ture dependence such that it reproduces the fitted line. of symmetry and the chiral phase transition do not necessarily
The calculated temperature dependenck af for this case  occur simultaneously, even though the rapid dropping of
is shown in Fig. 4. around the chiral transition, observed in the lattice simula-

We notice that there are two lumps aroufd It would  tion, seemingly suggests the simultaneous restoration. At
be senseless to take them seriously since we have ignored thigh temperatures we cannot state anything definitely be-
temperature dependence®A ? that should have been taken cause of the absence of the lattice data. We have shown,
into account in principle. Rather, we should note that thehowever, that ify is suppressed exponentially, the Ug1)
U(1), symmetry is restored at high temperatures as is exsymmetry is allowed to be restored at high temperatures.
pected from the starting assumption that the instanton den- The topological susceptibility is an interesting quantity
sity is suppressed at those temperatures; the consistencyliscause it is related to the massgf through the Witten-
maintained in the NJL model. Veneziano mass formula. At zero temperature, we have seen

We now calculate the constituent quark masses, the mehat the formula is satisfied numerically in the NJL model. At
son masses, and the pion decay constant in our Case A afidite temperature, by utilizing the formula, we have obtained
Case B. The results are shown in Figs. 5-12. The qualitativknowledge as to the temperature dependena®e,pf In the
features are almost the same as those of Case | by HatsublklL model, 7’ is far from a stable particle even if it exists.
and Kunihiro[5].

800

FIG. 13. Then' mass for Case A.

Finally, we give the temperature dependencemgf in 1000 , , , ,
Figs. 13 and 14 that could be obtained by utilizing the P
Witten-Veneziano mass formuld). The »" mass goes to
infinity at aroundT.=200 MeV in either Case A or B. This 800 1
is becausd . gets to zero at that temperature. We have re-
moved those infinities above the temperature at wHich 600 - mo T

vanishes because it is considered that our approximatios
2

scheme is broken down there.
400 |

IV. SUMMARY 200

Mz

We have derived the expression for the topological sus-
ceptibility y in the NJL model within the same approxima- 0

50 100 150 200 250

tion as for the constituent quark masses and the mesoi —
masses, namely in the leading order of laNjeexpansion.
At zero temperature, we have performed parameter settings FIG. 14. Then' mass for Case B.
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