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Distorted wave impulse approximation analysis for spin observables in nucleon quasielastic
scattering and enhancement of the spin longitudinal response
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We present a formalism of distorted wave impulse approximation for analyzing spin observables in nucleon
inelastic and charge-exchange reactions leading to the continuum. It utilizes response functions calculated by
the continuum random-phase approximation, which include the effective mass, the spreading widths, and theD
degrees of freedom. The Fermi motion is treated by the optimal factorization, and the nonlocality of the
nucleon-nucleont matrix by an averaged reaction plane approximation. By using the formalism we calculated

the spin-longitudinal and the spin-transverse cross sections,ID q andID p , of 12C, 40Ca (pW ,nW ) at 494 and 346
MeV. The calculation reasonably reproduced the observedID q , which is consistent with the predicted en-
hancement of the spin-longitudinal response functionRL . However, the observedID p is much larger than the
calculated one, which was consistent with neither the predicted quenching nor the spin-transverse response
function RT obtained by the (e,e8) scattering. The Landau-Migdal parametergND8 for the ND transition
interaction and the effective nucleon mass at the nuclear centermN* (r 50) are treated as adjustable parameters.
The present analysis indicates that the smallergND8 ('0.3) andmN* (0)'0.7 mN are preferable. We also
investigate the validity of the plane-wave impulse approximation with the effective nucleon number approxi-
mation for the absorption, by means of whichRL andRT have conventionally been extracted.

DOI: 10.1103/PhysRevC.63.044609 PACS number~s!: 24.70.1s, 24.10.2i, 25.40.Kv, 21.60.Jz
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I. INTRODUCTION

The study of nuclei by means of intermediate ene
~;100 MeV–;1 GeV! proton beams has been very acti
since the end of the 1970’s, and has led to various adva
such as the discovery of the Gamow-Teller~GT! giant reso-
nance and finding the quenching of their strength. In
1980’s great progress was made in experimental facilit
which can afford to accelerate polarized proton beams w
intermediate energies and to measure the polarization of s
tered protons and neutrons and so on. This made it pos

to carry out complete measurements of (pW ,pW 8) and (pW ,nW )
scattering, namely, measurement of the polarizationP, the
analyzing powerAy , and the polarization transfer coeffi
cientsDi j . Theoretical investigations related to these expe
ments, such as search for the origin of the quenching of
GT strength and studies of the precursor phenomena of
pion condensation, have also been pursued vigorously@1,2#.

In the course of these activities, a very interesting pred
tion was presented by Albericoet al. @3# at the beginning of
the 1980’s. They claimed that in the quasielastic region w
fairly large momentum transferq(;1 –3 fm21) the isovector
spin-longitudinal response functionRL(q,v) is enhanced
and softened while the isovector spin-transverse respo
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functionRT(q,v) is quenched and hardened, wherev is the
transferred energy. The enhancement ofRL is attributed to
the collectivity induced by the one-pion exchange interact
and thereby understood as one of the precursor phenom
of pion condensation. The quenching ofRT , on the other
hand, is due to the combined effect of the repulsive sh
range correlation and the one-rho-meson exchange inte
tion.

A great deal of experimental work has been done in or
to explore this prediction. Measurements of the polarizat
transfer coefficientsDi j were carried out at Los Alamos Me
son Physics Facility~LAMPF! for (pW ,pW 8) at an incident en-
ergy of 494 MeV, from which the ratiosRL /RT were ex-
tracted@4,5#. Surprisingly, the ratios were less than or equ
to unity, which seriously contradicted the predictionRL

@RT . However, the scattering (pW ,pW 8) mixes the isoscalar
and isovector contributions, and thus the estimation of
ratios was not conclusive.

Later complete measurements of the (pW ,nW ) reaction,
which focused exclusively on the isovector contributio
were carried out at LAMPF@6–8# and at Research Center fo
Nuclear Physics, Osaka~RCNP! @9#. The ratios obtained
were still less than unity. From these results, it was c
cluded@10,11# that there is no enhancement ofRL , namely,
no collective enhancement of the pionic modes, which w
interpreted as evidence against the pion excess in
nucleus. With help of sum rules, Koltun@12# analyzed the
data by means of a correlated nuclear theory, in which
©2001 The American Physical Society09-1



ha
l
o
w
fo

th

th
e
n

se
em
el
v
th
y
u
in

l-

h

de

rm
y
in
w
e

o
th
a
e
n,
th

t

n-
t
it

re
o

th
b

he
t

m

e
se of

as-
as
as
of

ss,
ex

the
so-

of
e
f

of

a-
spin
o

e
e it

r-
-
ti-
s,
re-
de-
go-
hich
ead-

c-
e
well
ce-
are
the
e-

ers

l
ing
n
uch
the
on-

c-
ral

KAWAHIGASHI, NISHIDA, ITABASHI, AND ICHIMURA PHYSICAL REVIEW C 63 044609
two-nucleon correlation is dominating, and concluded t
there is no disagreement between the data and the mode
RL , but RT is not explained. He claimed that there is n
collective enhancement of the pionic modes. However,
believe that there are many questions to be solved be
such conclusions are reached.

The experimental evaluation of the ratio was based on
plane-wave impulse approximation~PWIA! with effective
nucleon number approximation for absorption where
number of participant nucleons is estimated by a simple
konal approximation. Evidently we should take into accou
the effects of distortion more accurately. Since this cau
the nuclear responses to be of surface nature, the s
infinite slab model @13,14#, the surface response mod
@15,16#, and others, were introduced. The distorted wa
Born approximation analysis of the continuum spectra of
intermediate energy (p,n) reaction was carried out b
Izumotoet al. @17# where the response functions were calc
lated by the local-density approximation. The calculation
the distorted wave impulse approximation~DWIA ! for the
spin-longitudinal and spin-transverse cross sections,ID q and
ID p , in the continuum, was first performed by Ichimuraet

al. @18# for (pW ,pW 8). We utilized the response functions ca
culated by the continuum random-phase approximation~con-
tinuum RPA! with orthogonality condition@19#, which in-
cludes theD degrees of freedom. We there employed t
optimal factorization prescription@20–22# to deal with the
Fermi motion of the struck nucleon, restricted the spin
pendence of the nucleon-nucleon~NN! t matrix to the terms
with (s0•q̂)(s1•q̂), and (s03q̂)•(s13q̂), and neglected
the interference between the different spin-dependent te
of the NN t matrix. De Pace@23# treated the absorption b
the Glauber approximation and calculated the sp
longitudinal and spin-transverse cross section up to the t
step processes. He also used the same assumption for thNN
t matrix. Recently, Kimet al. @24# also developed a DWIA
formalism for calculating the spin observables in a form
inhomogeneous coupled-channel integral equations in
Tamm-Dancoff approximation. They also used the same
sumption for theNN interaction and further neglected th
spin-orbit force in the optical potential. Noting this situatio
we definitely need a more reliable method for analyzing
spin observables as well as the inclusive cross sections in
continuum.

In this paper, we develop a DWIA formalism for nucleo
nucleus~NA! scattering at the intermediate energy leading
the continuum, with the response functions nondiagonal w
respect to the momentum transfer as well as the spin di
tions. This method does not require the above restriction
the NN t matrix and can handle the interference between
different spin-dependent terms. Thus it is much more relia
for calculating the spin observables such asP,Ay , andDi j .

The original prediction of Albericoet al. @3# was based on
the theoretical framework of~1! the Fermi gas model,~2!
RPA, or more precisely the ring approximation, with t
one-pion plus one-rho-meson exchange interactions plus
contact interaction specified by the Landau-Migdal para
eters,g8’s (p1r1g8 model!, and ~3! the universality an-
04460
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satz, gNN8 5gND8 5gDD8 . A number of improvements hav
been made to various aspects of the method, such as u
the continuum RPA to treat the nuclear size effects@25,18#,
and removal of the universality ansatz@26,27#. In the previ-
ous continuum RPA calculations, the mean field was
sumed to be local and the spreading width of the particle w
treated by the complex potential, but that of the hole w
neglected. In this paper we take account of the nonlocality
the mean field by the radial-dependent effective ma
m* (r ), and the spreading width of the hole by the compl
binding energy.

Special importance has been put on the choice of
Landau-Migdal parameters. The position of the GT re
nance gives severe restriction on the value ofgNN8 ~'0.6–
0.7!. Effects of D isobar are very sensitive to the value
gND8 @26,27#, which is also crucial for the cause of th
quenching of the GT strength@28#. In the present analysis o
the quasielastic (pW ,nW ) reaction, we treatgND8 and the effec-
tive mass at the center of the nucleusm* (r 50) as the ad-
justable parameters, and thus try to evaluate the value
gND8 . This is one of the main aims of the present paper.

This paper is organized as follows. In Sec. II we summ
rize the general formulas for the cross sections and the
observables of the (NW ,NW 8) reactions, with special attention t
the polarized cross sectionsID i . In Sec. III, the PWIA for-
malism with the optimal factorization and the effectiv
nucleon number approximation is briefly reviewed becaus
has been used to extractRL andRT up to now.

In Sec. IV we present the DWIA formalism for the inte
mediate energy (NW ,NW 8) reactions to the continuum in coop
eration with the response functions, again utilizing the op
mal factorization. Since we treat the finite nucleu
calculations are carried out in the angular momentum rep
sentation, details of which are presented in Sec. V. We
scribe a way of calculating the response functions nondia
nal in the coordinate space as well as the spin space, w
involves the radial-dependent effective mass and the spr
ing widths of both the particle and the hole in Sec. VI.

In Sec. VII, we perform numerical analysis for the rea
tions 12C, 40Ca(pW ,nW ) at 494 MeV and at 346 MeV. We se
that the spin-longitudinal cross sections are reasonably
reproduced. This is consistent with the predicted enhan
ment ofRL. However, the spin-transverse cross sections
very much underestimated. The contradiction regarding
ratio RL/RT seems to come from the large difference b
tween the experiments and the theories inID p . This con-
firms the reported conclusion in the experimental pap
@8,9#.

In Sec. VIII we test the reliability of the conventiona
method for extracting the response functions by compar
the results of DWIA and PWIA with the effective nucleo
number. Section IX is devoted to some other questions s
as the effects of the spin-orbit force and the ambiguity of
optical potential. Section X consists of a summary and c
clusion.

II. GENERAL FORMULAS FOR CROSS SECTION
AND SPIN OBSERVABLES

We consider the~NA! inelastic and charge-exchange rea
tions to the continuum. First we summarize the gene
9-2
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DISTORTED WAVE IMPULSE APPROXIMATION . . . PHYSICAL REVIEW C 63 044609
formulas for the double differential cross section and the s
observables of a polarized nucleon scattering off a nucle

NW 1A→NW 81B. ~2.1!

In the NA center-of-mass~c.m.! system, we denote th
scattering angle byuc.m., and the momenta of the inciden
and outgoing nucleons byk i andk f , respectively. The mo-
mentum transfer to the scattering nucleon is given by

q5k f2k i , ~2.2!

and the energy transfer to the target is written as

vc.m.5EN~ki !2EN8~kf !, ~2.3!

whereEa(k)5Ak21ma
2 is the energy of a particlea with

massma . We use the unit system\51 andc51 throughout
this paper.

As the coordinate system, we use either

ẑ5
k i

uk i u
, ŷ5

k i3k f

uk i3k f u
, x̂5 ŷ3 ẑ ~2.4!

or

q̂5
q

uqu
, n̂5

k i3k f

uk i3k f u
, p̂5q̂3n̂. ~2.5!

These are called thex,y,z andq,n,p directions, respectively
The unpolarized double differential cross section is

pressed by theNA t matrix T as

I ~uc.m.,vc.m.![
d2s

dVc.m.dvc.m.
5

1

2~2JA11!

m im f

~2p!2

kf

ki

3 (
msf

msi

(
n

( 8
n0

u^k fmsf
CnuTuk imsi

Cn0
&u2

3d~vc.m.2@EB~kf !2EA~ki !# !, ~2.6!

wheremsi
(msf

) is the spin projection of the incident~outgo-

ing! nucleon andJA is the target spin, andm i andm f are the
relativistic reduced energies

m i5
EN~ki !EA~ki !

AsNA

, m f5
EN8~kf !EB~kf !

AsNA

~2.7!

with sNA5@EN(ki)1EA(ki)#2. The wave functionsCn0
and

Cn are intrinsic states of the targetA and of the residua
nucleusB, respectively. They are governed by the intrins
HamiltonianHA of the A-body system as

HACn5EnCn , ~2.8!

where HA includes the mass terms and thusEn means the
invariant mass of theA-body systems. Note that the fina
statesCn are mostly unbound. In the summation(n0

8 , n0

runs only over the degenerate ground states of the targeA.
04460
in
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-

To extract information of intrinsic states separately, w
introduce the intrinsic energy transferv and rewrite the cross
section of Eq.~2.6! as

I ~uc.m.,vc.m.!5
K

2~2JA11!
Tr@Tr8@TT†##, ~2.9!

with

Tr8@TT†#5(
n

( 8
n0

^CnuTuCn0
&^Cn0

uT†uCn&

3d~v2@En2En0
# !, ~2.10!

where Tr means the trace of the spin states of the incid
and exit nucleons. The kinematical factorK is given by

K5
m im f

~2p!2

kf

ki

dv

dvc.m.
5

m im f

~2p!2

kf

ki

AsNA

En
~2.11!

using the relationdv/dvc.m.5AsNA/En @29#. We note that
the presentK is equal to 2(2JA11)CK of Ref. @9#, 2(2JA
11)K(dv/dvc.m.) of Ref. @30#, andK(dv/dvc.m.) of Ref.
@29#.

We represent the Pauli spin operators in thei direction of
the kth nucleon byski . To unify the notation we also intro
ducesk0(51k) for the unit spin matrix of thekth nucleon.
The nucleon numberk50 denotes the incident or ex
nucleon. Then the polarization, the analyzing power, and
polarization transfer coefficients are given, respectively,

Py5
TrTr8@TT†s0y#

TrTr8@TT†#
, Ay5

TrTr8@Ts0yT
†#

TrTr8@TT†#
,

Di j 5
TrTr8@Ts0iT

†s0 j #

TrTr8@TT†#
, ~2.12!

wherei , j 5x,y,z or q,n,p.
The DWIA calculation is usually carried out in th

@ x̂,ŷ,ẑ# frame, while the@ q̂,n̂,p̂# frame is sometimes more
convenient for the theoretical analysis. The relation betw
Di j ( i , j 5q,n,p) andDi j ( i , j 5x,y,z) is given by

Dnn5Dyy ,

S Dpp Dpq

Dqp Dqq
D 5S cosup sinup

2sinup cosup
D S Dzz Dzx

Dxz Dxx
D

3S cosup 2sinup

sinup cosup
D , ~2.13!

whereup is the angle betweenp̂ and ẑ.
To extract nuclear responses, Bleszynskiet al. @31# de-

composed theNA t matrix in the@ q̂,n̂,p̂# frame as

T5T0s001Tns0n1Tqs0q1Tps0p ~2.14!
9-3
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and introduced the polarized cross sectionsID i , which ex-
tract Ti exclusively as

ID 05
I

4
@11Dnn1Dqq1Dpp#5

K

2JA11
Tr8@T0T0

†#,

ID n5
I

4
@11Dnn2Dqq2Dpp#5

K

2JA11
Tr8@TnTn

†#,

ID q5
I

4
@12Dnn1Dqq2Dpp#5

K

2JA11
Tr8@TqTq

†#,

ID p5
I

4
@12Dnn2Dqq1Dpp#5

K

2JA11
Tr8@TpTp

†#.

~2.15!

The unpolarized cross sectionI is expressed as

I 5ID 01ID n1ID q1ID p . ~2.16!

In the NA laboratory system we denote the angle, t
momenta, and the energy transfer corresponding
uc.m., k i , k f , and vc.m. by u lab, K i ,K f , and v lab, respec-
tively. The unit vectors

N̂5N̂85
K i3K f

uK i3K f u
, L̂5K̂ i , Ŝ5N̂3L̂ ,

L̂ 85K̂ f , Ŝ85N̂83L̂ 8 ~2.17!

are usually used to specify the directions, and are denote
N,L,S,N8,L8 andS8, respectively.

In this system, the unpolarized cross section is given

I lab~u lab,v lab!5
d2s

dV labdv lab
5

K f

kf
I ~uc.m.,vc.m.!, ~2.18!

due to the relation@32#

dVc.m.dvc.m.

dV labdv lab
5

sinuc.m.

sinu lab
5

K f

kf
, ~2.19!

and the observed polarization transfer coefficientsDi j ( i
5S,N,L; j 5S8,N8,L8) are obtained from the calculate
Di j ( i , j 5x,y,z) as

DNN85Dyy ,

S DLL8 DLS8

DSL8 DSS8D 5S Dzz Dzx

Dxz DxxD S cosa1 2sina1

sina1 cosa1 D
~2.20!

with a15u lab1V, whereV is the relativistic spin rotation
angle@30#.

By use of Eqs.~2.13!, ~2.15!, and ~2.20!, Di ’s are ob-
tained fromDi j ’s in the NA laboratory frame as@30#
04460
e
to

by

D05
1

4
@11DNN1~DSS81DLL8!cosa1

1~DSL82DLS8!sina1#,

Dn5
1

4
@11DNN2~DSS81DLL8!cosa1

2~DSL82DLS8!sina1#,

Dq5
1

4
@12DNN1~DSS82DLL8!cosa2

2~DLS81DSL8!sina2#,

Dp5
1

4
@12DNN2~DSS82DLL8!cosa2

1~DLS81DSL8!sina2# ~2.21!

with a252up2a1.

III. PLANE-WAVE IMPLUSE APPROXIMATION
FORMALISM

Before presenting the DWIA formalism, we briefly re
view the PWIA formalism@30#, which has conventionally
been used in the analysis of quasielastic scattering to ex
the spin response functions@4–9#. To avoid confusion, we
suppress the isospin andD degrees of freedom until Sec
III D, where we discuss these degrees of freedom in deta

A. Plane-wave impulse approximationt matrix

The PWIA t matrix in theNA c.m. system is written as

Tnn0

PW~k f ,k i !5^Cnu(
k51

A

tk~k f ,k i !uCn0
&, ~3.1!

where tk(k f ,k i) is the NN scatteringt matrix between the
incident nucleon and thekth nucleon in the nuclei.

To avoid the difficulty of Fermi momentum integration
the optimal factorization approximation@20–22,30# is often
used, wheretk(k f ,k i) is replaced by theNN t matrix in the
optimal frame,tk

h(k f ,k i), which is written as

tk
h~k f ,k i !5^k f ,p̃8utuk i ,p̃&5(

ab
tab
h ~k f ,k i !s0askb

5Ahs00sk01Bhs0nskn1C1
hs0nsk01C2

hs00skn

1D1
hs0pskq1D2

hs0qskp1Ehs0qskq

1Fhs0pskp . ~3.2!

The optimal momentap̃ and p̃8 of the struck nucleon in the
nucleus are given by

p̃5S 1

2
2h Dq2

k i1k f

2A
, p̃85p̃2q, ~3.3!
9-4



-

ot

n

es.

um-

e

in-

he
ive
-

DISTORTED WAVE IMPULSE APPROXIMATION . . . PHYSICAL REVIEW C 63 044609
respectively, and the parameterh is determined by the on
shell conditionEN(k i)1EN(p̃)5EN(k f)1EN(p̃8).

This NN t matrix in the optimal frame is obtained from
the observedNN t matrix in the c.m. frame,

tc.m.~k8,k!5^k8,2k8utuk,2k&

5 (
a8,b8

ta8b8
cm

~k8,k!s0a8s1b8

5A8s00s101B8s0nc
s1nc

1C8~s0nc
s101s00s1nc

!

1E8s0qc
s1qc

1F8s0pc
s1pc

, ~3.4!

wherek ~k8! is the initial ~final! relative momentum in the
NN c.m. scattering, which is determined fromk i (k f) and p̃
(p̃8). Here the coordinate system is determined by

q̂c5
qc

uqcu
, n̂c5

k3k8

uk3k8u
5n̂, p̂c5q̂c3n̂c ~3.5!

with qc5k82k. The relation betweenth(k f ,k i) and
tc.m.(k8,k) is given by

th~k f ,k i !5Jh~k f ,k i !Rspin
l tc.m.~k8,k!Rspin

r . ~3.6!

The Möller factor Jh is given by

Jh~k f ,k i !5
EN~k!2

AEN~k i !EN~k f !EN~ p̃!EN~ p̃8!
, ~3.7!

where we neglect the mass difference between the pr
and the neutron. The relativistic spin rotationsRspin

l andRspin
r

are given in Eq.~3.29! of Ref. @30#, and the relation betwee
tab
h and ta8b8

c.m. is explicitly given in Eq.~3.34! of Ref. @30#.
The approximationq'qc holds @30# for the reactions we

are interested in. Noting thatn̂c5n̂, we can identify the co-
ordinate system@ q̂,n̂,p̂# with @ q̂c ,n̂c ,p̂c#. We also showed
@30# that the approximationRspin

l(r) '1 holds. Therefore we can
safely write

tab
h ~k f ,k i !5Jh~k f ,k i !tab

c.m.~k8,k!, ~3.8!

namely,

Ah5JhA8, Bh5JhB8, C1
h5C2

h5JhC8,

D1
h5D2

h50, Eh5JhE8, Fh5JhF8. ~3.9!

From Eqs.~3.1! and ~3.2!, the PWIA t matrix with the
optimal factorization is given by

Tnn0

PW~k f ,k i !5(
a

(
b

tab
h ~k f ,k i !Fb

nn0~q!s0a ~3.10!

with the transition form factor
04460
on

Fb
nn0~q!5^Cnu(

k51

A

skbe
2 iq•rkdS (

k851

A

r k8D uCn0
&. ~3.11!

B. Response functions

From Eq. ~2.15!, the polarized cross sectionsI labDi in
PWIA are expressed as

I lab
PWDi

PW5K lab(
ab

t ia
h ~k f ,k i !Rba~q,v!t ib

h* ~k f ,k i !, ~3.12!

whereK lab5(K f /kf)K @see Eq.~2.19!# andRba(q,v) are the
response functions

Rba~q,v!5
1

2JA11 (
n

( 8
n0

Fa
nn0~q!Fb

nn0* ~q!

3d~v2@En2En0
# !, ~3.13!

which are determined solely by the nuclear intrinsic stat
Note thatRba depends on only the magnitudeq5uqu, be-
cause of the unpolarized target, i.e., the presence of the s
mation(n0

8 .

For comparison with the results of different nuclei, th
normalizedresponse functions

R̂ba~q,v!5
1

A
Rba~q,v!, ~3.14!

whose spin diagonal parts satisfy the relation

E R̂aa~q,v!dv→1 for q→`, ~3.15!

are more convenient.
Noting Eq. ~3.9!, I lab

PWDq
PW and I lab

PWDp
PW are simply

written, using the normalized spin-longitudinal and sp
transverse response functionsR̂L and R̂T as

I lab
PWDq

PW5K labAuEh~k f ,k i !u2R̂L~q,v!,

I lab
PWDp

PW5K labAuFh~k f ,k i !u2R̂T~q,v!, ~3.16!

where

R̂L~q,v!5R̂qq~q,v!,

R̂T~q,v!5
1

2
@R̂pp~q,v!1R̂nn~q,v!#5R̂pp~q,v!.

~3.17!

C. Effective nucleon number approximation for absorption

In practical analysis we must include the effects of t
absorption, which are usually treated by the effect
nucleon numberAeff estimated by the simple eikonal ap
proximation as
9-5
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Aeff5E
0

`

2pbn~b!exp@2n~b!s̃NN#db ~3.18!

with n(b)5*2`
` dzrA(Az21b2), whereb is the impact pa-

rameter,s̃NN is the totalNN cross section in the nuclea
medium, andrA is the nuclear density.

ThenI labDi ’s in PWIA with absorption,Ĩ labD̃ i , are given
with Aeff by

Ĩ labD̃ i5K labAeff(
ab

t ia
h ~k f ,k i !R̂ba~q,v!t ib

h* ~k f ,k i !,

~3.19!

and especially

Ĩ labD̃q5K labAeffuEh~k f ,k i !u2R̂L~q,v!,

Ĩ labD̃p5K labAeffuFh~k f ,k i !u2R̂T~q,v!. ~3.20!

This prescription is called the effective nucleon number
proximation.

D. Isospin and D degrees of freedom

Now let us take account of the isospin and theD isobar
degrees of freedom. Following Ref.@27# with some modifi-
cations, we introduce the unified notation of spin and isos
operators,ska

a andtkk
a , of thekth particle (N or D) as

ska
a 5H ska for a5N

Ska
† for a5D

Ska for a5D*

~3.21!

and

tkk
a 5H tkk for a5N

~Tk
†!k for a5D

Tkk for a5D*

~3.22!

with k5s,0,1,2 where

tks51k , tk65
tkx6 itky

A2
, tk05tkz, ~3.23!

and Sk and Tk are the standard spin and isospin transit
operators fromN to D.

We extend theNN t matrix of Eq. ~3.2! to that which
includes the isospin and theND channel in a restricted form
as

tk
h5tk

h(0)1tk
h(1)t0•tk1tk

h(D)t0•Tk1tk
h(D* )t0•Tk

†

5 (
a5N,D,D*

(
k5s,0,6

(
ab

tk,ab
ha ~k f ,k i !t0k

N tkk
a†s0a

N skb
a† .

~3.24!
04460
-

in

Note thatTk,2k5(Tk
†)k

†5tkk
D† and so on from the definition

~3.22!. The PWIA t matrix of Eq.~3.10! now becomes

Tnn0

PW~k f ,k i !5(
a

(
k

(
ab

tk,ab
ha ~k f ,k i !Fkb

nn0 ,a
~q!t0k

N s0a
N ,

~3.25!

where the transition form factor of Eq.~3.11! is generalized
as

Fka
nn0 ,a

~q!5^Cnu(
k51

A

tkk
a†ska

a†e2 iq•rkdS (
k851

A

r k8D uCn0
&.

~3.26!

Then the response function of Eq.~3.13! becomes

Rlk;ba
ba ~q,v!5

1

2JA11 (
n

( 8
n0

Fka
nn0 ,a

~q!Flb
nn0 ,b* ~q!

3d~v2@En2En0
# !, ~3.27!

where onlyRkk , R0s, andRs0 remain finite due to the charg
conservation.

Now the polarized cross sectionsI labDi are expressed in
PWIA as

I lab
PWDi

PW5K lab(
kl

^N8ut0k
N uN&^Nut0l

N†uN8&

3(
ab

(
ab

tk,ia
ha ~k f ,k i !Rlk;ba

ba ~q,v!tl,ib
hb* ~k f ,k i !.

~3.28!

The normalized response functions are usually introdu
only for the diagonal parts in the isospin space as@9#

R̂k;ba
ba ~q,v!5

1

Nk
Rkk;ba

ba ~q,v! ~3.29!

with

N252N, N05Ns5A, N152Z, ~3.30!

where N and Z are the numbers of neutrons and proton
respectively. The normalization relation then becomes

E R̂k;aa
NN ~q,v!dv→1 for q→` ~3.31!

if the D component does not exist in the ground state.
To use Eq.~3.28!, we need information aboutthD as well

as thN, but to our knowledge it is not available for such
very off-shell region. Suggested by thep1r exchange
model, we assume that

tk,aa
hD 5

f D

f N
tk,aa
hN ~3.32!

for k50,1,2 anda5q,n,p, wheref N and f D are thepNN
and thepND coupling constants, respectively, and negle
9-6
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other components. Then we define the normalized isove
spin-longitudinal and spin-transverse response functions
the D contribution,R̂k,L and R̂k,T , as@27#

R̂k,L5R̂k,qq
NN 12S f D

f N
D R̂k,qq

DN 1S f D

f N
D 2

R̂k,qq
DD ,

R̂k,T5R̂k,pp
NN 12S f D

f N
D R̂k,pp

DN 1S f D

f N
D 2

R̂k,pp
DD ~3.33!

in place of Eq.~3.17!.
For the (pW ,nW ) reaction, Eq.~3.20! are generalized as

Ĩ labD̃q54K labNeffuEh~k f ,k i !u2R̂2,L~q,v!,

Ĩ labD̃p54K labNeffuFh~k f ,k i !u2R̂2,T~q,v! ~3.34!

by using Eqs. ~3.28!–~3.30!, ~3.33!, and
^nut02up&^put02

† un&52. The effective neutron numberNeff

is defined in a similar way as that of Eq.~3.18!. For the
(nW ,pW ) reaction,Neff should be replaced by the effective pr
ton numberZeff and R̂2,L~T! by R̂1,L~T! . For the isovector
part of the (pW ,pW 8) or (nW ,nW 8) scattering, 4Neff should be re-
placed byAeff and R̂2,L~T! by R̂0,L~T! .

IV. DISTORTED WAVE IMPULSE APPROXIMATION
FORMALISM

We now present our DWIA formalism. To avoid unne
essary complexity, we suppress the isospin and theD degrees
of freedom until Sec. VI D.

A. Distorted wave impulse approximation t-matrix
in momentum representation

The matrix elements of the DWIAt matrix in theNA c.m.
system are written as

@Tnn0

DW~k f ,k i !#msf
msi

5^xk fmsf

(2) ~k8!Cnu

3 (
k51

A

tk~k8,k!uCn0
xkimsi

(1) ~k!& ~4.1!

in the momentum representation, wherexkimsi

(1) (k)

@xk fmsf

(2) (k8)# is the distorted wave in the momentum spa

with the incident~outgoing! momentumk i (k f) and the spin
projectionmsi

(msf
) in the asymptotic region. An importan

difference from the previous section is that the momentk
andk8 are now the integration variables, whereas in PW
they are fixed ask5k i andk85k f . To clarify this difference
we use the notations

q* 5k82k, ~4.2!

q̂* 5
q*

uq* u
, n̂* 5

k3k8

uk3k8u
, p̂* 5q̂* 3n̂* . ~4.3!
04460
or
th

As in the previous section, we again adopt the optim
factorization approximation and setq* 5qc , Rspin

l 5Rspin
r

51 and thus identify the@ q̂* ,n̂* ,p̂* # frame with the

@ q̂c ,n̂c ,p̂c# one. Then theNN t matrix in the optimal frame is
written as

tk
h~k8,k!5 (

a* b*
ta* b*
h

~k8,k!s0a* skb*

5Jh~k8,k! (
a* b*

ta* b*
c.m.

~k8,k!s0a* skb*

5Jh~k8,k!@A8s00sk01B8s0n* skn*

1C8~s0n* sk01s00skn* !1E8s0q* skq*

1F8s0p* skp* #, ~4.4!

wherea* ,b* 50,q* ,n* ,p* and the momentak and k8 are
determined byk and k8 through the coordinate transforma
tion between the optimal frame and theNN c.m. frame.

B. Distorted wave impulse approximationt matrix
in coordinate representation

Since the distorted wavesxkms

(6) are usually calculated in

the coordinate space, we now move to the coordinate re
sentation.

If tk
h(k8,k) were a function of onlyq* , i.e., tk

h(k8,k)
5tk

h(q* ), its coordinate representation would be local a

TDW would be written as

@Tnn0

DW~k f ,k i !#msf
msi

5^xk fmsf

(2) ~r !Cnu

3 (
k51

A

Vk~r2r k!uCn0
xkimsi

(1) ~r !& ~4.5!

with

Vk~r2r k!5E d3q*

~2p!3
tk
h~q* !eiq* •(r2rk) ~4.6!

and

xkms

(6)~r !5E d3k8

~2p!3
xkms

(6)~k8!eik8•r. ~4.7!

However, this is not the case in general. Neither the am
tudesta* b*

h (k8,k) nor the directionsa* ,b* 5n* ,p* in Eq.
~4.4! are determined only byq* .

The amplitudesta8b8
c.m. (k8,k) depend on bothqc5k82k

5q* andQc5k81k as well as the incident energy. Takin
the same approximation as Love and Franey@33#, we sup-
press theQc dependence and regard the amplitudes as o
functions of q* , namely, ta8b8

c.m. (q* ). We also replace the

Möller factor Jh(k8,k) by J̄h5Jh(k f ,k i) and thus it be-
comes independent ofk8 and k. This approximation works
for small angle scattering at high incident energy.
9-7
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As for the spin parts, the relationsB85F8 and C850
were assumed in Ref.@18#. Then tk

h(k8,k) became onlyq*
dependent, becauses0n* skn* 1s0p* skp* 5(s03q̂* )•(sk
3q̂* ). However, the approximation becomes poorer as
incident energy increases@34,35#. Therefore we rewrite and
approximatetk

h(k8,k) of Eq. ~4.4! as

tk
h~k8,k!'tk

h~q* !

5 J̄h$A8~q* !s00sk01E8~q* !~s0•q̂* !~sk•q̂* !

1F8~q* !~s03q̂* !~sk3q̂* !1@B8~q* !

2F8~q* !#s0nskn

1C8~q* !~s0nsk01s00skn!%, ~4.8!

wheren̂* in the last two terms is replaced with the averag
normal vectorn̂ of Eq. ~2.5!, which is independent ofk and
k8.

We now obtain the local interactionVk(r2r k) in the co-
ordinate space from Eq.~4.6!. Consequently the matrix ele
ments of the DWIAt matrix can be written as

@Tnn0

DW~k f ,k i !#msf
msi

5^CnuSmsf
msi

uCn0
& ~4.9!

with

Smsf
msi

[(
k

^xk fmsf

(2) ~r !uVk~r2r k!uxkimsi

(1) ~r !&. ~4.10!
e
p

04460
e

d

C. Cross sections and spin observables

Inserting the DWIAt matrix of Eq. ~4.9! into Eqs.~2.9!
and ~2.12!, we obtain the DWIA formulas for the cross se
tions and the spin observables. In this procedure we nee
prepare the response functions for the operatorSmsf

msi
of Eq.

~4.9!:

@RS~v!#msf
msi

;m
sf
8 m

si
8 [

1

2JA11
Tr8@Tmsf

msi
Tm

si
8 m

sf
8

†
#

5
1

2JA11 (
n

( 8
n0

@Tnn0
#msf

msi

3@Tn0n
† #m

si
8 m

sf
8 d~v2@En2En0

# !

5
1

2JA11 ( 8
n0

^Cn0
uSm

si
8 m

sf
8

†

3d~v2@HA2En0
# !Smsf

msi
uCn0

&.

~4.11!

Explicitly writing the operation Tr in Eqs.~2.9! and
~2.12!, we express the cross section and the spin observa
by RS as
I 5
K

2
~@RS#11;111@RS#12;121@RS#21;211@RS#22;22!,

IPy5KIm~@RS#11;211@RS#12;22!,

IAy5KIm~@RS#11;121@RS#21;22!,

ID xx5KRe~@RS#11;221@RS#12;21!,

ID xz5KRe~@RS#12;112@RS#22;21!,

ID yy5KRe~@RS#11;222@RS#12;21!,

ID zx5KRe~@RS#11;212@RS#22;12!,

ID zz5
K

2
~@RS#11;112@RS#12;122@RS#21;211@RS#22;22!, ~4.12!
where the suffices1 and 2 meansms5
1
2 and 21

2, respec-
tively.

V. ANGULAR MOMENTUM REPRESENTATION

Let us now move on to the angular momentum repres
tation in which calculation is actually carried out. We ado
n-
t

the @ x̂,ŷ,ẑ# frame and use the spherical tensor formskm
s

for the spin operators andn̂m for the normal vectorn̂, as
follows:

sk0
0 [1k sk 61

1 [7
skx6 isky

A2
, sk0

1 [skz , ~5.1!
9-8
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n̂6157
n̂x6 in̂y

A2
52

i

A2
, n̂05n̂z50. ~5.2!

According to Eq.~4.8!, the interactionVk(r2r k) can be decomposed as

Vk~r2r k!5V k
A~r2r k!1V k

E~r2r k!1V k
F~r2r k!1V k

B2F~r2r k!1V k
C1~r2r k!1V k

C2~r2r k!. ~5.3!

Each term of the right-hand side is given in the angular momentum representation as
A term

V k
A~r2r k!5 J̄hE d3q

~2p!3
A8~q!s00sk0eiq•(r2rk)

5 J̄h

2

p (
lm

E
0

`

j l~qrk!A8~q! j l~qr !q2dq@ i lYl~ r̂ k!3sk
0#m

l †@ i lYl~ r̂ !3s0
0#m

l

[(
lm

Vl
A~r k ,r !@ i lYl~ r̂ k!3sk

0#m
l †@ i lYl~ r̂ !3s0

0#m
l , ~5.4!

E term

V k
E~r2r k!5 J̄hE d3q

~2p!3
E8~q!~s0•q̂!~sk•q̂!eiq•(r2rk)

5 J̄h

2

p (
JM

(
l l 8

aJlaJl8E
0

`

j l~qrk!E8~q! j l 8~qr !q2 dq@ i lYl~ r̂ k!3sk
1#M

J †@ i l 8Yl 8~ r̂ !3s0
1#M

J

[(
JM

(
l l 8

VJll 8
E

~r k ,r !@ i lYl~ r̂ k!3sk
1#M

J †@ i l 8Yl 8~ r̂ !3s0
1#M

J , ~5.5!
F term

V k
F~r2r k!5 J̄hE d3q

~2p!3
F8~q!~s03q!~sk3q!eiq•(r2rk)

5 J̄h

2

p (
JM

(
l l 8

~d l l 82aJlaJl8!

3E
0

`

j l~qrk!F8~q! j l 8~qr !q2 dq

3@ i lYl~ r̂ k!3sk
1#M

J †@ i l 8Yl 8~ r̂ !3s0
1#M

J

[(
JM

(
l l 8

VJll 8
F

~r k ,r !

3@ i lYl~ r̂ k!3sk
1#M

J †@ i l 8Yl 8~ r̂ !3s0
1#M

J , ~5.6!
04460
(B2F) term

V k
B2F~r2r k!5 J̄hE d3q

~2p!3
@B8~q!2F8~q!#s0nskne

iq•(r2rk)

5 J̄h

2

p (
lm

(
JM

(
J8M8

(
mm8

^ lm 1muJM&

3^ lm 1m8uJ8M 8&n̂mn̂m8
†

3E
0

`

j l~qrk!@B8~q!2F8~q!# j l~qr !q2 dq

3@ i lYl~ r̂ k!3sk
1#M

J †@ i lYl~ r̂ !3s0
1#M8

J8

[(
JM

(
J8M8

(
l

VlJMJ8M8
B2F

~r k ,r !

3@ i lYl~ r̂ k!3sk
1#M

J †@ i lYl~ r̂ !3s0
1#M8

J8 ~5.7!
9-9
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C1 term

V k
C1~r2r k!5 J̄hE d3q

~2p!3
C8~q!s0nsk0eiq•(r2rk)

5 J̄h

2

p (
lm

(
JM

~2 !M2mn̂2(M2m)

3^ lm 1 M2muJM&

3E
0

`

j l~qrk!C8~q! j l~qr !q2 dq

3@ i lYl~ r̂ k!3sk
0#m

l †@ i lYl~ r̂ !3s0
1#M

J

[2(
lm

(
JM

VlmJM
C ~r k ,r !

3@ i lYl~ r̂ k!3sk
0#m

l †@ i lYl~ r̂ !3s0
1#M

J , ~5.8!

C2 term

V k
C2~r2r k!5 J̄hE d3q

~2p!3
C8~q!s00skne

iq•(r2rk)

5 J̄h

2

p (
lm

(
JM

n̂(M2m)^ lm 1 M2muJM&

3E
0

`

j l~qrk!C8~q! j l~qr !q2 dq

3@ i lYl~ r̂ k!3sk
1#M

J †@ i lYl~ r̂ !3s0
0#m

l

5(
lm

(
JM

VlmJM
C ~r k ,r ![ i lYl~ r̂ k!3sk

1] M
J †

3@ i lYl~ r̂ !3s0
0#m

l , ~5.9!

where j l(x) is the spherical Bessel function of the ord
04460
l, ^ lmsmuJM& is the Clebsch-Gordan coefficient, andaJl
[^J 0 1 0u l 0&. The spherical tensor product is express
as @ i lYl3ss#M

J [(mm^ lmsmuJM& i lYlm(V)sm
s .

For an optical potential with a spin-orbit force, the di
torted wavexkimsi

(1) (r ) is expressed in the angular momentu

representation as@36#

xkimsi

(1) ~r !5(
msi

8
xm

si
8 msi

(1)
~k i ,r !umsi

8 &

5
4p

kir
(

l imimi8 j i

(
msi

8 msi

^ l imismsi
u j imj i

&Yl imi
* ~ k̂ i !

3^ l imi8smsi
8 u j imj i

&Yl imi8
~ r̂ !i l ieis l iul i j i

(1)~ki ,r !umsi
8 &,

~5.10!

whereums& is the intrinsic spin state with thez projectionms
and s l is the Coulomb phase shift. The radial part of t
distorted waveul j

(1)(k,r ) has the asymptotic behavior

ul j
(1)~k,r !;eid l j sinS kr2hC ln 2kr2

lp

2
1s l1d l j D ,

~5.11!

wherehC is the Sommerfeld parameter andd l j is the nuclear
phase shift.

Using Eqs.~5.3! and ~5.10! together with Eqs.~5.4!–
~5.9!, we can write as

^xk fmsf

(2) ~r !uVk~r2r k!uxkimsi

(1) ~r !&

5 (
lsJM

S
( ls)JM

msf
msi ~k f ,k i ;r k!@ i lYl~ r̂ k!3sk

s#M
J †, ~5.12!

where
S
(J0)JM

msf
msi ~k f ,k i ;r k!5E

0

`

r 2drVJ
A~r k ,r ! f

(J0)JM

msf
msi ~k f ,k i ;r !2(

lm
E

0

`

r 2drVlmJM
C ~r k ,r ! f

( l1)JM

msf
msi ~k f ,k i ;r ! ~5.13!

S
( l1)JM

msf
msi ~k f ,k i ;r k!5(

l 8
E

0

`

r 2dr$VJll 8
E

~r k ,r !1VJll 8
F

~r k ,r !% f
( l 81)JM

msf
msi ~k f ,k i ;r !

1 (
J8M8

E
0

`

r 2drVlJMJ8M8
B2F

~r k ,r ! f
( l1)J8M8

msf
msi ~k f ,k i ;r !1(

m
E

0

`

r 2drVlmJM
C ~r k ,r ! f

( l0)lm

msf
msi~k f ,k i ;r !

~5.14!

with
9-10
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f
( ls)JM

msf
msi ~k i ,k f ;r !

[ (
msf

8 msi
8
E dV rxm

sf
8 msf

(2)* ~k f ,r !^msf
8 u@ i lYl~ r̂ !3s0

s#M
J umsi

8 &xm
si
8 msi

(1)
~k i ,r !

5
A24p

kikf r
2
A~2J11!~2l 11! (

l i j i
(
l f j f

i l i1 l 2 l fei(s l f
1s l i

)ul f j f

(1)~kf ,r !ul i j i

(1)~ki ,r !~2l i11!A~2 j i11!~2l f11!^ l i0l0u l f0&

3H l f sf j f

l i si j i

l s J
J ^ l i0simsi

u j imsi
&^ l fmfsfmsf

u j fmsi
1M &^ j imsi

JMu j fmsi
1M &~2 !

mf1umf u
2 A~ l f2umf u!!

~ l f1umf u!!
Pl f

umf u~cosu!.

~5.15!
he
. It
ions
g

the
We can now writeSmsf
msi

of Eq. ~4.10! as

Smsf
msi

5 (
lsJM

E
0

`

S
( ls)JM

msf
msi ~k i ,k f ;r !r ( ls)JM

† ~r !r 2dr, ~5.16!

where

r ( ls)JM~r !5 (
k51

A
d~r 2r k!

rr k
@ i lYl~ r̂ k!3sk

s#M
J dS (

k851

A

r k8D ,

~5.17!
which is the radial part of the transition density

rm
s ~r ![(

k51

A

skm
s d~r2r k!dS (

k851

A

r k8D
5 (

lsJM
^ lmsmuJM&r ( ls)JM~r !@ i lYlm~ r̂ !#* . ~5.18!
04460
VI. CALCULATION OF RESPONSE FUNCTIONS

In Sec. IV, we presented a method of calculating t
cross sections and the spin observables by using DWIA
was shown that what we need are the response funct
RS(v) of Eq. ~4.11!. Here we describe a way of calculatin
them.

A. Polarization propagator

Following Refs. @37,27#, we introduce the polarization
propagators for the spin-dependent transition density in
angular momentum representation as
P ( l 8s8)J8M8;( ls)JM~r 8,r ;v![
1

2JA11 (
n

( 8
n0

F ^Cn0
ur ( l 8s8)J8M8~r 8!uCn&^Cnur ( ls)JM

† ~r !uCn0
&

v2~En2En0
!1 ih

1
^Cn0

ur ( ls)JM
† ~r !uCn&^Cnur ( l 8s8)J8M8~r 8!uCn0

&

2v2~En2En0
!1 ih G

5
1

2JA11 ( 8
n0

^Cn0
uFr ( l 8s8)J8M8~r 8!

1

v2~HA2En0
!1 ih

r ( ls)JM
† ~r !

1r ( ls)JM
† ~r !

1

2v2~HA2En0
!1 ih

r ( l 8s8)J8M8~r 8!G uCn0
&

5dJJ8dMM8PJ( l 8s8)( ls)~r 8,r ;v!. ~6.1!

By using the Wigner-Eckart theorem, we can prove thatP ( l 8s8)J8M8;( ls)JM are diagonal with respect toJ andM and indepen-
dent ofM. The corresponding response functions are defined as
9-11
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RJ( l 8s8)( ls)~r 8,r ;v![
1

2JA11 (
n

( 8
n0

^Cn0
ur ( l 8s8)JM~r 8!uCn&^Cnur ( ls)JM

† ~r !uCn0
&d~v2@En2En0

# !

52
1

p
Im PJ( l 8s8)( ls)~r 8,r ;v!. ~6.2!

Using Eqs.~5.16! and ~5.17!, we obtain the response functionRS(v) of Eq. ~4.11! as

@RS~v!#msf
msi

;m
sf
8 m

si
8 5(

JM
(
ls

(
l 8s8

E
0

`

r 2 drE
0

`

r 82 dr8S
( l 8s8)JM

msf
8 msi

8 *
~k f ,k i ;r 8!RJ( l 8s8)( ls)~r 8,r ;v!S

( ls)JM

msf
msi ~k f ,k i ;r !. ~6.3!
e

ar
s

on

tu

ect
nce
the
leus

ld

-

Inserting theseRS into Eq. ~4.12!, we can calculate
the double differential cross section and the spin obs
vables.

In the following we consider only the case where the t
get nucleus is a doubly closed shell. Therefore we can
JA50 and omit the summation overn0, and denoteEn0

and

Cn0
simply by E0 andC0, respectively.

B. Single-particle model

A simple approximation to evaluate the polarizati
propagators is the single-particle model. In this modelHA is
replaced by the single-particle model Hamiltonian

H (0)5(
k

S 2
¹k

2

2m
1UkD 1DE0 , ~6.4!

where m5@(A21)/A#mN , Uk is the mean field for the
kth nucleon, andDE0 consists of the masses of the consti
04460
r-

-
et

-

ent nucleons and the energy shift to give the corr
total Hartree-Fock energy of the target ground state. Si
there appears only the energy difference between
target ground state and the final state of the residual nuc
for the response functions, we discard the termDE0
from now on.

The mean fieldUk is determined as the Hartree-Fock fie
for the target nucleus and the single-particle energyea is
given by the equation

S 2
¹2

2m
1U Dfa5eafa . ~6.5!

We writeea of the unoccupied state byep and that of theoc-
cupied state byeh . Note that ea is measured from one
nucleon separation threshold of the target.

1. Polarization propagator

The polarization propagator is given by
is is
PJ( l 8s8)( ls)
(0)

~r 8,r ;v!5(
ph

F ^F0ur~ l 8s8!JM~r 8!uph&^phur ( ls)JM
† ~r !uF0&

v2~ep2eh!1 ih
1

^F0ur ( ls)JM
† ~r !uph&^phur~ l 8s8!JM~r 8!uF0&

2v2~ep2eh!1 ih G , ~6.6!

whereuph& denotes a one-particle-one-hole state andF0 is the ground state of the target in the single-particle model. Th
called theuncorrelatedpolarization propagator.

The infinite sum overp can be handled by the single-particle Green’s function@38# as

PJ( l 8s8)( ls)
(0)

~r 8,r ;v!5(
ph

FB( l 8s8)J~h,p!
uh* ~r 8!

r 8

gp~r 8,r ;v1eh!

r 8r

uh~r !

r
B~ ls!J* ~h,p!

1B( l 8s8)J~p,h!
uh* ~r !

r

gp~r ,r 8;2v1eh!

rr 8

uh~r 8!

r 8
B~ ls!J* ~p,h!G , ~6.7!
9-12
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wherep andh denote the sets of the single-particle quant
numbersp5( l pspj p) andh5(nhl hshj h), respectively, and

B( ls)J~a,b!5A2 j a11A2 j b11H l a sa j a

l b sb j b

l s J
J ^ l auu i lYl uu l b&

3^sauussuusb&. ~6.8!

The radial part of the single-particle Green’s function
given by

gp~r 8,r ;E!5
2m

W~ f p ,hp!
f p~r , ,E!hp~r . ,E!, ~6.9!

where W is the Wronskian andr ,(.) denotes the smalle
~larger! one of r and r 8. The radial wave functionsuh , f p
and hp are the bound state, the regular and the irregu
solution of Eq.~6.5!, respectively.

2. Spreading widths

To take account of the spreading width of the parti
states, we adopt a complex potential for the single-part
potentialU as in Ref.@18#

U~r !5V~r !1 iW~r !, ~6.10!

while we use the real potential for the hole states. For suc
choice, the orthogonality between the hole and the part
wave functions is destroyed. We therefore utilize the
thogonality condition prescription@19# , details of which are
explained in Ref.@39#.

To take account of the spreading widthgh of the hole
states, we replace the hole energyeh by the complex energy
@40,41#

ẽh5eh1 i
gh

2
. ~6.11!

3. Effective mass

In principle the single-particle potentialU is nonlocal, and
thus the Schro¨dinger equation for the single-particle states

2
1

2m
“

2f~r !1E dr 8U~r ,r 8!f~r 8!5ef~r !.

~6.12!

We deal with this nonlocality by an effective-mass appro
mation@42,36#. We first introduce the Wigner transformatio
of the potentialU(r ,r 8) as

Ũ~r ,q!5E dsUS r1
s

2
,r2

s

2Deiq•s. ~6.13!

We assume thatŨ is spherically symmetric with respect tor
and q, respectively, and write it asŨ(r ,q2). We expand it
with respect toq2 around the square of the local momentu
k(r ):
04460
r

le

a
le
-

-

k2~r !52me2Ũ~r ,k2~r !!, ~6.14!

and we keep only the terms up to the first order. Introduc
the radial-dependent effective massm* (r ) as

m* ~r !

m
5 f ~r !5S 112m

]Ũ~r ,k2~r !!

]k2 D 21

, ~6.15!

we obtain the equation

F“S 2
1

2m* ~r !
“ D 1UL~r !2

1

8 S“2
1

m* ~r !
D Gf~r !

5ef~r !, ~6.16!

where the local potentialUL(r ) is

UL~r !5
1

f ~r !
$Ũ~r ,k2~r !!2e%1e. ~6.17!

Since we do not know aboutU(r ,r 8), we determineUL(r )
and f (r ) phenomenologically. Note that here we only co
sider thek mass but not theE mass.

C. Ring approximation

Next let us take account of the nuclear correlati
by means of RPA. To treat the exchange terms of R
we further utilize the ring approximation, which replac
the exchange effects by a contact interaction. T
polarization propagator then satisfies the RPA equa
@43,37,27#

PJ( l 8s8)( ls)~r 8,r ;v!5PJ( l 8s8)( ls)
(0)

~r 8,r ;v!

1 (
l 1s1l 2s2

E
0

`

r 1
2 dr1r 2

2dr2PJ( l 8s8)( l 1s1)
(0)

~r 8,r 1 ;v!

3WJ( l 1s1)( l 2s2)~r 1 ,r 2!PJ( l 2s2)( ls)~r 2 ,r ;v!, ~6.18!

whereWJ( l 1s1)( l 2s2)(r 1 ,r 2) is the radial part of the effective
interaction as

V~r1 ,r2!5(
JM

(
l 1s1l 2s2

@ i l 1Yl 1
~ r̂1!3s1

s1#M
J†

3WJ( l 1s1)( l 2s2)~r 1 ,r 2!@ i l 2Yl 2
~ r̂2!3s2

s2#M
J .

~6.19!

D. Isospin and D degrees of freedom

From Sec. IV up to here we have suppressed the
spin and theD degrees of freedom, but of course w
have to include them in the actual calculation. Here
summarize the final formulas including these degrees
freedom. As was discussed in Sec. III D, the releva
quantities carry the superscripta (5N,D,D* ) and the isos-
pin subscriptk. The extension is straightforward and eas
understood.

The transition density operator~5.17! is to be
9-13
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rk( ls)JM
a ~r !5 (

k51

A
d~r 2r k!

rr k
tkk

a @ i lYl~ r̂ k!3sk
as#M

J

3dS (
k851

A

r k8D , ~6.20!

and thus the response function~6.2! becomes

Rlk,J( l 8s8)( ls)
ba

~r 8,r ;v!

[
1

2JA11 (
n

( 8
n0

^Cn0
url( l 8s8)JM

b (r 8!uCn&

3^Cnurk( ls)JM
a† ~r !uCn0

&d~v2@En2En0
# !. ~6.21!

Further details are given in Ref.@27#.
The NN t matrix was generalized as Eq.~3.24!. Corre-

spondingly, the source function~5.12! is generalized as

^xk fmsf

N8(2)~r !uVk~r2r k!uxkimsi

N(1)~r !&

5(
k

^N8ut0k
N uN&(

a
(

lsJM
S

k( ls)JM

amsf
msi ~N8k f ,Nk i ;r k!

3tkk
a †@ i lYl~ r̂ k!3sk

as#M
J † ~6.22!
us

s

o

he
en
e
ar

t

04460
with N,N85p or n, which specifies the reaction type. He
the generalized forms of Eqs.~5.13! and ~5.14! are

S
k( ls)JM

amsf
msi ~N8k f ,Nk i ;r k!

5( E
0

`

r 2 drVk•••
aX ~r k ,r ! f

•••

msf
msi~N8k f ,Nk i ;r ! ~6.23!

with

f
( ls)JM

msf
msi ~N8k f ,Nk i ;r !5 (

msf
8 msi

8
E dV rxm

sf
8 msf

N8(2)* ~k f ,r !

3^msf
8 u@ i lYl~ r̂ !3s0

Ns#M
J umsi

8 &

3xm
si
8 msi

N(1)
~k i ,r !, ~6.24!

where Vk•••
aX are the generalized forms o

VJ
A ,VC

lmJM,VJll 8
E ,VJll 8

F , andVlJMJ8M8
B2F .

Finally, we obtain
@RS
(N,N8)~v!#msf

msi
;m

sf
8 m

si
8 5(

lk
^Nut0l

N†uN8&^N8ut0k
N uN&(

ab
(
JM

(
ls

(
l 8s8

E
0

`

r 2 drE
0

`

r 82 dr8S
l( l 8s8)JM

bmsf
8 msi

8 *
~N8k f ,Nk i ;r 8!

3RlkJ( l 8s8)( ls)
ba

~r 8,r ;v!S
k( ls)JM

amsf
msi ~N8k f ,Nk i ;r ! ~6.25!
ol-

and

th
in place of Eq.~6.3!.

VII. NUMERICAL CALCULATIONS

We apply the DWIA formalism presented in the previo
sections to the intermediate energy (pW ,nW ) reactions around
the quasielastic peaks. We calculate the polarized cross
tions ID q and ID p of the reactions observed at LAMPF@8#
and RCNP@9# as summarized in Table I.

A. Choice of parameters

First we present the parameters that we selected for
numerical calculations.

1. Optical potentials

For the optical potentials of the incident proton and t
outgoing neutron, we took the global optical potential giv
by Cooperet al. @44#. It is designed for the proton but w
used it even for the neutron by excluding the Coulomb p
To study the optical potential dependence, we also used
proton optical potential given by Joneset al. @45# and the
ec-

ur

t.
he

neutron global optical potential given by Shenet al. @46#. For
the potentials which have the form of the Dirac phenomen
ogy, we rewrote them in the Schro¨dinger equivalent form
and solved the nonrelativistic Schro¨dinger equation to obtain
the distorted waves. We used the relativistic kinematics
the reduced energy prescription.

2. Effective mass, single-particle potentials, and spreading wid

We have to determinef (r ) andUL(r ), as was discussed
in Sec. VI B 3. Suggested by Ref.@47#, we assumef (r ) has
the form

f ~r !5
m* ~r !

m
512

b

11exp@~r 2R!/a#
~7.1!

with R5r 0A1/3, since we consider only thek mass. Note that
m* (r 50)'(12b)m. The parameterb will be adjusted to
reproduce the energy spectra ofID q .

For UL we used the form
9-14
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UL~r !52~V01 iW0!
1

11exp@~r 2R!/a#

2
2

mp
2

Vls

a

exp@~r 2R!/a#

$11exp@~r 2R!/a#%2
l•s1VCoul, ~7.2!

whereVCoul is the Coulomb potential of a uniformly charge
sphere with the radiusRc5r cA

1/3. The shape parameters a
fixed at r 05r c51.27 fm and a50.67 fm @48#, and the
nucleon spin orbit potential depthVls is chosen to be 6.5
MeV for 12C and 10.0 MeV for40Ca, respectively@27#. The
real-potential depthV0 is determined in such a way as
give the observed separation energy of the outermost o
pied state of the target nucleus.

Using the phenomenological energy-dependent rela
for the spreading width@49#

g~e!521.5F ~e2eF!2

~e2eF!21182GF 1102

~e2eF!211102G ~7.3!

in units of MeV with the Fermi energyeF , we set the imagi-
nary potential parameterW0 for the particle to beW0
5 1

2 g(ep), and the hole spreading widthgh to be gh
5g(eh).

For D, we setmD51232 MeV, V0530 MeV, andW0
5Vls50.0 MeV @27#.

3. Effective interaction for ring approximation

We take RPA correlation into account only in the isove
tor spin-vector channel (T51,S51 in Sec. III D!. For other
channels, we simply use the uncorrelated response funct
For the effective interaction in the isovector spin-vec
channel, we employ the (p1r1g8) model, in which it is
written as

Vab~r12r2 ;v!

5~t1
a
•t2

b!@VL
ab~r12r2 ;v!1VT

ab~r12r2 ;v!#

~7.4!

with

VL
ab~r12r2 ;v!

[E d3q

~2p!3
eiq•(r12r2)WL

ab~q,v!~s1
a
•q̂!~s2

b
•q̂!,

~7.5!

TABLE I. Reactions to be analyzed. The values ofqc.m. are
those around the peak.

Target Ei , lab ~MeV! u lab qc.m. (fm21) Refs.

12C 494 18° 1.70 @8#

346 22° 1.67 @9#
40Ca 494 18° 1.71 @8#

346 22° 1.68 @9#
04460
u-

n

-

ns.
r

VT
ab~r12r2 ;v!

[E d3q

~2p!3
eiq•(r12r2)WT

ab~q,v!~s1
a3q̂!•~s2

b3q̂!.

~7.6!

HereWL
ab andWT

ab are given by

WL
ab~q,v!5

f a f b

mp
2 S gab8 1Ga

p~q,v!Gb
p~q,v!

q2

v22q22mp
2 D ,

~7.7!

WT
ab~q,v!

5
f a f b

mp
2 S gab8 1Cab

r Ga
r ~q,v!Gb

r ~q,v!
q2

v22q22mr
2D ,

~7.8!

wheremp (5139 MeV! andmr (5770 MeV! are the pion
and ther-meson masses, respectively, and the coeffic
Cab

r is the ratio of ther-meson coupling to the pion one. Th
q dependence of the Landau-Migdal parametersgab8 is ne-
glected@50# and the vertex form factors are chosen to be

Ga
p~q,v!5

mp
2 2Lp

2

v22q22Lp
2

, Ga
r ~q,v!5

mr
22Lr

2

v22q22Lr
2

, ~7.9!

whereLp andLr are the cutoff parameters. We note that w
can identifyD* with D in gab8 , f a , Cab

r , andGa
p(r) .

We set the parameters asf N
2 51.0, f D / f N52.0, Cab

r

52.18, Lp51300 MeV, andLr52000 MeV@3#. As to the
Landau-Migdal parameters, we fixgNN8 50.6, gDD8 50.5, and
we adjustgND8 to reproduce the observedID q as well as
possible.

4. Energy shift

The nuclear structure model used here is a simple one
is based on the mean-field approximation with the RPA c
relation, because we are interested in only gross structur
highly excited states in the continuum. Apparently the mo
does not well represent the structure of the low-lying sta
especially the ground states of the deformed nucleus12C.
Therefore the excitation energy obtained by the pres
model should be smaller than the observed one, becaus
real ground-state energy should be lower than that given
the model.

To remedy this shortcoming, we made the followin
modification. The observed energy spectra of12C @7,9# show
the eminent peak of the unresolved 42 and 22 states of12N.
We artificially add 5 MeV to the energy transferv to coin-
cide the calculated peak to the observed one for the un
related case (m* 5m and no RPA correlation!. For the cor-
related case, this energy shift becomes 3.5 MeV, but we k
the 5 MeV shift for all different parameter sets. This sm
difference of energy shift does not affect our conclusion.
shift was made for40Ca.
9-15
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5. Convergence

In the actual calculations, we have to limit the infini
range of the summations and integrations by judging fr
their convergence. The maximum angular momenta of
distorted waves were fixed at 40, and the maximum tra
ferred angular momenta were set at 9 for12C and 12 for40Ca
for both the incident energies, because the transferred
menta are close in both cases.

The maximum momentum for the Fourier transformati
from the momentum space to the coordinate space was s
be 4 fm21, though the main contribution comes fromq near
the observed transferred momenta shown in Table I.
radial integration was limited up to 10 fm, since the respo
functions are well damped at this radius.

B. Results of distorted wave impulse approximation
calculations

First we try to reproduce the spin-longitudinal cross s
tion ID q of the 12C(pW ,nW ) reactions at 494 MeV by adjustin
the Landau-Migdal parametergND8 and the effective mass a
the centerm* (r 50), namely, parameterb, within a reason-
able range.

The results are shown in theID q part of Fig. 1. The
dashed line denotes the result withm* (0)5m ~i.e., b50)
and without the RPA correlation. The dotted line denotes
RPA results with the universality ansatzgNN8 5gND8 5gDD8
50.6 and again withm* (0)5m. We see that the experimen
tal data are much larger than these two results, and there
we reducedgND8 , guided by the fact that the response fun
tions increase asgND8 decreases@27#. The dot-dashed
line shows the RPA results with (gNN8 ,gND8 ,gDD8 )
5(0.6,0.3,0.5) andm* (0)5m. Now ID q drastically in-
creases but the peak position is much lower than the
served one, owing to the softening. We then reduced
effective massm* , guided by the prediction of the Fermi ga
model (vpeak5q2/2m* ) and the numerical calculation o
Itabashi@41#. The full line represents the RPA result wit
(gNN8 ,gND8 ,gDD8 )5(0.6,0.3,0.5) and withm* (0)'0.7m(b
50.3). By this change ofm* , the peak position moves u
very close to the observed one, though the peak valu
reduced. This is consistent with the Fermi gas predict
(3m* /4qpF , pF being the Fermi momentum!. Now the fit is
very much improved by the choice of these parameters
ID q .

The results ofID p are shown in the right panel of Fig. 1
We see that the RPA correlation withgNN8 5gND8 5gDD8
50.6 markedly quenchesID p , as was predicted, wherea
the observed data are very much enhanced. When we re
gND8 the results increase considerably, but are still quenc
at low v. When we further reduce the effective mass,
peak shifts upwards. We found that all of the calculated
sults are much smaller than the observedID p . In the end, we
could not reproduce the observedID p by changing these
parameters within reasonable ranges.

With the same sets of parameters we calculated the o
reactions given in Table I. Figure 2 shows the results
40Ca (pW ,nW ) at 494 MeV and Fig. 3 shows the results for12C,
04460
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40Ca (pW ,nW ) at 346 MeV. The features of the results are co
mon for all cases, though the fit ofID q is somewhat better
for the case of 494 MeV than for that of 346 MeV.

VIII. TEST OF EFFECTIVE NUCLEON NUMBER
APPROXIMATION

In the previous experimental papers@8,9# the response
functions were extracted by means of PWIA with the effe
tive nucleon number approximation described in Sec. III. W
test this prescription by comparing the PWIA resu
(I PWDi

PW) with the DWIA results (I DWDi
DW).

For detailed analysis, we also introduce mode-depend
effective nucleon numbers defined by@9#

Neff
L ~v!5N

I DWDq
DW~v!

I PWDq
PW~v!

, Neff
T ~v!5N

I DWDp
DW~v!

I PWDp
PW~v!

. ~8.1!

They depend on the spin-longitudinal~L! and spin-transverse
~T! modes as well as the excitation energyv, though the
effective nucleon numberAeff determined by Eq.~3.18! ~ef-
fective neutron numberNeff in the present case! is indepen-
dent of them.

In the present analysis, we try to getNeff
L(T) (v) without the

v dependence by estimating them at a certainv near the

FIG. 1. DWIA results ofID q and ID p for 12C(pW ,nW ) at 494
MeV. The dashed line denotes the result withm* 5m and without
the RPA correlation. The dotted and the dot-dashed lines repre
the RPA results of (gNN8 ,gND8 ,gDD8 )5(0.6,0.6,0.6) and (0.6,0.3,0.5
with m* 5m, respectively. The solid line shows the RPA results
(0.6,0.3,0.5) withm* (r 50)50.7m. Experimental data are take
from Taddeucciet al. @8#.
9-16
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peak. The obtainedNeff
L(T) , with and without the RPA corre

lation, are summarized in Table II.
For the uncorrelated cases, we found thatNeff

L 'Neff
T and

thus we set them equal and denote both of them byNeff
(0) in

common. We note that Wakasaet al. @9# reported thatNeff

estimated by Eq.~3.18! and Neff
(0) obtained above, are ver

close, and also note that the estimation ofNeff by Eq. ~3.18!
is somewhat ambiguous because the equation includes
uncertain totalNN cross section in the nuclear medium
Therefore here we identifyNeff with Neff

(0) .

FIG. 2. The same as Fig. 1, but for40Ca(pW ,nW ).
04460
the

The PWIA cross sections multiplied byNeff
(0)/N5Neff /N

~dashed lines! and the DWIA cross sections~solid lines!
without the correlation are compared in Figs. 4~a! and 4~c!
and Figs. 5~a! and 5~c! for cases of12C and 40Ca with the
incident energy 494 MeV, and12C and 40Ca with 346 MeV,
respectively. Thev-independent approximation holds we
only for theID q of 12C at 346 MeV, but not so well for othe
cases. This is an indication of poorness of the effect
nucleon number approximation.

The results with the RPA correlation are compared
Figs. 4~b! and 4~d! and Figs. 5~b! and 5~d! for cases of12C
and 40Ca with 494 MeV, and12C and 40Ca with 346 MeV,
respectively. The DWIA results, the PWIA results multiplie
by Neff

L(T) /N, and the PWIA results multiplied byNeff /N are
denoted by the solid, the dashed, and the dotted lines, res
tively. The RPA calculations are carried out wit
(gNN8 ,gND8 ,gDD8 )5(0.6,0.3,0.5) andm* (0)50.7m. Once the
RPA correlation is included,Neff

T is increased butNeff
L is re-

duced and thus they differ very much from each other. T
difference is especially very large for40Ca. This is another
strong indication of the poorness of theNeff method. The
above changes ofNeff

L andNeff
T , due to the RPA correlation

may be explained in the following way. The enhancemen
RL and the quenching ofRT are stronger in the higher
density region~the inner part! but they are masked by th
stronger absorption in this region. Consequently, we sho
decreaseNeff

L to reduce the enhancement seen in PWIA b
increaseNeff

T to reduce the quenching.
The large difference, especially for40Ca, between the

results of the effective nucleon number approximati
~the dotted lines! and the DWIA results~the solid lines!
clearly shows that the conventional way of obtaining t
response functions does not work quantitatively. Theref
the DWIA calculation is definitely necessary in the quanti
tive analysis.
FIG. 3. The same as Fig. 1, but for~a! 12C(pW ,nW ) and~b! 40Ca(pW ,nW ) at 346 MeV. The experimental data are taken from Wakasaet al. @9#.
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TABLE II. Effective neutron number. ‘‘No’’ means the no
correlation~uncorrelated! cases.

Ei ~MeV! Target Correlation Neff
L Neff

T

494 12C No 2.17 2.17
RPA 2.12 2.39

40Ca No 4.00 4.00
RPA 3.60 5.78

346 12C No 2.58 2.58
RPA 2.53 2.82

40Ca No 4.62 4.62
RPA 4.25 7.00
04460
IX. DISCUSSION

1. Effect of the spin-orbit force

One of our main concerns in the DWIA calculation is th
effects of the spin-orbit force of the optical potentials. W
compared the numerical results with and without the sp
orbit force in Fig. 6 for 12C(pW ,nW ) at 346 MeV. The RPA
correlation was not included in this analysis. We found th
effects are larger forI lab

DWDq
DW than for I lab

DWDp
DW . Fortu-

nately, however, they are so small that the spin-orbit fo
does not greatly disturb the separation between the s
longitudinal and spin-transverse responses. We also repo
similar results for12C(pW ,nW ) at 494 MeV@51#.
d by
FIG. 4. Comparison of DWIA and PWIA results at 494 MeV:~a! without and~b! with the RPA correlation for12C(pW ,nW ) and~c! without

and ~d! with the RPA correlation for40Ca(pW ,nW ). The solid and the dashed lines denote the DWIA and the PWIA results multiplie
Neff

(0)/N(5Neff /N) in ~a! and~c! and byNeff
L(T) /N in ~b! and~d!, respectively. The dotted lines denote the PWIA results multiplied byNeff /N

in ~b! and ~d!. The values ofNeff
(0) andNeff

L(T) are shown in the figure.
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FIG. 5. The same as Fig. 4, but at 346 MeV.
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2. Ambiguity of the optical potential

To investigate the effects of the ambiguity of the optic
potentials, we compared the results in terms of the glo
optical potential given by Cooperet al. @44# with those in
terms of the proton optical potential given by Joneset al.
@45# and the neutron global optical potential given by Sh
et al. @46#. Figure 7 shows the comparison ofI lab

DWDq
DW and

I lab
DWDp

DW for 12C(pW ,nW ) at 346 MeV. Here the RPA correla
tion was not included. We found that the ambiguity hard
affects the results.

3. Ambiguity of the NN amplitude

It has been pointed out@9# that the theoretical results ar
affected to some extent by the ambiguity of theNN scatter-
ing amplitudes obtained by the phase-shift analyses. To
termine the influence of this ambiguity we compared
04460
l
al

n

e-
e

results with theNN amplitude obtained by Bugg and Wilkin
@34# and with that obtained by Arndt and Roper@35#. Figure

8 shows the results ofI lab
DWDq

DW andI lab
DWDp

DW for 12C(pW ,nW ) at
346 MeV without the RPA correlation. The effects are le
than 15%, and they are different forI lab

DWDq
DW and I lab

DWDp
DW .

4. Two-step processes

De Pace@23# calculated the one- and the two-step cont
butions in terms of the Glauber approximation. He found t
the two-step process is more effective forID p than forID q .
He concluded thatID q is reasonably explained but that the
is a large discrepancy between the observed and the one
results forID p , and that the two-step contribution is sizab
but not sufficient to provide an explanation of the large d
crepancy. TheD contribution was not included in his analy
sis. He made the simple assumption for the two-step proc
9-19
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that the first step is caused by the spin-scalar isospin-sc
and the second step by the pureE (F) amplitude and vice
versa.

Nakaoka and Ichimura@29# evaluated the two-step contr
bution through its ratio to the one-step one obtained
PWIA with an on-energy-shell approximation. They too
into account all five terms of theNN amplitudes in both the
first and second steps. They also found that the two-s
process is more effective forID p than for ID q . For ID q it
accounts in large part for the discrepancy between the DW
and the experimental results in high energy transfer regio
They also found that the two-step contribution does not h
to reduce the large discrepancy seen inID p . Recently, Na-
kaoka@52# reported that the two-step effect becomes twice
much as the previous result, when the off-energy-shell ef
is included.

5. Remaining problems

There still remain various other points to be consider
especially keeping in mind the large discrepancy inID p . On
the structure side, they are~1! nuclear correlations beyon
RPA, which has been evaluated by various auth
@53,54,12#, ~2! use of genuine RPA@55# instead of the
ring approximation, and~3! self-consistency between th
mean field and RPA@56,57#, etc. On the reaction side
they include ~1! removal of the optimal factorization ap
proximation,~2! removal of the averagedn̂ approximation,
~3! off-shell effects of theNN t matrix, and~4! more realistic
NN2ND transitiont matrix, etc.

X. SUMMARY AND CONCLUSION

We first summarized the general formulas for the pol
ized cross sections,ID i , of the (NW ,N8W ) scattering to the

FIG. 6. Comparison of the DWIA results with~full line! and

without ~dashed line! the spin-orbit force for12C(pW ,nW ) at 346 MeV.
04460
lar
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continuum, which are closely related to the nuclear spin
sponse functions. We then reviewed the PWIA formalism
the intermediate energy (NW ,N8W ) reactions, treating the Ferm
motion by the optimal factorization and the absorption by
effective nucleon number approximation. TheD isobar de-

FIG. 7. Comparison of the results with various optical potenti

for 12C(pW ,nW ) at 346 MeV. The full lines denote the results with th
potential obtained by Cooperet al. @44# for both the proton and the
neutron, while the dashed lines denote the results with the pote
by Joneset al. @45# for the proton and by Shenet al. @46# for the
neutron.

FIG. 8. Comparison of the results with theNN amplitudes given
by Bugg and Wilkin~full line! @34# and by Arndt~dashed line! @35#

for 12C(pW ,nW ) at 346 MeV.
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grees of freedom are also included. This has been wid
used to extract the nuclear response functions.

Since the reliability of this method has been question
we here developed the DWIA formalism for the intermedia
energy (NW ,N8W ) reactions to the continuum incorporated wi
the continuum RPA method. This formalism is described
the angular momentum representation in the coordin
space with the response functions,RJ( l 8s8)( ls)(r 8,r ;v),
which are nondiagonal in the coordinate space as well a
the spin space. The formalism still involves the optimal fa
torization and the averaged reaction normal approximatio

The response function calculation includes the rad
dependent effective mass and the spreading widths of
particle and the hole. The RPA correlation are calculated
use of the interaction of the (p1r1g8) model.

The presented formalism is applied to12C, 40Ca (pW ,nW ) at
346 and 494 MeV in the quasielastic region. In this analy
the Landau-Migdal parameters and the effective mass
treated as adjustable parameters.

From this analysis, we draw the following conclusions
~1! The observed spin-longitudinal cross sectionsID q are

reasonably well reproduced by adjustinggND8 andm* and by
adding the two-step contribution. The analysis indicates
the smallergND8 ('0.3) and the smaller effective mass at t
center (m* '0.7) are preferable. This claim of the small
gND8 is consistent with the conclusion obtained from t
analysis of the GT resonances by Suzuki and Sakai@28#.

~2! The observed spin-transverse cross sectionsID p are
much larger than the calculated ones and cannot be re
duced within the present theoretical framework. Howev
one must note thatRT corresponding to the observedID p is
.
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also much larger than that obtained by (e,e8). This confirms
the previously reported conclusion@8,9#.

~3! The Neff method, which has been conventionally us
to obtain the response functions, is found to be a quan
tively poor approximation, especially for heavier nuclei su
as Ca. The DWIA analysis is definitely needed in the qu
titative analysis.

~4! From these findings, we stress that the observation
RL /RT<1 does not necessarily constitute evidence aga
the enhancement ofRL and of pions in nuclei. We rathe
conclude that the present experimental data support the
hancement ofRL . The contradiction regarding the ratio
comes from the extraordinarily enhancedID p . Before draw-
ing any definite conclusion about the response functions,
must disentangle the anomalously largeID p puzzle.

~5! We also investigated the effects of the spin-or
distortion and the ambiguity of the optical potential a
the NN t matrix, and found that they are not especially s
nificant.
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