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Relativistic N-body problem in a separable two-body basis
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We use Dirac’s constraint dynamics to obtain a Hamiltonian formulation of the relatiddtiedy problem
in a separable two-body basis in which the particles interact pairwise through scalar and vector interactions.
The resultaniN-body Hamiltonian is relativistically covariant. It can be easily separated in terms of the center
of mass and the relative motion of any two-body subsystem. It can also be separated into an unperturbed
Hamiltonian with a residual interaction. In a system of two-body composite particles, the solutions of the
unperturbed Hamiltonian are relativistic two-body internal states, each of which can be obtained by solving a
relativistic Schrdinger-like equation. The resultant two-body wave functions can be used as basis states to
evaluate reaction matrix elements in the gen&tdlody problem. We prove a relativistic version of the
post-prior equivalence which guarantees a unique evaluation of the reaction matrix element, independent of the
ways of separating the Hamiltonian into unperturbed and residual interactions. Since an arbitrary reaction
matrix element involves composite particles in motion, we show explicitly how such matrix elements can be
evaluated in terms of the wave functions of the composite particles and the relevant Lorentz transformations.
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[. INTRODUCTION ture of each of the constraint equations together with the
assumed covariant interactiofts,7]. The equations of con-
The theoretical description of the relativistid-body  straint dynamics are manifestly covariant while yielding
problem is an interesting but perplexing problem in nuclearsimple three-dimensional Schiinger-type equations, like
and particle physics. It involves the possibility of relativistic those of their nonrelativistic counterpaf&7]. (This particu-
bound states of composite particles on the one hand and thar feature will ultimately be of crucial importance in the
reaction matrix elements between these particles at high ewliscussions given in this papeiThese constraint equations
ergies on the other hand. The relativisiiebody problem is have passed numerous tests showing that they reproduce cor-
complicated by the fact that the relativistic bound state probfect QED perturbative results when solved nonperturbatively
lem is basically nonperturbative in nature and cannot bé7]. In addition, the Dirac forms of these equations automati-
solved by the conventional perturbative quantum fieldcally make it unnecessary to introduad hoccutoff param-
theory. One also needs to describe the reaction process reketers, which are needed in most other approapdie® regu-
tivistically by making use of the results from the bound larize singular potentials. The relativistic potentials appear-
states. ing in the constraint equations are related directly to the in-
Much progress has been made in the study of relativistiteractions of perturbative quantum field the¢8}. In non-
two-body bound state problerhis—17]. In the 1970s, several perturbative QCD as applied to meson spectroscopy, they
authors used Dirac’s constraint mecharfitto attack the may be introduced phenomenologicalll0] and can be re-
relativistic two-body problem at its classical rod®], suc- garded as an anticipation of potentials that may eventually
cessfully evading the so-called “no interaction theoref8T. emerge from lattice gauge theory.
The quantum version of the constraint approach was ex- In the present paper we will extend the constraint equa-
tended to pairs of spin one-half particles. The results weréions beyond the scope of the two-body problem and will, for
two-body quantum bound state equations that correct the dsimplicity, limit ourselves to the constraint description of
fects in the Breit equation, correct the defects in the laddespinless particles. We first summarize the constraint ap-
approximation to the Bethe-Salpeter equation, and contrgbroach for two spinless particles. For each particle, one as-
covariantly the relative time and energy variallé Those cribes a generalized mass shell constraint which includes the
bound state equations for fermions are the two-body Diraénteraction. The constraints must be consistent with each
equations of constraint dynamics, which we shall also calbther and this in turn restricts the dependence of the interac-
the constraint equatior$]. They possess a number of im- tions on the relative coordinates, eliminating both the relative
portant desirable features, some of which are unique. Fdime and energy variables in the c.m. system. The resultant
example, they remove the deficiencies of earlier approacheanjuations correspond to a Bethe-Salpeter equation whose
in which the spin dependence of the potentials is a patchkernel and Green’s functions are constrained by the require-
work of semirelativistic corrections determined by field ment of P-q=0, whereP and q are the total and relative
theory[6]. In contrast, the spin dependence in constraint dyinomenta of the two-body systel@]. In particular, from the
namics is determined naturally by the Dirac equation strucBethe-Salpeter equation with this constraint, one can derive
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[10,7] the “quasipotential equation” of Todorop], which  residual interaction. We can then use the relativistic two-
is a Schrdinger-like inhomogeneous integral equationbody bound states as basis states for the investigation of the
where the quasipotentid} is related to the scattering ampli- relativistic N-body problem. We can construct a proof of the
tude in perturbative quantum field theory. Other methods of post-prior” equivalence in relativistic dynamics, which
reducing the Bethe-Salpeter equation have also been suguarantees that the reaction matrix element is independent of
gested 12—16. The application of the harmonic oscillator in the different ways of partitioning the unperturbed Hamil-

a relativistically covariant formalism of the Poincageoup ~ tonian and the residual interaction from the-body

to hadronic bound states was also considerdd . Hamiltonian. , ,

At present, the relativistic treatment of thebody prob- This paper is organized as foII.ows. In Sec. Il we review
lem and the reaction of composite particles at high energie‘é’nportaﬂt_aSDeCtS of the constraint approach and Intr_oduce
have not advanced as much as in the relativistic treatment ¢f€ relativistic two-body Hamiltonian and bound state eigen-
two-body bound states. An investigation of the relativistic Valué equation. We show that the relativistic two-body solu-

N-body problem was previously carried out by Sazd]ii. tiqn. iq the c.m. rest system has the simplicjty of its nonrel-
In contrast, the nonrelativistis-body problem and the non- at|V|§t|c c_ounterparts. In Sec. llI we generallzg the two-body
relativistic description of the reaction of composite particlesHamiltonian to the case o particles. We discuss some
have been well developdd8—21. One has, for example, applications of the present formulation in Sec. IV. We show
the distorted-wave Born approximation method in nucleaoW to utilize the constituent two-body wave functions for
reactions[18] and the quark-interchange model in hadrontheN-body problem. Because of the analogy to their nonrel-
reactiond 19] for reactions between composite particles. Oneativistic counterparts, thesel states can be used_ as basis states
first solves for the wave functions and determines the interl® evaluate a general reaction matrix element in the general
action between the constituents using the energy levels di-Pody problem. We prove the relativistic version of the
bound states. Then one uses the same set of interactions apiSt-Prior equivalence for the reaction matrix elements. As
wave functions to calculate the reaction matrix elements fon illustration and a problem of practical interest, we con-

the reaction of composite particles. There is also the poter2ider in Sec. V the reaction of four particles in two compos-
tially different values of the post or prior forms of the reac- ite systems where the nonrelativistic treatment has already

tion matrix element, which distinguish whether the interac-2€en formulated by Barnes and Swanfb@l. In Sec. VI, we

tion occurs before the rearrangement or after the rearrang&Plicitly obtain the wave function in second-quantized form

ment of the constituents. The post-prior equality of the reacSC S to construct the qverlap |r_1tegral for the reaction matrix

tion matrix elements is attained when the interaction andg!ément. Such a reaction matrix element involves states of

wave functions that are used in the calculation of the overlaSOMPOSite particles in motion. Thus we show in Sec. VII

integral are the same as the interaction and the wave fun&Plicitly how to evaluate such elements in terms of the

tions obtained in the bound state analysis. wave functions of each composne partlcle_, and dev_elop the
The formalism we shall develop can be applied to man);elevant.Lorentz transformatlon laws required. Section VIII

processes of interest. For example, in high-energy heavy-ioRdmmarizes and points to future problems.

collisions, the investigation of the dynamics and the proper-

ties of the produced hadron matter involve the reaction cros. HAMILTONIAN FORMULATION OF THE TWO-BODY

sections and the reaction matrix elements between the pro- PROBLEM FROM CONSTRAINT DYNAMICS

duced hadrons at relativistic energies. Most of these cross

sections and reaction matrix elements cannot be measur%d

experimentally. A reliable theoretical relativistic model 0

which describes thé&-body problem of the constituents is

We can formulate the relativistic treatment of the two-
dy problem for spinless particl§®9,3( in a way that has
the simplicity of the ordinary nonrelativistic two-body

needed for their evaluation. Although the nonrelativistic re_Schrajmger equation and yet maintains re!at|V|st|c covarl-
action model of Barnes and Swanson has been used succe85§<€- Includlng spin an(_j genera_hzmg to different types of
fully to calculate hadron-hadron reaction cross sectiondteractions can be carried out in a more complete frame-
[19,22-28, it is necessary to generalize the nonrelativisticWork [31,4. . .

reaction model to study reactions between composite par- F_or each particle we assume a generalized mass shell con-
ticles at relativistic energies. It is also of interest to study thedtraint of the form

relativistic N-body problem in order to investigate an assem-

bly of composite particles and their clustering or molecular
states.

We shall take advantage of previous advances in the un¥here
derstanding of the relativistic two-body problem in our 5
present study of the relativistit-body problem. In this Hi=pi—mi— &, (2.2
work, we specialize ifN-body dynamics with just pairwise
interactions between particles. We shall write down theand®; and®, are two-body interactions dependent:an.
Hamiltonian formulation of the relativistidl-body problem One constructs the total Hamiltoniak from these con-
which allows an easy separation in terms of the center-ofstraints by
mass and the relative motion for any two-body system and a
simple separation of the unperturbed Hamiltonian and the H=NH1+AH, (2.3

Hi|p)=0 for i=1,2, (2.9
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(with \; as Lagrange multipliejsIn order that each of these

-P
constraints be conserved in time we must have P,= p|232 P—q, (2.1
Ho ) =1 8 gy =0 2.4
[Hi ) =i dr |4)=0. 24 where the first term on the right-hand side of the above two
equations is the projection of each momentum onto the total
As a consequence, we have momentum. The above definition of the relative momentum
guarantees the orthogonality of the total momentum and the
[Hi NHi+NaHell ) relative momentum,

={[Hi N IH1+ N[ M Hy ]
+[Hi N2JHa+ N[ Hi  Ho ]} ) =0. (2.5

Using Eq.(2.1), the above equation leads to the compatibiI-V_"hiCh _follows from taking the scalar produ_ct of ei_ther equa-
ity condition between the two constraints, tion with P. From Egs.(2.14) and (2.15 this relative mo-
mentum can be written in terms pf, andp, as

P-q=0, (2.19

[H1,Ho])=0. (2.9

Since the mass commutes with the operators, this implies

([T, @21+ [ @y, p3]+[®1, PD)|¥)=0. (2.7

P1— =P (2.17

The simplest way to satisfy the above equation is to take where
O, =b,=d(x,), (2.9 pi-P  P2+pi-p3
€= =
which is a kind of relativistic Newton'’s third law. Here, the JP? 2\P?
transverse coordinate is defined by
2 2 2
gk _ 2 PP P7+py—pi
Xy X12( 77;/.1/ P/.LPV/P ): (29) Er= \/? = zﬁ (21&
whereP is the total momentum
B are the projections of the momenga and p, along the di-
P=p1+p2. (2.10 rection of the total momenturi. Using Eqgs.(2.1) and(2.9)

The choice of the two-body potentié2.8) leads to and taking the difference of the two constraints, we obtain

[Hy, Hollh)=2P- 0, @(x,)|[$)=0, (2.1 (PT=PD)| )= (mi—m))|¢). (2.19

and the compatibility conditiofi2.6) is satisfied. Thus on these statég) we have
The two-body Hamiltoniart determines the dynamics of

the two-body system. Its equation of motion is

P2+ m2—m3
H|py=0. (2.12 EPN-7
This equation describes both the center-of-mass motion
and the internal relative motion. To characterize the center- P2+ ms—m?
of-mass motion, we note that since the poterdiatiepends €27 20p2 (2.20
only on the difference of the two coordinates we have
[P, H]|y)=0. (2.13 Using Egs.(2.14), (2.15, and Eq.(2.16), we can writeH in
terms of P andq:
(This does not require thaP,\;]=0 since theH;|#)=0.)
Thus,P is a constant of motion and we can tdk to be an H| ) =I\q[£2—m2+ g2 — D (x,)]
eigenstate state characterized by a total momerRum v
To separate out the internal relative motion from the + N [e5—ma+q2—d(x,)]}H W)
center-of-mass motion, we introduce the relative momentum oo 2 5
q defined by = (N1 + ) [0%(P%mI,m3) +9°—®(x,)][) =0,
.
= P+q, (2.19
P1 p2 a where
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b2(P2,m2,m3)=gf—mj tion. We go to the center-of-momentum system where
_—_ =q, =(0,9) and x, =(0y) (relative energy and time thus
=&z m; being removed from the problemwWe then have the equa-
1 tion for the relative motion,
= pzl P 2PA(Mi+ mg)+ (mi—m3)?]. @ o b .,
2 —zﬂ—ﬂhﬁ)—, (2.28

(2.22

Equation(2.21) contains both the center-of-mass momen-
tum P [through theb?(P?,m?,m3)] and the relative momen- mem
tum g. This constraint equation & andq can then be solved w= Lz (2.29
by the method of the separation of variables. That is, we my+m;
introduce the bound state eigenvaMédo separate Eq2.21)
into the following two equations for the center-of-mass mo-
tion and the internal motion:

where u is the nonrelativistic reduced mass,

We can cast Eq(2.28 into the usual form of a nonrelativ-
istic Schralinger equation. By renaming/2u asV,, and
b2/2u asE, Eq.(2.24 becomes

{P2=M?}{y)=0, (223 o
and m‘FVlz |4)=El). (2.30
(N A){g2— P (x,)+b%(M2,m3,m3)}|4)=0, The above Schiinger equation can be solved to give the

(2.24  eigenvalueE. Then, from the equatiorb?(M2,m2,m3)

. . . =2uE, one can solve foM in terms ofE and obtain
where we have used the first equation on the eigentate H

so thatb?(P? mf,m3) becomes the standard triangle func- M = V2R E+ m2+ \2uE + m2. (2.31)

tion indicative of the presence of exact relativistic two-body

kinematics: It is easy to show from this that in the limit of very weak
binding, the nonrelativistic limit, we have the familiar result

1
bz(Mz,mi,m§)=W{M4—2Mz(mi+m§)+(m§—m%)z}- M=m,+m,+E. (2.32

(2.29 If one is only interested in the effect of exact two-body
relativistic kinematics withv,, an energy-independent non-
gelativistic potential, the bound state eigenvaMefor the
relativistic two-body problem is related to the eigenvakie
of the nonrelativistic problem by E¢2.31). It is important to
ote, however, that the potentidl, in relativistic constraint

The eigenvalue equation, E(R.24), for the relative motion
is independent of the Lagrange multipliers. It is nonetheles
convenient to choosk, = 1/(2m;) so that the resultant Schro
dinger equation matches the nonrelativistic two-body Schro

dinger equation term by term. Such a choice also helps ug S S . X
ynamics includes relativistic dynamical corrections as well.

obtain useful simplifications in the relativisti¢-body prob- These corrections include dependencies of the potential on

lem in later sections. In particular, tié-body Hamiltonian the c.m. ener and on the nature of the interaction. For
can be easily separated into pairs of two-body Hamiltonians. ~ * .ng : . "
inless particles interacting by way of a world scalar inter-

This separation makes it easy to introduce the unperturbe‘?)p . :
Hamiltonian and residual interactions. action$, one finds{30,32

We note that because of the orthogonalityPo@ind g, we ® 2myS+S?
can write Eq.(2.24) in the form Vip=5—=—75—"— (2.33
2u 2u
LJFL 2_p +b2(M?2. m2. m? =0 where
2m1 2m2 {qL (XL) ( !ml’m2)}|dl>_ ’
(2.26 mym,
Myw=—37 (2.39

whereq, =q—q-PP/P2=q. [Note that if the relative mo-
mentum were defined in terms of E@.20 instead of Eq.

(2.18 then we would have while for (timelike) vector interactiord, one findg9,30,39

_ O 2eyA-A?
q-Ply)=0 (2.27) Vip=5 = —o—, (2.39
© M
but notq-P=0 so thatq?/#)=q?|#). In either case the
coefficientse; are invariant and hence E(R.17) the same where
form regardless of which frame it is evaluated]in. s 2
We show below how the eigenvaliM is related to the ~ Mf—mi—m; 53

eigenvalue obtained in a nonrelativistic Satirger equa- EM= 2M (239
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and for combined spacelike and timelike vector interactiginat reproduce the correct energy spectrum for scalar (22D

®  2eyA—AZ+V2In(1-2A/M)Y2+ [V In(1-2A/M)H2]2

VlZZﬂ = 20 (2.37

The variablesm,, and &), (which both approachu in the  Sazdjian in that we choose to formulate tkidody problem
nonrelativistic limiy were introduced by Todoropd] in his  in a separable two-body basis.

quasipotential approach and are called the relativistic re- We consider a system &f particles. For each particle, we
duced mass and energy of the fictitious particle of relativespecify a generalized mass shell constraint of the form
motion. In the nonrelativistic limit,® approaches 2(S ]

+A). In the relativistic case, the dynamical corrections to Hilyy=0 for i=1,.N CAY
V,, referred to above include both quadratic additionsSto

and A as well as c.m. energy dependence throuogj and where

ey - This latter point implies that the effective potentig), N

depends on the eigenval&gor M) to be evaluated. One can H,=pZ—m’— E D —W,. (3.2
obtain the mass of the bound stafeby an iterative proce- LI

dure. One starts with an estimatdtl (or E) value and ob-
tains the potentiaV/;,. Equations2.30 and(2.31) can then
be used iteratively to obtain successively improved values
V1, and the eigenvalu# (or E).

The @;; are two-body interactions dependentxop, andW,
Jare possibleN-body forces N>2). We construct the total
Hamiltonian for the system as

We note in passing that since N
H=2 \H;, (33
b2=eZ,—m3, (2.39 T
we can write the Sclitinger-like equation for combined Wheres are the Lagrange multipliers. For each constraint
scalar andtimelike) vector interactions ag30] to be conserved in time, we must have
2 2__ _ 2 — . d
[P+ (my+ 92 (en— A #=0, (239 o ,H]|¢>:.(d_THi)|¢>:o. 3.4

which is suggestive of a Klein-Gordon equation for an effec-

tive particle of relative motion. This bound state equationFrom Eq.(3.3) and Eq.(3.1), we must have the compatibility

incorporates not only the correct relativistic kinematics butcondition

also the correct relativistic dynamical corrections through or-

der 1£2 and higher, depending on the input. It does it with- (7 H11)=0. 39

out the necessity o.f int_roducin.g complicated mo_m_entumNOW we attempt to expand out the above equation. For a

dgpendent Darwin-like interactions, thereby retaining th&ixed pair ofi andj, we have

simplicity of the nonrelativistic Schdinger equation. Fur-

thermore, the potentials in these equations are connected to

those of Wheeler-Feynman electrodynamiasd its scalar ( -

counterpait[33,34]. They have been obtained systematically

from perturbative quantum field theofy,8,10 and from an

eikonal summation of Feynman diagrah3$). +
In summary, Eqs(2.28), (2.30, and(2.31) provide a use-

ful way to obtain the solution of the relativistic two-body

problem for spinless particles in scalar and vector interaq— —[pf,Wj]—[Wi ’pjz]) |)=0. (3.6

tions. In other works they have been extended to include spin

and have been found to give an excellent account of the )

bound state spectrum of both light and heavy mesons usin%ouvated by the form of our two-body solution, we assume

reasonable input quark potenti&lk0,34. that

N
2_ q’nijz}
K,k#i
N N

Z, Dy +W, 2 D +W,
I 1#i k,k#j

N
pizv 2 Dk
K, K# ]

Djj=Dji =Dij (X)) 3.7
11l. HAMILTONIAN FORMULATION OF THE N-BODY
PROBLEM FROM CONSTRAINT DYNAMICS: in which
SEPARABLE TWO-BODY BASIS
(Xij1) = XEL 7,0,— (Pij) u(Pij), /PF T, (3.9

The above treatment of the two-body problem can, to
some extent, be generalized to the case ofNHeody prob-  and Pj=p;+p;. This implies that theN-body forces must
lem [11]. Our approach differs and extends the work ofbe present and satisfy
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N N Even without the many-body forca¥, , this equation is very
E Dy +W, 2 D+ W, [piz,W,-]—[Wi ,pjz] | ) difficult to solve because the potentials; depend on the
i momentaP;; = p;+ p; (throughx;;, ) which are not constants
—=0. (3.9  of motion for theN-body system; forces from outside of the
ij system produce time-dependéhf. On the other hand, if

These are very complicated equations, and, unlike the tw one uses the two-body Hamiltonians to generate basis states,
y P q %hen for those states and Hamiltonians, one can regard the

E)lold éqcaés; dé?]?lre tr?er:e I}grck:sovg?e i}gsee?]gg:]rp%?] fﬁéu::zg?’ as constants of motion. That is, the Hamiltonian can be
y P separated in terms of two-body Hamiltonians plus residual
body forces themselvd87]. In practice, one often ignores

these many-body forces and considers only pair-wise mterrp}teractg?ns regarded as perturbations. This greatly simplifies
actions, as we will do in our subsequent computations OF € problem.
reaction matrix elements in Sec. VII. That is, under the ap-
proximation in which we seW;=0, we can view the par-
ticles as interacting with each other via two-body interac- The quadratic form of the momentum operatprsn the
tions in a pairwise manner. However, in most of our formalN-body Hamiltonian(3.11) makes it easy to manipulate the
analysis in this paper, we will retain these many-bodymomentum terms to obtain the center-of-mass momentum
interactions. and other relative momenta. The potential term in the equa-
The conservation of the constraints in time depends onlyion appears in a way similar to that in which it appears in
upon the compatibility of these constraints and does not dethe nonrelativistic case.
pend on the choice of the Lagrange multipliers. This arbi- The relativisticN-body equation can be compared to the
trariness in the choice of the is similar to a kind of gauge nonrelativistic N-body equation. Introducings;=p°—m;,
invariance. Choosing a particular set xf is analogous to e have
choosing a gauge and can be done for convenience. In the

IV. SOME APPLICATIONS

general N-body formalism we will find it convenient to 2 piz—eiz
choosel;=1/(2m;). Such a choice has many advantages. 2m,(p' mp) =€~ 2m, (4.3)
First it leads to a simple correspondence with the nonrelativ-

istic two-body andN-body Hamiltonians. Secondly this Equation(3.11) becomes

choice depends only on the particle in question and not what N 02— N N

other particle it is linked with. In the generstbody formal- _ _

ism we will find it convenient not to have a preferred pairing HI)=) Eng .Zl 2mI ;1 ,E>. Vi~ 2 2mI |¥)=0.

of two-body composite subsystems. The choiceg (4.2
=1/(2m;) avoids this. Finally, this allows theN-body L , L
Hamiltonian to be conveniently separated into a nonpertur’VNere Eng=2€ . This is identical to the nonrelativistic
bative part and the residual interactions part. Such a corrdy-body Hamiltonian with eigenvalugyz when|e|;<m; and
spondence helps one generalize the post-prior equivalence B¢ Wi are neglected.

reaction matrix elements from the nonrelativistic case to the N the next example, we can examine a system of an even
relativistic case. number ofN particles formingN/2 composite particles, as in

With this choice, the relativistitd-body Hamiltonian is @ System oN/2 mesons. For such a system, one can consider
an initial state of the form

N NN o, W, D=1 1), (2,]2), - (in] , 4.3
H:E —,(p-z—miz)—Z E>2_ Wi [ha) =1 (i1J1).(i2.j2) (inzinR) 1) 4.3

2m; in which particlesi, and j, form a composite two-body

subsystemi(,j,). Subsequent dynamics of the system is de-
W, termined by the evolution operator containiftg and the
2m,’ reaction matrix elementy}| H|.) where

V=3

(3.10 [y =D, G500) - (il (4.4

where u;;=mm;/(m;+m;), and we have introduced the For the evaluation of the eleme{w;|7|i/,) of the Hamil-
simplified notationV;; =®;;/2u;; . [Note that in light of the tonian matrix, theN-body Hamiltonian can be separated into
above forms of Eqs(2.33 and (2.36 for ®;, the choice an unperturbed Hamiltoniaf, and a residual interaction
\ij=1/(2m;) gives the correct nonrelativistic limit fov;; .] Vi,
The dynamics of the relativistitN-body system is deter-
minedyby the search for the stdig) suc);] tr):at H=Ho*Vy, (4.5
where the unperturbed Hamiltoniéty, is

|y)=0. Ho="H;  +Hi; + - +H,

i1 (PIP; in2ing?

N 1 N N
)= 2 5o (PT=md) = 2 2, Vi 2 (4.6

ES e 2m|
(3.11) with
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1, 1 5, tonian will allow one to construct the evolution operator and
Hij =5 (PF—mi) + 5 —(pj—mj) = Vij, (4.7)  to follow the dynamics of the system.
i i
andV,, the “prior” form of the residual interaction, is V. SCATTERING OF TWO COMPOSITE PARTICLES

N N W As another explicit example, we apply our formalism to a
Vi=—, _Z_' Vij_E ! (4.8  problem of practical interest. Consider four particles with
i=1 LI~ To2m; massesn; and momentunp; wherei=1,2,3,4. We have the
total Hamiltonian

where the summatioR[_,=},_;" is carried out with the set

{ij} different from those of the composite particlgsgj,}, 1 ‘2 W;
{iziah, {isish. .., and{insginat: H:Zl 2_mi(pi2_mi2)_izl j%i V‘i_izl 2_n;I 6.1

[P o Using the method of the first section, we can solve for the
452y #dadizdah - izt bound states of madd; for the motion of particles and]
(4.9 interacting with the interactiol’;; ,

i=21 lzil :i

N N N

Then, since 1 1
o o Hijl ij) = Z_mi(piz_mi2)+2_n,]j(pjz_mj2)_vijh'7[’ij>:0'
Hol{(i11),(i2,]2), - - -(inein2})=0,  (4.10 (5.2)
the transition matrix elementy,|H|¢,) becomes We can consider the reaction of two composite particles
A(12) andB(34) where particles 1 and 3 are particles and
(Yol Hl ) =Wl Vil ha)- (4.1)  particles 2 and 4 are antiparticles as in meson-meson scatter-

) ) _ _ _ing, interacting through a pairwise interactivf) . We study
The separation of{ into H, andV, is not unique, and it  the relativistic quark-interchange reaction

is important to show that the reaction matrix element of the

residual interaction is independent of the different ways of A(12)+B(34)—C(14)+D(32), (5.3
separating out the unperturbed Hamiltonian and the residual o o _ .
interaction. We can alternatively choose the unperturbe@s & generalization of the nonrelativistic case investigated by

Hamiltonian to be associated with the stagg)=|{(i1j;),  Barmes and Swansdi9]. For this reaction with a momen-

(i5:75), - - (i fu)}) such that tum transfer

PIfratsry (it it Y =(A—C)%= 2+ 2 + . .
Holl1D.(05.05). (R} =0, (412 I=(AZCP=matme = 2A0Co* 2A-C, - (34

associating with the “post” form of the residual interaction
Vi,

the differential cross section in the first-Born approximation
is given by[19]

do 1 #?

H=H,+V|. (4.13 - 12
o dt 647TS|pZ|2|Mf'|’

(5.9

The quantities{ ; andV, are defined in a way similar to that .
given in Eqgs.(4.6—(4.9). The reaction matrix element be- where My, is

tween the basis states is
Mii=(2m)3\2ES2ES2ES2ES hy;, (5.6

PalVi| ) =Wl Ho+ Vi | ¢ . : .
(el Vil ha) =l Hot Vil ) and h;; is the reaction matrix element from the initial state

=( il H|pa) A(12)B(34) to the final stateC(14)D(32) initiated by the
S residual interactiorV, . In the above equation, a kinematic

=(YalHotVila) variable with the superscript refers to that variable evalu-

SOAVATAY (4.14 ated in the center of mass of the colliding mes¢rdlider

system. From the above resulty;; has the dimension of
which indicates that the reaction matrix element is the samé/(massj. _ _ _ N
for the “prior” form or the “post” form of the residual To obtain the reaction matrix elememt in our relativis-

interactions. It is independent of the way in which we spliti¢ formulation, we need to split the total Hamiltonian into
up the total Hamiltonian. This “post-prior” equivalence the nonperturbative paftl, and the residual interactiow, .

guarantees the unigqueness of the reaction matrix element afJ@iS can be carried out in two different ways. In the “prior”

insures the usefulness of the perturbation expansion. form, it is split as

Using this method of separating the total Hamiltonian, the 4
matrix element ofH{ between any two basis states can be H=HrotHar—N12=N1g=Voarm Vo= > —— (5
evaluated. The construction of the matrix of the total Hamil- T Z’l 2m;’ ®-9

044907-7
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FIG. 1. “Prior” diagrams for the reaction AB — C+D.

where the unperturbed Hamiltonian is

Ho(prior) =Hio+ Haq, (5.9
and the residual interaction is
4
Vi(prior) = —Vi3= V14— Vaz—Vps— 2 Zﬂ (5.9
The reaction matrix element is
2784 (Pp+ Pg— Pc—Pp)hyi(prior)
4
= = (Y1at2q Viz+ Vist Vozt+ Vot 2 W | P12¥r3a)-
(5.10

In graphic form, if we represent the interactigy) by a curly

line, the first four terms in the above matrix element are

PHYSICAL REVIEW (53 044907

P Save
T

|

1
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T2

FIG. 2. “Post” diagrams for the reaction AB — C+D.

In graphic form, the first four terms in the above matrix
element are represented by the four diagrams in Fig. 2. The
interaction takes place after the rearrangement of the con-
stituents.

Therefore, if we start with the prior expression for the
matrix element, we havel,,y1,=0 andHzup3,=0, and we
have(canceling out theN>2-body potentials

(14023 V13t Vgt Vogt+ Vog h1o1h34)
=(Y1a4thod — Hio— Haat Vgt Viat Vogt+ Vod 1oth3s)

=(Y14th2d — H1a— Hag+ Vot Vgt Vaot Vad hiothzs),
(5.15

where we have used E¢b.1) to write out the Hamiltonian
for the two-body system. Becauseé{,,i,)=0 and
Hog 03 =0, we have then

represented by the four diagrams in Fig. 1. The interaction

takes place before the rearrangement of the constituents.
On the other hand, if we use the “post” form of splitting

the total Hamiltonian, we have

4

W,
H=Hig+Hzo— V13— V12— Vaz— Vo~ 2 o
=1 i
(5.11)
The unperturbed Hamiltonian is
Ho(posh =His+Hzo, (5.12
and the residual interaction is
4w,
V (posh=—V;3—V1,— V3= Vo™ 2 2m (5.13
The reaction matrix element is
2w Pp+Pg—Pc—Pp)hyi(posh
4
— (1423 V1ot Vigt Vot Vgt 2 | 1234 -
(5.19

(V14023 Vst Viat Vost Vol thiothan

= (Y1423 V1ot Via+ Vot Vg i3,
(5.19

which leads to the relativistic generalization of the post-prior
equivalence of the reaction matrix elemént,

hs;(prior) = h¢;(pos). (5.17)

Just as in nonrelativistic reaction thedB8], the equivalence

is possible only when one uses the same internal relative
wave function for the composite particles in their scattering
process as in the bound state problem for the individual com-
posite particles. The equivalence allows a unique determina-
tion of the reaction cross section in the first-Born approxi-
mation.

VI. SECOND QUANTIZATION OF PARTICLES
IN'A BOUND STATE

A practical problem arises when one attempts to evaluate
the reaction matrix elemerity,|V,| ),

044907-8
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N N so that neither particle is on mass shell. The definit@s3)
(Vi) =((i1j1),(i2)2), - - .| — > _Z_' Vi also introduces a momentum space wave functip; ,p,)
=1 1= defined so that it has positive constituent energies. We em-
W phasize that the momentum eigenstamp,) in this expan-
T2 2—m|(|1jl),(|212),...>, (6.1)  sion are off shell. That is
o . (pf—m)|p1p2) #0. (6.6
where {(i1j1),(i2j,), ...} represents composite two-body
subsystems. For a pairwise interactip in the above equa- Our first step is to show that the above bound state com-
tion, we have posite is a sharp state being zero unleés- M? whereM is

the meson bound state mass. By using the total and relative
(alVijloy={((ia"),(iB)IV;jl(ia),(jB)), (6.2  momentum operators and E2.20 [so that Eq.(2.27) is
satisfied and noP- q=0], the product of the two delta func-
where {a’ B’} is a permutation of{@B}. The composite tions can be written as
wave functionsy,;, are usually computed in the c.m. of the ) ) ) 5
(i) composite particle systeffthe q;q, system in our ex- A(p1=my = P(x,)) 85— M5 =~ (X.))
ample of a system of mesonsélowever, this is not the same £2pP2 26,P-q
as the so-called collider framfthe c.m. frame of the - 5( ! +g2—mi—d(x, )+ = )
(ia)-(jB) meson-meson systdneither in the bra or ket
states. For nonrelativistic reactions, the relative wave func-
tion of a composite system in the collider frame is obtained
from the wave function for the composite particle at rest by a
Galilean boost, and they are related by a simple momentum
shift. In the relativistic case, a Lorentz boost is needed in
place of a Galilean boost. We need, therefore, to discuss the =
Lorentz transformation of the state of the composite system.
We represent the state of the composite two-body system
with a four-momentunP by X o

M2

(P?—M?)
(mf—m%)TnLZP-q

(P2—M?)
(mi—m%)TwP-q). (6.7)

<P°|(12)P)=4slazf d*p1d*p,8*(p1+p2—P)O(PD O(p3)  whereH =g~ ®(x,)+b? We assume that the momentum
space wave functiogk(p,,p,) is an eigenfunction o, so
X 5(I0§—mi—¢’(xﬂ)5(p§—m§—q’(xﬁ) that Hqi(p1,p2) =0. Thus, on such states the above equa-
tion becomes
X ¢(p1,P2)|P1P2), (6.3
S(pi—mi—D(x,))3(p5—m5—D(x,))
where we use the same symbpl and p, to denote M2
c-numbers and operators, using the context to distinguish _ 2_ 12 .
between them. The factor ofe4e, is included so that we 2g1e; S(PT=M%(P-q). ©3
obtain the usual results in the nonrelativistic limit. The delta_ o ] .
function containing the composite particle enef@y arises ~ 1Nis shows, as anticipated, that the state defined in(&8.
from the projection of the energy eigenstate st@® onto 1S sharp and would satisfy Ed2.23 in addition to Eq.
the state vectof(12)p) whereP={E,P} andE= P>+ M? (2.24. )
[see also Eq(6.22 below]. Hence, we use the notation We allow the delta function argumgr_ns to operate on_t.he
(PY(12)ep) to denote the projection of the state vector Momentum states, and use the positive energy condition.

|(12)) onto the energy eigenstate staR,). The above hen from Eq(2.17) we have
state is constructed in analogy to the two free-particle states 0(p?) 6(p3) d(pi—mz —d(x, ) d(p5—m5—d(x, ))

0 _ 4 44 _ M?2 E
(P°[(12)p) 481*‘1‘2[ d*p,d*p,8*(p1+p2—P) :g(pg)g(pg)—zg( pg_ M&‘l_P’Q)
48182E
X 6 (p}) 6(p3) 8(pi—mi) .
0— — .
X S(pZ—m2)Y(p1.po)paps). (6.4 Xo\ e jyeatP q)' ©9
However, unlike the free-particle state, the st satis- whereE= P2+ M?Z2. We would like to express this in terms
fies the simultaneous constraint conditions of Eql) of a Lorentz transformation from the c.m. systéim which
the meson has a mahbé).
Hi|(12)p>=[pi2— miz—(l)(xi)]|(12)p>=0 for i=1,2, When the composite particle is boosted/byo a momen-

(6.5 tum P, the meson’s velocity is

044907-9



CHEUK-YIN WONG AND HORACE W. CRATER PHYSICAL REVIEW (53 044907

P M?2
V:E' (6.10 <Po|(12)EP>:EJ d*p,d*p,8*(P—p;—p2)
Thus withU=V=P/|P|, the components of are X 8(pY—(Ap}))3(p3—(Ap3)°)
E p.p ><:l;[/(p11p2)|p11p2>' (6-1&
i ~ iPx
A= S+ (Y= Duju= 5ik+(m_1>?, Now the p$ and p3 part of thed*p, andd*p, can be inte-
grated out and the result is
i o_n 2 P 0 M2 0_~0_p0
Ao=A7=uiN(y —1):Mv (P |(12)EP>:E5(P —Pp1—p2) | dpidp;
. E X 8%(P—py—P2) $(P3P1,PP2) [PIP1,P2P2).,

wherep?=(Ap*)° and pf+p9=E. In the c.m. systemp?

i * * _
We use the notatiorpy =(e,,p7) to represent the four +pg=M and the state vector is

momenta of theth constituent in the composite particle rest
frame, and p;=pja=(&;r,Pix) to represent the four-
momentum of theéth constituent in the frame boosted from

pi by A. Then we have

N Ee; P-pf
pI=pl=(APT) = P!+ U-pf =+ ——=six.
(i=1,2 (6.12
and
P . (E _\PPpf
Pi=pia=yreitPit iy T (1712,
(6.13
Becausep] +p5 =0 we have therefore
pd+pd=P?+M2=E, (6.14
P
pl+p2:M(81+82):P- (6.19
Furthermore, using Eq2.17) we have
Pg=o Pog* = Popi = — = Pop} 6.1
VI E VI S R VL (6.16

Hence, Eq(6.9) can be rewritten as

0(p?) 8(p3) 8(p3—mZ—D(x,))S(p3—m3—D(x,))
M2
= 0(p?) 0(p3)———5 8P~ (ApT)°)S(pS— (Ap3)?).
48182E

(6.17

We have therefore

<P°|<12>Mo>:5(Po—M>f dpt dp3 8%(pt +p3)

X Y(e1PT ,£2P3)|€1P] €2P3 ).

(6.20
We introduce the notatiofM (P)) defined as
IM(P)>=f dpydp,6°(P—p1—Ppy)

X (PIP1.P2P2)IPIP1.PoP2),  (6.2D)

so that, since in a general frampd+ p9= P>+ M?=E,

2

M
(PY|(12)ep) = Eé’(Po— VPP MHM(P)). (6.22

The projection of the state vectd(12)gp) onto the time
component of the center of maa9] is then

= M?
(1112060~ [ (1PO)AP(PO(121p) = = M (P).

(6.23

From the above results, the energies of the constituents in
a composite particle take on fixed valugs’{=¢,) in the
center-of-mass system, while their off-shell componght
takes on continuous variations with a distribution. On the
other hand, when boosted by the Lorentz transformation
the energy of theth constituent is given bpioz(A pF)%in
a moving composite particle, but their supf,+ pg, remains
a constant. Even though the timelike components of the con-
stituents have these well-defined values which depend on the
frame of reference, they are often not written out explicitly,
for brevity of notation.

For a proper constraint treatment of spin, we should par-
allel the treatment in the above sections except using Dirac
operators instead of Klein-Gordon operators. Alternatively,
we can adapt the above spinless results to the case of spin by
using the fact that we can reduce, for two particles, the two-
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body Dirac equations to Schiimger-like forms above but same two-body system, the spacelike géri3 of the Lor-
with @ depending on spin degrees of freedph0,34. In a  entz transformation on two different momergtar the same
future paper we shall include the spin dependent features iquark, that isg,=¢1) yields

more detail.
In order to deal with multiparticle configurations, we in- , E PP- R
troduce creation and annihilation operators of the constitu- Pia=P1a=| 1+ —1 02 (p1—p1 ). (6.30
ents in a composite particle in its c.m. frame
Using the fact thaB®(Ar) = 53(r)/defA|, we find that
Ip1.p3)=b"(p1)d"(p3)|0). (6.24
M ,
(We suppress spin, flavor, and color indices here and in the 3(P1a—P1A) = E5(pf -p1) (6.31

wave functions below.We assume the general expression

, so that Eq.(6.29 implies
{b"(p1*),b(pT)}=N(pT)8(p1* —p),

M
{d"(pg*).d(p%)}=N(p3)d(ps* —p%), (6.2 N(PD)=C(P1A)C* (PLNPI) E - (6:32
and thus We choose the normalizatidw= 1. Using phase convention
with real C, the simplest choice is
(P1* P2 [P ,P3)=N(pT)&(py* —pTIN(P3) (pz* —p3). =
6.29 c= \/% (6.33

In the case in which free isolated particles are created and

annihilated, one traditionally takes eithéd(p*)=1 or  This C is associated with the motion of the composite par-
N(p*)=2p*2+m?. We emphasize, however, that the ticle. Thus we have

above momentum in the creation and annihilation operators E

are not on mass shell but on energy shell. In the context of U(A)bT(pHU~L(A)= \/%bT(plA) (6.34

the constraint approach, the individual creation and annihila-

tion operators do not produce free-particle states, but rathea[ d

constituent states within a composite associated with a defl-

nite total mass and total momentum. Since the aim of this E

paper is a description of the relativistiebody problem in a U(A)dT(pz)U’l(A)z MdT(pzA). (6.35
separable two-body basis, this is plausible. To achieve this,

we must determine how the creation and annihilation opera¢as anticipated above, this contrasts with the on mass shell
tors will transform under a Lorentz transformation. Let factor given in standard texfsee[40], Eq. (4.2.12] which

U(A) be our unitary boost operator defined so that refer only to the constituent momentahus we have
U(A)bT(p7)U™H(A)=C(p1a)b"(p1a) (627 IM(P))=U(A)[M(0))
and - [ oot puor o8)

U(A)d"(p3)U™H(A)=C(poa)dT(p2r), (6.2

E
X 8(p¥ +p%)—bT(pr4)dT(psa)|0).
wherep;, is the three-vector part oA p; . In the case in PRIy thu P21)10)
which free isolated particles are produced, the above two (6.36

conventions lead respectively to eit@¢p) = (A p)®/p° or ) )
C(p)=1. In order to see what these factors become now Ve émphasize that the transformation equatidtc (6.34

the constraint approach, we consider and Eq.(6.39] are valid for arbitraryp; or p,, not just ones
that satisfy the rest condition pf, +p,=0. This implies that
U(A){bT(pi*),b(p’l‘)}U‘l(A) the cref_:ltiqn_and annihilatio_n operators th_at go into m_aking
up the individual two-body interactions will transform in a
=N(py)d(py* —p71) similar way.[See Eq/(7.10 below]
_ . , Next we change variables so that the delta function re-
=C(p14)C* (P1A)N(P14) 8(P1A —P14)- flects the new total momentuf The inverse of the above

(6.29 Lorentz transformation gives far=1,2

To make use of this equation, we need to express the boosted . Pe;
momenta in terms of the unboosted momenta. The Lorentz Pi=- fJ“piA”L
transformation matrix\, defined in Eq.6.11), is indepen-

dent of the momentum of the system being boosted. For theshich in turn gives

M PP- i\
E—l) = (6.37
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g P-pis with the wave function having the same dimensions as in the
(Api*)oz?ﬁL £ (6.3 nonrelativistic case.
Given these preliminaries, we consider how to use this
Note that withp;, +p,, =P we have formulation in the calculation of meson-meson scattering

amplitudes. In this problem one starts with a state
. |(12)(34) consisting of two quark-antiquark states. We
P1+P2 =P1atP2a —P=0. (639 model the interaction by the exchange of(affective gluon
corresponding td/. At lowest order, the exchange could not
Computing the Jacobian of the above transformat®87)  produce a final staté12)(34)) but only|(14)(23) since the
gives emission of a virtual gluon would leave the resultant initial
state as two color octet mesons rather than singlet mesons.
M One would thus need to evaluate a typical matrix element of
d3p?* ZEd?’piA . (6.40  the form

[Not_e again how this contrasts with the case of free on-shell <(14)(23)|V(;(14L)|(12)(34)>- (6.45
particles wherel®p;=d*p; ,p%/(Ap;)°.] Hence,
Inserting fdt|t)(t|=1 and using Eq(6.23 into the above
M 3 3 . % expression, we can carry out the integratiort e obtain a
IM(P))= Ef d°p1Ad°p2a ¥m(PT P3) delta function which describes the condition of total energy
conservation. We have
X 8(P—p1a—P22)bT(P14)dT(P24)]0).

(643 ((14)(23)|V(k1a0)|(12)(34)
The wave function ¢yu(py.p5) is  actually o Bt E Bl E (Mle 1aM 15M 24)2
Ym(P1(P1a),P3 (P24)) Where the vectors {pf(plA_)v =2m3(E1ot B~ Eas~ B E1E14E13E24
P> (P24)} are {(p1a)a-1.(P2a)a-1} - A simple relabeling -
(not a transformationgives the representation of a general X{(M(P14),M(Pp3)|V(X14, ) [M(P12),M(P3s)),
state for a composite particle with momentidin (6.46

M where
IM(P))= EJ d3p1d3pathm(Pra-1,P24 1)

X 8(P—p;—p2)bT(py)d(p,)|0). (6.4 M
(P—p1—p2)b'(py)d'(py)[0). (6.42 |M(P12)>:E_1122f dspldspzlﬂ(plAl’zlipZAl’zl)

In the nonrelativistic limit, this becomes ¢ +
X 8(P1—p1—p2)b'(p1)d'(p,)|0),

- (6.47)

IM(P))= f dspldgpzl/fM( P1— mp,

in which Py, is the momentum of the composite with c.m.

o m o + + energyM ;, so thatE;,= /P2, +MZ, and A} is the inverse

X P2 (my+m,) P) 8(P=p1=p2)b(p1)d (p2)[0). boost to the rest system of the composite. Similar expres-
6.43 sions appear fofM (Pz4)), [M(P14)), and|M(Py3)).

So, each composite state, H§.22 with Eq. (6.42), differs VII. REACTION MATRIX ELEMENT

from that of the nonrelativistic limit by not only replacing |, orger to compute matrix elements of the potential, we
fGalllear; ?IOOSIS_ W';h r:nverszle Lorentz boostshbult also by §eeq its second quantized version. We evaluate it in the rest
actor of the dr_atlo oft ehtota hc.m.henergly tot 2 ab fenergyframe of the two interacting constituents and we assume that
In Appen r']x A we show t ?t the scalar pro bucthor tr\]/vo the second quantized form of the potential has the same re-
systems In the same internal state Is given Dy the threqayq, ¢ jts first quantized form as in the nonrelativistic case.
dimensional momentum delta function times a covariant-, o reaction(12)+ B(34)— C(14)+ D(32), the matrix
form elements for the interaction between a particle and an anti-
SP' —PIM3 particle consists of the C1 and the C2 diagram in Fig. 1. We
M(P)|M(P))= S(P-PM” d*ns(p- P 2 consider the C1 diagram as a representative case. The inter-
(M(P)IM(P)) 5 pa(p-P)ym(p)I | | S a ref
action corresponding to this C1 diagram takes place between
(6.44) particles 1 and 4 and is given by
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V(X141 lp, = 0=V (X10) = f d®x1d3xadxT A%V (X10) S(x1 = X7) 8(Xg = Xp) [X1X0) (X714

- f d3p,d3p,d3p;d3p,8(ps + pa—p1— P4 V(P —p4)bT(p1)d (py)d(p))b(py), (7.2

in which the integrals include sums over spin, flavor, and color. In this form the indices and primes serve to label the quark
color and flavor as well as the momentum. The annihilation and creation operators with monperandp; apply only to

particlei. To represent the interactiof(x,4), we choose to represent the annihilation and creation operators in the rest frame

of the (particle )-(particle 4 pair, i.e., the P;,=0) frame. In this frame, let the total momenta of the two initial meson
composite systems be=P,,+ P34, with P;, and P54 to be the individual incoming momenta of the two meson composite
systems. The total energy of the two meson system is given in terms of the respective c.m. energies of the composite particles

Vs=Eqgt Eg4= Pi+ M2+ P35+ M3, (7.2

The total momentun® of the two (composite particle system is conserved in the scattering process so that we can label the
matrix element as

(M(P14),M(P53);P|V(X14)|M(P12),M(P3,); P). (7.3

Let us evaluate the matrix element in the “collider frame” defined by

,+P5,=0. (7.9
The Lorentz boost to that frame is given by
JP?+s PPy
A:(: 5ik+ \/— - P2 ’
s
P
Ab=AP=—-—,
s
AO— e P +s 7.5
0 Y \/g ’ .

and takes us to

(M(P14),M(Py3);P|V(X10) M (P12),M(P3);Py = (M(P5,),M(P53); 0lU(A)V(X3) U~ H(A)M(P5), M(P5p);0), (7.6)

where
C C N\ M1, 3. 43 c t +
|M(P12)1M(P34)70>—_E12 d°p1d”p2h(P1a P2 A1) 8(P1—P1—P2)b'(p1)d  (p2)
Maa[ s 13 c T t
><E—34 dpsd P4¢(P3A;41'D4A;41)5(P34_ P3—P4)b'(p3)d'(p4)|0), (7.7

M14 " ” " " " " " "
(M(PLy),M(P5,);0|= E14<0|f d3p1d3p4¢*(plAl‘Alap4A1‘41)5(P§4_pl_p4)d(p4)b(p1
M23 SATASAN K " " C " " " "
XE_zsf d°p2d pzy (pzA;31,p3A;31)5(P23_ p2—p3)d(p3)b(p3), (7.9
andEijE\/Picj +M|]

Note that the integrals in the above state vectors include color summation but not flavor. The above matrix element then
becomes
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(M(P52),M(P59);0/U(A)V(X19)U ™ H(A)|M(P5,),M(P5,);0)
=(M(P§,),M(P53);0| f d3p,d3p,d3p;dp,8(p1+ps—p1— P4 V(P —pL)

X U(A)b(py)d"(pa)d(p))b(P1U(A) M (P, M(P5);0). (7.9

From our earlier arguments, the transformations defined in Bd34) and(6.35 are independent of the total momentum of
the two-body system. Thus, using this, we obtain

(M(PL2),M(P59);0[U(A)V (X1 U ™ H(A)[M(PLp),M(P5);0)

=(M(Py),M(P55);0| f d3p1d3p4d3p1d3p1’15(p1+ Ps—P1— pz’l)v(pl_ P4)

2

XbT(p12)dT(pan)d(psr)b(p1x)|M(P)),M(P5,);0) _- (7.10
M3,

We can point out that this last factor, due to interaction transformations, is not present in the nonrelativistic limit. This matrix
element is evaluated in Appendix B, and we find

(M(P52),M(P59);0|U(A)V(X19) U~ X(A) M (P5,),M(P5,);0)

M23 E14 M12 M34

= — 8%(Pay— P14+ P1y— Py =— Eys M Epp Ea f d®p,d3p,y( P1aa;b— plAA541)¢é[(—Pg4+ p4A)A£31’

—(— P54+ p4A)A2‘31] X ha[ (— Pt P~ Pan)a b= (= PSs+ PS4 Pan) a1 ¥e(— p4AA;41rp4AA3—41)v(p1_ Pa)-

(7.11
From Egs.(5.10, (6.46), and(7.11), the reaction matrix element for the interactigpy is

Mas M1, Mgg) *M -
'[141—(——1—4) —MJ d°p1d®p4tha(Pa . —Pa) ¥ia(Ps , — Pe) X Y& (Pc» — Pe) ¥ (Po » — Po) V(P1— Pa),
E23 E12 E34 E14

(7.12

where It is interesting to note that compared to the nonrelativis-
tic case, the overlap matrix element now involves two major

Pa= (—PS3+PS,—Pap) a1, (7.13 differences. First, the momentum arguments in the wave

12 function need to be inversely boosted back to the frame in
which the composite particles are at rest, as they should be.

Pe=— p4AA;41' (7.14 Second, there are factors of the tylde, /E;; appropriate for
the composite pqrticle in Fhe_collider frame. Both effects can
Pe=(—PS,+ p4A)A;31, (7.15 Leca;io(l) rt]ocfgsbsst:enélt% nr2.0d|f|cat|0n of the magnitude of the re-
Po= P1aajt- (7.16 VIIl. CONCLUSION AND SUMMARY
Note that the dimension of the wave function leads tdan We seek a relativistic formulation of the many-body prob-

which has the dimension of 1/masas required earlier. In lem involving both bound states and reaction between con-

the above expressio . for example, is the space part stituents of composite particles. As a first example, we have
P Maaa,, P pace part ,used our attention on a system of spinless particles inter-
of (A,3'Ap;) and the four energy ratios correspond to theacting with a scalar and/or vector interaction.

transformations associated with the Y234),(12),(34) We began by examining the relativistic two-body bound
composite particles. The energy ratio for the (14) compositatate problem and introduced Lagrangian multipliers to write
differs from the others due to the transformation of the (14)down the most general two-body Hamiltonian. The formula-
interaction term. The term here corresponds to the C1 diation using the constraint dynamics allowed a simple separa-
gram in Fig. 1. tion of the center-of-mass and the relative motion. A two-
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body equation was obtained in the form of a nonrelativisticinverse boost of the relative momentum to the frame in
Schralinger equation which connects naturally to the corre-which the composite particles are at rest, so as obtain the
sponding nonrelativistic problem in the nonrelativistic limit. correct wave function. Furthermore, there are factors of
The two-body equation is independent of the Lagrange mulM;; /E;; in the collider frame for the composite particles.
tipliers. The bound state mass is related to the eigenvalue dfhese relations will be useful when we apply the present
the nonrelativistic problem by a simple algebraic equation infformulation to many problems in nuclear and particle phys-
the case in which one considers only relativistic kinematicsics such as meson-meson scattering. An aim would be to see
Further relativistic effects show up in this algebraic relation-how this approach modifies the results of the nonrelativistic
ship when the energy dependence accompanying the scal@mrmalism as present ifil9].
and vector interaction is taken into account. The results we have obtained are very encouraging. We
For a many-particle system, we considered pairwise intershould in future work carry out a calculation for the relativ-
action between particles. In constructing the total Hamil-istic | =277 scattering, to compare with the nonrelativistic
tonian, a good choice of the Lagrange multiplier provides aesults of Barnes and Swanspi9] and with experimental
simple way to separate tié-body Hamiltonian into the un- data. We should also extend our considerations to include the
perturbed Hamiltonian and residual interactions. It also prespin degree of freedom and more complicated interactions in
sents a systematic way to use the two-body solution as basike constraint description.
states for multiparticle dynamics. The study of the dynamics

involves the evaluauon of_ the_ reaction matrix eIements_of a ACKNOWLEDGMENTS
general two-body interaction in terms of the wave functions
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plicitly, allowing for a meaningful definition of the perturba- No. DE-AC05-000R22725 with UT-Battelle, LLC.
tion expansion and treatment of the reaction dynamics.

_ Finally, we .give an explicit formula_for the reactio_n ma- APPENDIX A: SCALAR PRODUCTS
trix elements in terms of the composite wave functions. In
the relativistic treatment, the important effects include the Let us consider the general scalar prodidt{P’)|M(P))

’ M M 3/ 3/ ! ! * ’ ’ ’ ’ ’
<M(P )|M(P)>:EE d plA/d pzA/<0|d(p2A/)b(p1A/)‘/fM(pl:pz)b\?(P _plA/_pgAr)
X J' d3p12d3por hm(P1,P2) S(P—pPia—P2a)bT(p1a)dT(p22)0)
M M 3/ 3/ 3 3 * ’ 2 2
== B TP dPan | PiadPaadi(ppo) Py p2) (P = P) (P—P1y—Pan)
Xé\g(plA_piAl)é\?(pZA_péAr)u (Al)

whereE= P’ +MZ?, E'= VP4 M2,
Now the total momentum delta function maké&s= A’, which in turn implies that the two delta functions that come from
the creation and annihilation operator force the arguments of the two wave functions to be the same. Thus

M2
<M(P')|M(P)>=5€’(P'—P)EJ d3p1Ad3poa ¥ (P1,P2) ¥m(P1.P2) 83 (P—P1a—Pa2n)

M2
:éG(P,_P)Ef d®p1d®po iy (P1a-1,P2a 1) Y (P1a-1.P24 1) S (P—P1—P2). (A2)

On the right-hand side let
P=p;+p2,
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€2 €1

P= P13y P2 (A3)
so that the integral becomes
€1 €2 €1 €2
d*Pdepysy, (—P+ ,“—P— ) ) (—P+ ,(—P— ) )5 P—-P
f Pwm M pA—l M p o U2y M pAil M p i ( )
€9 €1 €9
dd ( P+ ,((—P— )) ) (—P+ ,(—P— ) )
f plr/jM p A1 M p -1 l//M M p A1 M p A1

=f d3pyy ((0+p")aA-1,((0—=p))a-1) [ (0+P) x-1,((0—P)Tx-1)
Ef d3plym(pa-1)|?

=f d*ps(p%)| (A~ p)|2. (A4)

But p®=p-A~1P/M. So takingp=Ap and usingd*p’ =d*p, we have the following manifestly covariant scalar product:
| d*pselumAp)2=M [ dDa(p- Pl (BI (A

APPENDIX B: EVALUATION OF THE REACTION MATRIX ELEMENT

In this appendix we evaluate the matrix element of &q10),

(M(P$2),M(P59;0[U(A)V(x1) U~ (A)|M(P5,),M(P59;0)

=(M(PL,),M(P3);0| f d*py'd°py d°p;d°p;a(py + Py~ i~ P V(PY —p))

X U(A)bT(p1)d"(py)d(p))b(p1)U(A) ~*M(PL),M(P5,);0)

~(M(PL.M (P20 | 07Dy cpip;a(py-+ b — i Pl

2 2
14

P{,S+ M1
XV(py —py)bT(p7y)dT(psy)d(psr)b(p1)IM(P]) ,M(PSy;0) ———— VER (B1)
14

in which the integrals include sums over flavor and color. This requires us to compute
(0ld(p3)b(p7)d(pz)b(ps)b'(pyy)d (p7y)d(psp)b(p14)bT(p1)d (p2)bT(p3)d (pa)|0)
=(0|[ 8(py\ —P3) 8(PTx —P2)d(p)b(PT) — 8(Pss — P2 8(P7) — P3)d(P3)b(P]) — 8(pzs — P3) 8(P1A — P1A(PL)b(P3)
+8(Pjs — P2 8(PTA —P1)A(P3)b(P3) X [8(Psr — P2) 8(P1s — P1)bT(P3)d (Pa) — 8(P4r —Pa)

X 8(p1a—P)b(pa)dT(p2) — 8(pay—P2) 3(Pia—P2)bT(p1)dT(ps) + 8(pss—Pa) S(pia—P3)bT(p1)dT(p2)]]0),
(B2)

in which the delta functions include flavor and color indices. If we assume that flavors for 1 and 2 are distinct from those of
3 and 4, then of the 16 terms above the only one that survives is

(0] 8(pyy —P3) S(PYs = P1) 8(Par—Pa) 8(P1a —P1) 8(P3—P3) 8(P3—P2)|0). (B3)
Thus (using the notatiork;; = \/Pﬁz+ Mzij), we obtain
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(M(P$2),M(P59);0U(A) V(X)) U~ H(A)M(P,),M(P5);0)

=— f d3p} d3p7'd3p,d3pid3pid pzwo(plAA 1,p4AA 2)8(Piy— Py~ pZ’A)t/fc(pZA 1.P3a52)

X 8(P33— Py~ ')lﬂA(piAAizlapgA;21)5(Piz_pz P1a) ¥B(P3a 1 Pan A, 1)5(P34 Pir—P3

23 El4 M 12 M 34
’ V " B4
pl p4) (p p4) E M 14 E12 E34 ( )

( " "

p1+tPs—

We perform four of the remaining six volume integrals of the first set of integrals. In particular, we perform integrations over

d3p”’d3p1d3p d3pj,. We use the flrst delta functiop), =P$,—p7,, the second givep,=P5,—pj, the third givesp],
=P5,—p5, and the fourth givep;=P5,—p,, . The argument of the remaining delta function is then

n n

Py + Py —P1—Pa=Piay 1= Py -1t Py -1~ Pog 1= Pas— Pigt Pp— Pos, (B5)

which corresponds to overall momentum conservation in the frame in which we evaluate the matrix dtemeni=0
fram@. Then, the reaction matrix element becomes

(M(P12),M(P59);0[U(A) V(X U~ (A)M(PE),M(P5);0)

= — 8%(P3q— Pygt+ Py st)J dspzldspﬁlﬁo[ plAA L (Pi4— pTA)A 1] X g (P — Pyt p4A)A i
(P3,— DAA)A;?}) YAl (P1;— Poat P3a—paa)a o P33 — P34t Paa)a 2

M23 El4 M12 M34

. (B6)
Ezs My Eg Egy

X gl (P34~ Pan)a; b Pan A; 1]V( 1P =
But P14A1_41= 0= PlZAIle P34A;41= P23A2_31 so that

(M(P12),M(P59;0[U(A)V (XU~ H(A)|M(Pp),M(P5);0)

= — 8%(P3q— Pyst+ Py Pza)f d® md3P4'//D(plAA i PIA AL 1)1110[( P4+pt’lA)Az_glv(szl_pz,lA)Az_;]

Maz E1qg M1, Mgy
X m__ 7 _C+C_! _ C_C+! _ ot e o
V(pY = pa) al (—PSat Py Pan)a (P23 = Paat pan)a t1e( —Pan a bPann ) & Eys My Epp Eay’
(B7)
which corresponds to the indicated amplitude in which a gluon is exchanged between particle 1 and particle 4. This produces
the form in the texi{where we dropped the primes on the two integration variables
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