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Relativistic N-body problem in a separable two-body basis
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We use Dirac’s constraint dynamics to obtain a Hamiltonian formulation of the relativisticN-body problem
in a separable two-body basis in which the particles interact pairwise through scalar and vector interactions.
The resultantN-body Hamiltonian is relativistically covariant. It can be easily separated in terms of the center
of mass and the relative motion of any two-body subsystem. It can also be separated into an unperturbed
Hamiltonian with a residual interaction. In a system of two-body composite particles, the solutions of the
unperturbed Hamiltonian are relativistic two-body internal states, each of which can be obtained by solving a
relativistic Schro¨dinger-like equation. The resultant two-body wave functions can be used as basis states to
evaluate reaction matrix elements in the generalN-body problem. We prove a relativistic version of the
post-prior equivalence which guarantees a unique evaluation of the reaction matrix element, independent of the
ways of separating the Hamiltonian into unperturbed and residual interactions. Since an arbitrary reaction
matrix element involves composite particles in motion, we show explicitly how such matrix elements can be
evaluated in terms of the wave functions of the composite particles and the relevant Lorentz transformations.
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I. INTRODUCTION

The theoretical description of the relativisticN-body
problem is an interesting but perplexing problem in nucl
and particle physics. It involves the possibility of relativist
bound states of composite particles on the one hand and
reaction matrix elements between these particles at high
ergies on the other hand. The relativisticN-body problem is
complicated by the fact that the relativistic bound state pr
lem is basically nonperturbative in nature and cannot
solved by the conventional perturbative quantum fi
theory. One also needs to describe the reaction process
tivistically by making use of the results from the boun
states.

Much progress has been made in the study of relativi
two-body bound state problems@1–17#. In the 1970s, severa
authors used Dirac’s constraint mechanics@1# to attack the
relativistic two-body problem at its classical roots@2#, suc-
cessfully evading the so-called ‘‘no interaction theorem’’@3#.
The quantum version of the constraint approach was
tended to pairs of spin one-half particles. The results w
two-body quantum bound state equations that correct the
fects in the Breit equation, correct the defects in the lad
approximation to the Bethe-Salpeter equation, and con
covariantly the relative time and energy variables@4#. Those
bound state equations for fermions are the two-body D
equations of constraint dynamics, which we shall also c
the constraint equations@5#. They possess a number of im
portant desirable features, some of which are unique.
example, they remove the deficiencies of earlier approac
in which the spin dependence of the potentials is a pa
work of semirelativistic corrections determined by fie
theory@6#. In contrast, the spin dependence in constraint
namics is determined naturally by the Dirac equation str
0556-2813/2001/63~4!/044907~18!/$20.00 63 0449
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ture of each of the constraint equations together with
assumed covariant interactions@5,7#. The equations of con-
straint dynamics are manifestly covariant while yieldin
simple three-dimensional Schro¨dinger-type equations, like
those of their nonrelativistic counterparts@5,7#. ~This particu-
lar feature will ultimately be of crucial importance in th
discussions given in this paper.! These constraint equation
have passed numerous tests showing that they reproduce
rect QED perturbative results when solved nonperturbativ
@7#. In addition, the Dirac forms of these equations autom
cally make it unnecessary to introducead hoccutoff param-
eters, which are needed in most other approaches@6# to regu-
larize singular potentials. The relativistic potentials appe
ing in the constraint equations are related directly to the
teractions of perturbative quantum field theory@8#. In non-
perturbative QCD as applied to meson spectroscopy, t
may be introduced phenomenologically@10# and can be re-
garded as an anticipation of potentials that may eventu
emerge from lattice gauge theory.

In the present paper we will extend the constraint eq
tions beyond the scope of the two-body problem and will,
simplicity, limit ourselves to the constraint description
spinless particles. We first summarize the constraint
proach for two spinless particles. For each particle, one
cribes a generalized mass shell constraint which includes
interaction. The constraints must be consistent with e
other and this in turn restricts the dependence of the inte
tions on the relative coordinates, eliminating both the relat
time and energy variables in the c.m. system. The resul
equations correspond to a Bethe-Salpeter equation wh
kernel and Green’s functions are constrained by the requ
ment of P•q50, whereP and q are the total and relative
momenta of the two-body system@8#. In particular, from the
Bethe-Salpeter equation with this constraint, one can de
©2001 The American Physical Society07-1
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@10,7# the ‘‘quasipotential equation’’ of Todorov@9#, which
is a Schro¨dinger-like inhomogeneous integral equati
where the quasipotentialF is related to the scattering ampl
tude in perturbative quantum field theory. Other methods
reducing the Bethe-Salpeter equation have also been
gested@12–16#. The application of the harmonic oscillator i
a relativistically covariant formalism of the Poincare´ group
to hadronic bound states was also considered in@17#.

At present, the relativistic treatment of theN-body prob-
lem and the reaction of composite particles at high ener
have not advanced as much as in the relativistic treatmen
two-body bound states. An investigation of the relativis
N-body problem was previously carried out by Sazdjian@11#.
In contrast, the nonrelativisticN-body problem and the non
relativistic description of the reaction of composite partic
have been well developed@18–21#. One has, for example
the distorted-wave Born approximation method in nucl
reactions@18# and the quark-interchange model in hadr
reactions@19# for reactions between composite particles. O
first solves for the wave functions and determines the in
action between the constituents using the energy level
bound states. Then one uses the same set of interaction
wave functions to calculate the reaction matrix elements
the reaction of composite particles. There is also the po
tially different values of the post or prior forms of the rea
tion matrix element, which distinguish whether the intera
tion occurs before the rearrangement or after the rearra
ment of the constituents. The post-prior equality of the re
tion matrix elements is attained when the interaction a
wave functions that are used in the calculation of the ove
integral are the same as the interaction and the wave f
tions obtained in the bound state analysis.

The formalism we shall develop can be applied to ma
processes of interest. For example, in high-energy heavy
collisions, the investigation of the dynamics and the prop
ties of the produced hadron matter involve the reaction cr
sections and the reaction matrix elements between the
duced hadrons at relativistic energies. Most of these c
sections and reaction matrix elements cannot be meas
experimentally. A reliable theoretical relativistic mod
which describes theN-body problem of the constituents
needed for their evaluation. Although the nonrelativistic
action model of Barnes and Swanson has been used suc
fully to calculate hadron-hadron reaction cross secti
@19,22–28#, it is necessary to generalize the nonrelativis
reaction model to study reactions between composite
ticles at relativistic energies. It is also of interest to study
relativisticN-body problem in order to investigate an asse
bly of composite particles and their clustering or molecu
states.

We shall take advantage of previous advances in the
derstanding of the relativistic two-body problem in o
present study of the relativisticN-body problem. In this
work, we specialize inN-body dynamics with just pairwise
interactions between particles. We shall write down
Hamiltonian formulation of the relativisticN-body problem
which allows an easy separation in terms of the center
mass and the relative motion for any two-body system an
simple separation of the unperturbed Hamiltonian and
04490
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residual interaction. We can then use the relativistic tw
body bound states as basis states for the investigation o
relativisticN-body problem. We can construct a proof of th
‘‘post-prior’’ equivalence in relativistic dynamics, which
guarantees that the reaction matrix element is independe
the different ways of partitioning the unperturbed Ham
tonian and the residual interaction from theN-body
Hamiltonian.

This paper is organized as follows. In Sec. II we revie
important aspects of the constraint approach and introd
the relativistic two-body Hamiltonian and bound state eige
value equation. We show that the relativistic two-body so
tion in the c.m. rest system has the simplicity of its nonr
ativistic counterparts. In Sec. III we generalize the two-bo
Hamiltonian to the case ofN particles. We discuss som
applications of the present formulation in Sec. IV. We sh
how to utilize the constituent two-body wave functions f
theN-body problem. Because of the analogy to their nonr
ativistic counterparts, these states can be used as basis
to evaluate a general reaction matrix element in the gen
N-body problem. We prove the relativistic version of th
post-prior equivalence for the reaction matrix elements.
an illustration and a problem of practical interest, we co
sider in Sec. V the reaction of four particles in two compo
ite systems where the nonrelativistic treatment has alre
been formulated by Barnes and Swanson@19#. In Sec. VI, we
explicitly obtain the wave function in second-quantized fo
so as to construct the overlap integral for the reaction ma
element. Such a reaction matrix element involves state
composite particles in motion. Thus we show in Sec. V
explicitly how to evaluate such elements in terms of t
wave functions of each composite particle, and develop
relevant Lorentz transformation laws required. Section V
summarizes and points to future problems.

II. HAMILTONIAN FORMULATION OF THE TWO-BODY
PROBLEM FROM CONSTRAINT DYNAMICS

We can formulate the relativistic treatment of the tw
body problem for spinless particles@29,30# in a way that has
the simplicity of the ordinary nonrelativistic two-bod
Schrödinger equation and yet maintains relativistic cova
ance. Including spin and generalizing to different types
interactions can be carried out in a more complete fram
work @31,4#.

For each particle we assume a generalized mass shell
straint of the form

Hi uc&50 for i 51,2, ~2.1!

where

Hi5pi
22mi

22F i , ~2.2!

andF1 andF2 are two-body interactions dependent onx12.
One constructs the total HamiltonianH from these con-
straints by

H5l1H11l2H2 ~2.3!
7-2
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~with l i as Lagrange multipliers!. In order that each of thes
constraints be conserved in time we must have

@Hi ,H#uc&5 i
dHi

dt
uc&50. ~2.4!

As a consequence, we have

@Hi ,l1H11l2H2#uc&

5$@Hi ,l1#H11l1@Hi ,H1#

1@Hi ,l2#H21l2@Hi ,H2#%uc&50. ~2.5!

Using Eq.~2.1!, the above equation leads to the compatib
ity condition between the two constraints,

@H1 ,H2#uc&50. ~2.6!

Since the mass commutes with the operators, this implie

~@p1
2 ,F2#1@F1 ,p2

2#1@F1 ,F2# !uc&50. ~2.7!

The simplest way to satisfy the above equation is to take

F15F25F~x'!, ~2.8!

which is a kind of relativistic Newton’s third law. Here, th
transverse coordinate is defined by

xn'5x12
m ~hmn2PmPn /P2!, ~2.9!

whereP is the total momentum

P5p11p2 . ~2.10!

The choice of the two-body potential~2.8! leads to

@H1 ,H2#uc&52P•]x12
F~x'!uc&50, ~2.11!

and the compatibility condition~2.6! is satisfied.
The two-body HamiltonianH determines the dynamics o

the two-body system. Its equation of motion is

Huc&50. ~2.12!

This equation describes both the center-of-mass mo
and the internal relative motion. To characterize the cen
of-mass motion, we note that since the potentialF depends
only on the difference of the two coordinates we have

@P,H#uc&50. ~2.13!

~This does not require that@P,l i #50 since theHi uc&50.!
Thus,P is a constant of motion and we can takeuc& to be an
eigenstate state characterized by a total momentumP.

To separate out the internal relative motion from t
center-of-mass motion, we introduce the relative momen
q defined by

p15
p1•P

P2
P1q, ~2.14!
04490
-
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p25
p2•P

P2
P2q, ~2.15!

where the first term on the right-hand side of the above t
equations is the projection of each momentum onto the t
momentum. The above definition of the relative moment
guarantees the orthogonality of the total momentum and
relative momentum,

P•q50, ~2.16!

which follows from taking the scalar product of either equ
tion with P. From Eqs.~2.14! and ~2.15! this relative mo-
mentum can be written in terms ofp1 andp2 as

q5
«2

AP2
p12

«1

AP2
p2 ~2.17!

where

«15
p1•P

AP2
5

P21p1
22p2

2

2AP2

«25
p2•P

AP2
5

P21p2
22p1

2

2AP2
~2.18!

are the projections of the momentap1 and p2 along the di-
rection of the total momentumP. Using Eqs.~2.1! and~2.8!
and taking the difference of the two constraints, we obta

~p1
22p2

2!uc&5~m1
22m2

2!uc&. ~2.19!

Thus on these statesuc& we have

«15
P21m1

22m2
2

2AP2

«25
P21m2

22m1
2

2AP2
. ~2.20!

Using Eqs.~2.14!, ~2.15!, and Eq.~2.16!, we can writeH in
terms ofP andq:

Huc&5$l1@«1
22m1

21q22F~x'!#

1l2@«2
22m2

21q22F~x'!#%uc&

5~l11l2!@b2~P2;m1
2 ,m2

2!1q22F~x'!#uc&50,

~2.21!

where
7-3



n
-

w

o

c-
dy

es

ro

n
b

s
-

-

e

k
lt

y
-

ell.
l on
or
er-

CHEUK-YIN WONG AND HORACE W. CRATER PHYSICAL REVIEW C63 044907
b2~P2,m1
2 ,m2

2!5«1
22m1

2

5«2
22m2

2

5
1

4P2
@P422P2~m1

21m2
2!1~m1

22m2
2!2#.

~2.22!

Equation~2.21! contains both the center-of-mass mome
tum P @through theb2(P2,m1

2 ,m2
2)# and the relative momen

tum q. This constraint equation ofP andq can then be solved
by the method of the separation of variables. That is,
introduce the bound state eigenvalueM to separate Eq.~2.21!
into the following two equations for the center-of-mass m
tion and the internal motion:

$P22M2%uc&50, ~2.23!

and

~l11l2!$q22F~x'!1b2~M2,m1
2 ,m2

2!%uc&50,
~2.24!

where we have used the first equation on the eigenstateuc&
so thatb2(P2,m1

2 ,m2
2) becomes the standard triangle fun

tion indicative of the presence of exact relativistic two-bo
kinematics:

b2~M2,m1
2 ,m2

2!5
1

4M2
$M422M2~m1

21m2
2!1~m1

22m2
2!2%.

~2.25!

The eigenvalue equation, Eq.~2.24!, for the relative motion
is independent of the Lagrange multipliers. It is nonethel
convenient to choosel i51/(2mi) so that the resultant Schro¨-
dinger equation matches the nonrelativistic two-body Sch¨-
dinger equation term by term. Such a choice also helps
obtain useful simplifications in the relativisticN-body prob-
lem in later sections. In particular, theN-body Hamiltonian
can be easily separated into pairs of two-body Hamiltonia
This separation makes it easy to introduce the unpertur
Hamiltonian and residual interactions.

We note that because of the orthogonality ofP andq, we
can write Eq.~2.24! in the form

S 1

2m1
1

1

2m2
D $q'

2 2F~x'!1b2~M2,m1
2 ,m2

2!%uc&50,

~2.26!

whereq'5q2q•PP/P25q. @Note that if the relative mo-
mentum were defined in terms of Eq.~2.20! instead of Eq.
~2.18! then we would have

q•Puc&50 ~2.27!

but not q•P50 so thatq2uc&5q'
2 uc&. In either case the

coefficients« i are invariant and hence Eq.~2.17! the same
form regardless of which frame it is evaluated in.#

We show below how the eigenvalueM is related to the
eigenvalue obtained in a nonrelativistic Schro¨dinger equa-
04490
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tion. We go to the center-of-momentum system whereq
5q'5(0,q… and x'5(0,r … ~relative energy and time thu
being removed from the problem!. We then have the equa
tion for the relative motion,

H q2

2m
1

F~r !

2m
2

b2

2mJ uc&50, ~2.28!

wherem is the nonrelativistic reduced mass,

m5
m1m2

m11m2
. ~2.29!

We can cast Eq.~2.28! into the usual form of a nonrelativ
istic Schrödinger equation. By renamingF/2m asV12, and
b2/2m asE, Eq. ~2.24! becomes

S q2

2m
1V12D uc&5Euc&. ~2.30!

The above Schro¨dinger equation can be solved to give th
eigenvalue E. Then, from the equationb2(M2,m1

2 ,m2
2)

52mE, one can solve forM in terms ofE and obtain

M5A2mE1m1
21A2mE1m2

2. ~2.31!

It is easy to show from this that in the limit of very wea
binding, the nonrelativistic limit, we have the familiar resu

M5m11m21E. ~2.32!

If one is only interested in the effect of exact two-bod
relativistic kinematics withV12 an energy-independent non
relativistic potential, the bound state eigenvalueM for the
relativistic two-body problem is related to the eigenvalueE
of the nonrelativistic problem by Eq.~2.31!. It is important to
note, however, that the potentialV12 in relativistic constraint
dynamics includes relativistic dynamical corrections as w
These corrections include dependencies of the potentia
the c.m. energyM and on the nature of the interaction. F
spinless particles interacting by way of a world scalar int
actionS, one finds@30,32#

V125
F

2m
5

2mMS1S2

2m
~2.33!

where

mM5
m1m2

M
, ~2.34!

while for ~timelike! vector interactionA, one finds@9,30,32#

V125
F

2m
5

2«MA2A2

2m
, ~2.35!

where

«M5
M22m1

22m2
2

2M
~2.36!
7-4
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and for combined spacelike and timelike vector interactions~that reproduce the correct energy spectrum for scalar QED@29#!

V125
F

2m
5

2«MA2A21¹W 2 ln~122A/M !1/21@¹W ln~122A/M !1/2#2

2m
. ~2.37!
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The variablesmM and «M ~which both approachm in the
nonrelativistic limit! were introduced by Todorov@9# in his
quasipotential approach and are called the relativistic
duced mass and energy of the fictitious particle of relat
motion. In the nonrelativistic limit,F approaches 2m(S
1A). In the relativistic case, the dynamical corrections
V12 referred to above include both quadratic additions toS
and A as well as c.m. energy dependence throughmM and
«M . This latter point implies that the effective potentialV12
depends on the eigenvalueE ~or M ) to be evaluated. One ca
obtain the mass of the bound stateM by an iterative proce-
dure. One starts with an estimatedM ~or E) value and ob-
tains the potentialV12. Equations~2.30! and~2.31! can then
be used iteratively to obtain successively improved value
V12 and the eigenvalueM ~or E).

We note in passing that since

b25«M
2 2mM

2 , ~2.38!

we can write the Schro¨dinger-like equation for combined
scalar and~timelike! vector interactions as@30#

$q21~mM1S!22~«M2A!2%uc&50, ~2.39!

which is suggestive of a Klein-Gordon equation for an effe
tive particle of relative motion. This bound state equati
incorporates not only the correct relativistic kinematics b
also the correct relativistic dynamical corrections through
der 1/c2 and higher, depending on the input. It does it wit
out the necessity of introducing complicated momentu
dependent Darwin-like interactions, thereby retaining
simplicity of the nonrelativistic Schro¨dinger equation. Fur-
thermore, the potentials in these equations are connecte
those of Wheeler-Feynman electrodynamics~and its scalar
counterpart! @33,34#. They have been obtained systematica
from perturbative quantum field theory@7,8,10# and from an
eikonal summation of Feynman diagrams@35#.

In summary, Eqs.~2.28!, ~2.30!, and~2.31! provide a use-
ful way to obtain the solution of the relativistic two-bod
problem for spinless particles in scalar and vector inter
tions. In other works they have been extended to include s
and have been found to give an excellent account of
bound state spectrum of both light and heavy mesons u
reasonable input quark potentials@10,34#.

III. HAMILTONIAN FORMULATION OF THE N-BODY
PROBLEM FROM CONSTRAINT DYNAMICS:

SEPARABLE TWO-BODY BASIS

The above treatment of the two-body problem can,
some extent, be generalized to the case of theN-body prob-
lem @11#. Our approach differs and extends the work
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Sazdjian in that we choose to formulate theN-body problem
in a separable two-body basis.

We consider a system ofN particles. For each particle, w
specify a generalized mass shell constraint of the form

Hi uc&50 for i 51,...,N ~3.1!

where

Hi5pi
22mi

22 (
j , j Þ i

N

F i j 2Wi . ~3.2!

TheF i j are two-body interactions dependent onxi j , andWi
are possibleN-body forces (N.2). We construct the tota
Hamiltonian for the system as

H5(
i 51

N

l iHi , ~3.3!

wherel i8s are the Lagrange multipliers. For each constra
to be conserved in time, we must have

@Hi ,H#uc&5 i S d

dt
Hi D uc&50. ~3.4!

From Eq.~3.3! and Eq.~3.1!, we must have the compatibility
condition

@Hi ,Hj #uc&50. ~3.5!

Now we attempt to expand out the above equation. Fo
fixed pair of i and j, we have

S Fpi
2 , (

k,kÞ j

N

F jkG2F (
k,kÞ i

N

F ik ,pj
2G

1F (
l ,lÞ i

N

F i l 1Wi , (
k,kÞ j

N

F jk1Wj G
2@pi

2 ,Wj #2@Wi ,pj
2# D uc&50. ~3.6!

Motivated by the form of our two-body solution, we assum
that

F i j 5F j i 5F i j ~xi j'! ~3.7!

in which

~xi j'!n5xi j
m@hmn2~Pi j !m~Pi j !n /Pi j

2 #, ~3.8!

and Pi j 5pi1pj . This implies that theN-body forces must
be present and satisfy
7-5
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S F (
l l Þ i

N

F i l 1Wi , (
kkÞ j

N

F jk1Wj G2@pi
2 ,Wj #2@Wi ,pj

2# D uc&

50. ~3.9!

These are very complicated equations, and, unlike the t
body case, there are no known closed-formed soluti
@11,36#. Evidently these forces are dependent on the tw
body forces themselves@37#. In practice, one often ignore
these many-body forces and considers only pair-wise in
actions, as we will do in our subsequent computations
reaction matrix elements in Sec. VII. That is, under the
proximation in which we setWi50, we can view the par-
ticles as interacting with each other via two-body intera
tions in a pairwise manner. However, in most of our form
analysis in this paper, we will retain these many-bo
interactions.

The conservation of the constraints in time depends o
upon the compatibility of these constraints and does not
pend on the choice of the Lagrange multipliers. This ar
trariness in the choice of thel i is similar to a kind of gauge
invariance. Choosing a particular set ofl i is analogous to
choosing a gauge and can be done for convenience. In
general N-body formalism we will find it convenient to
choosel i51/(2mi). Such a choice has many advantag
First it leads to a simple correspondence with the nonrela
istic two-body andN-body Hamiltonians. Secondly thi
choice depends only on the particle in question and not w
other particle it is linked with. In the generalN-body formal-
ism we will find it convenient not to have a preferred pairi
of two-body composite subsystems. The choicel i
51/(2mi) avoids this. Finally, this allows theN-body
Hamiltonian to be conveniently separated into a nonper
bative part and the residual interactions part. Such a co
spondence helps one generalize the post-prior equivalen
reaction matrix elements from the nonrelativistic case to
relativistic case.

With this choice, the relativisticN-body Hamiltonian is

H5(
i 51

N
1

2mi
~pi

22mi
2!2(

i 51

N

(
j j . i

N
F i j

2m i j
2(

i

Wi

2mi

5(
i 51

N
1

2mi
~pi

22mi
2!2(

i 51

N

(
j j . i

N

Vi j 2(
i

Wi

2mi
,

~3.10!

where m i j 5mimj /(mi1mj ), and we have introduced th
simplified notationVi j 5F i j /2m i j . @Note that in light of the
above forms of Eqs.~2.33! and ~2.36! for F i , the choice
l i51/(2mi) gives the correct nonrelativistic limit forVi j .#
The dynamics of the relativisticN-body system is deter
mined by the search for the stateuc& such that

Huc&5H (
i 51

N
1

2mi
~pi

22mi
2!2(

i 51

N

(
j . i

N

Vi j 2(
i

Wi

2mi
J uc&50.

~3.11!
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Even without the many-body forcesWi , this equation is very
difficult to solve because the potentialsVi j depend on the
momentaPi j 5pi1pj ~throughxi j') which are not constants
of motion for theN-body system; forces from outside of th
i j system produce time-dependentPi j . On the other hand, if
one uses the two-body Hamiltonians to generate basis st
then for those states and Hamiltonians, one can regard
Pi j as constants of motion. That is, the Hamiltonian can
separated in terms of two-body Hamiltonians plus resid
interactions regarded as perturbations. This greatly simpli
the problem.

IV. SOME APPLICATIONS

The quadratic form of the momentum operatorspi in the
N-body Hamiltonian~3.11! makes it easy to manipulate th
momentum terms to obtain the center-of-mass momen
and other relative momenta. The potential term in the eq
tion appears in a way similar to that in which it appears
the nonrelativistic case.

The relativisticN-body equation can be compared to t
nonrelativistic N-body equation. Introducinge i5pi

02mi ,
we have

1

2mi
~pi

22mi
2!5e i2

pi
22e i

2

2mi
. ~4.1!

Equation~3.11! becomes

Huc&5H ENR2(
i 51

N pi
22e i

2

2mi
2(

i 51

N

(
j . i

N

Vi j 2(
i

Wi

2mi
J uc&50,

~4.2!

where ENR5( ie i . This is identical to the nonrelativistic
N-body Hamiltonian with eigenvalueENR whenueu i!mi and
the Wi are neglected.

In the next example, we can examine a system of an e
number ofN particles formingN/2 composite particles, as in
a system ofN/2 mesons. For such a system, one can cons
an initial state of the form

uca&5u$~ i 1 j 1!,~ i 2 , j 2!, . . . ~ i N/2 j N/2!%&, ~4.3!

in which particlesi a and j a form a composite two-body
subsystem (i a j a). Subsequent dynamics of the system is d
termined by the evolution operator containingH and the
reaction matrix element̂ca8uHuca& where

uca8&5u$~ i 18 j 18!,~ i 28 , j 28!, . . . ~ i N/28 j N/28 !%&. ~4.4!

For the evaluation of the element^ca8uHuca& of the Hamil-
tonian matrix, theN-body Hamiltonian can be separated in
an unperturbed HamiltonianH0 and a residual interaction
VI ,

H5H01VI , ~4.5!

where the unperturbed HamiltonianH0 is

H05Hi 1 j 1
1Hi 2 j 2

1•••1Hi N/2 j N/2
, ~4.6!

with
7-6
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Hi j 5
1

2mi
~pi

22mi
2!1

1

2mj
~pj

22mj
2!2Vi j , ~4.7!

andVI , the ‘‘prior’’ form of the residual interaction, is

VI52(
i 51

N

( 8
j , j . i

N

Vi j 2(
i

Wi

2mi
~4.8!

where the summation( i 51
N ( j , j . i

N 8 is carried out with the se
$ i j % different from those of the composite particles$ i 1 j 1%,
$ i 2 j 2%, $ i 3 j 3%,. . . , and$ i N/2j N/2%:

(
i 51

N

( 8
j , j . i

N

5(
i 51

N

(
j , j . i

N

u$ i j %Þ$ i 1 j 1%,$ i 2 , j 2%, . . . $ i N/2 j N/2%
.

~4.9!

Then, since

H0u$~ i 1 j 1!,~ i 2 , j 2!, . . . ~ i N/2 j N/2!%&50, ~4.10!

the transition matrix element^ca8uHuca& becomes

^ca8uHuca&5^ca8uVI uca&. ~4.11!

The separation ofH into H0 andVI is not unique, and it
is important to show that the reaction matrix element of
residual interaction is independent of the different ways
separating out the unperturbed Hamiltonian and the resi
interaction. We can alternatively choose the unpertur
Hamiltonian to be associated with the stateuca8&5u$( i 18 j 18),
( i 28 , j 28), . . . (i N/28 j N/28 )%& such that

H 08u$~ i 18 j 18!,~ i 28 , j 28!, . . . ~ i N/28 j N/28 !%&50, ~4.12!

associating with the ‘‘post’’ form of the residual interactio
VI8 ,

H5H 081VI8 . ~4.13!

The quantitiesH 08 andVI8 are defined in a way similar to tha
given in Eqs.~4.6!–~4.9!. The reaction matrix element be
tween the basis states is

^ca8uVI uca&5^ca8uH01VI uca&

5^ca8uHuca&

5^ca8uH 081VI8uca&

5^ca8uVI8uca&, ~4.14!

which indicates that the reaction matrix element is the sa
for the ‘‘prior’’ form or the ‘‘post’’ form of the residual
interactions. It is independent of the way in which we sp
up the total Hamiltonian. This ‘‘post-prior’’ equivalenc
guarantees the uniqueness of the reaction matrix elemen
insures the usefulness of the perturbation expansion.

Using this method of separating the total Hamiltonian,
matrix element ofH between any two basis states can
evaluated. The construction of the matrix of the total Ham
04490
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tonian will allow one to construct the evolution operator a
to follow the dynamics of the system.

V. SCATTERING OF TWO COMPOSITE PARTICLES

As another explicit example, we apply our formalism to
problem of practical interest. Consider four particles w
massesmi and momentumpi wherei 51,2,3,4. We have the
total Hamiltonian

H5(
i 51

4
1

2mi
~pi

22mi
2!2(

i 51

4

(
j , j . i

4

Vi j 2(
i 51

4
Wi

2mi
. ~5.1!

Using the method of the first section, we can solve for
bound states of massMi j for the motion of particlesi and j
interacting with the interactionVi j ,

Hi j uc i j &5F 1

2mi
~pi

22mi
2!1

1

2mj
~pj

22mj
2!2Vi j G uc i j &50.

~5.2!

We can consider the reaction of two composite partic
A(12) andB(34) where particles 1 and 3 are particles a
particles 2 and 4 are antiparticles as in meson-meson sca
ing, interacting through a pairwise interactionVi j . We study
the relativistic quark-interchange reaction

A~12!1B~34!→C~14!1D~32!, ~5.3!

as a generalization of the nonrelativistic case investigated
Barnes and Swanson@19#. For this reaction with a momen
tum transfert

t5~A2C!25mA
21mC

2 22A0C012A•C, ~5.4!

the differential cross section in the first-Born approximati
is given by@19#

ds

dt
5

1

64ps

\2

upA
c u2

uM f i u2, ~5.5!

whereMf i is

Mf i5~2p!3A2EA
c 2EB

c 2EC
c 2ED

c hf i , ~5.6!

and hf i is the reaction matrix element from the initial sta
A(12)B(34) to the final stateC(14)D(32) initiated by the
residual interactionVI . In the above equation, a kinemat
variable with the superscriptc refers to that variable evalu
ated in the center of mass of the colliding mesons~collider
system!. From the above result,hf i has the dimension o
1/(mass)2.

To obtain the reaction matrix elementhf i in our relativis-
tic formulation, we need to split the total Hamiltonian in
the nonperturbative partH0 and the residual interactionVI .
This can be carried out in two different ways. In the ‘‘prior
form, it is split as

H5H121H342V132V142V232V242(
i 51

4
Wi

2mi
, ~5.7!
7-7
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where the unperturbed Hamiltonian is

H0~prior!5H121H34, ~5.8!

and the residual interaction is

VI~prior!52V132V142V232V242(
i 51

4
Wi

2mi
. ~5.9!

The reaction matrix element is

2pd4~PA1PB2PC2PD!hf i~prior!

52^c14c23uV131V141V231V241(
i 51

4
Wi

2mi
uc12c34&.

~5.10!

In graphic form, if we represent the interactionVi j by a curly
line, the first four terms in the above matrix element a
represented by the four diagrams in Fig. 1. The interac
takes place before the rearrangement of the constituents

On the other hand, if we use the ‘‘post’’ form of splittin
the total Hamiltonian, we have

H5H141H322V132V122V432V422(
i 51

4
Wi

2mi
.

~5.11!

The unperturbed Hamiltonian is

H0~post!5H141H32, ~5.12!

and the residual interaction is

VI~post!52V132V122V432V422(
i 51

4
Wi

2mi
. ~5.13!

The reaction matrix element is

2pd4~PA1PB2PC2PD!hf i~post!

52^c14c23uV121V131V421V431(
i 51

4
Wi

2mi
uc12c34&.

~5.14!

FIG. 1. ‘‘Prior’’ diagrams for the reaction A1B → C1D.
04490
e
n

In graphic form, the first four terms in the above matr
element are represented by the four diagrams in Fig. 2.
interaction takes place after the rearrangement of the c
stituents.

Therefore, if we start with the prior expression for th
matrix element, we haveH12c1250 andH34c3450, and we
have~canceling out theN.2-body potentials!

^c14c23uV131V141V231V24uc12c34&

5^c14c23u2H122H341V131V141V231V24uc12c34&

5^c14c23u2H142H231V121V131V421V43uc12c34&,

~5.15!

where we have used Eq.~5.1! to write out the Hamiltonian
for the two-body system. BecauseH14uc14&50 and
H23uc23&50, we have then

^c14c23uV131V141V231V24uc12c34&1

5^c14c23uV121V131V421V43uc12c34&,

~5.16!

which leads to the relativistic generalization of the post-pr
equivalence of the reaction matrix elementhf i ,

hf i~prior!5hf i~post!. ~5.17!

Just as in nonrelativistic reaction theory@38#, the equivalence
is possible only when one uses the same internal rela
wave function for the composite particles in their scatter
process as in the bound state problem for the individual co
posite particles. The equivalence allows a unique determ
tion of the reaction cross section in the first-Born appro
mation.

VI. SECOND QUANTIZATION OF PARTICLES
IN A BOUND STATE

A practical problem arises when one attempts to evalu
the reaction matrix element^cauVI uca8&,

FIG. 2. ‘‘Post’’ diagrams for the reaction A1B → C1D.
7-8
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^cauVI uca8&5^~ i 1 j 1!,~ i 2 j 2!, . . . u2(
i 51

N

( 8
j , j . i

N

Vi j

2(
i

Wi

2mi
u~ i 18 j 18!,~ i 28 j 28!, . . . &, ~6.1!

where $( i 1 j 1),(i 2 j 2), . . . % represents composite two-bod
subsystems. For a pairwise interactionVi j in the above equa
tion, we have

^cauVi j uca8&5^~ ia8!,~ j b8!uVi j u~ ia!,~ j b!&, ~6.2!

where $a8b8% is a permutation of$ab%. The composite
wave functionsc ia are usually computed in the c.m. of th
( ia) composite particle system~the qiq̄a system in our ex-
ample of a system of mesons!. However, this is not the sam
as the so-called collider frame@the c.m. frame of the
( ia)-( j b) meson-meson system# either in the bra or ket
states. For nonrelativistic reactions, the relative wave fu
tion of a composite system in the collider frame is obtain
from the wave function for the composite particle at rest b
Galilean boost, and they are related by a simple momen
shift. In the relativistic case, a Lorentz boost is needed
place of a Galilean boost. We need, therefore, to discuss
Lorentz transformation of the state of the composite syst

We represent the state of the composite two-body sys
with a four-momentumP by

^P0u~12!P&54«1«2E d4p1d4p2d4~p11p22P!u~p1
0!u~p2

0!

3d„p1
22m1

22F~x'!…d„p2
22m2

22F~x'!…

3c~p1 ,p2!up1p2&, ~6.3!

where we use the same symbolp1 and p2 to denote
c-numbers and operators, using the context to distingu
between them. The factor of 4«2«2 is included so that we
obtain the usual results in the nonrelativistic limit. The de
function containing the composite particle energyP0 arises
from the projection of the energy eigenstate stateuP0& onto
the state vectoru(12)P& whereP5$E,P% andE5AP21M2

@see also Eq.~6.22! below#. Hence, we use the notatio
^P0u(12)EP& to denote the projection of the state vect
u(12)P& onto the energy eigenstate stateuP0&. The above
state is constructed in analogy to the two free-particle st

^P0u~12!P&54«1«2E d4p1d4p2d4~p11p22P!

3u3~p1
0!u~p2

0!d~p1
22m1

2!

3d~p2
22m2

2!c~p1 ,p2!up1p2&. ~6.4!

However, unlike the free-particle state, the state~6.3! satis-
fies the simultaneous constraint conditions of Eq.~2.1!

Hi u~12!P&5@pi
22mi

22F~x'!#u~12!P&50 for i 51,2,
~6.5!
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so that neither particle is on mass shell. The definition~6.3!
also introduces a momentum space wave functionc(p1 ,p2)
defined so that it has positive constituent energies. We
phasize that the momentum eigenstatesup1p2& in this expan-
sion are off shell. That is

~pi
22mi

2!up1p2&Þ0. ~6.6!

Our first step is to show that the above bound state co
posite is a sharp state being zero unlessP25M2 whereM is
the meson bound state mass. By using the total and rela
momentum operators and Eq.~2.20! @so that Eq.~2.27! is
satisfied and notP•q[0#, the product of the two delta func
tions can be written as

d„p1
22m1

22F~x'!…d„p2
22m2

22F~x'!…

5dS «1
2P2

M2
1q22m1

22F~x'!1
2«1P•q

M D
3dS ~m1

22m2
2!

~P22M2!

M2
12P•qD

5dS «1«2~P22M2!

M2
1HqD

3dS ~m1
22m2

2!
~P22M2!

M2
12P•qD , ~6.7!

whereHq5q22F(x')1b2. We assume that the momentu
space wave functionc(p1 ,p2) is an eigenfunction ofHq , so
that Hqc(p1 ,p2)50. Thus, on such states the above eq
tion becomes

d„p1
22m1

22F~x'!…d„p2
22m2

22F~x'!…

5
M2

2«1«2
d~P22M2!d~P•q!. ~6.8!

This shows, as anticipated, that the state defined in Eq.~6.3!
is sharp and would satisfy Eq.~2.23! in addition to Eq.
~2.24!.

We allow the delta function arguments to operate on
momentum states, and use the positive energy condit
Then from Eq.~2.17! we have

u~p1
0!u~p2

0!d„p1
22m1

22F~x'!…d„p2
22m2

22F~x'!…

5u~p1
0!u~p2

0!
M2

4«1«2E2
dS p1

02
E

M
«12P"qD

3dS p2
02

E

M
«21P"qD , ~6.9!

whereE5AP21M2. We would like to express this in term
of a Lorentz transformation from the c.m. system~in which
the meson has a massM ).

When the composite particle is boosted byL to a momen-
tum P, the meson’s velocity is
7-9
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V5
P

E
. ~6.10!

Thus with û5V̂ÄP/uPu, the components ofL are

Lk
i 5d ik1~g21!ûi ûk5d ik1S E

M
21DPiPk

P2
,

L0
i 5L i

05ûiA~g221!5
Pi

M
,

L0
05g5

E

M
. ~6.11!

We use the notationp1* 5(«1 ,p1* ) to represent the four
momenta of thei th constituent in the composite particle re
frame, and pi5piL5(« iL ,piL) to represent the four
momentum of thei th constituent in the frame boosted fro
pi* by L. Then we have

pi
0[piL

0 5~Lp1* !05gpi*
01û•pi* 5

E« i

M
1

P•pi*

M
[« iL ,

~ i 51,2! ~6.12!

and

pi[piL5
P

M
« i1pi* 1S E

M
21DPP•pi*

P2
, ~ i 51,2!.

~6.13!

Becausep1* 1p2* 50 we have therefore

p1
01p2

05AP21M25E, ~6.14!

p11p25
P

M
~«11«2!5P. ~6.15!

Furthermore, using Eq.~2.17! we have

P"qÄ
E

M
P"q* 5

E

M
P"p1* 52

E

M
P"p2* . ~6.16!

Hence, Eq.~6.9! can be rewritten as

u~p1
0!u~p2

0!d„p1
22m1

22F~x'!…d„p2
22m2

22F~x'!…

5u~p1
0!u~p2

0!
M2

4«1«2E2
d„p1

02~Lp1* !0
…d„p2

02~Lp2* !0
….

~6.17!

We have therefore
04490
^P0u~12!EP&5
M2

E2 E d4p1d4p2d4~P2p12p2!

3d„p1
02~Lp1* !0

…d„p2
02~Lp2* !0

…

3c~p1 ,p2!up1 ,p2&. ~6.18!

Now the p1
0 and p2

0 part of thed4p1 and d4p2 can be inte-
grated out and the result is

^P0u~12!EP&5
M2

E2
d~P02p1

02p2
0!E dp1dp2

3d3~P2p12p2!c~p1
0p1 ,p2

0p2!up1
0p1 ,p2

0p2&,

~6.19!

wherepi
05(Lpi* )0 and p1

01p2
05E. In the c.m. system,p1

0

1p2
05M and the state vector is

^P0u~12!M0&5d~P02M !E dp1* dp2* d3~p1* 1p2* !

3cM~«1p1* ,«2p2* !u«1p1* ,«2p2* &.

~6.20!

We introduce the notationuM (P)& defined as

uM ~P!&5E dp1dp2d3~P2p12p2!

3c~p1
0p1 ,p2

0p2!up1
0p1 ,p2

0p2&, ~6.21!

so that, since in a general framep1
01p2

05AP21M25E,

^P0u~12!EP&5
M2

E2
d~P02AP21M2!uM ~P!&. ~6.22!

The projection of the state vectoru(12)EP& onto the time
component of the center of mass@39# is then

^tu~12!EP&5E ^tuP0&dP0^P0u~12!EP&5e2 iEt
M2

E2
uM ~P!&.

~6.23!

From the above results, the energies of the constituen
a composite particle take on fixed values (pi

0* 5«1) in the
center-of-mass system, while their off-shell componentpi*
takes on continuous variations with a distribution. On t
other hand, when boosted by the Lorentz transformationL,
the energy of thei th constituent is given bypi

05(Lpi* )0 in
a moving composite particle, but their sum,p1

01p2
0, remains

a constant. Even though the timelike components of the c
stituents have these well-defined values which depend on
frame of reference, they are often not written out explicit
for brevity of notation.

For a proper constraint treatment of spin, we should p
allel the treatment in the above sections except using D
operators instead of Klein-Gordon operators. Alternative
we can adapt the above spinless results to the case of sp
using the fact that we can reduce, for two particles, the tw
7-10
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body Dirac equations to Schro¨dinger-like forms above bu
with F depending on spin degrees of freedom@10,34#. In a
future paper we shall include the spin dependent feature
more detail.

In order to deal with multiparticle configurations, we in
troduce creation and annihilation operators of the const
ents in a composite particle in its c.m. frame

up1* ,p2* &5b†~p1* !d†~p2* !u0&. ~6.24!

~We suppress spin, flavor, and color indices here and in
wave functions below.! We assume the general expressio

$b†~p18* !,b~p1* !%5N~p1* !d~p18* 2p1* !,

$d†~p28* !,d~p2* !%5N~p2* !d~p28* 2p2* !, ~6.25!

and thus

^p18* ,p28
* up1* ,p2* &5N~p1* !d~p18* 2p1* !N~p2* !d~p28* 2p2* !.

~6.26!

In the case in which free isolated particles are created
annihilated, one traditionally takes eitherN(p* )51 or
N(p* )52Ap* 21m2. We emphasize, however, that th
above momentum in the creation and annihilation opera
are not on mass shell but on energy shell. In the contex
the constraint approach, the individual creation and annih
tion operators do not produce free-particle states, but ra
constituent states within a composite associated with a d
nite total mass and total momentum. Since the aim of
paper is a description of the relativisticN-body problem in a
separable two-body basis, this is plausible. To achieve t
we must determine how the creation and annihilation ope
tors will transform under a Lorentz transformation. L
U(L) be our unitary boost operator defined so that

U~L!b†~p1* !U21~L!5C~p1L!b†~p1L! ~6.27!

and

U~L!d†~p2* !U21~L!5C~p2L!d†~p2L!, ~6.28!

where piL is the three-vector part ofLpi* . In the case in
which free isolated particles are produced, the above
conventions lead respectively to eitherC(p)5A(Lp)0/p0 or
C(p)51. In order to see what these factors become now
the constraint approach, we consider

U~L!$b†~p18* !,b~p1* !%U21~L!

5N~p1* !d~p18* 2p1* !

5C~p1L!C* ~p1L8 !N~p1L!d~p1L8 2p1L!.

~6.29!

To make use of this equation, we need to express the boo
momenta in terms of the unboosted momenta. The Lore
transformation matrixL, defined in Eq.~6.11!, is indepen-
dent of the momentum of the system being boosted. For
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same two-body system, the spacelike part~6.13! of the Lor-
entz transformation on two different momenta~for the same
quark, that is,«15«18) yields

p1L2p1L8 5F11S E

M
21DPP•

P2 G ~p1* 2p1*
8!. ~6.30!

Using the fact thatd3(Ar )5d3(r )/detuAu, we find that

d~p1L2p1L8 !5
M

E
d~p1*

82p1* ! ~6.31!

so that Eq.~6.29! implies

N~p1* !5C~p1L!C* ~p1L8 !N~p1L!
M

E
. ~6.32!

We choose the normalizationN51. Using phase convention
with real C, the simplest choice is

C5AE

M
. ~6.33!

This C is associated with the motion of the composite p
ticle. Thus we have

U~L!b†~p1* !U21~L!5AE

M
b†~p1L! ~6.34!

and

U~L!d†~p2* !U21~L!5AE

M
d†~p2L!. ~6.35!

„As anticipated above, this contrasts with the on mass s
factor given in standard texts@see@40#, Eq. ~4.2.12!# which
refer only to the constituent momenta.… Thus we have

uM ~P!&5U~L!uM ~0!&

5E d3p1* d3p2* cM~p1* ,p2* !

3d~p1* 1p2* !
E

M
b†~p1L!d†~p2L!u0&.

~6.36!

We emphasize that the transformation equations@Eq. ~6.34!
and Eq.~6.35!# are valid for arbitraryp1 or p2, not just ones
that satisfy the rest condition ofp11p250. This implies that
the creation and annihilation operators that go into mak
up the individual two-body interactions will transform in
similar way.@See Eq.~7.10! below.#

Next we change variables so that the delta function
flects the new total momentumP. The inverse of the above
Lorentz transformation gives fori 51,2

pi* 52
P« i

E
1piL1S M

E
21DPP•piL

P2
~6.37!

which in turn gives
7-11
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~Lpi* !05
« iM

E
1

P•piL

E
. ~6.38!

Note that withp1L1p2L5P we have

p1* 1p2* 5p1L1p2L2P50. ~6.39!

Computing the Jacobian of the above transformation~6.37!
gives

d3pi* 5
M

E
d3piL . ~6.40!

@Note again how this contrasts with the case of free on-s
particles whered3pi5d3piLpi

0/(Lpi)
0.] Hence,

uM ~P…&5
M

E E d3p1Ld3p2LcM~p1* ,p2* !

3d~P2p1L2p2L!b†~p1L!d†~p2L!u0&.

~6.41!

The wave function cM(p1* ,p2* ) is actually
cM(p1* (p1L),p2* (p2L)) where the vectors $p1* (p1L),
p2* (p2L)% are $(p1L)L21,(p2L)L21% . A simple relabeling
~not a transformation! gives the representation of a gene
state for a composite particle with momentumP,

uM ~P!&5
M

E E d3p1d3p2cM~p1 L21,p2 L21!

3d~P2p12p2!b†~p1!d†~p2!u0&. ~6.42!

In the nonrelativistic limit, this becomes

uM ~P!&5E d3p1d3p2cMS p1 2
m1

~m11m2!
P,

3p22
m2

~m11m2!
PD d~P2p12p2!b†~p1!d†~p2!u0&.

~6.43!

So, each composite state, Eq.~6.22! with Eq. ~6.42!, differs
from that of the nonrelativistic limit by not only replacin
Galilean boosts with inverse Lorentz boosts but also b
factor of the ratio of the total c.m. energy to the lab ener

In Appendix A we show that the scalar product for tw
systems in the same internal state is given by the th
dimensional momentum delta function times a covari
form

^M ~P8!uM ~P!&5
d3~P82P!M3

E2 E d4pd~p•P!ucM~p!u2,

~6.44!
04490
ll
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with the wave function having the same dimensions as in
nonrelativistic case.

Given these preliminaries, we consider how to use t
formulation in the calculation of meson-meson scatter
amplitudes. In this problem one starts with a sta
u(12)(34)& consisting of two quark-antiquark states. W
model the interaction by the exchange of an~effective! gluon
corresponding toV. At lowest order, the exchange could n
produce a final stateu(12)(34)& but onlyu(14)(23)& since the
emission of a virtual gluon would leave the resultant init
state as two color octet mesons rather than singlet mes
One would thus need to evaluate a typical matrix elemen
the form

^~14!~23!uV~ x̂14'!u~12!~34!&. ~6.45!

Inserting *dtut&^tu51 and using Eq.~6.23! into the above
expression, we can carry out the integration int to obtain a
delta function which describes the condition of total ener
conservation. We have

^~14!~23!uV~ x̂14'!u~12!~34!&

52pd~E121E342E132E24!S M12M14M13M24

E12E14E13E24
D 2

3^M ~P14!,M ~P23!uV~ x̂14'!uM ~P12!,M ~P34!&,

~6.46!

where

uM ~P12!&5
M12

E12
E d3p1d3p2c~p1 L

12
21,p2 L

12
21!

3d~P122p12p2!b†~p1!d†~p2!u0&,

~6.47!

in which P12 is the momentum of the composite with c.m
energyM12 so thatE125AP12

2 1M12
2 andL12

21 is the inverse
boost to the rest system of the composite. Similar expr
sions appear foruM (P34)&, uM (P14)&, anduM (P23)&.

VII. REACTION MATRIX ELEMENT

In order to compute matrix elements of the potential,
need its second quantized version. We evaluate it in the
frame of the two interacting constituents and we assume
the second quantized form of the potential has the same
lation to its first quantized form as in the nonrelativistic ca
For the reactionA(12)1B(34)→C(14)1D(32), the matrix
elements for the interaction between a particle and an a
particle consists of the C1 and the C2 diagram in Fig. 1.
consider the C1 diagram as a representative case. The i
action corresponding to this C1 diagram takes place betw
particles 1 and 4 and is given by
7-12
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V~ x̂14'!uP14505V~ x̂14!5E d3x18d
3x48d

3x19d
3x49V~x148 !d~x182x19!d~x482x49!ux18x48&^x19x49u

5E d3p1d3p4d3p18d
3p48d~p11p42p182p48!Ṽ~p12p48!b†~p1!d†~p4!d~p48!b~p18!, ~7.1!

in which the integrals include sums over spin, flavor, and color. In this form the indices and primes serve to label th
color and flavor as well as the momentum. The annihilation and creation operators with momentumpi andpi8 apply only to

particle i. To represent the interactionV( x̂14), we choose to represent the annihilation and creation operators in the rest
of the ~particle 1!-~particle 4! pair, i.e., the (P1450) frame. In this frame, let the total momenta of the two initial mes
composite systems beP5P121P34, with P12 and P34 to be the individual incoming momenta of the two meson compo
systems. The total energy of the two meson system is given in terms of the respective c.m. energies of the composite

As5E121E345AP12
2 1M12

2 1AP34
2 1M34

2 . ~7.2!

The total momentumP of the two~composite! particle system is conserved in the scattering process so that we can lab
matrix element as

^M ~P14!,M ~P23!;PuV~ x̂14!uM ~P12!,M ~P34!;P&. ~7.3!

Let us evaluate the matrix element in the ‘‘collider frame’’ defined by

P12
c 1P34

c 50. ~7.4!

The Lorentz boost to that frame is given by

Lk
i 5d ik1S AP21s

As
21D PiPk

P2
,

L0
i 5L i

052
Pi

As
,

L0
05g5

AP21s

As
, ~7.5!

and takes us to

^M ~P14!,M ~P23!;PuV~ x̂14!uM ~P12!,M ~P34!;P&5^M ~P14
c !,M ~P23

c !;0uU~L!V~ x̂14!U
21~L!uM ~P12

c !,M ~P34
c !;0&, ~7.6!

where

uM ~P12
c !,M ~P34

c !;0&5
M12

E12
E d3p1d3p2c~p1 L

12
21,p2 L

12
21!d~P12

c 2p12p2!b†~p1!d†~p2!

3
M34

E34
E d3p3d3p4c~p3 L

34
21,p4 L

34
21!d~P34

c 2p32p4!b†~p3!d†~p4!u0&, ~7.7!

^M ~P14
c !,M ~P23

c !;0u5
M14

E14
^0u E d3p19d

3p49c* ~p19 L
14
21,p49 L

14
21!d~P14

c 2p192p49!d~p49!b~p19!

3
M23

E23
E d3p29d

3p39c* ~p29 L
23
21,p39 L

23
21!d~P23

c 2p292p39!d~p39!b~p29!, ~7.8!

andEi j [APi j
c21Mi j

2 .
Note that the integrals in the above state vectors include color summation but not flavor. The above matrix elem

becomes
044907-13
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^M ~P14
c !,M ~P23

c !;0uU~L!V~ x̂14!U
21~L!uM ~P12

c !,M ~P34
c !;0&

5^M ~P14
c !,M ~P23

c !;0u E d3p1d3p4d3p18d
3p48d~p11p42p182p48!Ṽ~p12p48!

3U~L!b†~p1!d†~p4!d~p48!b~p18!U~L!21uM ~P12
c !,M ~P34

c !;0&. ~7.9!

From our earlier arguments, the transformations defined in Eqs.~6.34! and ~6.35! are independent of the total momentum
the two-body system. Thus, using this, we obtain

^M ~P14
c !,M ~P23

c !;0uU~L!V~ x̂14!U
21~L!uM ~P12

c !,M ~P34
c !;0&

5^M ~P14
c !,M ~P23

c !;0u E d3p1d3p4d3p18d
3p48d~p11p42p182p48!Ṽ~p12p48!

3b†~p1L!d†~p4L!d~p4L8 !b~p1L8 !uM ~P12
c !,M ~P34

c !;0&
E14

2

M14
2

. ~7.10!

We can point out that this last factor, due to interaction transformations, is not present in the nonrelativistic limit. This
element is evaluated in Appendix B, and we find

^M ~P14
c !,M ~P23

c !;0uU~L!V~ x̂14!U
21~L!uM ~P12

c !,M ~P34
c !;0&

52d3~P342P141P122P23!
M23

E23

E14

M14

M12

E12

M34

E34
3E d3p1d3p4cD* ~ p1LL

14
21,2 p1LL

14
21!cC* @~2P34

c 1p4L!L
23
21,

2~2P34
c 1p4L!L

23
21#3cA@ ~2P23

c 1P34
c 2p4L!L

12
21,2 ~2P23

c 1P34
c 2p4L!L

12
21#cB~2p4LL34

21,p4LL34
21!Ṽ~p12p4!.

~7.11!

From Eqs.~5.10!, ~6.46!, and~7.11!, the reaction matrix element for the interactionV14 is

hf i [14]5S M23

E23

M12

E12

M34

E34
D 3 M14

E14
E d3p1d3p4cA~pA ,2pA!cB~pB ,2pB!3cC* ~pC ,2pC!cD* ~pD ,2pD!Ṽ~p12p4!,

~7.12!
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pA5 ~2P23
c 1P34

c 2p4L!L
12
21, ~7.13!

pB52p4LL34
21, ~7.14!

pC5~2P34
c 1p4L!L

23
21, ~7.15!

pD5 p1LL
14
21. ~7.16!

Note that the dimension of the wave function leads to anhf i
which has the dimension of 1/mass2 as required earlier. In
the above expression,p1LL

23
21, for example, is the space pa

of (L23
21Lp1) and the four energy ratios correspond to t

transformations associated with the (23),(14),(12),(34)
composite particles. The energy ratio for the (14) compo
differs from the others due to the transformation of the (1
interaction term. The term here corresponds to the C1
gram in Fig. 1.
04490
te
)
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It is interesting to note that compared to the nonrelativ
tic case, the overlap matrix element now involves two ma
differences. First, the momentum arguments in the w
function need to be inversely boosted back to the frame
which the composite particles are at rest, as they should
Second, there are factors of the typeMi j /Ei j appropriate for
the composite particle in the collider frame. Both effects c
lead to substantial modification of the magnitude of the
action cross sections.

VIII. CONCLUSION AND SUMMARY

We seek a relativistic formulation of the many-body pro
lem involving both bound states and reaction between c
stituents of composite particles. As a first example, we h
focused our attention on a system of spinless particles in
acting with a scalar and/or vector interaction.

We began by examining the relativistic two-body bou
state problem and introduced Lagrangian multipliers to w
down the most general two-body Hamiltonian. The formu
tion using the constraint dynamics allowed a simple sepa
tion of the center-of-mass and the relative motion. A tw
7-14
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body equation was obtained in the form of a nonrelativis
Schrödinger equation which connects naturally to the cor
sponding nonrelativistic problem in the nonrelativistic lim
The two-body equation is independent of the Lagrange m
tipliers. The bound state mass is related to the eigenvalu
the nonrelativistic problem by a simple algebraic equation
the case in which one considers only relativistic kinemat
Further relativistic effects show up in this algebraic relatio
ship when the energy dependence accompanying the s
and vector interaction is taken into account.

For a many-particle system, we considered pairwise in
action between particles. In constructing the total Ham
tonian, a good choice of the Lagrange multiplier provide
simple way to separate theN-body Hamiltonian into the un-
perturbed Hamiltonian and residual interactions. It also p
sents a systematic way to use the two-body solution as b
states for multiparticle dynamics. The study of the dynam
involves the evaluation of the reaction matrix elements o
general two-body interaction in terms of the wave functio
of the composite particles.

In rearrangement reactions, because there can be m
ways to divide the total Hamiltonian, the evaluation of t
reaction matrix elements should not depend on the choic
the unperturbed Hamiltonian and basis states. With our
mulation, this ‘‘post-prior’’ equivalence can be shown e
plicitly, allowing for a meaningful definition of the perturba
tion expansion and treatment of the reaction dynamics.

Finally, we give an explicit formula for the reaction ma
trix elements in terms of the composite wave functions.
the relativistic treatment, the important effects include
04490
c
-

l-
of
n
.

-
lar

r-
-
a

-
sis
s
a
s

ny

of
r-

n
e

inverse boost of the relative momentum to the frame
which the composite particles are at rest, so as obtain
correct wave function. Furthermore, there are factors
Mi j /Ei j in the collider frame for the composite particle
These relations will be useful when we apply the pres
formulation to many problems in nuclear and particle ph
ics such as meson-meson scattering. An aim would be to
how this approach modifies the results of the nonrelativis
formalism as present in@19#.

The results we have obtained are very encouraging.
should in future work carry out a calculation for the relati
istic I 52pp scattering, to compare with the nonrelativist
results of Barnes and Swanson@19# and with experimental
data. We should also extend our considerations to include
spin degree of freedom and more complicated interaction
the constraint description.
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APPENDIX A: SCALAR PRODUCTS

Let us consider the general scalar product^M (P8)uM (P)&
m

^M ~P8!uM ~P!&5
M

E8

M

E E d3p1L8
8 d3p2L8

8 ^0ud~p2L8
8 !b~p1L8

8 !cM* ~p18 ,p28!d3~P82p1L8
8 2p2L8

8 !

3E d3p1Ld3p2LcM~p1 ,p2!d~P2p1L2p2L!b†~p1L!d†~p2L!0)

5
M

E8

M

E E d3p1L8
8 d3p2L8

8 E d3p1Ld3p2LcM* ~p18 ,p28!c~p1 ,p2!d3~P82P!d3~P2p1L2p2L!

3d3~p1L2p1L8
8 !d3~p2L2p2L8

8 !, ~A1!

whereE5AP21M2, E85AP821M2.
Now the total momentum delta function makesL5L8, which in turn implies that the two delta functions that come fro

the creation and annihilation operator force the arguments of the two wave functions to be the same. Thus

^M ~P8!uM ~P!&5d3~P82P!
M2

E2 E d3p1Ld3p2LcM* ~p1 ,p2!cM~p1 ,p2!d3~P2p1L2p2L!

5d3~P82P!
M2

E2 E d3p1d3p2cM* ~p1L21,p2L21!cM~p1L21,p2L21!d3~P2p12p2!. ~A2!

On the right-hand side let

P5p11p2 ,
7-15
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p5
«2

M
p12

«1

M
p2 , ~A3!

so that the integral becomes

E d3Pd3pcM* XS «1

M
P1pD

L21

,F S «2

M
P2pD G

L21
CcMXS «1

M
P1pD

L21

,F S «2

M
P2pD G

L21
Cd~P2P!

5E d3pcM* XS «1

M
P1pD

L21

,XS «2

M
P2pD C

L21
CcMXS «1

M
P1pD

L21

,F S «2

M
P2p8D G

L21
C

5E d3pcM* ~~01p8!L21,„~02p!…L21!cM@~01p!L21,~~02p!#L21!

[E d3pucM~pL21!u2

5E d4pd~p0!ucM~L21p!u2. ~A4!

But p05p•L21P/M . So takingp5L p̄ and usingd4p85d4p̄, we have the following manifestly covariant scalar product

E d4pd~p0!ucM~L21p!u25ME d4p̄d~ p̄•P8!ucM~ p̄!u2. ~A5!

APPENDIX B: EVALUATION OF THE REACTION MATRIX ELEMENT

In this appendix we evaluate the matrix element of Eq.~7.10!,

^M ~P14
c !,M ~P23

c !;0uU~L!V~ x̂14!U
21~L!uM ~P12

c !,M ~P34
c !;0&

5^M ~P14
c !,M ~P23

c !;0u E d3p1-d3p4-d3p18d
3p48d~p1-1p4-2p182p48!Ṽ~p1-2p48!

3U~L!b†~p1-!d†~p4-!d~p48!b~p18!U~L!21uM ~P12
c !,M ~P34

c !;0&

5^M ~P14
c !,M ~P23

c !;0u E d3p1-d3p4-d3p18d
3p48d~p1-1p4-2p182p48!

3Ṽ~p1-2p48!b†~p1L- !d†~p4L- !d~p4L8 !b~p1L8 !uM ~P12
c !,M ~P34

c !;0&
P14

c821M14
2

M14
2

, ~B1!

in which the integrals include sums over flavor and color. This requires us to compute

^0ud~p49!b~p19!d~p39!b~p29!b†~p1L- !d†~p4L- !d~p4L8 !b~p1L8 !b†~p1!d†~p2!b†~p3!d†~p4!u0&

5^0u@d~p4L- 2p39!d~p1L- 2p29!d~p49!b~p19!2d~p4L- 2p49!d~p1L- 2p29!d~p39!b~p19!2d~p4L- 2p39!d~p1L- 2p19!d~p49!b~p29!

1d~p4L- 2p49!d~p1L- 2p19!d~p39!b~p29!#3@d~p4L8 2p2!d~p1L8 2p1!b†~p3!d†~p4!2d~p4L8 2p4!

3d~p1L8 2p1!b†~p3!d†~p2!2d~p4L8 2p2!d~p1L8 2p3!b†~p1!d†~p4!1d~p4L8 2p4!d~p1L8 2p3!b†~p1!d†~p2!#u0&,

~B2!

in which the delta functions include flavor and color indices. If we assume that flavors for 1 and 2 are distinct from th
3 and 4, then of the 16 terms above the only one that survives is

^0ud~p4L- 2p49!d~p1L- 2p19!d~p4L8 2p4!d~p1L8 2p1!d~p392p3!d~p292p2!u0!. ~B3!

Thus ~using the notationEi j 5APi j
c21Mi j

2 ), we obtain
044907-16
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^M ~P14
c !,M ~P23

c !;0uU~L!V~ x̂14!U
21~L!uM ~P12

c !,M ~P34
c !;0&

52E d3p4-d3p1-d3p48d
3p18d

3p39d
3p29cD* ~ p1LL

14
21- , p4LL

14
21- !d~P14

c 2 p1L- 2 p4L- !cC* ~ p2L
23
219 ,p39 L

23
21!

3d~P23
c 2p292p39!cA~ p1LL

12
218 ,p29 L

12
21!d~P12

c 2p292p1L8 !cB~p39 L
34
21,p4L8 L

34
21!d~P34

c 2p4L8 2p39!

3d~p1-1p4-2p182p48!Ṽ~p1-2p48!
M23

E23

E14

M14

M12

E12

M34

E34
. ~B4!

We perform four of the remaining six volume integrals of the first set of integrals. In particular, we perform integration
d3p4-d3p18d

3p39d
3p29 . We use the first delta functionp4L- 5P14

c 2p1L- , the second givesp295P23
c 2p39 , the third givesp1L8

5P12
c 2p29 , and the fourth givesp395P34

c 2p4L8 . The argument of the remaining delta function is then

p1-1p4-2p182p485P14L21
c

2P12L21
c

1P34L21
c

2P23L21
c

5P342P141P122P23, ~B5!

which corresponds to overall momentum conservation in the frame in which we evaluate the matrix element~the P1450
frame!. Then, the reaction matrix element becomes

^M ~P14
c !,M ~P23

c !;0uU~L!V~ x̂14!U
21~L!uM ~P12

c !,M ~P34
c !;0&

52d3~P342P141P122P23!E d3p1-d3p48cD* @ p1LL
14
21- , ~P14

c 2p1L- !L
14
21#3cC* ~P23

c 2P34
c 1p4L8 !L

23
21,

~P34
c 2p4L8 !L

23
21)cA@ ~P12

c 2P23
c 1P34
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34
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34
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M23
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E14

M14

M12

E12

M34

E34
. ~B6!

But P14L
14
21505P12L

12
215P34L

34
215P23L

23
21 so that

^M ~P14
c !,M ~P23

c !;0uU~L!V~ x̂14!U
21~L!uM ~P12

c !,M ~P34
c !;0&

52d3~P342P141P122P23!E d3p1-d3p48cD* ~ p1LL
14
21- , 2p1L- L

14
21!cC* @~2P34

c 1p4L8 !L
23
21,~P34

c 2p4L8 !L
23
21#

3Ṽ~p1-2p48!cA@ ~2P23
c 1P34

c 2p4L8 !L
12
21,~P23

c 2P34
c 1p4L8 !L

12
21#cB~ 2p4L8 L

34
21,p4L8 L

34
21!

M23

E23

E14

M14

M12

E12

M34

E34
,

~B7!

which corresponds to the indicated amplitude in which a gluon is exchanged between particle 1 and particle 4. This p
the form in the text~where we dropped the primes on the two integration variables!.
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