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Scenario for ultrarelativistic nuclear collisions. IV. Effective quark mass at the early stage

A. Makhlin and E. Surdutovich
Department of Physics and Astronomy, Wayne State University, Detroit, Michigan 48202

~Received 3 August 2000; published 7 March 2001!

Using the framework of wedge dynamics, we compute the effective transverse mass of a soft quark mode
propagating in the expanding background of hard quarks and gluons created at the earliest time of the collision.
We discover that the wedge dynamics does not require any external infrared or collinear cutoff. The effective
mass is produced mainly due to the forward quark-quark scattering mediated by the longitudinal~in the sense
of Gauss law! magnetic fields. Contribution of the radiation field is parametrically suppressed.

DOI: 10.1103/PhysRevC.63.044904 PACS number~s!: 12.38.Mh, 12.38.Bx, 24.85.1p, 25.75.2q
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I. INTRODUCTION

In the first paper of this cycle@1# ~further quoted as pape
@I#!, we formulated a program that might result in a theory
ultrarelativistic nuclear collisions which is free from collin
ear problems and naturally establishes the infrared boun
for the space of ‘‘final’’ states at the very early stage of t
collision (<1 fm). We have demonstrated that even at ve
early times~much less than is required for any kinetic pr
cess to develop!, the collective interactions in a dense syste
provide the final states of the QCD evolution with finite d
namically generated masses that shield mass singularitie
the evolution equations.1 It was shown also that the null
plane dynamics are incapable of describing local screen
effects, because any type of kinetics is frozen on the li
cone. It was suggested, that a more adequate approac
quires the change of the global Hamiltonian dynamics wh
is used for the field-theory description of nuclear collision
We proposed the so-calledwedge dynamicswhich employs
the proper timet measured from the first touch of th
Lorenz-contracted nuclei as the Hamiltonian time. Our init
estimates in paper@I# were very qualitative. In two consecu
tive papers@4,5# ~further quoted as papers@II # and@III #!, we
have studied, in detail, the space of states of wedge dyn
ics. In paper@II #, we extended the qualitative analysis
scalar fields initiated in@I#, and found that for the charge
fields, the early-time evolution of the wave function is a
companied by a gradual rearrangement of the charge d
bution, starting from its almost uniform spread along t
light cone att→0, and up to a narrow wave packet with
well defined rapidity at later times. We have shown that t
redistribution of the charge leads to currents in the rapid
direction and that these currents are the largest at the ea
t. The magnetic fields generated by these currents can
responsible for the interactions between the currents at
earliest moments of the QCD evolution. In paper@II #, we
studied the states of fermions in wedge dynamics and fo
the fermion field correlators that are used below for the c

1The idea that screening effects should be taken into accou
the early kinetic stage of a collision has been articulated earlier
with different motivations by Shuryak and Xiong@2# and by Eskola,
Muller, and Wang@3#
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culation of the quark self-energy in the expanding system
paper@III #, we addressed the issue of gauge fields in we
dynamics. Several important problems were solved th
The natural gauge condition of wedge dynamics,At50, was
proved to be completely fixed~at the level of perturbation
theory!. The second~technically nearly most difficult! prob-
lem solved in paper@III #, was the separation of the longitu
dinal ~i.e., governed by Gauss law! field and the field of
radiation. In that paper, we also quantized the gauge fiel
the scope of wedge dynamics and explicitly found t
Wightman functions and retarded propagator of the glu
field which are used in this paper for the practical calculat
of the fermion self-energy.

Our decision to begin the exploration of potentialities
the wedge dynamics with the computation of quark se
energy is motivated only by technical reasons. The glu
propagator of wedge dynamics is a very complicated fu
tion, and we preferred to start with the computation of t
fermion loop which has only one gluon correlator in it. W
hope that the possibility of a technical simplification~com-
pared to what we had to start with! discovered in this paper
will allow us to address a more important problem of t
gluon self-energy in a reasonably economic way.

In the course of this study, we employ a single heuris
assumption~supported by the analysis of paper@II #! that the
field states with large transverse momentum, even at v
early times, may be associated with the localized partic
and thus can be described by the distribution with respec
the rapidity and transverse momentum. Our strategy of lo
ing for the leading contributions, as well as all our appro
mations, in the calculation of the material part of the qua
self-energy are based on this assumption. If it appears in
rect, then it is most likely that the quark-gluon matter crea
in the collision of two nuclei never and in no approximatio
can be considered as a system of nearly free and we
interacting field states.

II. FERMION RETARDED SELF-ENERGY

In order to find the normal modes of the quark field in t
expanding quark-gluon system, we are going to solve
Dirac equation with the radiative corrections, which can

at
d
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FIG. 1. The retarded forward
scattering amplitude is contribute
by two subprocesses,qg→qg and
qq→qq.
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derived as a projection of the Schwinger-Dyson equation
the retarded quark propagator onto the one-particle in
state. For the quark field without Lagrangian mass, this eq
tion reads

igm~x1!¹m~x1!c~x1!5E d4x2S [ret]~x1 ,x2!c~x2!.

~2.1!

The covariant derivative¹m(x) of the spinor field in the
curvilinear coordinates of the wedge dynamics includes
spin connection and it was found explicitly in paper@II #. For
all calculations below, we employ the mixed representat
which is the most profitable in heavy-ion problems. We a
looking for the radiative corrections to the wave functi
with a given transverse momentumpW t and rapidityu with the
expectation that within the rapidity plateau nothing will d
pend onu. However, we cannot totally eliminate the coord
nateh from the theory. We have to keep it explicitly, sinc
the problem of the expanding field system cannot be redu
to ~211! dimensions. In its expanded form, Eq.~2.1! reads

F ig0S ]

]t1
1

1

2t1
D1

ig3

t1

]

]h1
2prg

r Gc~pt ;t1 ,h1!

5E
0

t1
dt2E

2`

`

t2dh2S [ret]~pt ;t1 ,t2 ;h12h2!

3c~pt ;t2 ,h2!. ~2.2!

The retarded self-energy is an object that naturally eme
in the Schwinger-Dyson equation for the retarded propag
in Keldysh-Schwinger formalism@6#. Below, we employ its
modified form developed earlier with the view of applicatio
to the inclusive and transient processes. We employ the
tation used in Refs.@7,8,1#.2 In this notation, the one-loop
retarded fermion self-energy in coordinate form is

2The indices of the field correlators with the Keldysh conto
ordering of the field operators~like G[AB] ) as well as the labels o
their linear combinations~like G[ret]) are placed in square bracket
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S [ret]~x1 ,x2!5
ig2

2
@ tagmG[ret]~x1 ,x2!tbglD [1]lm

ba ~x2 ,x1!

1tagmG[1]~x1 ,x2!tbglD [adv]lm
ba ~x2 ,x1!#.

~2.3!

The two subprocesses that contribute this self-energy are
picted in Fig. 1.

The retarded and advanced quark and gluon propaga
G[ret] and D [adv]

lm were found in papers@II # and @III # of this
cycle and are connected with the commutatorsG[0] and
D [0] ,

G[ret]~x1 ,x2!5u~t12t2!G[0]~x1 ,x2!,

D [adv]
lm ~x2 ,x1!52u~t12t2!D [0]

lm ~x2 ,x1!1DL
lm~x2 ,x1!,

~2.4!

where DL
lm(x2 ,x1) is the longitudinal part of the gluon

propagator~governed by Gauss law!, and it enters in Eq.
~2.4! in such a way that the conditionD [ret]2D [adv]5D [0] is
satisfied and the noncausal longitudinal part of the propa
tor does not violate the causal properties of the commut
D [0] . The correlatorsG[1] and D [1] include densities of
vacuum states as well as the information about the occu
tion numbers~phase-space population!. Eventually, we shall
prove that an approximation of the boost-invariance~infinite
rapidity plateau! is not corrupted by any kind of cutoffs~the
vacuum part never is!. Therefore, all correlators (G, D, and
S) will depend on two timest1 and t2 separately, the dif-
ference of rapiditiesh5h12h2, and the differencerW5rW1

2rW2 of distances inxy plane. The latter is Fourier trans
formed to the transverse momentum dependence. In
mixed representation,

r
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S [ret]~t1 ,t2 ;h,pW t!

5
ig2

2~2p!2E d2kW t@ tagm~t1!G[ret]~t1 ,t2 ;h,pW t1kW t!

3tbg l~t2!D [1] lm
ba ~t2,t1;2h,kWt!

1tagm~t1!G[1]~t1 ,t2 ;h,pW t1kW t!

3tbg l~t2!D [adv]lm
ba ~t2 ,t1 ;2h,kW t!#, ~2.5!

wheregh(t)5g3/t. As has been shown in@I#, all fermion
correlatorsG[a] can be decomposed as

G[a]~t1 ,t2 ;h,qW t!

5qt@g[a]
0 g01g[a]

3 g3#1g[a]
T qrg

r1 ig [a]
A qre

rugug5

5qt@g[a]
L(1)g11g[a]

L(2)g2#1qrg
rg0@g[a]

T(1)g1

1g[a]
T(2)g2#, ~2.6!

where, for the sake of brevity, we denoteqW t5pW t1kW t . A
similar decomposition takes place for the self-energy,

S [ret]~t1 ,t2 ;h,pW t!5S0g01S3g31STqrg
r1 iSApre

rugug5

5SL(1)g11SL(2)g2

1prg
rg0@ST(1)g11ST(2)g2#, ~2.7!

and we obviously have

g[a]
L(6)5

1

2
~g[a]

0 6g[a]
3 !, g[a]

T(6)5
1

2
~g[a]

T 6g[a]
A !,

SL(6)5
1

2
~S06S3!, ST(6)5

1

2
~ST6SA!. ~2.8!

It becomes easier to analyze the various pieces of
quark self-energy if the gluon correlatorsD [a] lm are taken in
the form of the following decomposition,3

3In what follows, we use the Greek indices for the fou
dimensional vectors and tensors in the curvilinear coordinates~in-
dexh is an exception, it always denotes the rapidity direction!, and
the Latin indices froma to d for the vectors in flat Minkowski
coordinates. We use Latin indices fromr to w for the transversex
andy components (r , . . . ,w51,2), and the arrows over the lette

to denote the two-dimensional vectors, e.g.,kW5(kx ,ky), ukW u
5kt . The Latin indices fromi to n ( i , . . . ,n51,2,3) will be
used for the three-dimensional internal coordinatesui5(x,y,h) on
the hyper-surfacet5const.
04490
e

D [a] rs5S d rs2
krks

kt
2 DD [a]

(TE)1
krks

kt
2 D [a]

(2) ,

D [a]hh5D [a]
(hh) , D [a] rh5

kr

kt
2D [a]

(rh) , D [a]hs5
ks

kt
2D [a]

(hs) ,

~2.9!

where the first term inD [a] rs is due to the transverse electr
mode, and all invariants ofD[adv] ~exceptD [adv]

(TE) ) have two
terms,D[0]

(•••) from the transverse magnetic mode of the
diation field, andD[ long]

(•••) from the longitudinal field. All
these components were found in paper@III # and are given in
the Appendix in the form which is used in the calculatio
below. After some algebra, we can present the retarded q
self-energy in the form,

S [ret]~t1 ,t2 ;h,pW t!5
iasCF

2p E d2kW t@g1SL(1)1g2SL(2)

1prg
rg0~g1ST(1)1g2ST(2)!#,

~2.10!

where the scalar invariants ofS [ret] are the bilinears of the
fermion and gluon scalars,

SL(6)5 (
[a,b]

H qtg[a]
L(6)~D [b]

(TE)1D [b]
(2) !1

qt

t1t2
g[a]

L(7)D [b]
(hh)

7
~kW tqW t!

kt
2 S g[a]

T(6)D [b]
(rh)

t1
1

g[a]
T(7)D [b]

(hr )

t2
D J , ~2.11!

ST(6)5 (
[a,b]

H F ~pW tqW t!

pt
2

22
~kW tpW t!~kW tqW t!

kt
2pt

2 Gg[a]
T(6)~D [b]

(TE)1D [b]
(2) !

2
~qW tpW t!

pt
2t1t2

g[a]
T(7)D [b]

(hh)

7
~kW tpW t!

kt
2pt

2 S g[a]
L(6)D [b]

(rh)

t1
2

gL(7)D [b]
(hr )

t2
D J . ~2.12!

In these equations, the sum(@a,b# runs over @a,b#
5$@ret,1#,@1,adv#%.

III. FERMION MODES IN THE EXPANDING SYSTEM

We shall look for the dispersion law of the fermions in th
proper-time dynamics studying the Dirac equation~2.2! with
radiative corrections. Since the fermions are massless,
convenient to use the spinor basis where the Dirac matr
are

g05S 0 I

I 0D , g l5S 0 2s l

s l 0 D ,

and the Dirac equation can be split into two separate eq
tions for the left- and right-handed two-component spino
The latter reads as
4-3



to

q

iv

or

e
ed
en

n of
t to

ns,

the
e

e

ely
e a
in
an-
a-

A. MAKHLIN AND E. SURDUTOVICH PHYSICAL REVIEW C 63 044904
GR
21~pt ;t1 ,h1!cR~pt ;t1 ,h1!

5E
0

t1
dt2E

2`

`

t2dh2SR~pt ;t1 ,t2 ;h12h2!

3cR~pt ;t2 ,h2!, ~3.1!

where the matrices of the right-handed differential opera
GR

21 and of the right-handed self-energySR are

GR
21~pt ;t,h!5F i S ]t1

1

2t
2

1

t
]hD px2 ipy

px1 ipy i S ]t1
1

2t
1

1

t
]hD G ,

SR~pt ;t1 ,t2 ;h12h2!

5F SL(2) 2~px2 ipy!ST(1)

2~px1 ipy!ST(2) SL(1) G .
~3.2!

The equation for the left-handed spinors differs from E
~3.1! only by a change of some signs in matrices~3.2! and
leads to the same dispersion law. A solution with posit
energy is looked for in the form

cR~pt ,u;t,h!5S e(h2u)/2pt

2e2(h2u)/2~px1 ipy!
D e2 imt cosh(h2u),

~3.3!

wherem is the effective ‘‘transverse mass’’ of the mode. F
the free on-mass-shell solution we havem5pt . To solve Eq.
~3.1!, we introduce an auxiliary~left-handed! spinor

c̃~pt ,u8;t,h!5S e2(h2u8)/2pt

2e(h2u8)/2~px2 ipy!
D eimt cosh(h2u8).

~3.4!

We insert Eq.~3.3! into Eq.~3.1!, multiply it from the left by
spinor ~3.4! and integrate this along the hypersurfacet1
5const. Then the left side of the equation becomes

E
2`

`

t1dh1c̃~pt ,u8;t1 ,h1!GR
21~pt ;t1 ,h1!cR~pt ,u;t1 ,h1!

54p
m2pt

m
pt

2d~u2u8!. ~3.5!

In deriving this equation, we assumed thatm is independent
of t1. The weak dependence is admissible, provid
dm/dt1!m/t1. A solution that has this property does inde
exist. The right-hand side of the equation is, in fact, indep
dent ofu8 and is of the following form:
04490
r
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e
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pt
2E

0

t1
dt2E

2`

`

t1t2dh2dud~h12h2!

3eimt1 cosh(h11u)e2 imt2 coshh2@e2(h12h21u)/2S (L)2

1e(h12h21u)/2S (L)11e2(h11h21u)/2S (T)1

1e(h11h21u)/2S (T)2#, ~3.6!

where the exponentials are due to the Thomas precessio
the spinor field. Next, we integrate both sides with respec
u. Two rapidity integrals,dudh2, on the right absorb the
precession factors yielding the product of Hankel functio

p2H1/2
(1)~mt1!H1/2

(2)~mt2!5
2p

mAt1t2

eim(t12t2). ~3.7!

Finally, we arrive at the dispersion equation that defines
fermion ‘‘transverse mass’’m as a function of the transvers
momentum and the latest timet1,

m~pt ,t1!2pt

5
1

2E0

t1
dt2At1t2eim(pt ,t1)(t12t2)E

2`

`

dh

3@SL(1)1SL(2)1ptS
T(1)1ptS

T(2)#.

~3.8!

As has been discussed in paper@II # for fermions~similar
arguments are true for gluons!, only the independence of th
quark and gluon occupation numbersnf and ng on rapidity
can provide that the invariantsSL(6) andST(6) naturally de-
pend only on the differenceh5h12h2. We shall consider
only this case of the local homogeneity; we can do it saf
only because no collinear singularities which may requir
rapidity cutoff ~e.g.,6Y) in the phase space will appear
the theory. Since we are computing an essentially local qu
tity, such a cutoff would be unphysical. With this reserv
tion, we may rewrite Eq.~3.8! as

m~pt!5pt1E
0

t1
dt2At1t2eim(pt)(t12t2)@S0~t1 ,t2!

1ptS
T~t1 ,t2!#, ~3.9!

where we introduced the notation,

S0~t1 ,t2!5
iasCF

4p (
[a,b]

E d2kW tE
2`

`

dhqtg[a]
0

3FD [b]
(TE)1D [b]

(2)1
1

t1t2
D [b]

(hh)G , ~3.10!
4-4
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ST~t1 ,t2!5
iasCF

4p (
[a,b]

E d2kW tE
2`

`

dhg[a]
T

3H F ~pW tqW t!

pt
2

22
~kW tpW t!~kW tqW t!

kt
2pt

2 G ~D [b]
(TE)1D [b]

(2) !

1
~qW tpW t!

pt
2t1t2

D [b]
(hh)J . ~3.11!

Comparing these equations with Eqs.~2.11! and ~2.12!, we
may observe a significant simplification. The terms with t
off-diagonal componentsD (hr ) andD (rh) have dropped out
These terms, as it can be seen from Eqs.~A6!, ~A7!, ~A10!,
~A11!, and~A18!, ~A19!, are odd with respect toh, while the
invariants g05gL(1)1gL(2) and gT5gT(1)1gT(2) are
even. Therefore, integration overh eliminates the terms with
the off-diagonal components.

IV. PROPAGATORS, DENSITIES OF STATES, AND
OCCUPATION NUMBERS IN THE EXPANDING SYSTEM

In this section, we collect condensed information ab
various correlators of quark and gluon fields derived in
pers@II # and @III # which are necessary for the calculation
the quark self-energy. We also discuss our specific choic
occupation numbersng(kt ,a) and nf(qt ,u). All field corr-
elators are defined as the expectation values over the d
bution of the background particles. The latter are the exc
tions of the modes allowed by the constraints and
boundary conditions of wedge dynamics. The Fock spac
these excitations was constructed in papers@II # and@III #. We
have analyzed two sets of quantum numbers that may l
the states. Both sets include the transverse momentumpW t and
polarization index. In one set, the remaining variable was
boostn ~the variable conjugated to the coordinateh); this set
proved to be very useful in the practical calculation of t
gluon propagators. In the second set, the particles are lab
by their velocityvz5tanhu in the direction of the collision
axis. This representation is used below. The fermion spec
functions are

G[10]~qt ,u;t1 ,t2!5@12nf
1~qt ,u!#G[10]

(0) ~qt ,u;t1 ,t2!

2nf
2~qt ,u!G[01]

(0) ~qt ,u;t1 ,t2!,

G[01]~qt ,u;t1 ,t2!52nf
1~qt ,u!G[10]

(0) ~qt ,u;t1 ,t2!

1@12nf
2~qt ,u!#G[01]

(0) ~qt ,u;t1 ,t2!.

~4.1!

Their gluon counterparts are of a similar form,

D [10]~kt ,a;t1 ,t2!5@11ng~kt ,a!#D [10]
(0) ~kt ,a;t1 ,t2!

1ng~qt ,a!D [01]
(0) ~qt ,a;t1 ,t2!,

D [01]~kt ,a;t1 ,t2!5ng~kt ,a!D [10]
(0) ~kt ,a;t1 ,t2!

1@11ng~qt ,a!#D [01]
(0) ~qt ,a;t1 ,t2!,

~4.2!
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whereD [a]
(0) andG[a]

(0) are the vacuum correlators of a give
type @a#. They are defined as vacuum expectation values
the binary products of field operators,

G[10]
(0) ~x1 ,x2!52 i ^0uC~x1!C̄~x2!u0&,

G[01]
(0) ~x1 ,x2!5 i ^0uC̄~x2!C~x1!u0&,

D [10] lm
(0) ~x1 ,x2!52 i ^0uAl~x1!A~x2!mu0&,

D [01] lm
(0) ~x1 ,x2!52 i ^0uAm~x2!Al~x1!u0&. ~4.3!

In this approximation, the field~anti!commutators,

G[0]5G[10]2G[01]5G[10]
(0) 2G[01]

(0) 5G[0]
(0) ,

D [0]5D [10]2D [01]5D [10]
(0) 2D [01]

(0) 5D [0]
(0) ~4.4!

appear to be insensitive to the presence of the particle di
bution, while their counterparts,

G[1]5G[10]1G[01]5@122nf #G[1]
(0) ,

D [1]5D [10]1D [01]5@112ng#D [1]
(0) , ~4.5!

include the occupation numbers which modify the origin
vacuum density of states. For the sake of simplicity, we ta
nf

15nf
25nf , which corresponds to a neutral system.

The Wightman functions~4.1! and ~4.2! ~or their various
linear combinationsG[b] andD [b] ) eventually appear unde
the integralsdu andda. One must keep in mind that in orde
to reduceG[b]

(0) andD [b]
(0) to the standard form of the vacuum

correlators, at least two shifts of the integration variables
necessary. Only after that willG[b]

(0) and D [b]
(0) explicitly de-

pend on the boost-invariant variablesh and t12. The func-
tions ng(kt ,a) andnf(qt ,u) are not indifferent to this shift.
It may well happen that a formal shift inu or a will drive the
stationary points of the wave functions or the singularities
the field correlators outside the physical boundaries of
distributions ng(kt ,a) and nf(qt ,u). Therefore, different
representations ofG[1] andD [1] must be used for the stud
of different subprocesses. One has to account for the re
vations stemming from the derivation procedure describe
Sec. IV of paper@II #. These different representations of th
quark and gluon correlators are quoted in the Appendix.

In our picture, first outlined in paper@I#, the fermion
vacuum mode with small transverse momentumpt and zero
rapidity is modified by its forward scattering either on gluo
with high momentumkt and rapidity a, kt@pt , or on
quarks with high momentumqt and rapidityu, qt@pt .
These hard modes are created at the earliest moment o
collision and can be treated as well formed particles by
time t;1/pt , since at that timetkt@1, andtqt@1. There-
fore, they may be consistently described by the distributio
4-5
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nf~qt ,u!'
Nf

pR'
2

u~qt2p* !

qt
2 ,

ng~kt ,a!'
Ng

pR'
2

u~kt2p* !

kt
2 , ~4.6!

wherep* is the lower bound of the ‘‘hard’’ partons distri
bution. Both distributions~per unit area, per unit rapidity! are
chosen on purely dimensional grounds, since we believe
the creation of a parton with large transverse momentum
described by perturbative QCD which has no intrinsic sca

Currently, the normalization factorsNg and Nf are the
only ~apart from the couplingas) parameters of the theory
The cross sectionpR'

2 and the full width 2Y of the rapidity
plateau are defined by the geometry of a particular collis
and the c.m.s. energy, respectively. These are irrelevan
the local screening parameters we are interested in. In
first approximation, one may try to extract them from t
event-by-event measurement of the high-pt tail of the colli-
sion products and incorporating the standard phenomeno
of the fragmentation functions for the analysis.

As was pointed out in paper@I#, even in dense system
the QCD evolution at largeQ2 is not likely to be affected by
finite-density effects. Thus, one may also try to employ
known structure functions~without shadowing corrections!
and the factorization scheme in order to estimateNg andNf .
A most appealing opportunity to findng(kt ,a) andnf(qt ,u)
from first principles, associating them with the known pro
erties of hadrons and the QCD vacuum, is still very dista

The distributions~4.6! are used below with the following
informal reservations. First, the total energy of any collisi
is finite andkt and qt have ~though very high, but finite!
upper boundary. Eventually, this leads to the self-ene
which is free from collinear singularities in the interaction
charges with the vector gauge field. Second, though the
tributions ~4.6! are boost-invariant, only the particles whic
physically affect the forward scattering must be accoun
for. There is a strong correlation between the positionh
where the particle with large transverse momentumqt is
measured~or is interacting! and its rapidityu. Hence, the
limits of integralsda anddu over the rapidities of real par
ticles ~which either mediate the scattering or are in the fi
states! cannot exceed the actual rapidity boundaries of
scattering process. In its turn, this puts an additional requ
ment on the notion of the distribution itself. It must be no
malizeable in the physical volume of the reaction. This v
ume is defined, in fact, by the light cone~i.e., causality of the
forward scattering amplitude!. @We remind the reader tha
the notion of a distribution itself makes sense only after i
prepared ~measured! at least in agedankenexperiment.
Hence, the distributionsng andnf must exist, in this sense
both at final timet1 and at the initial timet2 in the expres-
sion for the self-energy. In its turn, this limits the timet2
from below.#
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V. LEADING PART OF THE DISPERSION EQUATION

A. Derivation of the dispersion equation

The most important outcome of this work is that the ma
contribution to the effective quark mass comes from
hh-component of the propagator of the longitudinal fie
This contribution is computed in all details below. All othe
terms are associated with the propagation of the transv
fields and they appear to be parametrically small in the
main t1pt,1, (t12t2)pt!1, t12t2!t1, where the dy-
namical mass of the fermion is effectively formed. The co
ponent Dhh of the propagator establishes the connect
between theAh component of the potential and thej h com-
ponent of the current. In its turn,Ah is responsible for the
h-componentEh5]tAh of the electric field and thex andy
components,Bx5]yAh , By52]xAh of the magnetic field.
The electrical field in the longitudinalh direction is not ca-
pable of producing scattering with transverse moment
transfer. However, this transfer can be provided by the m
netic forces; the two currentsj h can interact via the magneti
field BW t5(Bx ,By). The origin of these currents is intrins
cally connected with the geometry of states in the wed
form of dynamics. Any state with a givenpt begins its life
being widely spread along the light cone. If the state
charged, then local charge density is small. With time go
on, the spread of the wave function diminishes and
charge become localized in a narrower rapidity interval~see
Fig. 2!. Therefore, any charged state carries a current in
longitudinal ~rapidity! direction. The magnetic fields of th
transition currentsprovide scattering with the most effectiv
transfer of the transverse momentum. Indeed, at timet2 a
quark with the transverse momentumpt ,t2pt!1, interacts
with the gluon field and acquires a large transverse mom
tum kt ,t2kt@1. This transition is characterized by a dras
narrowing of the charge spread in the rapidity direction, a
must be accompanied by a strongh-component of the tran-
sition current. A similar transition in the opposite directio
happens at timet1, when the gluon field interacts with an
other quark that has large initial transverse momentumkt ,
and recovers the soft state witht2pt!1 in the course of this
interaction. This second transition current readily intera
with the magnetic component of the gluon field. Our es
mates indicate that the leading contribution comes from

FIG. 2. Evolution of the charge density in the typical state
wedge dynamics.
4-6
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term of Dhh(t2 ,t1 ;h22h1 ;kW t) which is proportional to
d(h12h2) and does not depend onkW t @in coordinate repre-
sentation, this term is just proportional tod(h12h2)d(rW1

2rW2)]. This is a long-range contact interaction of the tw
currents, and is not limited by the light-cone boundar
~which suppress the interaction via the strongly localiz
states of the radiation field!. Furthermore, the contact part o
the longitudinal propagator is the only one that brings in
the integrand of the dispersion equation~3.9! the term which
is singular at t12t2→0. Therefore, it is capable of provid
ing an appreciable contribution into the effective quark ma
which is defined locally. This part of the self-energy allow
for an exact calculation with a simple analytic answer wh
is presented below. Estimates of all small terms are
plained in Secs. VII and VIII.4 This contact part of the lon
gitudinal propagator is

Dhh
[contact]~t2 ,t1 ;h22h1 ;kW t!5

t1
22t2

2

2
d~h!. ~5.1!

Because of the extreme locality ofDhh
[contact] provided by

d(h), the invariantsg[1] of the fermion density function in
Eq. ~3.10! lose their kinematic coefficients,

g[1]
0 5

22Nf

pRt
2

Y1~t12qt!

qt
2

, g[1]
T 5

22Nf

pRt
2

Y0~t12qt!

qt
2

.

~5.2!

First, we integrate overh, which leads tot12
2 5(t12t2)2.

Next, we changed2kW t for d2qW t and integrate over the orien
tation of qW t gaining the factor 2p in S0. In ST, g[1]

T is inte-

grated with the weight factor (qW t•pW t)/pt
2 . Therefore, this

term identically vanishes after integration over the azimut
angle. The only remaining integral over the transverse m
menta of hard partons is

E
p
*

`

Y1@~t12t2!qt#dqt5
Y0@~t12t2!p* #

t12t2
. ~5.3!

Eventually, we may write the dispersion equation~3.9! as
follows:

m5pt1
iasCFNf

2pRt
2 E

0

t1
dt2

t11t2

2At1t2

3eim(t12t2)Y0@~t12t2!p* #. ~5.4!

B. Study of the dispersion equation

According to the qualitative analysis of paper@II #, the
dynamics of states is different in the two limiting case
tpt,1 andtpt.1. With respect topt;1/t, the states are

4The authors appreciate discussions with Edward Shuryak,
pointed out that the small effect of the radiation fields is much l
surprising than the finite contribution from the longitudinal field
04490
s
d

s,

x-

l
-

,

divided into ‘‘hard’’ and ‘‘soft’’ states. Therefore, it is natu
ral to takep* ;pt in Eq. ~5.4!. Further, it is convenient to
trade variablet2 for y5(t12t2)/t1,

m~pt ,t1!

pt
511

iasCFNft1pt

2pRt
2pt

2 E
0

1

dy
12y/2

A12y

3eim(pt ,t1)t1yY0~t1pty!. ~5.5!

In this form, the dispersion equation clearly reveals two d
tinctive regimes. Whentpt,1, then the functionY0(x) be-
haves as a logarithm, and the right-hand side of Eq.~5.5!
becomes proportional to ln(2/t1pt), the effective width of
the rapidity interval occupied by the state at the early time
the evolution. Whentpt.1, thenY0(x);1/Ax, and the in-
tegral becomes proportional to 1/Atpt, the effective rapidity
width at later times. Thus, the dispersion equation~5.5!
clearly reveals two distinctive regimes which were quali
tively analyzed in paper@II #. The solution of Eq.~5.5! is
generally complex. Takingm5m81 im9 we can separate rea
and imaginary parts of this equation,

t1m82t1pt52
asCFNf

2p~Rt
2/t1

2!
E

0

1dy

2 F 1

A12y
1A12yG

3e2m9t1y sin~m8t1y!Y0~t1pty!, ~5.6!

t1m95
asCFNf

2p~Rt
2/t1

2!
E

0

1

dyF 1

A12y
1A12yG

3e2m9t1y cos~m8t1y!Y0~t1pty!. ~5.7!

~The unit upper limit in these integrals corresponds tot2

50, and is, as a matter of fact, fictitious. Practically, we a
interested only in the domain wheret2pt;1.! We have re-
arranged the factor in front of the integral in such a way, t
at early times, this factor is small. It has been shown in pa
@III #, that the longitudinal part of the gluon propagator va
ishes when the distancer t exceedst1. Therefore, this factor
is proportional to the~small! number of hard partons pe
transverse area occupied by the soft quark mode. Hence
can analyze Eqs.~5.6! and ~5.7! by successive approxima
tions. It is clear, that in the lowest approximation, we c
take m85pt in the RHS of these equations, and that t
imaginary partm9 can be neglected. Using

sinx'x, cosx'1, Y0~x!'2p21@gE1 ln x#,

as an approximation, and computing the remaining integr
we arrive at

o
s

4-7
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m8

pt
215

asCFN f

p2Rt
2pt

2 ~t1pt!
2

3F4

5 S 2gE1 ln
2

t1pt
D1

1042120 ln 2

75 G ,
~5.8!

m9

pt
5

asCFN f

p2Rt
2pt

2 t1ptF4

3 S gE2 ln
2

t1pt
D1

26224 ln 2

9 G .
~5.9!

These dependences are plotted n Fig. 3 as functions o
argumentt1pt up to the prefactorasCFNf /p2Rt

2pt
2 .

Equation ~5.5! describes the evolution of the effectiv
transverse massm of the state with a given transverse m
mentumpt as a function of the proper timet1. We see, that
the real partm8 gradually grows with time reaching its max
mum att1pt'1. The mode acquires an ‘‘adjoint mass’’ du
to the interaction with hard partons, as was anticipated.
curves cannot be trusted above the boundaryt1'pt

21 , since
at later times, the mode becomes ‘‘hard.’’ It cannot
viewed as a soft cloud swept with uniformly distributed ha
particles. The condition

dm

dt1
!

m

t1
,

which was used in the course of the dispersion equation d
vation, is clearly fulfilled near the maximum of the dispe
sion curve.

One more important dependence is hidden in the prefa
asCFNf /p2Rt

2pt
2 , and is not visible from the figure above

This factor scales aspt
22 , clearly indicating that at largept ,

the effect of screening is small. There is almost no h
particles withkt ,qt.pt .

VI. CANCELATION OF COLLINEAR TERMS IN THE
VACUUM PART OF THE SELF-ENERGY

Usually, the self-energyS is studied in the momentum
representation, and the first subject of concern is the u
violet divergence of this function. It is well known that th
divergence can be at most logarithmic. Thus, when we c

FIG. 3. Self-energy corrections to the real part (m8/pt21, upper
curve! and to the imaginary part (m9/pt , lower curve! of the effec-
tive transverse mass as functions oft1pt .
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pute the four-dimensional integral over the momentum in
loop, this divergence can show up only in the last of the
integrations. We compute the self-energy in the mixed r
resentation. Hence, we cannot see the UV divergence ex
itly but we mustalready see~e.g., in ImS) the various infra-
red divergences which emerge due to real processes
massless fields. A corresponding analysis for the case o
null-plane dynamics was done in paper@I#. These diver-
gences must be regularized~or even removed from the
theory, as is done by means of dimensional regularizati!
before the UV renormalization. The primary goal of this se
tion is to demonstrate that in the wedge form of dynamics
quark self-energy is completely protected from colline
problems, and that this is not a surprise. Indeed, in the the
with massless fermions and gauge bosons, the infrared
gularities show up in a different way depending on the ty
of Hamiltonian dynamics~including the gauge condition!
which is used to describe the process. In the gaugeA150
they look like collinear divergences. In the gaugeA050,
they look like an infrared problem of the proper field of th
charged particle. In both cases, the problem emerges du
the incomplete gauge fixing, and manifests itself throu
spurious poles of the gauge field propagators. As has b
shown in paper@III #, the gaugeAt50 is fixed completely,
and therefore, the quark self-energy that we compute he
totally free of these problems.

In order to demonstrate this appealing feature we s
compute~the most dangerous in this respect! the vacuum
part of the fermion self-energy, concentrating on the ter
where the integrand as a function of the rapiditya is not
suppressed atuau→`. A self-consistent piece of this type i
the contribution of the transverse electric mode of the glu
field. The tensor part of any gluon correlator for this mode
of a very simple form,

D [a] rs
TE 5~d rs2krks /kt

2!D[a]
TE ; ~6.1!

it has noh components, and the scalar functionsD[a]
TE can be

computed exactly since they have simple integral repres
tations. We use this piece of the self-energy to explain
principles we base our calculations on. Using Eqs.~3.10! and
~3.11!, we get

@S [ret]
L(6)#vac

TE ~t1 ,t2 ;h,pW t!

5
iasCF

2p
u~t12

2 !u~t12t2!E d2kW t@qtg[0]
L(6)~qt!

3D[1]
TE~kt!2qtg[1]

L(6)~qt!D[0]
TE~kt!#, ~6.2!

whereqW t5kW t1pW t and the minus sign in the second term
due to the definition~2.4! of D [adv] . The S [ret]

TE is fully con-
fined within the light wedget12

2 .0. Then, the vacuum quar
and gluon correlators have the following form:

D[0]
TE~t2 ,t1 ;h22h1 ;kW t!5221u~t12

2 !J0~t12kt!,

D[1]
TE~t2 ,t1 ;h22h1 ;kW t!5221iY0~t12kt!, ~6.3!
4-8
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g[0]
L(6)5 i

t1e7h/22t2e6h/2

4Aut12
2 u

u~t12
2 !J1~qtAut12

2 u!,

g[1]
L(6)5

t1e7h/22t2e6h/2

4Aut12
2 u

Y1~qtAut12
2 u!, ~6.4!
04490
where t12
2 5t1

21t2
222t1t2 coshh, and the commutators

D [0]
TE andG[0] include the causalu(t12

2 ) by definition, and the
terms proportional tou(2t12

2 ) in the densitiesD [1]
TE andG[1]

are omitted. Integration over the anglew between the vectors

pW t and kW t involves only the invariantsg[a] . According to
Eqs.~6.2! and ~6.4!, we have to integrate
e the
temming

d in
E
0

2p

qtJ1~t12qt!dw52p@ktJ0~t12pt!J1~t12kt!1ptJ1~t12pt!J0~t12kt!#,

E
0

2p

qtY1~t12qt!dw52p$u~kt2pt!@ktJ0~t12pt!Y1~t12kt!1ptJ1~t12pt!Y0~t12kt!#1u~pt2kt!@ktJ1~t12kt!Y0~t12pt!

1ptY1~t12pt!J0~t12kt!#%. ~6.5!

This integration is done with the aid of the so called addition theorems@9# for Bessel functions of the argumentqt5@kt
2

1pt
212ktpt cosw#1/2. Starting from this point, we can continue in two ways. The most straightforward option is to us

gluon correlators in the integrated form of the Bessel functions, thus sweeping under the rug the singular behavior s
from a→`. This leads to the integral

@S [ret]
L(6)#TE5

iasCF

8
u~t12

2 !u~t12t2!
t1e7h/22t2e6h/2

t12
F2J0~t12pt!E

0

`

kt
2@J1~t12kt!Y0~t12kt!1J0~t12kt!Y1~t12kt!#dkt

22ptJ1~t12pt!E
0

`

ktJ0~t12kt!Y0~t12kt!dkt1ptJ1~t12pt!E
0

pt
ktJ0~t12kt!Y0~t12kt!dkt

1J0~t12pt!E
0

pt
kt

2J0~t12kt!Y1~t12kt!dkt2ptY1~t12pt!E
0

pt
ktJ0~t12kt!J0~t12kt!dkt

2Y0~t12pt!E
0

pt
kt

2J0~t12kt!J1~t12kt!dktG . ~6.6!

Here, all the integrals can be computed explicitly as indefinite integrals. The integrals from 0 topt yield the regular part of the
answer below. Taking the upper limit of improper integrals to beL→`, we get the singular part as the limit,

lim
L→`

L2

t
@@J0~t12pt!1tptJ1~t12pt!#J1~tL!Y1~tL!1tptJ1~t12pt!J0~tL!Y0~tL!#. ~6.7!

Using the asymptotic expansion of Bessel functions, we find that the singular part is built fromd(t12) and its derivative. The
full answer reads as

@S [ret]
L(6)#TE52

iasCF

16p
u~t12

2 !u~t12t2!
t1e7h/22t2e6h/2

t12

3H pt
2 J2~t12pt!

t12
1pFJ0~t12pt!

t12
S d8~t12!2

2

t12
d~t12! D2

4ptJ1~t12pt!

t12
d~t12!G J . ~6.8!

Thus, the answer is singular at the null planest12
2 50. In order to find the true source of this singularity, we shall procee

a different manner, keeping the gluon invariantsgL(6) in the integral form. We shall integrate overkt first and leave the
integral over the gluon rapiditya for the end of calculation. This leads to
4-9
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@S [ret]
L(6)#TE5

iasCF

8
u~t12

2 !u~t12t2!
t1e7h/22t2e6h/2

t12

3H 2
pt

2

2p

J2~t12pt!

t12
1E

2`

` da

p FJ0~t12pt!S E
0

`

kt
2J1~t12kt!cos~T12kt!dkt2E

0

`

kt
2Y1~t12kt!sin~T12kt!dktD

1ptJ1~t12pt!S E
0

`

ktJ0~t12kt!cos~T12kt!dkt2E
0

`

ktY0~t12kt!sin~T12kt!dktD G J , ~6.9!

where we remind the reader thatT125T12T25t12cosh(a2c). The integrals in this expression are the well-known Four
transforms of the Bessel functions,

E
0

`

kt
2J1~t12kt!cos~T12kt!dkt5E

0

`

kt
2Y1~t12kt!sin~T12kt!dkt53T12t12@T12

2 2t12
2 #1

25/2,

E
0

`

ktJ0~t12kt!cos~T12kt!dkt5E
0

`

ktY0~t12kt!sin~T12kt!dkt52T12@T12
2 2t12

2 #1
23/2, ~6.10!
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where the distributionx1
l is defined in a standard way wit

the due number of subtracted terms of the Taylor expan
in the integral* f (x)x1

l dx @10#. Three different issues ar
important here. First, each of the integrals~6.10! is a well
defined distribution that includes all necessary regula
which provide the convergence of subsequent integratio
The Bessel functions themselves aredefinedas the Fourier
transforms of the~1! distributions and we just recover th
original regular form by doing the inverse Fourier transfo
~6.10! ~see Ref.@10#!. Second, as will be shown in the ne
section, the singular behavior of the integrals~6.10! origi-
nates from the collinear domain. The~1! prescription that
emerges here eliminates them term-by-term. Third, after
result of the term-by-term integration is put back into E
~6.9!, the singular collinear terms just cancel everywhe
including the null-planet12

2 50. This type of cancelation o
collinearly singular terms takes place in all other pieces
the vacuum part of the quark self-energy.

All these observations lead us to the conclusion, that e
in its vacuum part, the self-energy does not suffer from c
linear problems, which seems to be a unique property of
expanding system. We do not continue to study the vacu
part of the self-energy here, since we are currently intere
only in its material part which is discussed in the next s
tion. ~The full analysis of this part, including the issue of i
renormalization, will be published elsewhere.!

VII. RADIATION FIELDS IN THE MATERIAL PART
OF THE SELF-ENERGY

We found that the major contribution to the one-loop
fective mass of a ‘‘soft’’ quark mode in the background
‘‘hard’’ quarks and gluons comes from the quark-quark fo
ward scattering mediated by the magnetic component of
longitudinal field. The purpose of this section is to demo
strate that the interactions via transverse fields~including the
forward scattering of soft quark on hard gluons! is a second-
ary effect at least at the very early stage of the nuclear
04490
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lision. This conclusion may look counterintuitive, sinc
namely in the interactions of the transverse fields, we exp
to encounter the collinear enhancement of the radiation
plitude. As has been shown in Sec. VI, in the vacuum par
the self-energy, the integrals of this type~taken in the limits
from 0 to `) cancel each other leaving the vacuum sec
free from collinear divergences. The statistical weightsNg
andNf , which are different for the different terms, preve
such a cancelation in the material part. Thus we have
analyze each term of the material part separately.

As in Sec. VI, we consider an isolated piece which cor
sponds to TE gluons. The gluon correlators of this piece
the most singular and are known not only in the integ
representation, but in closed analytic form also. The last
cumstance is very helpful for the analysis of the multip
integrals we meet below.~The terms identical to those com
puted below, also appear in the part of self-energy due to
TM gluons; the remaining terms of TM sector are less s
gular and, eventually, smaller than considered here.! The
corresponding fragment of the quark self-energy~3.10! in the
dispersion equation~3.9! is

@S0~t1 ,t2!#mat
(TE)5

iasCF

4p
u~t12t2!

3E d2kW tE
2`

`

dhqt

3@g[0]
0 D [1]

(TE)2g[1]
0 D [0]

(TE)#, ~7.1!

@ST~t1 ,t2!#mat
(TE)5

iasCF

4p
u~t12t2!E d2kW tE

2`

`

dh

3F ~pW tqW t!

pt
2

22
~kW tpW t!~kW tqW t!

kt
2pt

2 G
3@g[0]

T D [1]
(TE)2g[1]

T D [0]
(TE)#. ~7.2!
4-10
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The invariants of~anti!commutators are the same as in t
vacuum case,

g[0]
0 ~t1 ,t2 ;h;qW t!5 i

~t12t2!cosh~h/2!

2t12
u~t12

2 !J1~qtt12!,

g[0]
T ~t1 ,t2 ;h;qW t!52

cosh~h/2!

2
u~t12

2 !J0~qtt12!, ~7.3!

and the invariantD[0]
TE(t2 ,t1 ;h;kW t) is given by the first of

Eqs. ~6.3!. They all differ from zero only for the timelike
t12. Hence, the material part of the invariantsg[1] andD [1]

(TE)

will be needed only in this domain. As has been discus
earlier, the distributions include only ‘‘hard’’ particles whic
are defined with respect to the soft mode with the transve
momentumpt by the inequalities,kt.p* , and qt.p* ,
wherep* >pt . Now, we are interested only in the materi
part with occupation numbers given by the equations

nf~qt ,u!'
Nf

pR'
2

u~qt2p* !

qt
2 ,

ng~kt ,a!'
Ng

pR'
2

u~kt2p* !

kt
2 , ~7.4!

and we must keep in mind the width 2Y of the rapidity
plateau with the goal to study if this is a significant para
eter for the calculation of local quantities. We may also qu
tion the validity of these formulas at sufficiently largekt and
qt , since without a cutoff, the integral*dkt /kt diverges.

The material part of the densities will be employed in tw
different forms,

g[1]
0 ~t1 ,t2 ;h;qW t!5E

2`

` du

p
nf~u;qt!coshu sinqtT12~u!

52
~t12t2!cosh~h/2!

t12
nf~qt!Y1~qtt12!,

~7.5!
04490
d
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-
-

g[1]
T ~t1 ,t2 ;h;qW t!52 i cosh

h

2E2`

` du

p
nf~u;qt!cosqtT12~u!

52 i cosh~h/2!nf~qt!Y0~qtt12!, ~7.6!

D[1]
(TE)~t2 ,t1 ;h;kW t!5~p i !21E

2`

`

dang~a;kt!cosktT12~a!

5 iY0~t12kt!ng~kt!, ~7.7!

where the second equation in Eqs.~7.5!–~7.7! is valid only
whenng andnf are rapidity-independent, and we employ t
following notation:

T12~a!5t1 cosh~a2h/2!2t2 cosh~a1h/2!

5t12cosh~a2c!,

t12
2 5t1

21t2
222t1t2 coshh.0,

tanhc~h!5
t11t2

t12t2
tanh

h

2
,

uhu,h05 ln
t1

t2
'

t12t2

At1t2

5j, tanhc~6h0!561,

c~6h0!56`, ~7.8!

wherej5(t12t2)/At1t2'h0 is the main parameter of ou
calculations. This parameter is supposed to be small in o
that the notion of the current transverse massm(pt ,t1) has
the expected meaning of a slowly varying parameter. T
geometric mean timetm5At1t2 has a simple interpretation
The two characteristics, one connecting the points (t2 ,
2h0) and (t1 ,h0), and the second one connecting the poi
(t2 ,h0) and (t1 ,2h0), intersect at the point (tm,0). The
proper timetm is always inside the domain of the ‘‘caus
interaction.’’

Let us start the analysis of the radiation-dominated ter
with the invariant@S0#mat

(TE) . ~The invariant@ST#mat
(TE) appears

to have an extra small factorj.! According to Eqs.~7.4!,
~7.5!, and~7.7! it can be written as a multiple integral,
ce

op and
@S0~t1 ,t2!#mat
(TE)5

iasCF

8p2 E
2`

1`

dhu~t12
2 !H Nf

pR'
2 Ep

*

`

dqtE
0

2p

dwJ0~t12kt!E
2`

`

du coshu sinT12~u!qt

1
Ng

pR'
2

~t12t2!coshh/2

t12
E

p
*

` dkt

kt
E

0

2p

dwqtJ1~t12qt!E
2`

`

da cosT12~a!ktJ u~t12t2!, ~7.9!

where we choose the integral form of the densitiesg[1] andD [1]
(TE) in order to find the domain in the multidimensional spa

where the dominant contribution comes from. Since the two terms in Eq.~7.9! are not expected to interfere~or UV diverge!,

we are free to change variables in these terms independently. We leaved2kW t in the second term, and change ford2qW t in the first

one. The next step is to integrate over the azimuthal angle betweenqW t andpW t in the first term of Eq.~6.2!, and over the angle

betweenkW t andpW t in the second term. This integration deals only with the retarded propagators inside the self-energy lo
selects the lowest angular harmonics,
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E
0

2p

qtJ1~t12qt!dw52p@ktJ0~t12pt!J1~t12kt!1ptJ1~t12pt!J0~t12kt!#, kt.pt , ~7.10!

E
0

2p

J0~t12kt!dw52pJ0~t12pt!J0~t12qt!, qt.pt . ~7.11!

Only the first of the two terms in Eq.~7.10!, corresponding to the collinear geometry in the transverse plane survives i
limit of kt@pt and has to be retained by our major assumption. The second term describes the deviation from collinea
is small. However, it is instructive to keep it for a while. After these angular integrations, Eq.~7.9! becomes

@S0~t1 ,t2!#mat
(TE)5

iasCF

4p
u~t12t2!E

2`

1`

dhu~t12
2 !H Nf

pR'
2 Ep

*

`

dqtJ0~t12pt!J0~t12qt!

3E
2`

`

du coshu sinT12~u!qt1
Ng

pR'
2

~t12t2!coshh/2

t12
E

p
*

` dkt

kt
@ktJ0~t12pt!J1~t12kt!

1ptJ1~t12pt!J0~t12kt!#E
2`

`

da cosT12~a!ktJ , ~7.12!

where the actual limits of integration overh, u, anda have yet to be put in agreement with the model we employ. Now,
have approached the most subtle point of our analysis. This expression includes triple integrations, any of which~if performed
formally! yields singular functions. For the sake of definiteness, let us start with the second term in Eq.~7.12! @which
corresponds to the forward scattering of soft quark on a hard gluon from the distributionng(a,kt)], rewriting it in its most
expanded form,

J25
Ng

pR'
2 E dhu~t12

2 !
~t12t2!coshh/2

t12
J0@t12~h!pt#E

2`

`

daE
p
*

`

J1@t12~h!kt#cos@ktt12~h!cosh„a2c~h!…#dkt .

~7.13!

FIG. 4. Geometry of fields in
the forward scattering amplitude
qg→qg.
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The first observation is that at largekt @which is the con-
dition that the distributionng(a,kt) can be measured within
a short time# the main contribution to thea integration
comes from the domaina'c(h) where the phase of th
cosT12(a)kt is stationary. This is the domain of collinea
interaction when the hard gluon from the distributio
ng(a,kt) has almost the same rapidity as the virtual qu
with transverse momentumqW t5kW t1pW t in the self-energy
loop. Obviously, this quark is also hard. Furthermore,
propagator,G[ret](t1 ,t2 ;qt)5u(t12t2)G[0] (t1 ,t2 ;qt), is
devised only from the free on-mass-shell partial waves wh
themselves are well localized in the rapidity directio
Hence, we deal with the intuitively very clear case of colli
ear absorption and emission of the gauge field quantum
charged particle. All participants of the process are mov
04490
k

s

h
.

a
g

with the same velocity. According to the property of loca
ization of states in wedge dynamics studied in paper@II #,
such a fine tuning ofa to c is indeed possible. This is
illustrated by the left-hand figure in Fig. 4. where the gr
segments of the hyperbolast5t2 and t5t1 correspond to
the rapidity intervals occupied by the soft quark mode,tpt

,1, at the beginning and at the end of the scattering proc
respectively. The bold black and the dashed segments s
the rapidity intervals where the hard virtual quark and t
hard gluon are localized at the same times. All three fie
effectively overlap around rapidityh252h/2 at t5t2 and
aroundh151h/2 at t5t1. The rapidity direction between
these points is exactlyc(h). The rapiditya of the external
gluon is sufficiently small and is close to the rapidityc(h).

The maximal rapidity width of the interaction domain
4-12
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defined by the causality conditiont12
2 .0, which immedi-

ately establishes the upper boundaryuhu,h0. Since the col-
linear interaction corresponds to the conditiona'c(h), the
rapidity of the hard gluon must be within this geometrica
defined interval as well. The opposite case is depicted in
right-hand figure of Fig. 4. The rapidityc(h) is so large, that
the external gluon is not localized within the causal bou
aries6h0/2 of the interaction domain. In order to avoid thi
we have to impose an even stronger requirement
uc(h)u,h0. According to Eq.~7.8!, we haveuc(h)u.h.
Hence, we must further takeuhu,h* , where the boundary
h* is defined by the equationc(h* )5h0,

t11t2

t12t2
tanh

h*
2

5tanhh0[
t1

22t2
2

t1
21t2

2 , ~7.14!

which has a solution,

tanh
h*
2

5
~t12t2!2

t1
21t2

2 , h* '
~t12t2!2

t1t2
5j2. ~7.15!

We remind the reader thatj!1; only this condition allows
one to introduce the the time-dependent transverse m
m(pt ,t). In order to simplify further analysis, it is conve
nient to present the internal integral overkt as the difference,

2
t12

~T12
2 ~a!2t12

2 !1
1/2@T12~a!1~T12

2 ~a!2t12
2 !1/2#

2E
0

p
* J1~t12kt!cos@T12~a!kt#dkt , ~7.16!

where the first singular term is the integral overkt , com-
puted from 0 tò , and thus, it completely accounts for th
domainkt→`. It includes the function

f ~h,a!5@T12
2 ~a!2t12

2 #1
21/25@t12

2 ~h!sinh2
„a2c~h!…#1

21/2,

which is singular ata5c(h), thus fully accounting for the
expected collinear enhancement. This function, however,
canonical distribution with respect to both its argumentsa
and h, and it carries the standard regulators for the sub
quent integrations. We shall consider the singular and
regular terms separately. Using the above found limits,
may write the singular term as

I 2
sing5E

2h
*

h
* dh

~t12t2!coshh/2

t12~h!

1

@t12~h!#1

3E
2h0

h0
da

e2ua2cu

@sinh2ua2cu#1
1/2

, ~7.17!

where, sincet12pt!1, we putJ0@t12pt#'1. After an obvi-
ous change of variable, the internal integral of Eq.~7.17! can
be split into two,

E
2h0

h0
da

e2ua2cu

@sinh2ua2cu#1
1/2

5F E
0

h01c

1E
0

h02c G ae2a

sinha

da

a1
.
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Since by the definition of the~1! distribution,

E
0

b ae2a

sinha

da

a1
5E

0

be2ada

sinha
2E

e

1da

a
5 ln

12e22b

2
,

~7.18!

we obtain the singular part in the form

I 2
sing52E

0

h
* ~t12t2!coshh/2

t12~h!

dh

@t12~h!#1

3 lnH 1

4
@11e24h022e22h0 cosh 2c~h!#J .

~7.19!

Next, it is convenient to tradeh for a new variabley,
t12(h)5(t12t2)y. The helpful relations for this change o
variables are

cosh~h/2!dh

t12~h!
5

21

At1t2

dy

A12y2
,

t12
2 ~h* !5

~t12t2!2

11~t12t2!2/t1t2
,

y* '12
~t12t2!2

2t1t2
, cosh 2c5

~t11t2!2

2t1t2

1

y2 2
t1

21t2
2

2t1t2
.

Taking into account that cosh 2c→1, wheny→1, we obtain

I 2
sing5

4

At1t2
E

y
*

1 dy

yA12y2
ln

12e22h0

2

'
4

At1t2

t12t2

At1t2

ln
t12t2

At1t2

5
4

At1t2

j ln j. ~7.20!

This formula has two distinctive elements. The first e
ment is the large lnj, which is due to the collinear geometr
of the interaction. This would lead to a divergence if t
interaction domain were unlimited. The second elemen
the small factorj which is due to the small volume occupie
by the interaction and it completely suppresses the poten
divergence. One may notice that when the mean timeAt1t2
increases, thenj→0, and the corresponding part of the se
energy also tends to zero. This is easy to understand, s
with the mean time growing, the system becomes more
more diluted locally.

The regular part of Eq.~7.13! is given by the integral

I 2
reg5E

2h
*

h
* dh

~t12t2!coshh/2

t12~h!

3E
2h0

h0
daE

0

p
* J1~t12kt!cos@T12~a!kt#dkt ,

~7.21!
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where, when2h0,h,h0, thenT12(a) varies between its
minimal and maximal values,

~t12t2!2

At1t2

e2uau,T12~a!,
~t12t2!2

At1t2

e1uau.

Therefore, whenkt,pt , we haveT12kt;(t12t2)kt!1, and
both functions under the integral overkt can be expanded in
Taylor series. All integrations become trivial and yield5

I 2
reg5

t1t2p
*
2

At1t2
F t12t2

At1t2
G 4

5
t1t2p

*
2

At1t2

j4. ~7.22!

We have chosen this form of the answer, because our m
assumption is valid only as long astpt<1 and because th
dispersion equation~3.9! has a kinematic factorAt1t2 in it.

The other two terms in Eq.~7.12! can be studied along th
same guidelines. The third term is suppressed with respe
J2 by the factorpt /kt , which is small by our major mode
agreement and it could have been discarded on this gro
only. To be on the safe side, let us rewrite it as

J35
Ng

pR'
2 E

2h
*

h
* dh

~t12t2!coshh/2

t12
ptJ1@t12~h!pt#

3E
2h0

h0
daH 2gE2 lnFt12pt

2
eua2c(h)uG

1E
0

p
* 12J0@t12~h!kt#cos„T12~a!kt…

kt
dktJ , ~7.23!

where the first term is the integral overkt from 0 to `. As
could be expected, the integrand is regular. Since there i
accounted for difference betweenkt andqt , the exactly col-
linear regime becomes impossible and we do not have
large collinear logarithm inJ3. Overall, this term is also
suppressed at least by a factorj stemming from
J1@t12(h)pt# in the integrand.

The first term in Eq.~7.12! corresponds to the forwar
quark-quark scattering with high momentum transfer,

5Even if we impose no limitations ona the estimate is still as
small as

t1t2p*
2

At1t2

j2 ln j.
04490
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J15
Nf

pR'
2 E

2h
*

h
* dhJ0@t12~h!pt#

3E
2h0

h0
duH coshu

@sinh2
„u2c~h!…#1

1/2

1

@t12~h!#1

2coshuE
0

p
* J0@t12~h!qt#sin„T12~u!qt…dqtJ .

~7.24!

Here, we again recognize the collinear singularity which
as previously, regulated by the~1! prescription. All further
calculations forJ1 are similar to the case ofJ2 and the
answer reads

I 1
sing<

28j14j2 ln j

At1t2

, I 1
reg'2

p
*
2 t1t2

At1t2

j5. ~7.25!

These results will serve for us as a reference point for
estimates of the mathematically more complicated part c
nected with the radiation field of the transverse magnetic
modes. Before we address this issue, it is expedient to loo
the obtained results more attentively and trace the corres
dence between the calculations and physical picture in m
details.

~1! It has been observed in Sec. VI~for the vacuum part
of the quark self-energy! that in the framework of wedge
dynamics, the collinear problems do not jeopardize the fi
theory. In ‘‘material part’’ of the self-energy, the collinea
interactions were proved to be the most intensive and to l
to a visible enhancement of the interaction between the qu
and radiation field. However, this enhancement never tur
into a disaster of collinear divergence. One of the triv
reasons is that the space-time domain of the interactio
now limited, and large logarithms are multiplied by sma
phase volumes.

~2! A deeper insight into the wedge dynamics, shows t
even intermediate collinear singularities observed in
termsJ1 andJ2 are spurious. In order to reveal this fact, o
can notice that the singularity ata5c(h) is present only in
J1 andJ2. It is absent inJ3, because of the extra negativ
power of kt brought by the subleading term of the angu
integraldw. This extrakt

21 effectively suppresses the distr
bution ng(a,kt) at largekt . Next, one may ask, what mini
mal change ofng(a,kt) at largekt is necessary in order tha
the intermediate collinear singularity does not appear at
This can be learned by changing the order of integration
Eq. ~7.13!. One can start from the integraldh with an as-
sumption that the integrand only slowly varies within som
interval of a arounda50. Then, it is easy to see that th
singular termI 2

sing of Eq. ~7.20! totally originates from the
domain ofkt→`. It comes from a logarithmic integral be
tween two infinite limits. This residual piece emerges on
because we extend the distributionng;kt

22 ~obtained from a
dimensional estimate! to an arbitrarily largekt . As we have
already mentioned, this dependence is unphysical, e.g.,
4-14
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cause the distributiond2kW t /kt
2 is not normalizeable. It has to

be modified above some value ofkt and, therefore, the sin
gular term must vanish completely. Thus, in wedge dyna
ics, the phenomenon of collinear enhancement is intrinsic
connected with the basic property of localization inheren
the one-particle states. Only the states with infinitely largekt

can have a precisely given rapidity and be responsible for
singularities like we encounter in Eqs.~7.16! and ~7.24!.

~3! Our way to pick out the leading contributions~in the
mixed representation of wedge dynamics! from the space-
time domains, where the phases of the interacting fields
stationary, is a generalization of the known method of iso
ing the leading terms using the pinch poles in the plane
complex energy. The similarity of two methods can be ea
understood since, e.g., the quark density correlator in
self-energy can be presented as a sum of two propaga
G[1] (q)5G[00](q)1G[11](q). In the plane of the complex
energyq05k01p0, the~Feynman-type! propagatorG[00](q)
has poles in the second and fourth quadrants, while the~anti-
Feynman-type! propagatorG[11](q) has poles in the first and
third quadrants. The radiation part of the retarded gauge fi
propagatorD [ret](k) has poles in the third and fourth qua
rants. Therefore, in both terms ofG[1] (q)D [ret](k)
5G[00](q)D [ret](k)1G[11](q)D [ret](k), the integration path
along the real axis of the complexk0 plane is pinched be
tween two poles~one fromD [ret] , and the second fromG[00]
or G[11]) giving the leading contribution whenp0 is small,
and the three-momentak andq5k1p are are very close to
each other. Similar arguments are valid for the seco
part, G[ret]D [1] , of the quark self-energy. The term
G[1] (q)D [ long] (k) is exceptional, because the propaga
D [ long] (k) of the longitudinal field has no poles correspon
ing to the propagation.

The wedge dynamics does not allow for a standard m
mentum representation, since its geometric backgroun
not homogeneous in thet and z directions; accordingly, we
do not have familiar pinch-poles in our calculations. Nev
theless, the patches of phase space where the phases o
tain field fragments are stationary and effectively overlap,
now the same job as the pinch-poles, and yield the sa
answers when the homogeneity required for the momen
representation is restored. The way wedge dynamics tac
the problem is genuinely more general, because it addre
the space-time picture of the interacting fields.6 The momen-
tum space is now split into the subspaces of rapidity a
transverse momentum; the correlation between the partic
rapidity and its location is increasing with the increase of
transverse momentum. The role of pinch-poles is taken o
by the geometrical overlap of the field patterns with the sa
rapidity. This observation can serve as a footing for the

6It is well known that the threshold behavior of the imaginary p
of the photon self-energy can be derived from the pinch geom
of the poles of the electron propagators@11#. Since at the threshold
the e1e2 pair is created with zero relative velocity, the pinch i
deed corresponds to the overlap of the stationary phases of the1

ande2 wave functions in the maximal possible volume.
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ture development of an effective technique for perturbat
calculations in wedge dynamics. The arguments of the lo
ization are not applicable to the longitudinal part of the glu
field. In the termG[1]D [ long] , no patch in space-time is dy
namically selected, sinceD [ long] is not assembled from the
propagating waves that could match the virtual quark in
loop by their phase. This is in line with the absence of pinc
poles due toD [ long] (k) in the momentum picture.

The arguments presented above allow one to estimate
contribution of the radiation fields of the TM mode in a ve
economical way. Let us consider the groupD[0]

(2)g[1]
0 , which

is very similar to the termJ1 studied above, as an exampl
Now, the invariantD[0]

(2) , as can be inferred from Eq.~A4!, is
known only in the integral representation, and not in an a
lytic form. Let us, therefore, employ the analytic form o
g[1]

0 , given by Eq.~A22!. It is easy to see, that the integratio
over a in D[0]

(2) leads to the same causal step-functionu(t12
2 )

and, as previously shown, we haveuhu,h0. The expanded
form of this term is

J45
Nf

pR'
2 E

2h0

h0
dhu~t12

2 !
~t12t2!coshh/2

t12
E da

3tanhS a2
h

2 D tanhS a1
h

2 D E
p
*

`

Y1@t12~h!qt#

3sin@T12~a!qt#dqt , ~7.26!

where we have integrated out the azimuthal anglew assum-
ing thatkt ,qt@pt @the first correction is smaller by the facto
(pt /kt)

2!1]. The internal integral overqt can be trans-
formed into

2
cosh„a2c~h!…

@t12
2 ~h!sinh2

„a2c~h!…#1
1/2

2E
0

p
* Y1~t12qt!sin@T12~a!kt#dkt , ~7.27!

which brings us very close to Eq.~7.24! for J1. Once again,
we encounter a collinear singularity ata5c(h), and exactly
the same arguments force us to set the same limits in
integrals, as in Eq.~7.24!. We do not have to continue th
calculations to understand the smallness ofJ4, mention only,
that due to the narrow limits of two rapidity integrations
Eq. ~7.26!, the product of the two hyperbolic tangents in th
integrand will add extraj2 to the order of smallness ofJ4.
By the same argument as used previously, we can ea
learn that the singular term in Eq.~7.27! is spurious.

In this group, associated with the TM mode of the rad
tion field, the leading~still parametrically small, and equal t
J1) contribution comes from theDhh component of the
gluon correlators. We may summarize by the observat
that only the overlap of the domains of stationary phase
two correlators matters. It can be visualized via the part
wave expansion of any of the correlators in the self-ene
loop.

t
ry
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VIII. NONLOCAL PART OF THE LONGITUDINAL PROPAGATOR IN THE MATERIAL PART
OF THE SELF-ENERGY

The longitudinal part of the gluon propagator contributes, to the invariantS0, the term

@S0~t1 ,t2!#mat
[ long]5

iasCF

4p
u~t12t2!E d2kW tE

2`

`

dhqtg[1]
0 FD [ long]

(2) 1
1

t1t2
D [ long]

(hh) G . ~8.1!

Using Eqs.~A16! and~A17! for the gluon invariants, and the first of Eqs.~A22! for the quark invariantg[1]
0 , we arrive at the

following expression which accounts for the nonlocal part of the longitudinal propagator~the contact part was studied in Se
V!

@S0~t1 ,t2!#mat
[ long]

5
iasCFN f

2p2R'
2 u~t12t2!E

p
*

`

dqtE
2`

`

dh
~t12t2!coshh/2

ut12
2 u1/2

kt coshh

2

3E
t2

t1
e2tqt sinhuhuS 12

t2

t1t2
DdtFu~t12

2 !Y1~t12qt!1
2

p
u~2t12

2 !K1~ t̃12qt!G , ~8.2!

where we have integrated out the dependence on the azimuthal anglew in the approximation ofqt@pt . The key observation
that allows one to judge about the smallness of this term is that the limits of integration over variablet are very close, and the
factor @12t2/t1t2# is very small. This factor reflects a known competition between the electric and magnetic interac
moving charges which reduces the net yield almost to zero. Let us replacet by the dimensionlessu5t/At1t2. Then this part
of the integral becomes

1

At1t2
E

t2

t1F12
t2

t1t2
G•••dt5E

At2 /t1

At1 /t2
~12u2!•••du5E

A12j2/42j/2

A12j2/41j/2
~12u2!•••du'2

j3

3
f ~j!, ~8.3!

where the limiting behaviorf (j); const/j whenj→0 can be conjectured from the behavior of the functionsY1(x) andK1(x)
at smallx. However, the Laplace transforms of these functions in Eq.~8.2! are singular functions ofh and we have to be
careful in estimating these terms. In fact, thej2 order of smallness is not altered by the remaining integrations. First, it is u
to notice that the last factor in square brackets in Eq.~8.2! is nothing but the invariantg[1]

0 which, according to its integra
representation~A22!, equals zero atj50. Next, it is profitable to change the variables of integration in the following way.
tradeh for y according tot12(h)5(t12t2)y in the domaint12

2 .0. In the complimentary domaint12
2 52 t̃12

2 ,0, we change

h for y using t̃12(h)5(t12t2)y. We also replacejqt by a new variableq:

@S0~t1 ,t2!#mat
[ long]5

iasCFN f

2p2R'
2 u~t12t2!

1

jEA12j2/42j/2

A12j2/41j/2
~12u2!duE

jp
*

`

qdq

3H E
0

1 dy

A12y2 F11
j2

2
~12y2!Gp2 Y1~tmqy!e2tmquA12y2A11j2(12y2)/2

1S E
0

1

1E
1

` D dy

A11y2 F11
j2

2
~11y2!GK1~tmqy!e2tmquA11y2A11j2(11y2)/2J . ~8.4!
als
where, we remind the reader thattm5At1t2. When the ar-
gument is small, the functionsY1(x) andK1(x) are

p

2
Y1~x!'2

1

x
1 ln

x

2 S x

2
1O~x3! D ,
04490
K1~x!'
1

x
1 ln

x

2 S x

2
1O~x3! D .

It is easy to see now that in the sum of the two integr
dy over the interval (0,1), the leading singularitiesdy/y ex-
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actly cancel each other. Furthermore, it is safe to take
limits of j→0, u→1 in the integrand, and even to set th
lowerlimit of the integraldq to be zero. The resulting inte
gral is convergent,j independent, and yields a term of th
orderj2. In the remaining integral, the variabley runs from 1
to `, the integrand is not singular at finitey andq, and it is
exponentially suppressed at largey and q. The behavior of
the integral atj→0 is not singular and the basic upper es
es

m

es
e-
rk

04490
emate const3j2 remains unchanged for the entire integr
~8.4!.
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APPENDIX: WIGHTMAN FUNCTIONS AND PROPAGATORS OF WEDGE DYNAMICS

In this appendix, we put all field correlators into a form which is needed for the practical calculation of the self-energ
density of statesD [1] and the causal partD [0] of the gluon propagator are used in the form of decomposition over
transverse modes,

D [10]
lm ~t2 ,t1 ;h22h1 ;kW t!52 i ~2p!2E da(

l
va,kW t

(l) l
~t2 ,h2!

*

va,kW t

(l)m
~t1 ,h1!,

D [01]
lm ~t2 ,t1 ;h22h1 ;kW t!52 i ~2p!2E da(

l
va,2kW t

(l) l
~t2 ,h2!

*

va,2kW t

(l)m
~t1 ,h1!, ~A1!
of

o

TM
e

qs.
e
r
es
where

vkW ,a
(TE)

~x!5
1

4p3/2kt
F ky

2kx

0
G e2 iktt cosh(a2h);

vkW ,a
(TM)

~x!5
1

4p3/2kt
F kxf 1

kyf 1

2 f 2

G , ~A2!

are the transverse electric and transverse magnetic mod
the radiation field found previously in paper@II #. Here, we
denoted

f 1~t,h!5 i tanh~a2h!~e2 iktt cosh(a2h)21!,

f 2~t,h!5
e2 iktt cosh(a2h)21

cosh2~a2h!
1 iktt

e2 iktt cosh(a2h)

cosh~a2h!
.

~A3!

Starting from this form, we get the components of the co
mutatorD [0] (t2 ,t1 ;h22h1 ;kW t),

7

7In all formulas below, the gluon rapiditya is counted from the
reference point (h11h2)/2, the geometric center of the coordinat
h1 and h2 of the vertices in the self-energy loop. Thus, it corr
sponds to the rapidityu8 in the integral representation of the qua
correlators in paper@II #.
of

-

D [0]
rs 5E da

2p H Fd rs2
krks

kt
2 GsinktT121

krks

kt
2 tanhS a1

h

2 D
3tanhS a2

h

2 D @sinktT122sinktT11sinktT2#J ,

~A4!

D [0]
hh5E da

2p

1

kt
2 cosh2S a1

h

2 D cosh2S a2
h

2 D
3@~11kt

2T1T2!sinktT122ktT12cosktT12

1sinktT22sinktT12ktT2 cosktT21ktT1 cosktT1],
~A5!

where T15t1 cosh(a2h/2), T25t2 cosh(a1h/2), T12
5T12T2. In the first of these equations, the coefficients
the tensors (d rs2krks /kt

2) and krks /kt
2 are the invariants

D [0]
(TE) andD [0]

(2) of Eq. ~2.9!, respectively. The latter is due t
the TM mode of the radiation field. Up to the factorkt

22 , Eq.
~A5! defines the invariantD [0]

(hh) . The underlined terms are
connected with the boundary conditions imposed on the
mode att50. They cancel with the underlined terms in th
longitudinal part of the gauge field propagator given by E
~A14! and ~A15! thus providing the causal behavior of th
componentsD [adv]

rs and D [adv]
hh of the retarded propagato

D [adv](t2 ,t1). In the body of the paper, we call the residu
of this cancellation as the diagonal components ofD [0] . The
‘‘off-diagonal’’ components of the commutatorD [0]

i j are
4-17
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D [0]
rh 5

2 ikr

kt
2 E da

2p

tanhS a1
h

2 D
cosh2S a2

h

2 D @sinktT122ktT1 cosktT12

1sinktT22sinktT11ktT1 cosktT1#, ~A6!

D [0]
hr 5

ikr

kt
2 E da

2p

tanhS a2
h

2 D
cosh2S a1

h

2 D @sinktT121ktT2 cosktT12

1sinktT22sinktT12ktT2 cosktT2#. ~A7!

The commutator is not a symmetric tensor. However,
examination, these components are odd with respect to
rapidity differenceh5h12h2, and hence they do not con
tribute to the effective quark mass we are computing in t
paper.

The tensor of the gluon densityD [1]
i j (t2 ,t1 ;h22h1 ;kW t)

has the ‘‘diagonal’’ components,

D [1]
rs 52 i E da

2p H Fd rs2
krks

kt
2 GcosktT12

1
krks

kt
2 tanhS a1

h

2 D tanhS a2
h

2 D
3~cosktT122cosktT12cosktT211!J , ~A8!

D [1]
hh52 i E da

2p

1

kt
2 cosh2S a1

h

2 D cosh2S a2
h

2 D
3@~11kt

2T1T2!cosktT121ktT12sinktT122cosktT2

2cosktT12ktT2 sinktT22ktT1 sinktT111#, ~A9!
04490
y
he

s

from which one can infer the invariantsD [1]
(TE) andD [1]

(2) of
Eq. ~2.9! exactly in the same way as it was done for t
invariants of the commutatorD [0] . The off-diagonal compo-
nents,

D [1]
rh 5

2kr

kt
2 E da

2p

tanhS a1
h

2 D
cosh2S a2

h

2 D @cosktT121ktT1 sinktT12

2cosktT22cosktT12ktT1 sinktT111#, ~A10!

D [1]
hr 5

kr

kt
2E da

2p

tanhS a2
h

2 D
cosh2S a1

h

2 D @cosktT122ktT2 sinktT12

2cosktT22cosktT12ktT2 sinktT211#, ~A11!

are also nonsymmetric and odd with respect to the rapi
differenceh. They also do not contribute to the effectiv
quark mass. Equations~A8!–~A11! give the components o
the vacuum density of states of the gauge field in the we
dynamics. In order to incorporate the ‘‘material’’ part give
by the distribution of real gluons, the integrand of each
Eqs. ~A8!–~A11! must be multiplied by the common facto
@112ng(kt ,a)#.

The full tensor of the longitudinal part of the propagat
that defines the fieldA(t1) via the currentj (t2) at all pre-
ceding times,

Al
[ long]~t1!5E

0

t1
t2dt2dh2Dlm

[ long]~t2 ,t1 ;h1

2h2 ,kW t! j m~t2!, ~A12!

was found in paper@III # in the following form:
otentials
Dlm
[ long]~t2 ,t1 ;h12h2 ,kW t!

5E dnd2kW

~2p!3k'
2 Fkrks@Q21,in~k't2!2Q21,in~k't1!# krn@Q1,in~k't2!2Q21,in~k't1!#

nks@Q21,in~k't2!2Q1,in~k't1!# n2@Q1,in~k't2!2Q1,in~k't1!#
G

lm

e2 in(h12h2).

~A13!

The diagonal components of this longitudinal part of the gluon propagator are just the differences between the vector p
of the ‘‘static’’ gluon fields at the final timet1 and the initial timet2,

Drs
[ long]5

krks

kt
2 H cothuhu

2
~e2t1kt sinhuhu2e2t2kt sinhuhu!2E da

2p
tanhS a1

h

2 D tanhS a2
h

2 D @sinktT12sinktT2#J , ~A14!
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Dhh
[ long]52

t1
22t2

2

2
d~h!2H F S coshh

kt
2 sinh3uhu

1
t1 coshh

kt sinh2h
1

t1
2 coshh

2 sinhuhu D e2t1kt sinhuhuG2@t1→t2#J
2E da

2p

1

kt
2 cosh2S a1

h

2 D cosh2S a2
h

2 D @sinktT12sinktT22ktT1 cosktT11ktT2 cosktT2#. ~A15!
he
ric
e

f

th
u-
By the derivation, these components includeu(t12t2) of
the following origin. The source current which acts at t
momentt2 produces the simultaneous longitudinal elect
field E(t2). The gauge field potential is rebuilt from th
electric field at the timet1.t2 by integrating the electric
field E(t) over all times from 0 tot1. The underlined terms
in Eqs. ~A14! and ~A15! cancel out in the full assembly o
the retarded propagatorD [adv](t2 ,t1) with the underlined
terms in the radiation part, Eqs.~A4! and ~A5!. In the body
of the paper, we call the residue of this cancelation as
diagonal components ofD [ long] , which can be conveniently
written as
04490
e

Drs
[ long]52

krks

kt
2

kt coshh

2 E
t2

t1
e2tkt sinhuhudt, ~A16!

Dhh
[ long]5

t1
22t2

2

2
d~h!1

kt coshh

2 E
t2

t1
e2tkt sinhuhut2dt.

~A17!

Once again, the ‘‘off-diagonal’’ components of the longit
dinal part of propagator,
such that

here:
Drh
[ long]5

ikr

kt
2H 2

sgnh

sinh2h
~e2t1kt sinhuhu2e2t2kt sinhuhu!1

ktt2

sinhh
e2t2kt sinhuhu2

ktt1 cosh2h

sinhh
e2t1kt sinhuhu

2E da

2p

tanhS a2
h

2 D
cosh2S a1

h

2 D @sinktT12sinktT21ktT2 cosktT2#J , ~A18!

Dhr
[ long]5

ikr

kt
2H 2

sgnh

sinh2h
~e2t1kt sinhuhu2e2t2kt sinhuhu!2

ktt1

sinhh
e2t1kt sinhuhu1

ktt2 cosh2h

sinhh
e2t2kt sinhuhu

2E da

2p

tanhS a1
h

2 D
cosh2S a2

h

2 D @2sinktT11sinktT21ktT1 cosktT1#J , ~A19!

are odd with respect toh and do not contribute the effective quark mass.
The gauge-field correlators have several distinctive features. First, the lengthy expression for each component is

the gauge field correlators obey the boundary conditionAh(t50,rW t)50 which provides continuity of the field att50, and
allows for a complete fixing of the gauge. Second, in thers andhh components of the propagator

D [adv]
lm ~t2 ,t1 ,h;kt!52u~t12t2!D [0]

lm ~t2 ,t1 ,h;kt!1DL
lm~t2 ,t1 ,h;kt!, ~A20!

the boundary terms cancel between the transverse and longitudinal parts. This fact provides causal behavior of theS(t1 ,t2)
that defines the dispersion law.

The fermion invariantsg[a] were derived in paper@II #. For the sake of completeness, we reproduce the final answers
4-19



A. MAKHLIN AND E. SURDUTOVICH PHYSICAL REVIEW C 63 044904
g[0]
L(6)5 i

t1e7h/22t2e6h/2

4Aut12
2 u

u~t12
2 !J1~qtAut12

2 u!, g[0]
T(6)52

e7h/2

4
u~t12

2 !J0~qtAut12
2 u!, ~A21!

g[1]
L(6)52E du8

4p F122nf S h11h2

2
1u8,ptD Ge7u8 sin„pt@t1 cosh~u2h/2!2t2 cosh~u1h/2!#…

5
t1e7h/22t2e6h/2

4Aut12
2 u

Fu~t12
2 !Y1~qtAut12

2 u!1
2

p
u~2t12

2 !K1~qtAut12
2 u!G@122nf~qt!#,

g[1]
T(6)52 ie7h/2E du8

4p F122nf S h11h2

2
1u8,ptD Gcos„pt@t1 cosh~u2h/2!2t2 cosh~u1h/2!#…

5 i
e7h/2

4 Fu~t12
2 !Y0~qtAut12

2 u!2
2

p
u~2t12

2 !K0~qtAut12
2 u!G@122nf~qt!#. ~A22!
-
20

r

r

@1# A. Makhlin and E. Surdutovich, Phys. Rev. C58, 389 ~1998!
~quoted as paper@I#!.

@2# L. Xiong and E. V. Shuryak, Nucl. Phys.A590, 589 ~1995!.
@3# Kari J. Eskola, Berndt Muller, and Xin-Nian Wang, ‘‘Self

screened parton cascades,’’ Report No. DUKE-TH-96-1
nucl-th/9608013.

@4# A. Makhlin, Phys. Rev. C63, 044902~2001! ~quoted as pape
@II #!.

@5# A. Makhlin, Phys. Rev. C63, 044903~2001! ~quoted as pape
@III #!.
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