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Liquid-gas phase transitions in a multicomponent nuclear system
with Coulomb and surface effects
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The liquid-gas phase transition is studied in a multicomponent nuclear system using a local Skyrme inter-
action with Coulomb and surface effects. Some features are qualitatively the same as the resuler @ndu
Serot where a relativistic mean field was used without Coulomb and surface effects. Surface tension brings the
coexistence binodal surface to lower pressure. The Coulomb interaction makes the binodal surface smaller and
causes another pair of binodal points at low pressure and large proton fraction with fewer protons in the liquid
phase and more protons in the gas phase.
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[. INTRODUCTION of P versus density or volumeV, whose end points at fixed
T give the liquid and gas densities. The Maxwell pressure
The liquid-gas phase transition in nuclei was first studiedversusT in one-component systems is a line that terminate at
using a Skyrme interaction and focused mostly on onethe critical temperatur&.. For two-component systems, the
component systems of just nucleons even though expressiobhinodal surface associated with phase coexistence in
were developed for two-component systems of protons an€P,T,y) now contains some new elemefid. One new el-
neutrons[1]. The phase transition aspects are considerablgment is a line of critical pointdCP) having the same den-
easier to study in one-component systems rather than twsijties both in liquid and gas phases. A second new element is
where, for example, one has to deal with separate proton aral line of maximal asymmetri MA) in the neutron-proton
neutron chemical potentials for charge and nucleon numbenatio. A third new line arises as a line of equal concentration
conservation. Initial fragmentation models also mostly deal{LEC) having the same proton concentratipm both liquid
with one-component systems. Such fragmentation studieand gas phases with different nucleon denpityrhese lines
gave the first evidence for the liquid-gas phase transition itome from the intersection of the binodal surface with fixed
nuclear systemf2,3]. Since then, the liquid-gas phase tran- T planes. For a fixed this intersection forms a loop d?
sition has been extensively studied experimentally and theosersusy. The condition ¢ly/dP):=0 gives the point of
retically. Several reviews exist on this tojit—6]. maximal asymmetryMA) or smallest proton ratio at that
Because of the two-component nature of real nuclear sysand the conditiondP/dy)t=0 with (d?P/dy?);<0 gives a
tems, an analysis of liquid-gas phase transitions in these systitical point (CP) at thatT. On the other hand, both the
tems is important. Some preliminary results were reported itiquid side and gas side of the binodal curve come together
Ref.[1], and a very detailed study was done bylMuand  with equal concentratiofEC) of y at the minimum pressure
Serot[7] who used a relativistic mean field model to developof the binodal curve at that. The LMA, LCP, and LEC are
the main thermodynamic properties of asymmetric nucleathen generated by considering these points as a functidn of
matter. One interesting new aspect of two-component sysA/ithout a Coulomb interaction, the symmetry energy brings
tems compared to one-component systems is that the phade LEC toy=0.5. For the interaction used in R¢T], the
transition is a second-order transition in their approach. Th&EC is the same as the intersection of the binodal surface
importance of the number of components on the order of thevith the planey=0.5 of a symmetric system and is the same
transition was pointed out by Glendennif@]. Another in- as for a one-component system. The extreme end points of
teresting aspect of two-component systems is the possibilitthese lines are the same point, which is the critical point at
of having different proton-neutron ratios in the liquid and gasT..
phases because of the symmetry energy, while still conserv- In this paper we extend the initial study of Rgf] using
ing the overall initial proton fraction. The study of nuclear a Skyrme interaction in a similar way as done in Ré&f.
systems with arbitrary proton-neutron ratios is important forSome features are qualitatively the same as in Ra@f.but
radioactive beam experiments and in astrophysical situationguantitatively differ because of the different interaction. Our
such as in neutron stars. Because of the extra degree of freeguation of state based on the Skyrme interaction with Cou-
dom associated with varying proton fractignin the two  lomb and surface effects has some features also not present
phases, the phase diagram has a higher dimensionality amd Ref. [7] which will also be discussed. According to the
now becomes a surface in pressitetemperaturel, and  results of Ref[7] which has no Coulomb interaction, the
proton fractiony or nucleon density. For one-component liquid phase has a higher proton fraction than the gas phase
systems the phase diagram is represented as a binodal cuwemixed phases in the coexistent state. A real nucleus has
fewer protons than neutrons due to the Coulomb interaction.
For a givenA=N+Z stability is determined by Coulomb
*Permanent address: Physics Department and Institute of Naturand symmetry energy effects. Since a stable finite nucleus
Sciences, Kyung Hee University, 1 Seochunli, Yoninsi, Kyunggido,has zero internal pressure while the gas phase has positive
Korea. pressurd9], we also need to consider surface effects. In this
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paper we consider the effects of the Coulomb interaction ang.,, where phase equilibrium requires equality of the proton
surface tension by considering a uniform spherical finitechemical potential between the two phases and similarly
nuclear system. Various dynamic approaches exist for thequality of the neutron chemical potentials at a given tem-
study of the Coulomb interaction and surface effects inperature andP. At fixed T andP, p andy are not independent
asymmetric nuclear system. For example, H&D] is an  and we use this connection to simplify the analysis. This can
investigation of the role of the Coulomb interaction on thebe done because we use a Skyme interaction which leads to
growth of unstable modes. These authors use a linearizeal series of simple closed form expressions, thereby making
Vlasov equation as a semiclassical approximation to a quarthe analysis of the thermodynamic properties of asymmetric
tal random phase approximatidRPA) approach and also nuclear matter much easier. Section 1l contains the results of
consider results from a RPA study. The growth rates of uncalculations performed using the equations developed in Sec.

stable modes were also studied in Rdf$1,12 using a Il. Conclusions are given in Sec. IV.
Skyrme interaction. The calculation of R¢L1] is based on
the Vlasov equation while that of Ref12] uses a RPA Il PHASE TRANSITION IN MEAN FIELD THEORY

method. Referencd40,12 show that the Coulomb interac-
tion reduces the chemical instability region, an effect which  For phase transitions we look at the presstiend chemi-
is also found here. However, a new effect appears in thigal potentialsuq for each component of a multicomponent
work which is the appearance of a new pair of binodal pointsystem (neutron and proton, for examplas functions of
at low pressure and large proton fraction which is discussedemperatureT and densitiesp, of the constituents. These

In Sec. Il, the main equations for the thermodynamicquantities can be obtained once we know the total energy
properties of hot nuclear matter in mean field theory are defunctional E as a function of the densities, at a given
veloped as a function of densipy temperaturd, and proton temperaturer.
fractiony or neutron fraction (+y). These include the pres- At a given temperatur@ = 1/83, the constituents are dis-
sure and chemical potentials, both neutrep and proton tributed in phase space according to the Wigner fundtias

ry_ -
h3 eBlea kg + 1"

(F)=3 fo(75), fq(F.5>=h—1”fq(r15>= &

where the spin degeneragy=2 ande, and 4 are the single-particle energy and the chemical potential of particleqype
Then the particle density becomes

p(1=3 oyl po(§)= | LT, )
A=§ Nq=J d3r p(r), Nq=f dsrpq(F)=j d3rJ d3pfy(r.p), 3)
and the total energy is
2
Ezjd3rs<r*>=fd3rfd3p;—mf<F,5>+fd3rU<F>=fd3r[5K(F>+U(F>], (4)

with the potential energy density(r) and the kinetic energy Fermi momentum at of particleq, which is the momentum

density & (r). These, in turn, give self-consistent equations@SSociated with the chemical potential, amg=6U/5f is
for uq (OF Prq) in @ mean field theory for fixed andN,, the single-particle potential of particgwhich may be mo-
mentum dependent in general.

SE SE(T) p2 SU p? . The pressureP can be defined dynamically from the
TP 5 2m Fq=ﬁ+uq(r,p), (3 total momentum conservation lawd/dt)[ fd3r [d3ppf]
o =—[d%V,-I1=0 using the Vlasov equatidii3]
2
Pr > -
Mq=€q|p=qu=2_rT?+uq(rprq)r (6) .
1%

—q Vi . Vi — Vi . vi =
where we defin@r, in Eq. (6) and consider it as an effective at +(Vpeq): (Vifa) = (Vreg): (Vpl)=0 ™

044605-2



LIQUID-GAS PHASE TRANSITIONS IN A ... PHYSICAL REVIEW 53 044605

or more generally from hydrodynamic consideration of time dependent Hartree-Fock in phasgldfiace

fd%ﬁ% fo(r,p) |[=—2 fdﬁop( ) E fd3pp V- [(V eq>fq]+2 stpqu €q)-(Vop).

q

-
re __a

(8)
Using =4(V,€q) fq=2qV(€4fq) — Zq€qViTq==qV(€4fq) — V&, the dynamical pressure tensdy; becomes

fd%% €qfq—E

Hij=§ f d%pp; (Ve fo+ &

[ 6 6E
= stpij'p(ﬁ fqt &ij| 2 fd%(R)fq—s}
q q q q
o} 68U J sU
— 3hn.| 2t [ . 3n _
% Jd PR+ Vp 5, fot &) % d3p 5, fq—U|. 9)
For a momentum-independent potential, this becomes
oU PiPi 5(U/p )
Pj _ iP] q
Il = 2 fd3p fot & % (aqu—u}_foﬁp% - fq 5”2 p2 . (10)
The diagonal elements are
3 sU
P=II,= E d3p f +2 FpgP” U= PK+E UgPq— U=Pg+Pp, (11)
|
where Py = fd3p(p /m)f and Pp=X uqspq—U are the ki- s 1o
netic pressure and mteractldpotentla} pressure, respec- Sq:ﬁ’f d°p5P- Vil (kg €9
tively. In equilibrium P can also be obtained by minimizing
the total energy as a function of volume, holding the number Y
of particles fixed: _ﬂf d°p3P- Vplug—€)fq
d(E/A) d(&lp) p€
P:Hii:_ dav :p2 dp (12) _ﬂf dsp(eq /*Lq)f +,8f d3 qfq
for a single-component uniform system. f 3 J’ 3 p €q f
. = d fot d°p fq— d3pf,.
From the distributiorf,, of Eq. (1), the entropyS can be =B Pegfat B Brq Pla
obtained as
(15
In equilibrium thermodynamics, the thermodynamic grand
_ — | q8rcee | 43
s=2'S fd rS—j > s (13 potential Q, the Helmholtz free energf, and the Gibb's
free energyG are
S, =—1f d3p[faInTe+(1-THIN(1—T,)] Qz—f d3rp
q h3 q'Mlq q q
Y 3.1z fq =—1InTrex;{—,8(l:|—2,uN”
h3 dp3p( q)In _f B 5 o
y 1. - . =F-G=E-TS- X, uqNg, (16)
= 2] pgh (T Bl cq), 14 q

- - - - 3pr=__ BH — —
using V- (pg)=3g+p-V,yg. The S, becomes, by partial fd rr= BInTre E-TS= f Eds,
integration[15], 17)
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5 1 . n.) Then, to separate each phase of the multicomponent sys-
G= f d*rg= /—3|n Tr exp( B MqN) tem, we can use the volume fractiapof i phase of the total
d volumeV which depends off,

= N
Eq: HqNg Ni=Vi/V with X \=1, (26)
I
- [ @S pgpe. (19 |
q PqZEi Nipg (27)
Comparing Eq(15) with Eq. (9) for diagonal elements using
pVi=1p-V, (isotropic condition in momentunp?=$p?), i
iVp—3 p s O(pq,T)=2i )\iO(T,plq), (28)

TS=E+P—2 pgpq=E—F=E+Pr— X (mq—Ugpq, _ _ . '
q q whereQ is any observable per unit volume. Within the spin-
(19 odal instability region, there is no equilibrated phase. Two or

multiple phases can coexist when the presdurand each

f=2 thaPq— P=2 (fq—Ug)pg—Pk+U, (20) chemical potentiak, are all the same among these phases,
q q ie.,
P,=P;, (29
g=§ gq=§ fqPq- (22) C
Hg= (30

The entropy can also be found frodfQ=TdS=CdT: , ,
with different values ofp, and p|, for all i andj. At the

dQ CdT 1 dE critical point,
AS—J?—J?—f?d—T‘”
P 3P
dE é’_ = —2 = 0, (31)
=f B@dﬁ=ﬂE—f EdB=B(E-F). (22 Pa  dpg
The pressure and the chemical potential are also related to kg _ r?z,uq —0 (32)
the free energyr as Ipq ap(z] '
JF Q) . . - . .
=——| =—— (23 Spinodal instability occurs whe#P/dp, is negative.
Nita NV, Once the potential enerdy in Eq. (4) is known, then the
possibility of a phase transition of the system can be studied
ok 24 using Egs.(1)—(25). The potential energy determinese,
e TV' (24 and uq and the potential energy part & andP. Then for

fixed T and Ny, the Wigner functionf and pg, are deter-
The specific heat capacity is given by, from the entropy pemined and thus the kinetic terms & w4, andP. Using
particle,S/p, these results, the entrogyandcp can be determined. Rela-
tivistic mean field theory is used for the interaction in Ref.
Sl p aSlp [7]. The role of the Coulomb interaction and surface energy
Cp=T|—| orcy=T|—] .
aT |, T/,

or the finite size effect of a nucleus are neglected in R&f.

but will be included in the approach developed here. Their
To study the caloric curve or the specific heat we look at thé@sult shows that the neutron evaporates first as the energy of
energy per particlé/p and the entropy per partici§/p. t.he 'system increases, leaving more charge concen.trated in

For multiphase multicomponent systems, the phase tradiquid phase. In this approach the coupled equations of

sition of each component can occur at different conditionglucleons and mesons lead to a highly nonlinear system and
such as temperature or pressure. However, in general we c#tus the equation of state can be obtained only through a
treat all different possible combinations of phases of eacf§elf-consistent iterative way. These problems may be simpli-
component in the multicomponent system as different phasdted by using a nonrelativistic zero-range Skyrme interaction
of the system(As an example suppose we have a system off
particles of typep and particles of typen, each having a ..
liquid-gas phase transition but at different temperatures. v12=to(1+X%oP7) S(r1—rp)
Then the system can be in one of the following four phases:
a phase of liquig and liquidn, a phase of liquigp and gas
n, a phase of gap and liquidn, or a phase of gag and gas

(29

ts ritr) o o
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TABLE |. Parameter sets for the Skyrme interact[dnl6].

Force a to (MeV fm®) Xo ty (MeV fm3(t+a)y X3
PRC45 1 3C,=-1089.0 112 16 -1/2
——5C,=17480.4
ZR1 1 —1003.9 0.0, 0.2, 0.5 13287.2 1.0
ZR2 2/3 —1192.2 0.0, 0.2, 0.5 11041.0 1.0
ZR3 0.1 —4392.2 0.0, 0.2, 0.5 26967.3 1.0
For a nuclear system of protom{) and neutron g,), this anB(Mq—Uq)Zﬂpéq/(ZmF pﬁq/(Zm'I'):In zq,
gives the local potential energy density as (39)
Ulpg)= 5|1+ 5| =55 +%0 % P N=\2mh%mT, (39)
g4 28 pere 2 1+x @ we can write, forf (r,p)="f(r,p)
2|77 2)° 1212 773)P ) .p)=*(r,p),
X5 Pt Colrpt Cop (39 p =f d*pfy(f.p)= 5 | d%p -
a a e s eB(P2—pZy/(2m) | 1

Here Cpf=(47/5)e’R?> and Cgp’=47wR%0(p)IV
=[(4mr30)IV3]p?® when we approximate the Coulomb
and surface effects as coming from a finite uniform sphere of
radiusR=r ,A® with total chargeZ (U= £eZ?/RV). This
way of handling the Coulomb interaction and surface tension

2
=x‘3%F1/x 7a). (40)

is a simplification of a very difficult problem. Despite the =ﬁ_2 6_772 2R m
limitation of the geometry used to calculate the Coulomb €Fa~ 5m y Pa) (41)
interaction, we feel that the results obtained from it will be
instructive and also very useful in accessing its importance )
on the phase transition in two-component systems. The typi- < —§P S p_f > -
cal values for the force parameters are given in Table I. For K™ o " Ka™ p2m q(":P)
a symmetric nucleus\=Z2, p,=p/2, and thus
3. 5. 3. a2 B2 - ds p_2 !
U(p)=gtop™+ zgtap® "+ CpPpp+Cep”. (39 ne) ¢ Pom SB(P7-pZI2m) 4 1

, . , , . Ayh?
This potential energy determines the interaction-dependent = 7—\/;)(5|:3,2( 7q)
terms of€, P, €4, anduq which depend on densities without m
explicit T dependence. 12

For a momenztum—zindepenQer_\t potential energy as in Eq. =_ _7)\—3|:3/2( g)- (42)
(34), €q— uq=(P“—PFg)/(2m) is independent of the poten- B \m
tial and

Here e, is the chemical potential at absolute zero or Fermi
¢ (7 B)= y? TN 1 energy andpg, is the effective Fermi momentum &t The
q(r,p)—ﬁ q(r,p), q(r,p)—eﬁ(pz_pﬁq)/(zm)+1' particle numberNy=[drp,(r) determines the effective
(36) Fermi momentunprq(F) or nq at T, in terms of density
pq(r)!

Thus we can evaluate the kinetic termsfirP, andu which

are functions ofT and pgy. Defining the Fermi integral 2 \/—
Fa(7), Repa )= Bliq—Ug) = B ot =F 13 S x%pq .
q\rq: q q 2m 12 2y q
- X )\2 atl . 2p2a+ldp (43)
Fum = | ——dx [—= | | |
01+ T 4arh? 0 1+ efP2m=ryq For multi- (two-)component systems with potential en-

(37) ergy given by Eq(34), for a givenp, (or pgq) andT,
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Xo t3 1
Mq(pg  T)=Tng(pq, T) +1o| 1+ 2) 12(1+ 5 (a+2)p*t— 5|5 TXs)a ap®t—tq 5t X%o|Pq
t3 1 @ t3 a—1_2 B—1 2 B 7—1
12 2+X3 (a—1)2p Pa” 15 §+X3 2ap® Tpg+CPp" tpp+2CpFPppdy pt nCep” 7, (44)
2 to Xo| , 13 X3 wio lo
P(pq,n—g 3P D+ 5| 1+ S|P+ 35| 1+ 5| (a+ 1)p* 2= 2| S+ % P4
~ 15l 5% (a+1)p"2 pg+C(B+1)ppp+ Co(n=1)p”, (45
_ to Xo) tO 1 2 t3 X3) ai2
ta (1
17 2+X3) “2 pq-i-Cp pp-i-CSp , (46)
5 5
TS(pa T)=2 3fkalpa T~ 2 (k= Ug)Pa=2 3ka(Pa: =T 74P T)pg (47)
- _dQ/A_T aSlp T = T aSlp 48
cplpg. D=7 =Tl 57 . or cy(pq,T) = T|—F (48

Once we evaluat&,,(7) andF3(7), or more directlyn= F[,%(X) andFg»(7), we can evaluate various thermodynamic
quantities in terms op, andT.

For the low temperature and high density limi€p large, i.e., when the average de Broglie thermal wavelengghlarger
than the average interparticle separafiort’, we can use nearly degeneréfe@rmi gag approximation$17] for F,, to obtain

2 2

qu \/— [T
ﬂq(Pq'T) B(Mq uq) ,3 I:1/2 2,}/)\ Pq) €Fq 1- 12 G_Fq +-.
2 2\ 213 2.2 4l3
_h7[6m” an_ ™M Y | g2 - (49)
2m| T 34 \em2) P !
2y 3 572 T \?
Ekalpq,T)= B_ﬁ)\ Fa79) = 5 Paerg| 1+ =5 a T
2 2/3 2,2 43
3f 677 5/3 Smm v T2p13 ... (50)
“1oml Ty 9 34 \6m? a

In the other limit wherex3p is small, we have a nearly nondegenerate Fermi(gkssical ideal gasand the resulting
equations are given by an ideal gas in leading order with higher order correftignas

3 3 3 3
pgh 1 pgh (pq)\ ) 1 (pqh )
)= —Uug)=In 1+ +.. | |=In + ’ 51
7]q(pq ) B(Mq q) [ y ( o2 v y WA (53)
3 1 pgh® (1 2 ) [pA3\2
qu(pqu)_EPKq_zqu l+2T/ZT+ §_3T/2 T —+ .. (52)

For a nuclear system with protons and neutrons with the interaction given bi3&gthe nondegenerate Fermi gas limit
of Egs.(51) and(52) leads to the following set of equations:
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[z

ty (1
+1—2 §+X3

1
§+X0

X3 N t3 (1 N
po(p.y,T)=TlIn + 5| (a+2)p* = 1—2(§+X3>ap -t Pq

tg (1
(a=1)2p%“py— 12(2+X3 2ape ! 2+C,8p3 ! 2—i—2Cp PpOqpt nCsp™™ !
(at+2)

B R R R I

2 1
a(2y— 1)2(2) i(2y—1)<g)4p“1+ 2 ClA+2(1* D]pPftt

3
top+

thpa+l_ = _+X3

6(2 ts

N[

2
C ([3+1tl)(2y—1)( p+,8(2y—1)2(g) }pﬁbr 7Cep” 1, (53

2
T(A)%pq to
22\ v\ 2 T2

t
°| (@ +1)pt2— 2

1 X
Ty 2

P(p.y,T)=Tp+ > o 1+

12

1
2
23 0

i3

1 5 T X3

5 +Xs| (@t 1)p"2 pgt C(B+1)pPpp+ C(n—1)p

3
3 (@41 oia, T (x )( ) L (BY

= —topl4 B+2 _ 7
Tp+gtor®+ —5 +(n=1)Cqp

2[ 4
Y PR Y i T T ()‘3> (B+1)CpP|(2y—1)2 2+(p3+1)(: B+1(2y—1)
—|to| 5+X ——|t3| 5t X3 p*— —=| —|— - 5 -
o| 5 T Xo 6 3|5 TX3)p 2\/5 ¥ p y p y
p
X 5 (54)
E p
3 T Tt Xo| , tofl , 13 X3\ .,
5(pyT) Tp 22\/_( ) 2 +§<1+?)p —E §+X0 E pq+1—2 1+E p
ty (1
12(2+X3 p 2 pa+CpPpi+Cep”
3 3 1 3 T (A% [p)\2
—-— _ 2 a+2 D I N - B+2 7
2Tp+8t0p +16t3p 2 2\/5( 7) 5 +—-CpP"°+Cyp
1) (1 3 T (A8 p\? p
BN P nl P a2 [N Blioy—1)2| £ B+1ioy_ 1) £
bo| 5 TXo| T\ 5 t3(2+X3 p 22\/5( ) (2y—1) (2 +Cp”7(2y 1)<2 : (55
5 3 T 3 2 Pé
TS(py, T)=5Tp—-T2 p |n()\—p + ()\—) :
o 2 Ty 221y 4
R e U 5
=Tp|5—yIn|—yp|—(1-y)In|—(1— .

Here, for the proton densityp() and neutron densityp(,), we defined
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P=pPptPn, P3=pp—pPn=(2y—1)p, y=pplp,

pp=3(p+p3)=yp, pr=3(p—p3)=(1-Y)p,

1 1+(2y—1)2
% P525(02+P§)=#pé[lﬂy(y—l)]pz,
1 1+3(2y—1)?
% szzp(92+3pg)=#p%[lﬂsy(y—l)]p? (57)

The = in uq stands+ for g= proton and— for neutron. Equatiort54) shows that, fox;# —1/2 andC+ 0, theP(p) curve
for different values ofy at fixed T may cross at some. Moreover, the minimum pressure for a giv@nhand p [i.e.,
(aP1dy), +=0] occurs aty+0.5 due to the Coulomb effect. These results were not seen ifRehlso Eq.(55 shows that,
for x;=—1/2 andC=0, the symmetry energy per nucleon is increasing proportionally to the dgnsityfeature similar to
that in Ref.[7]. However, forx;# —1/2, the symmetry energy initially starts to increase withut then begins to decrease
with increasingp. This bending of the symmetry energy is related to the crossirig(pj curves of different values for a
fixed T.

For a constanT and constanP, p andy are not independent. The press&ef Eq. (54) is a second-order polynomial of
(2y—1)(p/2), and thus we have, for the range o£9=<1/2,

(B+1)Cp”?
(2y-1)= 3
1+ to+ atl 1+ t (B+1)Cp# T ()\)
S +X — || 5 +X = b
2 ollo 6 2 3| L3P P 2\/5 y
2
2 (B+1)Cp” <p>2
= 2
P 1+ to+ atl 1+ t (B+1)Cp# T (Aa) ?
5 +X — |5 *X “— -—|—
2 ollo 6 2 3] L3p p 2\/5 y
1/2
3 (a+1) (B+1) T [(A3\p2
S22 at+?2 B+2 _ 7 B A
Tp+8t0p + 16 tap +—4 CpP e+ (n—1)Cqp —I—2\/E )
1+ to+ atl 1+ t (B+1)Cp# T )\3) *
5 +X — |5 *X “— -—=\|—
2 olto 6 2 3| 83p P 2\/5 v

for a given density. Here,— 1<(2y—1)=<0, and thus a- sign is allowed for the case that the first term is negative. Without
the Coulomb interaction only the second term in the square root surviveg ahds a single-valued function gf in the range

of O0=y=1/2. The numerator of the second term in the square ro®&(isy=1/2,T)—P(p,y,T), i.e., the negative of the
pressure measured with respect to the pressure for a symmetric nuclear system. Notice hgris thegative andP(y)
=P(y=1/2) for the potential without the Coulomb interactitgee Eq.(54)]. Since we are considering only1<(2y—1)

=<0, we have conditions of

[ 3 (a+1) (B+1) T (A3 p?
) a+?2 B+2 _ 7 S
Tp+8top + 16 tap +—4 CpF "+ (n—1)Cgep +2\/E 2 P
0=
+Xo|t +(a+1 (1+ t (B+1)CpP ! ()\3)
=+X — || =z+x @ - —|—
2 o]to 6 2 3|t3p p 2\/5 y
[ 2(B+1)Cp? 2
_. (B+1)Cp (g) 59
1 a+1)/1 3 .y T /)3 2
i 5 Xo|tot| =5 || 5 T Xs|tap—(B+1)Cp 25\ 7

to have Gsy=<1/2. Also the boundaries are related to the pressurgs=dt/2 andy=0, respectively. Here the: sign
corresponds to the sign in Eq.(58). For nonzerdC, there is a backbending iip). This behavior is related to the choice
of opposite sign for the square root term in E§8) and double values of for a givenp. To find the point of backbending,
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we look at the gp/dy)t p=0 point. At the same value of as the backbending point §f(p)p 1, the pressure becomes
smallest for a giverp andT, i.e., (7P/dy), =0 [see Eq.(60) below]. For C=0, there is no backbending since only the
negative sign is allowed in Eq58). Using Eq.(58) we can findp(P,y,T) and thus the energy and entropy as a function of
pressureP, proton fractiony, and temperaturg, i.e., &(P,y,T) andS(P,y,T). From these results we may study an isobaric
phase transition. Since all the phases have the same pressure in the coexistencg.£€BignT) may be used to find the
coexistence region.

At fixed T andP, only one of eithelp ory is the independent variable. Thus we haM{®,y,T) and observables such as
P, &lp, SIp may have a discontinuity i or y when (Jp/dT)y p or (dp/dy)t p diverges. We can study the behavior of
thermodynamic quantities at a fix&lusingdP=0 from Eq.(54),

| A LA B S

1
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whereb,=2t,, bs=[(a+1)/16]t;, andbe=[(B+1)/4]C. Thus we have, for a fixe® andy,
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Using this we get the specific heat capacity, from &),
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The difference oty andcy is proportional to

¢p/dT). This  are based on the equations developed in the previous section

shows that even though the specific heat with fixed volumavhich arise from a Skyrme interaction and include the ef-
cy has no divergence, there may be a divergence in the spéects of Coulomb and surface terms besides the symmetry

cific heat with fixed pressurep at someT showing a first ~ term. Here we use the Skyrme interactionzof PRC45 in Table
order phase transition ifdp/dT), p=2*, i.e., (@T/dp)yp  With B=0, 7=2/3, the surface energym ;o =20.0 MeV,
=0. This happens whendy/dp) p=0 according to Eq. andR=6 fm. We restricted our analysis only to the Skyrme
(60). However, if this happens in the coexistence region,intera.ction withx;= —1/2 here. With t.his choice, there is no
then this discontinuity does not contribute to the phase trancrossing ofP(p) curves between different values gfat
sition and the phase transition will be second order dependixed T which is a behavior similar to that in Reff7]. With

ing on other conditions. X3# — 1/2, the nonlinear dependence of the symmetry energy
on p causes a crossing of thp) curves between different
Ill. PHASE TRANSITION OF A EINITE NUCLEUS values ofy at some density and_thus the minimum pressure
WITH A COULOMB INTERACTION occurs at differeny values for different density [see Eq.

(60)] for a givenT. This makes the analysis for the phase
In this section we present results of our calculations of thaliagram more complicated. In this paper, usig- —1/2,
phase transition of a finite asymmetric nucleus. The resultsre concentrate on the effect of the Coulomb interaction by
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FIG. 1. Pressurd(p) versusp at T=10 MeV for variousy. FIG. 2. Proton fractiory(p) for P=0, 0.015, 0.05, 0.1, 0.2, 0.3,

The dasheo_l curves frpm top to bottom hgve0, 0.1,0.2,0.3,04, ¢ 4 and 0.5, from top to bottom, dt=10 MeV. The solid curves
and 0.5 while the solid curve is for=0.4552. have Coulomb and surface tension contributions and the dashed

comparing with the results of R€f7]. curves are without these interactions.

Figure 1 shows the pressuR{p) for variousy values at
T=10 MeV. The values of used range frony=0 (neutron  property. For fixedP and T, y and p are not independent.
mattey to y=0.5 (symmetric systems Some important fea- Since EQ.(54) is a second order equation fgy y can in
tures of this figure are the following. Above a certain  general have two values for a given dengityEquation(58)
=y, the curves have a characteristic S shape. This is thexpresses the dependence/ai p for a givenP andT. This
well-known behavior of a van der Waals—like equation ofequation is an important result in our method of analysis of
state with long range attraction and short range repulsiorthe liquid-gas phase transition in asymmetric systems. In par-
For one-component systems this behavior leads to a Maxwelicular, Eq.(58) allows us to find the energy and entropy as
construction and the end points of the Maxwell line definea function ofP, y, and T using Egs.(55) and (56), respec-
the liquid-gas boundary. The region between the maxima antively. Figure 2 shows the proton fractigifp) for variousP
minima of theP(p) curve has negative compressibility and values atT=10 MeV. Here only the &y=<0.5 region is
is the spinodal instability region. For two-component sys-shown. These curves show a backbending feature for jarge
tems, because of the extra degree of freedom associated wittith dp/dy=0 aty=0.4552<1/2 for theR parameter of the
varying proton fraction in a system with two phases, theCoulomb interaction taken as 6 fm. At thysvalue of back-
phase diagram has a higher dimensionality. One effect of thibending[ (dp/dy)=0], the pressure is minimur(JP/dy)
higher dimensionality is to change a first-order transition into=0] too as can be seen from Eq&8) and (60). For R
a second-order transition as noted in Rgf58]. Another =10 fm, the backbending occurs wat=0.3927. Without a
effect is that the phase diagram is now a surface in pressui@oulomb interaction, there is no backbending in they0
P, temperaturd, and proton fractioty or nucleon density. =<0.5 region andp/dy=0 aty=1/2. The discontinuity of
At a particulary=y.(T), the CP for given temperatuile the  y(p) at low density for small pressure is expected from the
S shape disappears. Below this, there is no longer a low density region of Fig. 1.
liquid-gas boundary for thi§. The existence of a critical Figure 3 shows a plot of the chemical potential for pro-
pointy, is similarly seen in Ref[7]. The Coulomb interac- tons u,(y) and neutronsu,(y) as a function of the proton
tion has new effects also. F@r=10 MeV, the lowest pres- fractiony for several values oP and atT=10 MeV. From
sure occurs not at=1/2 but aty=0.4552 forR=6 fm due this figure we can find the binodal points by using E20).
to the Coulomb repulsion independent of the surface tensiom particular the equality of the chemical potentials at the
[see Eqgs(54) or (60)]. Thisy value, forx;=—1/2, is also sameP andT determines two values gfat the phase bound-
independent op. For R=10 fm, the lowest pressure occurs aries, one for the liquid phase and one for the gas phase.
aty=0.3927 due to a stronger Coulomb effect. According toSpecifically w,(P,y1,T)=un(P,y2,T) and wu,(P,y;,T)
Egs.(54) or (60), they value having minimum pressure ap- = up(P,y,,T). A geometric construction of this equality
proaches/=0.5 asT increases. would be a rectangular box in Fig. 3 as shown in Fig. 6 of

Let us next turn to Fig. 2 which is based on the following Ref. [7]. The vertical sides of this rectangle are the two val-
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FIG. 3. Chemical potentiak,(y) and u,(y) for P=0.015, FIG. 4. Binodal curve al =10 MeV. The solid curve is for the

0.05, 0.1, 0.2, 0.3, 0.4, and 0.5, from top to bottom curve for pro-case with Coulomb and surface effects, the dash-dotted curve is for
tons (solid curve and bottom to top for neutroriglashed curyeat ~ the case with surface effects, the dash-dot-dot-dotted curve is for
T=10 MeV. The chemical potential increases as the pressure irfhe case with Coulomb interactions, and the dashed curve is for the
creases ay=1/2. For smallew, x, increases ang, decreases as Case without Coulomb and su_rface effects. $ma_1|| boxes at the upper
P increases except, for P=0.015 and 0.05. The small box at the fight comer are the expansion of the main figure. In the small
right-bottom corner is the expanded curve R#0.015 MeV/fn?  boxes, the region of liquid, gas, and coexistence are indicated by L,
with two pairs of binodal points indicated by dotted lines. G, and C, respectively.

ues ofy, y;, andy,, and the horizontal sides are the two diagram. Their effect is shown in the box at the right-upper
chemical potentialsw, and u,. For eachP and T with T corner of Fig. 4 which will now be discussed.

<T. with T, the critical temperature, a pair gfs can be Figure 4 shows the coexistence binodal loop in yhie
found and are the binodal points for tiaandT. Fixing just  plane afT=10 MeV. The figure shows that the major effect
T and varyingP generates a binodal loop &f versusy as  of the surface tension is a lowering of the pressure for the
shown in Fig. 4. While the overall qualitative behavior coexistence curvécompare the dash-dotted curve vs dashed
shown in this figure is similar to that of Rdf7], the quan- curve and the solid curve vs dash-dot-dot-dotted cuike
titative results are different because of the Coulomb and suiinclusion of surface tension may allow for a zero-pressure
face terms that our approach contains. Moreover, an interesisobaric phase transition and may simulate the situation of an
ing new feature arises from the Coulomb term sincg  equilibrated state of multifragmentation having zero internal
>u, aty=1/2 instead ofu,=u,. Specifically, the Cou- pressure for stable finite nuclei with nonzero gas pressure as
lomb interaction leads to the crossing of the neutron andliscussed in Ref9]. The effect of the Coulomb interaction
proton chemical potentials in the range p#0.4 for the  makes the coexistence region smaller. However, a more im-
Skyrme parameter used here. The Coulomb interaction alggortant effect of the Coulomb interaction is the appearance
leads to the crossing of the small density portion and the higlof another pair of binodal points in the low pressure region
density portion of the proton chemical potentig] at fixedP  (see the expanded figure in the box at the right-upper cprner
and T while the crossing of the small density and the highTwo points of smallely values have the same chemical po-
density portions of the neutron chemical potentiglat fixed  tential and two points of largey values have the same

P andT was seen in Ref.7] too. These new crossings due to chemical potential. However, they are different from each
the Coulomb effect bring in a new pair of binodal points for other, with the largey pair having largep, and smallem,,

low pressure. An expanded view of these crossings is showthan the corresponding values of the other pair with smaller
in the box at the right-bottom corner of Fig. 3 for a pressurey (see Table . Here the points with largest and smallgst
P=0.015 MeV/fn?. This small box has two pairs of binodal value are in gas phase and the points between the other two
points indicated by the horizontal dotted lines which corre-y values are in the liquid phageee Table IlI; Eq(58) shows
spond to the horizontal sides of the rectangle mentionethat there are two values gffor a givenp at fixedP andT].
above. This small box shows one pair at a slightly lower The binodal pair with highey values allows the mixture of
thany=0.4552 and another pair slightly aboye=0.4552. gas with highesy and liquid with the next higly and is a
These two pairs of binodal points also show up in the phaseeversed situation from the other binodal pairs and the
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TABLE II. Coexistence points.

P (MeV/fm®) p (fm3) y wp (MeV) un (MeV)
0.01496 0.0034324 0.4526870 —15.73360 —13.80920
0.1138296 0.4548638 —15.73360 —13.80920
0.1138296 0.4555570 —15.59369 —13.92612
0.0034324 0.4577830 —15.59369 —13.92612
0.01498 0.0034352 0.4441228 —15.97430 —13.61531
0.1138098 0.4536912 —15.97430 —13.61531
0.1138096 0.4567391 —15.35914 —14.12939
0.0034352 0.4665239 —15.35914 —14.12939
0.01500 0.0034373 0.4253351 —16.50124 —13.19126
0.1137651 0.4511254 —16.50124 —13.19126
0.1137652 0.4592869 —14.85386 —14.56769
0.0034372 0.4853333 —14.85386 —14.56769
0.01503 0.0034421 0.4226954 —16.57709 —13.12985
0.1137598 0.4507550 —16.57709 —13.12985
0.1137592 0.4596993 —14.77187 —14.63844
0.0034420 0.4883935 —14.77187 —14.63844
0.01505 0.0034449 0.4141177 —16.81862 —12.93537
0.1137397 0.4495787 —16.81862 —12.93537
0.1137389 0.4608853 —14.53660 —14.84241
0.0034448 0.4971483 —14.53660 —14.84241
0.01506 0.0034463 0.4102457 —16.92777 —12.84748
0.1137306 0.4490471 —16.92777 —12.84748

result of Ref.[7]. This allows for a phase separation into afigure shows that at a low pressure there are two points with
liquid phase with fewer protonflower y value and a gas (dT/dp), p=0, i.e., @p/JT), p=2°, which may cause a dis-
phase with more protongighery valug) which is more re-  continuity in cp according to Eq.(63). According to Eq.
alistic in heavy ion collisions. For the Skyrme parameter we(60), (9T/dp), p=0 when @P/dp), =0, i.e., at the spin-
used here withx;=—1/2, the two pairs of binodal points
meet at one point iy, having a minimunP for a givenT as
shown in the small box in this figure. At this point, both the
liquid and gas phases have the same proton concentration
(EC) y=ye with different densityp. If the initial overall
concentratiory is greater than the equal concentratign,
then the system ends up with more proton concentration in
gas and less proton concentration in liquid phase. If the ini-
tial y were smaller thatyg, then the final system has more
proton concentration in liquid phase and less proton concen-
tration in gas phase. The equal concentration pgintis
independent of the surface energy and nucleon depsityd
approachey=0.5 asT increases as can be seen from Eqgs.
(54) or (60). The value of equal concentratigp: decreases
as the Coulomb interaction increases; hgge=0.4552 for
R=6 fm and it would be changed tgz=0.3927 forR
=10 fm. Without the Coulomb interaction thg becomes
ye=0.5, the proton ratio for a symmetric system as seen in
Ref. [7]. If x3#—1/2, as a result of the nonlineardepen-
dence of the symmetry energy, the presfulEcomes mini-
mum[ (dP/dy)+=0] at a differenty value for the liquid and
gas phases. For this case, unless the minimum pressure of
liquid is lower than the minimum pressure of gas, there
would be no point of EC. This should be studied further. FIG. 5. Temperaturd(p) for P=0.0, 0.015, 0.1, 0.2, 0.3, 0.4,
The results of Eqs(54) or (58) can be used to obtain a and 0.5, from bottom to top, at=0.3 (dash-dotted curyeand 0.5
connection betweer and p for eachP andy. Figure 5 (solid curve. Dashed curves are for the case without Coulomb and
shows T(p) for various P values aty=0.3 and 0.5. This surface effects.

Temperature, T (MeV)
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FIG. 6. Energy per particlé(T)/p for P=0.0, 0.015, 0.1 0.2, FIG. 7. Same as Fig. 6 but for entropy per parti§(@)/p.

0.3, 0.4, and 0.5, from top to bottom,yat 0.3 (dash-dot-dot-dotted
curve and 0.5(solid curve. Dashed curves are for=0.5 without  inside of the coexistence region, the diverging slope of en-
Coulomb and surface effects and the dotted line is for the exactrgy and entropy at spinodal points andl(dp), p=0 do
result atP=0 from Ref.[16]. This shows that the Fermi gas ap- not contribute to the phase transition. However, because of
proximation we have used is not valid fdrlower than about 5 the backbending of the curves in Figs. 6 and 7 for low pres-
MeV with high density, but very accurate for higher temperaturegyre, the energy jumps at the binodal points and it can cause
(the dashed curve foP=0.0 coincides with the dotted curve for a flrst_order phase trans|t|0n |f a” the phases have the same
&lp=8 MeV). which is similar to a one-component system. But as dis-
cussed in detail in Ref7], in the actual phase transition of a
odal points. Equatior{60) also shows thafd(&/p)/dT]y,p  heavy ion collision with two components, the proton fraction
= and[d(S/p)/dT], p=o at the spinodal points having y in each phase can be different while still conserving the
(9P/dp)y +=0. Thus by investigating the behavior of energy overall fraction. Because of the mixing of phases with dif-
and entropy as the temperatureehanges, we can study the ferenty values, the transition becomes a second-order phase
behavior of heat capacity, or the order of the phase tran- transition[7]. Since theT dependence of the energy and
sition. entropy for fixedy andP (Figs. 6 and Yis qualitatively same
Figures 6 and 7 shows{p), p and (S/p), p as a function  as in Ref.[7], the characteristic of phase transition here will
of T for variousP values aty=0.3 and 0.5. The overall  be the same as the result of REf].
dependence is qualitatively same as in R&f. Comparing
with the exact result of Ref16] (dotted curve in Fig. § we
can see that the high nondegenerate Fermi gas approxima-
tion used here is good for the region which corresponds to In this paper we studied the liquid-gas phase transition in
Elp>8 MeV for the case without Coulomb and surface ef-a two-component hadronic system made of protons and neu-
fects. For lower energy and lowdr, we need to use a de- trons. The analysis of the thermodynamic properties of
generate Fermi gas limit which has more complicatée-  asymmetric nuclei with arbitrary proton-neutron ratios is im-
pendence than the nondegenerate Fermi gas [eei Eqs. portant in several areas such as in astrophysical situations
(49—(52)] and the simple relatio58) is no longer appli- where neutron stars are of interest and in radioactive beam
cable. The points with diverging slope éfp and S/p in studies. Such studies are considerably more complicated than
variations ofT are related to the zero-slope points in Fig. 5.a one-component system or a symmetric system of protons
If the charge concentrationwere kept constant in all phases and neutrons without Coulomb interactions. A novel aspect
during adiabatic heating of the system at fixed pres§yre of asymmetric systems is the possibility of having different
then the system follows one curve in Figs. 6 and 7 with theproton-neutron ratios in each of the phases, while still con-
correspondingy andP similar to a one-component system. If serving the overall initial proton fraction. This feature arises
we follow a curve in Fig. 6 as the energy increases, then thécom the symmetry energy which prefers equal numbers of
temperature goes up until it first reaches the spinodal point girotons and neutrons in denser regions, but its effect is mod-
higherT and lower energy before reaching the spinodal pointrated by the Coulomb force. Such features are well known
at lowerT and higher energy. Since both spinodal points ardrom theN-Z behavior of stable nuclei where for light nuclei

IV. SUMMARY AND CONCLUSION
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N=2Z but for heavy nucleN>Z. Because of the extra de- Rather, the system is treated as uniform but with varying
gree of freedom associated with varying proton fraction in adensity. One effect of the surface tension in our study is to
system with two phases, the phase diagram has a higher diting the coexistence binodal surface to lower pressure
mensionality. One effect of this higher dimensionality is towhich could allow for an isobaric transition at zero pressure
change a first-order transitidi8] into a second-order tran- (see Fig. 4. It may simulate a situation of an equilibrated
sition as noted in Ref$7,8]. Another effect is that the phase state of multifragmentation where stable finite nuclei have
diagram is now a surface in pressiRetemperaturel, and ~ Z€ro internal pressure but nonzero gas pres@ireérhe sur-
proton fractiony or nucleon density [7]. For a givenA face effect becomes larger as the dzkecomes smaller and
=N+ Z stability is determined by both Coulomb and surfaceWe can bring binodal surface to croBs=0 plane.
effects in addition to the symmetry energy. This paper is a Inclusion of the Coulomb interaction brings a new feature
study of the additional role of Coulomb and surface effectdn the mean field approach. Figure 4 showed the shrinking of
on the thermodynamic properties of heated nuclei. the binodal loop from the inclusion of the Coulomb term.
Our investigation of the phase diagram was carried out he effect of the Coulomb force in reducing the dynamical
using a Skyrme interaction and the approach was based onistability region is also seen in RPA-type calculations
mean field theory. In Sec. II, the main equations were givert10,12. Figure 4 also contains the effects of the surface
for multicomponent systems where the use of the Skyrméerm. Moreover, the contribution of each term, Coulomb
interaction for a two-component nuclear system was show®nly, surface only, and both Coulomb and surface are com-
to simplify expressions so that the results are analytic funcpared with a situation without Coulomb and surface terms.
tions of P, T, andy: Egs. (53)—(56) with Eq. (58). These This comparison enabled us to isolate the importance and
expressions include the pressure and both neutron and proté@le of these various contributions. Figure 3 showed the ef-
chemical potentialg, and ,. Phase equilibrium requires fect of the Coulomb force on the proton chemical potential
equality of u, between the two phases and similagly at and it leads to a crossing of the pro'_[on chemical potentials
the sameP and T. At fixed T andP, p andy are not inde- and neutron chemical potentials for different value®@hnd
penden{Eq. (58) and Fig. 4 and we use this property in our Y neary=0.5.
model to further simplify its analysis. This connection also  The Coulomb interaction also brings the line of equal
allowed us to find the energy and entropy as a functioR,of concentration of proton_EC) on the binodal surface to a
y, andT (Figs. 6 and 7. smallery=yg value thary= 0.5 for the symmetric system. It
Our mean field approach using a Skyrme interaction is aflso causes another pair of binodal points withyg at low
extension of a previous study initially begun in REf] for ~ Pressure with a reversed proton fraction in the liquid-gas
two components and the analysis is similar in some ways t®hase, i.e., with fewer protons in the liquid phase and more
that developed in Ref7]. However, in this paper we in- Protons in the gas phase. At the proton fractygrntwo pairs
cluded surface and Coulomb effects so our results diffePf binodal points meet together and the pressure becomes
quantitatively from those in Ref7]. The Coulomb interac- Smallest on the binodal curve as can be seen in the box in
tion and surface tension are incorporated into the descriptiofiig. 4. This value ofye can be made smaller by using a
by treating the system as a uniformly charged sphere with &tronger Coulomb interaction with larg& For the case of
fixed value ofR. While somewhat simplified we feel that X3=—1/2, the point of equal concentratioy is directly
results obtained from it may be a useful instructive examplgelated to the backbending pointpfp) shown in Fig. 2 and
of the qualitative effects that the Coulomb interaction andlso to the point with minimum pressure on the binodal loop
surface tension have on the binodal surface. Some features i6f Fig. 4 and on theP(p),  curve in Fig. 1. If the initial
the results are similar qualitatively with the results of Ref.overally is greater thaye, then the phase transition ends up
[7]. For example, the temperature dependence of the energyith a larger proton fraction in the gas and a smajian the
and entropy(Figs. 6 and Y is qualitatively the same as the liquid phase. On the other hand, for the initigkye, the
result of Ref[7] which indicates the phase transition is sec-System ends up with a larggiin liquid and smallely in gas
ond order. However, including Coulomb and surface effectphase. Equatiots8) shows that the value ofg is indepen-
introduces some features also not present in R@fwhich  dent of the density for x;=—1/2 and approacheg==0.5
are summarized below. Since th@&ependence of our results as T increases. The new pair of binodal points wjtkyg
is similar with the results of Ref.7], we considered here disappears age reaches 0.5, the proton ratio for a symmetric
only a high temperature nondegenerate Fermi gas limisystem.
which has much simpler density dependence of the kinetic In this paper we used a fixed value Rfto determine the
energy and pressure than a low temperature ljsge Eqgs. strength of Coulomb interaction and surface tension. Here, if
(49—-(52) and Eq.(59)]. we increase the strength of Coulomb effect by increasing the
The importance of surface energies in the liquid-gas phasealue of R, then the surface tension decreases. If we allow
transition was shown in Reff3,4] using an approach based for variations ofR with p or T and allow different values for
on a statistical model of multifragmentation. In the statisticalthe Coulomb and surface energies, then this simple model
model of multifragmentation, because nuclear matter can bmay be used to study multifragmentation with various sizes
broken into a large number of small pieces, the surface emf clusters. We also restricted the symmetry energy per par-
ergy plays a very dominant rolel8,19. Here, in a mean ticle to have only a linear dependence on the nucleon den-
field theory, the surface energy plays a lesser role since wsity. Allowing a higher ordep dependence of the symmetry
do not allow for the possibility of multifragmentation. energy through;# —1/2, the EC point might be destroyed.
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