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Liquid-gas phase transitions in a multicomponent nuclear system
with Coulomb and surface effects

S. J. Lee* and A. Z. Mekjian
Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08855

~Received 26 June 2000; published 16 March 2001!

The liquid-gas phase transition is studied in a multicomponent nuclear system using a local Skyrme inter-
action with Coulomb and surface effects. Some features are qualitatively the same as the results of Mu¨ller and
Serot where a relativistic mean field was used without Coulomb and surface effects. Surface tension brings the
coexistence binodal surface to lower pressure. The Coulomb interaction makes the binodal surface smaller and
causes another pair of binodal points at low pressure and large proton fraction with fewer protons in the liquid
phase and more protons in the gas phase.
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I. INTRODUCTION

The liquid-gas phase transition in nuclei was first stud
using a Skyrme interaction and focused mostly on o
component systems of just nucleons even though express
were developed for two-component systems of protons
neutrons@1#. The phase transition aspects are considera
easier to study in one-component systems rather than
where, for example, one has to deal with separate proton
neutron chemical potentials for charge and nucleon num
conservation. Initial fragmentation models also mostly de
with one-component systems. Such fragmentation stu
gave the first evidence for the liquid-gas phase transition
nuclear systems@2,3#. Since then, the liquid-gas phase tra
sition has been extensively studied experimentally and th
retically. Several reviews exist on this topic@4–6#.

Because of the two-component nature of real nuclear
tems, an analysis of liquid-gas phase transitions in these
tems is important. Some preliminary results were reporte
Ref. @1#, and a very detailed study was done by Mu¨ller and
Serot@7# who used a relativistic mean field model to devel
the main thermodynamic properties of asymmetric nucl
matter. One interesting new aspect of two-component s
tems compared to one-component systems is that the p
transition is a second-order transition in their approach. T
importance of the number of components on the order of
transition was pointed out by Glendenning@8#. Another in-
teresting aspect of two-component systems is the possib
of having different proton-neutron ratios in the liquid and g
phases because of the symmetry energy, while still cons
ing the overall initial proton fraction. The study of nucle
systems with arbitrary proton-neutron ratios is important
radioactive beam experiments and in astrophysical situat
such as in neutron stars. Because of the extra degree of
dom associated with varying proton fractiony in the two
phases, the phase diagram has a higher dimensionality
now becomes a surface in pressureP, temperatureT, and
proton fractiony or nucleon densityr. For one-componen
systems the phase diagram is represented as a binodal

*Permanent address: Physics Department and Institute of Na
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of P versus densityr or volumeV, whose end points at fixed
T give the liquid and gas densities. The Maxwell press
versusT in one-component systems is a line that terminate
the critical temperatureTc . For two-component systems, th
binodal surface associated with phase coexistence
(P,T,y) now contains some new elements@7#. One new el-
ement is a line of critical points~LCP! having the same den
sities both in liquid and gas phases. A second new eleme
a line of maximal asymmetry~LMA ! in the neutron-proton
ratio. A third new line arises as a line of equal concentrat
~LEC! having the same proton concentrationy in both liquid
and gas phases with different nucleon densityr. These lines
come from the intersection of the binodal surface with fix
T planes. For a fixedT this intersection forms a loop ofP
versus y. The condition (dy/dP)T50 gives the point of
maximal asymmetry~MA ! or smallest proton ratio at thatT
and the condition (dP/dy)T50 with (d2P/dy2)T,0 gives a
critical point ~CP! at that T. On the other hand, both th
liquid side and gas side of the binodal curve come toget
with equal concentration~EC! of y at the minimum pressure
of the binodal curve at thatT. The LMA, LCP, and LEC are
then generated by considering these points as a functionT.
Without a Coulomb interaction, the symmetry energy brin
the LEC toy50.5. For the interaction used in Ref.@7#, the
LEC is the same as the intersection of the binodal surf
with the planey50.5 of a symmetric system and is the sam
as for a one-component system. The extreme end point
these lines are the same point, which is the critical poin
Tc .

In this paper we extend the initial study of Ref.@1# using
a Skyrme interaction in a similar way as done in Ref.@7#.
Some features are qualitatively the same as in Ref.@7#, but
quantitatively differ because of the different interaction. O
equation of state based on the Skyrme interaction with C
lomb and surface effects has some features also not pre
in Ref. @7# which will also be discussed. According to th
results of Ref.@7# which has no Coulomb interaction, th
liquid phase has a higher proton fraction than the gas ph
of mixed phases in the coexistent state. A real nucleus
fewer protons than neutrons due to the Coulomb interact
For a givenA5N1Z stability is determined by Coulomb
and symmetry energy effects. Since a stable finite nucl
has zero internal pressure while the gas phase has pos
pressure@9#, we also need to consider surface effects. In t

ral
,
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paper we consider the effects of the Coulomb interaction
surface tension by considering a uniform spherical fin
nuclear system. Various dynamic approaches exist for
study of the Coulomb interaction and surface effects
asymmetric nuclear system. For example, Ref.@10# is an
investigation of the role of the Coulomb interaction on t
growth of unstable modes. These authors use a linear
Vlasov equation as a semiclassical approximation to a qu
tal random phase approximation~RPA! approach and also
consider results from a RPA study. The growth rates of
stable modes were also studied in Refs.@11,12# using a
Skyrme interaction. The calculation of Ref.@11# is based on
the Vlasov equation while that of Ref.@12# uses a RPA
method. References@10,12# show that the Coulomb interac
tion reduces the chemical instability region, an effect wh
is also found here. However, a new effect appears in
work which is the appearance of a new pair of binodal poi
at low pressure and large proton fraction which is discuss

In Sec. II, the main equations for the thermodynam
properties of hot nuclear matter in mean field theory are
veloped as a function of densityr, temperatureT, and proton
fractiony or neutron fraction (12y). These include the pres
sure and chemical potentials, both neutronmn and proton
n

e
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mp , where phase equilibrium requires equality of the prot
chemical potential between the two phases and simila
equality of the neutron chemical potentials at a given te
perature andP. At fixed T andP, r andy are not independen
and we use this connection to simplify the analysis. This c
be done because we use a Skyme interaction which lead
a series of simple closed form expressions, thereby mak
the analysis of the thermodynamic properties of asymme
nuclear matter much easier. Section III contains the result
calculations performed using the equations developed in S
II. Conclusions are given in Sec. IV.

II. PHASE TRANSITION IN MEAN FIELD THEORY

For phase transitions we look at the pressureP and chemi-
cal potentialsmq for each component of a multicompone
system~neutron and proton, for example! as functions of
temperatureT and densitiesrq of the constituents. Thes
quantities can be obtained once we know the total ene
functional E as a function of the densitiesrq at a given
temperatureT.

At a given temperatureT51/b, the constituents are dis
tributed in phase space according to the Wigner functionf as
e

f ~rW,pW !5(
q

f q~rW,pW !, f q~rW,pW !5
g

h3
f̃ q~rW,pW !5

g

h3

1

eb(eq2mq)11
, ~1!

where the spin degeneracyg52 andeq andmq are the single-particle energy and the chemical potential of particle typq.
Then the particle densityr becomes

r~rW !5(
q

rq~rW !, rq~rW !5E d3p fq~rW,pW !, ~2!

A5(
q

Nq5E d3rr~rW !, Nq5E d3rrq~rW !5E d3r E d3p fq~rW,pW !, ~3!

and the total energy is

E5E d3rE~rW !5E d3r E d3p
p2

2m
f ~rW,pW !1E d3rU ~rW !5E d3r @EK~rW !1U~rW !#, ~4!
e

with the potential energy densityU(rW) and the kinetic energy
densityEK(rW). These, in turn, give self-consistent equatio
for mq ~or pFq) in a mean field theory for fixedT andNq ,

eq5
dE

d f q
5

dE~rW !

d f q~rW,pW !
5

p2

2m
1

dU

d f q
5

p2

2m
1uq~rW,pW !, ~5!

mq5equp5pFq
5

pFq
2

2m
1uq~rW,pW Fq!, ~6!

where we definepFq in Eq. ~6! and consider it as an effectiv
s

Fermi momentum atT of particleq, which is the momentum
associated with the chemical potential, anduq5dU/d f q is
the single-particle potential of particleq which may be mo-
mentum dependent in general.

The pressureP can be defined dynamically from th
total momentum conservation law (d/dt)@*d3r *d3ppW f #

52*d3r¹W r•PJ50 using the Vlasov equation@13#

] f q

]t
1~¹W peq!•~¹W r f q!2~¹W req!•~¹W pf q!50 ~7!
5-2
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or more generally from hydrodynamic consideration of time dependent Hartree-Fock in phase space@14#:

¹W r•PJ52
d

dt F E d3ppW (
q

f q~rW,pW !G52(
q
E d3ppW S ] f q

]t D5(
q
E d3ppW ¹W r•@~¹W peq! f q#1(

q
E d3p fq~¹W req!•~¹W ppW !.

~8!

Using (q(¹W req) f q5(q¹W r(eqf q)2(qeq¹W r f q5(q¹W r(eqf q)2¹W rE, the dynamical pressure tensorP i j becomes

P i j 5(
q
E d3ppj~¹p

i eq! f q1d i j F E d3p(
q

eqf q2EG
5(

q
E d3ppj¹p

i S dE
d f q

D f q1d i j F(
q
E d3pS dE

d f q
D f q2EG

5(
q
E d3ppjFpi

m
1¹p

i S dU

d f q
D G f q1d i j F(

q
E d3pS dU

d f q
D f q2UG . ~9!

For a momentum-independent potential, this becomes

P i j 5(
q
E d3p

pipj

m
f q1d i j F(

q
S dU

drq
D rq2UG5E d3p(

q

pipj

m
f q1d i j (

q
rq

2 d~U/rq!

drq
. ~10!

The diagonal elements are

P5P i i 5(
q
E d3p

pi
2

m
f q1(

q

dU

drq
rq2U5PK1(

q
uqrq2U5PK1PP , ~11!
-
g
be

l

nd
where PK5*d3p(pi
2/m) f and PP5(quqrq2U are the ki-

netic pressure and interaction~potential! pressure, respec
tively. In equilibriumP can also be obtained by minimizin
the total energy as a function of volume, holding the num
of particles fixed:

P5P i i 52
d~E/A!

dV
5r2

d~E/r!

dr
~12!

for a single-component uniform system.
From the distributionf̃ q of Eq. ~1!, the entropyS can be

obtained as

S5(
q

Sq5E d3rS5E d3r(
q

Sq , ~13!

Sq52
g

h3E d3p@ f̃ q ln f̃ q1~12 f̃ q!ln~12 f̃ q!#

5
g

h3E d3p
1

3
pW •~¹W pf̃ q!lnF f̃ q

12 f̃ q
G

5
g

h3E d3p
1

3
pW •~¹W pf̃ q!b~mq2eq!, ~14!

using ¹W p•(pW g)53g1pW •¹W pg. The Sq becomes, by partia
integration@15#,
04460
r

Sq5bE d3p
1

3
pW •¹W p@~mq2eq! f q#

2bE d3p
1

3
pW •¹W p~mq2eq! f q

5bE d3p~eq2mq! f q1bE d3p
pW •¹W peq

3
f q

5bE d3peqf q1bE d3p
pW •¹W peq

3
f q2bmqE d3p fq .

~15!

In equilibrium thermodynamics, the thermodynamic gra
potential V, the Helmholtz free energyF, and the Gibb’s
free energyG are

V52E d3rP

52
1

b
ln Tr expF2bS Ĥ2(

q
mqN̂qD G

5F2G5E2TS2(
q

mqNq , ~16!

F5E d3rF52
1

b
ln Tr e2bĤ5E2TS5TE Edb,

~17!
5-3
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G5E d3rG5
1

b
ln Tr expS b(

q
mqN̂D

5(
q

mqNq

5E d3r(
q

mqrq . ~18!

Comparing Eq.~15! with Eq. ~9! for diagonal elements usin
pi¹p

i 5 1
3 pW •¹W p ~isotropic condition in momentum,pi

25 1
3 p2),

TS5E1P2(
q

mqrq5E2F5EK1PK2(
q

~mq2uq!rq ,

~19!

F5(
q

mqrq2P5(
q

~mq2uq!rq2PK1U, ~20!

G5(
q

Gq5(
q

mqrq . ~21!

The entropy can also be found fromdQ5TdS5CdT:

DS5E dQ

T
5E CdT

T
5E 1

T

dE

dT
dT

5E b
dE

db
db5bE2E Edb5b~E2F !. ~22!

The pressure and the chemical potential are also relate
the free energyF as

P52
]F

]V U
T,A

52
]V

]VU
T,A

, ~23!

m5
]F

]A U
T,V

. ~24!

The specific heat capacity is given by, from the entropy
particle,S/r,

cP5TS ]S/r

]T D
P

or cV5TS ]S/r

]T D
V

. ~25!

To study the caloric curve or the specific heat we look at
energy per particleE/r and the entropy per particleS/r.

For multiphase multicomponent systems, the phase t
sition of each component can occur at different conditio
such as temperature or pressure. However, in general we
treat all different possible combinations of phases of e
component in the multicomponent system as different pha
of the system.~As an example suppose we have a system
particles of typep and particles of typen, each having a
liquid-gas phase transition but at different temperatur
Then the system can be in one of the following four phas
a phase of liquidp and liquidn, a phase of liquidp and gas
n, a phase of gasp and liquidn, or a phase of gasp and gas
04460
to

r

e

n-
s
an
h
es
f

s.
s:

n.! Then, to separate each phase of the multicomponent
tem, we can use the volume fractionl i of i phase of the total
volumeV which depends onT,

l i5Vi /V with (
i

l i51, ~26!

rq5(
i

l irq
i , ~27!

O~rq ,T!5(
i

l iO~T,rq
i !, ~28!

whereO is any observable per unit volume. Within the spi
odal instability region, there is no equilibrated phase. Two
multiple phases can coexist when the pressureP and each
chemical potentialmq are all the same among these phas
i.e.,

Pi5Pj , ~29!

mq
i 5mq

j , ~30!

with different values ofrq
i and rq

j for all i and j. At the
critical point,

]P

]rq
5

]2P

]rq
2

50, ~31!

]mq

]rq
5

]2mq

]rq
2

50. ~32!

Spinodal instability occurs when]P/]rq is negative.
Once the potential energyU in Eq. ~4! is known, then the

possibility of a phase transition of the system can be stud
using Eqs.~1!–~25!. The potential energyU determineseq
and mq and the potential energy part ofE and P. Then for
fixed T and Nq , the Wigner functionf and pFq are deter-
mined and thus the kinetic terms ofE, mq , and P. Using
these results, the entropyS andcP can be determined. Rela
tivistic mean field theory is used for the interaction in Re
@7#. The role of the Coulomb interaction and surface ene
or the finite size effect of a nucleus are neglected in Ref.@7#
but will be included in the approach developed here. Th
result shows that the neutron evaporates first as the energ
the system increases, leaving more charge concentrate
liquid phase. In this approach the coupled equations
nucleons and mesons lead to a highly nonlinear system
thus the equation of state can be obtained only throug
self-consistent iterative way. These problems may be sim
fied by using a nonrelativistic zero-range Skyrme interact
of

v125t0~11x0Ps!d~rW12rW2!

1
t3

6
~11x3Ps!raS rW11rW2

2
D d~rW12rW2!. ~33!
5-4
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TABLE I. Parameter sets for the Skyrme interaction@1,16#.

Force a t0 ~MeV fm3) x0 t3 ~MeV fm3(11a)) x3

PRC45 1 4
3 C1521089.0 1/2 16

a12
C2517480.4

21/2

ZR1 1 21003.9 0.0, 0.2, 0.5 13287.2 1.0
ZR2 2/3 21192.2 0.0, 0.2, 0.5 11041.0 1.0
ZR3 0.1 24392.2 0.0, 0.2, 0.5 26967.3 1.0
b
o

io
e
b

be
nc
yp
Fo

e
t

E
-

l

mi

n-
For a nuclear system of proton (rp) and neutron (rn), this
gives the local potential energy density as

U~rq!5
t0

2 S 11
x0

2 D r22
t0

2 S 1

2
1x0D(

q
rq

2

1
t3

12S 11
x3

2 D ra122
t3

12S 1

2
1x3D ra

3(
q

rq
21Crbrp

21Csr
h. ~34!

Here Crb5(4p/5)e2R2 and Csr
h54pR2s(r)/V

5@(4pr 0
2s)/V1/3#r2/3 when we approximate the Coulom

and surface effects as coming from a finite uniform sphere
radiusR5r 0A1/3 with total chargeZ (UC5 3

5 e2Z2/RV). This
way of handling the Coulomb interaction and surface tens
is a simplification of a very difficult problem. Despite th
limitation of the geometry used to calculate the Coulom
interaction, we feel that the results obtained from it will
instructive and also very useful in accessing its importa
on the phase transition in two-component systems. The t
cal values for the force parameters are given in Table I.
a symmetric nucleus,N5Z, rq5r/2, and thus

U~r!5
3

8
t0r21

3

48
t3ra121Crbrp

21Csr
h. ~35!

This potential energy determines the interaction-depend
terms ofE, P, eq , andmq which depend on densities withou
explicit T dependence.

For a momentum-independent potential energy as in
~34!, eq2mq5(p22pFq

2 )/(2m) is independent of the poten
tial and

f q~rW,pW !5
g

h3
f̃ q~rW,pW !, f̃ q~rW,pW !5

1

eb(p22pFq
2 )/(2m)11

.

~36!

Thus we can evaluate the kinetic terms inE, P, andmq which
are functions ofT and pFq . Defining the Fermi integra
Fa(h),

Fa~hq!5E
0

` xa

11ex2hq
dx5S l2

4p\2D a11

E
0

` 2p2a11dp

11ebp2/2m2hq
,

~37!
04460
f
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q.

hq5b~mq2uq!5bpFq
2 /~2m!5pFq

2 /~2mT!5 ln zq ,
~38!

l5A2p\2/mT, ~39!

we can write, forf (rW,pW )5 f (rW,p),

rq5E d3p fq~rW,pW !5
g

h3E d3p
1

eb(p22pFq
2 )/(2m)11

5l23
2g

Ap
F1/2~hq!, ~40!

eFq[
\2

2m S 6p2

g
rqD 2/3

, ~41!

EKq5
3

2
PKq5E d3p

p2

2m
f q~rW,pW !

5
g

h3E d3p
p2

2m

1

eb(p22pFq
2 )/(2m)11

5
4g\2Ap

m
l25F3/2~hq!

5
1

b

2g

Ap
l23F3/2~hq!. ~42!

HereeFq is the chemical potential at absolute zero or Fer
energy andpFq is the effective Fermi momentum atT. The
particle numberNq5*d3rrq(rW) determines the effective
Fermi momentumpFq(rW) or hq at T, in terms of density
rq(rW),

hq~rq ,T!5b~mq2uq!5b
pFq

2

2m
5F1/2

21SAp

2g
l3rqD .

~43!

For multi- ~two-!component systems with potential e
ergy given by Eq.~34!, for a givenrq ~or pFq) andT,
5-5
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mq~rq ,T!5Thq~rq ,T!1t0S 11
x0

2 D r1
t3

12S 11
x3

2 D ~a12!ra112
t3

12S 1

2
1x3Dara112t0S 1

2
1x0D rq

1
t3

12S 1

2
1x3D ~a21!2rarq2

t3

12S 1

2
1x3D2ara21rq

21Cbrb21rp
212Crbrpdq,p1hCsr

h21, ~44!

P~rq ,T!5(
q

2

3
EKq~rq ,T!1

t0

2 S 11
x0

2 D r21
t3

12S 11
x3

2 D ~a11!ra122
t0

2 S 1

2
1x0D(

q
rq

2

2
t3

12S 1

2
1x3D ~a11!ra(

q
rq

21C~b11!rbrp
21Cs~h21!rh, ~45!

E~rq ,T!5(
q

EKq~rq ,T!1
t0

2 S 11
x0

2 D r22
t0

2 S 1

2
1x0D(

q
rq

21
t3

12S 11
x3

2 D ra12

2
t3

12S 1

2
1x3D ra(

q
rq

21Crbrp
21Csr

h, ~46!

TS~rq ,T!5(
q

5

3
EKq~rq ,T!2(

q
~mq2uq!rq5(

q

5

3
EKq~rq ,T!2T(

q
hq~rq ,T!rq , ~47!

cP~rq ,T!5
dQ/A

dT
5TS ]S/r

]T D
P

or cV~rq ,T! 5 TS ]S/r

]T D
V

. ~48!

Once we evaluateF1/2(h) and F3/2(h), or more directlyh5F1/2
21(x) and F3/2(h), we can evaluate various thermodynam

quantities in terms ofrq andT.
For the low temperature and high density limit,l3r large, i.e., when the average de Broglie thermal wavelengthl is larger

than the average interparticle separationr21/3, we can use nearly degenerate~Fermi gas! approximations@17# for F1/2 to obtain

hq~rq ,T!5b~mq2uq!5b
pFq

2

2m
5F1/2

21SAp

2g
l3rqD 5eFqF12

p2

12 S T

eFq
D 2

1•••G
5

\2

2m S 6p2

g D 2/3Frq
2/32

p2m2

3\4 S g

6p2D 4/3

T2rq
22/31•••G , ~49!

EKq~rq ,T!5
2g

bAp
l23F3/2~hq!5

3

5
rqeFqF11

5p2

12 S T

eFq
D 2

1•••G
5

3\2

10m S 6p2

g D 2/3Frq
5/31

5p2m2

3\4 S g

6p2D 4/3

T2rq
1/31•••G . ~50!

In the other limit wherel3r is small, we have a nearly nondegenerate Fermi gas~classical ideal gas! and the resulting
equations are given by an ideal gas in leading order with higher order corrections@17# as

hq~rq ,T!5b~mq2uq!5 lnFrql3

g S 11
1

2A2

rql3

g
1••• D G' lnS rql3

g D1
1

2A2
S rql3

g D , ~51!

EKq~rq ,T!5
3

2
PKq5

3

2
rqTF11

1

25/2

rql3

g
1S 1

8
2

2

35/2D S rql3

g D 2

1•••G . ~52!

For a nuclear system with protons and neutrons with the interaction given by Eq.~34!, the nondegenerate Fermi gas lim
of Eqs.~51! and ~52! leads to the following set of equations:
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mq~r,y,T!5T lnF S l3

g D rqG1
T

2A2
S l3

g D rq1t0S 11
x0

2 D r1
t3

12S 11
x3

2 D ~a12!ra112
t3

12S 1

2
1x3Dara112t0S 1

2
1x0D rq

1
t3

12S 1

2
1x3D ~a21!2rarq2

t3

12S 1

2
1x3D2ara21rq

21Cbrb21rp
212Crbrpdq,p1hCsr

h21

5T lnH S l3

g D Fr2 6~2y21!S r

2D G J 1
T

2A2
S l3

g D Fr2 6~2y21!
r

2G1
3

4
t0r7S 1

2
1x0D t0~2y21!S r

2D1
~a12!

16

3t3ra112
1

6 S 1

2
1x3D t3Fa~2y21!2S r

2D 2

6~2y21!S r

2D rGra211
1

4
C@b12~161!#rb11

1CF ~b1161!~2y21!S r

2D r1b~2y21!2S r

2D 2Grb211hCsr
h21, ~53!

P~r,y,T!5Tr1
T

2A2
S l3

g D S (
q

rq
2

2
D 1

t0

2 S 11
x0

2 D r21
t3

12S 11
x3

2 D ~a11!ra122
t0

2 S 1

2
1x0D(

q
rq

2

2
t3

12S 1

2
1x3D ~a11!ra(

q
rq

21C~b11!rbrp
21Cs~h21!rh

5Tr1
3

8
t0r21

~a11!

16
t3ra121

T

2A2
S l3

g D S r

2D 2

1
~b11!

4
Crb121~h21!Csr

h

2F t0S 1

2
1x0D1S a11

6 D t3S 1

2
1x3D ra2

T

2A2
S l3

g D2~b11!CrbG ~2y21!2S r

2D 2

1~b11!Crb11~2y21!

3S r

2D , ~54!

E~r,y,T!5
3

2
Tr1

3

2

T

2A2
S l3

g D S (
q

rq
2

2
D 1

t0

2 S 11
x0

2 D r22
t0

2 S 1

2
1x0D(

q
rq

21
t3

12S 11
x3

2 D ra12

2
t3

12S 1

2
1x3D ra(

q
rq

21Crbrp
21Csr

h

5
3

2
Tr1

3

8
t0r21

1

16
t3ra121

3

2

T

2A2
S l3

g D S r

2D 2

1
1

4
Crb121Csr

h

2F t0S 1

2
1x0D1S 1

6D t3S 1

2
1x3D ra2

3

2

T

2A2
S l3

g D2CrbG ~2y21!2S r

2D 2

1Crb11~2y21!S r

2D , ~55!

TS~r,y,T!5
5

2
Tr2T(

q
rq lnS l3

g
rqD1

T

2A2
S l3

g D S (
q

rq
2

4
D

5TrF5

2
2y lnS l3

g
yr D2~12y!lnS l3

g
~12y!r D G1

T

2A2
S l3

g D @11~2y21!2#

2 S r

2D 2

. ~56!

Here, for the proton density (rp) and neutron density (rn), we defined
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r5rp1rn , r35rp2rn5~2y21!r, y5rp /r,

rp5 1
2 ~r1r3!5yr, rn5 1

2 ~r2r3!5~12y!r,

(
q

rq
25

1

2
~r21r3

2!5
@11~2y21!2#

2
r25@112y~y21!#r2,

(
q

rq
35

1

4
r~r213r3

2!5
@113~2y21!2#

4
r35@113y~y21!#r3. ~57!

The6 in mq stands1 for q5 proton and2 for neutron. Equation~54! shows that, forx3Þ21/2 andCÞ0, theP(r) curve
for different values ofy at fixed T may cross at somer. Moreover, the minimum pressure for a givenT and r @i.e.,
(]P/]y)r,T50] occurs atyÞ0.5 due to the Coulomb effect. These results were not seen in Ref.@7#. Also Eq.~55! shows that,
for x3521/2 andC50, the symmetry energy per nucleon is increasing proportionally to the densityr, a feature similar to
that in Ref.@7#. However, forx3Þ21/2, the symmetry energy initially starts to increase withr but then begins to decreas
with increasingr. This bending of the symmetry energy is related to the crossing ofP(r) curves of differenty values for a
fixed T.

For a constantT and constantP, r andy are not independent. The pressureP of Eq. ~54! is a second-order polynomial o
(2y21)(r/2), and thus we have, for the range of 0<y<1/2,

~2y21!5
~b11!Crb

S 1

2
1x0D t01S a11

6 D S 1

2
1x3D t3ra2~b11!Crb2

T

2A2
S l3

g D

7
2

rF S ~b11!Crb

S 1

2
1x0D t01S a11

6 D S 1

2
1x3D t3ra2~b11!Crb2

T

2A2
S l3

g D D 2S r

2D 2

1

Tr1
3

8
t0r21

~a11!

16
t3ra121

~b11!

4
Crb121~h21!Csr

h1
T

2A2
S l3

g D r2

4
2P

S 1

2
1x0D t01S a11

6 D S 1

2
1x3D t3ra2~b11!Crb2

T

2A2
S l3

g D G 1/2

~58!

for a given densityr. Here,21<(2y21)<0, and thus a1 sign is allowed for the case that the first term is negative. With
the Coulomb interaction only the second term in the square root survives andy(r) is a single-valued function ofr in the range
of 0<y<1/2. The numerator of the second term in the square root isP(r,y51/2,T)2P(r,y,T), i.e., the negative of the
pressure measured with respect to the pressure for a symmetric nuclear system. Notice here thatt0 is negative andP(y)
>P(y51/2) for the potential without the Coulomb interaction@see Eq.~54!#. Since we are considering only21<(2y21)
<0, we have conditions of

0<6F Tr1
3

8
t0r21

~a11!

16
t3ra121

~b11!

4
Crb121~h21!Csr

h1
T

2A2
S l3

g D r2

4
2P

S 1

2
1x0D t01S a11

6 D S 1

2
1x3D t3ra2~b11!Crb2

T

2A2
S l3

g D G
<6F 2~b11!Crb

S 1

2
1x0D t01S a11

6 D S 1

2
1x3D t3ra2~b11!Crb2

T

2A2
S l3

g D 11G S r

2D 2

~59!

to have 0<y<1/2. Also the boundaries are related to the pressures aty51/2 andy50, respectively. Here the6 sign
corresponds to the7 sign in Eq.~58!. For nonzeroC, there is a backbending iny(r). This behavior is related to the choic
of opposite sign for the square root term in Eq.~58! and double values ofy for a givenr. To find the point of backbending
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we look at the (]r/]y)T,P50 point. At the same value ofy as the backbending point ofy(r)P,T , the pressure become
smallest for a givenr and T, i.e., (]P/]y)r,T50 @see Eq.~60! below#. For C50, there is no backbending since only th
negative sign is allowed in Eq.~58!. Using Eq.~58! we can findr(P,y,T) and thus the energy and entropy as a function
pressureP, proton fractiony, and temperatureT, i.e., E(P,y,T) andS(P,y,T). From these results we may study an isoba
phase transition. Since all the phases have the same pressure in the coexistence region,mq(P,y,T) may be used to find the
coexistence region.

At fixed T andP, only one of eitherr or y is the independent variable. Thus we haver(P,y,T) and observables such a
P, E/r, S/r may have a discontinuity inT or y when (]r/]T)y,P or (]r/]y)T,P diverges. We can study the behavior
thermodynamic quantities at a fixedP usingdP50 from Eq.~54!,

dP5H F Tr2
T

2A2
S l3

g D S (
q

rq
2

4
D G J dT

T
1H FTr1

T

2A2
S l3
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q

rq
2D G

1F t0S 11
x0

2 D r21
t3

12S 11
x3

2 D ~a11!~a12!ra122t0S 1

2
1x0D S (

q
rq
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12S 1

2
1x3D ~a11!~a12!raS (

q
rq
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r

2H F t0S 1

2
1x0D1S a11

6 D t3S 1

2
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T
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2D 2J 4dy

5H Fr2
1

2

1
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S l3

g D S r

2D 2

2
1

2
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2D 2G J dT1H FT12b̃2r1~a12!b̃3ra111
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S l3

g D S r

2D
1~b12!b̃Crb111h~h21!Csr
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2
1x0D1S a12
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6 D t3S 1

2
1x3D ra

2S b12

2 D ~b11!Crb2
T

2A2
S l3

g D G ~2y21!2S r

2D1~b12!~b11!Crb~2y21!S r

2D J dr

2H F t0S 1

2
1x0D1S a11

6 D t3S 1

2
1x3D ra2~b11!Crb2

T

2A2
S l3

g D G ~2y21!S r

2D 2

2~b11!CrbS r

2D 2J 4dy, ~60!

whereb̃25 3
8 t0 , b̃35@(a11)/16#t3, andb̃C5@(b11)/4#C. Thus we have, for a fixedP andy,

S ]r

]TD
y,P

52H F Tr2
T

2A2
S l3

g D S (
q

rq
2

4
D G J r

T H FTr1
T

2A2
S l3

g D S (
q

rq
2D G

1F t0S 11
x0

2 D r21
t3

12S 11
x3

2 D ~a11!~a12!ra122t0S 1

2
1x0D S (

q
rq

2D 2
t3

12S 1

2
1x3D ~a11!~a12!raS (

q
rq

2D
1C~b11!~b12!rbrp

21Cs~h21!hrhG J 21

52H r2
1

2

1

2A2
S l3

g D S r

2D 2

2
1

2

1

2A2
S l3

g D ~2y21!2S r

2D 2J
3H FT12b̃2r1~a12!b̃3ra111

T

2A2
S l3

g D S r

2D1~b12!b̃Crb111h~h21!Csr
h21G
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. ~61!

Using this we get the specific heat capacity, from Eq.~56!,
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The difference ofcP andcV is proportional to (]r/]T). This
shows that even though the specific heat with fixed volu
cV has no divergence, there may be a divergence in the
cific heat with fixed pressurecP at someT showing a first
order phase transition if (]r/]T)y,P5`, i.e., (]T/]r)y,P
50. This happens when (]y/]r)T,P50 according to Eq.
~60!. However, if this happens in the coexistence regi
then this discontinuity does not contribute to the phase tr
sition and the phase transition will be second order depe
ing on other conditions.

III. PHASE TRANSITION OF A FINITE NUCLEUS
WITH A COULOMB INTERACTION

In this section we present results of our calculations of
phase transition of a finite asymmetric nucleus. The res
04460
e
e-

,
n-
d-

e
ts

are based on the equations developed in the previous se
which arise from a Skyrme interaction and include the
fects of Coulomb and surface terms besides the symm
term. Here we use the Skyrme interaction of PRC45 in Ta
I with b50, h52/3, the surface energy 4pr 0

2s520.0 MeV,
andR56 fm. We restricted our analysis only to the Skyrm
interaction withx3521/2 here. With this choice, there is n
crossing ofP(r) curves between different values ofy at
fixed T which is a behavior similar to that in Ref.@7#. With
x3Þ21/2, the nonlinear dependence of the symmetry ene
on r causes a crossing of theP(r) curves between differen
values ofy at some density and thus the minimum press
occurs at differenty values for different densityr @see Eq.
~60!# for a givenT. This makes the analysis for the pha
diagram more complicated. In this paper, usingx3521/2,
we concentrate on the effect of the Coulomb interaction
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LIQUID-GAS PHASE TRANSITIONS IN A . . . PHYSICAL REVIEW C63 044605
comparing with the results of Ref.@7#.
Figure 1 shows the pressureP(r) for variousy values at

T510 MeV. The values ofy used range fromy50 ~neutron
matter! to y50.5 ~symmetric systems!. Some important fea-
tures of this figure are the following. Above a certainy
5yc the curves have a characteristic S shape. This is
well-known behavior of a van der Waals–like equation
state with long range attraction and short range repuls
For one-component systems this behavior leads to a Max
construction and the end points of the Maxwell line defi
the liquid-gas boundary. The region between the maxima
minima of theP(r) curve has negative compressibility an
is the spinodal instability region. For two-component sy
tems, because of the extra degree of freedom associated
varying proton fraction in a system with two phases, t
phase diagram has a higher dimensionality. One effect of
higher dimensionality is to change a first-order transition i
a second-order transition as noted in Refs.@7,8#. Another
effect is that the phase diagram is now a surface in pres
P, temperatureT, and proton fractiony or nucleon densityr.
At a particulary5yc(T), the CP for given temperatureT, the
S shape disappears. Below thisyc , there is no longer a
liquid-gas boundary for thisT. The existence of a critica
point yc is similarly seen in Ref.@7#. The Coulomb interac-
tion has new effects also. ForT510 MeV, the lowest pres-
sure occurs not aty51/2 but aty50.4552 forR56 fm due
to the Coulomb repulsion independent of the surface ten
@see Eqs.~54! or ~60!#. This y value, forx3521/2, is also
independent ofr. For R510 fm, the lowest pressure occu
at y50.3927 due to a stronger Coulomb effect. According
Eqs.~54! or ~60!, the y value having minimum pressure ap
proachesy50.5 asT increases.

Let us next turn to Fig. 2 which is based on the followin

FIG. 1. PressureP(r) versusr at T510 MeV for variousy.
The dashed curves from top to bottom havey50, 0.1, 0.2, 0.3, 0.4,
and 0.5 while the solid curve is fory50.4552.
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property. For fixedP and T, y and r are not independent
Since Eq.~54! is a second order equation fory, y can in
general have two values for a given densityr. Equation~58!
expresses the dependence ofy on r for a givenP andT. This
equation is an important result in our method of analysis
the liquid-gas phase transition in asymmetric systems. In p
ticular, Eq.~58! allows us to find the energy and entropy
a function ofP, y, andT using Eqs.~55! and ~56!, respec-
tively. Figure 2 shows the proton fractiony(r) for variousP
values atT510 MeV. Here only the 0<y<0.5 region is
shown. These curves show a backbending feature for lary
with ]r/]y50 aty50.4552,1/2 for theR parameter of the
Coulomb interaction taken as 6 fm. At thisy value of back-
bending@(]r/]y)50#, the pressure is minimum@(]P/]y)
50# too as can be seen from Eqs.~58! and ~60!. For R
510 fm, the backbending occurs aty50.3927. Without a
Coulomb interaction, there is no backbending in the 0<y
<0.5 region and]r/]y50 at y51/2. The discontinuity of
y(r) at low density for small pressure is expected from t
low density region of Fig. 1.

Figure 3 shows a plot of the chemical potential for pr
tons mp(y) and neutronsmn(y) as a function of the proton
fraction y for several values ofP and atT510 MeV. From
this figure we can find the binodal points by using Eq.~30!.
In particular the equality of the chemical potentials at t
sameP andT determines two values ofy at the phase bound
aries, one for the liquid phase and one for the gas ph
Specifically mn(P,y1 ,T)5mn(P,y2 ,T) and mp(P,y1 ,T)
5mp(P,y2 ,T). A geometric construction of this equalit
would be a rectangular box in Fig. 3 as shown in Fig. 6
Ref. @7#. The vertical sides of this rectangle are the two v

FIG. 2. Proton fractiony(r) for P50, 0.015, 0.05, 0.1, 0.2, 0.3
0.4, and 0.5, from top to bottom, atT510 MeV. The solid curves
have Coulomb and surface tension contributions and the da
curves are without these interactions.
5-11
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S. J. LEE AND A. Z. MEKJIAN PHYSICAL REVIEW C63 044605
ues of y, y1, and y2, and the horizontal sides are the tw
chemical potentialsmn and mp . For eachP and T with T
<Tc with Tc the critical temperature, a pair ofy’s can be
found and are the binodal points for thatP andT. Fixing just
T and varyingP generates a binodal loop ofP versusy as
shown in Fig. 4. While the overall qualitative behavi
shown in this figure is similar to that of Ref.@7#, the quan-
titative results are different because of the Coulomb and
face terms that our approach contains. Moreover, an inte
ing new feature arises from the Coulomb term sincemp
.mn at y51/2 instead ofmp5mn . Specifically, the Cou-
lomb interaction leads to the crossing of the neutron a
proton chemical potentials in the range ofy.0.4 for the
Skyrme parameter used here. The Coulomb interaction
leads to the crossing of the small density portion and the h
density portion of the proton chemical potentialmp at fixedP
and T while the crossing of the small density and the hi
density portions of the neutron chemical potentialmn at fixed
P andT was seen in Ref.@7# too. These new crossings due
the Coulomb effect bring in a new pair of binodal points f
low pressure. An expanded view of these crossings is sh
in the box at the right-bottom corner of Fig. 3 for a pressu
P50.015 MeV/fm3. This small box has two pairs of binoda
points indicated by the horizontal dotted lines which cor
spond to the horizontal sides of the rectangle mentio
above. This small box shows one pair at a slightly lowey
than y50.4552 and another pair slightly abovey50.4552.
These two pairs of binodal points also show up in the ph

FIG. 3. Chemical potentialmp(y) and mn(y) for P50.015,
0.05, 0.1, 0.2, 0.3, 0.4, and 0.5, from top to bottom curve for p
tons~solid curve! and bottom to top for neutrons~dashed curve! at
T510 MeV. The chemical potential increases as the pressure
creases aty51/2. For smallery, mn increases andmp decreases as
P increases exceptmp for P50.015 and 0.05. The small box at th
right-bottom corner is the expanded curve forP50.015 MeV/fm3

with two pairs of binodal points indicated by dotted lines.
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diagram. Their effect is shown in the box at the right-upp
corner of Fig. 4 which will now be discussed.

Figure 4 shows the coexistence binodal loop in they-P
plane atT510 MeV. The figure shows that the major effe
of the surface tension is a lowering of the pressure for
coexistence curve~compare the dash-dotted curve vs dash
curve and the solid curve vs dash-dot-dot-dotted curve!. The
inclusion of surface tension may allow for a zero-press
isobaric phase transition and may simulate the situation o
equilibrated state of multifragmentation having zero inter
pressure for stable finite nuclei with nonzero gas pressur
discussed in Ref.@9#. The effect of the Coulomb interactio
makes the coexistence region smaller. However, a more
portant effect of the Coulomb interaction is the appeara
of another pair of binodal points in the low pressure reg
~see the expanded figure in the box at the right-upper corn!.
Two points of smallery values have the same chemical p
tential and two points of largery values have the sam
chemical potential. However, they are different from ea
other, with the largery pair having largermp and smallermn
than the corresponding values of the other pair with sma
y ~see Table II!. Here the points with largest and smallesty
value are in gas phase and the points between the other
y values are in the liquid phase@see Table II; Eq.~58! shows
that there are two values ofy for a givenr at fixedP andT].
The binodal pair with highery values allows the mixture o
gas with highesty and liquid with the next highy and is a
reversed situation from the other binodal pairs and

-

n-

FIG. 4. Binodal curve atT510 MeV. The solid curve is for the
case with Coulomb and surface effects, the dash-dotted curve i
the case with surface effects, the dash-dot-dot-dotted curve is
the case with Coulomb interactions, and the dashed curve is fo
case without Coulomb and surface effects. Small boxes at the u
right corner are the expansion of the main figure. In the sm
boxes, the region of liquid, gas, and coexistence are indicated b
G, and C, respectively.
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TABLE II. Coexistence points.

P (MeV/fm3) r (fm3) y mp ~MeV! mn ~MeV!

0.01496 0.0034324 0.4526870 215.73360 213.80920
0.1138296 0.4548638 215.73360 213.80920
0.1138296 0.4555570 215.59369 213.92612
0.0034324 0.4577830 215.59369 213.92612

0.01498 0.0034352 0.4441228 215.97430 213.61531
0.1138098 0.4536912 215.97430 213.61531
0.1138096 0.4567391 215.35914 214.12939
0.0034352 0.4665239 215.35914 214.12939

0.01500 0.0034373 0.4253351 216.50124 213.19126
0.1137651 0.4511254 216.50124 213.19126
0.1137652 0.4592869 214.85386 214.56769
0.0034372 0.4853333 214.85386 214.56769

0.01503 0.0034421 0.4226954 216.57709 213.12985
0.1137598 0.4507550 216.57709 213.12985
0.1137592 0.4596993 214.77187 214.63844
0.0034420 0.4883935 214.77187 214.63844

0.01505 0.0034449 0.4141177 216.81862 212.93537
0.1137397 0.4495787 216.81862 212.93537
0.1137389 0.4608853 214.53660 214.84241
0.0034448 0.4971483 214.53660 214.84241

0.01506 0.0034463 0.4102457 216.92777 212.84748
0.1137306 0.4490471 216.92777 212.84748
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result of Ref.@7#. This allows for a phase separation into
liquid phase with fewer protons~lower y value! and a gas
phase with more protons~highery value! which is more re-
alistic in heavy ion collisions. For the Skyrme parameter
used here withx3521/2, the two pairs of binodal point
meet at one point iny, having a minimumP for a givenT as
shown in the small box in this figure. At this point, both th
liquid and gas phases have the same proton concentr
~EC! y5yE with different densityr. If the initial overall
concentrationy is greater than the equal concentrationyE ,
then the system ends up with more proton concentratio
gas and less proton concentration in liquid phase. If the
tial y were smaller thanyE , then the final system has mor
proton concentration in liquid phase and less proton conc
tration in gas phase. The equal concentration pointyE is
independent of the surface energy and nucleon densityr and
approachesy50.5 asT increases as can be seen from E
~54! or ~60!. The value of equal concentrationyE decreases
as the Coulomb interaction increases; hereyE50.4552 for
R56 fm and it would be changed toyE50.3927 for R
510 fm. Without the Coulomb interaction theyE becomes
yE50.5, the proton ratio for a symmetric system as seen
Ref. @7#. If x3Þ21/2, as a result of the nonlinearr depen-
dence of the symmetry energy, the pressureP becomes mini-
mum @(]P/]y)T50# at a differenty value for the liquid and
gas phases. For this case, unless the minimum pressu
liquid is lower than the minimum pressure of gas, the
would be no point of EC. This should be studied further.

The results of Eqs.~54! or ~58! can be used to obtain
connection betweenT and r for each P and y. Figure 5
showsT(r) for various P values aty50.3 and 0.5. This
04460
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figure shows that at a low pressure there are two points w
(]T/]r)y,P50, i.e., (]r/]T)y,P5`, which may cause a dis
continuity in cP according to Eq.~63!. According to Eq.
~60!, (]T/]r)y,P50 when (]P/]r)y,T50, i.e., at the spin-

FIG. 5. TemperatureT(r) for P50.0, 0.015, 0.1, 0.2, 0.3, 0.4
and 0.5, from bottom to top, aty50.3 ~dash-dotted curve! and 0.5
~solid curve!. Dashed curves are for the case without Coulomb a
surface effects.
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S. J. LEE AND A. Z. MEKJIAN PHYSICAL REVIEW C63 044605
odal points. Equation~60! also shows that@](E/r)/]T#y,P
5` and @](S/r)/]T#y,P5` at the spinodal points havin
(]P/]r)y,T50. Thus by investigating the behavior of ener
and entropy as the temperatureT changes, we can study th
behavior of heat capacitycP or the order of the phase tran
sition.

Figures 6 and 7 shows (E/r)y,P and (S/r)y,P as a function
of T for variousP values aty50.3 and 0.5. The overallT
dependence is qualitatively same as in Ref.@7#. Comparing
with the exact result of Ref.@16# ~dotted curve in Fig. 6!, we
can see that the highT nondegenerate Fermi gas approxim
tion used here is good for the region which corresponds
E/r.8 MeV for the case without Coulomb and surface
fects. For lower energy and lowerT, we need to use a de
generate Fermi gas limit which has more complicatey de-
pendence than the nondegenerate Fermi gas limit@see Eqs.
~49!–~52!# and the simple relation~58! is no longer appli-
cable. The points with diverging slope ofE/r and S/r in
variations ofT are related to the zero-slope points in Fig.
If the charge concentrationy were kept constant in all phase
during adiabatic heating of the system at fixed pressureP,
then the system follows one curve in Figs. 6 and 7 with
correspondingy andP similar to a one-component system.
we follow a curve in Fig. 6 as the energy increases, then
temperature goes up until it first reaches the spinodal poin
higherT and lower energy before reaching the spinodal po
at lowerT and higher energy. Since both spinodal points

FIG. 6. Energy per particleE(T)/r for P50.0, 0.015, 0.1 0.2,
0.3, 0.4, and 0.5, from top to bottom, aty50.3 ~dash-dot-dot-dotted
curve! and 0.5~solid curve!. Dashed curves are fory50.5 without
Coulomb and surface effects and the dotted line is for the e
result atP50 from Ref. @16#. This shows that the Fermi gas ap
proximation we have used is not valid forT lower than about 5
MeV with high density, but very accurate for higher temperatu
~the dashed curve forP50.0 coincides with the dotted curve fo
E/r>8 MeV!.
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inside of the coexistence region, the diverging slope of
ergy and entropy at spinodal points and (]T/]r)y,P50 do
not contribute to the phase transition. However, becaus
the backbending of the curves in Figs. 6 and 7 for low pr
sure, the energy jumps at the binodal points and it can ca
a first-order phase transition if all the phases have the samy
which is similar to a one-component system. But as d
cussed in detail in Ref.@7#, in the actual phase transition of
heavy ion collision with two components, the proton fracti
y in each phase can be different while still conserving
overall fraction. Because of the mixing of phases with d
ferenty values, the transition becomes a second-order ph
transition @7#. Since theT dependence of the energy an
entropy for fixedy andP ~Figs. 6 and 7! is qualitatively same
as in Ref.@7#, the characteristic of phase transition here w
be the same as the result of Ref.@7#.

IV. SUMMARY AND CONCLUSION

In this paper we studied the liquid-gas phase transition
a two-component hadronic system made of protons and n
trons. The analysis of the thermodynamic properties
asymmetric nuclei with arbitrary proton-neutron ratios is im
portant in several areas such as in astrophysical situat
where neutron stars are of interest and in radioactive be
studies. Such studies are considerably more complicated
a one-component system or a symmetric system of pro
and neutrons without Coulomb interactions. A novel asp
of asymmetric systems is the possibility of having differe
proton-neutron ratios in each of the phases, while still c
serving the overall initial proton fraction. This feature aris
from the symmetry energy which prefers equal numbers
protons and neutrons in denser regions, but its effect is m
erated by the Coulomb force. Such features are well kno
from theN-Z behavior of stable nuclei where for light nucle

ct

FIG. 7. Same as Fig. 6 but for entropy per particleS(T)/r.
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N5Z but for heavy nucleiN.Z. Because of the extra de
gree of freedom associated with varying proton fraction i
system with two phases, the phase diagram has a highe
mensionality. One effect of this higher dimensionality is
change a first-order transition@18# into a second-order tran
sition as noted in Refs.@7,8#. Another effect is that the phas
diagram is now a surface in pressureP, temperatureT, and
proton fractiony or nucleon densityr @7#. For a givenA
5N1Z stability is determined by both Coulomb and surfa
effects in addition to the symmetry energy. This paper i
study of the additional role of Coulomb and surface effe
on the thermodynamic properties of heated nuclei.

Our investigation of the phase diagram was carried
using a Skyrme interaction and the approach was based
mean field theory. In Sec. II, the main equations were giv
for multicomponent systems where the use of the Skyr
interaction for a two-component nuclear system was sho
to simplify expressions so that the results are analytic fu
tions of P, T, and y: Eqs. ~53!–~56! with Eq. ~58!. These
expressions include the pressure and both neutron and p
chemical potentialsmn and mp . Phase equilibrium require
equality of mn between the two phases and similarlymp at
the sameP and T. At fixed T and P, r and y are not inde-
pendent@Eq. ~58! and Fig. 2# and we use this property in ou
model to further simplify its analysis. This connection al
allowed us to find the energy and entropy as a function oP,
y, andT ~Figs. 6 and 7!.

Our mean field approach using a Skyrme interaction is
extension of a previous study initially begun in Ref.@1# for
two components and the analysis is similar in some way
that developed in Ref.@7#. However, in this paper we in
cluded surface and Coulomb effects so our results di
quantitatively from those in Ref.@7#. The Coulomb interac-
tion and surface tension are incorporated into the descrip
by treating the system as a uniformly charged sphere wi
fixed value ofR. While somewhat simplified we feel tha
results obtained from it may be a useful instructive exam
of the qualitative effects that the Coulomb interaction a
surface tension have on the binodal surface. Some featur
the results are similar qualitatively with the results of R
@7#. For example, the temperature dependence of the en
and entropy~Figs. 6 and 7! is qualitatively the same as th
result of Ref.@7# which indicates the phase transition is se
ond order. However, including Coulomb and surface effe
introduces some features also not present in Ref.@7# which
are summarized below. Since theT dependence of our result
is similar with the results of Ref.@7#, we considered here
only a high temperature nondegenerate Fermi gas l
which has much simpler density dependence of the kin
energy and pressure than a low temperature limit@see Eqs.
~49!–~52! and Eq.~54!#.

The importance of surface energies in the liquid-gas ph
transition was shown in Refs.@3,4# using an approach base
on a statistical model of multifragmentation. In the statisti
model of multifragmentation, because nuclear matter can
broken into a large number of small pieces, the surface
ergy plays a very dominant role@18,19#. Here, in a mean
field theory, the surface energy plays a lesser role since
do not allow for the possibility of multifragmentation
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Rather, the system is treated as uniform but with vary
density. One effect of the surface tension in our study is
bring the coexistence binodal surface to lower press
which could allow for an isobaric transition at zero pressu
~see Fig. 4!. It may simulate a situation of an equilibrate
state of multifragmentation where stable finite nuclei ha
zero internal pressure but nonzero gas pressure@9#. The sur-
face effect becomes larger as the sizeR becomes smaller and
we can bring binodal surface to crossP50 plane.

Inclusion of the Coulomb interaction brings a new featu
in the mean field approach. Figure 4 showed the shrinking
the binodal loop from the inclusion of the Coulomb term
The effect of the Coulomb force in reducing the dynamic
instability region is also seen in RPA-type calculatio
@10,12#. Figure 4 also contains the effects of the surfa
term. Moreover, the contribution of each term, Coulom
only, surface only, and both Coulomb and surface are co
pared with a situation without Coulomb and surface term
This comparison enabled us to isolate the importance
role of these various contributions. Figure 3 showed the
fect of the Coulomb force on the proton chemical poten
and it leads to a crossing of the proton chemical potent
and neutron chemical potentials for different values ofP and
y neary50.5.

The Coulomb interaction also brings the line of equ
concentration of protons~LEC! on the binodal surface to a
smallery5yE value thany50.5 for the symmetric system. I
also causes another pair of binodal points withy.yE at low
pressure with a reversed proton fraction in the liquid-g
phase, i.e., with fewer protons in the liquid phase and m
protons in the gas phase. At the proton fractionyE two pairs
of binodal points meet together and the pressure beco
smallest on the binodal curve as can be seen in the bo
Fig. 4. This value ofyE can be made smaller by using
stronger Coulomb interaction with largerR. For the case of
x3521/2, the point of equal concentrationyE is directly
related to the backbending point ofy(r) shown in Fig. 2 and
also to the point with minimum pressure on the binodal lo
in Fig. 4 and on theP(r)y,T curve in Fig. 1. If the initial
overally is greater thanyE , then the phase transition ends u
with a larger proton fraction in the gas and a smallery in the
liquid phase. On the other hand, for the initialy,yE , the
system ends up with a largery in liquid and smallery in gas
phase. Equation~58! shows that the value ofyE is indepen-
dent of the densityr for x3521/2 and approachesyE50.5
as T increases. The new pair of binodal points withy.yE
disappears asyE reaches 0.5, the proton ratio for a symmet
system.

In this paper we used a fixed value ofR to determine the
strength of Coulomb interaction and surface tension. Here
we increase the strength of Coulomb effect by increasing
value of R, then the surface tension decreases. If we all
for variations ofR with r or T and allow different values for
the Coulomb and surface energies, then this simple mo
may be used to study multifragmentation with various siz
of clusters. We also restricted the symmetry energy per p
ticle to have only a linear dependence on the nucleon d
sity. Allowing a higher orderr dependence of the symmetr
energy throughx3Þ21/2, the EC point might be destroyed
5-15
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The nonlinearr dependence of the symmetry energy cau
a crossing betweenP(r) curves for different values ofy at a
given T. Because of this crossing, the liquid phase port
and the gas phase portion of the binodal curve have m
mum pressure at differenty values and possibly do not me
in the range of 0<y<0.5. These features should be inves
gated further.
t
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