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Scenario for ultrarelativistic nuclear collisions. V. Effective quark mass at the early stage
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Using the framework of wedge dynamics, we compute the effective transverse mass of a soft quark mode
propagating in the expanding background of hard quarks and gluons created at the earliest time of the collision.
We discover that the wedge dynamics does not require any external infrared or collinear cutoff. The effective
mass is produced mainly due to the forward quark-quark scattering mediated by the longitindin@lsense
of Gauss law magnetic fields. Contribution of the radiation field is parametrically suppressed.
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[. INTRODUCTION culation of the quark self-energy in the expanding system. In
paper|lll ], we addressed the issue of gauge fields in wedge
In the first paper of this cyclgl] (further quoted as paper dynamics. Several important problems were solved there.
[11), we formulated a program that might result in a theory of The natural gauge condition of wedge dynamit%=0, was
ultrarelativistic nuclear collisions which is free from collin- proved to be completely fixetht the level of perturbation
ear problems and naturally establishes the infrared boundaitieory). The secondtechnically nearly most difficultprob-
for the space of “final” states at the very early stage of thelem solved in papeflll ], was the separation of the longitu-
collision (=1 fm). We have demonstrated that even at verydinal (i.e., governed by Gauss lavield and the field of
early times(much less than is required for any kinetic pro- radiation. In that paper, we also quantized the gauge field in
cess to develogpthe collective interactions in a dense systemthe scope of wedge dynamics and explicitly found the
provide the final states of the QCD evolution with finite dy- Wightman functions and retarded propagator of the gluon
namically generated masses that shield mass singularities field which are used in this paper for the practical calculation
the evolution equations.t was shown also that the null- of the fermion self-energy.
plane dynamics are incapable of describing local screening Our decision to begin the exploration of potentialities of
effects, because any type of kinetics is frozen on the lighthe wedge dynamics with the computation of quark self-
cone. It was suggested, that a more adequate approach knergy is motivated only by technical reasons. The gluon
quires the change of the global Hamiltonian dynamics whictpropagator of wedge dynamics is a very complicated func-
is used for the ﬁeld-theory description of nuclear CO"iSiOﬂS.tion, and we preferred to start with the Computation of the
We proposed the so-callededge dynamicwhich employs  fermijon loop which has only one gluon correlator in it. We
the proper timer measured from the first touch of the pone that the possibility of a technical simplificatiécom-
Lor'enz—corjtracted nuclei as the Harmlt'onlan time. Our 'n't'alpared to what we had to start wjttiscovered in this paper,
estimates in papgi] were very qualitative. In two consecu- i ajiow us to address a more important problem of the
'r:ve papeor_s[éé,S_] (fc'j“'rthﬁr thOtEd as pfapeEH] ar]:d[llld]), vge ng?Iuon self-energy in a reasonably economic way.
ave studied, In detall, the space of states of wedge dynam- In the course of this study, we employ a single heuristic

ics. In paper[ll], we extended the qualitative analysis of . .

scalar fields initiated irfl], and found that for the charged ?srsdumtpttlor(su_ﬂ? ?rted bty the analysis of pf{ir[dr]) that thte

fields, the early-time evolution of the wave function is ac- Ield states with large transverse momentum, even at very
ra_arly times, may be associated with the localized particles

companied by a gradual rearrangement of the charge distr ; o .
bution, starting from its almost uniform spread along the@nd thus can be described by the distribution with respect to

light cone atr—0, and up to a narrow wave packet with a f[he rapidity andl transverse momentum. Our strategy of Ioo_k-
well defined rapidity at later times. We have shown that thignd for the leading contributions, as well as all our approxi-
redistribution of the charge leads to currents in the rapiditynations, in the calculation of the material part of the quark
direction and that these currents are the largest at the earlies¢!f-energy are based on this assumption. If it appears incor-
7. The magnetic fields generated by these currents can He&ct, then it is most likely that the quark-gluon matter created
responsible for the interactions between the currents at thi@ the collision of two nuclei never and in no approximation
earliest moments of the QCD evolution. In pagé, we can be considered as a system of nearly free and weakly
studied the states of fermions in wedge dynamics and founthteracting field states.

the fermion field correlators that are used below for the cal-

Il. FERMION RETARDED SELF-ENERGY

The idea that screening effects should be taken into account at
the early kinetic stage of a collision has been articulated earlier and In order to find the normal modes of the quark field in the
with different motivations by Shuryak and Xiofig] and by Eskola, expanding quark-gluon system, we are going to solve the
Muller, and Wand3] Dirac equation with the radiative corrections, which can be
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P P
FIG. 1. The retarded forward
Gk D, D, G, scattering amplitude is contributed
by two subprocesseqg—qg and
a9—qqg.
b4 P

derived as a projection of the Schwinger-Dyson equation for ig? b \ba

the retarded quark propagator onto the one-particle initial = freq(X1,X2) = —~[1*¥*Gpreq(X1,X2) ¥ Dy (X2, X1)
state. For the quark field without Lagrangian mass, this equa-

tion reads + 12y Gy (X XY D R o (X2 X1 1.

(2.3

i')’#(xl)vﬂ(xl)l/f(xl):f d4X22[ret](X1,X2)¢(X2)-
2.1 The two subprocesses that contribute this self-energy are de-
picted in Fig. 1.

The covariant derivativéV ,(x) of the spinor field in the The retarded and advanced quark and gluon propagators
i : K P Sirey and D™, . were found in paper§ll] and[lll] of this
curvilinear coordinates of the wedge dynamics includes the’[ret] [adv]

spin connection and it was found explicitly in pajji. For ~ cycle and are connected with the commutat@g,; and
all calculations below, we employ the mixed representatiorP[OI '

which is the most profitable in heavy-ion problems. We are

looking for the radiative corrections to the wave function

with a given transverse momenttﬁnand rapidity® with the
expectation that within the rapidity plateau nothing will de-
pend ond. However, we cannot totally eliminate the coordi-
nate » from the theory. We have to keep it explicitly, since
the problem of the expanding field system cannot be reduced
to (2+1) dimensions. In its expanded form, BEQ.1) reads

Gre(X1,X2) = 0(71— 72) Goj(X1,X2),

Dl[;ndv](xz Xq)=—60(71— Tz)Dl[Bq](Xz X1)+ D" (Xz,Xy),

g 1) iyt 9 (2.4
A0 T A r .
|7<a71+271)+ T (97]1 pl‘})/:|lr/,(pt17-la771)
T ©
=f deJ 720722 (req (Pt s T1, 725 71— 72) where D!I™(x,,x;) is the longitudinal part of the gluon
0 o propagator(governed by Gauss lgwand it enters in Eq.
X Y(PyiT2, 7). (2.2) (2.4) in such a way that the conditidD ;e — Djagvj=Djoj IS

satisfied and the noncausal longitudinal part of the propaga-
The retarded self-energy is an object that naturally emergef@r does not violate the causal properties of the commutator
in the Schwinger-Dyson equation for the retarded propagatdPo;- The correlatorsGy;; and Dyy; include densities of
in Keldysh-Schwinger formalisrf6]. Below, we employ its vacuum states as well as the information about the occupa-
modified form developed earlier with the view of application tion humbers(phase-space populatiprEventually, we shall
to the inclusive and transient processes. We employ the ngrove that an approximation of the boost-invariafioinite
tation used in Refs[7,8,1.2 In this notation, the one-loop rapidity plateayiis not corrupted by any kind of cutoffshe
retarded fermion self-energy in coordinate form is vacuum part never js Therefore, all correlators@, D, and

3,) will depend on two times; and 7, separately, the dif-

ference of rapiditiesy= 7,— 7,, and the difference = Fl

°The indices of the field correlators with the Keldysh contour — I of distances inxy plane. The latter is Fourier trans- _
ordering of the field operatordike Gjag)) as well as the labels of formed to the transverse momentum dependence. In this
their linear combinationélike G) are placed in square brackets. mixed representation,
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E[ret](TliTz;nyﬁt)
__ig®
2(2m)?

f d2k[t2y™(71) Gyreq (71, 72; 7, P+ Ky)

X2 (72) D im( 72,713 — 7.K)
t2y"(71) Gy (71,725 7,P+Ky)

X P (75) DP8im( 72, 713 — 1.KD 1, (2.5

where y7(7)=%/7. As has been shown ifi], all fermion
correlatorsGy,; can be decomposed as

G[a](TlvTZ;nvqt)
= O OLay YO+ OFag V¥ 1+ 91y Y 1000 O Y1y
=adlorl vy oy 1+ Ay Yol v

+ol7 1., (2.6)

where, for the sake of brevity, we denodk= 5t+|2t. A
similar decomposition takes place for the self-energy,

S e (71,725 7P = 2090+ 32393+ 3Tq oy +iSAp € ytyd
S Lyt S L)

+p Y YIRTH Yy 43Ty 7], (2.7)

and we obviously have

1
L(x)_~ (0 3 T(E) T T A
Ola] (g[a]tg[a])’ 9a] _2(g[a]tg[a])’

1 1
SHH=2(3023%), 3THI=(3T=34. (2.9

It becomes easier to analyze the various pieces of the
quark self-energy if the gluon correlatdss ,;, are taken in

the form of the following decompositioh,

3In what follows, we use the Greek indices for the four-
dimensional vectors and tensors in the curvilinear coordin@es
dex 7 is an exception, it always denotes the rapidity diregtiamd
the Latin indices froma to d for the vectors in flat Minkowski

coordinates. We use Latin indices franmio w for the transverse
andy componentstr, . . .
to denote the two-dimensional vectors, e.§=(k,.k,), [K|
=k;. The Latin indices fromi ton (i, ...
used for the three-dimensional internal coordinates(x,y, ) on
the hyper-surface= const.

w=1,2), and the arrows over the letters

n= 1,2,3) will be
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k ks TE k ks
D[a]rs:(ars__ktf) (a]) _kZ_D[a]-

Kk
_ D PN LN
Dtayy=Plaf”s Prain=j@Prel Draass=izPlar’s

(2.9

where the first term i s is due to the transverse electric
mode, and all invariants dPj,q,; (exceptD ;dEV)) have two
terms, DO ") from the transverse magnetlc mode of the ra-
diation fleld andD[,ong] from the longitudinal field. All
these components were found in pafdr] and are given in

the Appendix in the form which is used in the calculation
below. After some algebra, we can present the retarded quark
self-energy in the form,

> ia CF N _ _
Speq(T1.m2i mP) = —— | ARy S +y8HO)

+py Yy ST+ ST,
(2.10

where the scalar invariants &fj; are the bilinears of the
fermion and gluon scalars,

o +

gT(+ (n]r)
) \ (211
T2

SL(t): z

[@.B]

(tht) ( [Tar)D(r 7

k2 T1
ST(i): 2 (ptqt) _ (ktpt)(ktqt) +)(D(TE) (2))
@A || p? kZp?
(Eltf)’[) T(F
~— (s D
Py 7172
_ (Etﬁt)( g[Lii)Dﬂﬂ) B gL(I)DfZ]r)
T . (2.12
kp2\ ™ T2

In these equations,

—{[ret, 1],[ L,adV}.

the sum, s runs over[ea,B]

IIl. FERMION MODES IN THE EXPANDING SYSTEM

We shall look for the dispersion law of the fermions in the
proper-time dynamics studying the Dirac equati@r?) with
radiative corrections. Since the fermions are massless, it is
convenient to use the spinor basis where the Dirac matrices

are
0 |1 0 —o
7,o: , Yl _ ,
I 0 d 0

and the Dirac equation can be split into two separate equa-
tions for the left- and right-handed two-component spinors.
The latter reads as
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GrM(Pe; 71, 7)) WPy 71, 71)
71 ©
:fo deJﬂcTzd??zER(pt;7'1,7'2;771_ 72)

X r(PeiT2,72), (3.2
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1 0
2
P fo deJ_ T172d7,d6d( 71— 72)
Xei,uTl cosh(y+ 0)e—i;wz COShﬂz[e—(vl— o+ 0)/22(L)—
+e(m=mt 025 (L+ 4 o= (11t 72+ 6)/23 (T)+

+elmtmt 9)/22(1')*], (3.6)

where the matrices of the right-handed differential operator

Ggl and of the right-handed self-enerdy, are

1 1 i
» (%'FE_—;(?,, Px—1Py
Gr(pt;7,m)= 11 :
Pxtipy i(‘97+z+;‘9n)
SR(Pt; 71,2 M~ M2)

_[ EL(i) _(px_ipy)ET(+)

where the exponentials are due to the Thomas precession of
the spinor field. Next, we integrate both sides with respect to
0. Two rapidity integrals,déd»,, on the right absorb the
precession factors yielding the product of Hankel functions,

m2H{)

1/2(/1«71)H(1§2)(M72): g'm(m ),

(3.7)

MNTLT2

Finally, we arrive at the dispersion equation that defines the

—(pxt ipy)ETH SHH) fermion “transverse massji as a function of the transverse
(3.2 momentum and the latest timeg,
The equation for the left-handed spinors differs from Eqg. n(Pe,71) — P
(3.2) only by a change of some signs in matrid8s2) and
leads to the same dispersion law. A solution with positive :EffldT . ei;,,(pt,rl)(fl—fz)jx d
energy is looked for in the form 2]y 2V !

e(n— 0)/2pt .
( ,0: 7, ):( o ) )el,urcosh(nﬁ),
Pr(Pt 7 e a)/z(px+|py)

(3.3

X[SLO 43O 4 p 3T 4 p 5T,
(3.8

As has been discussed in papii for fermions(similar

wherey is the effective “transverse mass” of the mode. For arguments are true for gluop®nly the independence of the

the free on-mass-shell solution we have p;. To solve Eq.

(3.1), we introduce an auxiliaryleft-handed spinor

~ e (702, . ,
W(p ,0’;T,n)=( ) _ el w7 coshty—6')
t —eln=? )lz(px_lpy)
(3.9

We insert Eq(3.3) into Eq.(3.1), multiply it from the left by
spinor (3.4) and integrate this along the hypersurfacg
=const. Then the left side of the equation becomes

quark and gluon occupation numbersandng on rapidity

can provide that the invarian& () andS™*) naturally de-
pend only on the difference= 7, — n,. We shall consider
only this case of the local homogeneity; we can do it safely
only because no collinear singularities which may require a
rapidity cutoff (e.g., =Y) in the phase space will appear in
the theory. Since we are computing an essentially local quan-
tity, such a cutoff would be unphysical. With this reserva-
tion, we may rewrite Eq(3.8) as

Tl .
M(pt):pt"_j dry\ 7y 7o H P =[50 1) 7))
0

f_ledﬂlTﬂ(pt19/;7'1-771)G|;1(pt37'1-771)¢R(pt,9?7'1'711) +p 2T (7,71, (3.9
:47.,'“_ Pt p28(6—6'). (3.5  where we introduced the notation,

In deriving this equation, we assumed thats independent EO(Tl,TZ)ZICZSCF dZEtfm d’?th?a]

of 7,. The weak dependence is admissible, provided T [ap] —o

du/dT <ul/ 7. A solution that has this property does indeed 1

exist. The right-hand side of the equation is, in fact, indepen- x| DB +p@ 4+ —_plan| (310

dent of ' and is of the following form: L] B gy A
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whereD(%) and G{2} are the vacuum correlators of a given

a

T lasCr o [ T
(1, 7)= an 2] dk wd 791 a] type[ a]. They are defined as vacuum expectation values of

L. the binary products of field operators,
(Pl (ki) (ki)
X -2 DEP+D 2 : —
[ { o? pz | Pt D) G{9)(xe.x2) = ~ (0] W (x) ¥ (x2)]0),
4 LR pgg]w] . (3.11 G2 (X1, %2) = 1{0]W (x;) ¥ (x1)[0),
Pt 7172
Comparing these equations with Eq8.11) and (2.12), we D{%)im(X1.X2) = =i (O A|(X1) A(X2) | O),
may observe a significant simplification. The terms with the
_di (1) (rn) .
off-diagonal component®(”") and D" have dropped out. D{Sim(X1.%2) = —i(0|An(X2)A|(Xx1)[0). (4.3

These terms, as it can be seen from H&®), (A7), (A10),
(A11), and(A18), (A19), are odd with respect tg, while the
invariants g°=g-("+g~(7) and g"=g" " +g"") are
even. Therefore, integration overeliminates the terms with

the off-diagonal components. Gio1= Gpi01~ Gron = G{3t)— G{oy = Gfo] »

In this approximation, the fiel@antjcommutators,

IV. PROPAGATORS, DENSITIES OF STATES, AND _ B 1 0) (0 _(0)
OCCUPATION NUMBERS IN THE EXPANDING SYSTEM Doy = Di10)~ Doy = Drpagy~ Dyo1) = Dioj (4.4

In this section, we collect condensed information aboutyppear to be insensitive to the presence of the particle distri-
various correlators of quark and gluon fields derived in pajytion, while their counterparts,

pers[ll] and[lll ] which are necessary for the calculation of
the quark self-energy. We also discuss our specific choice of
occupation numbersg(k;,«) andn(q;, ). All field corr-
elators are defined as the expectation values over the distri-
bution of the background particles. The latter are the excita- D(1=Dp1oj+ Doy =[1+ 2ng]fo]), (4.9
tions of the modes allowed by the constraints and the

boundary conditions of wedge dynamics. The Fock space

Gp11= G101+ Gpoy=[1— 2nf]GE8]) ,

S ; %clude the occupation numbers which modify the original
Lhese exc;tatu()jnts was f[:on?tructetd in palﬁﬂklglﬁn%'”t]' Wel pypCuUm density of states. For the sake of simplicity, we take
ave analyzed two S_e S of quanium numbers that may fa ?ﬁznf‘=nf, which corresponds to a neutral system.

the states. Both sets include the transverse momep{und The Wightman functiong4.1) and(4.2) (or their various
polarization index. In one set, the remaining variable was thg,ear combinationsS; 5 andD, ) eventually appear under
bOOSt’a (thebvanable CO”J?Qatehd to the _co<|)rd|r|1@;t)la this set o the integralel# andda. One must keep in mind that in order
proved to be very useful in the practical calculation of the (0) (0)
gluon propagators. In the second set, the particles are label t% reduceGr; andDig to th_e standarq form O-f the vacuum.
by their velocity ) tanhd in the dire,ction of the collision Wrrelators, at least two shifts of the integration variables is

Uz= i (0) (0) ici -
axis. This represezntation is used below. The fermion Spectragecessary. Only aﬁer thgt W'G[ﬁ?] and Dy explicitly de

end on the boost-invariant variablesand 7,. The func-

functions are tionsny(k;,@) andn¢(q,,#) are not indifferent to this shift.

Gpao(ay,0: 71, 72) =[1-n{ (a, )]G (qy, 6;71,72) It may well happen that a formal shift inor « will drive the
stationary points of the wave functions or the singularities of
—HF(qt,0)Gf8{](qt,0;71,7'2), the field correlators outside the physical boundaries of the
_ . ) _ distributions ny(k;,«) and n¢(q;,6). Therefore, different
Gioy(Qt, 05 71,72) = —N¢ (0, 0)Gpig)(Qr» 0571, 72) representations dB(y; andD(;; must be used for the study

- (0) . of different subprocesses. One has to account for the reser-

FL1=ne (G, 0)1Grox(ar, 071, 72)- vations stemming from the derivation procedure described in

(4.1 Sec. IV of papefll]. These different representations of the
quark and gluon correlators are quoted in the Appendix.

Their gluon counterparts are of a similar form, In our picture, first outlined in papgi], the fermion

Dpaoy(ke, @ 71, 72) =[ 1+ ng(K ,a)]Df%](kt ) vac_uym'mode.v_vith small transverse mqment_pnand zero
rapidity is modified by its forward scattering either on gluons
+Nng(0; ,a)ngi](qt,a;leTz), with high momentumk, and rapidity @, k>p;, or on
) quarks with high momentung, and rapidity 8, ¢>p.
Doy (Kt a;71,72) =ng(ky, @) Dpygy(ke @ 71, 72) These hard modes are created at the earliest moment of the

(0) _ collision and can be treated as well formed particles by the
+[1+ng(qc, @) |Dioy (G @; 71, 72), time 7~ 1/p;, since at that timerk,>1, and7q,>1. There-
(4.2 fore, they may be consistently described by the distributions
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Ny 60(di—py)
n ,0)~ —_—,

N e(kt_p*)
Ng(ke, @)~ —= — %= 4.6
9( ) WRi ktz (4.6

wherep, is the lower bound of the *hard” partons distri-
bution. Both distributiongper unit area, per unit rapidixyare
chosen on purely dimensional grounds, since we believe that
the creation of a parton with large transverse momentum is FIG. 2. Evolution of the charge density in the typical state of
described by perturbative QCD which has no intrinsic scalewedge dynamics.

Currently, the normalization factotd/; and N; are the
only (apart from the couplingr,) parameters of the theory.
The cross sectioerf and the full width 2¢ of the rapidity
plateau are defined by the geometry of a particular collision
and the c.m.s. energy, respectively. These are irrelevant focro

the local screening parameters we are interested in. In th?;r;—component of the propagator of the longitudinal field.

first approximation, one may try to extract them from thepis contribution is computed in all details below. All other
event-by-event measurement of the hightail of the colli-  (o;ms are associated with the propagation of the transverse
sion products and incorporating the standard phenomenologys|ds and they appear to be parametrically small in the do-
of the fragmentation functions for the analysis. main 7,p,<1, (7,— 7)p;<1, 7,— <7, Where the dy-

As was pointed out in papgt], even in dense systems, namical mass of the fermion is effectively formed. The com-
the QCD evolution at larg®? is not likely to be affected by ponentD,,, of the propagator establishes the connection
finite-density effects. Thus, one may also try to employ thepetween theA,, component of the potential and thg com-

V. LEADING PART OF THE DISPERSION EQUATION
A. Derivation of the dispersion equation

The most important outcome of this work is that the major
ntribution to the effective quark mass comes from the

known structure functionswithout shadowing correctiohs
and the factorization scheme in order to estimjeand\; .
A most appealing opportunity to fina,(k;,«) andn¢(q;, 6)

ponent of the current. In its turr, is responsible for the
n-componen€ , =d A, of the electric field and the andy
componentsB,=d,A,, By=—d,A, of the magnetic field.

from first principles, associating them with the known prop-The electrical field in the longitudinay direction is not ca-
erties of hadrons and the QCD vacuum, is still very distantpable of producing scattering with transverse momentum
The distributiong4.6) are used below with the following transfer. However, this transfer can be provided by the mag-
informal reservations. First, the total energy of any collisionnetic forces; the two currengs, can interact via the magnetic
is finite andk; and g, have (though very high, but finite  field §t=(BX,By). The origin of these currents is intrinsi-
upper boundary. Eventually, this leads to the self-energyally connected with the geometry of states in the wedge
which is free from collinear singularities in the interaction of form of dynamics. Any state with a givem begins its life
charges with the vector gauge field. Second, though the diseing widely spread along the light cone. If the state is
tributions (4.6) are boost-invariant, only the particles which charged, then local charge density is small. With time going
physically affect the forward scattering must be accountewn, the spread of the wave function diminishes and the
for. There is a strong correlation between the positipn charge become localized in a narrower rapidity inte(gale
where the particle with large transverse momentgmis  Fig. 2). Therefore, any charged state carries a current in the
measured(or is interacting and its rapidity . Hence, the longitudinal (rapidity) direction. The magnetic fields of the
limits of integralsda anddé over the rapidities of real par- transition currentprovide scattering with the most effective
ticles (which either mediate the scattering or are in the finaltransfer of the transverse momentum. Indeed, at time
stateg cannot exceed the actual rapidity boundaries of thequark with the transverse momentupp, 7,p,<<1, interacts
scattering process. In its turn, this puts an additional requirewith the gluon field and acquires a large transverse momen-
ment on the notion of the distribution itself. It must be nor-tum k., 7,k>1. This transition is characterized by a drastic
malizeable in the physical volume of the reaction. This vol-narrowing of the charge spread in the rapidity direction, and
ume is defined, in fact, by the light cofiee., causality of the must be accompanied by a stromgcomponent of the tran-
forward scattering amplitude[We remind the reader that sition current. A similar transition in the opposite direction
the notion of a distribution itself makes sense only after it ishappens at time;, when the gluon field interacts with an-

prepared (measurefl at least in agedankenexperiment.
Hence, the distributionay andn; must exist, in this sense,
both at final timer; and at the initial timer, in the expres-
sion for the self-energy. In its turn, this limits the timg
from below]

other quark that has large initial transverse momenkym
and recovers the soft state withp;<<1 in the course of this
interaction. This second transition current readily interacts
with the magnetic component of the gluon field. Our esti-
mates indicate that the leading contribution comes from the
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term of D, (75,71 75— 71:k) which is proportional to divided into “hard” and “soft” states. Therefore, it is natu-
ral to takep, ~p; in Eq. (5.4). Further, it is convenient to

8(m,— m,) and does not depend dig [in coordinate repre- _
trade variabler, for y= (71— 1)/ 74,

sentation, this term is just proportional & 7,— 7,) 5(?1

—Fz)]. This is a Iong—rar)ge contact ir_1teraction of the two w(p,71) i@ CeNimipy (1 1—y/2
currents, and is not limited by the light-cone boundaries = > 2 y
(which suppress the interaction via the strongly localized Pt 2nRipy Jo " V1-y

states of the radiation fieldFurthermore, the contact part of
the longitudinal propagator is the only one that brings into
the integrand of the dispersion equati@?9) the term which

is singularat 7, — 7,— 0. Therefore, it is capable of provid- . . . . .
ing an appreciable contribution into the effective quark massl,_n th_'s form_, the dispersion equation clearly _reveals two dis-
which is defined locally This part of the self-energy allows tNCtive regimes. Whenrp;<1, then the functior¥(x) be-

for an exact calculation with a simple analytic answer which@ves as a logarithm, and the right-hand side of &)

is presented below. Estimates of all small terms are exPecomes proportional to In(2/py), the effective width of
plained in Secs. VIl and VIIf. This contact part of the lon- the rapidity interval occupied by the state at the early time of
gitudinal propagator is the evolution. Whenrp,>1, thenY,(x)~ 1/J/x, and the in-
tegral becomes proportional to\iZp,, the effective rapidity
width at later times. Thus, the dispersion equati®@ib)
clearly reveals two distinctive regimes which were qualita-
tively analyzed in papefll]. The solution of Eq.5.5 is
Because of the extreme locality @(°9"*°! provided by  generally complex. Taking= x’ +i u” we can separate real

5( 77), the invariantsg[l] of the fermion density function in and imaginary parts of this equation,
Eq. (3.10 lose their kinematic coefficients,

X P TITYY (7ipyy). (559

2 2
pleontact k) = T1— T2 s 51
nn (72’T1’772 M1 t) 2 (77) ( . )

1
vi-y

xe ¥ sin(u' my)Yo(ripy), (5.6

0 _
9=

_ZM Yl( leqt) T _2~/\/f YO( leqt) aSCFM fldy
2
0

— > 9= : D= —
RO RO TP R

(5.2

)

First, we integrate over, which leads toﬁf(rl—rz)z.
Next, we chang&dzlzt for dzﬁt and integrate over the orien-
tation of g, gaining the factor 2 in 3% In 37, g/}, is inte-

1
grated with the weight factorg¢-p,)/p?. Therefore, this Tp = aSCZNfZ j dy{ ! +\/1—y1
term identically vanishes after integration over the azimuthal 2m(Ry/ 7))o vli-y
angle. The only remaining integral over the transverse mo- o ,
menta of hard partons is xXe Y cogu' 1Y) Yo(T1PY). (5.7

* Yol (71— 72) Py ]
Yl[(Tl—Tz)Oh]th——z- (5.3 (The unit upper limit in these integrals correspondsro

TLITT . L .
P =0, and is, as a matter of fact, fictitious. Practically, we are
Eventually, we may write the dispersion equatich9) as interested only in the domain whergp,~1.) We have re-

follows: arranged the factor in front of the integral in such a way, that
at early times, this factor is small. It has been shown in paper
iasCeN; (71 Tt 7o (1], that the longitudinal part of the gluon propagator van-
M=Pet 2 R2 fo 7'22\/— ishes when the distance exceedsr;. Therefore, this factor
T 172 is proportional to the(smal) number of hard partons per
x e M= Y [ (1~ 75)p, ]. (5.4  transverse area occupied by the soft quark mode. Hence, we

can analyze Eqg5.6) and (5.7) by successive approxima-

tions. It is clear, that in the lowest approximation, we can

take u'=p; in the RHS of these equations, and that the
According to the qualitative analysis of papgl], the  imaginary partw” can be neglected. Using

dynamics of states is different in the two limiting cases,

P:<1 and rp;>1. With respect top,~ 1/7, the states are

B. Study of the dispersion equation

sinx=x, cosx~1, Yo(x)=27 Yyg+Inx],
“The authors appreciate discussions with Edward Shuryak, who . _ _ S
pointed out that the small effect of the radiation fields is much les€is an approximation, and computing the remaining integrals,

surprising than the finite contribution from the longitudinal fields. we arrive at
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K pute the four-dimensional integral over the momentum in the
p /pe=1 loop, this divergence can show up only in the last of these
0.1 integrations. We compute the self-energy in the mixed rep-
resentation. Hence, we cannot see the UV divergence explic-
0.5 1 1.5 2 [P itly but we mustalready seée.g., in In®) the various infra-
red divergences which emerge due to real processes with

0.1 massless fields. A corresponding analysis for the case of the

0.2 null-plane dynamics was done in papl. These diver-
gences must be regularize@dr even removed from the

0.3 theory, as is done by means of dimensional regularization

MOt pe before the UV renormalization. The primary goal of this sec-
tion is to demonstrate that in the wedge form of dynamics the
quark self-energy is completely protected from collinear
problems, and that this is not a surprise. Indeed, in the theory
with massless fermions and gauge bosons, the infrared sin-
gularities show up in a different way depending on the type

FIG. 3. Self-energy corrections to the real part {p,— 1, upper
curve and to the imaginary pari(’/p;, lower curve of the effec-
tive transverse mass as functionsmp, .

p a.Ce N of Hamiltonian dynamicg(including the gauge condition
“__l:SZ_FZZf(Tlpt)z which is used to describe the process. In the gaige-0
Pt T REP; they look like collinear divergences. In the gaugé=0,
2 104—1201n 2 they look like an infrared problem of the proper field of the
X|=| = ye+In )+ , charged particle. In both cases, the problem emerges due to
S 1Pt 75 the incomplete gauge fixing, and manifests itself through
(5.9 spurious poles of the gauge field propagators. As has been
uooa CFNf 4 2 26—241In2 shown in papeflll ], the gaugeA™=0 is fixed completely,
P “#2R%p? 1Py 3 ( ve—In Tlpt) T 9 - and therefore, the quark self-energy that we compute here is

(5.9 totally free of these problems.
In order to demonstrate this appealing feature we shall

These dependences are plotted n Fig. 3 as functions of thmompute (the most dangerous in this respetite vacuum
argumentr; p; up to the prefactorsCeN; / m?R2p?. part of the fermion self-energy, concentrating on the terms

Equation (5.5) describes the evolution of the effective where the integrand as a function of the rapidityis not
transverse masa of the state with a given transverse mo- suppressed dir| —. A self-consistent piece of this type is
mentump, as a function of the proper timg. We see, that the contribution of the transverse electric mode of the gluon
the real parju’ gradually grows with time reaching its maxi- field. The tensor part of any gluon correlator for this mode is
mum at7,p,~1. The mode acquires an “adjoint mass” due Of a very simple form,
to the interaction with hard partons, as was anticipated. The
curves cannot be trusted above the boundaryp, *, since D(ajrs= (8rs—Kiks /KDL ; (6.9
at later times, the mode becomes “hard.” It cannot be
viewed as a soft cloud swept with uniformly distributed hardit has noz components, and the scalar functidi; can be

particles. The condition computed exactly since they have simple integral represen-
tations. We use this piece of the self-energy to explain the
du u principles we base our calculations on. Using Egs10 and
d71<7-_1’ (3.1, we get
which was used in the course of the dispersion equation deri- [SH e 71,72 7,Py)
vation, is clearly fulfilled near the maximum of the disper-
sion curve. o _ _ . )J' 2R ()
One more |mportant dependence is hidden in the prefactor 27 2 1907 (G
ag F/\/f/wZRt pt , and is not visible from the figure above. TE (=)
This factor scales as; 2, clearly indicating that at largg, X Difj(k) = Ay (G0 Ploj (ko) 1, (6.2
the effect of screening is small. There is almost no hard .
particles withk, ,q,>p; . whereqt ki+ p; and the minus sign in the second term is
due to the definition(2.4) of D(aqy; - The3'E req 1S fully con-
VI. CANCELATION OF COLLINEAR TERMS IN THE fined within the light Wedge-12>0 Then, the vacuum quark
VACUUM PART OF THE SELF-ENERGY and gluon correlators have the following form:
Usually, the self-energy. is studied in the momentum TE e P \—o—-1p/2
representation, and the first subject of concern is the ultra- Droj(72, 715 m2= 71 k) = 27767350 0(T12K0),
violet divergence of this function. It is well known that this - . 1
divergence can be at most logarithmic. Thus, when we com- Dpyj(72,715m2— 713 K) =27 7Y o(71Ky), (6.3
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reT N2 ot 2 where 75,= 72+ 15— 27,7,coshy, and the commutators
L(+)_:'1 2 TE : 2 L
O =T 2 2 0(72)du(ae| 75), Djoj andGo; include the causal(r3,) by definition, and the
12

terms proportional t@(— r,) in the densitieD[j; andGyy,
€% M2 et 2 are omitted. Integration over the anglebetween the vectors

90 =?Yl(qt\/|riz|), (6.4 p, andk, involves only the invariantg,; . According to
4y| 73 Egs.(6.2) and(6.4), we have to integrate

2
o qrJ1(71200) do = 27 K Jo( 712P1) J1( 712Ke) + Prd1(712P0) Jo( T12Ko) 1,

2T
. ;Y1 (7100 de=27{ O(K;— po) [ Kedo( 7120¢) Y1(712K) + Prda(7120¢) Yo T12Ke) 1+ O(pr— Ko [Ked1( 71K Yo 712P1)
+ P Y 1(712P0) Jo( TaK) 1} (6.9

This integration is done with the aid of the so called addition theorgh$or Bessel functions of the argumeq{z[kt2

+p2+ 2k.p, cose]*2. Starting from this point, we can continue in two ways. The most straightforward option is to use the
gluon correlators in the integrated form of the Bessel functions, thus sweeping under the rug the singular behavior stemming
from a—o0. This leads to the integral

Tle: nl2_ Tzei nl2

. iaC o
[El[}gﬁ)]TE:%F 0(75) 0( 71— 75) [_JO(lept) fo KL J1(T12Ke) Yol m15Ke) + Jo( T12Ke) Y1( 71K 1d K,

T12

*° Pt
_2pt~]1(712pt)fo Kido(712Kt) Yo T1Ke) Ak + prd( 7120) fo KiJo( T12K¢) Yol 712K¢) Ak
Pt Pt
+Jo(712P1) fo ktz‘]O(Tlet)Yl(Tlet)dkt_ptY1(712pt)f0 Kido( T12K) Jo( 71K ) dk;
Pt
_Yo(lept)jo ktzJO(lekt)Jl(lekt)dkt}- (6.6

Here, all the integrals can be computed explicitly as indefinite integrals. The integrals fropy Qiétd the regular part of the
answer below. Taking the upper limit of improper integrals toAbe =, we get the singular part as the limit,

AZ
lim 7[[30( T1201) + TP I (71200 11 (TA)Y 1 (7A) + 7pd 1 (71201) Jo( TA) Yo (TA) ]. (6.7

A—oo

Using the asymptotic expansion of Bessel functions, we find that the singular part is builbfrggh and its derivative. The
full answer reads as

. iaCg e’ 2 T,e" /2
[2|[_r(et7])]TE=_ 1(;7 0(73,) 0( 71— 75) o
Jo(712P1) Jo(712P0) |, 2 4pJ1(T12P0)
x[p? St S0 (r) = 8 | (o) | 6.9
12 T12 T12 T12

Thus, the answer is singular at the null plaﬂéfo. In order to find the true source of this singularity, we shall proceed in
a different manner, keeping the gluon invariagts™ in the integral form. We shall integrate ovky first and leave the
integral over the gluon rapidity for the end of calculation. This leads to
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i 7-1eI nl2_ Tzei nl2

N Cr
[Eh(eﬁ)]TE: ; 0(730) 0( 71— 75) o
2
p J (7' p) o da ® 0 .
X[_Z_tﬁﬂLf —1 Jo(712P1) j ktz‘]l(Tlet)Cos(Tﬂkt)dkt_f KZY 1 (71K Sin(Tyky) dk;
T T12 —o T 0 0

+pt~]1(7'12pt)( fo ktJO(Tlet)COS{lekt)dkt_fo tho(lekt)Sin(lekt)dkt) }, (6.9

where we remind the reader that,=T,—T,= m,cosh@—). The integrals in this expression are the well-known Fourier
transforms of the Bessel functions,

Jo ktZJl(lekt)COS(lekt)dkt: jo kthl( Tlet)Sin(lekt)dkt:3T127'liTiZ_ 7'%2]15/21

fo KJo( 712K) cog T k) dki= fo KeYo( 712K SIN(T k) dke= — Ty T~ 752]13/2, (6.10

where the distributiond’; is defined in a standard way with lision. This conclusion may look counterintuitive, since,
the due number of subtracted terms of the Taylor expansionamely in the interactions of the transverse fields, we expect
in the integral [ f(x)x) dx [10]. Three different issues are to encounter the collinear enhancement of the radiation am-
important here. First, each of the integrégs10 is a well  plitude. As has been shown in Sec. VI, in the vacuum part of
defined distribution that includes all necessary regulatorshe self-energy, the integrals of this tyfiaken in the limits
which provide the convergence of subsequent integrationgrom O to ) cancel each other leaving the vacuum sector
The Bessel functions themselves aefinedas the Fourier free from collinear divergences. The statistical weighfs
transforms of theg+) distributions and we just recover the and N;, which are different for the different terms, prevent
original regular form by doing the inverse Fourier transformsuch a cancelation in the material part. Thus we have to
(6.10 (see Ref[10]). Second, as will be shown in the next analyze each term of the material part separately.
section, the singular behavior of the integréis10 origi- As in Sec. VI, we consider an isolated piece which corre-
nates from the collinear domain. The-) prescription that sponds to TE gluons. The gluon correlators of this piece are
emerges here eliminates them term-by-term. Third, after théhe most singular and are known not only in the integral
result of the term-by-term integration is put back into Eq.representation, but in closed analytic form also. The last cir-
(6.9, the singular collinear terms just cancel everywherecumstance is very helpful for the analysis of the multiple
including the nuII—pIaneﬁZ:O. This type of cancelation of integrals we meet belowThe terms identical to those com-
collinearly singular terms takes place in all other pieces oputed below, also appear in the part of self-energy due to the
the vacuum part of the quark self-energy. TM gluons; the remaining terms of TM sector are less sin-
All these observations lead us to the conclusion, that evegular and, eventually, smaller than considered hefée
in its vacuum part, the self-energy does not suffer from col-corresponding fragment of the quark self-ene@L0 in the
linear problems, which seems to be a unique property of theispersion equatiof3.9) is
expanding system. We do not continue to study the vacuum

part of the self-energy here, since we are currently interested 0 (TE) i asCr
only in its material part which is discussed in the next sec- [25(71,72) Inat =— —— 0(11 = 72)
tion. (The full analysis of this part, including the issue of its
renormalization, will be published elsewhere. L
P ¢ X f d%K, f d7q;
VII. RADIATION FIELDS IN THE MATERIAL PART o
- 0 TE 0 TE
OF THE SELF-ENERGY X[g{ Pl — 9Pl (7.0

We found that the major contribution to the one-loop ef-
fective mass of a “soft” quark mode in the background of [=7( rl,rz)]gaﬁE
“hard” quarks and gluons comes from the quark-quark for-
ward scattering mediated by the magnetic component of the
longitudinal field. The purpose of this section is to demon-

o C|: N %
4577 9(7'1_72)f dzktJ_mdﬂ

y (PGly) 2(&50(&&01

strate that the interactions via transverse figidsluding the p? kZp?
forward scattering of soft quark on hard glupisa second- T (D _ T ~(TE)
ary effect at least at the very early stage of the nuclear col- X190 Py’ — 9111 Por”’ - (7.2
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The invariants of(anticommutators are the same as in the . R _ 7 (> do
vacuum case, 9r2)(m1,72i7:Q) = —icoshy | —n(6:0)COSQLT12( 0)
- — 7,)COSH 7/2 i
00 (712 w0 =i (11 rzz)T iy )0(T§Z)Jl(qtnz), =—icosi 7/2)n(a) Yo(G7iD),  (7.6)
12
] . costig2) DU (75,715 k) = (i) 7 f ~_dang(ak)cosk TiA )
90y(71: 72579 = — ——5——0(712) (A 712, (7.3
=Y o(T1K)Ng(Ky), (7.7

and the i”VariamD[To?(_Tz,Tl?77?|Zt) is given by the first of \yhere the second equation in EGE.5—(7.7) is valid only
Egs. (6.3. They all differ from zero only for the timelike \henn, andn; are rapidity-independent, and we employ the
715. Hence, the material part of the invariagig; andD{{”  following notation:

will be needed only in this domain. As has been discussed
earlier, the distributions include only “hard” particles which T a) =1 cosla— n/2)— 7, cosla+ 7/2)
are defined with respegt to thg §oft mode with the transverse = 7,c08Ha— i),
momentump, by the inequalitiesk,>p, , and q;>p, ,
where_p* =p;. Now, we are intgrested only in the_ material 72,= 12+ 15— 27,7, COShy>0,
part with occupation numbers given by the equations

T+ T

2 Y
@.0) N: 0(9i—py) tanhw(n)=rl_7_2tanh§,
ne(q,0)~ — ——5——,
f G WRE qt2
|77|<770=|n2~71 Tz:é, tanhy(= 79) =+ 1,

_ Ny 0(ki—py) (PR
ng( kt ,a)"" 2 k2 , (74)

7RT t

Y(*+ mg)=F0, (7.9
and we must keep in mind the widthy2of the rapidity where&= (7 — )/ 7172~ 75 is the main parameter of our

plateau with the goal to study if this is a significant param-c4|cjations. This parameter is supposed to be small in order
eter for the calculation of local quantities. We may also quesg, o+ the notion of the current transverse mage, ;) has
tion the validity of these formulas at sufficiently largeand 4 expected meaning of a slowly varying parameter. The

At ,T?]lnce V:'tholm atCli‘t(t)f]:f, ;[jhe lr?;[_egrdlﬂlkélkt dIV(Iergeg._ W geometric mean time,,= /7,7, has a simple interpretation.
€ matenal part of the densities will be employed N WO-rhe two characteristics, one connecting the pointsg, (

different forms, — 7o) and (r1, 7o), and the second one connecting the points

N < do (79,m0) and (ry,— 1), intersect at the point,,0). The
9?1](71:72? n;qt)=f —n¢(0;9;)coshd sing,T15( 0) proper timer,, is always inside the domain of the “causal
e interaction.”
- — 7.)cosh n/2 Let us start the analysis of the radiation-dominated terms
__(n 2)7_12 it )nf(qt)Yl(qtrlz), with the invarian{3°]{'2 . (The invarian{ 3 T]{'2 appears

to have an extra small factgf.) According to Eqs.(7.4),
(7.5 (7.5, and(7.7) it can be written as a multiple integral,

0 (TE) laCr [+~ o N[ am N i
[25(71,72) Inat = 872 dn6(71)) 2 da . deJdo(T1Ky) | d6coshésinTyy(6)q;

7P

Ny (73— 1)coshyl2 (=dk, (27 -
+ 2 ?f dQDQtJl(leqt)f da cosTi(a)ki O(71— 75), (7.9
7R T12 pe Kt Jo e

where we choose the integral form of the densiggs andeI]E) in order to find the domain in the multidimensional space
where the dominant contribution comes from. Since the two terms if{7E9). are not expected to interfefer UV diverge,

we are free to change variables in these terms independently. Wed%ja\na the second term, and change (’ﬁﬁt in the first
one. The next step is to integrate over the azimuthal angle betﬁqe‘md 5t in the first term of Eq(6.2), and over the angle

betweerizt and 5t in the second term. This integration deals only with the retarded propagators inside the self-energy loop and
selects the lowest angular harmonics,
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FIG. 4. Geometry of fields in
the forward scattering amplitude

49—qg.

27
o QrJ1(71200) do =27 K Jo( 71201) J1( 1K) + Prd1( 7120 Jo( TaK) 1, K>y, (7.10

2
fo Jo(T1K) Ao =2mIo(712P1) Jo( T1201), 0™ Py - (7.11

Only the first of the two terms in Eq7.10, corresponding to the collinear geometry in the transverse plane survives in the
limit of k;>p, and has to be retained by our major assumption. The second term describes the deviation from collinearity and
is small. However, it is instructive to keep it for a while. After these angular integrationd,7B).becomes

iaSCF e 2 A/f *
yp G(Tl_Tz)f_wdﬂe(le) m‘[ daJo( 712P0) Jo( T120¢)

Y Py

[20(71172)]g5):

Ny (11— 7'2)COSh77/2f°O dk;

RZ Tt[kt‘JO( T12Pt)J1(T1Ky)

xf do coshfsinT o 6)q;+
— wRT T12

*

+ peda( lept)Jo(lekt)]flda COSTlZ(a)kt]! (7.12

where the actual limits of integration over, 6, anda have yet to be put in agreement with the model we employ. Now, we
have approached the most subtle point of our analysis. This expression includes triple integrations, any @f pérfanmed
formally) yields singular functions. For the sake of definiteness, let us start with the second term (A.B.[which
corresponds to the forward scattering of soft quark on a hard gluon from the distrilmgtiark;)], rewriting it in its most
expanded form,

jzz

w

Ny , (71— 1p)coshy/2 % 0
| ano) R g e | da fp 3uL i mkJCo$ Kyl 7)COSHa— i 7))]dlk,
L *

(7.13

The first observation is that at larde [which is the con-  with the same velocity. According to the property of local-
dition that the distributiomy(«,k;) can be measured within ization of states in wedge dynamics studied in pael
a short timé the main contribution to thex integration such a fine tuning ofe to ¢ is indeed possible. This is
comes from the domaim~ /(%) where the phase of the illustrated by the left-hand figure in Fig. 4. where the gray
cosTy(a@)k; is stationary. This is the domain of collinear segments of the hyperbolas= v, and 7= 7, correspond to
interaction when the hard gluon from the distribution the rapidity intervals occupied by the soft quark modp,
ng(a,k;) has almost the same rapidity as the virtual quark<1, at the beginning and at the end of the scattering process,
with transverse momenturg,=Kk,+p, in the self-energy respectively. The bold black and the dashed segments show
loop. Obviously, this quark is also hard. Furthermore, itsthe rapidity intervals where the hard virtual quark and the
propagator, Greq(71,72;0:) = (71— 72) G0y (71,72;0y), is  hard gluon are localized at the same times. All three fields
devised only from the free on-mass-shell partial waves whicleffectively overlap around rapidityy,= — /2 at 7= 1, and
themselves are well localized in the rapidity direction.aroundn;=+ /2 at r=7;. The rapidity direction between
Hence, we deal with the intuitively very clear case of collin- these points is exacthy(»). The rapiditya of the external
ear absorption and emission of the gauge field quantum by gluon is sufficiently small and is close to the rapidity7).
charged particle. All participants of the process are moving The maximal rapidity width of the interaction domain is
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defined by the causality conditiorf,>0, which immedi-  Since by the definition of thé+) distribution,
ately establishes the upper boundamy< 7,. Since the col-

linear interaction corresponds to the condities ¢(7), the Bae™® da (Fe “da (lda . 1-e 2
rapidity of the hard gluon must be within this geometrically J; sinha a, fo sinha L o N
defined interval as well. The opposite case is depicted in the (7.19
right-hand figure of Fig. 4. The rapidity( ») is so large, that

the external gluon is not localized within the causal boundive obtain the singular part in the form

aries=* 7,/2 of the interaction domain. In order to avoid this,

we have to impose an even stronger requirement that sing n. (71— T2)cOoshp/2  dny

|(7)| < no. According to Eq.(7.8), we have|y(n)|> 7. 12 :Zfo 7)) [T )]s

Hence, we must further takey| < », , where the boundary

7, IS defined by the equatiot( 7, ) = 7o, 1
* * 0 Z[1+e*4’70—2e*2’70003h 2(n)].

XIn

T+ T s 15

e tanh7 =tanhzny= —T§+ 7'% , (7.14 (7.19
which has a solution, Next, it is convenient to trade; for a new variabley,

71 1) =(7,— 75)y. The helpful relations for this change of
7y (11— 7p)? (11— 75)2 variables are
tanh—= —%———, ~—— =2 (71
2 Tl+ Ty ki T1To g ( a

cosi{n/2)dn -1 dy
We remind the reader th@&1; only this condition allows 71 - 2’
. . 12(7) V v1-
one to introduce the the time-dependent transverse mass T2 y
u(p:,7). In order to simplify further analysis, it is conve-
nient to present the internal integral ogras the difference,

2
(11— 72)
7'1_7'2)2/7'17'2’

7%2(77*):1+(

T12

- —1,)2 +7)2 1 1i+7s
(Tz(a)—Tz)llz[T (a)+(T2(a)—7-2)l/2] - _(7'1 72) :(7'1 2) L T1TT3
12 120+ L 112 12 12 y,~1 —27172 , cosh 2y 2rir, Y2 2t
P
B fo Ja(mik)cog Tia)kidk, (7.19 Taking into account that cosh2+-1, wheny— 1, we obtain
where the first singular term is the integral ovgr, com- sing 4 1 dy 1—e 270
puted from O toe, and thus, it completely accounts for the 1275= J f 1y? In 2
domaink;—¢. It includes the function 172 Ve Y y
- - - 4 71— - 4
f(m.@)=[Tifa) = 7] =i m)sintf(a— y(7)]; 12, LY £né. (7.20

o . \/7'17'2 \/7'17'2 \/7'17'2 \/7'17'2
which is singular atx= (%), thus fully accounting for the

expected collinear enhancement. This function, however, is a This formula has two distinctive elements. The first ele-
canonical distribution with respect to both its argumests ment is the large g, which is due to the collinear geometry
and », and it carries the standard regulators for the subseef the interaction. This would lead to a divergence if the
quent integrations. We shall consider the singular and thénteraction domain were unlimited. The second element is
regular terms separately. Using the above found limits, wehe small factog which is due to the small volume occupied

may write the singular term as by the interaction and it completely suppresses the potential
divergence. One may notice that when the mean tifner,
. N (71— 7p)coshy/2 1 ; ; 3
|smg:f dz increases, theg—0, and the cqrrgspondlng part of the sel_f
2 ~ 7y 712 7) [T 7) ]+ energy also tends to zero. This is easy to understand, since
with the mean time growing, the system becomes more and
f’?o ] el (717 more diluted locally.
— 0 a[sinhz|a— ¢|]1+/2’ ' The regular part of Eq(7.13 is given by the integral
where, sincer;,py<1, we putd[ 7,p;]~1. After an obvi- jrea_ J”’i* q (71— 1p)coshp/2
ous change of variable, the internal integral of Ef17) can 2 - K T12( )

be split into two,
70 Py

Xf dafo J1(71K)cod Tao( @)ke]dk,
7

ae ¢ da

oty o~ ¢
+
0 0

f’?o q g la=vl B
no [SInF?a—y| ]2
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where, when— o< <7, thenT,«a) varies between its N; [
minimal and maximal values, Ji= Zf dndol T 7)Pt]
TR 77,
( )2 ( )2 Xf 0 de coshéd 1
T2 olel < T ) <2 gtlal, e | [SINF(O— g2 [rd )]+

T17T2 T17T2

Py
~cosht [ 3 i ST D100y .
Therefore, whetk,<p;, we haveT ; k.~ (7,— 7)k<1, and 0
both functions under the integral oviercan be expanded in (7.24
Taylor series. All integrations become trivial and yreld

Here, we again recognize the collinear singularity which is,
as previously, regulated by tHe-) prescription. All further

2 4 2 calculations for.7; are similar to the case aff, and the
reg_ T172Px | 1T T2 T17T2P% d
fe0= = &, (7.2  answer reads
\/7'17'2 \/7'172 \/7'17'2
_ 2 2
|§ing$ w |f169%2p* T &, (7.29
We have chosen this form of the answer, because our major NTLT VT17o

assumption is valid only as long ap,<1 and because the
dispersion equatiof3.9) has a kinematic facto{r, 7, in it. These results will serve for us as a reference point for the
The other two terms in Eq7.12 can be studied along the estimates of the mathematically more complicated part con-
same guidelines. The third term is suppressed with respect twected with the radiation field of the transverse magnetic TM
J> by the factorp; /k;, which is small by our major model modes. Before we address this issue, it is expedient to look at
agreement and it could have been discarded on this grourttie obtained results more attentively and trace the correspon-
only. To be on the safe side, let us rewrite it as dence between the calculations and physical picture in more
details.
(1) It has been observed in Sec. for the vacuum part
of the quark self-energythat in the framework of wedge
Tam Ny J”* d (Tl_TZ)COShnlzp I mpd dynamics, the collinear problems do not jeopardize the field
3 - K T1o e theory. In “material part” of the self-energy, the collinear
interactions were proved to be the most intensive and to lead
. to a visible enhancement of the interaction between the quark
XJ dal —vyg—In andradiation field. However, this enhancement never turns
— 70
P 1—=Jg[ T kiJcogT1x( @)k
+f0 ol 712 7) |;] (T @) t)dkt}, (7.23

T1Pt oy )|
2 e

into a disaster of collinear divergence. One of the trivial
reasons is that the space-time domain of the interaction is
now limited, and large logarithms are multiplied by small
phase volumes.

(2) A deeper insight into the wedge dynamics, shows that
even intermediate collinear singularities observed in the
where the first term is the integral oviey from 0 to». As  termsJ; andJ, are spurious. In order to reveal this fact, one
could be expected, the integrand is regular. Since there is a¢@n notice that the singularity at=(#) is present only in
accounted for difference betwe&pandq,, the exactly col- J1 and 7. It is absent in7;, because of the extra negative
linear regime becomes impossible and we do not have thpower ofk; brought by the subleading term of the angular
large collinear logarithm in7;. Overall, this term is also integralde. This extrakt‘1 effectively suppresses the distri-
suppressed at least by a factaf stemming from butionng(a k) at largek;. Next, one may ask, what mini-

Ji[ 12 m) p¢] in the integrand. mal change ohy(a,k;) at largek; is necessary in order that
The first term in Eq.(7.12 corresponds to the forward the intermediate collinear singularity does not appear at all.
guark-quark scattering with high momentum transfer, This can be learned by changing the order of integration in

Eqg. (7.13. One can start from the integrdly with an as-
sumption that the integrand only slowly varies within some
SEven if we impose no limitations om the estimate is still as mterval of @ arounda=0. Then, it is easy to see that the

small as singular terml 3" of Eq. (7.20 totally originates from the
domain ofk;—oe. It comes from a logarithmic integral be-
tween two infinite limits. This residual piece emerges only
2 because we extend the distributiog—~ Kk, Z (obtained from a
ESEY &Iné dimensional estimajdo an arbitrarily largek;. As we have
Vit already mentioned, this dependence is unphysical, e.g., be-
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cause the distributiod?k, /k? is not normalizeable. It has to ture development of an effective technique for perturbative
be modified above some value kf and, therefore, the sin- _calqulatlons in wedge dynamics. Th(_e arguments of the local-
gular term must vanish completely. Thus, in wedge dynamlzat'on are not applicable to the longitudinal part of the gluon

ics, the phenomenon of collinear enhancement is intrinsicalljf€ld- I the €rmGy;Dyiong) . NO patch in space-time is dy-

connected with the basic property of localization inherent innam|call¥ selected, tﬂnf@[m?cgj] IS ?Oht tisse.mtbleld fromk .th?h
the one-particle states. Only the states with infinitely ld¢ge propagating waves that could match Ine virtual guarkin the

can have a precisely given rapidity and be responsible for thleoop by their phase. This is in line with the absence of pinch-

. N : poles due tdyjng (K) in the momentum picture.
S'n(ggl;Igﬁ're:vgl;emw;cingﬁl:?;irI&;ﬁjégﬂ?ﬁ&g&g‘ the The arguments presented above allow one to estimate the

ved tati ¢ wedae d y th contribution of the radiation fields of the TM mode in a very
mixed representation of wedge dynamiésom the space- economical way. Let us consider the groﬁﬁ])g&] , which

time domains, where the phases of the interacting fields arg very similar to the terny7, studied above, as an example.

stationary, is a generalization of the known method of 'SOIat'Elow, the invarianthg]), as can be inferred from E¢A4), is

ing the leading terms L'Js[ng'the pinch poles in the plane Oknown only in the integral representation, and not in an ana-
complex energy. The similarity of two mef[hods can be e_aS|I)1 tic form. Let us, therefore, employ the analytic form of
understood since, e.g., the quark density correlator in theg ' '

, given by Eq(A22). It is easy to see, that the integration
self-energy can be presented as a sum of two propagator%{,/lér 9 i D(Z); Iec;fjs to) the samg causal sten-func tﬂﬁrgz )
G113(a) =Gig0y(a) + G1(q). In the plane of the complex @ (0] P 1

energyq®=k0+ p, the (Feynman-typEpropagatoGyeq () and, as previously shown, we halg|< 7,. The expanded

has poles in the second and fourth quadrants, whiléahg- form of this term is
Feynman-typepropagatoiG4;(q) has poles in the first and

third quadrants. The radiation part of the retarded gauge field N (o dpo(s )(7'1— Tz)COShU/Zf der
propagatorDq(k) has poles in the third and fourth quad- 4 7R2 ) -y 98712 T12

rants. Therefore, in both terms 0fG};;(q)Dyeq(k)

= Gy00](9) Dyreq(K) + Gp113(a) Dyreq(K), the integration path 7 /AN

along the real axis of the compleé® plane is pinched be- xtanh a— 5 jtani a+ 5 p*Yl[Tﬂ( )0

tween two polegone fromDy;, and the second froi g _

or Gyy4) giving the leading contribution whep® is small, Xsin Ty @)qe]da, (7.26
and the three-momentaand g=k+ p are are very close to

each other. Similar arguments are valid for the secondvhere we have integrated out the azimuthal angleassum-
part, GpegDpyy, Of the quark self-energy. The term ing thatk,,q.>p, [the first correction is smaller by the factor
Gp11(d)Dpiong(K) is exceptional, because the propagator(p,/k)?<1]. The internal integral over, can be trans-
Driongi (k) of the longitudinal field has no poles correspond-formed into

ing to the propagation.

The wedge dynamics does not allow for a standard mo- _
. . . . . cosia— (7))
mentum representation, since its geometric background is -— . 7
not homogeneous in theand z directions; accordingly, we [ 71 m)sint(a— (7)1
do not have familiar pinch-poles in our calculations. Never- 0
theless, the patches of phase space where the phases of cer- _J Y1700 SN Tif @)k ]dk,, (7.27
tain field fragments are stationary and effectively overlap, do 0

now the same job as the pinch-poles, and yield the same
answers when the homogeneity required for the momenturwhich brings us very close to E7.24 for .7,. Once again,
representation is restored. The way wedge dynamics tacklege encounter a collinear singularity @t= ¢( ), and exactly
the problem is genuinely more general, because it addressgife same arguments force us to set the same limits in the
the space-time picture of the interacting fiefdBhe momen- integrals, as in Eq(7.24. We do not have to continue the
tum space is now split into the subspaces of rapidity angalculations to understand the smallnesgZgfmention only,
transverse momentum; the correlation between the particleat due to the narrow limits of two rapidity integrations in
rapidity and its location is increasing with the increase of itSeq. (7.26), the product of the two hyperbolic tangents in the
transverse momentum. The role of pinch-poles is taken ovehtegrand will add extra? to the order of smallness qf,.
by the geometrical overlap of the field patterns with the sam@y the same argument as used pre\/ious|y, we can eas"y
rapidity. This observation can serve as a footing for the fu{earn that the singular term in EZ.27) is spurious.
In this group, associated with the TM mode of the radia-
tion field, the leadingstill parametrically small, and equal to

81t is well known that the threshold behavior of the imaginary partJ1) contribution comes from th&?”” component of the
of the photon self-energy can be derived from the pinch geometr@luon correlators. We may summarize by the observation
of the poles of the electron propagatftd]. Since at the threshold, that only the overlap of the domains of stationary phase in
the ete™ pair is created with zero relative velocity, the pinch in- two correlators matters. It can be visualized via the partial-

deed corresponds to the overlap of the stationary phases efthe wave expansion of any of the correlators in the self-energy
ande” wave functions in the maximal possible volume. loop.
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VIIl. NONLOCAL PART OF THE LONGITUDINAL PROPAGATOR IN THE MATERIAL PART
OF THE SELF-ENERGY

The longitudinal part of the gluon propagator contributes, to the invaBidnthe term

i CF O 1
[20(71,7'2)]rr|1%?g]::—779(71_Tz)J dzkthdWthfl][DEﬁ))ngﬁ EDE(Z,%] : (8.9

Using Eqgs.(A16) and(A17) for the gluon invariants, and the first of Eq#22) for the quark invariangfl] , We arrive at the
following expression which accounts for the nonlocal part of the longitudinal propaghaéocontact part was studied in Sec.
V)

[20( T1, 7'2)]H1ar;g

lag CF/\/’f0 f q foo q (7,— 7)coshn/2 k, coshy
- 2 ZRZ (Tl TZ) b, qt 7 |T§2|1/2 2

T iasi t?
« [Meacsminf - ) gy
T T17T2

where we have integrated out the dependence on the azimuthal@gkhe approximation of;,>p,. The key observation

that allows one to judge about the smallness of this term is that the limits of integration over vadedlery close, and the
factor[1—t?/7,7,] is very small. This factor reflects a known competition between the electric and magnetic interaction of
moving charges which reduces the net yield almost to zero. Let us refpigcthe dimensionless=t//7;7,. Then this part

of the integral becomes

2 ~
B(71)Y1(Ta80) + — 6= T1)Ka(T10) |, (8.2

3
2
f [ ~-~dt—f 2(1-u?)- - du= | w2 du~ —g—f(g) 8.3
NT1Td ™ T172 NI Vi-&a- g/z

where the limiting behaviof (&) ~ consté whené— 0 can be conjectured from the behavior of the functignix) andK (x)

at smallx. However, the Laplace transforms of these functions in (B are singular functions of; and we have to be
careful in estimating these terms. In fact, #feorder of smallness is not altered by the remaining integrations. First, it is useful
to notice that the last factor in square brackets in BR) is nothing but the invariany?ll which, according to its integral
representatiofA22), equals zero af=0. Next, it is profitable to change the variables of integration in the following way. We
trade 7 for y according tor;»( 7) = (7,— 7,)y in the domainr2,>0. In the complimentary domairf,= — 72,<0, we change

7 for y using 715( ) = (71— 75)y. We also replac€q, by a new variabley;

CeN NEEy °
llong _ 1 #sCF L 1 g/+g/2 5
[E (71!7-2)]mat 2 2R2 T 7-2 \/W §/2 —Uu )du §p*qdq
2
[ e PP S(1-y >} Y(Tdly)e” ATy YR
0y1-y?
% 2
f 1+f D14 £ (142 Ky (rpayre mee TN EE R (8.4
o Ji/J1+y? 2
|
where, we remind the reader that= \/7,7,. When the ar- 1 x o
gument is small, the functiong,(x) andK,(x) are Ki(x)= S +In5| 5+0(x%) .
m 1 X[X It is easy t that in th f the two integral
m = XX 3 y to see now that in the sum of the two integrals
2 Ya(x) X in 2 2+O(X )) dy over the interval (0,1), the leading singularitigg/y ex-
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actly cancel each other. Furthermore, it is safe to take thenate consk &2 remains unchanged for the entire integral
limits of &0, u—1 in the integrand, and even to set the (8.4).

lowerlimit of the integraldq to be zero. The resulting inte-

gral is convergent¢ independent, and yields a term of the ACKNOWLEDGMENTS
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exponentially suppressed at largeand g. The behavior of velopment of this work, and appreciate the help of Scott
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APPENDIX: WIGHTMAN FUNCTIONS AND PROPAGATORS OF WEDGE DYNAMICS

In this appendix, we put all field correlators into a form which is needed for the practical calculation of the self-energy. The
density of stated;; and the causal paiD, of the gluon propagator are used in the form of decomposition over the
transverse modes,

~ . M) " (A
DI[TO](72171;772_ ﬂl;kt):_l(ZTF)zf da; Ui,)ﬁt(TZ:ﬂz)Ui,)RT(Tl'nl)’

- . | *
Dl[g]l](Tz,Tliﬂz_ Ul;kt):_l(ZW)zf da; UEy)t)_gt(szﬂz)US\’)_n&t(Tl,ﬂl)y (Al)
|
where da Ks| kK n
DES]ZJE[ 5,S—k—t2 Sink,Tq,+ k—tztanl'(avLE
1 K Xtan a—z [sink;T1,—sink,T;+sink;T,]
UETE)(X): 7 _kx efiktrcosh(af‘r]); 2 th12 th1 th2l(>
o« 477 kt
0 (Ad)
I(xfl
”&Ty)("): 7 kyfy |, (A2) D77— d_a 1
' 477K, _t [0] 2 7 7
2 k2 costt| a+ E)COSHZ(Q_E)

are the transverse electric and transverse magnetic modes of

the radiation field found previously in papgi]. Here, we ><[(1+kt2T1T2)sinktT12— k(T1,C08K T1,
denoted

+sink,T,—sink,T;— kT, cosk;T,+k; T, cosk;T,],
fa(r ) =i tanha— n) (e~ reoshe=n 1), (A5)

where T;=7,cosh@—7/2), T,=7,cosh@+72), T,
=T,—T,. In the first of these equations, the coefficients of
coslla—7) ° the tensors §,s—k.ks/k?) and k.ks/k? are the invariants
(A3)  D{j andD(§] of Eq.(2.9), respectively. The latter is due to
the TM mode of the radiation field. Up to the factq?z, Eq.
Starting from this form, we 9et the components of the com-(a5) defines the invariaerf{)’]”). The underlined terms are
mutatorDo; (72, 71; 72— 171;Ky) ! connected with the boundary conditions imposed on the TM
mode at7=0. They cancel with the underlined terms in the
longitudinal part of the gauge field propagator given by Egs.
"In all formulas below, the gluon rapidity is counted from the (A14) and (Al:"_’s) thus providing the causal behavior of the
reference point £, + 7,)/2, the geometric center of the coordinates COMponentsD 4, and D%, of the retarded propagator
71 and 7, of the vertices in the self-energy loop. Thus, it corre- Diaay(72,71). In the body of the paper, we call the residues
sponds to the rapidity’ in the integral representation of the quark Of this cancellation as the diagonal component®8¥. The
correlators in papell]. “off-diagonal” components of the commutatdi)'[JO] are

efikt‘r coshi@—7) _ 1 e iky7 cosh@—7)
+ iktT

falmm)= cos(a— 1)
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: +=
ik, data”k(“ 2]
D[O] = [S|n ktT12_ ktTl COSktle

k? 20
! cosf‘?( a— z)
2
+ sink,To—sink T, +k;T; coskT,], (AB)

tan - z
o ke fda YT 2]
[0] = _k2 _2 W—[Sln k[le“l‘ kth COSktTlZ
t
cosit

n
+_
“T 3

+sink,T,—sink,;T;—k;T, cosk;T5]. (A7)

The commutator is not a symmetric tensor. However, by _ Ha
examination, these components are odd with respect to the ~ (%] kt2 2
rapidity differencen= n,— 7,, and hence they do not con-

PHYSICAL REVIEW C 63 044904

from which one can infer the invarianB{j;? and D{3] of
Eq. (2.9 exactly in the same way as it was done for the
invariants of the commutat@q; . The off-diagonal compo-
nents,

[cosk;T1ot+ kT Sink; T,

n
_krfda’ tan"(a—FE

2 cosr‘?<a— g)

—cosk;To—cosk;T;—k;T; sink, T, +1], (A10)

Y
r K [ da tanl‘( a— E) .
== —) [ COSktT]_Z_ kth Sin k’[T12

cosﬁ( a+ g

tribute to the effective quark mass we are computing in this

paper.
The tensor of the gluon densi® (75, 71;7,— 71:Ky)
has the “diagonal” components,
rs— ?_ COSktle
t

[ da
ﬁ]:—'fg[ 5
kiKs 7 7
+k—t2tanl‘(a+§ tan a_E

X (cosk;Tq,— cosk,T;—cosk;T,+ 1)] , (A8)

I'kS

D7 f da 1
m="") 27
kZ cosit a+g cosP?(a— g)

X [(l + ktleTz)COSktT12+ ktTlZ S'n ktTlZ_ COSktTZ

- COSktTl— kth S|n kth_ ktTl S|n ktTl+ 1], (Ag)

[ . "
D|[n$ng](72,7'1, 71— 12,Kp)

_f dvd®k
(2m)%:

krks[Q—l,iv(kL 7-2)_Q—1,iv(kL 71)] krV[Ql,iv(kL 7-2)_Q—1,iv(kL 71)]
Vks[Qfl,iv(kL Tz)_Ql,i oK 71)]

—cosk;To—cosk;T;—k;T, sink,T,+1], (A11)
are also nonsymmetric and odd with respect to the rapidity
difference . They also do not contribute to the effective
qguark mass. Equation#8)—(Al1) give the components of
the vacuum density of states of the gauge field in the wedge
dynamics. In order to incorporate the “material” part given
by the distribution of real gluons, the integrand of each of
Egs. (A8)—(A1l) must be multiplied by the common factor
[1+2ng(ke,a@)].

The full tensor of the longitudinal part of the propagator
that defines the field\(7,) via the currentj () at all pre-
ceding times,

1
Aflond (7)) = fo 720750 7,D[" (75, 715

—72,k0i"(72), (A12)
was found in papeflll ] in the following form:
, e iv(m—m).
vQui(KL 72) = Quj (K 71)] Im
(A13)

The diagonal components of this longitudinal part of the gluon propagator are just the differences between the vector potentials
of the “static” gluon fields at the final time-, and the initial timer,,

[|0ng]_krks COtH 77|
DI’S w2 9

k2| 2

. , da 7
— kg sinly| _ A= mokesinhny | -
(e e ) f Zwtanl‘(aJr 5

tanl‘(a—g)[sinktTl—sinkth] . (A19)
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2 2 2
TI— T cosh 71 coshy 77 cosh _
[long _ _ ‘1 *2 _ U + 1 7]+ 1 7 — ke sing| | _
Do 7 o) { (kfsinh’*hﬂ k.sinty  2sinfg] )€ (11— 72]
da 1 . .
| 2 ; . [sink;T{—sink,T,—k;T; cosk,T;+k;T, cosk;T,]. (A15)
kZ cosit at s cosﬁ(a—z)

By the derivation, these components incluéer,— 7,) of | kks kycoshy (1

the following origin. The source current which acts at the DiPndl= — 2 Tf e tksnivlg,  (A16)
moment 7, produces the simultaneous longitudinal electric t 2

field E(7,). The gauge field potential is rebuilt from the

electric field at the timer;> 7, by integrating the electric )

2
field E(7) over all times from O tor;. The underlined terms llong]_ "1~ T2 S(n)+ Kt COSth’Tletkl sinf 7l¢2qt.
in Egs. (A14) and (A15) cancel out in the full assembly of nn 2 2 .
the retarded propagatdd ,q(72,71) with the underlined (AL17)

terms in the radiation part, Eq6A4) and(A5). In the body
of the paper, we call the residue of this cancelation as the
diagonal components d!'°"d which can be conveniently Once again, the “off-diagonal” components of the longitu-

written as dinal part of propagator,
ik sgny . . K¢ 7o . k7, costty .
[longl _ 1) _ — ke sinig| _ g= ok sintiply 12 q—mokysiny| _ 12 7T Y o= riky sint 7|
Pr k2 sink?n(e © ) sinhne sinh €
tan a/—z
da 2 ) )
- 277—[5|nktT1—S|nktT2+ kT, coskT,5] ¢ , (A18)
costt| a+ =
2
[Iong]:& L — 71Ky sinfl | _ o= 7okq sinh 7] __ktTl *letSinHﬂ|+—ktT2COSH&n — 7oKy sinfj 7|
D, 5 (e e )— = e - e
K k; sintf 7 sinhy sinhy
n
da tanl‘( a+ E . .
—J’W—n[—smktTlJrsmkthJr kiT1cosk,T{] ¢, (A19)
cosr?(a— 5)

are odd with respect tgg and do not contribute the effective quark mass.
The gauge-field correlators have several distinctive features. First, the lengthy expression for each component is such that

the gauge field correlators obey the boundary condiﬁgOT:O,ﬂ)zo which provides continuity of the field at=0, and
allows for a complete fixing of the gauge. Second, inithend »z components of the propagator

Dif(72. 71, mik) = = 0(m1— 1) Dy (72, 71, k) + D\ (7, 71, 73Ky, (A20)

the boundary terms cancel between the transverse and longitudinal parts. This fact provides causal behaddr-pftf)e
that defines the dispersion law.
The fermion invariantg,; were derived in papdil ]. For the sake of completeness, we reproduce the final answers here:
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*yl2 F 2

Fl2_
90 =i ua( UPRACNEZ)E g[To(]i): - 2 0735 Jo(aeV| 734, (A21)
4\/|7'12|

e sin(p 7, cosi 6— 5/2) — 7, cosk 6+ 5/2)])

" de’ mtn
9[L1(1‘):—fﬂ[1—2nf( 5 0Py
Tlei 7]/2_T ei nl2

[1-2n(a)],

2
0(73) Y1(qul 72d) + — 0(— 71 Ka(an] 1)

4 |7'12|
_ de’ +
gT( )= ie*”’zj E[ 1—2nf( n > 72 +6 ,pt) codpy[ 7, cosi 6— 5/2) — 7, cosH 8+ 7/2)])
Fnl2

=l (730 Yo(a | 7'12)_—9( ) Ko(aeV| 755]) [[1-2n¢(gy)]. (A22)
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