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Scenario for ultrarelativistic nuclear collisions. 1ll. Gluons in the expanding geometry
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We derive expressions for various correlators of the gauge field and find the propagators in Hamiltonian
dynamics which employs a new gaugé=0. This gauge is a part of the wedge form of relativistic dynamics
suggested earlier as a tool for the study of quantum dynamics in ultrarelativistic heavy ion collisions. We prove
that the gauge is completely fixed. The gauge field is quantized and the field of radiation and the longitudinal
fields are unambiguously separated. The new gauge puts the quark and gluon fields of the colliding hadrons in
one Hilbert space and thus allows one to avoid factorization.

DOI: 10.1103/PhysRevC.63.044903 PACS nunterl2.38.Mh, 12.38.Bx, 24.85.p, 25.75—q

[. INTRODUCTION For the fermion field this have led to an obvious Thomas
precession. Similar orientation effects happen in the case of
In two previous papers of this cycld,2] (further quoted the vector field also. The dynamics of the gauge field is rich,
as papers$l] and[11]), we explained the physical motivation and the procedure of its quantization triggers many puzzles
of the “wedge form of dynamics” as a promising tool to that can be traced back to the classical roots of the gauge
explore the processes which take place during the collisiofield theory.
of two heavy ions. In compliance with the general definition In Sec. Il A, we derive equations of motion for the gauge
of dynamics given by Dira¢3], the wedge form includes a field in the gaugeA™=0, find the Hamiltonian variables and
specific definition of the quantum mechanical observables othe normalization condition. The equations of motion are lin-
spacelike surfaces, as well as the means to describe the ewvearized and the modes of the free radiation field are obtained
lution of the observables from an “earlier” spacelike surfacein Sec. 11 B. In Sec. Il C, the retarded propagator of the per-
to a “later” one. Unlike the other forms, the wedge form turbation theory is found as the response function of the field
explicitly refers to the two main geometrical features of theon the external current. This part of the calculation turned
phenomenon, i.e., the strong localization of the initial inter-out to be the most durable, since the gauge condition is in-
action and, as a consequence, the absence of translatiommmogeneous and none of the modern methods is effective.
invariance in the temporal and longitudinal directions. However, the old-fashioned variation of parameters does
In the wedge form of dynamics, the states of the quarkwork. The most important result of this paper, separation the
and gluon fields are defined on the spacelike hypersurfacegsansverse and longitudinal parts of the gluon propagator is
of the constant proper timeg, 72=t?>—z°. The states of fer- obtained here. We essentially base calculation of the quark
mion fields were discussed in pagél]. In this paper, we self-energy in expanding quark-gluon system on this result.
continue the study of the gluons and augment our previou$hese calculations are presented in the next paper. In Sec.
consideration by the gauge conditigi=0. This simple I D, we show that the previously obtained propagator solves
idea solves several problems. First, this gauge condition ithe initial data problem for the gauge field. Unlike in the
boost-invariant and thus complies with the symmetry of thehomogeneous axial gauges, the propagators of the gauge
collision. Second, it becomes possible to treat two differenfA’=0 do not have any spurious poles.
light-front gaugegwhich describe gluons from each nucleus Section Il is devoted to the quantization of the vector
of the initial state separatélas the two limits of this single field in the gaugeA™=0. We begin in Sec. lll A with the
gauge. Therefore, the new approach keeps important conneproof of the fact that the gaugd”™=0 can be completely
tions with the theory of deep inelastep-scattering(DIS).  fixed provided the physical charge density,. vanishes at
This fact is vital for the subsequent calculations sieeep =0, the moment of the first touch of the nuclei. This is
DIS is the only existing source of data on nucleon structureexactly what can be expected from the nuclei colorlessness.
in high-energy collisions. The approach based on quanturithen, the Gauss law can be unquestionably used to eliminate
field kinetics(QFK) allows one to treat both the nuclear col- the unphysical degrees of freedom in the equations of mo-
lision ande-p DIS as the similar transient processes. Third,tion. We continue in Sec. Il B with a computation of the
after the collision, this kind of gauge becomes a local temWightman functions, and study the causal properties of the
poral axial gauge, thus providing a smooth transition to thecommutators in Sec. lll C. The latter appears to be abnormal;
Bjorken regime of the boost-invariant expansion. the Riemann function is not symmetric and penetrates the
Most of this paper is technical, and any relevant physicakxterior of the light cone. However, the behavior of the ob-
discussion of the results appears only after their mathematservables is fully causal and the procedure of the canonical
cal derivation. These results were summarized in pibér  quantization is accomplished in Sec. Il D. Even though it is
Since the first interaction of twiinite-sizecdhuclei is strongly  impossible to introduce transverse and longitudinal currents
localized, the geometrical symmetry of the final state is(as it is customary for the homogeneous gauge condijtions
manifestly broken and the observables of wedge dynamicand thus fully separate the dynamics of the corresponding
are essentially defined on the curved spacelike hypersurfacelds, we found it useful to discriminate the various field
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patterns by the type of their propagation. The propagator oérbitrary transformations of the coordinates. In what follows,
the transverse field is sensitive to the light cone boundariesie shall employ the special coordinates associated with the
while the longitudinal and instantaneous parts of the field da@onstant proper time hypersurfaces inside the light cone of
not propagate. These coordinate form of these two fragmentse collision pointt=z=0. The new coordinates parameter-
of the response function is derived in Sec. IV. Ultimately, theize the Minkowski coordinatestx,y,z) as (rcoshn,x,y,
longitudinal part of the gluon propagator appeared to be ofrsinh#). In addition, we impose the gauge conditién
the greatest importance for the dynamics of the screening0. The corresponding gauge transformation is well de-
effects at the early stage of the collision. fined. Indeed, leiA,(x) be an arbitrary field configuration

In Appendix D, we study the limiting behavior of the andA, (x) its gauge transform with the generator
propagator in the central rapidity region and in the vicinity of
the null planes and show that propagators of the gaddes . r R
=0 andA*==0 are recovered. It is important that the spuri- U(r,mr)= PTexp[ —f AT(T’,W,U)dT'], 2.3
ous poles are recovered only in the unphysical limit of infi- 0
nite rapidity. This result is of practical importance because it i
establishes the connection between the new approach and tien the new field A,=UA,U"*+4,UU"", obeys the

existing theory of the deeply inelastic processes at high erconditionA™= 0. Imposing this gauge condition we arrive at
ergies. the system of four equations:

Il. THE CLASSICAL TREATMENT 1
C(X)= — 30 A+ 70,9 A

The final goal of this paper is to build a quantum theory of
the vector gauge field in the expanding geometry of nuclear 1
collision. Development of a quantum theory always begins —ig[;[An,ﬁTAn]Jr A, dA ] —7]7=0,
with its classical counterpart which provides the one-particle
wave functiongwhich later serve as quantum statead the (2.9
classical Green function@vhich later become the propaga-
tors of quantum theojy Furthermore, the quantum propaga- 1
tor of gauge field includes the longitudinal part which can be —577(97Ar+;!37,(37,Ar—5rA7;)+ 7ds(IsA = IrAs)
found only by classical analysis. The classical part of this
program is the subject of this section. 1 1
—I g[;an[An -Ar] + T(QS[AS vAr] +;[A77 1F7;r]
A. Classical equations of motion

We now consider the case of pure glue-dynamics. We +T[As,Fsr]]—ij:0, (2.5
denote the gluon field in the fundamental representation of

the golor group aaAM(x)=taAi(x). Consequently, we have L L L
the field tensor _(?T;(?rAn"_;&r(arAn_&nAr)_ig[;é’r[Ar Al
F.=tF5,=D,A,~DA,=d,A,—dA,—idA, A

—7j7=0. (2.6)

1
whereD,=d,—ig[A,(x), ...] is the covariant derivative + A Fry]
on the local color group. The gauge invariant action of the

theory looks as follows: .
y Here, we use the Latin indices fronto w for the transverse

x andy components¥, ... w=1,2). We shall also use the
= J L(x)d*x arrows over the letters to denote the two-dimensional vec-
. tors, e.g.k=(ky.k,), |k|=k, . The Latin indices froni to
_ _ T vo i —— 4 n(,...,n=1,23) will be used for the three-dimensional
_J [ 297 097 COF LR = A, V-gdx internal coordinatesu'=(x,y,7) on the hypersurfacer
2.1) =const. The metric tensor has only diagonal components
9:-= — 0= —0Gyy=1,0,,= — 7. The first of these equa-
Its variation with respect to the gluon field yields the La- tions(2.4) contains no second order time derivatives and is a
grangian equations of motion, constraint rather than a dynamical equation. The constraint
weakly equals to zero in classical Hamiltonian dynamics and
A[(—9"g g 7F,,1-ig(— 9 A, g g F ., ] serves as a condition imposed on physical states in the quan-
—(—g)13° 2.2 tum theory. The canonical momenta of the theory are as

follows:
where j# is the color current of the fermion fields and g 1 .
=detg,,|. The equations are twice covariant, i.e., with re- r_ htE 1 _ —
spect to the gauge transformations in color space and the =0, p TF”’ TA”’ Pr=rFn=A. (27
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Hereafter, the dot above the letter denotes a derivative witmodes obey Gauss law without the charge and have the unit
respect to the Hamiltonian time. Because of the gauge norm (see Appendix A with respect to the scalar product
condition, the canonical momenta do not contain the coloK2.9):

commutators. After excluding the velocities, the Hamiltonian

can be written down in the canonical variables, o ™2 Ky
1 ivy+ikr.
. (1 1 1 Vi = 252 )¢ ~ke | HE(k me 7k
Hzfdﬂer_T Epnpn+ﬁprpr+FFﬂrFﬂr L 0
+ - F..F..+i7’A_+i"A 2.8 e w2 kaR(_Z%"_iV(kl T)
2 st TR, T A (2.8 V(EZ)(X): - vkyR® (k. 7) | elvnikT,
v 27k, 2'
Then Egs(2.5) and(2.6) are immediately recognized as the —R?;(k, 7)
Hamiltonian equations of motion. The Poisson bracket of the (2.13

O e o ey wThe  mode V) s consruted from the_ functions
(- =R i
tangent to the hypersurface. Conservation of the constraint |sf‘v*“’(kl =R ik 7/5) corresponding to the boundary

a direct consequence of the Lagrarige Hamiltonian clas- gggggﬁ;‘ugfbveahn;f,?é?%fﬁlueg?ig;gIi:t:oOinzglj dgl;asr_TIOeeS
sical equations of motion as well. N ' '

The normalization condition for the one-particle solutionsthe normal and the tangential directions become degenerate.

is obviously derived from the charge conservation law. F0|AS Ionﬂg asA’=0 is the gauge condition, continuity requires
the gauge field, this is impossible. Therefore, we shall accegt &L~ "0 as7—0. .

the condition which supports self-adjointness of the homoge- It IS instructive to kn_ow t_he physical components ori the
neous system after its linearization. This leads to a naturaei’lectrIC apd magnetic fields of these modes,
definition for the scalar product of the states of the vector= V—9g""A, andB™=—(2\/~g) *e™"F,

field in the gaugeA™=0, )
gatg M%) =1BEM(x)

(V,W)zf dnf d?r rg Vi 9, W, (2.9 oK

— 0 e TV i . .
. :T _kX H(_Zi)v(kl,r)ellnfrlkr,

where ¢ is the metric tensor of the three-dimensional inter- 27emk, 0

nal geometry of the hypersurfage= const. This norm of the
one-particle states prevents them from flowing out of the 5(a2)m(x)=iB(al)m(x)
interior of the past and future light wedges of the interaction kv kv

plane. vk,

e~ Tvl2 ) .
vky | H®) (k, m)elntikr,

2
As a tool for the future development of the perturbation K

theory, we need to find the propagators and Wightman func- (2.19

tions when the nonlinear self-interaction of the gluon field is @) ) 1

switched off. In this case, the system of equations for thelne modeV(*) can be obtained from the moaé® by a

nonvanishing components of the vector potential and théimple interchange of its electric and magnetic fields. Using
constraint look as follows: standard wave-guide terminology, one may call mute as

the “transverse electric mode” and the moWé?) as the
1 . “transverse magnetic mode.” Equatiof.14) indicate, that
TIAsT—dyh,|= = T), the field strength tensor of the free radiation field obeys the
(2.10  condition, F*)* =—F. Therefore, certain linear combina-
tions of the mode®¥ ) andV(® may be analytically contin-
1 , ued to Euclidean space as self-dual solutions of the field
Ayt —dydsAs=—1i" (211 equations.
An equivalent full set of the transverse modes carfies
1 stead of the boost) the quantum numbe# (rapidity), i.e.,
COX) = —dyd Ayt 70,9:A = 7] =0, (212 ky=k, coshé, ks=k, sinhd. These functions can be ob-
tained by means of the Fourier transform,

B. Modes of the free radiation field. Field of the static source = 25/27Tkl

A+ 3,

1
9.7, — ;af,— 702

1.1,
9, d,—— 0
T T

wherej# includes all kinds of the color currents. An explicit

form of the solution for the homogeneous system is found in v(-”(x)=f
Appendix A. In compliance with the gauge conditigmhich k.6 — (27) Y3
explicitly eliminates one of four field componeptwe find

three modesv® of the free vector field. Two transverse and have the following form:

+ o0

—ivey/(\)
e "WM(x), (219
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1 “
@)y — —ik, 7 cosh@— n) +ikr.
vE(X) ke | e ke n)Fikr.
k.6 47%% OX
Kyf1
v(.z)(x): 1 kyfl en&f (216)
k.6 477'3/2kL B '
2
where

f1(7,7)=Kk, sinh(6— n)f g ki’ cosh@—n)q -/
0
=j tanr( 06— n)(efikircosh((if n) _ 1),

falr, ﬂ):kifTefikN’ coshO=n) 7/ q '
0

e*ikLTCOSh(H* ) _ 1 efikchosh(of )

= +ik, 7

costt(6— 7)

coshi6—n)
(2.17

The norm of the Coulomb mod¥'®, as defined by Eq.
(2.9), equals zero, and it is orthogonal ¥ and V().
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(Fzﬂiz) in the internal geometry of the surface=const.
The technical details of the derivation of the last expression
will be presented in Sec. IV. Equatid8.20 is an analog of
Coulomb’s law of electrostatics, except that now the source
has a density which is static with respect to the Hamiltonian
time 7. In fact,the source is static if it expands in such a way
that its physical componegt’™= 7j( r, n,F) does not depend
on 7. These expressions will be helpful in recognizing the
origin of various terms in the full propagator which is calcu-
lated below.

C. Propagator in the gaugeA™=0

The calculation of the propagator in the gaugfe=0 (as-
sociated with the system of the curved surfaeesconst)
meets several problems. Three methods are commonly used
in field theory. One of them strongly appeals to the Fourier
analysis in the plane Minkowski space which is not appli-
cable now because the metric itself is coordinate-dependent.
The second method uses the path-integral formulation which
is also ineffective because of the explicit coordinate depen-
dence of the gauge-fixing term in the Lagrangian. One could
also try to study the spectrum of the matrix differential op-
erator, to find its eigenfunctions, and to use the standard
expression for the resolvent. However, the extension of the
system for the nonzero eigenvalues leads to unwieldy equa-

Though this solution obeys the equations of motion withoutjsng  on the other hand, the Green function of the perturba-
the current, it does not obey Gauss law without a charge;qn theory must coincide with the one which solves the
Therefore, it should be discarded in the decomposition of they.,h1em of the gauge field interaction with the classical “ex-
radiation field. However, it should be kept if we consider theia 41" current. For this reason. we shall compute the Green

radiation field in the presence of a static source with the

r-independent density;(lz,v)zrj EV(T):ConSt(T). In this
case, its definition can be completed using Gauss’ law:
p(IZ,V) (erl,iv(kLT)

(3) /oy — ivp+ikr
V. (x)= e vmTIen
(%) (2m)%ik? | vQuju(k.7) )

(2.18

unction in a most straightforward way; we shall look for the
partial solution of the inhomogeneous system using the old-
fashioned method of “variation of parameters.” This
method will immediately separate the radiation and the lon-
gitudinal parts of the retarded propagator. All other methods
would require an additional analysis for this purpose.

Let us start the derivation of the propagator in the gauge
A7=0 by obtaining the separate differential equations for the

The coordinate form of this solution is noteworthy. The  component of the magnetic fieldl =d A,—d\Ay, the

physical componentsg™=/—gg™A,, of the electric field

transverse divergence of the electric fielgh=7(3,A,

of the “r-static” source can be written in the integral form, +r9yAy). and the » component of the electric fielda

gi(stat)(TyFlvﬂl):f erdWZKi(T;Fl_rZrnl_ 72)

X p(r,72), (2.19

with the kernel

_ f dyd2|2 eiwy-%—ikT(

i kI’Sl,iv(kJ_ T) )
=) G T

ka S- 1, V( kl T)

6(r—r ) [ Tcoshp(dlox")\ 1
- Axm ala(rsinhy) | Ry’

(2.20

where  Ryp=(r?+ 72 sintfn)Y2=[(r,—r,)?+ 72 sink(s
—)]Y? is the distance between the points; (7;) and

=A,7/T. In terms of the Fourier components with respect to
the spatial coordinates, these equations read as

2

a2+la + 2w, (1)=—j"K (2.21)
Tt O 7,2 1 ko \T)= J xV,T); .

2

v . -
0777'(974-7 o(k,v,7)—i Tkaa(k, V,T)

=—a,[7j%K,v,D], (2.22

[d,70.+ ka]a(lz, V,T)— I?ch(lz, v, 7)=—30,] sz 77(|2, v,7)],
(2.23

wherej¥= dyix—dxly, 19= dxix+ dyjy. Using the constraint
conservation, which may be explicitly integrated to
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o(K,v,7)+iva(k,v,7)— 7] (K, v,7) = — po(K,v)=const7),  D(K,v,7)=i[KAc+Kk,A]

2.2
f K i (md7’ [ , 9 o
one easily obtains two independent equationsgtk, v, 7) = Zfo Tfo H(7", 1) mod 7y — K p(k,v,7)
anda(k, v,7):
1 .
1 02 N +—3, (751 °(K, v, 7)) |, (2.29
Pt =9+ —+K2 | o(Kv,7) rp P72 e 72
T T
=K2[p(k,v,7)— po(k V)]—Ea (72 ¢(K,v,7))=f¢ < i O
LLPUK, Y, PolK, 07 WV ' An(k,v,rl)zz . r'dr . H(7', 7)) mod T,
(2.295 .
v . 1 0
L1 2 ] X —Zp(k,v,TZ)-i-T—&TZ(TZj (K,v,75))|.
I+ ;aTJr?+kL a(k,v,7) T2 2
(2.30

v R R 1 R
= —[p(k,v,7) = po(K, )] == (7% "(K,v,7))="f". . . o
T T The integration overr, recovers the electric fields at the
(2.26 ~ momentr’, whilst the integration over' gives the vector
potential at the moment;. It is convenient to start with the
The constant of integratiopy(k, ») has the meaning of the second of these integrations which has the limigs< 7’
arbitrary static charge density and it should be retained untit< 7. Let us consider the main line of the calculations in
Gauss’ law is explicitly imposed on the solution. In what detail, using they component as an example. The first inte-

follows, we shall not write it explicitly, keeping in mind that gration follows the formulaB1),
it is included in the true charge densimE,v,r). Since
wedge dynamics has a selected time momen0, the con- m (0 . -
stant of integratiop(k, ») can be associated with the initial ki L (7)FHE (ko) d 7 =Ry (ko m) = Ry (K 72),
data, namely, with the charge density7at 0. As we shall 2
. . . : (2.3)

see soon, a proper choice @f will be needed in order to fix
the gaugeA™=0 completely. ) o

Equations(2.21), (2.25, and(2.26 can be solved by the and the terms emerging from the lower limif can be con-
method of “variation of parameters”: veniently transformed according to the relatieee Appen-

dix B)

(7
Fr)= —J TodroH(T, 7)) f(712), (2.27
4Jo RE),(k, ) HE (K, ) = R, (k. m)H{P (K, 75)

oy v o v
where F stands for any one of the unknown functions in

these equations, arfdor the corresponding right-hand side. = Gs,u,iv(ki T2). (2.32
The kernel

H(7, 1) =HP (K, HED(K, ) —HP(k, DH (K, 75) As a result, one obtains, e.g., the following formula for
is the usual bilinear form which is built from the linearly- Ay(kivi7):

independent solutions of the homogeneous equatidhe

Wronskian of these solutions is exactlyi #f».) Taking F R iT (1 1 5
=W, we obtain the first equation for the components An(k,v,Tl)ImJ' od 7y REV(k, 7)) HE (K, 75)
AX(IZ,V,T) andAy(E,v,r) of the vector potential: +
4
WK, v, 70) =i[ kAt kA, ] —RE (ki m)HE (ki 75) = — 4k, )
[ M i~ i () v 1
=—| 7droH(7, )i — T - Lo
4 ), ORI T X| oK) b0, (B (Ko, 7)) |
2
Tk (72)]. (2.28

(2.33
In order to find the second equation for tk@ndy compo-

nents and the equation fdk,,(lz,v,r), we must integrate In order to eliminate the charge densijtyfrom the integrand
twice, i.e., and to separate the transverse and the longitudinal parts of
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the propagator, all the terms of this formula should be inte-
grated by parts, explicitly accounting for the charge conser-

vation, which reads as
i 7Ky *(K, v, 7) + Ky Y(K, v, )+ vj (K, v, 7) ]

+&Tp(|z,v,7')=0. (2.39

We have in sequence

i 7'1d’7'2 -
v —p(w)Hw(klrz)

=i VJ nd R(—j)l,i V( kJ_ 7'2)

S PlrdT

. i 1 i
=ivRY; (k. 7p)p(T)— v fo 7pd R, (K, )

X[k *(2) + kyJ¥(72) + vj"(72)], (2.39

. 1 () 2
iv [ drHP) (K, 75)d,, (73] "(72))
0

: - 1 i
— A )+ [ rdrIRY K 7
+1?RY (K, 72) 1§ (72). (2.36

In a similar way we have

Tlde
f _P(Tz S1j,(Ky 72)

. TldQ— 1, v(k 7-2)
=IVJ‘0 dl—Tzlp(TZ)dTZ

“ivQ .tk mp(r) = TrdnQ k)

X[kej (12) +kyj¥(72) + 1] "(72)], (2.37)

T .
jo d75817,(K, 720, (73] 7(72))
= 73] "(11)S11,(K, 71)

+ yzjoTszde[Qfl,iy(kL 72) = Q1 (KL 72)]) 7(72).
(2.38

A (xy) = J d*% 0071 = 7o) A (X1, %) "(%2),
(2.39

where
A (x,y) = —i dev J @SV 00V)

Vi OV, (2.40
which can be easily recognized as the Riemann function of
the original homogeneous hyperbolic system. The Riemann
function solves the boundary value problem for the evolution
of the free radiation field. It is obtained immediately in the
form of the bilinear expansion over the full set of solutions
(2.13 of the homogeneous system. In fact, this is a sole
evidence thah (") may be associated with the transverse part
of the propagator. Then the remaining part is the propagator
(response functionfor the longitudinal field.

The dynamical longitudinal field) originates from the
integral terms in the RHS of Eq§2.37) and (2.38:

- 1 >
Al(L)(TL?harl):JO Tsz2J d7;2d2r2

Al(rlﬁ)(Tz;m_ 772,F1—F2)J'm(72:772f2)-
(2.41
The kernel of this representation,
Al(#])(Tzim_ 7]2:F1_F2)
_f dvd?k [k ] [KsQ-1j, (K. 72)
(27T)3kf v] [ vQuikim2) |
Xeiy(y,l—y,z)JrnZ(Fl—Fz)’ (2.42

does not allow for the bilinear expansion with two temporal
arguments, and, as we shall see in a while, the retarded char-
acter of the integration in Eq2.41) is not sensitive to the

light cone boundaries. In fact, the electric fi@t)=A") is
simultaneous with the curreff".

The instantaneous part of the solution comes from the
boundary terms in Eq$2.35—(2.38 which were generated
via integration by parts. It depends on a single time variable
71. Using two functional relations, E42.32 and

R (0ORA),,(x)—RE ()R (%)
4 X dslyiy(x)

Assembling these pieces together and repeating the same cal- w2 dx

culations for the functiob one obtains three different terms
which contribute to the fieldA produced by the currert,
A:A(tr)+A(L)+A(inSt).

The transverse field(") is defined by the integral terms
in the right-hand sidéRHS) of Egs.(2.35 and(2.36). It can
be conveniently written down in the following form:

4
= G[Ql,iv(x)_Q—l,iv(X)] (243)

(see Appendix B its Fourier transform can be presented in
the form
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o p(K, v, ) [k Q_1i, (K, 71) can be used to remove the unphysical degrees of freedom
A,('”S‘)(k,v;rl):’—3’_12 : without any reservations. Eventually, it allows to fix the
(2m)%ikT L vQuiu(k 71) gaugeA™=0 completely(see Sec. Il A Second, it becomes

(2.44 possible to eliminate the charge dengitgompletely, and to
replace it by the componeni§ of the current. Replacement

which leads to the Poisson-type integral, follows an evident prescription,

A(inSt)(Tl,m,Fl):f drpd 7 Kom( T2 1= T2, 71— 72) > E ap ST ; c
m " P(Tlaﬁz,rz):fo d72(9—7_2:_|f0 7oA 75 [ Ks] (72, 772,1 2)

X p(T1,02,72), (2.49

with the instantaneoukernel,

f dde elv77+|kr
Tlr’
Kn(7ir,m)= K

+0j (72, 72.T)],

and leads to the standard form of tA&"SY representation
KiQ_1j, (k. 7) (an artificial contribution of anyg would correspond to the
1Qqi,(K, 7) } recognizable static pattern in the longitudinal part of the
LA propagator and is easily handjed

(2.49

The potentialA"sY given by Eq.(2.44) coincides with the ANz o F )= leTszzf d 702, A (72
potentialV(®) of Eq. (2.18 of the r-static source. Therefore, 0

this term represents the instantaneous distribution of the po- . -

tential at the moment,, corresponding to the charge density =72, N1 12| (72,72,12), (2.4
taken at the same moment. Next, we have to recall that th\?/lth the kernel given by the formula,

charge density(k, v, ;) in Eq. (2.44) still includes an arbi-

trary constantpy(k,»), which may be interpreted as the A (s 1= 72, T2 T2)

charge density at=0. This constant has appeared because .

we used only the conservati¢®.24) of the constraintwhich 3 J dvd?k |[KQ_1j,(k 71)

is the consequence of the equations of motiand did not - (2#)3kf vQqi,(k, )

used the Gauss law explicitly. Now we can see that imposing ' m

the constraint indeed affects only the static potential of the gl V(= 1) +iK(r —1) (2.48
charge distribution and puts it in agreement with Gauss law.

If the initial data allow one to pupg=p(7=0)=0, then it Two parts of the propagator, given by Ed2.42 and

immediately solves two problems. First, the conservation 0f2.48 can be combined in one elegant formula for the propa-
the constraint just duplicates the Gauss law, and the lattegator of the fieldA(°"9 = AL + AlNSY,

dvd?k {krks[Q—l,iv(kL7-2)_Q—1,iv(kLTl)] Kev[Qyjn(Ky 72) = Q-1 (Ky 71)]
(27)%K2 | v Q-1j,(K; 72) = Quj, (K, 71)] V2[Quiu(ki m2) = Qujy(ky 71)]

x gl V(= ﬂ2)+i|z(F1*F2)_ (2.49

I . > =
Al(n?ng)(7'11771_ 7]21r1_r2):J

This expression will be used for practical calculation of quark self-energy in pApgrwhere it will be transformed into the

mixed representation. The coordinate formAdf) that reveals its causal properties, is analyzed in Sec. IV
Equations(2.39—(2.42 and(2.47), (2.48 present the propagator in a split form. Different constituents of this form are as

a preliminary identified as the transverse, the longitudinal and the instantaneous parts of the propagator. It would be useful to

learn if the same kind of splitting is possible for the current itself. An affirmative an&gein the cases of the Coulomb and

radiation gaugeswould be helpful for the design of the perturbation theory. To answer this question, one should substitute the

different pieces of the solution into the left-hand side of the original system of differential equations. This leads to the

following expressions for the Fourier components of the three currents:

< Q Lt 1 Ky S1j, (K. 7) v 4 K, k)7 " 55
TJ('[I’)( v, T)_Tl ( v, T) k2 szs llV(kLT) (?T k2 (97_ S llv( ) _T(kxjx+kyjy) ’ ( . @
o 19 ([kr]" o .
nokrn=z ool | [Q (ki) (kd™ ki) +Quik D71, (2.51)
L
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im R -19 ( Ke7Q-1,(KL 7) ”‘ap> 1 { Kisyi(kom) | Map 2.5
7] i WUV, T)— ——F — _ - | —F R .
(ins9 ik2 7\ | v7 1Qu ki 7)] a7) k2 [vKs_yj(k )] d7

|
Provided that the current is conserved, these three currents, D. Initial data problem in the gauge A”=0

added together, give the full current on the right hand side of \ye optained the expression for thetarded propagator

the system. Therefore, the solution is correct. However, nongg the response function between the “external” current and
of these three currents carries any signature of being longine potential of the gauge field. We must also verify that the
tudinal or transversal in the usual sense. None of them hag, o propagator solves the Cauchy problem for the gauge
Z€ero d|verggnce since the operator of the divergence does ngliy This can be easily done by presenting the initial data at
commute with the differential operator of the system. Noy,o ourfacer= 7o in the form of the source density at the
desired simplification is possible in our case. hypersurfacer= 7y, i.e

In fact, the above splitting of the potential has no real 0 =

physical meaning. To see it explicitly, let us find the diver- \/—_QJ”(72)= mgnm( 7o) 8 (Tp— TO)K (; 7)
gence of the electric field, d&=d,£™ [again, for brevity, me

in the Fourier representatigin +8(m— o) ALE, )], (2.56
div EM (K, ;1) =1[Q_1;,(K, 7) = Qu;,(k, 7)] whereA(r,7) andA/ (r,7) are the initial data for the po-
) tential and its normal derivative on the hypersurfacer.
x| vr2j7— V_(k i+ k.jY) Usually, it is assumed that the external current vanishes for
k2 X oy 7<To. Substituting this source into Eq&.39, (2.41), and

(2.45), and taking the limit ofr;— 75, we may verify that the
(2.53 standard prescription for the solution of the initial data prob-

lem,
N V2
divEM (k,v;7)=i| 7+ Z [(kai ™+ KyJ)Q-1,(K 7) ) g
i A= | dadminxs o) AT,
+v]"Qq; (k. 7)], (2.54 2 (2.57)

div EMSY (K, v; 7) holds with the same propagatay,,(x,X,) that was used to

solve the emission problem. For example, in the limitrof
- | V2 — 79, the » component of the vector potential is a sum of
=p(Kv;7)—i| Q-1 (k. 7)— k_le,iv(kJ_ 7) three terms,
L

X[ (K +kyj¥) +vj7]. (2.59 i
X y A(;f)(7-0+0): _4k2 {[R(ﬁ)v(kL TO)Hi(i)(kLTO)
1

Only the divergence of the true retarded component of the

field E®" turns out to be zero. The term which prevents the ~RY (k, 7 HA (K, 7o) [ vA,~ K?A, ]
divE™ from being zero is due to the nonsymmetry of the Y v 7
propagatorA 7"+ A", It appears when thé function in Eq. — o[ RE,(K, 79)RY (K, 7o)

(2.39 is differentiated with respect to Hamiltonian time ) @) —

This term is vital for obtaining the expression that obeys the =Ry (K T0)RYY (K 7o) JA} (258
Gauss constraint, d&E(K, v; 7) = p(K,v; 7).

The known examples, when the transverse and the longi- . —y _ _
tudinal fields are separated at the level of the equations of\y’(7o+0)= o —S1ju(KL 7o) Ayt 70Q _1j,(K 7o) AY
motion, are related to a narrow class of homogeneous L
gauges. The impossibility of a universal separation of the ka oy -
transverse and longitudinal currents thus appears to be a rule ——5_1,(k T0)A,+ —Qqj,(k, o)A, ] ,
rather than exception. It reflects a general principle; the ra- 7o 7o
diation field created at some time interval has the preceding (2.59

and the subsequent configurations of the longitudinal field as
the boundary condition. The dynamics of the longitudinal

field falls out of any scattering problem in i&matrix for- AWSY (1 0)= 2 Q,. (K, 7o)| 7oA+ 1&}

. . . . R . 7 0 2 1iv\RL 70 0\ ViE
mulation. However, this dynamics is, in fact, a subject of the 0 To
QCD evolution in the inelastic high-energy processes. (2.60
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where we have denotell,=k,A+k,A, . Equation(2.60  VEI(P1,p2.P3;7)=—i7fapcd(P1+ P2+ P3)[g"(P2— Pa)*
follows from Eq.(2.45 and takes care of the consistency

between the charge density at the momepnand the initial +g"(pa—py)'+d!(p1—p2)"],

data for the gauge field. Using relatiof&32 and(2.44) and (2.63
adding up Eqs(2.58—(2.60 we come to a desired identity,

An(TOJrO):Kn_ wherep"=g""p,, and the components of the momentum in

the curvilinear coordinates are equalge=(px,py,»). The

When the initial datéfn(r,7) andAg(r, ») correspond four-gluon vertex has no derivatives and is the same as usual.

to the free radiation field, then only the part of the full propa-
gator,A{!"(x;,%,), “works” here, and only Eq(2.58 may

be retained. The other two equations acquire the status of
being constraints imposed on the initial data. Since the cur- The second quantization of the field has several practical
rent is absent, we hava")=0 on the left-hand side of Eqs. goals. We would like to have an expansion of the operator of
(2.59. Then the right hand side confirms that the kerfies the free gluon field like

orthogonal to the free radiation field modes. Since the charge

IIl. QUANTIZATION

densityp vanishes, we hava("sV=0, which is equivalent B - - 0

to Gauss law for the free gauge field. The two transverse Ai(x)_)\;m dkdu[er(v.K)V (%)

modes already obey these constraints. This fact provides a

reliable footing for the canonical quantization of the free +c§(y,lZ)ijz)_i*(x)], (3.1

field in the gaugeA™=0. Indeed, the Riemann function co-

incides with the commutator of the free gauge field. It can bawith the creation and annihilation operators which obey the
found via its bilinear decomposition over the physical commutation relations

modes. Thus, one can avoid technical problems of inverting

the constraint equationsee Sec. I)l. The longitudinal part [ex(v,K),cl (v ,K')]= 8y 8(v—1") S(K—K),

of the propagator will be studied in details in Sec. IV.

[ex(v,K),cnr (v k) ]=[cl(v,k),cl, (v k")]=0.
E. Gluon vertices in the gaugeA™=0 (3.2
The terms proportional to the first and the second power®nce obtained, the commutation relatiqBs?) allow one to

of the coupling constant in the classical wave equations mafind various correlators of the free gluon field as the averages
be viewed as the external current and allow one to define thef the binary operator products over the state of the pertur-

eXpliCit form Of the three' and fOUr'gluon Vertices. One bative vacuum and express them Via the SOIUtiVHsi(X)
should start from the solution of the Maxwell equations, (2) . e
andV Z.(x). For example, the Wightman functions,

A (21)= f d*xAL 8(z1 X)V=g(X) TE(x),  (2.60) iA105(x,y) = (0 Ai(X)A;(y)|0)
= > | dvdkv ovi*(y)
with the color current of the form r=12 ’ ’
=401 (Y,X), (3.3
_ k — _ k |
V=900 Ta(%) = = gfaped =g GO0 G (X) serve as the projectors onto the space of the on-mass-shell
XTI (APCOAS (X)) + AP(x) 9 AS(x gluons and should be known explicitly in order to have a
[om(ATOOAn(x))+ AT Ifa(X) good definition of the production rate of gluons in the final
+ AL (X) 3nAC(X) 1— 9%V = 9(X) f apcf can states. The Fock creation and annihilation operators are also
) § X needed in order to define the occupation numbers and to
X g"(x) g™ OO AP () AR(X)A(X). introduce the gluon distributions into various field correlators

(2.62 defined as the averages over an ensemble. With these two
Wightman functions at hand, one immediately obtains the
expression for the commutator of the free field operators,
In perturbation calculations, every fiek(x) in the RHS of .
this expression is a part of some correlafofx,zy). The Ajj(x,y)=—i(O[[Ai(x),A{(¥)][0)
compor?ent.s of the metric depend _only_on t_he tim?/hile = A 105, 06Y) — Ao (X,Y), (3.4)
the derivatives affect only the spatial directioms=(r, 7).
Moreover, in these directions, all the gluon correlators dewhich should coincide with the Riemann function of the ho-
pend only on the differences of the coordinates and can bmogeneous field equations. The program of second quantiza-
rewritten in terms of their spatial Fourier components. Aftertion does not reveal any technical problems if we give pref-
symmetrization over the outer arguments, one immedi- erence to the holomorphic quantization which is based on
ately obtains commutation relationg3.2) for the Fock operators. How-
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ever, if we prefer to start with the canonical commutationthe states of wedge dynamics are widely spread along the
relations for the field coordinates and momenta, then onaull planes with zero density at=0. Second, the nucleus
should postulatethem and derive Eq(3.2) as the conse- which fluctuate into the expanded state of wedge dynamics is
guence. colorless even locally. Third, as will be demonstrated in pa-
The way to obtain the canonical commutation relations inper [IV ] [9] the interactions which are the strongest at very
cases of the scalar and the spinor fields is quite straightforearly times, are magneto-static by their nature. The collision
ward. For the vector gauge field, we meet a well-knownof two nuclei is more likely to begin with the magnetic in-
problem, viz., an excess of the number of the components deraction of the color currents in the locally color-neutral
the vector field over the number of the physical degrees ofystem than with the electric interaction of color charges.
freedom. For example, in the so-called radiation gaude, In Abelian case considered here the gauge transformation
=0 and divA=0, we write the canonical commutation re- is
lations in the following form[6]:

Ai(x,t),Ei(y,t)]= 8 (x—
LA iy 01=05x=y) Since we haveA_(x)=0, we must also havey(x)
d3k _m ik(x-y) =x(r¢,7). The boundary conditiorA, (7=0,7) =0, cannot
e e ' be altered by the gauge transfo(f6). Therefore, we must

(2m)® =
require thaty(x)= x(r;). Hence, the allowed gauge trans-
[A(X,0),A(y, ) ]=[Ei(x,t),Ej(y,1)]=0, (3.5  formis reduced tox andy components of the vector poten-

ALOO=A,(X) + 3, x(X). (3.6

tial,
thus eliminating the longitudinally polarized photons from .
the dynamical degrees of freedom. The functignplays a AL(X)=A(X)+ 3 x(ry). Q.7
role as the unit operator in the space of the physical states. )
Here,i,j=1,2,3 and the number of relations postulated by'he Gauss constraiii2.12),
Egs. (3.5 apparently exceeds the actual number required by . )
the count of the independent degrees of freedom 1,2, of 9,0 A (1, m)=— T3 A(1,7)— 7] (7,7),

the free gauge field. The Fourier transform of the function, o ) ] )

8}l is easily guessed because the basis of the plane-wave? hyperbolic differential equation for the functién(r, 7)
solutions is very simplg6], and it can be obtained rigorously V_Vh'Ch can be mtegrgteﬁihe Riemann functhr_\ of this equa-
by solving the system of the constraint equati¢dsg]. A  ton. R(7,7)=1]. With the boundary conditionsh,(0,7)
similar guess or procedure in our case is not so obvious. W& 0 @ndA,(7,—=)=0, this equation has a unique solution,
have the gauge conditioA™=0 as the primary constraint , .,

and unss law as 'the secondary one. The latter can be re- A, (r, n):f dﬂf dr — 720,A,(7,)— 72 (7, 7)].
solved in a way which allows one to exclude thecompo- - 0

nents of the potential and the electric field from the set of (3.9
independent canonical variables. Thus, axgndy compo- . .
nents are subject to the canonical commutation relations. TON€ residual gauge transfor@.7) changes only the inte-
resolve the constraints, one needs the integral operators wiffand of Eq.(3.8)

the kernels built from the solutions of the Maxwell equations , >

in the gaugeA™= 0. Therefore we shall proceed in two steps. I A (T) = I A(T) +A L X(ry).

In Sec. 1lI B, we shall sketch the results for the Wightman .

functions(3.3). These, will be used for the explicit calcula- AS & consequence of the boundary conditions, the transverse
tion of the free field commutata.4) in Sec. Il C and for divergence of the field must vanish a0, J,A(0,7)=0.
the study of its causal behavior. Therefore, we must also have

A, x(ry)=0.

Only the independent components of transverse fields arg(x,y) must be a harmonic function. Demanding, that
the subject for quantization. In order to eliminate the extra-y(x,y) vanishes aqft|_>oo, we find thaty(x,y)=0. The
neous degrees of freedom we have to incorporate the GaugaugeA™=0 is fixed completely. The Gauss law can be un-

law. In Sec. Il C, the latter was shown to be a consequence gfmbiguously used to eliminate, from the list of canonical
the equations of motion only when the evolution begins withygriables.

the zero charge density at=0. Are these initial data physi-
cal or do they mean that the QCD evolution begins from
nothing? Addressing the hadron collisions, the question can
be asked more specifically: do we really need any resolved In this section, we shall write down components of the
ad hoccolor chargegdipoles, quadrupoles, eldo initiate ~ field correlatorAg;;(x,y) in the curvilinear coordinates

the color interaction? The answer is negative for three rea=(r,7,r). We shall denote their covariant components as
sons. First, as has been demonstrated in pdpgrat 7—0 Ajgjk(ug,uy). Later we shall transform them to the standard

A. Fixing of the gaugeA™=0

B. Gluon correlators in the gaugeA™=0
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Minkowski coordinates and find the correlators of the tem- d2K k. k
poral axial and the null plane gauges as their limits in theiA{?)(1,2)= —i ® glkr da
- . . 2 Ors 3 L2
central rapidity region and in the vicinity of the null-planes, (2m)° ki
respectively. The most convenieffor this purposg basis cosh 2
consists of the transverse mode€d). The modev™® gives ———— " |(sink, ®,,—sink, ®,
the following contribution to the correlata¥ g : sint g+ costt 7
do [ d%k K.k +sink, @,), (3.149
AL 1,2)= f f _ s
IOTS( e (2 ) rs kf

where we have introduced the following notation;=2 74
— M2, F: Fl_Fz, q)i:Tl COSh@— 77|), CDlZZ(Dl_@Z' The
(3.9 sum of Egs(3.13 and(3.14) can be rearranged as follows:

w @ik(r1=T2) g =ik, 71 cosh@— 7) +ik, 75 cosh@—p)

Realizing thatd 6/2=dk3/2k°, we recognize a standard rep- [ d? ‘
resentation of this part of the correlator in terms of the on-  14¢,s(1,2 =i f ? e — Orssink, @y
mass-shell plane waves decomposition. (2m)
The second part of the correlator is determined by the
modev® and has the following components: P, —sink, ®,]
1
do [ d%k kK +K;kscosh{ 71— 77)
AP (1,2=-i f f -
Aldrs 3 2
- (2m)° kI ESN R ,
o X dr d7”" sink, 7’ cosi 68— 7)
X @M (0, 71, 90) 150,72, 72), P
(310 —k, 7" coshi 6+ 7)]|. (3.15
2
(l%) (1,2= _|f dﬁf dk "Z(Fl—Fz)ﬁ .
ot —o0 (277)3 k? Rewriting the integratiord®kdé into the three dimensional
. integrationd®k/|k| in Cartesian coordinates, the first integral
X11(8,71,11)15(6,72,72) in Eq. (3.19,
=Afg,(2,0), (3.1
D 12—fd2|2d0 T sink, @
d2k eIk(rl r2) 0( ')_ (2,”_)3e SINK, @12
I e |
- (27) kT sign(t;—t,) ) )
. :Tﬂ(tl_tz) —(ry=r2)°],
Xfa2(0,71,7)f5(0,72,72).  (3.12
(3.1

One may easily see that all componentsAgf(1,2) vanish

when eitherr; or 7, go to zero. is easy to calculate and to recognize as the commutator of the
massless scalar field. It differs from zero only if the line
between the pointg; andx, has a lightlike direction. We
integrate the first and the third terms in the integrand of Eq.
(3.15 in this way. To reduce the two integrals in the second
Causal properties of the radiation field commutator mayterm to the same type, we must exclude the factbi iking

be studied starting from the representati8). Using Egs.  the fundamental solution of the two-dimensional Laplace op-
(3.9 and(3.10 we may conveniently write the contribution erator,

of the two transverse modes in the following form:

C. Causal properties of the field commutators
in the gaugeA”=0

d?k Kkg| o K.k d2& -
(1)12——|f—5— L2 gikr _fslkr J_ Z_rlaiké
ors(1.2) (2m)° rs kJZ_ ki =4d,d 2WIn|§ r|e’e. (3.17
xf désink, @,,, (3.13 . .
—o After that, we arrive at the final result,
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Aors(1,2 = — 8,sDo(1,2) — cosh 7,— 7,) is entirely confined to the light cone, while the commutator
of the potential§which are not the observables
1 2
X i fo dy fo d72Do(1.2) [A/(1),A(2)]=iA0,,(1.2)
- mdr 32
e [
+(9rasf ‘ In|&—r| 72072 g, Do(12),
(2m)?
(3.23

X[8(T5— €~ 8(15— )] (3.18 _ . .
does not vanish at the spacelike distance, even, atr,.
From this form, it immediately follows that the commutator This result, however, is not a subject for any concern since
of the potentials vanishes af= 7,. An even stronger result the potentials are defined nonlocally and commutation rela-

is found for the commutator of the two electric fields, tions for the electric and magneficf. Eq. (2.14)] fields are
reproduced correctly. Moreover, we have argued above that
,92 the » components oA andE are not the canonical variables
[EA(1),Es(2)]=—~ 'AOrs(l 2 since the constraints express them via xhandy compo-
nents.
9? The *“acausal” behavior of the Riemann function,
_{_ Ors 371(97.2_005“ 71~ 72) A£¥(1,2), may cause doubts whether the gaéde-0 al-

lows for meaningful retarded and advanced Green functions
which, by causality, should vanish at spacelike distances.
Fortunately, this anomalous behavior appears only for the
gauge-variant potential; the response functions for observ-
This commutator vanishes everywhere except on the ||gh@b|e electric and magnetic fields are causal. This can be eas-
cone, in full compliance with the microcausality principle for ily seen, e.g., from Eq<€2.21), (2.29), and(2.26), which are
the electric field which is an observable. However, this doe$he usual inhomogeneous relativistic wave equations for the
not happen for the commutator of the potentials since theyarious physical components of the field strengfrend 5.
are defined nonlocally. It vanishes neither at spacelike nor at
timelike separation because the line of integration which re- D. Canonical commutation relations in the gaugeA™=0
covers the potential at the point, in general, intersects
(e.g., at some poink;) with the light cone which has its
vertex at the point,, and the commutator of the electric
fields at the pointx,; andx; is not zero.

Similar results take place for the commutator of the R ) . 3y
n-components of the potential and the electric field. The — C\(»,K)=(V ¢ ,A):|g'1f A3V (OAI(X,7)
field commutator,

&2

X

A proof of the commutation relation@.2) for the Fock
operators follows the standard guidelifé€s. First, the cre-
ation and annihilation operators adefinedvia the relations

—VEE 0 A (X, 7],
(92
E,(1),E,(2)]= |A (1,2=-iV?Dq(1,2), R )
B D21 o ’ ol (v, K)=(AV)=igh [ d3A (x, VY (x)

(3.20 vki
is entirely causal, while the commutator of the potentials, —A(x, T)V( 9] (3.29
[A,(1),A(2)]=iAg,,(1,2 This results in the following expression for the commutator:
T T ” T 'O
= —inf 171d71f “rad7;Do(12), [en(w.k),ey, (v k)]
0 0
(3.21) = f d*xd®g’ (x)g™(y)

does not vanishes at spacelike distances, except;ferr,. STA(X. 7). A v
Finally, the formally designed commutator betweenrtlaed A Al I

7 components of the electric fielthe two observables (x )* ()
i OV a(Y))

(M)* o'
k) OV ,k, (y)

2

[E/(1),E,(2)]=7- ’ e dors( 12 + LA 7 A, DIV 00VED. (v)

2

- ‘9(7 |
== a2 D12, 322

LA Ay, DIVE R OV ().
(3.2H
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Most pf the terms in the second line vanish due t_o the com- ) o(r—1 )| 1 7, coshy xS
mutation relations. Next, we rely on the following guess A{Y=— 2 S5 o=
about the form of the commutator: m re 2 re

2x'x° 7, coshy

N . r R
(A0 AMI= S [ a0V ) s

0(7,—1,) X5 Tpsinhy 15—r2

X A - ,
~VEEoviL (v, (3.26 s am 12 R, R?
G O X 73sinhy
which leads to the proper equal-time commutation relations A=~ A r_2 RS
for the independent canonical variables. Finally, explicitly + 2
using the orthogonality relations for the eigenmodés, we 2 0(7,—1 ) cothn—1
immediately obtain the commutation relatiof82). L= 2 5f 2| o0 7
y of%2) Ao 2 o(r) o) + Qa7 sintf 7
T, coshy ri\ 2coshy
IV. LONGITUDINAL PROPAGATOR AND STATIC FIELDS
+—h2—R2 SNy 3— ) ~ St Lo|, 4.1

In this section, we shall find the explicit expressions for
the kernel42.42 and(2.46) which represent the longitudinal where L,=L(7,)=In[(m,sinn#|+R,)/r,]. By examination
and instantaneous components of the gauge field produced Eq.(2.41), one may see that after the replacemenidby
by the “external” currentj”. The calculations are lengthy 7, the same kerneIA (L (Tl,F, ), determines the compo-
and their details can be found in Appendix C. Here, wenentse(:)(r,) of the longitudinal part of the electric field via
present only the final answers. the componentg™(r;) of the current at the same time. These
The components of the longitudinal propagatorpropagators do not respect the light cone, but have a remark-
A( )(7-2"?1 7) are already obtained in the form of the three- able property that the longitudinal fields at the surface of the
d|menS|onaI integral§2.42. A depends on the differences constant proper time do not exist at the distanag from
of the curvilinear spatial coordlnatels,=r1—r2 and =1, ';helr sources that exceed This establishes the upper limit
~ 7, butnoton the difference of the temporal arguments or the possible dynamical correlations between the longitu-

. . dinal fields in the xy) plane.
(of the field and 7, (of the sourcg Introducing the short- One more representation of the longitudinal propagator is

hand notation for the distance in they) plane,r, = ], and interesting at least in two respects. First, for the practical
for the full distanceR,=R(7p)=[(r;—r,)%+ r3sintf(y,  calculations in papdilV ], we shall need the longitudinal part
— ) ]¥? between the two points of the surfage=const, we of the propagator in the mixed representation,
obtain A7 751 91— 75,K,), Which can be shown to be

k. k [ k,cosh| 5| [ , da n
[long] _ rs) ™t —tkysinh |4+ | i
Ars ktz l 2 frze t dt J zwtan a+ >

tam—( a— g) [sink,T,—sin kth]] @2

2_ 2
noT ki cos da sink,T;—sink,T,—k,T; cosk;T;+ kT, cosk,T
12 25(77)+t—ﬂ77|f ftktsmr177|t2dt_f t1 ti2- Rell ti1Tmkel2 tl2

2 7 '
a g

4.3

[longl — _
Am? -

n
a+ = |coslt

2
k{ cosit >

where the last integral terms in Eqg.2) and(4.3) provide the dispersion equation that we derive in the next paper.
that the longitudinal part of the field obey the boundary con-Second, the flfSt very simple by its structure contact term in
dition we imposed at—0. These terms cancel with the the componenb!o"¥" of the propagator

similar terms in the radiation part of the retarded propagator R f— Tg

Apre(71,75). Eventually, the last fact guarantee that acausal Aleontacl(z 7o = m1ik) = — >—8(n), (4.4
terms (which were the subject for concern in the course of

the canonical quantization in Sec. Il) Do not contribute to  appears to be the only part of the enormously complicated
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full retarded propagatdk,[r’f‘] which significantly contributes .

1 N .
the amplitude of the forward quark-quark scattering at theC(kaﬂ'):; vd,A,+ 79 [KA(K, v, 7) + kA (K, v,7)]=0.
earliest stage of the collision. (A5)

Let us rewrite the homogeneous system of the Maxwell
equations in terms of the variables
The author is grateful to Berndt Muller, Edward Shuryak,

and Eugene Surdutovich for helpful discussions at various P =0dxAxtdyAy, W=0dA—dAy, and A=A,.
stages in the development of this work, and appreciates the (AB)
help of Scott Rayson who critically read the manuscript. ThlsOne immediately sees that the equation for the Fourier com-
work was partially supported by the U.S. Department of En- Z o o
ergy under Contract No. DE-FG02-94ER40831. gonent\llf(k,v,r) of the longitudinal magnetic fieldV(x)

ecouples,
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APPENDIX A: MODES OF THE FREE GAUGE FIELD 9 1 V2 P .
J7+ ;(97+?+kJ_ v (k,v,7)=0. (A7)

Here, we shall obtain the complete set of the one-particle
solutions to the homogeneous system of the Maxwell equ
tions with the gaugA™=0, that is, Eqs(2.10 and(2.11).
This gauge condition explicitly depends on the coordinates, 22 216 - L2 A _
thus introducing effective nonlocality in the path integral that (7074 704 v ] (1)~ Ik A (1) =0, (A)
represents the action. Therefore, it becomes impossible to
invert the differential operators using the standard symbolic
methods. An explicit form of the one-particle solutions be-
comes necessary in order to find the Wightman functions oﬁ_h dditional . . b ientl
the free vector field, to establish the the explicit form of the € additional constraint equation can be conveniently re-
field commutators, and to separate the propagators of thiritten as
transverse and the longitudinal fields. It is natural to look for iy
the solution in the form of the Fourier transform with respect C(IZ, v, 7)=—3d,A; (7)+ 70, D¢ (1)=0. (A10)
to the spatial coordinates, T ' '

ai’hen, the other two equations of motion take shape, i.e.,

AL (1) +ivdg (7)=0. (A9)

1
2 2
J7— ;(9,.4— k{

This is an independent equation. However, the conservation
Ai(X)ZJ dvf d2kel "7k A (K, v, 7). (A1) of the constraint alqng the Ha_mlltonlan timeis a conse-
—e guence of the equations of motion, andainbe employed to

obtain the independent equations for the components of the

Then, the system of second order ordinary differential equalector field. This is easily done in terms of the auxiliary

tions for the Fourier transforms takes the following form: functions,

e (n)=10p (1) and ag,(1)=7 A; (1),

2

14 -» N

T2t ot — + 7k ALK, v, 7) — 7ok Ay (K, v, 7) (A11)
. which are directly connected to the “physical” components
- V_Tx A, (Kv,7)=0, (A2)  of the electric field £™= = gg™A:
2, 1 v? 2

5 d, Io+ ;(97+?+kL ek (1)=0, (A12)

. 14 .>

— thekyAx(K, v, 7) +| 792+ I+ —+ G |Ay(K, v, 7)

9[22+ 19+ v+ k2 r?]ag (1)=0. (A13)
—TyAn(R,v,TFO, (A3)  As a result, we see that the functiong ,(7) andag,(7)

obey inhomogeneous Bessel equations,

2

2, 1 v 2 2
J;+ ;(77+;2'+kJ_ (,DR'V(T)Zk Co, (A14)

ak AR
_T X( 1V17-)_T y( ,V,T)

2

1 v
+ 2 2

A, (K,v,7)=0. (A4)

2 1 1 2
el A S

ap ,(1)=1"2C,, (A15)

In this form, the system is manifestly symmetric and self-wherec, andc, are arbitrary constants. We may now cast
adjoint. An additional equation of the constraint reads the solution of these equations in the form of the sum of the
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partial solution of the inhomogeneous equation and a general The modesV(*) andV(? are the normalized solutions of
solution of the homogeneous equation, the Maxwell equations. They are orthogonal and obey the
@ o normalization condition,
Vi (r)=aH¥ (k. 7)+a*HY (k. 7), (A16)
(V2 VE2) = s(v—v")a(k—K), (Vi) VZ)=0,
@i (1) =cH?) (k 1) +c*HD (k. )+ sy ,(k, 1), (A23)

—lv
(A17)  which can be easily verified by means of EB5). The norm
i @ e (D) of these solutions is given by Ed2.9. A normalization
ag (1) =yHE(k 1)+ Y HE (KL 7) +CaS (kL 7), coefficient of the mod&®) is not defined, as this mode has
(A18)  a zero norm. It is also orthogonal WY andV(2):

wheres,, (x) is the so-called Lommel functiof#,5]. (V& v ,)_(v(l) V(3)) (V(z) V(B)) 0. (A24)
Furthermore, it is useful to notice that the system of the Y "
Maxwell equationg2.10 and(2.11) also has an infinite set Thus this mode drops out from the decomposition of the free

of the 7-independent solutions of the form gauge field.
The conservation of the constraint can be obtained as a
W, (7,1)=3dix(n.1), (A19)  consequence of Eq§A12) and(A13) in the form
wherey is an arbitrary function of the spatial coordinates 73 Lok (7)) +rvag (1)]=73.C ,(1)=0,  (A25)
andr. Thus, they are the pure gauge solutions of the Abeliafyhich reassures us of the consistency between the dynamic
theory, compatible with the gauge condition. equations and conservation of the Gauss law constraint.

In order to find the coefficients one should integrate Egs. One can explicitly check that the mod&$? and V()

(A17) and (A18) with respect to the Hamiltonian time,  obey the constraint equatid10), which expresses Gauss
thus finding the functions> andA. Next, it is necessary to  |Jaw. The modeV(®) does not. This mode corresponds to the
solve Egs.(A6) for the Fourier components of the vector |ongitudinal field which cannot exist without the source.
potential and to substitute them into the original system of
Egs. (A2)—(A5). Using functional relations from Appendix APPENDIX B: MATHEMATICAL MISCELLANY
B, one obtains that+ »y=0 andc,—»c,=0.

One of the solutiongalready normalized according to Eq. ~ This appendix contains a list of mathematical formulas for
(2.9)] is found immediately: the functions which appear in various calculations in the

body of the paper and Appendix A. The components of the

P ky vector field are expressed via two types of integrals. The first
e ™ Y o of them was studied in Ref6]:
V(ﬁl)(X): - _kx H(—Zi)y(kL 7_)e|1/7]+|kr. [ ]
v 25/27TkL 0 A ,
(A20) Rg?v(x|5):f x#HP(x)dx
Initially, the components of the vector modé?) appear in =x[(p+v=1HPX)S, 1, 1(%)
the following form required by the convergence of the inte-

gral, —HD 1(0S,.,(x)], (B1)

2 whereS, , stands for any of the two Lommel functiorss, ,
vk RS (k. 7[S) vtk or S, , [5,6]. [Whenever we omit the indicat¢8), the func-
_ R(l'f‘)iy(kL 7|s)—iv[e™?/sini wv/2)] ' tion R ‘) L(x|s) is assumed.The second type of integrals,

However, it can be gauge transformed to the more compact Qa(X)= J'Xx“dxs;ﬂ - ©2)
form, 0 ’
e-™2 [k vR®) . (k 7|s) B is a new one. The function@ﬂ?v(x|S) are introduced as
V(z)( X)=——— ( 1 v ) fvptikr indefinite integrals. The preliminary choice of the lower limit
2527k, | —R,,(k 7]s) and, consequently, the choice of which of the functiams,

(A21)  ors,,,is used is motivated by the requirement of conver-

) ) gence and regular behavior. One can easily prove that
The third solution(the last one by the count of the nonvan-

ishing components of the vector potential in the gaéde 3 ) Fie™”?
=0) has the following form: RY -, (XIS —RY 4, (Xls)=— Sinh( 7 v12)’
. (k T) ) . + Tvl2
(3) KrQ-1in(ky vy +ikr &) 6 ive
e . A22 L 1 =
A= ( vQy, (K. 7) ) (A22) Rizi (X9~ Ry, (X]s) sinh 7wv/2) " (B3)
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We often use the following relation between Lommel func-which allows one to calculate many integrals by changing

tions[4,5]:
S1in(k T)=1=17S_1;,(k 7). (B4)
From the integral representation®81) and (B2), it is
straightforward to derive the functional relations
() 1 (1)
R le(kﬂ')“‘ 2R1|y(k¢7)— - __H ) V(K 7),
(BS)
K J
Q-1j(ki 1) = Quin(K 7)== 75 ==81,(Ky 7)
=7—s_q5,(k. 7).  (B6)

or

The Wronskian of the Hankel and Lommel functions,

. 1 .
W{s,;,(x), HD(x)} = = LRI (x), (87)

must be obtained in order to prove orthogonalitéf) and
V@), To prove Eq.B7), one should use the following rep-
resentation for the Lommel function:

o
s1i,(¥) = 27 [HE OORE00 ~ HIDOORE (0],
(B8)
which follows from Eq.(B1) and, consequently,
11,00 = 2 [HE (ORS00 = HE' 00RE, (01,
(BY)

In order to prove relatio2.32 one should use the represen-

tation (B1) for the functionsR{), and the Wronskian of the

two independent Hankel functions. The proof of relation

(2.43 begins with replacing the functlorR(‘) , by R(lj,) by
means of Eq(B5). The final result follows from Eq9B9)
and (B6).

APPENDIX C: CALCULATION OF THE LONGITUDINAL
PART OF THE PROPAGATOR

The kernels(2.44) and(2.46) of the longitudinal and in-

PHYSICAL REVIEW C 63 044903

the order of integration. The Lommel functid ;, has a
similar representation,

S1in(X)= xf coshu cosvue *sinhugy, (C2)
0

Integrating by parts, and using E@4), we find the integral
representation fos_;,,

vS_15,(x)= f: sin(vu)e *sMudy, (C3)

We start with the integral representatiodf2) of the func-

tions Q. 4, and perform an integration over To compute
the integrals from the functios,;, it can be conveniently
decomposed in the following way:

Sl,i V(X) = Sl,i V(X) - hi V(X)y

—vl2

hiv(x): 2

avl2
sinh 7v/2

)[H§i><x>+H£22V<x>], (C4)

which allows one to find

The similar Fourier integrals from the functidn, are cal-

culated using the representati¢@l) for the Hankel func-
tions and the integral,

Sk 7) e'""dy= 1k, rcoshpe XL 7siM 7

vS_1;,(k, 7)€" dv=imsignye kL7 (C5)

mvl2 1 (= givt
| (o)

sin(mvi2)  2) %% costie”

— o0

This yields, for example,
o 4 © do
f dve”’”hiy(klr)=J msw{klrcosr(a— 7)].
(C7

After integration over we obtain the following integral for
AL

stantaneous parts of the propagator are given in the form of

the three-dimensional Fourier integralsd?k. Here, we de-

scribe the major steps of the calculations which lead to Egs.™ s

4.0.

We permanently use the following integral representation

for the Hankel functions:

*i

* eiiklfcosh(ﬁf n)eii VHd 0

—o0

2
- *i (1) _
e ﬂ'VIZe vy j}iv(kl ’7') —

(CD

2 T
(L)=f K Kks g de:(wkﬂcoshne ky 7 sinfi 7]

(2m)® K? 0

(C8)

© do
—f_w msu{kgcoshe—m] ,

and similar integrals for the other components. The first term

in this formula is calculated in the following way. After in-
tegration overr we continue:
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- _ space and time. These domains &pethe central rapidity
Al = ~8n 2cotH 77|J’ 'kr[l—e*kﬁz sinhi7]] region, 7, ;<1 (or xi2~0), where the projector in the inte-
grand of Eq.(D1) is

Jn(K 1— e kimzsinfiz| k*u”+urk”  k#K”
0( Lri)[ € ] dMV(k,U): _g;LV+ _ , (DZ)
ku (ku)?
7, sinh 7| + 2 + 72 sinit _ o _ .
7|In ; . with the gauge-fixing vectoy*=(1,0,0,0), which approxi-
1

mately coincide with the local normal to the hypersurface
(C9Y =const; and(ii) the vicinities of two null-planesyp— *

. (or x*—0), where
To work out the second term, one should introduce

=k, sinh#andko=k, coshd=|k| and changel®kd 6 for the , L KenL+kink
three-dimensional integratiord®k. With t=rcoshy, r d“*(n. k)=—-g* +(|<T’
=(x,y,7sinh7), this leads to N

(D3)

3 with the null-plane vectors’ =(1,0,0+1).
N :%J“ﬂf ﬂeikr sinkat Equations(3.9—(3.12 almost fit our needs. In all three
3 0 cases x°—0, k%%>1, as well asx”—0, k™x">1, and
xT—0, k*x~>1) the functionsf, andf, can be approxi-

dT Tcosh mated by the following expressions:
4 ( (rL—TZ)%vLH(TZ—rf))
™ T NI+ sintt f,~i tanh 6— n)e—ikgcosh(e—n)ﬂﬁ
_9i9s Kox3—Kk3x0 .
T A ( or, TZ)COIH 77| Imeﬂkx
7, sink 7|+ \r? + 75 sintt 7 72) K'x~ —k~x* .
X1In +6(7—r1)In—|. —_— = " aikx
{ ry (72=11) ry kJrX7-|—|(7X+e ’ (D4
(C10 ‘
_ e—lkchosh(e— n)+ikr
Adding Egs.(C9) and(C10), we obtain the first of the equa- fo~ik, 7
. cosi 60— 7)
tions (4.1).
—ikx
APPENDIX D: GLUON CORRELATORS IN THE =ikfrzm
CENTRAL RAPIDITY REGION AND NEAR K™=k
THE LIGHT WEDGE —ikx
92,2
In this section, we compare the correlators of the gauge =2iky 7 Krx~ +k—x* (DS)

A7™=0 with the similar correlators in the three other gauges,

A°=0, A"=0, andA~=0. We shall start with the simplest (we have omitted the time independent terms jrand f,
on-mass-shell Wightman functiohfy . These type of corr-  which set the potentials of the mo@é? to zero atr=0.
elators,Agy, Ag”, andAf" share the same polarization sum These kind of terms would correspond to the residual gauge
of the free gauge field. They correspond to the densities ofymmetry and is not kept in the axial and the null-plane
the final states of the radiation field and are important forgauges as well. Thus, we cannot really claim the correspon-
various calculations. The same polarization sum appears idence of the longitudinal fields between the wedge dynamics
expressions for the transverse part of the propagatdgts, and these three dynamits.

AR ALY andAX. For our immediate purpose we shall ~ Transformation of the correlatorA'™(1,2) to the
include the projectod”” of the gaugeA”™=0 to the formal Minkowski coordinates is carried out according to the for-

Fourier representation, mula
. 3k el D’“’(xl,xz)=a-”(xl)g”(xl)A|m(u1,uz)gmk(xz)a”(xz),
ID'llL(;/(Xl,XZ):fmd’uv(k;xl,xz)e ik(xq XZ), ! m 06

D1 . L , .

(b1) where the matrix of the transformation is defined in the stan-
with the “extraneous” dependence of the Fourier transformdard way,

on the time and spatial coordinates. This dependence disap-

pear in some important limits. Therefore, we discover the ar(x)= XH aO(x)=x3 a3(x)=x° A=
domains where the wedge dynamic simplifies and describes ou"’ 7 ' 7 oS s
the processes which are approximately homogeneous in (D7)
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These are the only components of the tensbfx) which
participate in the transformation. In this way, we obtain

D%(1,2=x3x3A77(1,2); D%(1,2=x3x5A77(1,2),
D%9(1,2=x33A77(1,2); D%(1,2=x3x3A77(1,2),
DY(1,2=x3A""(1,2; D'(1,2=x3A""(1,2);
D% (1,2=xJA7(1,2; D"3(1,2=x9A7"(1,2),
D'S(1,2=A"(1,2). (D8)

Every additional factor &= 72 finds a counterpart which

prevents singular behavior at=0. In the above approxima-

tion, the expression for thd ”7”(x;,X,) component of the
correlator has the form

ki e ik(xq—Xp)

d3k
nn, =
AT X) f (27)°2K° (k%9 — k3x3) (kX3 — k33

[ Ak 4k2 e 1k0amx2)
(2m)°2K° (k*x; +k x7)(k*x; +k %)
(D9)

Therefore, in the limit ofx; ,—~0 we obtain thatD%,D®

—0, while d®(k,u)—k?/k3, thus reproducing the corre-

sponding components of the gaug®=0. The other com-
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These limits, after they are found for all components, lead to
the well known expressions of the projectdrs’(n,k) in the
null-plane gaugethe gaugeA*™ =0 in the vicinity of x*
=0, andA™ =0 in the vicinity of x”=0). Therefore we
obtained an expected result; in the limit of the light-cone
propagation, the gaugk™= 0 recovers the null-plane gauges
A*=0 andA™ =0.

Some remarks are in order. First, the concept of the struc-
ture functions relies heavily on the null-plane dynamics
which essentially uses these gauges. For two hadrts/o
nucle) we have two different null-plane dynamics which do
not share the same Hilbert space of states. Now we have an
important opportunity to describe both nuclei and the fields
produced in their interaction within the same dynamic and
the same Hilbert space. Second, one may trace back the ori-
gin of the poles ku) ! in the polarization sums of axial
gauges (A) =0 and see that they appear in the course of the
approximation of the less-singular factde, cosh@— )] *
in various limits of the propagator of the gaugé=0.

Further, contrary to the naive expectation that we obtain
the gaugeA™=0 at x =0 and the gaugeA =0 at x*
=0, we obtained them in the opposite correspondence. First
of all, let us notice that the result is mathematically consis-
tent. Indeed, the gauge conditi&i=0 may be rewritten in
the form

1
A"=5(ATe 7+A"e”)=0. (D12)

Thus the limit of p—~ (x~—0) indeed leads t&A~ =0

ponents are reproduced one by one as well, and one Cahd the limit of y— — (x*—0) leads toA*=0 as the
expect a smooth transition between the gauge of the themiting gauge conditions. Recalling that
wedge dynamic and the local temporal axial gauge of the

reference frame comoving with the dense quark-gluon matter

created in the collision.
In the limits ofx; ,—0 we obtain that

k> Kkt
DOO,DOS,D30,D33—>“<+);Z=F, if x~—0, (D10)
and
k> k-
D% D03 n30 p33 (ki)sz_*’ if x*—0. (D12)

1
A”:§(A+e‘”—A‘e”)=A+e‘”=—A‘e”, (D13
we immediately realize that in the vicinities of both null
planes, the tangent componehi=0. This fact has a very
simple geometrical explanation; the normal and tangent vec-
tors of the null plane are degenerate. OAce-0, we have
A7=0 and consequentlyA*=0 and A" =0 at p— * oo,
This result naturally follows from the geometry of the system
of the surfaces where we define the field states. These are
subject to dynamical evolution in the direction which is nor-
mal to the hypersurface.
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