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Scenario for ultrarelativistic nuclear collisions. III. Gluons in the expanding geometry
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~Received 3 August 2000; published 7 March 2001!

We derive expressions for various correlators of the gauge field and find the propagators in Hamiltonian
dynamics which employs a new gaugeAt50. This gauge is a part of the wedge form of relativistic dynamics
suggested earlier as a tool for the study of quantum dynamics in ultrarelativistic heavy ion collisions. We prove
that the gauge is completely fixed. The gauge field is quantized and the field of radiation and the longitudinal
fields are unambiguously separated. The new gauge puts the quark and gluon fields of the colliding hadrons in
one Hilbert space and thus allows one to avoid factorization.
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I. INTRODUCTION

In two previous papers of this cycle@1,2# ~further quoted
as papers@I# and@II #!, we explained the physical motivatio
of the ‘‘wedge form of dynamics’’ as a promising tool t
explore the processes which take place during the collis
of two heavy ions. In compliance with the general definiti
of dynamics given by Dirac@3#, the wedge form includes a
specific definition of the quantum mechanical observables
spacelike surfaces, as well as the means to describe the
lution of the observables from an ‘‘earlier’’ spacelike surfa
to a ‘‘later’’ one. Unlike the other forms, the wedge for
explicitly refers to the two main geometrical features of t
phenomenon, i.e., the strong localization of the initial int
action and, as a consequence, the absence of transla
invariance in the temporal and longitudinal directions.

In the wedge form of dynamics, the states of the qu
and gluon fields are defined on the spacelike hypersurfa
of the constant proper timet, t25t22z2. The states of fer-
mion fields were discussed in paper@II #. In this paper, we
continue the study of the gluons and augment our previ
consideration by the gauge conditionAt50. This simple
idea solves several problems. First, this gauge conditio
boost-invariant and thus complies with the symmetry of
collision. Second, it becomes possible to treat two differ
light-front gauges~which describe gluons from each nucle
of the initial state separately! as the two limits of this single
gauge. Therefore, the new approach keeps important con
tions with the theory of deep inelasticep-scattering~DIS!.
This fact is vital for the subsequent calculations sincee2p
DIS is the only existing source of data on nucleon struct
in high-energy collisions. The approach based on quan
field kinetics~QFK! allows one to treat both the nuclear co
lision ande-p DIS as the similar transient processes. Thi
after the collision, this kind of gauge becomes a local te
poral axial gauge, thus providing a smooth transition to
Bjorken regime of the boost-invariant expansion.

Most of this paper is technical, and any relevant physi
discussion of the results appears only after their mathem
cal derivation. These results were summarized in paper@II #.
Since the first interaction of twofinite-sizednuclei is strongly
localized, the geometrical symmetry of the final state
manifestly broken and the observables of wedge dynam
are essentially defined on the curved spacelike hypersurf
0556-2813/2001/63~4!/044903~18!/$20.00 63 0449
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For the fermion field this have led to an obvious Thom
precession. Similar orientation effects happen in the cas
the vector field also. The dynamics of the gauge field is ri
and the procedure of its quantization triggers many puzz
that can be traced back to the classical roots of the ga
field theory.

In Sec. II A, we derive equations of motion for the gau
field in the gaugeAt50, find the Hamiltonian variables an
the normalization condition. The equations of motion are l
earized and the modes of the free radiation field are obta
in Sec. II B. In Sec. II C, the retarded propagator of the p
turbation theory is found as the response function of the fi
on the external current. This part of the calculation turn
out to be the most durable, since the gauge condition is
homogeneous and none of the modern methods is effec
However, the old-fashioned variation of parameters d
work. The most important result of this paper, separation
transverse and longitudinal parts of the gluon propagato
obtained here. We essentially base calculation of the qu
self-energy in expanding quark-gluon system on this res
These calculations are presented in the next paper. In
II D, we show that the previously obtained propagator solv
the initial data problem for the gauge field. Unlike in th
homogeneous axial gauges, the propagators of the ga
At50 do not have any spurious poles.

Section III is devoted to the quantization of the vect
field in the gaugeAt50. We begin in Sec. III A with the
proof of the fact that the gaugeAt50 can be completely
fixed provided the physical charge density,t j t vanishes at
t50, the moment of the first touch of the nuclei. This
exactly what can be expected from the nuclei colorlessn
Then, the Gauss law can be unquestionably used to elimi
the unphysical degrees of freedom in the equations of m
tion. We continue in Sec. III B with a computation of th
Wightman functions, and study the causal properties of
commutators in Sec. III C. The latter appears to be abnorm
the Riemann function is not symmetric and penetrates
exterior of the light cone. However, the behavior of the o
servables is fully causal and the procedure of the canon
quantization is accomplished in Sec. III D. Even though it
impossible to introduce transverse and longitudinal curre
~as it is customary for the homogeneous gauge conditio!
and thus fully separate the dynamics of the correspond
fields, we found it useful to discriminate the various fie
©2001 The American Physical Society03-1
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A. MAKHLIN PHYSICAL REVIEW C 63 044903
patterns by the type of their propagation. The propagato
the transverse field is sensitive to the light cone bounda
while the longitudinal and instantaneous parts of the field
not propagate. These coordinate form of these two fragm
of the response function is derived in Sec. IV. Ultimately, t
longitudinal part of the gluon propagator appeared to be
the greatest importance for the dynamics of the screen
effects at the early stage of the collision.

In Appendix D, we study the limiting behavior of th
propagator in the central rapidity region and in the vicinity
the null planes and show that propagators of the gaugeA0

50 andA650 are recovered. It is important that the spu
ous poles are recovered only in the unphysical limit of in
nite rapidity. This result is of practical importance becaus
establishes the connection between the new approach an
existing theory of the deeply inelastic processes at high
ergies.

II. THE CLASSICAL TREATMENT

The final goal of this paper is to build a quantum theory
the vector gauge field in the expanding geometry of nuc
collision. Development of a quantum theory always beg
with its classical counterpart which provides the one-part
wave functions~which later serve as quantum states! and the
classical Green functions~which later become the propaga
tors of quantum theory!. Furthermore, the quantum propag
tor of gauge field includes the longitudinal part which can
found only by classical analysis. The classical part of t
program is the subject of this section.

A. Classical equations of motion

We now consider the case of pure glue-dynamics.
denote the gluon field in the fundamental representation
the color group asAm(x)5taAm

a (x). Consequently, we hav
the field tensor

Fmn5taFmn
a 5DmAn2DnAm5]mAn2]nAm2 ig@Am ,An#,

whereDm5]m2 ig@Am(x), . . . # is the covariant derivative
on the local color group. The gauge invariant action of
theory looks as follows:

S5E L~x!d4x

5E F2
1

4
gml~x!gns~x!Fmn~x!Fls~x!2 j mAmGA2gd4x.

~2.1!

Its variation with respect to the gluon field yields the L
grangian equations of motion,

]l@~2g!1/2gmlgnsFmn#2 ig~2g!1/2@Al ,gmlgnsFmn#

5~2g!1/2j s, ~2.2!

where j m is the color current of the fermion fields and
5detugmnu. The equations are twice covariant, i.e., with r
spect to the gauge transformations in color space and
04490
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arbitrary transformations of the coordinates. In what follow
we shall employ the special coordinates associated with
constant proper time hypersurfaces inside the light cone
the collision pointt5z50. The new coordinates paramete
ize the Minkowski coordinates (t,x,y,z) as (t coshh,x,y,
t sinhh). In addition, we impose the gauge conditionAt
50. The corresponding gauge transformation is well d
fined. Indeed, letAm(x) be an arbitrary field configuration
andAm8 (x) its gauge transform with the generator

U~t,h,rW'!5Pt expH 2E
0

t

At~t8,h,rW'!dt8J , ~2.3!

then the new field,Am8 5UAmU211]mUU21, obeys the
conditionAt50. Imposing this gauge condition we arrive
the system of four equations:

C~x!5
1

t
]h]tAh1t] r]tAr

2 igH 1

t
@Ah ,]tAh#1t@Ar ,]tAr #J 2t j t50,

~2.4!

2]tt]tAr1
1

t
]h~]hAr2] rAh!1t]s~]sAr2] rAs!

2 igH 1

t
]h@Ah ,Ar #1t]s@As ,Ar #1

1

t
@Ah ,Fhr #

1t@As ,Fsr#J 2t j r50, ~2.5!

2]t

1

t
]tAh1

1

t
] r~] rAh2]hAr !2 igF1

t
] r@Ar ,Ah#

1
1

t
@Ar ,Frh#G2t j h50. ~2.6!

Here, we use the Latin indices fromr to w for the transverse
x andy components (r , . . . ,w51,2). We shall also use th
arrows over the letters to denote the two-dimensional v
tors, e.g.,kW5(kx ,ky), ukW u5k' . The Latin indices fromi to
n ( i , . . . ,n51,2,3) will be used for the three-dimension
internal coordinatesui5(x,y,h) on the hypersurfacet
5const. The metric tensor has only diagonal compone
gtt52gxx52gyy51,ghh52t2. The first of these equa
tions ~2.4! contains no second order time derivatives and i
constraint rather than a dynamical equation. The constr
weakly equals to zero in classical Hamiltonian dynamics a
serves as a condition imposed on physical states in the q
tum theory. The canonical momenta of the theory are
follows:

pt50, ph5
1

t
Fth5

1

t
Ȧh , pr5tFtr5tȦr . ~2.7!
3-2
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Hereafter, the dot above the letter denotes a derivative w
respect to the Hamiltonian timet. Because of the gaug
condition, the canonical momenta do not contain the co
commutators. After excluding the velocities, the Hamiltoni
can be written down in the canonical variables,

H5E dhdrW'tH 1

2
phph1

1

2t2 prpr1
1

2t2 FhrFhr

1
1

4
FrsFrs1 j hAh1 j rAr J . ~2.8!

Then Eqs.~2.5! and~2.6! are immediately recognized as th
Hamiltonian equations of motion. The Poisson bracket of
constraintC with the Hamiltonian vanishes, thus creating t
generator of the residual gauge transformations which
tangent to the hypersurface. Conservation of the constrai
a direct consequence of the Lagrange~or Hamiltonian! clas-
sical equations of motion as well.

The normalization condition for the one-particle solutio
is obviously derived from the charge conservation law. F
the gauge field, this is impossible. Therefore, we shall acc
the condition which supports self-adjointness of the homo
neous system after its linearization. This leads to a nat
definition for the scalar product of the states of the vec
field in the gaugeAt50,

~V,W!5E
2`

`

dhE d2rWtgikVi* i ]JtWk , ~2.9!

where gik is the metric tensor of the three-dimensional int
nal geometry of the hypersurfacet5const. This norm of the
one-particle states prevents them from flowing out of
interior of the past and future light wedges of the interact
plane.

B. Modes of the free radiation field. Field of the static source

As a tool for the future development of the perturbati
theory, we need to find the propagators and Wightman fu
tions when the nonlinear self-interaction of the gluon field
switched off. In this case, the system of equations for
nonvanishing components of the vector potential and
constraint look as follows:

F]tt]t2
1

t
]h

22t]s
2GAr1] rFt]sAs1

1

t
]hAhG52t j r ,

~2.10!

F]t

1

t
]t2

1

t
]s

2GAh1
1

t
]h]sAs52t j h, ~2.11!

C~x!5
1

t
]h]tAh1t]t] rAr2t j t50, ~2.12!

where j m includes all kinds of the color currents. An explic
form of the solution for the homogeneous system is found
Appendix A. In compliance with the gauge condition~which
explicitly eliminates one of four field components! we find
three modesV(l) of the free vector field. Two transvers
04490
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modes obey Gauss law without the charge and have the
norm ~see Appendix A! with respect to the scalar produc
~2.9!:

VkW ,n
(1)

~x!5
e2pn/2

25/2pk'
S ky

2kx

0
D H2 in

(2) ~k't!einh1 ikW rW;

VkW ,n
(2)

~x!5
e2pn/2

25/2pk'
S nkxR21,2 in

(2) ~k't!

nkyR21,2 in
(2) ~k't!

2R1,2 in
(2) ~k't!

D einh1 ikW rW.

~2.13!

The mode V(2) is constructed from the function
Rm,2 in

( j ) (k't)5Rm,2 in
( j ) (k'tus) corresponding to the boundar

condition of vanishing gauge field att50. This guarantees
continuous behavior of the field att50. Indeed, ast→0,
the normal and the tangential directions become degene
As long asAt50 is the gauge condition, continuity require
that Ah→0 ast→0.

It is instructive to know the physical components of t
electric and magnetic fields of these modes,E m

5A2ggmnȦn andB m52(2A2g)21emlnFln :

E kW ,n
(1)m

~x!5 iB kW ,n
(2)m

~x!

5
e2pn/2

25/2pk'
S ky

2kx

0
D Ḣ2 in

(2) ~k't!einh1 ikW rW,

E kW ,n
(2)m

~x!5 iB kW ,n
(1)m

~x!

5
e2pn/2

25/2pk'
S nkx

nky

2k'
2
D H2 in

(2) ~k't!einh1 ikW rW.

~2.14!

The modeV(2) can be obtained from the modeV(1) by a
simple interchange of its electric and magnetic fields. Us
standard wave-guide terminology, one may call modeV(1) as
the ‘‘transverse electric mode’’ and the modeV(2) as the
‘‘transverse magnetic mode.’’ Equations~2.14! indicate, that
the field strength tensor of the free radiation field obeys
condition, (F* )* 52F. Therefore, certain linear combina
tions of the modesV(1) andV(2) may be analytically contin-
ued to Euclidean space as self-dual solutions of the fi
equations.

An equivalent full set of the transverse modes carries~in-
stead of the boostn) the quantum numberu ~rapidity!, i.e.,
k05k' coshu, k35k' sinhu. These functions can be ob
tained by means of the Fourier transform,

vkW ,u
(l)

~x!5E
2`

1` dn

~2p!1/2i
e2 inuVkW ,n

(l)
~x!, ~2.15!

and have the following form:
3-3
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vkW ,u
(1)

~x!5
1

4p3/2k'
S ky

2kx

0
D e2 ik't cosh(u2h)1 ikW rW;

vkW ,u
(2)

~x!5
1

4p3/2k'
S kxf 1

kyf 1

2 f 2

D eikW rW, ~2.16!

where

f 1~t,h!5k' sinh~u2h!E
0

t

e2 ik't8 cosh(u2h)dt8

5 i tanh~u2h!~e2 ik't cosh(u2h)21!,

f 2~t,h!5k'
2 E

0

t

e2 ik't8 cosh(u2h)t8dt8

5
e2 ik't cosh(u2h)21

cosh2~u2h!
1 ik't

e2 ik't cosh(u2h)

cosh~u2h!
.

~2.17!

The norm of the Coulomb modeV(3), as defined by Eq
~2.9!, equals zero, and it is orthogonal toV(1) and V(2).
Though this solution obeys the equations of motion with
the current, it does not obey Gauss law without a cha
Therefore, it should be discarded in the decomposition of
radiation field. However, it should be kept if we consider t
radiation field in the presence of a static source with
t-independent densityr(kW ,n)5t j kWn

t (t)5const(t). In this
case, its definition can be completed using Gauss’ law:

VkW ,n
(3)

~x!5
r~kW ,n!

~2p!3ik'
2 S krQ21,in~k't!

nQ1,in~k't!
D einh1 ikW rW.

~2.18!

The coordinate form of this solution is noteworthy. Th
physical components,E m5A2ggmlȦl , of the electric field
of the ‘‘t-static’’ source can be written in the integral form

E(stat)
i ~t,rW1 ,h1!5E drW2dh2Ki~t;rW12rW2 ,h12h2!

3r~rW2 ,h2!, ~2.19!

with the kernel

Ki~t;rW,h!5E dnd2kW

~2p!3

einh1 ikW rW

ik'
2 S krs1,in~k't!

nk'
2 s21,in~k't!

D
52

u~t2r'!

4p S t coshh~]/]xr !

]/]~t sinhh!
D 1

R12
,

~2.20!

where R125(r'
2 1t2 sinh2h)1/25@(rW12rW2)21t2 sinh2(h1

2h2)#
1/2, is the distance between the points (rW1 ,h1) and
04490
t
e.
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(rW2 ,h2) in the internal geometry of the surfacet5const.
The technical details of the derivation of the last express
will be presented in Sec. IV. Equation~2.20! is an analog of
Coulomb’s law of electrostatics, except that now the sou
has a density which is static with respect to the Hamilton
time t. In fact, the source is static if it expands in such a w

that its physical componentJ t5t j t(t,h,rW) does not depend
on t. These expressions will be helpful in recognizing t
origin of various terms in the full propagator which is calc
lated below.

C. Propagator in the gaugeAtÄ0

The calculation of the propagator in the gaugeAt50 ~as-
sociated with the system of the curved surfacest5const)
meets several problems. Three methods are commonly
in field theory. One of them strongly appeals to the Four
analysis in the plane Minkowski space which is not app
cable now because the metric itself is coordinate-depend
The second method uses the path-integral formulation wh
is also ineffective because of the explicit coordinate dep
dence of the gauge-fixing term in the Lagrangian. One co
also try to study the spectrum of the matrix differential o
erator, to find its eigenfunctions, and to use the stand
expression for the resolvent. However, the extension of
system for the nonzero eigenvalues leads to unwieldy eq
tions. On the other hand, the Green function of the pertur
tion theory must coincide with the one which solves t
problem of the gauge field interaction with the classical ‘‘e
ternal’’ current. For this reason, we shall compute the Gre
function in a most straightforward way; we shall look for th
partial solution of the inhomogeneous system using the o
fashioned method of ‘‘variation of parameters.’’ Th
method will immediately separate the radiation and the l
gitudinal parts of the retarded propagator. All other metho
would require an additional analysis for this purpose.

Let us start the derivation of the propagator in the gau
At50 by obtaining the separate differential equations for
h component of the magnetic field,C5]yAx2]xAy , the
transverse divergence of the electric field,w5t(]xȦx

1]yȦy), and the h component of the electric field,a
5Ȧh/t. In terms of the Fourier components with respect
the spatial coordinates, these equations read as

F]t
21

1

t
]t1

n2

t2 1k'
2 GCkW ,n~t!52 j c~kW ,n,t!, ~2.21!

F]tt]t1
n2

t Gw~kW ,n,t!2 i tnk'
2 a~kW ,n,t!

52]t@t2 j w~kW ,n,t!#, ~2.22!

@]tt]t1tk'
2 #a~kW ,n,t!2

in

t
w~kW ,n,t!52]t@t2 j h~kW ,n,t!#,

~2.23!

wherej c5]y j x2]xj y , j w5]xj x1]y j y . Using the constraint
conservation, which may be explicitly integrated to
3-4
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w~kW ,n,t!1 ina~kW ,n,t!2t j t~kW ,n,t!52r0~kW ,n!5const~t!,
~2.24!

one easily obtains two independent equations forw(kW ,n,t)
anda(kW ,n,t):

F]t
21

1

t
]t1

n2

t2 1k'
2 Gw~kW ,n,t!

5k'
2 @r~kW ,n,t!2r0~kW ,n!#2

1

t
]t„t

2 j w~kW ,n,t!…[ f w,

~2.25!

F]t
21

1

t
]t1

n2

t2 1k'
2 Ga~kW ,n,t!

5
2 in

t2 @r~kW ,n,t!2r0~kW ,n!#2
1

t
]t„t

2 j h~kW ,n,t!…[ f h.

~2.26!

The constant of integrationr0(kW ,n) has the meaning of the
arbitrary static charge density and it should be retained u
Gauss’ law is explicitly imposed on the solution. In wh
follows, we shall not write it explicitly, keeping in mind tha
it is included in the true charge densityr(kW ,n,t). Since
wedge dynamics has a selected time momentt50, the con-
stant of integrationr0(kW ,n) can be associated with the initia
data, namely, with the charge density att50. As we shall
see soon, a proper choice ofr0 will be needed in order to fix
the gaugeAt50 completely.

Equations~2.21!, ~2.25!, and~2.26! can be solved by the
method of ‘‘variation of parameters’’:

F~t!5
p i

4 E
0

t

t2dt2H~t,t2! f ~t2!, ~2.27!

where F stands for any one of the unknown functions
these equations, andf for the corresponding right-hand sid
The kernel

H~t,t2!5Hin
(1)~k't!Hin

(2)~k't2!2Hin
(2)~k't!Hin

(1)~k't2!

is the usual bilinear form which is built from the linearly
independent solutions of the homogeneous equation.~The
Wronskian of these solutions is exactly 4/ipt2.! Taking F
5C, we obtain the first equation for the componen
Ax(kW ,n,t) andAy(kW ,n,t) of the vector potential:

C~kW ,n,t1![ i @2kyAx1kxAy#

5
ip

4 E
0

t1
t2dt2H~t1 ,t2!i @2kyj x~t2!

1kxj y~t2!#. ~2.28!

In order to find the second equation for thex andy compo-
nents and the equation forAh(kW ,n,t), we must integrate
twice, i.e.,
04490
til

F~kW ,n,t1![ i @kxAx1kyAy#

5
ip

4 E
0

t1dt8

t8
E

0

t8H~t8,t2!t2dt2F2k'
2 r~kW ,n,t2!

1
1

t2
]t2

„t2
2 j w~kW ,n,t2!…G , ~2.29!

Ah~kW ,n,t1!5
ip

4 E
0

t1
t8dt8E

0

t8H~t8,t2!t2dt2

3F in

t2
2
r~kW ,n,t2!1

1

t2
]t2

„t2
2 j h~kW ,n,t2!…G .

~2.30!

The integration overt2 recovers the electric fields at th
momentt8, whilst the integration overt8 gives the vector
potential at the momentt1. It is convenient to start with the
second of these integrations which has the limitst2,t8
,t1. Let us consider the main line of the calculations
detail, using theh component as an example. The first int
gration follows the formula~B1!,

k'
m11E

t2

t1
~t8!mHin

( j )~k't8!dt85Rm,in
( j ) ~k't1!2Rm,in

( j ) ~k't2!,

~2.31!

and the terms emerging from the lower limitt2 can be con-
veniently transformed according to the relation~see Appen-
dix B!

Rm,in
(1) ~k't2!Hin

(2)~k't2!2Rm,in
(2) ~k't2!Hin

(1)~k't2!

5
4

ip
sm,in~k't2!. ~2.32!

As a result, one obtains, e.g., the following formula f
Ah(kW ,n,t1):

Ah~kW ,n,t1!5
ip

4k'
2 E0

t1
t2dt2FR1,in

(1) ~k't1!Hin
(2)~k't2!

2R1,in
(2) ~k't1!Hin

(1)~k't2!2
4

ip
s1,in~k't2!G

3F in

t2
2

r~kW ,n,t2!1
1

t2
]t2

„t2
2 j h~kW ,n,t2!…G .

~2.33!

In order to eliminate the charge densityr from the integrand
and to separate the transverse and the longitudinal par
3-5
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the propagator, all the terms of this formula should be in
grated by parts, explicitly accounting for the charge cons
vation, which reads as

i t@kxj x~kW ,n,t!1kxj y~kW ,n,t!1n j h~kW ,n,t!#

1]tr~kW ,n,t!50. ~2.34!

We have in sequence

inE
0

t1dt2

t2
r~t2!Hin

( j )~k't2!

5 inE
0

t1dR21,in
( j ) ~k't2!

dt2
r~t2!dt2

5 inR21,in
( j ) ~k't1!r~t1!2nE

0

t1
t2dt2R21,in

( j ) ~k't2!

3@kxj x~t2!1kyj y~t2!1n j h~t2!#, ~2.35!

inE
0

t1
dt2Hin

( j )~k't2!]t2
„t2

2 j h~t2!…

5t1
2 j h~t1!Hin

( j )~k't1!1E
0

t1
t2dt2@R1,in

( j ) ~k't2!

1n2R21,in
( j ) ~k't2!# j h~t2!. ~2.36!

In a similar way we have

inE
0

t1dt2

t2
r~t2!s1,in~k't2!

5 inE
0

t1dQ21,in~k't2!

dt2
r~t2!dt2

5 inQ21,in~k't1!r~t1!2nE
0

t1
t2dt2Q21,in~k't2!

3@kxj x~t2!1kyj y~t2!1n j h~t2!#, ~2.37!

E
0

t1
dt2s1,in~k't2!]t2

„t2
2 j h~t2!…

5t1
2 j h~t1!s1,in~k't1!

1n2E
0

t1
t2dt2@Q21,in~k't2!2Q1,in~k't2!# j h~t2!.

~2.38!

Assembling these pieces together and repeating the same
culations for the functionF one obtains three different term
which contribute to the fieldA produced by the currentj ;
A5A(tr )1A(L)1A( inst).

The transverse fieldA(tr ) is defined by the integral term
in the right-hand side~RHS! of Eqs.~2.35! and~2.36!. It can
be conveniently written down in the following form:
04490
-
r-

cal-

Al
(tr )~x1!5E d4x2u~t12t2!D lm

(tr )~x1 ,x2! j m~x2!,

~2.39!

where

D lm
(tr )~x,y!52 i E

2`

`

dnE d2kW (
l51,2

@VnkW ; l
(l)

~x!VnkW ;m
(l)* ~y!

2VnkW ; l
(l)* ~x!VnkW ;m

(l)
~y!#, ~2.40!

which can be easily recognized as the Riemann function
the original homogeneous hyperbolic system. The Riem
function solves the boundary value problem for the evolut
of the free radiation field. It is obtained immediately in th
form of the bilinear expansion over the full set of solutio
~2.13! of the homogeneous system. In fact, this is a s
evidence thatD (tr ) may be associated with the transverse p
of the propagator. Then the remaining part is the propag
~response function! for the longitudinal field.

The dynamical longitudinal fieldA(L) originates from the
integral terms in the RHS of Eqs.~2.37! and ~2.38!:

Al
(L)~t1 ,h1 ,rW1!5E

0

t1
t2dt2E dh2d2rW2

3D lm
(L)~t2 ;h12h2 ,rW12rW2! j m~t2 ,h2 ,rW2!.

~2.41!

The kernel of this representation,

D lm
(L)~t2 ;h12h2 ,rW12rW2!

5E dnd2kW

~2p!3k'
2 Fkr

n
G

l

FksQ21,in~k't2!

nQ1,in~k't2!
G

m

3ein(h12h2)1 ikW (rW12rW2), ~2.42!

does not allow for the bilinear expansion with two tempo
arguments, and, as we shall see in a while, the retarded c
acter of the integration in Eq.~2.41! is not sensitive to the
light cone boundaries. In fact, the electric fieldEl

(L)5Ȧl
(L) is

simultaneous with the currentj m.
The instantaneous part of the solution comes from

boundary terms in Eqs.~2.35!–~2.38! which were generated
via integration by parts. It depends on a single time varia
t1. Using two functional relations, Eq.~2.32! and

R1,in
(1) ~x!R21,in

(2) ~x!2R1,in
(2) ~x!R21,in

(1) ~x!

52
4

ip

x

n2

ds1,in~x!

dx

52
4

ip
@Q1,in~x!2Q21,in~x!# ~2.43!

~see Appendix B!, its Fourier transform can be presented
the form
3-6
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Al
( inst)~kW ,n;t1!5

r~kW ,n,t1!

~2p!3ik'
2 FkrQ21,in~k't1!

nQ1,in~k't1!
G

l

,

~2.44!

which leads to the Poisson-type integral,

Am
( inst)~t1 ,h1 ,rW1!5E drW2dh2Km~t1 ;rW12rW2 ,h12h2!

3r~t1 ,rW2 ,h2!, ~2.45!

with the instantaneouskernel,

Km~t;rW,h!5E dndkW

~2p!3

einh1 ikW rW

ik'
2 FkrQ21,in~k't!

nQ1,in~k't!
G

m

.

~2.46!

The potentialA( inst) given by Eq.~2.44! coincides with the
potentialV(3) of Eq. ~2.18! of the t-static source. Therefore
this term represents the instantaneous distribution of the
tential at the momentt1, corresponding to the charge dens
taken at the same moment. Next, we have to recall that
charge densityr(kW ,n,t1) in Eq. ~2.44! still includes an arbi-
trary constantr0(kW ,n), which may be interpreted as th
charge density att50. This constant has appeared beca
we used only the conservation~2.24! of the constraint~which
is the consequence of the equations of motion! and did not
used the Gauss law explicitly. Now we can see that impos
the constraint indeed affects only the static potential of
charge distribution and puts it in agreement with Gauss l
If the initial data allow one to putr05r(t50)50, then it
immediately solves two problems. First, the conservation
the constraint just duplicates the Gauss law, and the la
04490
o-

e

e

g
e
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f
er

can be used to remove the unphysical degrees of free
without any reservations. Eventually, it allows to fix th
gaugeAt50 completely~see Sec. III A!. Second, it becomes
possible to eliminate the charge densityr completely, and to
replace it by the componentsj n of the current. Replacemen
follows an evident prescription,

r~t1 ,h2 ,rW2!5E
0

t1
dt2

]r

]t2
52 i E

0

t1
t2dt2@ksj

s~t2 ,h2 ,rW2!

1n j h~t2 ,h2 ,rW2!#,

and leads to the standard form of theA( inst) representation
~an artificial contribution of anyr0 would correspond to the
recognizable static pattern in the longitudinal part of t
propagator and is easily handled!,

Al
( inst)~t1 ,h1 ,rW1!5E

0

t1
t2dt2E dh2d2rW2D lm

( inst)~t1 ;h1

2h2 ,rW12rW2! j m~t2 ,h2 ,rW2!, ~2.47!

with the kernel given by the formula,

D lm
( inst)~t1 ;h12h2 ,rW12rW2!

52E dnd2kW

~2p!3k'
2 FkrQ21,in~k't1!

nQ1,in~k't1!
G

l

Fks

n
G

m

3ein(h12h2)1 ikW (rW12rW2). ~2.48!

Two parts of the propagator, given by Eqs.~2.42! and
~2.48! can be combined in one elegant formula for the pro
gator of the fieldA( long)5A(L)1A( inst),
e as
useful to
d
ute the
to the
D lm
( long)~t1 ;h12h2 ,rW12rW2!5E dnd2kW

~2p!3k'
2 Fkrks@Q21,in~k't2!2Q21,in~k't1!# krn@Q1,in~k't2!2Q21,in~k't1!#

nks@Q21,in~k't2!2Q1,in~k't1!# n2@Q1,in~k't2!2Q1,in~k't1!#
G

lm

3ein(h12h2)1 ikW (rW12rW2). ~2.49!

This expression will be used for practical calculation of quark self-energy in paper@IV #, where it will be transformed into the
mixed representation. The coordinate form ofA(L) that reveals its causal properties, is analyzed in Sec. IV

Equations~2.39!–~2.42! and~2.47!, ~2.48! present the propagator in a split form. Different constituents of this form ar
a preliminary identified as the transverse, the longitudinal and the instantaneous parts of the propagator. It would be
learn if the same kind of splitting is possible for the current itself. An affirmative answer~as in the cases of the Coulomb an
radiation gauges! would be helpful for the design of the perturbation theory. To answer this question, one should substit
different pieces of the solution into the left-hand side of the original system of differential equations. This leads
following expressions for the Fourier components of the three currents:

t j (tr )
m ~kW ,n;t!5t j m~kW ,n;t!1

1

ik'
2 F krs1,in~k't!

nk'
2 s21,in~k't!

Gm
]r

]t
2

n

k'
2

]

]tS ṡ21,in~k't!F krt
3 j h

2t~kxj x1kyj y!
GmD , ~2.50!

t j (L)
m ~kW ,n;t!5

1

k'
2

]

]t S Fkrt
2

n
Gm

@Q21,in~k't!~kxj x1kyj y!1Q1,in~k't! j h# D , ~2.51!
3-7
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t j ( inst)
m ~kW ,n;t!5

21

ik'
2

]

]tS F krtQ21,in~k't!

nt21Q1,in~k't!
Gm]r

]t D 2
1

ik'
2 F krs1,in~k't!

nk'
2 s21,in~k't!

Gm
]r

]t
. ~2.52!
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Provided that the current is conserved, these three curr
added together, give the full current on the right hand side
the system. Therefore, the solution is correct. However, n
of these three currents carries any signature of being lo
tudinal or transversal in the usual sense. None of them
zero divergence since the operator of the divergence doe
commute with the differential operator of the system. N
desired simplification is possible in our case.

In fact, the above splitting of the potential has no re
physical meaning. To see it explicitly, let us find the dive
gence of the electric field, divE5]mE m @again, for brevity,
in the Fourier representation#:

div E(tr )~kW ,n;t!5 i @Q21,in~k't!2Q1,in~k't!#

3S nt2 j h2
n2

k'
2 ~kxj x1kyj y!D ,

~2.53!

div E(L)~kW ,n;t!5 i S t21
n2

k'
2 D @~kxj x1kyj y!Q21,in~k't!

1n j hQ1,in~k't!#, ~2.54!

div E( inst)~kW ,n;t!

5r~kW ,n;t!2 i S t2Q21,in~k't!2
n2

k'
2

Q1,in~k't!D
3@~kxj x1kyj y!1n j h#. ~2.55!

Only the divergence of the true retarded component of
field E(tr ) turns out to be zero. The term which prevents t
div E(tr ) from being zero is due to the nonsymmetry of t
propagator,Dhr5” D rh. It appears when theu function in Eq.
~2.39! is differentiated with respect to Hamiltonian timet.
This term is vital for obtaining the expression that obeys
Gauss constraint, divE(kW ,n;t)5r(kW ,n;t).

The known examples, when the transverse and the lo
tudinal fields are separated at the level of the equation
motion, are related to a narrow class of homogene
gauges. The impossibility of a universal separation of
transverse and longitudinal currents thus appears to be a
rather than exception. It reflects a general principle; the
diation field created at some time interval has the preced
and the subsequent configurations of the longitudinal field
the boundary condition. The dynamics of the longitudin
field falls out of any scattering problem in itsS-matrix for-
mulation. However, this dynamics is, in fact, a subject of
QCD evolution in the inelastic high-energy processes.
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D. Initial data problem in the gauge AtÄ0

We obtained the expression for the~retarded! propagator
as the response function between the ‘‘external’’ current a
the potential of the gauge field. We must also verify that
same propagator solves the Cauchy problem for the ga
field. This can be easily done by presenting the initial data
the surfacet5t0 in the form of the source density at th
hypersurfacet5t0, i.e.,

A2gJn~t2!5A2g~t0!gnm~t0!@d8~t22t0!Ām~rW,h!

1d~t22t0!Ām8 ~rW,h!#, ~2.56!

whereĀm(rW,h) and Ām8 (rW,h) are the initial data for the po
tential and its normal derivative on the hypersurfacet5t0.
Usually, it is assumed that the external current vanishes
t,t0. Substituting this source into Eqs.~2.39!, ~2.41!, and
~2.45!, and taking the limit oft1→t0, we may verify that the
standard prescription for the solution of the initial data pro
lem,

Al~x1!5E
(t25t0)

d2rW2dh2D lm~x1 ,x2!
]J

]t2
Am~x2!,

~2.57!

holds with the same propagatorD lm(x1 ,x2) that was used to
solve the emission problem. For example, in the limit oft
→t0, the h component of the vector potential is a sum
three terms,

Ah
(tr )~t010!5

ip

4k'
2 $@R1,in

(2) ~k't0!Hin
(1)~k't0!

2R1,in
(1) ~k't0!Hin

(2)~k't0!#@nĀf2k'
2 Āh#

2t0n@R1,in
(2) ~k't0!R21,in

(1) ~k't0!

2R1,in
(1) ~k't0!R21,in

(2) ~k't0!#Āf8 %, ~2.58!

Ah
(L)~t010!5

2n

k'
2 H 2s1,in~k't0!Āf1t0Q21,in~k't0!Āf8

2
nk'

2

t0
s21,in~k't0!Āh1

n

t0
Q1,in~k't0!Āh8 J ,

~2.59!

Ah
( inst)~t010!5

n

k'
2

Q1,in~k't0!Ft0Āf8 1
n

t0
Āh8 G ,

~2.60!
3-8
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where we have denotedĀf5kxĀx1kyĀy . Equation~2.60!
follows from Eq. ~2.45! and takes care of the consisten
between the charge density at the momentt0 and the initial
data for the gauge field. Using relations~2.32! and~2.44! and
adding up Eqs.~2.58!–~2.60! we come to a desired identity
Ah(t010)5Āh .

When the initial dataĀm(rW,h) and Ām8 (rW,h) correspond
to the free radiation field, then only the part of the full prop
gator,D lm

(tr )(x1 ,x2), ‘‘works’’ here, and only Eq.~2.58! may
be retained. The other two equations acquire the statu
being constraints imposed on the initial data. Since the c
rent is absent, we haveA(L)50 on the left-hand side of Eqs
~2.59!. Then the right hand side confirms that the kernelK is
orthogonal to the free radiation field modes. Since the cha
densityr vanishes, we haveA( inst)50, which is equivalent
to Gauss law for the free gauge field. The two transve
modes already obey these constraints. This fact provid
reliable footing for the canonical quantization of the fr
field in the gaugeAt50. Indeed, the Riemann function co
incides with the commutator of the free gauge field. It can
found via its bilinear decomposition over the physic
modes. Thus, one can avoid technical problems of inver
the constraint equations~see Sec. III!. The longitudinal part
of the propagator will be studied in details in Sec. IV.

E. Gluon vertices in the gaugeAtÄ0

The terms proportional to the first and the second pow
of the coupling constant in the classical wave equations m
be viewed as the external current and allow one to define
explicit form of the three- and four-gluon vertices. On
should start from the solution of the Maxwell equations,

Ak8
a8~z1!5E d4xDk8k

a8a
~z1 ,x!A2g~x!J a

k~x!, ~2.61!

with the color current of the form

A2g~x!J a
k~x!52g fabcA2g~x!gkn~x!gml~x!

3@]m„Al
b~x!An

c~x!…1Al
b~x!]mAn

c~x!

1Am
b ~x!]nAl

c~x!#2g2A2g~x! f abcf cdh

3gkn~x!gml~x!Al
b~x!Am

d ~x!An
h~x!.

~2.62!

In perturbation calculations, every fieldA(x) in the RHS of
this expression is a part of some correlatorD(x,zN). The
components of the metric depend only on the timet while
the derivatives affect only the spatial directionsun5(rW,h).
Moreover, in these directions, all the gluon correlators
pend only on the differences of the coordinates and can
rewritten in terms of their spatial Fourier components. Af
symmetrization over the outer argumentszN , one immedi-
ately obtains
04490
-

of
r-

e

e
a

e
l
g

rs
y
e

-
e

r

Vabc
kln ~p1 ,p2 ,p3 ;t!52 i t f abcd~p11p21p3!@gln~p22p3!k

1gnk~p32p1! l1gkl~p12p2!n#,

~2.63!

wherepn5gnkpk , and the components of the momentum
the curvilinear coordinates are equal topk5(px ,py ,n). The
four-gluon vertex has no derivatives and is the same as us

III. QUANTIZATION

The second quantization of the field has several pract
goals. We would like to have an expansion of the operato
the free gluon field like

Ai~x!5 (
l51,2

E d2kWdn@cl~n,kW !VnkW ; i
(l)

~x!

1cl
†~n,kW !VnkW ; i

(l)* ~x!#, ~3.1!

with the creation and annihilation operators which obey
commutation relations

@cl~n,kW !,cl8
†

~n8,kW8!#5dll8d~n2n8!d~kW2kW8!,

@cl~n,kW !,cl8~n8,kW8!#5@cl
†~n,kW !,cl8

†
~n8,kW8!#50.

~3.2!

Once obtained, the commutation relations~3.2! allow one to
find various correlators of the free gluon field as the avera
of the binary operator products over the state of the per
bative vacuum and express them via the solutionsVnkW ; i

(1) (x)

andVnkW ; i
(2) (x). For example, the Wightman functions,

iD10,i j ~x,y!5^0uAi~x!Aj~y!u0&

5 (
l51,2

E dnd2kWVnkW ; i
(l)

~x!VnkW ; i
(l)* ~y!

5 iD01,j i ~y,x!, ~3.3!

serve as the projectors onto the space of the on-mass-
gluons and should be known explicitly in order to have
good definition of the production rate of gluons in the fin
states. The Fock creation and annihilation operators are
needed in order to define the occupation numbers and
introduce the gluon distributions into various field correlato
defined as the averages over an ensemble. With these
Wightman functions at hand, one immediately obtains
expression for the commutator of the free field operators

D0,i j ~x,y!52 i ^0u@Ai~x!,Aj~y!#u0&

5D10,i j ~x,y!2D01,i j ~x,y!, ~3.4!

which should coincide with the Riemann function of the h
mogeneous field equations. The program of second quan
tion does not reveal any technical problems if we give pr
erence to the holomorphic quantization which is based
commutation relations~3.2! for the Fock operators. How
3-9
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A. MAKHLIN PHYSICAL REVIEW C 63 044903
ever, if we prefer to start with the canonical commutati
relations for the field coordinates and momenta, then
should postulate them and derive Eq.~3.2! as the conse-
quence.

The way to obtain the canonical commutation relations
cases of the scalar and the spinor fields is quite straigh
ward. For the vector gauge field, we meet a well-kno
problem, viz., an excess of the number of the component
the vector field over the number of the physical degrees
freedom. For example, in the so-called radiation gauge,A0

50 and divA50, we write the canonical commutation re
lations in the following form@6#:

@Ai~x,t !,Ej~y,t !#5d i j
tr~x2y!

5E d3k

~2p!3 S d i j 2
kikj

k2 D e2 ik(x2y),

@Ai~x,t !,Aj~y,t !#5@Ei~x,t !,Ej~y,t !#50, ~3.5!

thus eliminating the longitudinally polarized photons fro
the dynamical degrees of freedom. The functiond i j

tr plays a
role as the unit operator in the space of the physical sta
Here, i , j 51,2,3 and the number of relations postulated
Eqs.~3.5! apparently exceeds the actual number required
the count of the independent degrees of freedom,l51,2, of
the free gauge field. The Fourier transform of the funct
d i j

tr is easily guessed because the basis of the plane-w
solutions is very simple@6#, and it can be obtained rigorousl
by solving the system of the constraint equations@7,8#. A
similar guess or procedure in our case is not so obvious.
have the gauge conditionAt50 as the primary constrain
and Gauss law as the secondary one. The latter can b
solved in a way which allows one to exclude theh compo-
nents of the potential and the electric field from the set
independent canonical variables. Thus, onlyx andy compo-
nents are subject to the canonical commutation relations
resolve the constraints, one needs the integral operators
the kernels built from the solutions of the Maxwell equatio
in the gaugeAt50. Therefore we shall proceed in two step
In Sec. III B, we shall sketch the results for the Wightm
functions~3.3!. These, will be used for the explicit calcula
tion of the free field commutator~3.4! in Sec. III C and for
the study of its causal behavior.

A. Fixing of the gaugeAtÄ0

Only the independent components of transverse fields
the subject for quantization. In order to eliminate the ext
neous degrees of freedom we have to incorporate the G
law. In Sec. II C, the latter was shown to be a consequenc
the equations of motion only when the evolution begins w
the zero charge density att50. Are these initial data physi
cal or do they mean that the QCD evolution begins fro
nothing? Addressing the hadron collisions, the question
be asked more specifically: do we really need any resol
ad hoccolor charges~dipoles, quadrupoles, etc.! to initiate
the color interaction? The answer is negative for three r
sons. First, as has been demonstrated in paper@II #, at t→0
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the states of wedge dynamics are widely spread along
null planes with zero density att50. Second, the nucleu
which fluctuate into the expanded state of wedge dynamic
colorless even locally. Third, as will be demonstrated in p
per @IV # @9# the interactions which are the strongest at ve
early times, are magneto-static by their nature. The collis
of two nuclei is more likely to begin with the magnetic in
teraction of the color currents in the locally color-neutr
system than with the electric interaction of color charges

In Abelian case considered here the gauge transforma
is

Am8 ~x!5Am~x!1]mx~x!. ~3.6!

Since we have At(x)50, we must also havex(x)
5x(rW t ,h). The boundary condition,Ah(t50,h)50, cannot
be altered by the gauge transform~3.6!. Therefore, we must
require thatx(x)5x(rW t). Hence, the allowed gauge tran
form is reduced tox andy components of the vector poten
tial,

Ar8~x!5Ar~x!1] rx~rW t!. ~3.7!

The Gauss constraint~2.12!,

]h]tAh~t,h!52t2] r Ȧr~t,h!2t2 j t~t,h!,

is a hyperbolic differential equation for the functionAh(t,h)
which can be integrated@the Riemann function of this equa
tion, R(t,h)51]. With the boundary conditions,Ah(0,h)
50 andAh(t,2`)50, this equation has a unique solutio

Ah~t,h!5E
2`

h
dhE

0

t

dt@2t2] r Ȧr~t,h!2t2 j t~t,h!#.

~3.8!

The residual gauge transform~3.7! changes only the inte
grand of Eq.~3.8!

] rAr8~t!→] rAr~t!1D'x~rW t!.

As a consequence of the boundary conditions, the transv
divergence of the field must vanish att50, ] rAr(0,h)50.
Therefore, we must also have

D'x~rW t!50.

x(x,y) must be a harmonic function. Demanding, th
x(x,y) vanishes aturW tu→`, we find thatx(x,y)50. The
gaugeAt50 is fixed completely. The Gauss law can be u
ambiguously used to eliminateAh from the list of canonical
variables.

B. Gluon correlators in the gaugeAtÄ0

In this section, we shall write down components of t
field correlatorD10,i j (x,y) in the curvilinear coordinatesu
5(t,h,rW). We shall denote their covariant components
D10,ik(u1 ,u2). Later we shall transform them to the standa
3-10
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Minkowski coordinates and find the correlators of the te
poral axial and the null plane gauges as their limits in
central rapidity region and in the vicinity of the null-plane
respectively. The most convenient~for this purpose! basis
consists of the transverse modesv (l). The modev (1) gives
the following contribution to the correlatorD10,ik :

iD10,rs
(1) ~1,2!5E

2`

` du

2 E d2kW

~2p!3 S d rs2
krks

k'
2 D

3eikW (rW12rW2)e2 ik't1 cosh(u2h1)1 ik't2 cosh(u2h2).

~3.9!

Realizing thatdu/25dk3/2k0, we recognize a standard rep
resentation of this part of the correlator in terms of the o
mass-shell plane waves decomposition.

The second part of the correlator is determined by
modev (2) and has the following components:

D10,rs
(2) ~1,2!52 i E

2`

` du

2 E d2kW

~2p!3

krks

k'
2

3eikW (rW12rW2) f 1~u,t1 ,h1! f 1* ~u,t2 ,h2!,

~3.10!

D10,rh
(2) ~1,2!52 i E

2`

` du

2 E d2kW

~2p!3
eikW (rW12rW2)

kr

k'
2

3 f 1~u,t1 ,h1! f 2* ~u,t2 ,h2!

5D10,hr
(2) ~2,1!, ~3.11!

D10,hh
(2) ~1,2!52 i E

2`

` du

2 E d2kW

~2p!3

eikW (rW12rW2)

k'
2

3 f 2~u,t1 ,h1! f 2* ~u,t2 ,h2!. ~3.12!

One may easily see that all components ofD10(1,2) vanish
when eithert1 or t2 go to zero.

C. Causal properties of the field commutators
in the gaugeAtÄ0

Causal properties of the radiation field commutator m
be studied starting from the representation~3.4!. Using Eqs.
~3.9! and ~3.10! we may conveniently write the contributio
of the two transverse modes in the following form:

iD0,rs
(1) ~1,2!52 i E d2kW

~2p!3 S d rs2
krks

k'
2 D eikW rW

3E
2`

`

du sink'F12, ~3.13!
04490
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iD0,rs
(2) ~1,2!52 i E d2kW

~2p!3

krks

k'
2

eikW rWE
2`

`

du

3F12
cosh 2h

sinh2u1cosh2h G~sink'F122sink'F1

1sink'F2!, ~3.14!

where we have introduced the following notation: 2h5h1

2h2 , rW5rW12rW2 , F i5t1 cosh(u2hi), F125F12F2. The
sum of Eqs.~3.13! and ~3.14! can be rearranged as follows

iD0,rs~1,2!5 i E d2kWdu

~2p!3
eikW rWF2d rs sink'F12

1
krks

k'
2 @sink'F12sink'F2#

1krks cosh~h12h2!

3E
0

t1
dt8E

0

t2
dt9 sin@k't8 cosh~u2h!

2k't9 cosh~u1h!#G . ~3.15!

Rewriting the integrationd2kWdu into the three dimensiona
integrationd3k/uku in Cartesian coordinates, the first integr
in Eq. ~3.15!,

D0~1,2!5E d2kWdu

~2p!3
eikW rW sink'F12

5
sign~ t12t2!

2p
d@~ t12t2!22~r12r2!2#,

~3.16!

is easy to calculate and to recognize as the commutator o
massless scalar field. It differs from zero only if the lin
between the pointsx1 and x2 has a lightlike direction. We
integrate the first and the third terms in the integrand of E
~3.15! in this way. To reduce the two integrals in the seco
term to the same type, we must exclude the factor 1/k'

2 using
the fundamental solution of the two-dimensional Laplace
erator,

krks

k'
2

eikW rW5] r]sE d2jW

2p
lnujW2rWueikWjW. ~3.17!

After that, we arrive at the final result,
3-11
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D0,rs~1,2!52d rsD0~1,2!2cosh~h12h2!

3] r]sE
0

t1
dt1E

0

t2
dt2D0~1,2!

1] r]sE d2jW

~2p!2
lnujW2rWu

3@d~t1
22jW2!2d~t2

22jW2!#. ~3.18!

From this form, it immediately follows that the commutat
of the potentials vanishes att15t2. An even stronger resul
is found for the commutator of the two electric fields,

@Er~1!,Es~2!#5
]2

]t1]t2
iD0,rs~1,2!

5F2d rs

]2

]t1]t2
2cosh~h12h2!

3
]2

]xr]xsG iD 0~1,2!. ~3.19!

This commutator vanishes everywhere except on the l
cone, in full compliance with the microcausality principle f
the electric field which is an observable. However, this d
not happen for the commutator of the potentials since t
are defined nonlocally. It vanishes neither at spacelike no
timelike separation because the line of integration which
covers the potential at the pointx2, in general, intersects
~e.g., at some pointx3) with the light cone which has its
vertex at the pointx1, and the commutator of the electr
fields at the pointsx1 andx3 is not zero.

Similar results take place for the commutator of t
h-components of the potential and the electric field. T
field commutator,

@Eh~1!,Eh~2!#5
]2

]t1]t2
iD0,hh~1,2!52 i¹'

2 D0~1,2!,

~3.20!

is entirely causal, while the commutator of the potentials

@Ah~1!,Ah~2!#5 iD0,hh~1,2!

52 i¹'
2 E

0

t1
t1dt1E

0

t2
t2dt2D0~1,2!,

~3.21!

does not vanishes at spacelike distances, except fort15t2.
Finally, the formally designed commutator between ther and
h components of the electric field~the two observables!,

@Er~1!,Eh~2!#5
]2

]t1]t2
iD0,rh~1,2!

52
]2

]xr]hS t2

t1
D0~1,2! D , ~3.22!
04490
ht
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is entirely confined to the light cone, while the commuta
of the potentials~which are not the observables!,

@Ar~1!,Ah~2!#5 iD0,rh~1,2!

52E
0

t1dt1

t1
E

0

t2
t2dt2

]2

]xr]h
D0~1,2!,

~3.23!

does not vanish at the spacelike distance, even att15t2.
This result, however, is not a subject for any concern si
the potentials are defined nonlocally and commutation re
tions for the electric and magnetic@cf. Eq. ~2.14!# fields are
reproduced correctly. Moreover, we have argued above
theh components ofA andE are not the canonical variable
since the constraints express them via thex and y compo-
nents.

The ‘‘acausal’’ behavior of the Riemann function
D0

mn(1,2), may cause doubts whether the gaugeAt50 al-
lows for meaningful retarded and advanced Green functi
which, by causality, should vanish at spacelike distanc
Fortunately, this anomalous behavior appears only for
gauge-variant potential; the response functions for obs
able electric and magnetic fields are causal. This can be
ily seen, e.g., from Eqs.~2.21!, ~2.25!, and~2.26!, which are
the usual inhomogeneous relativistic wave equations for
various physical components of the field strengthsE andB.

D. Canonical commutation relations in the gaugeAtÄ0

A proof of the commutation relations~3.2! for the Fock
operators follows the standard guidelines@6#. First, the cre-
ation and annihilation operators aredefinedvia the relations

cl~n,kW !5~VnkW
(l) ,A!5 igi j E d3x@VnkW ; j

(l)* ~x!Ȧi~x,t!

2V̇nkW ; j
(l)* ~x!Ai~x,t!],

cl
†~n,kW !5~A,VnkW

(l)
!5 igi j E d3x@Ai~x,t!V̇nkW ; j

(l)
~x!

2Ȧi~x,t!VnkW ; j
(l)

~x!#. ~3.24!

This results in the following expression for the commutat

@cl~n,kW !,cl8
†

~n8,kW8!#

5E d3xd3ygi j ~x!glm~y!

3$@Ai~x,t!,Ȧl~y,t!#„V̇nkW ; j
(l)* ~x!Vn8kW8;n

(l8)
~y!

2V̇n8kW8; j
(l8)* ~x!VnkW ;n

(l)
~y!…

1@Ai~x,t!,Al~y,t!#V̇nkW ; j
(l)* ~x!V̇n8kW8;n

(l8)
~y!

1@Ȧi~x,t!,Ȧl~y,t!#Vn8kW8; j
(l8)* ~x!VnkW ;n

(l)
~y!%.

~3.25!
3-12
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Most of the terms in the second line vanish due to the co
mutation relations. Next, we rely on the following gue
about the form of the commutator:

@Ai~x!,Aj~y!#5 (
l51,2

E dnd2kW„VnkW ; i
(l)

~x!VnkW ; j
(l)* ~y!

2VnkW ; i
(l)* ~x!VnkW ; i

(l)
~y!…, ~3.26!

which leads to the proper equal-time commutation relati
for the independent canonical variables. Finally, explici
using the orthogonality relations for the eigenmodesV(l), we
immediately obtain the commutation relations~3.2!.

IV. LONGITUDINAL PROPAGATOR AND STATIC FIELDS

In this section, we shall find the explicit expressions
the kernels~2.42! and~2.46! which represent the longitudina
and instantaneous components of the gauge field prod
by the ‘‘external’’ currentj m. The calculations are length
and their details can be found in Appendix C. Here,
present only the final answers.

The components of the longitudinal propaga
D lm

(L)(t2 ,rW,h) are already obtained in the form of the thre
dimensional integrals~2.42!. D (L) depends on the difference
of the curvilinear spatial coordinates,rW5rW12rW2 and h5h1
2h2, butnot on the difference of the temporal argumentst1
~of the field! and t2 ~of the source!. Introducing the short-
hand notation for the distance in the (xy) plane,r'5urWu, and
for the full distanceR25R(t2)5@(rW12rW2)21t2

2 sinh2(h1

2h2)#
1/2 between the two points of the surfacet25const, we

obtain
n
e
to
sa
o

04490
-

s

r

ed

r

D rs
(L)52

u~t22r'!

4p F 1

r'
2 S 12

t2 coshh

R2
D S d rs2

2xrxs

r'
2 D

2
2xrxs

r'
2

t2 coshh

R2
3 G ,

Dhs
(L)52

u~t22r'!

4p

xs

r'
2

t2 sinhh

R2

t2
22r'

2

R2
2

,

D rh
(L)52

u~t22r'!

4p

xr

r'
2

t2
3 sinhh

R2
3

,

Dhh
(L)5

t2
2

2
d~rW !d~h!1

u~t22r'!

4p F2
h cothh21

sinh2h

1
t2 coshh

R2 sinh2hS 32
r'

2

R2
2D 2

2 coshh

sinh3uhu
L2G , ~4.1!

where L25L(t2)5 ln@(t2 sinhuhu1R2)/r'#. By examination
of Eq. ~2.41!, one may see that after the replacement oft2 by
t1, the same kernel,D lm

(L)(t1 ,rW,h), determines the compo
nentsEm

(L)(t1) of the longitudinal part of the electric field via
the componentsj m(t1) of the current at the same time. The
propagators do not respect the light cone, but have a rem
able property that the longitudinal fields at the surface of
constant proper timet do not exist at the distancer' from
their sources that exceedt. This establishes the upper lim
for the possible dynamical correlations between the long
dinal fields in the (xy) plane.

One more representation of the longitudinal propagato
interesting at least in two respects. First, for the practi
calculations in paper@IV #, we shall need the longitudinal pa
of the propagator in the mixed representatio
D lm

( long)(t1 ,t2 ;h12h2 ,kW t), which can be shown to be
D rs
[ long]5

krks

kt
2 H 2

kt coshuhu
2 E

t2

t1
e2tkt sinhuhudt2E da

2p
tanhS a1

h

2 D tanhS a2
h

2 D @sinktT12sinktT2#J , ~4.2!

Dhh
[ long]52

t1
22t2

2

2
d~h!1

kt coshuhu
2 E

t2

t1
e2tkt sinhuhut2dt2E da

2p

sinktT12sinktT22ktT1 cosktT11ktT2 cosktT2

kt
2 cosh2S a1

h

2 D cosh2S a2
h

2 D ,

~4.3!
er.
in

ted
where the last integral terms in Eqs.~4.2! and ~4.3! provide
that the longitudinal part of the field obey the boundary co
dition we imposed att→0. These terms cancel with th
similar terms in the radiation part of the retarded propaga
D [ ret] (t1 ,t2). Eventually, the last fact guarantee that acau
terms ~which were the subject for concern in the course
the canonical quantization in Sec. III D! do not contribute to
-

r
l

f

the dispersion equation that we derive in the next pap
Second, the first very simple by its structure contact term
the componentDhh

[ long] of the propagator

Dhh
[contact]~t1 ,t2 ;h22h1 ;kW t!52

t1
22t2

2

2
d~h!, ~4.4!

appears to be the only part of the enormously complica
3-13
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A. MAKHLIN PHYSICAL REVIEW C 63 044903
full retarded propagatorD lm
[ ret] which significantly contributes

the amplitude of the forward quark-quark scattering at
earliest stage of the collision.
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APPENDIX A: MODES OF THE FREE GAUGE FIELD

Here, we shall obtain the complete set of the one-part
solutions to the homogeneous system of the Maxwell eq
tions with the gaugeAt50, that is, Eqs.~2.10! and ~2.11!.
This gauge condition explicitly depends on the coordina
thus introducing effective nonlocality in the path integral th
represents the action. Therefore, it becomes impossibl
invert the differential operators using the standard symb
methods. An explicit form of the one-particle solutions b
comes necessary in order to find the Wightman functions
the free vector field, to establish the the explicit form of t
field commutators, and to separate the propagators of
transverse and the longitudinal fields. It is natural to look
the solution in the form of the Fourier transform with respe
to the spatial coordinates,

Ai~x!5E
2`

`

dnE d2kWeinheikW rWAi~kW ,n,t!. ~A1!

Then, the system of second order ordinary differential eq
tions for the Fourier transforms takes the following form:

Ft]t
21]t1

n2

t
1tky

2GAx~kW ,n,t!2tkxkyAy~kW ,n,t!

2
nkx

t
Ah~kW ,n,t!50, ~A2!

2tkxkyAx~kW ,n,t!1Ft]t
21]t1

n2

t
1tkx

2GAy~kW ,n,t!

2
nky

t
Ah~kW ,n,t!50, ~A3!

2
nkx

t
Ax~kW ,n,t!2

nky

t
Ay~kW ,n,t!

1F1

t
]t

22
1

t2 ]t1
1

t
k'

2 GAh~kW ,n,t!50. ~A4!

In this form, the system is manifestly symmetric and se
adjoint. An additional equation of the constraint reads
04490
e
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C~kW ,n,t!5
1

t
n]tAh1t]t@kxAx~kW ,n,t!1kyAy~kW ,n,t!#50.

~A5!

Let us rewrite the homogeneous system of the Maxw
equations in terms of the variables

F5]xAx1]yAy , C5]yAx2]xAy , and A5Ah .

~A6!

One immediately sees that the equation for the Fourier c
ponentC(kW ,n,t) of the longitudinal magnetic fieldC(x)
decouples,

F]t
21

1

t
]t1

n2

t2 1k'
2 GC~kW ,n,t!50. ~A7!

Then, the other two equations of motion take shape, i.e.

@t2]t
21t]t1n2#FkW ,n~t!2 ink'

2 AkW ,n~t!50, ~A8!

F]t
22

1

t
]t1k'

2 GAkW ,n~t!1 inFkW ,n~t!50. ~A9!

The additional constraint equation can be conveniently
written as

C~kW ,n,t!5
in

t
]tAkW ,n~t!1t]tFkW ,n~t!50. ~A10!

This is an independent equation. However, the conserva
of the constraint along the Hamiltonian timet is a conse-
quence of the equations of motion, and itcanbe employed to
obtain the independent equations for the components of
vector field. This is easily done in terms of the auxilia
functions,

wkW ,n~t!5tḞkW ,n~t! and akW ,n~t!5t21ȦkW ,n~t!,
~A11!

which are directly connected to the ‘‘physical’’ componen
of the electric field,E m5A2ggmlȦl :

]tF]t
21

1

t
]t1

n2

t2 1k'
2 GwkW ,n~t!50, ~A12!

]t@t2]t
21t]t1n21k'

2 t2#akW ,n~t!50. ~A13!

As a result, we see that the functionswkW ,n(t) and akW ,n(t)
obey inhomogeneous Bessel equations,

F]t
21

1

t
]t1

n2

t2 1k'
2 GwkW ,n~t!5kW2cw , ~A14!

F]t
21

1

t
]t1

n2

t2 1k'
2 GakW ,n~t!5t22ca , ~A15!

wherecw and ca are arbitrary constants. We may now ca
the solution of these equations in the form of the sum of
3-14
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partial solution of the inhomogeneous equation and a gen
solution of the homogeneous equation,

CkW ,n~t!5aH2 in
(2) ~k't!1a* H2 in

(1) ~k't!, ~A16!

wkW ,n~t!5cH2 in
(2) ~k't!1c* H2 in

(1) ~k't!1cws1,in~k't!,

~A17!

akW ,n~t!5gH2 in
(2) ~k't!1g* H2 in

(1) ~k't!1cas21,in~k't!,

~A18!

wheresm,n(x) is the so-called Lommel function@4,5#.
Furthermore, it is useful to notice that the system of

Maxwell equations~2.10! and ~2.11! also has an infinite se
of the t-independent solutions of the form

Wi~h,rW !5] ix~h,rW !, ~A19!

wherex is an arbitrary function of the spatial coordinatesh
andrW. Thus, they are the pure gauge solutions of the Abe
theory, compatible with the gauge condition.

In order to find the coefficients one should integrate E
~A17! and ~A18! with respect to the Hamiltonian timet,
thus finding the functionsF andA. Next, it is necessary to
solve Eqs.~A6! for the Fourier components of the vect
potential and to substitute them into the original system
Eqs. ~A2!–~A5!. Using functional relations from Appendi
B, one obtains thatc1ng50 andca2ncw50.

One of the solutions@already normalized according to Eq
~2.9!# is found immediately:

VkW ,n
(1)

~x!5
e2pn/2

25/2pk'
S ky

2kx

0
D H2 in

(2) ~k't!einh1 ikW rW.

~A20!

Initially, the components of the vector modeV(2) appear in
the following form required by the convergence of the in
gral,

S nkrR21,2 in
(2) ~k'tuS!

2R1,2 in
(2) ~k'tus!2 in@epn/2/sinh~pn/2!#

D einh1 ikW rW.

However, it can be gauge transformed to the more comp
form,

VkW ,n
(2)

~x!5
e2pn/2

25/2pk'

S krnR21,2 in
(2) ~k'tus!

2R1,2 in
(2) ~k'tus!

D einh1 ikW rW.

~A21!

The third solution~the last one by the count of the nonva
ishing components of the vector potential in the gaugeAt

50) has the following form:

VkW ,n
(3)

~x!5S krQ21,in~k't!

nQ1,in~k't!
D einh1 ikW rW. ~A22!
04490
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The modesV(1) andV(2) are the normalized solutions o
the Maxwell equations. They are orthogonal and obey
normalization condition,

~VkW ,n
(1,2) ,VkW8,n8

(1,2)
!5d~n2n8!d~kW2kW8!, ~VkW ,n

(1) ,VkW ,n
(2)

!50,
~A23!

which can be easily verified by means of Eq.~B5!. The norm
of these solutions is given by Eq.~2.9!. A normalization
coefficient of the modeV(3) is not defined, as this mode ha
a zero norm. It is also orthogonal toV(1) andV(2):

~VkW ,n
(3) ,VkW8,n8

(3)
!5~VkW ,n

(1) ,VkW ,n
(3)

!5~VkW ,n
(2) ,VkW ,n

(3)
!50. ~A24!

Thus this mode drops out from the decomposition of the f
gauge field.

The conservation of the constraint can be obtained a
consequence of Eqs.~A12! and ~A13! in the form

t]t@wkW ,n~t!1nakW ,n~t!#[t]tCkW ,n~t!50, ~A25!

which reassures us of the consistency between the dyna
equations and conservation of the Gauss law constraint.

One can explicitly check that the modesV(1) and V(2)

obey the constraint equation~A10!, which expresses Gaus
law. The modeV(3) does not. This mode corresponds to t
longitudinal field which cannot exist without the source.

APPENDIX B: MATHEMATICAL MISCELLANY

This appendix contains a list of mathematical formulas
the functions which appear in various calculations in t
body of the paper and Appendix A. The components of
vector field are expressed via two types of integrals. The fi
of them was studied in Ref.@6#:

Rm,n
( j ) ~xuS!5E xmHn

( j )~x!dx

5x@~m1n21!Hn
( j )~x!Sm21,n21~x!

2Hn21
( j ) ~x!Sm,n~x!#, ~B1!

whereSm,n stands for any of the two Lommel functions,sm,n
or Sm,n @5,6#. @Whenever we omit the indicatoruS), the func-
tion Rm,n

( j ) (xus) is assumed.# The second type of integrals,

Qm,n~x!5E
0

x

xmdxs2m,n~x!, ~B2!

is a new one. The functionsRm,n
( j ) (xuS) are introduced as

indefinite integrals. The preliminary choice of the lower lim
and, consequently, the choice of which of the functions,sm,n
or Sm,n , is used is motivated by the requirement of conv
gence and regular behavior. One can easily prove that

R
21,7 in
(
2
1)

~xuS!2R
21,7 in
(
2
1)

~xus!5
7 iepn/2

n sinh~pn/2!
,

R1,7 in
(
2
1)

~xuS!2R1,7 in
(
2
1)

~xus!5
6 inepn/2

sinh~pn/2!
. ~B3!
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We often use the following relation between Lommel fun
tions @4,5#:

S1,in~k't!512n2S21,in~k't!. ~B4!

From the integral representations~B1! and ~B2!, it is
straightforward to derive the functional relations

R21,in
( j ) ~k't!1

1

n2 R1,in
( j ) ~k't!52

t

n2

]

]t
Hin

( j )~k't!,

~B5!

Q21,in~k't!2Q1,in~k't!52
t

n2

]

]t
s1,in~k't!

5t
]

]t
s21,in~k't!. ~B6!

The Wronskian of the Hankel and Lommel functions,

W$s1,in~x!,Hin
( j )~x!%52

1

x
R1,in

( j ) ~x!, ~B7!

must be obtained in order to prove orthogonality ofV(2) and
V(3). To prove Eq.~B7!, one should use the following rep
resentation for the Lommel function:

s1,in~x!5
p

4i
@Hin

(1)~x!R1,in
(2) ~x!2Hin

(2)~x!R1,in
(1) ~x!#,

~B8!

which follows from Eq.~B1! and, consequently,

s1,in8 ~x!5
p

4i
@Hin

(1)8~x!R1,in
(2) ~x!2Hin

(2)8~x!R1,in
(1) ~x!#.

~B9!

In order to prove relation~2.32! one should use the represe
tation ~B1! for the functionsRm,n

( j ) and the Wronskian of the
two independent Hankel functions. The proof of relati
~2.43! begins with replacing the functionsR21,in

( j ) by R1,in
( j ) by

means of Eq.~B5!. The final result follows from Eqs.~B9!
and ~B6!.

APPENDIX C: CALCULATION OF THE LONGITUDINAL
PART OF THE PROPAGATOR

The kernels~2.44! and ~2.46! of the longitudinal and in-
stantaneous parts of the propagator are given in the form
the three-dimensional Fourier integralsdnd2kW . Here, we de-
scribe the major steps of the calculations which lead to E
~4.1!.

We permanently use the following integral representat
for the Hankel functions:

e2pn/2e6 inhH
7 in
(
2
1)

~k't!5
6 i

p E
2`

`

e7 ik't cosh(u2h)e6 inudu,

~C1!
04490
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n

which allows one to calculate many integrals by chang
the order of integration. The Lommel functionS1,in has a
similar representation,

S1,in~x!5xE
0

`

coshu cosnue2x sinhudu. ~C2!

Integrating by parts, and using Eq.~B4!, we find the integral
representation forS21,in ,

nS21,in~x!5E
0

`

sin~nu!e2x sinhudu. ~C3!

We start with the integral representation~B2! of the func-
tions Q61,in and perform an integration overn. To compute
the integrals from the functions1,in it can be conveniently
decomposed in the following way:

s1,in~x!5S1,in~x!2hin~x!,

hin~x!5
e2pn/2

2

pn/2

sinh~pn/2!
@Hin

(1)~x!1H2 in
(2) ~x!#, ~C4!

which allows one to find

E
2`

`

S1,in~k't!einhdn5pk't coshhe2k't sinhuhu,

E
2`

`

nS21,in~k't!einhdn5 ip signhe2k't sinhuhu. ~C5!

The similar Fourier integrals from the functionhin are cal-
culated using the representation~C1! for the Hankel func-
tions and the integral,

pn/2

sinh~pn/2!
5

1

2E2`

`

du
einu

cosh2u
. ~C6!

This yields, for example,

E
2`

`

dneinhhin~k't!5E
2`

` du

cosh2u
sin@k't cosh~u2h!#.

~C7!

After integration overn we obtain the following integral for
D rs

(L) :

D rs
(L)5E d2kW

~2p!3

krks

k'
2

eikW rWE
0

t2 dt

t S pk't coshhe2k't sinhuhu

2E
2`

` du

cosh2u
sin@k't cosh~u2h!# D , ~C8!

and similar integrals for the other components. The first te
in this formula is calculated in the following way. After in
tegration overt we continue:
3-16
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D rs8 52
] r]s

8p2 cothuhu E d2kW

k'
2

eikW rW@12e2k't2 sinhuhu#

52
] r]s

4p
cothuhu E

0

` dk'

k'

J0~k'r'!@12e2k't2 sinhuhu#

52
] r]s

4p
cothuhu lnF t2 sinhuhu1Ar'

2 1t2
2 sinh2h

r'
G .

~C9!

To work out the second term, one should introducekz

5k' sinhu andk05k' coshu5uku and changed2kWdu for the
three-dimensional integrationd3k. With t5t coshh, r
5(x,y,t sinhh), this leads to

D rs9 5
] r]s

2p3E0

t2 dt

t E d3k

k0
3

eikr sink0t

5
] r]s

4p E
0

t2 dt

t S u~r'
2 2t2!

t coshh

Ar'
2 1t2 sinh2h

1u~t22r'
2 !D

5
] r]s

4p
S u~r'2t2!cothuhu

3 lnF t2 sinhuhu1Ar'
2 1t2

2 sinh2h

r'
G1u~t22r'!ln

t2

r'
D .

~C10!

Adding Eqs.~C9! and~C10!, we obtain the first of the equa
tions ~4.1!.

APPENDIX D: GLUON CORRELATORS IN THE
CENTRAL RAPIDITY REGION AND NEAR

THE LIGHT WEDGE

In this section, we compare the correlators of the ga
At50 with the similar correlators in the three other gaug
A050, A150, andA250. We shall start with the simples
on-mass-shell Wightman functionD10

mn . These type of corr-
elators,D01

mn , D0
mn , andD1

mn share the same polarization su
of the free gauge field. They correspond to the densitie
the final states of the radiation field and are important
various calculations. The same polarization sum appear
expressions for the transverse part of the propagators,D ret

mn ,
Dadv

mn , D00
mn , andD11

mn . For our immediate purpose we sha
include the projectordmn of the gaugeAt50 to the formal
Fourier representation,

iD 10
mn~x1 ,x2!5E d3k

~2p!32k0 dmn~k;x1 ,x2!e2 ik(x12x2),

~D1!

with the ‘‘extraneous’’ dependence of the Fourier transfo
on the time and spatial coordinates. This dependence di
pear in some important limits. Therefore, we discover
domains where the wedge dynamic simplifies and descr
the processes which are approximately homogeneou
04490
e
,

of
r
in

p-
e
es
in

space and time. These domains are~i! the central rapidity
region,h1,2!1 ~or x1,2

3 ;0), where the projector in the inte
grand of Eq.~D1! is

dmn~k,u!52gmn1
kmun1umkn

ku
2

kmkn

~ku!2
, ~D2!

with the gauge-fixing vector,um5(1,0,0,0), which approxi-
mately coincide with the local normal to the hypersurfacet
5const; and~ii ! the vicinities of two null-planes,h→6`
~or x7→0), where

dmn~n6 ,k!52gmn1
kmn6

n 1knn6
m

~kn6!
, ~D3!

with the null-plane vectorsn6
m 5(1,0,0,71).

Equations~3.9!–~3.12! almost fit our needs. In all three
cases (x3→0, k0x0@1, as well asx2→0, k2x1@1, and
x1→0, k1x2@1) the functionsf 1 and f 2 can be approxi-
mated by the following expressions:

f 1' i tanh~u2h!e2 ik't cosh(u2h)1 ikW rW

5
k0x32k3x0

k0x02k3x3 e2 ikx

5
k1x22k2x1

k1x21k2x1 e2 ikx, ~D4!

f 2' ik't
e2 ik't cosh(u2h)1 ikW rW

cosh~u2h!

5 ik'
2 t2

e2 ikx

k0x02k3x3

52ik'
2 t2

e2 ikx

k1x21k2x1
. ~D5!

~We have omitted the time independent terms inf 1 and f 2
which set the potentials of the modev (2) to zero att50.
These kind of terms would correspond to the residual ga
symmetry and is not kept in the axial and the null-pla
gauges as well. Thus, we cannot really claim the corresp
dence of the longitudinal fields between the wedge dynam
and these three dynamics.!

Transformation of the correlatorD lm(1,2) to the
Minkowski coordinates is carried out according to the fo
mula

Dmn~x1 ,x2!5ai
m~x1!gi l ~x1!D lm~u1 ,u2!gmk~x2!am

n ~x2!,

~D6!

where the matrix of the transformation is defined in the st
dard way,

ai
m~x!5

]xm

]ui , ah
0~x!5x3, ah

3~x!5x0, as
r5ds

r .

~D7!
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These are the only components of the tensorai
m(x) which

participate in the transformation. In this way, we obtain

D00~1,2!5x1
3x2

3Dhh~1,2!; D03~1,2!5x1
3x2

0Dhh~1,2!,

D30~1,2!5x1
0x2

3Dhh~1,2!; D33~1,2!5x1
0x2

0Dhh~1,2!,

D0r~1,2!5x1
3Dhr~1,2!; Dr0~1,2!5x2

3D rh~1,2!;

D3r~1,2!5x1
0Dhr~1,2!; Dr3~1,2!5x2

0D rh~1,2!,

Drs~1,2!5D rs~1,2!. ~D8!

Every additional factor ghh5t22 finds a counterpart which
prevents singular behavior att50. In the above approxima
tion, the expression for theDhh(x1 ,x2) component of the
correlator has the form

Dhh~x1 ,x2!5E d3k

~2p!32k0

k'
2 e2 ik(x12x2)

~k0x1
02k3x1

3!~k0x2
02k3x2

3!

5E d3k

~2p!32k0

4k'
2 e2 ik(x12x2)

~k1x1
21k2x1

1!~k1x2
21k2x2

1!
.

~D9!

Therefore, in the limit ofx1,2
3 →0 we obtain thatD00,D0i

→0, while d33(k,u)→k'
2 /k0

2 , thus reproducing the corre
sponding components of the gaugeA050. The other com-
ponents are reproduced one by one as well, and one
expect a smooth transition between the gauge of the
wedge dynamic and the local temporal axial gauge of
reference frame comoving with the dense quark-gluon ma
created in the collision.

In the limits of x1,2
7 →0 we obtain that

D00,D03,D30,D33→
k'

2

~k2!2
5

k1

k2 , if x2→0, ~D10!

and

D00,D03,D30,D33→
k'

2

k1 2
5

k2

k1 , if x1→0. ~D11!

~ !
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These limits, after they are found for all components, lead
the well known expressions of the projectorsdmn(n,k) in the
null-plane gauge~the gaugeA150 in the vicinity of x1

50, and A250 in the vicinity of x250). Therefore we
obtained an expected result; in the limit of the light-co
propagation, the gaugeAt50 recovers the null-plane gauge
A150 andA250.

Some remarks are in order. First, the concept of the st
ture functions relies heavily on the null-plane dynam
which essentially uses these gauges. For two hadrons~or two
nuclei! we have two different null-plane dynamics which d
not share the same Hilbert space of states. Now we hav
important opportunity to describe both nuclei and the fie
produced in their interaction within the same dynamic a
the same Hilbert space. Second, one may trace back the
gin of the poles (ku)21 in the polarization sums of axia
gauges (uA)50 and see that they appear in the course of
approximation of the less-singular factor@k' cosh(u2h)#21

in various limits of the propagator of the gaugeAt50.
Further, contrary to the naive expectation that we obt

the gaugeA150 at x250 and the gaugeA250 at x1

50, we obtained them in the opposite correspondence. F
of all, let us notice that the result is mathematically cons
tent. Indeed, the gauge conditionAt50 may be rewritten in
the form

At5
1

2
~A1e2h1A2eh!50. ~D12!

Thus the limit of h→` (x2→0) indeed leads toA250
and the limit of h→2` (x1→0) leads toA150 as the
limiting gauge conditions. Recalling that

Ah5
1

2
~A1e2h2A2eh!5A1e2h52A2eh, ~D13!

we immediately realize that in the vicinities of both nu
planes, the tangent componentAh50. This fact has a very
simple geometrical explanation; the normal and tangent v
tors of the null plane are degenerate. OnceAt50, we have
Ah50 and consequently,A150 and A250 at h→6`.
This result naturally follows from the geometry of the syste
of the surfaces where we define the field states. These
subject to dynamical evolution in the direction which is no
mal to the hypersurface.
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