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We present a formalism of distorted wave impulse approximation for analyzing spin observables in nucleon
inelastic and charge-exchange reactions leading to the continuum. It utilizes response functions calculated by
the continuum random-phase approximation, which include the effective mass, the spreading widthsAand the
degrees of freedom. The Fermi motion is treated by the optimal factorization, and the nonlocality of the
nucleon-nucleon matrix by an averaged reaction plane approximation. By using the formalism we calculated
the spin-longitudinal and the spin-transverse cross sectibysandID ,,, of *2C, “Ca (p,n) at 494 and 346
MeV. The calculation reasonably reproduced the obsefheg, which is consistent with the predicted en-
hancement of the spin-longitudinal response funcRpn However, the observeld , is much larger than the
calculated one, which was consistent with neither the predicted quenching nor the spin-transverse response
function Ry obtained by the €,e’) scattering. The Landau-Migdal parametg, for the NA transition
interaction and the effective nucleon mass at the nuclear cemjter=0) are treated as adjustable parameters.

The present analysis indicates that the smadlgg(~0.3) andmy(0)~0.7 my are preferable. We also
investigate the validity of the plane-wave impulse approximation with the effective nucleon number approxi-
mation for the absorption, by means of whieh andR; have conventionally been extracted.
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. INTRODUCTION function R(q, w) is quenched and hardened, wherés the
transferred energy. The enhancemeniRpfis attributed to
The study of nuclei by means of intermediate energythe collectivity induced by the one-pion exchange interaction
(~100 MeV—~1 GeV) proton beams has been very active and thereby understood as one of the precursor phenomena
since the end of the 1970’s, and has led to various advances pion condensation. The quenching Bf, on the other
such as the discovery of the Gamow-Tell&T) giant reso-  hand, is due to the combined effect of the repulsive short-
nance and finding the quenching of their strength. In th@ange correlation and the one-rho-meson exchange interac-
1980’s great progress was made in experimental facilitiestion.
which can afford to accelerate polarized proton beams with A great deal of experimental work has been done in order
intermediate energies and to measure the polarization of scap explore this prediction. Measurements of the polarization
tered protons and neutrons and so on. This made it possibteansfer coefficient®;; were carried out at Los Alamos Me-

to carry out complete measurements @f[{’) and (p,n)  Son Physics FacilityLAMPF) for (p,p’) at an incident en-
scattering, namely, measurement of the polarizafipihe ~ €rgy of 494 MeV, from which the ratio®, /Ry were ex-
analyzing powerA,, and the polarization transfer coeffi- tracted(4,5]. Surprisingly, the ratios were less than or equal
cientsD;; . Theoretical investigations related to these experi{0 Unity, which seriously contradicted the predictiét
ments, such as search for the origin of the quenching of th&>Rr. However, the scatteringp(p’) mixes the isoscalar
GT strength and studies of the precursor phenomena of th@nd isovector contributions, and thus the estimation of the
pion condensation, have also been pursued vigorddsf).  ratios was not conclusive.

In the course of these activities, a very interesting predic- Later complete measurements of the,r{) reaction,
tion was presented by Albericet al. [3] at the beginning of which focused exclusively on the isovector contribution,
the 1980’s. They claimed that in the quasielastic region withwere carried out at LAMPF6—8] and at Research Center for
fairly large momentum transfey(~1-3 fm 1) the isovector Nuclear Physics, OsakéRCNP [9]. The ratios obtained
spin-longitudinal response functioR (q,») is enhanced were still less than unity. From these results, it was con-
and softened while the isovector spin-transverse responsguded[10,11] that there is no enhancementR®f, namely,

no collective enhancement of the pionic modes, which was

interpreted as evidence against the pion excess in the
*Electronic address: ken@info.kanagawa-u.ac.jp nucleus. With help of sum rules, Koltyi2] analyzed the
"Electronic address: ichimura@k.hosei.ac.jp data by means of a correlated nuclear theory, in which the
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two-nucleon correlation is dominating, and concluded thakatz, gy\=05a=9as- A number of improvements have
there is no disagreement between the data and the model foeen made to various aspects of the method, such as use of
R., but Ry is not explained. He claimed that there is nothe continuum RPA to treat the nuclear size eff¢@fs,18,
collective enhancement of the pionic modes. However, wend removal of the universality ansd®6,27. In the previ-
believe that there are many questions to be solved befor@Us continuum RPA calculations, the mean field was as-
such conclusions are reached. sumed to be local and the spree_ldlng width of the particle was

The experimental evaluation of the ratio was based on thgeated by the pomplex potential, but that of the hole was

X S . : Neglected. In this paper we take account of the nonlocality of

plane-wave impulse approximatiai®WIA) with effective

L X the mean field by the radial-dependent effective mass,
nucleon number approximation for absorption where them*(r), and the spreading width of the hole by the complex
number of participant nucleons is estimated by a simple eibinding energy.

konal approximation. Evidently we should take into account  Special importance has been put on the choice of the
the effects of distortion more accurately. Since this causesandau-Migdal parameters. The position of the GT reso-
the nuclear responses to be of surface nature, the semiance gives severe restriction on the valuegff, (=0.6—
infinite slab model[13,14], the surface response model 0.7). Effects of A isobar are very sensitive to the value of
[15,16, and others, were introduced. The distorted wavegy, [26,27, which is also crucial for the cause of the
Born approximation analysis of the continuum spectra of thequenching of the GT strengfl28]. In the present analysis of
intermediate energy p,n) reaction was carried out by the quasielasticf(,ﬁ) reaction, we treagly, and the effec-
Izumotoet al.[17] where the response functions were calcu-tive mass at the center of the nuclew$ (r=0) as the ad-
lated by the local-density approximation. The calculation injustable parameters, and thus try to evaluate the value of
the distorted wave impulse approximatiéBWIA) for the ~ gna- This is one of the main aims of the present paper.
spin-longitudinal and spin-transverse cross sectitbg,and ~ _ This paper is organized as follows. In Sec. Il we summa-
ID,, in the continuum, was first performed by Ichimwea rize the general formulas for the cross sections and the spin

al. [18] for (p,p’). We utilized the response functions cal- Observables of theN,N’) reactions, with special attention to
culated by the continuum random-phase approximaton- the _polarlz_ed cross sectiof®; . In Sec. Ill, the PWIA for-_
tinuum RPA with orthogonality conditionf19], which in- ~ Malism with the optimal factorization and the effective
cludes theA degrees of freedom. We there employed thenucleon number approximation is briefly reviewed because it

. it L - has been used to extraRf andR; up to now.
optimal factorization prescriptiofi20—27 to deal with the T ; .
Fermi motion of the struck nucleon, restricted the spin de- In- sec. IV weﬁprssent thg DWIA forma||§m for the Inter
pendence of the nucleon-nucletdN) t matrix to the terms ~Mediate energyN,N") reactions to the continuum in coop-
ith - ~ d N e d lected eration with the response functions, again utilizing the opti-
with (0-0)(01-0), and (eox0)-(01x0q), and neglected o taciorization. Since we treat the finite nucleus,
the interference between the different spin-dependent terms, . jations are carried out in the angular momentum repre-

of the NN t matrix. De Pacg23] treated the absorption by gentation, details of which are presented in Sec. V. We de-
the Glauber approximation and calculated the spinscripe a way of calculating the response functions nondiago-
longitudinal and spin-transverse cross section up to the tWona| in the coordinate space as well as the spin space, which
step processes. He also used the same assumption fdNthe jnyolves the radial-dependent effective mass and the spread-
t matrix. Recently, Kimet al. [24] also developed a DWIA ing widths of both the particle and the hole in Sec. VI.
formalism for calculating the spin observables in a form of In Sec. VII, we perform numerical analysis for the reac-

inhomogeneous coupled-channel integral equations in thgons 12C, 4%ca(p,n) at 494 MeV and at 346 MeV. We see
Tamm-Dancoff approximation. They also used the same aghat the spin-longitudinal cross sections are reasonably well
sumption for theNN interaction and further neglected the reproduced. This is consistent with the predicted enhance-
spin-orbit force in the optical potential. Noting this situation, ment of R_. However, the spin-transverse cross sections are
we definitely need a more reliable method for analyzing thevery much underestimated. The contradiction regarding the
spin observables as well as the inclusive cross sections in thetio R, /R seems to come from the large difference be-
continuum. tween the experiments and the theoriedy,. This con-

In this paper, we develop a DWIA formalism for nucleon- firms the reported conclusion in the experimental papers
nucleus(NA) scattering at the intermediate energy leading to[8,9].
the continuum, with the response functions nondiagonal with In Sec. VIII we test the reliability of the conventional
respect to the momentum transfer as well as the spin dirednethod for extracting the response functions by comparing
tions. This method does not require the above restriction ofhe results of DWIA and PWIA with the effective nucleon
the NN t matrix and can handle the interference between th&umber. Section IX is devoted to some other questions such
different spin-dependent terms. Thus it is much more reliablé&S the effects of the spin-orbit force and the ambiguity of the
for calculating the spin observables suchPag,, , andD;; . optlgal potential. Section X consists of a summary and con-

The original prediction of Albericet al.[3] was based on  Clusion.
the theoretical framework ofl) the Fermi gas model;2)
RPA, or more precisely the ring approximation, with the
one-pion plus one-rho-meson exchange interactions plus the
contact interaction specified by the Landau-Migdal param- We consider théNA) inelastic and charge-exchange reac-
eters,g’’s (w+p+g’ mode), and(3) the universality an- tions to the continuum. First we summarize the general

Il. GENERAL FORMULAS FOR CROSS SECTION
AND SPIN OBSERVABLES
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formulas for the double differential cross section and the spin  To extract information of intrinsic states separately, we
observables of a polarized nucleon scattering off a nucleusintroduce the intrinsic energy transferand rewrite the cross
section of Eq(2.6) as

N+A—N’+B. (2.1

In the NA center-of-masgc.m) system, we denote the TTI[TT], (29

K
(Ocm,@em)= 20207 1)
scattering angle by. ,, and the momenta of the incident A

and outgoing nucleons by andKk;, respectively. The mo-
mentum transfer to the scattering nucleon is given by

q:kf_ki y (22)

and the energy transfer to the target is written as

e m=En(K) —Enr(Ks), 2.3
whereE (k) = k?+m? is the energy of a particle: with
massm,, . We use the unit systefn=1 andc=1 throughout
this paper.

As the coordinate system, we use either

~ k. kixks . o 2.4
Z=t, = , X=yXz .
k' Y7 Tkixkq] y
or
N q ~ kika ~ ,\XA (25)
=T, n= y — n .
Il [l >k P79

These are called they,z andq,n,p directions, respectively.

The unpolarized double differential cross section is ex

pressed by th&lA t matrix T as

| ~ d’e 1 Mites Ki
(Bem. wem)= dQc.mdwc.m._Z(ZJA+ 1) (277)2 k_l

X > >

M Mg N

X 6(wem—[Eg(ke) —Ea(ki)]),

wheremsi(msf) is the spin projection of the incidebutgo-
ing) nucleon andl, is the target spin, angd; and w; are the
relativistic reduced energies

o [keme Wi Tlkimg W )2

(2.6

ILL_:EN(ki)EA(ki) M:ENr(kf)EB(kf) 27
" Vs T s '

with sya=[En(ki) + Ea(ki)]?. The wave functions*lfno and
¥, are intrinsic states of the targét and of the residual

nucleusB, respectively. They are governed by the intrinsic

HamiltonianH 5 of the A-body system as
HaV, =&V, (2.9

whereH, includes the mass terms and thg&is means the

with

Tr’[TTT] = 2 Z , <\Ifn|T|\I,no><\Ifno|TT|\Pn>
Xﬁ(w—[gn—gno]), (2.10

where Tr means the trace of the spin states of the incident
and exit nucleons. The kinematical factons given by

_ Mipg ke do o pipg Ki VSna
(277)2 ki doem, (277)2 ki &

(2.11

using the relationrdw/dwe m= sna/En [29]. We note that
the presenK is equal to 2(2,+1)CK of Ref.[9], 2(2]4
+1)K(dw/dw. ) of Ref.[30], andK(dw/dw. ) of Ref.
[29].

We represent the Pauli spin operators initftgrection of
the kth nucleon byoy;. To unify the notation we also intro-
duceo,o(=1,) for the unit spin matrix of théth nucleon.
The nucleon numbek=0 denotes the incident or exit
nucleon. Then the polarization, the analyzing power, and the
polarization transfer coefficients are given, respectively, by

T [TT o, ]
Py=—— y
TrTr[TTT]

_TIT[Tog,T']
TITr[TT']

T [Tog T og]
Y T [TTN

: (2.12

wherei,j=x,y,z or q,n,p.

The DWIA calculation is usually carried out in the
[x,y,z] frame, while the[g,n,p] frame is sometimes more
convenient for the theoretical analysis. The relation between
Dj; (i,j=q,n,p) andDj; (i,j=x,y,2) is given by

Dnn=Dyy,

(Dpp qu):( cosb, sinﬁp)(DzZ sz)

Dgp Dyqq —sind, cosf,/\ Dy, Dyy
cosf, —sind, 01
sing, cosé, |’ 213

where ¢, is the angle betweep andz.
To extract nuclear responses, Bleszynskal. [31] de-

invariant mass of theA-body systems. Note that the final composed th&lA t matrix in the[qg,n,p] frame as

statesW¥,, are mostly unbound. In the summatidlﬁo, Ny

runs only over the degenerate ground states of the téiget

T=Toooot Thoont Tqooqt Tpoop

(2.19
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and introduced the polarized cross sectibBs, which ex- 1
tract T; exclusively as Do=7[1+Dnn+(Dsg +Dyir)cosa;

' K +(Dgy — D, g)sinay],
|Do=z[1+Dnn+qu+Dpp]=2JA—+1Tr’[T0Tg], (Dsi=Dis)sina,]

1
Dn:Z[1+ DNN_(DSS’+DLL’)COSCV1

|
ID=7[1+Dyn—Dgq—Dppl= T[T, TH,
4 2‘]A+1 —(DSL/_DLS/)Sina]_],

I
——[1— _ — ’ T 1
IDq_4[:L Dnn+qu Dpp]_ZJA+1Tr [TqTq]’ Dq:Z[l_DNN+(DSS_DLL')Cosa2

I K , ; —(D g+ Dsgp)sinas],
[1-Dyn— qu-l- Dpp] =—7"1r [Tpr].

Do=7 20, +1
(2.15 1
Dp:Z[l_DNN_(DSS_DLL’)COSG’Z
The unpolarized cross sectibns expressed as i
+(DLSr+DSLr)S|nOf2] (221)
[=IDo+ID,+IDy+IDy. (2.16

W|th a2=20p— aq.

In the NA laboratory system we denote the angle, the
momenta, and the energy transfer corresponding to  lll. PLANE-WAVE IMPLUSE APPROXIMATION
Ocm.s Ki, Ki, and oc . by 64, Ki K¢, and wja,, respec- FORMALISM

tively. The unit vectors Before presenting the DWIA formalism, we briefly re-

view the PWIA formalism[30], which has conventionally

o KiXKe .. . : S ;
N=N'"=—"—""" [=K.. S&=NxL been used in the analysis of quasielastic scattering to extract
[Ki XKyl v ' the spin response functioig—9]. To avoid confusion, we
suppress the isospin antl degrees of freedom until Sec.
L'=K;, §=N'xL’ (2.17 I D, where we discuss these degrees of freedom in detail.
are usually used to specify the directions, and are denoted by A. Plane-wave impulse approximationt matrix

N,L,S,N’,L" andS’, respectively. o . .
In this system, the unpolarized cross section is given by The PWIAt matrix in theNA c.m. system is written as

A

d’c Kq TPW (kg k) = (W] >, tiky k)| W 3.1
e B 0= g3 = (Pomovem), (218 g (Kr ki) = (Wl 2 tlke ki) [Wo), (3.1
al al

wheret, (k¢ ,k;) is the NN scatteringt matrix between the
incident nucleon and thieth nucleon in the nuclei.
To avoid the difficulty of Fermi momentum integration,
(2.19 the optimal factorization approximatid20-22,3Q is often
used, wherd,(Kk; ,k;) is replaced by thé&NN t matrix in the
optimal framet;(ks,k;), which is written as

due to the relation32]

A0 mdwem  SiNfom  Ki
dQdwy  SiNby,  Ki'

and the observed polarization transfer coefficieBtg(i
=SN,L;j=S',N’,L') are obtained from the calculated

Di;(i,j=x%,y,2) as t7(ke ki) = (ke ,p' [t]K; ,5>:% (Kt Ki) 00a0kp
Dnn =Dy, =A"00000+ B700n01nt Cloonoko+ Clooe0n

Diir Dis D;, Dyx\ [cOse; —sina; +D{00p0kqt DF0o0qokpt E700q0kq
Dsi Dsg | 7| Dy Dyx/| sina; cosa; +F700,0kp- (3.2

(2.20 ) ~ ~ .
The optimal momentg andp’ of the struck nucleon in the
with a;= 6,,,+Q, whereQ is the relativistic spin rotation hucleus are given by

angle[30].
By use of Egs.(2.13, (2.19, and (2.20, D;’s are ob- 5o 1 )q— ki + kg 5 Boq 33
tained fromDj;’s in the NA laboratory frame ag30] 2 7 2A ' '
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respectively, and the parametgris determined by the on-
shell conditionEy(k;) + En(p) = En(ks) + En(p’).

This NN t matrix in the optimal frame is obtained from
the observedNN t matrix in the c.m. frame,

t°™( K k)= (K, — ' |t| e, — Kc)
= E t:r,nb,(K,’K) J0a’'O1p’
a’,b’
=A"000010+ B 0on O1n,
+C'(oon 010t 7000 1n)

+ EIO'OqCO']_qC+ F,O'Opc()'lpc, (34)

where ik (k') is the initial (final) relative momentum in the
NN c.m. scattering, which is determined frdm (k;) andp
(p’). Here the coordinate system is determined by

a:& - '
¢ lad’

~

Pc=0cXN¢

(3.5

c— =ﬁ,
| X i |

with g.=x'—k. The relation betweent”(k¢,k;) and
t“™(«’, k) is given by

t7(ke ki) =J,(k¢ k)Rt “™( K ) RGin (3.6)
The Mdler factorJ,, is given by
En(x)?
3,,(Ky ki) = 3.7)

 VE(K)En(k) En(P)En(P')

where we neglect the mass difference between the proton

and the neutron. The relativistic spin rotatidﬁg%in andRg,

are given in Eq(3.29 of Ref.[30], and the relation between
t7, andtg/p, is explicitly given in Eq.(3.34) of Ref.[30].

The approximatiorg~ g, holds[30] for the reactions we
are interested in. Noting thair,;:ﬁ, we can identify the co-
ordinate systeniq,n,p] with [dc,N¢.p.]. We also showed
[30] that the approximatioR'ég)mw 1 holds. Therefore we can
safely write

tap(Ke ki) =3,(ks k) tgp (&', k), (3.9
namely,
A"=J,A', B"=],B', CJ=CZ=J,C/,
D/=Dj=0, E"=J,E', F7=J,F". (3.9

From Egs.(3.1) and (3.2), the PWIAt matrix with the
optimal factorization is given by

Tong (ke ki) =2 3 t2(ks K)FR"(@) oo (3.10

with the transition form factor

PHYSICAL REVIEW C 63 044609

(3.1)

A A
FEHO(Q):<‘I’n|IZl Ukbeiq'r'@( P

[Wny)-
K'=1 o

B. Response functions

From Eg.(2.15, the polarized cross sectiongD; in
PWIA are expressed as

IREDPY=K > t7h(Ks ki) Rpa( @, )t (ky ki), (3.12
ab

whereK ,= (K /k¢)K [see Eq(2.19] andR, (g, w) are the
response functions

1 , \
Rba(q,w)=2JA—+1; Zo Fa(a)F, ()

><5(‘1)_[gn_gno:l)r (3.13
which are determined solely by the nuclear intrinsic states.
Note thatR,, depends on only the magnitude=|q|, be-
cause of the unpolarized target, i.e., the presence of the sum-
mationEgo.

For comparison with the results of different nuclei, the
normalizedresponse functions

. 1
Rba(q!w)z KRba(q;w); (314)
whose spin diagonal parts satisfy the relation
f Raa(q,w)dw—1 for q—oo, (3.19

are more convenient.

Noting Eq. (3.9, IpDg" and IR)/DP" are simply
written, using the normalized spin-longitudinal and spin-
transverse response functioRs and Ry as

||F;\t,)ngW: K japAlE7(Ks vki)|2§L(Q=w)y

b DEY=KiaAlF (k¢ ki) [?Rr(q,0), (3.1

where

I’:\RL(q!w):ﬁqq(qrw)y

. 1. N N
R(q,0)= E[Rpp(QaU))+ Rnn(qyw)]szp(qyw)-
3.19

C. Effective nucleon number approximation for absorption

In practical analysis we must include the effects of the
absorption, which are usually treated by the effective
nucleon numberA.; estimated by the simple eikonal ap-
proximation as
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Ag= f:Zan(b)exp[— n(byoyn]db  (3.189

with n(b)= [~ dzpa(\ZZ+Db?), whereb is the impact pa-
rameter, oy is the totalNN cross section in the nuclear
medium, andp, is the nuclear density.

Thenl ,,D;’s in PWIA with absorption] ,,D;, are given
with A by

TiapDi = K|abAeff2t 7 (K ,Ki) Roa(d, o)t (K ki),

(3.19
and especially
TiaD g = KiapAerl E”(Ky k)| ?RL(0, @),
TiaD p= KiapAerl F (K¢ k) |?Rr(q, ). (3.20

PHYSICAL REVIEW C 63 044609

Note thatT, _,=(T})! =7 and so on from the definition
(3.22. The PWIAt matrix of Eq.(3.10 now becomes

Thm (ks k)= E 2 E t7% (ke KD F o0 () 7,0

(3.29
where the transition form factor of E¢3.11) is generalized
as

A
=03, lotle ] 3 w2y
' (3.26

Then the response function of E®.13 becomes

)\K ebalds @)= 2J 1 E Z F”nO “(q)Fn“o B*(q)

X 8(w—[E—E D), (3.27)

This prescription is called the effective nucleon number apwhere onlyR, ., Rys, andR¢,remain finite due to the charge

proximation.

D. Isospin and A degrees of freedom

Now let us take account of the isospin and thasobar
degrees of freedom. Following Re¢27] with some modifi-

conservation.
Now the polarized cross sectiohg,D; are expressed in
PWIA as

IlabDPW: Klab% <N'|7'0K|N><N|TOT|N >

cations, we introduce the unified notation of spin and isospin

operatorsp, and 7y, of thekth particle (N or A) as

X2y 25 tifalke k) REpal 0, 0) A (ke ko).
oxa fora=N ab
ot=1{ Sla fora=A (3.21) (3.28
Sa for a=A* The normalized response functions are usually introduced
only for the diagonal parts in the isospin spacd s
and
1 Ba
Tki for a=N ba(q (1)) _RKK ba(qaw) (329)
’Tﬁk: (T ) for a=A (322 Wlth
Ty  fora=A*
N_=2N, MNy=Ng=A, N,=2Z (3.30
with k=s,0,+,— where
where N and Z are the numbers of neutrons and protons,
rootin respectively. The normalization relation then becomes
kx = 17k
Tks™ Lk s Tkt:#1 k0™ Tkzr (3.23

and S, and T, are the standard spin and isospin transition
operators fronN to A.

We extend theNN t matrix of Eq. (3.2 to that which
includes the isospin and thi¢A channel in a restricted form
as

t7=t7 O+ 7V g o+ 7 gy Ty + 174

> > 2 7% (ke Ki) 70 T 00

a=N,A,A* «=S,0% ab

TO'TE

at
Okb -

(3.29

Jﬁ':;Naa(q,w)dwel for q—o (3.30

if the A component does not exist in the ground state.

To use Eq(3.28, we need information about” as well
ast”, but to our knowledge it is not available for such a
very off-shell region. Suggested by the+p exchange
model, we assume that

_f_tnN

A
te f K,aa

K,aa

(3.32

for k=0,+,— anda=q,n,p, wherefy andf, are thewrNN
and themwNA coupling constants, respectively, and neglect
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other components. Then we define the normalized isovector As in the previous section, we again adopt the optimal
spin-longitudinal and spin-transverse response functions witfactorization approximation and set*=q., R.. =R"

A ~ N R - Spln Spln
the A contribution,R,. | andR, 1, as[27] =1 and thus identify the[g*,n*,p*] frame with the
f, RE [dc,Ne,Pc] one. Then th&N tmatrix in the optimal frame is
NN an [ Ta) man tt

R Rqu +2 fN)RK aqt N Rqu, written as

F NN fa)aan fa) aaa (k" k 2* o (K", K) oo oy

R =R, +2| 2 )RKpp+(f ) R (3393 i
in place of Eq.(3.17. (K" k)azb* torw (K1) T g% Tipr

For the (o,n) reaction, Eq(3.20 are generalized as , , ,
:J”(k ,k)[A O-OOO-kO+B Oon* Okn*

TiatD = 4K iaeNe E”(K¢ k) PR (0, @), +C' (ot O+ TooTkne) + E Goqs T

TiatD p= 4K aNe F (ks ki) PR 1(0,0)  (3.34 T Topx oupr ], .4
by using Egs. (3.28—(3.30, (3.33, and wheree*,b*=0,q*,n*,p* and the momenta and «’ are
<n|7'o—|p><p|787|n>=2- The effective neutron numbé. determmed byk andk’ through the coordinate transforma-
is defined in a similar way as that of E.18. For the tion between the optimal frame and theN c.m. frame.

(ﬁ,ﬁ) reaction,Nq¢ should be replaced by the effective pro-
ton numberZeq; and R_ ) by R, 7). For the isovector
part of the ,p’) or (n,n’) scattering, N should be re-
placed byAcs andR_ 1) by Ry (7 -

B. Distorted wave impulse approximationt matrix
in coordinate representation

Since the distorted wav (im)s are usually calculated in
the coordinate space, we now move to the coordinate repre-
sentation.

If t/(k’,k) were a function of onlyg*, i.e., t/(k’ k)
=tJ(g*), its coordinate representation would be local and

We now present our DWIA formalism. To avoid unnec- TPW would be written as
essary complexity, we suppress the isospin and\tbegrees

IV. DISTORTED WAVE IMPULSE APPROXIMATION
FORMALISM

of freedom until Sec. VI D. [TnnO Kt Ki)Jm, m, <Xf<;r7)1 (W,
St
. . . . . A
A. Distorted wave impulse approximationt-matrix
in momentum representation Xk§=:1 Vi(r=r| ¥, X(k+rr)1 (r) (45
The matrix elements of the DWIAmatrix in theNA c.m. )
system are written as with
TOW (ks ki () (kW 3q* -
[ n”o( f )]m M, <kamsf( )| Vk(r_rk):f 3t|§7(q*)e'q (r=ry) (4.6)
(27)
X 2 (K K| Wopxia, (K)) (4D ang
in the momentum representation Where((+) (k) )(r d°k’ ik’ -r
’ ka( )_ (2 )3X m( )e (47)

[Xﬁf_n)qs(k')] is the distorted wave in the momentum space
f

with the incident(outgoing momenturrk; (k¢) and the spin  However, this is not the case in general. Neither the ampli-

projectionms (M) in the asymptotic region. An important tudest’, . (k' k) nor the directionsa* ,b* =n*,p* in Eq.

difference from the previous section is that the momdnta (4.4) are determined only byg*.

andk’ are now the integration variables, whereas in PWIA  The amplltudest ,b,(K',K) depend on bottg.= k' — K

they are fixed ag= k andk’ = kf To Clanfy this difference —q and QC K + i as well as the incident energy. Tak|ng

we use the notations the same approximation as Love and Frafi@§], we sup-
press theQ, dependence and regard the amplitudes as only

* | __
q* =K'=k, 4.2 functions of g*, namely, tg;(q*). We also replace the
o KK’ Moller factorJ,,(k’,k) by J,7=J,7(ka,ki) anld th.us it be-
q* = , nf=———  p*=g*xn*. (4.3 comes independent & andk. This approximation works
[g*| [kXK'| for small angle scattering at high incident energy.
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As for the spin parts, the relatioB'=F’ andC'=0
were assumed in Ref18]. Thent/(k’,k) became onlyg*
dependent, because o oy + Topr Ty = (0% G*) - (0 Inserting the DWIAt matrix of Eq. (4.9 into Egs.(2.9
Xq*). However, the approximation becomes poorer as th@nd (2.12), we obtain the DWIA formulas for the cross sec-

incident energy increas¢84,35. Therefore we rewrite and tions and the spin observables. In this procedure we need to
approximatet,/(k’ k) of Eq. (4.4) as prepare the response functions for the operé&tpr,, of Eq.
Si S

(4.9

C. Cross sections and spin observables

t(k" k) ~t¢(q*)

-7 A (o* +E'(g* LA* La* 1
JAA (A" oorko+ E'(0")(00-0") (01 q*) [RS() o ot v = T - Th ]
St ST s s 2JA+1

St Si msi msf

+F'(q*)(0oXq* ) (o X q* ) +[B'(q%)
_F,(q*)]UOnUkn

1
=557 2 2 [Ton
, 2J + 1 nno mS msi
+C'(9*)(gonokot TooTkn)} (4.9 A noe f
wheren* in the last two terms is replaced with the averaged X[Tﬁon]m;méﬁ(w—[5n—5n0])
normal vectom of Eq. (2.5), which is independent d and

k. 1

We now obtain the local interactiov (r —ry) in the co- =53.11 Z (‘I’nOIS:n,m,
ordinate space from E@4.6). Consequently the matrix ele- A 0 S
ments of the DWIAt matrix can be written as

Xo(w—[Ha— gno])Smsfmsil‘I'nO>-
[Tgr\{g(kf 'ki)]msfmsi:<\Pn|‘smsfm3i|q’n0> 4.9 (4.1

with

Explicitly writing the operation Tr in Egs(2.9 and

Smsfms E; <X(kf_rr)1$f(r)|vk(r_ rk)|X£?—ms_(r)>- (4.10 &.EZ),;N: express the cross section and the spin observables
| 1 S

K
|:E([RS]++;+++[RS]+—;+—+[RS]—+;—++[RS]——;——)1

IPy=KIM([Rsl. 4,4 +[Rsls ),
IA,=KIM([Rs]+ 11~ +[Rg]4;--),
IDxx=KRe([Rs]1+; -~ +[Rsl4 - +),
1D, =KRE([Rg]+ s+ ~[Rsl-_,+),
IDyy=KR&[Rs]+ ;- - —[Rs]+——1),
ID 1= KRE([ Ry 41—+ —[Rs]- 4,

K
IDZZZE([RS]Jr+;++_[RS]+*;+*_[RS]*+;*++[RS]**;*7)I (4.12

. 1 ! .~~~ i
}/.vheire the sufficest and — meansmy=3; and —3, respec-  the [%y,7] frame and use the spherical tensor forr,
ively.

for the spin operators anﬂM for the normal vectom, as
follows:
V. ANGULAR MOMENTUM REPRESENTATION

Let us now move on to _the angular momentum represen- %=1 ot . =7——2  sl=0y, (.1
tation in which calculation is actually carried out. We adopt V2
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N =in [ .
= Y=— —  ny=n,=0. (5.2

Z

According to Eq.(4.8), the interaction/,(r —r,) can be decomposed as

N.q=

Vk(r—rk)=Vﬁ(r—rk)+VE(r—rk)+VE(r—rk)+VE’F(r—rk)+Vfl(r—rk)+VEZ(r—rk). (5.3

Each term of the right-hand side is given in the angular momentum representation as

A term
Vﬁ(r—rk)=‘]_f o A'(0) Tooie€'d (T
") (2m)®
=J, —E f JiardA (@)j(ana?ddfi'Y, (1) X g1 Ti'Y, (1) X o313,
E%‘, VArGDY (r) X o2 TTY () X< 31 (5.4)
E term
VE(r_rk):‘]_f o E’(q)(tro-ti)(ok-&)e‘q'“’“k’
“ ") (2m)3
2 - b 2 yorily (0 193 tril'N (2 14
= 2 2 auaJ.ff J(argE ()i (ana® dafi'Y (F X ol Ti" Yy (1) X 03y
EJZM > VS (MDY (P X o1 T Y (D) X od1y (5.5
| /
[
F term (B—F) term
o .
VE‘F(r—rk)anf qs[B’(Q)_F'(Q)]UOnUkne'q'(r_rk)
o d3q . (27r)
VE(r—rk)=Jnf (277)3F’(q)(aoxq)(akxq)e'q"*‘fk’ )
3,23 3 S m 1w
2 Im JM M’ :U’:“’
=J ; < % (§II/_aJ|aJI') X(lm 1M,|J,M,>ﬁuﬁlf
><f:h(qu)F’(q)jw(qr)qzdq ><f:h(qu)[B’(q)—F’(q)]j|(qr)q2dq
X[, (P X ol T Y (D) X o T}y X[ (F) X ol Y (D) X ooy,
EJEM % VEII’(rk'r) _% JZM, 2V IJME’M’(rk'r)
X[ (F) X o T Y (D X ag iy, (5.6 X[, (F) X oty Y (D X by, (B
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C, term [, {Imsu|IM) is the Clebsch-Gordan coefficient, amd,
=(J 0 1 0|l 0). The spherical tensor product is expressed
— [ d% . as[i'Y; X o} == (Imsu|IM)I'Y,(Q) oS .
c _ / (r— I M mp d Im
Vkl(r—rk)—J,?J (277)3C (@) 0onoige’™ "W For an optical potential with a spin-orbit force, the dis-
torted WaveX(ki*n)]Sv(r) is expressed in the angular momentum
E E M_ma representation 336]
I (=)™ (m—m)
X - ,
(Im 1 M=miIM) X, (0= X7 (ki.0Ime)
mg (N

><f:h(qu)c’(q)h(qr)qzdq
S 2 himismy[jimy) Y (ki)

X[ (F) X 2T (F) X o T K, i,

=—> > VC ., (rar) ><<|imi’srrgi“imji>Y|imir(F)ilieimlul(i]ri)(ki ’r)|méi>’
Im
i X (5.10
X[Yi(F)X oIy TN X 5], (5.8)
where|ms) is the intrinsic spin state with theprojectionm;

and o, is the Coulomb phase shift. The radial part of the
distorted waveu(;”)(k,r) has the asymptotic behavior

C, term

3

VE2<r—rk>=7,J - C () e 1

2 . T
(2m) ufi”(k,r)~€" sin kr— e ln 2kr - 5 o+,
— 2 -
=3,= > 2 A_m(Im 1 M=m|Im) (51D
T Im JM
where 7 is the Sommerfeld parameter aag is the nuclear

o | Cliai 24 phase shift.
fo htanoC ta)ii(ana~dg Using Egs.(5.3) and (5.10 together with Eqs(5.4)—

. R (5.9), we can write as
X[ (1) X oy Y1 (F) X 0]y

— (+)
=3 3 VEuraNIVFox il Otk (DAL=, (1)
Im JM

Mms Mg,
X[iIY|(F)XO'8]|m, (59) :Is;M S(ISSJM(kf !kl 1rk)[| Y (rk)xo-k] (512
where j,(x) is the spherical Bessel function of the order where
S o (K ki 31 = f r2drVA(rn f ke kiin = 2 for drVim(non ek kisn (513

ms Ms,

S anym(Ke Kiird = EJ r2dr{V5,, (e, r)+VJII’(rk’r)}f(ifl)le(kfvklar)

+J2M, zdrV|JMJer(rk r)f(ll);iM,(kf k|,r)+2 f r2drvS su(re. r)f(lo)I (ke K or)

(5.14
with
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:I:;lel(kl !kf vr)
= 2| doy i (ke nXma Y X oS Tulme)xay o (ki1
msfmsi
\24ar :
= SV(23+1)(21+1 lE 2, e ul D (ke ruf T (ki r) (21+ 1)V(2];+ 1) (21+ 1)(1010]110)
™ ff
It s¢ |
ro | | . me [T =D
Xy s Ji g (Losimg|jimg (I imgsimg | jimg + M)(jims IM|jimg +M)(—) 72 WP (cosd).
I s J
(5.15
|
We can now writeS,,, ,, of Eq.(4.10 as VI. CALCULATION OF RESPONSE FUNCTIONS
St S
msm
Smsfmsizlg:M f S gham(Ki K50 plgam(rrédr,  (5.16 In Sec. IV, we presented a method of calculating the
cross sections and the spin observables by using DWIA. It
where was shown that what we need are the response functions
A A Rs(w) of Eq. (4.11). Here we describe a way of calculating
pasyam(r) = Z ['Y|(rk)XUk]M (2 rk/>, them.
= k,:l
(5.17
which is the radial part of the transition density
A. Polarization propagator
pMm—E R, 8(r = ma( > rkf)
k'=1

Following Refs.[37,27], we introduce the polarization

— ImswlIM Y ()T 5.1 propagators for the spin-dependent transition density in the
|§'M< Mg m(NITYim(1)] (519 angular momentum representation as

n (F F )= 1 2 Z, <\Pn0|P(I/s’)J’M’(r,)|\I’n><q,n|PErls)JM(r)|\Pn0>
(1's")3'M7;(Is)aM\ T 1 20,+1 4 13

w—(fn—fno)“??

<‘I’n0|P(|s)JM(r)|‘I’n><‘I’n|P(|'s yarme(r’ )|\Pn0>
— 0 (En—En) Fin

1 ,
T 20.+1 Zo (Wn

, t
! ! ! r . r
P(17s)3'M ( )w_(HA_gno)+|7]p(ls)JM( )

1
+P2|s)JM(r) o (¢, )+inP(lfs')J'M'(r')p‘I’no)
0

=835 Omm I yrsrysy (1,1 @). 6.1

By using the Wigner-Eckart theorem, we can prove gt/ ); v (s)ov are diagonal with respect tbandM and indepen-
dent of M. The corresponding response functions are defined as

044609-11



KAWAHIGASHI, NISHIDA, ITABASHI, AND ICHIMURA PHYSICAL REVIEW C 63 044609
P\ — 1 4 ’ T
Ryarshyas)(r ar1w)=m; ZO <‘I’no|/0(|'s')uv|(r )|‘I’n><‘Pn|P(|s)JM(r)|‘I’no>5(w_[Sn_gno])
l !
—;Iml_[m,s/ms)(r o). (62)
Using Egs.(5.16 and(5.17), we obtain the response functidty(w) of Eq. (4.11) as

[Rs(@)Imymgimym =2 2 2 | 1 drf 2 dr s (ke KT Ry (1 Fi0) ST (ke Kiir). (6.3)
s IM Is g (I )J (Is)

Inserting theseRs into Eq. (4.12, we can calculate ent nucleons and the energy shift to give the correct
the double differential cross section and the spin obsertotal Hartree-Fock energy of the target ground state. Since
vables. there appears only the energy difference between the

In the following we consider only the case where the tar-target ground state and the final state of the residual nucleus
get nucleus is a doubly closed shell. Therefore we can sdbr the response functions, we discard the tenk,
Jao=0 and omit the summation oveg, and denoténO and  from now on.
v, simply by & and¥,, respectively. The mean fieldJ, is determined as the Hartree-Fock field

0 for the target nucleus and the single-particle enetgyis

B. Single-particle model given by the equation

A simple approximation to evaluate the polarization
propagators is the single-particle model. In this mddglis U
replaced by the single-particle model Hamiltonian 2m

ba=€aPba- (6.5

We write €, of the unoccupied state kyy, and that of theoc-
+AE,, (6.4)  cupied state bye,. Note thate, is measured from one-
nucleon separation threshold of the target.

H(O):E _V_ﬁ_lr_u
K 2m k

where m=[(A—1)/A]my, U is the mean field for the 1. Polarization propagator

kth nucleon, and\E, consists of the masses of the constitu- The polarization propagator is given by

(Dolpgrsam(r’ )|ph><Ph|P(|s)Jm(r)|‘bo> (Dolpfisyam(DIPIYPHp s am(r ) Do)
o—(e,—€y)tin —w—(ey—€p)tin

(0)
sy s (@)= % , (6.6

where|ph) denotes a one-particle-one-hole state dngds the ground state of the target in the single-particle model. This is
called theuncorrelatedpolarization propagator.
The infinite sum ovep can be handled by the single-particle Green’s func@l as

h(f ) gp(r',r; 0+ €p) Up(r)
r'r r

HS(()I)’S’)(ls)(r”r;w):pE Byrsa(h,p) Bfis)s(h.p)

(r) gp(r,r'; —o+ep) Uh(r )
rr’

+B11s1ya(P, h) Blis)3(p,h) |, (6.7)
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wherep andh denote the sets of the single-particle quantum K2(r)=2me—U(r,Kk2(r)) (6.14
numbersp= (I ,S,j,) andh=(nylpsnjn), respectively, and ’ ’
and we keep only the terms up to the first order. Introducing

la Sa Ja the radial-dependent effective mas$(r) as
B(|S)J(a,b):\/2ja+l\/2jb+l Ib Sb jb <|a|||IY||||b> m*(r) é’U(r Kz(r)) -1
| s J =f(r)=(1+2m’—2) , (6.15
m Ik

X(sall 0¥ sp)- (6.9 _ _

we obtain the equation

The radial part of the single-particle Green’s function is
given by

v

V(— +U(r)—£(V2 ! H (r)
2m* (r) S8l mrn ¢

=ed(r), (6.19
where W is the Wronskian and -, denotes the smaller Where the local potentidll (r) is
(largen one ofr andr’. The radial wave functions;,, f,

and h, are the bound state, the regular and the irregular UL(r):i{D(r,Kz(r))—e}Jr €. (6.17)
solution of Eq.(6.5), respectively. f(r)

2m

gp(r',r;E)Zm

fo(r<,E)hy(r~,E), (6.9

Since we do not know abould(r,r"), we determineJ (r)

_ ) ~andf(r) phenomenologically. Note that here we only con-
To take account of the spreading width of the particlesider thek mass but not th& mass.
states, we adopt a complex potential for the single-particle

potentialU as in Ref[18] C. Ring approximation

U(r)=V(r)+iw(r), (6.10 Next let us take account of the nuclear correlation
by means of RPA. To treat the exchange terms of RPA
while we use the real potential for the hole states. For such we further utilize the ring approximation, which replaces
choice, the orthogonality between the hole and the particlthe exchange effects by a contact interaction. The
wave functions is destroyed. We therefore utilize the or-polarization propagator then satisfies the RPA equation
thogonality condition prescriptiofi9] , details of which are [43,37,27
explained in Ref[39]. ©)
To take account of the spreading widif, of the hole  ILyarsiyas)(r'.ri@) =115, ) 6 (r" 1 0)

states, we replace the hole eneggyby the complex energy

2. Spreading widths

o F 24 24 11(0) .
+|1512|252 o rldrlrzdrzﬂJ(|,S,)(|151)(r ,rl,w)
~ .Yh
€h=€ntis . (6.11) XWia,s))(1,5,)(F1: 7 2) (1,5 05) (P2, T @), (6.18

whereWJUlsl)(,zsz)(rl,r2) is the radial part of the effective
interaction as

3. Effective mass

In principle the single-particle potential is nonlocal, and
thus the Schidinger equation for the single-particle states is

V(rr)=2 2 [ (f)xed i

IM 1154158,

1
—ﬁV2¢>(r)+f dr'u(r,r')¢(r')=eep(r).
(6.12
We deal with this nonlocality by an effective-mass approxi-

mation[42,36]. We first introduce the Wigner transformation D. Isospin and A degrees of freedom
of the potentialU(r,r’) as

X Wit sp)(1,,) (F1:F2)[112Y) (1) X 0321y

(6.19

From Sec. IV up to here we have suppressed the iso-

spin and theA degrees of freedom, but of course we
)eiq's. (6.13  have to include them in the actual calculation. Here we

summarize the final formulas including these degrees of
~ . i o freedom. As was discussed in Sec. Il D, the relevant
We assume thatl is spherically syrymetnc with respect to quantities carry the superscript(=N,A,A*) and the isos-
andq, respectively, and write it a8l (r,q?). We expand it pin subscriptx. The extension is straightforward and easily
with respect tag? around the square of the local momentum understood.
k(r): The transition density operat®5.17) is to be

s s
r+5.r—=
2

U(r,q)=fdsU 5
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A

Pz(ls)JM(r) E

TkK[l Y(r) X o

A
><6( > rk,), (6.20
k'=1
and thus the response functi@2) becomes
Rff:J(l's)us)( o)
523;1 22 (Waolirenom(r )W)
X (Wl plgam(DI W )0 —[E=E D). (62D

Further details are given in RR7].
The NN t matrix was generalized as E¢3.24). Corre-
spondingly, the source functiais.12) is generalized as

(g, (AT =10 b (1)
=2 NN D D ST n N K Nk 5T

X’TkKT[I Y (rk)><0'“S 3t

(6.22

[R‘(SN'N )(w)]ms mg;m/ m/ =
foSiT SE S

x RB* (r

(175 (1s) (T @) S

in place of Eq.(6.3).

VII. NUMERICAL CALCULATIONS

2 NAINNVIRND 33

IM Is 1y

a sfms
k(Is)IM

PHYSICAL REVIEW C 63 044609

with N,N’=p or n, which specifies the reaction type. Here
the generalized forms of Eq&.13 and(5.14) are

amsfmS

K(IS)JM(N ke Nkiiri)

=> f r2drveX (r,r)f s S(N’ke Nki ;1) (6.23
o

with

msf ms,

FsyonN ke Nki 1) = E fdﬂrx?n ' (keoD)

><<m;f|[i'Y|(ﬂ><cr('¥s]ﬂ4|méi>

X . (K ), (624

where VvV  are the generalized forms of
A \/C E F B—F
V3V imams Vi Vs andVigygig -

Finally, we obtain

frzdrf r2dr s (N'k¢ Nk ;r")
0 0 N(I7s")IM

{(N"Kq,NK; 1) (6.25

neutron global optical potential given by Shetnal.[46]. For

the potentials which have the form of the Dirac phenomenol-
ogy, we rewrote them in the Schiinger equivalent form
and solved the nonrelativistic Schiiager equation to obtain

We apply the DWIA formalism presented in the previousthe distorted waves. We used the relativistic kinematics and

sections to the intermediate energ§, rﬁ) reactions around

the reduced energy prescription.

the quasielastic peaks. We calculate the polarized cross sec-

tionsID4 and1D,, of the reactions observed at LAMHRBE]
and RCNP[9] as summarized in Table I.

A. Choice of parameters

2. Effective mass, single-particle potentials, and spreading width

We have to determiné(r) andU (r), as was discussed
in Sec. VI B 3. Suggested by Réd#7], we assuméd(r) has
the form

First we present the parameters that we selected for our

numerical calculations.

1. Optical potentials

_m*(r)_ b
fN=—q _1_1+exp[(r—R)/a]

(7.1

For the optical potentials of the incident proton and the
outgoing neutron, we took the global optical potential given
by Cooperet al. [44]. It is designed for the proton but we with R=r,A", since we consider only tHemass. Note that
used it even for the neutron by excluding the Coulomb partm* (r=0)~(1—b)m. The parameteb will be adjusted to
To study the optical potential dependence, we also used theproduce the energy spectraléfy .
proton optical potential given by Jones al. [45] and the For U, we used the form
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aBr. ..
UpL(r)=—(Vo+iWp) ViP(ri—ry o)

1+exg(r—R)/a]

d3q . A i
2 Vi exd(r-Ryal .2 Ef(zﬂse""“lrZ’W%“B(q,w)(ai‘Xq)-(aé’xq).
m2 A (Lrexd(r—Ryal? o e

whereV,, is the Coulomb potential of a uniformly charged HereWﬁﬁ andW{‘fﬁ are given by
sphere with the radiuR.=r A% The shape parameters are
fixed atro=r.=1.27 fm anda=0.67 fm [48], and the fofg
nucleon spin orbit potential depts is chosen to be 6.5 Wfﬁ(q,w)=—2
MeV for ¥°C and 10.0 MeV for‘°Ca, respectively27]. The M
real-potential depthV, is determined in such a way as to (7.7)
give the observed separation energy of the outermost occu-
pied state of the target nucleus. Wif(q, )

Using the phenomenological energy-dependent relation iy 5
for the spreading widtf49] _ azﬁ ( 0,5+ C2 T2, )0, ) - q2 )

E{ (e— ‘EF)2 ’
y(e)=21.

m g>—m
(e—€p)?+18

T T q°
gaﬁ+ra(q!w)rﬁ(qrw)m)-

(7.9

wherem_ (=139 MeV) andm, (=770 MeV) are the pion
in units of MeV with the Fermi energy, we set the imagi- and thep-meson masses, respectively, and the coefficient
nary potential parameteW, for the particle to beW,  C? ;s the ratio of theo-meson coupling to the pion one. The
=37(ep), and the hole spreading widthy, to be v, g dependence of the Landau-Migdal parametg]s is ne-

110 1 73 T
(e—€p)?+110°

= y(€n)- glected[50] and the vertex form factors are chosen to be
For A, we setm,=1232 MeV,V,=30 MeV, andW,
=V|s=0.0 MeV [27]. me_AfT mé— A2

Ii(q,0)=—"—>5——, Iqo)=—F"75"=, (79
3. Effective interaction for ring approximation 0 =Q = A7 0 —q°—Ap
We take RPA correlation into account only in the isovec-whereA ,, andA , are the cutoff parameters. We note that we
tor spin-vector channell(=1,S=1 in Sec. lll D). For other  can identifyA* with A in Uipr far Chg, andl' ™),
channels, we simply use the uncorrelated response functions. e set the parameters d%: 1.0, fo/fy=2.0, C”

For the effective interaction in the isovector spin-vectorzz_l&A =1300 MeV, andA ,=2000 MeV[3]. As to the
channel, we employ then(+p+g’) model, in which it is Landau-Migdal parameters, V\fe fi,y=0.6, g4, = 0.5, and

written as we adjustgy, to reproduce the observe®, as well as
VeB(r — 1y w) possible.
= (75 B)VEA(r —12;0) +VE(r 15 0)] 4. Energy shift
(7.4 The nuclear structure model used here is a simple one that
. is based on the mean-field approximation with the RPA cor-
with relation, because we are interested in only gross structure of
wp highly excited states in the continuum. Apparently the model
VIP(ri—raz;o) does not well represent the structure of the low-lying states,
e especially the ground states of the deformed nucl@s
A igr- - - Therefore the excitation energy obtained by the present
— it (r—r2web(q. «. o) (ab-Q), gy y p
f (2m)3 (@) or-a)(oz-q) model should be smaller than the observed one, because the

real ground-state energy should be lower than that given by
(7.9 the model.
To remedy this shortcoming, we made the following
modification. The observed energy spectrd @ [7,9] show
the eminent peak of the unresolved 4nd 2~ states of'?N.
We atrtificially add 5 MeV to the energy transferto coin-

TABLE |. Reactions to be analyzed. The values qpf,, are
those around the peak.

-1
Target B e (MeV) O Gem. (f ) Refs. cide the calculated peak to the observed one for the uncor-
2c 494 18° 1.70 [8] related casent* =m and no RPA correlation For the cor-
346 22° 1.67 [9] related case, this energy shift becomes 3.5 MeV, but we kept
40ca 494 18° 1.71 [8] the 5 MeV shift for all different parameter sets. This small
346 22° 1.68 [9] difference of energy shift does not affect our conclusion. No

shift was made for*°Ca.
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5. Convergence 40Ca (p,n) at 346 MeV. The features of the results are com-

In the actual calculations, we have to limit the infinite mon for all cases, though the fit 4D, is somewhat better
range of the summations and integrations by judging fronfor the case of 494 MeV than for that of 346 MeV.
their convergence. The maximum angular momenta of the
distorted waves were fixed at 40, and the maximum trans-
ferred angular momenta were set at 9 ¥4€ and 12 for*°Ca
for both the incident energies, because the transferred mo-
menta are close in both cases.

The maximum momentum for the Fourier transformation In the previous experimental papel8,9] the response
from the momentum space to the coordinate space was set fanctions were extracted by means of PWIA with the effec-
be 4 fm , though the main contribution comes fraqmear  tive nucleon number approximation described in Sec. lll. We
the observed transferred momenta shown in Table I. Théest this prescription by comparing the PWIA results
radial integration was limited up to 10 fm, since the responsé| ""DP") with the DWIA results (°WDP"W).
functions are well damped at this radius. For detailed analysis, we also introduce mode-dependent

effective nucleon numbers defined [8]

VIIl. TEST OF EFFECTIVE NUCLEON NUMBER
APPROXIMATION

B. Results of distorted wave impulse approximation

calculations
DW DW
First we try to reproduce the spin-longitudinal cross sec-. , . . !" Dg (@) o 1PYDY(w)
_ oo ) 298 SEONL(w)=N-——t——, Nl(w)=N-——FB_—— (8.1
tion 1D, of the *“C(p,n) reactions at 494 MeV by adjusting 1PYD g (w) 1PYD M)

the Landau-Migdal parametey, and the effective mass at
the centem* (r =0), namely, parametds, within a reason-
able range. They depend on the spin-longitudir&l) and spin-transverse
The results are shown in thiD, part of Fig. 1. The (T) modes as well as the excitation energy though the
dashed line denotes the result witht (0)=m (i.e., b=0) effective nucleon numbeh.; determined by Eq(3.18 (ef-
and without the RPA correlation. The dotted line denotes théective neutron numbe; in the present cagés indepen-
RPA results with the universality ansat{y=9na=94s  dent of them.
=0.6 and again witn* (0)=m. We see that the experimen-  In the present analysis, we try to det\"” (w) without the
tal data are much larger than these two results, and therefoige dependence by estimating them at a certaimear the
we reducedyy, , guided by the fact that the response func-
tions increase asgy, decreases[27]. The dot-dashed 0.15
line shows the RPA results with gf;y,9na OAA) | I
=(0.6,0.3,0.5) andm*(0)=m. Now ID, drastically in- | IDq | IDP
creases but the peak position is much lower than the ob-
served one, owing to the softening. We then reduced the
effective massn*, guided by the prediction of the Fermi gas
model (wpeak=q2/2m*) and the numerical calculation of ~;
=

0.1
Itabashi[41]. The full line represents the RPA result with
(gnneIna s94a) =(0.6,0.3,0.5) and withm*(0)~0.7m(b s
=0.3). By this change ofm*, the peak position moves up %
very close to the observed one, though the peak value is'g
reduced. This is consistent with the Fermi gas prediction =
(3m*/4qpg, pr being the Fermi momentumNow the fit is ] 005
very much improved by the choice of these parameters for
IDg.

9I'he results olD , are shown in the right panel of Fig. 1.
We see that the RPA correlation withyy=093a=09ax i I
=0.6 markedly quenchekD,, as was predicted, whereas obo
the observed data are very much enhanced. When we reduc 30 50 70 90 11030 SO0 70 90 110
gna the results increase considerably, but are still quenchec
at low w. When we further reduce the effective mass, the Dy (MeV)
peak shifts upwards. We found that all of the calculated re-

Sultlsdare {nuch S(;nallertkt]han;he ol;%ervs(;. Ln thg ent;lr,lwe MeV. The dashed line denotes the result with=m and without
could not reproduce the observen, by changing these o ppa correlation. The dotted and the dot-dashed lines represent

parameters within reasonable ranges. the RPA results ofd/ ,0ls 10hs) =
. ansOna »9aa) = (0.6,0.6,0.6) and (0.6,0.3,0.5)
With the same sets of parameters we calculated the Oth%\'/’ith m* =m, respectively. The solid line shows the RPA results of

reactions given in Table I. Figure 2 shows the results forg g 0.3,0.5) withm* (r=0)=0.7m. Experimental data are taken
40Ca (p,n) at 494 MeV and Fig. 3 shows the results f8€,  from Taddeucckt al. [8].

FIG. 1. DWIA results ofID4 and ID, for 12C(|5,ﬁ) at 494
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FIG. 2. The same as Fig. 1, but f8iCa(p,n).

peak. The obtainetlL{"” , with and without the RPA corre-

lation, are summarized in Table II.

For the uncorrelated cases, we found tNag~N<; and
thus we set them equal and denote both of thenNE in
common. We note that Wakasd al. [9] reported thaiNg

estimated by Eq(3.18 and N{) obtained above, are very

close, and also note that the estimatiorNgf by Eq.(3.18
is somewhat ambiguous because the equation includes thesponse functions does not work quantitatively. Therefore
uncertain totalNN cross section in the nuclear medium. the DWIA calculation is definitely necessary in the quantita-

Therefore here we identifiX¢ with N/ .

PHYSICAL REVIEW C 63 044609

The PWIA cross sections multiplied By{%/N=Ngx/N
(dashed linesand the DWIA cross section&solid lineg
without the correlation are compared in Figga)dand 4c)
and Figs. Ba) and 5c) for cases of*2C and *°Ca with the
incident energy 494 MeV, antfC and “°Ca with 346 MeV,
respectively. Thew-independent approximation holds well
only for thel D, of *°C at 346 MeV, but not so well for other
cases. This is an indication of poorness of the effective
nucleon number approximation.

The results with the RPA correlation are compared in
Figs. 4b) and 4d) and Figs. %) and %d) for cases of'’C
and “°Ca with 494 MeV, and"?C and “°Ca with 346 MeV,
respectively. The DWIA results, the PWIA results multiplied
by NLD/N, and the PWIA results multiplied b.¢/N are
denoted by the solid, the dashed, and the dotted lines, respec-
tively. The RPA calculations are carried out with
(9nn-9na 29aa) =(0.6,0.3,0.5) andn* (0)=0.7m. Once the
RPA correlation is included\ is increased buls is re-
duced and thus they differ very much from each other. The
difference is especially very large fdfCa. This is another
strong indication of the poorness of tiN; method. The
above changes df5; andN;, due to the RPA correlation,
may be explained in the following way. The enhancement of
R, and the quenching oR; are stronger in the higher-
density region(the inner pant but they are masked by the
stronger absorption in this region. Consequently, we should
decreaséN} to reduce the enhancement seen in PWIA but
increaseN  to reduce the quenching.

The large difference, especially fdi’Ca, between the
results of the effective nucleon number approximation
(the dotted lines and the DWIA results(the solid line$
clearly shows that the conventional way of obtaining the

tive analysis.

0.15 ———1——

i

ID. (mb sr'! MeV1)

OSB3 r—T—T T T T T T

02

0.1

0 PR U R N N P U I N |

0 P |
30 50 70

90 110 30

50

70 90

110
®,,(MeV)

30 50 70 90 110 30 50 70

FIG. 3. The same as Fig. 1, but fa 2C(p,n) and(b) “°Ca(p,n) at 346 MeV. The experimental data are taken from Waleasal. [9].
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TABLE II. Effective neutron number. “No” means the no- IX. DISCUSSION
correlation(uncorrelatefl cases.
E, (MeV) Target Correlation Néﬁ lef 1. Effect of the spin-orbit force
494 120 No 517 517 One of our main concerns in the DWIA calculation is the
RPA 2'12 2'39 effects of the spin-orbit force of the optical potentials. We
1004 No 4‘ 00 4‘ 00 compared the numerical results with and without the spin-
RPA 3.60 578 orbit force in Fig. 6 for C(p,n) at 346 MeV. The RPA
346 120 NoO 2.58 2.58 correlation was not included in this analysis. We found that
RPA 5e3 582 effects are larger foi3p'DJ" than for I2)'D)". Fortu-
a0c NoO 4' 62 4' 62 nately, however, they are so small that the spin-orbit force
RPA 4'25 7'00 does not greatly disturb the separation between the spin-
' i longitudinal and spin-transverse responses. We also reported
similar results for12C(|5,ﬁ) at 494 MeV[51].
r 1 T 1T 1 T 1T 1T 71" 1 1T 1 -1 [ T T T 1
() IDq IDP (b) ID q IDP
i ©_ 0)_ | L_ T_
N =217 N =217 : Ng=2.12 . Ng=2.39
0.1 |

Ko
'> 5
3]
_‘E 0 | | | | | | | | 1 1 1 1 | | | |
% 03
o . L L L I I I I I I I 1
g © D ID ID ID
QN 3 q V. @ q p 1
~ N9=4.00 N=1.00 - NL=3.60 NI=578 1

02 | - 41 F - -

\
N
0 PR I T I PR I U I PR Y I [ I P I U R |
30 50 70 90 11030 50 70 90 110 30 50 70 9 11030 S50 70 90 110
o, (MeV)

FIG. 4. Comparison of DWIA and PWIA results at 494 Meld) without and(b) with the RPA correlation foFZC(f),ﬁ) and(c) without

and (d) with the RPA correlation foﬁOCa(ﬁ,ﬁ). The solid and the dashed lines denote the DWIA and the PWIA results multiplied by
NO/N(=Ng¢/N) in (a) and(c) and byNL{"/N in (b) and(d), respectively. The dotted lines denote the PWIA results multiplietiy N
in (b) and(d). The values oNY andNL\" are shown in the figure.
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(2) D | ID

NO=258 N9=258

T_» g5
eff’ H eff’ I\éﬁ—z'8‘

0.1 - 1

1

ID.(mb sr'! MeV1)

0 P I B B | .
30 50 70 9 11030 50 70 90 110 30 50 70 90 110 30 50 70 90 110

@, (MeV)

FIG. 5. The same as Fig. 4, but at 346 MeV.

2. Ambiguity of the optical potential results with theNN amplitude obtained by Bugg and Wilkin
To investigate the effects of the ambiguity of the optical[34] and with that obtained by Arndt and Rof&5]. Figure

potentials, we compared the results in terms of the globaB shows the results of{'Dg" andi 2)'Dp" for *2C(p,n) at
optical potential given by Coopeat al. [44] with those in 346 MeV without the RPA correlation. The effects are less
terms of the proton optical potential given by Jorgsal.  than 15%, and they are different ftfgy'DS" and1Dy/'DRY.
[45] and the neutron global optical potential given by Shen

; H W~ DW
et al. [46]. Figure 7 shows the comparison ki) Dy and 4. Two-step processes

Iy DY for ¥C(p,n) at 346 MeV. Here the RPA correla- 5 _
e Pacd23] calculated the one- and the two-step contri-

i incl . We f hat th iguity hardl
tion was not included. We found that the ambiguity hard ybutions in terms of the Glauber approximation. He found that

affects the results. . .
the two-step process is more effective for, than forlD,.
3. Ambiauity of the NN litud He concluded thatD , is reasonably explained but that there
- AMbiguity of the NI amplitude is a large discrepancy between the observed and the one-step

It has been pointed o] that the theoretical results are results forlD ,, and that the two-step contribution is sizable
affected to some extent by the ambiguity of tibl scatter-  but not sufficient to provide an explanation of the large dis-
ing amplitudes obtained by the phase-shift analyses. To derepancy. The\ contribution was not included in his analy-
termine the influence of this ambiguity we compared thesis. He made the simple assumption for the two-step process
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0.15 — 1 — 1 T T L I L B 0.15 —1 1 1 1 — 1 T T T 1
i IDq | ]Dp | | IDq | IDP
.> > 0.1 |- - —
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2 2
£ al
g E
Q Q o005 | s -
==
N[ \\._
0 L | L | L | L | L L | L | L | L | L 0 L | L | L | L | L L | L | ) |
30 S0 70 9 11030 50 70 90 110 30 50 70 90 11030 50 70 90 110
o, (MeV) o)lab(MeV)
FIG. 6. Comparison of the DWIA results wittfull line) and FIG. 7. Comparison of the results with various optical potentials

without (dashed lingthe spin-orbit force for?C(p,n) at 346 MeV.  for 12C(p,n) at 346 MeV. The full lines denote the results with the

potential obtained by Coopet al.[44] for both the proton and the
that the first step is caused by the spin-scalar isospin-scalaeutron, while the dashed lines denote the results with the potential
and the second step by the puEeF) amplitude and vice by Joneset al.[45] for the proton and by Sheet al. [46] for the
versa. neutron.

Nakaoka and Ichimurf29] evaluated the two-step contri-
bution through its ratio to the one-step one obtained bycontinuum, which are closely related to the nuclear spin re-
PWIA with an on-energy-shell approximation. They took sponse functions. We then reviewed the PWIA formalism for
into account all five terms of thBN amplitudes in both the the intermediate energy(])CI\_l)’) reactions, treating the Fermi
first and second steps. They also found that the two-stemotion by the optimal factorization and the absorption by the
process is more effective fdD , than forID,. ForIDy it  effective nucleon number approximation. Theisobar de-
accounts in large part for the discrepancy between the DWIA
and the experimental results in high energy transfer regions 0.15 — ————————— ——
They also found that the two-step contribution does not help |
to reduce the large discrepancy seerilr),. Recently, Na- | IDq IDP
kaoka[52] reported that the two-step effect becomes twice as
much as the previous result, when the off-energy-shell effect
is included.

0.1 |- = |
5. Remaining problems

I MeV1)

There still remain various other points to be considered,~
especially keeping in mind the large discrepancyirn,. On
the structure side, they af@) nuclear correlations beyond
RPA, which has been evaluated by various authorsg‘ 0.05
[53,54,13, (2) use of genuine RPAS55] instead of the
ring approximation, and3) self-consistency between the
mean field and RPA56,57], etc. On the reaction side, i N
they include (1) removal of the optimal factorization ap- - ]
proximation, (2) removal of the averageid approximation,
(3) off-shell effects of theNN t matrix, and(4) more realistic ob— v by )
NN—NA transitiont matrix, etc. 30 30 70 9 11030 50 70 90 110

@, (MeV)

(mb sr

X. SUMMARY AND CONCLUSION
FIG. 8. Comparison of the results with theN amplitudes given

We first summarized the general formulas for the polarty Bugg and Wilkin(full line) [34] and by Arndt(dashed ling[35]
ized cross sectiondD;, of the (N,N’) scattering to the for 2C(p,n) at 346 MeV.
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grees of freedom are also included. This has been widelglso much larger than that obtained l&y€’). This confirms
used to extract the nuclear response functions. the previously reported conclusi$8,9].

Since the reliability of this method has been questioned, (3) The N method, which has been conventionally used
we here developed the DWIA formalism for the intermediateto obtain the response functions, is found to be a quantita-

energy (N,N’) reactions to the continuum incorporated with tively poor approximation, especially for heavier nuclei such
the continuum RPA method. This formalism is described inas Ca. The DWIA analysis is definitely needed in the quan-
the angular momentum representation in the coordinatétative analysis. _
space with the response function®y s s (r'.r; ), (4) From these findings, we stress t_hat the _observatlon of
which are nondiagonal in the coordinate space as well as iRRL/Rr<1 does not necessarily constitute evidence against
the spin space. The formalism still involves the optimal fac-the enhancement dR_ and of pions in nuclei. We rather
torization and the averaged reaction normal approximation.conclude that the present experimental data support the en-

The response function calculation includes the radialhancement ofR . The contradiction regarding the ratios
dependent effective mass and the spreading widths of theomes from the extraordinarily enhandél, . Before draw-
particle and the hole. The RPA correlation are calculated byng any definite conclusion about the response functions, we
use of the interaction of then(+ p+g’) model. must disentangle the anomalously latdk, puzzle.

The presented formalism is applied #C, “°Ca (p,n) at (5) We also investigated the effects of the spin-orbit

346 and 494 MeV in the quasielastic region. In this analysisdistortion and the ambiguity of the optical potential and
the Landau-Migdal parameters and the effective mass are NN tmatrix, and found that they are not especially sig-

treated as adjustable parameters. nificant.
From this analysis, we draw the following conclusions:
(1) The observed spin-longitudinal cross sectibg, are ACKNOWLEDGMENTS
reasonably well reproduced by adjustigg, andm* and by We would like to express our deep gratitude to the late

adding the two-step contribution. The analysis indicates thag s/ Gaarde and Thomas Sams with whom we started this
the smallelgy, (~0.3) and the smaller effective mass at the project. We are grateful to Terry Taddeucci, Jack Rappaport,
center (*~0.7) are preferable. This claim of the smaller Hide Sakai, and Tomotsugu Wakasa for providing us with
gua IS consistent with the conclusion obtained from theexperimental information and for valuable discussions. We
analysis of the GT resonances by Suzuki and SEX&]i also thank Mike McDonald for a careful reading of the

(2) The observed spin-transverse cross sectiihg are  manuscript. This work was supported in part by the Grant-
much larger than the calculated ones and cannot be reprin-Aid for Scientific Research Nos. 02640215, 05640328,
duced within the present theoretical framework. Howeverand 12640294 of the Ministry of Education, Culture, Sports,
one must note thaR; corresponding to the observéd , is  Science and Technology of Japan.
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