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Comparison of transfer-to-continuum and eikonal models of projectile fragmentation reactions
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Spectroscopic properties of nuclei are accessible with projectile fragmentation reactions, but approximations
made in the reaction theory can limit the accuracy of the determinations. We examine here two models that
have rather different approximations for the nucleon wave function, the target interaction, and the treatment of
the finite duration of the reaction. The nucleon-target interaction is treated differently in the eikonal and the
transfer-to-continuum model, but the differences are more significant for light targets. We propose a new
parametrization with that in mind. We also propose a new formula to calculate the amplitudes that combines
the better treatment of the wave function in the eikonal model with the better treatment of the target interaction
in the transfer-to-continuum model.
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I. INTRODUCTION

Heavy ion reactions at intermediate energy offer gr
promise to measure spectroscopic properties of nuclei
from stability, but one needs a tractable reaction theory
interpret the experiments. In this respect the availability
higher energy heavy ion beams is most welcome, becau
becomes a reasonable theoretical approximation to neg
exchange of nucleons between the colliding nuclei. One
therefore consider the interaction in each nucleus as tha
an external~complex! potential field. Within the framework
of this basic approximation and with given potentials, w
will here address the question of the accuracy of further s
plified models of the reaction cross sections. A number
theoretical models have been proposed and calculated@1–12#
in which different approximations were made. In this wo
we focus on two of the models, the eikonal model@1–7# and
the transfer-to-the-continuum~TC! model @8–12#.

There are several cross sections that are measured
calculated in the models. The simplest measurement is
single-neutron removal cross section, in which only the p
jectile residue, namely the core with one less nucleon
observed in the final state. Besides the integrated rem
cross section, denoted bys2n , the differential momentum
distributiond3s2n /dk3 is also measured. A particularly use
ful cross section isds2n /dkz , the removal cross sectio
differential in longitudinal momentum. If the final state ne
tron can also be measured, the corresponding coinci
cross sectionAp→(Ap21)1n is called the diffractive
breakup cross section. The difference between the rem
and diffractive breakup is called the stripping cross secti

This paper is organized as follows. In Sec. II we summ
rize the essential ingredients of the TC model and the eiko
model, and discuss the accuracy of the neglect of finite
teraction times in the eikonal model. In Sec. III we discu
the different treatment of the neutron-targetS matrix in the
two models. We will not discuss the accuracy of the Han
function approximation separately, but it of course play
role in the comparison of cross sections that we make in S
IV which contains also our conclusions.
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II. THEORETICAL MODELS

All theoretical methods used so far rely on a basic a
proximation to describe the collision with only the thre
body variables of nucleon coordinate, projectile coordina
and target coordinate. Thus the dynamics is controlled by
three potentials describing nucleon-core, nucleon-target,
core-target interactions. In most cases the projectile-ta
relative motion is treated semiclassically by using a traj
tory of the center of the projectile relative to the center of t
targets(t)5bc1vt with constant velocityv in thez direction
and impact parameterbc in the xy plane. Along this trajec-
tory the amplitude for a transition from a nucleon statec i to
a statec f is given by

Af i5
1

i\E2`

`

dt^c f~ t !uVnt~r !uc i~ t !&, ~1!

whereVnt is the neutron-target interaction. The statec i will
be the bound state of the nucleon in the projectile, while
final statec f is a continuum state. The detailed derivation
Eq. ~1! from a scattering amplitude containing the full tim
dependent propagator can be found in Sec. II of Ref.@9#.
There it was shown to hold under the hypothesis that
breakup process is limited to peripheral projectile-target
jectories and that it is due mainly to the neutron interact
with the target potential. The probabilities for different pr
cesses can be represented in terms of the amplitude as

dP

dj
5( uAf i u2d~j2j f !, ~2!

wherej can be momentum, energy or any other variable
which one measures a differential cross section.

The effects associated with the core-target interaction
be included by multiplying the above probability by th
bc-dependent probability for the core to be left in its grou
state.

Thus the differential cross sections with respect to
longitudinal momentum is
©2001 The American Physical Society04-1
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ds2n

dkz
5C2SE

0

`

dbc

dP2n~kz ,bc!

dkz
Pct~bc!, ~3!

wherekz is the ~longitudinal! recoil momentum of the neu
tron @see Eq.~2.3! of @11## and C2S is the spectroscopic
factor for the initial single particle orbital. The cross secti
can be further divided into a stripping cross sectionsstr and
a diffractive breakup cross sectionsdi f f depending on
whether the removed neutron is detected in the final stat
not. We accordingly will consider these individual probab
ity distributions,

P2n5Pstr1Pdi f f , ~4!

and use a similar notation for the cross sections.
We first summarize the transfer-to-the-continuum~TC!

model. This model treats the time dependence of the reac
explicitly, thus conserving energy. It uses the on-sh
neutron-target scattering matrix, therefore making it
principle model-independent with respect to that interacti
It also makes use of the asymptotic form of the neut
wave function in the projectile. This is an asset in that
formulas have an analytic limit, but a disadvantage in t
the results are only reliable at peripheral impact paramete1

The two breakup probabilities are given by the followin
expressions:

dPstr~bc!

dkz
5(

l n
u12Sl n

u2B~ l n ,kz ,bc!, ~5!

dPdi f f~bc!

dkz
5(

l n
~12uSl n

u2!B~ l n ,kz ,bc!, ~6!

where the factorB( l n ,kz ,bc) is a transfer probability which
depends on the details of the initial and final states, and
the energy of relative motion. It is given by

B~ l n ,kz ,bc!5
1

2 S \

mv D 1

kf
~2l n11!uCi u2

e22hbc

2hbc
Ml nl i

, ~7!

where l i is the angular momentum of the bound neutron
the initial state with respect to the core. The variablel n has
the interpretation as the angular momentum of the neu
with respect to the target. Also

Ml nl i
5

1

Ap
E

0

`

dxe2x2
Pl i

~Xi1Bix
2!Pl n

~Xf1Bfx
2!. ~8!

The arguments of the Legendre polynomialsPl i
and Pl n

are Xi5112(kz /g i)
2 and Xf52(kz2mv)2/„g i

212mvkz

2(mv)2
…21, Bi52h/dg i , andBf52h/dkf . g i is related

1The derivation of the TC model requires that the neutron-tar
and the neutron-projectile potentials do not overlap. In this resp
the result that can be expressed entirely in terms of asymp
properties reminds one of Be´g’s theorem@13#.
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to the initial state binding energy byg i5A22m« i /\. The
variableh5Akz

21g i
2 has the interpretation as the modul

of the transverse component of the neutron momentum
our notation« f is the energy of the neutron relative to th
target in the final state. For diffraction this is the same as
final laboratory energy of the neutron if the target recoil
netic energy is neglected. In the case of stripping, if it go
through compound nucleus formation,« f is the excitation
energy of the compound state above the neutron thresho
the residual nucleus. For inelastic scattering it is the ene
of the breakup neutron before it scatters from the target. T
is equivalent to the sum of the excitation energy of the tar
final state and the final neutron energy relative to the tar
If the target recoil kinetic energy is neglected the final
netic energyEf of the ejectile is given by the energy conse
vation condition

Ef2Einc5Q5« i2« f , ~9!

where Einc is the initial incident energy of the projectil
in the laboratory,Q is the reactionQ value given byQ
5« i2« f and « i is the initial neutron binding energy in th
projectile. With this approximation Eq.~9! relateskz to the
projectile residue parallel momentum. Finally,uCi u2 is the
asymptotic normalization constant of the initial bound wa
function

c i~r !52 i lCig ihl i
(1)~ ig i r !Yl imi

~u,f!, g i r @1. ~10!

It is obtained by fitting a realistic radial wave functio
to the Hankel formhl i

(1) outside the potential radius. In

this way the transfer to the continuum results are mo
dependent. On the other hand, the dimensionless qua
L l i

5g i
21uCi u2C2S has been called reduced normalization

the contest of spectroscopy done with transfer reacti
@14,15#. If one considersL l i

as the prefactor of the theore
ical cross section obtained with the Hankel function, the ra
between the experimental cross section and the theore
cross section would determine its value.

Equations~5!–~7! were derived assuming no overlap b
tween neutron-core and neutron-target potential. This
sumption can be avoided if one makes an eikonal appr
mation to the basic expression for the amplitude, Eq.~1!, as
shown in Appendix B. Then one derives@4,10#

dP2n~bc!

dkz
;

1

2pE0

`

dbn@ u~12e2 ix(bn)!u2

112ue2 ix(bn)u2#uc̃ i~bn2bc ,kz!u2, ~11!

where bn is the transverse coordinate of the neutron w
respect to the target. The neutron-targetS matrix is approxi-
mated by the eikonal formS̄(bn)5e2 ix(bn), related to the
optical potentialVnt by x(bn)5(1/\v)*2`

` Vnt(x,y,z8)dz8.

Finally, uc̃ i(bn2bc ,kz)u2 is the longitudinal Fourier trans
form of the initial state wave function. Also the connectio
between Eqs.~5!–~7! and Eq.~11! is made by replacing the
sum over partial waves in Eqs.~5! and ~6! by the integral
over impact parameters as in Eq.~11!, and by evaluating the

t
ct
tic
4-2
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COMPARISON OF TRANSFER-TO-CONTINUUM AND . . . PHYSICAL REVIEW C63 044604
longitudinal Fourier transform in Eq.~11! using the
asymptotic initial state wave function, Eq.~10!. The one-
dimensional Fourier transform of the initial wave functio
can be calculated analytically in the case of an Hankel fu
tion approximation, Eq.~10!, yielding

1

~2l i11! (
mi

uc̃ l imi
~bc2bn ,kz!u2

5
1

~2l i11! (
mi

u2CiYl i ,mi
~ k̂z!Kmi

~hr!u2

'Ci
2 e22hr

2hr
Pl i

~Xi !, ~12!

wherer5ubc2bnu.
The total breakup probability is obtained from the integ

of Eq. ~11! involving

I ~kz
min ,kz

max!5E
kz

min

kz
max

dkzuc̄ i~bn2bc ,kz!u2. ~13!

kz
min and kz

max are the kinematically allowed minimum an
maximum neutron parallel momenta discussed in the follo
ing. Therefore although Eq.~11! describes the neutron-targ
rescattering in the eikonal approximation, it still satisfi
neutron energy and momentum conservation.

On the other hand, a sudden approximation or frozen h
form of the eikonal method has been used in@1,6,5# where
energy conservation was neglected. This approximation
be derived from Eq.~11! when the integration limits in Eq
~13! can be extended to6`. Then Eq.~13! is just the longi-
tudinal density, and the formulas for the TC and eikon
model become identical. In fact in this limit the remov
cross section reduces to

s2n5C2SE d2bcE d3rn@ u~12S̄!u2

112uS̄u2#uSct~bc!u2uc i~bn2bc ,z!u2, ~14!

which is consistent with the breakup cross section of@1,6#.
In Eq. ~14! S̄ is an eikonalSmatrix, as defined after Eq.~11!.

The steps necessary to obtain Eq.~14! from Eq. ~11!
and Eqs.~4!–~6! can be justified in the high energy limit a
follows. If the neutron binding energy is not too large, t
final energy or momentum distributions are strongly pea
at the incident energy per nucleon. Therefore it is poss
to average the dependence of the neutron target op
model S matrix of Eqs.~5! and ~6! over the full range of
neutron continuum energies and assume that theS matrix
can be approximated with the eikonal valuesS̄ obtained at
« f5

1
2 mv2. On the other hand, for the eikonal approximati

to be good it is necessary that the parallel componen
the neutron momentumkz be large with respect to the tran
verse componenth. In particular such a condition must b
satisfied for the minimum values of both. From the definiti
of kz it is easy to see that its lowest possible value iskz

min

52(« i1
1
2 mv2)/(\v) in correspondence to« f50. And that
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the minimum value ofh5g i . Therefore we getukz
minu@g i if

AEinc/2@A« i . For a real halo with separation energy arou
0.5 MeV the conditionukz

minu@g i is satisfied at all initial
energies. Increasing the binding energy it is necessary to
to higher incident energies in order for the parallel mome
tum component to be larger than the transverse one. F
typical binding of 10 MeV or more the conditions for th
sudden eikonal approximation to be valid are satisfied fr
about 80A MeV. It is useful also to consider the values
neutron-target center-of-mass momentumkv5mv/\ where
m5At /(At11) is the neutron-target reduced mass. Here
we see that for a typical diffuseness ofa50.5 fm the semi-
classical conditionakv@1 is satisfied starting from about 8
MeV. Finally if such a condition is satisfied we can exte
the lower limit in thekz integral to2`. There is however
also an upper limit to the final neutron or ejectile momentu
value in the parallel direction, due to the energy and mom
tum conservation. It was discussed in Ref.@16# where it was
shown that

kz
max5S 12

1

2Ap
Dm, ~15!

m is the neutron mass.kz
max54.5 fm21 for a 12Be projectile.

In terms of the maximum neutron final energy in the co
tinuum the above condition reads

« f
max5kz

max\v1
1

2
mv21« i . ~16!

If this upper limit is also extended to1` then thekz
integral gives ad function and inserting Eq.~11! and the
damping factorPct5uSctu2 in Eq. ~3! we finally get Eq.~14!.

These very strict conditions necessary to extend the th
retical limits of thekz integral to infinity, can be somewha
revised in practical calculations. To see how accurate
sudden approximation is, we have calculated the integ
I (kz

min ,kz
max) under various conditions of angular mome

tum, neutron binding energy in the projectile, and projec
velocity. For values of the parameters of interest there can
a rather large reduction for small values of the neutron tra
verse radius in the projectile,ubn2bcu. However, the ap-
proximation becomes increasingly accurate as the transv
radius is made larger. In Fig. 1 we show the region of en
gies in which the ratio

R5
I ~2`,`!

I ~kz
min ,kz

max!

is within 10% of being unity, for ad-wave orbital at a trans-
verse radius corresponding to strong absorption,ubn2bcu
'6.1 fm. The region of good agreement is somewhat lar
for s andp waves. Thus it seems that the sudden approxim
tion should be acceptable for weakly bound neutron orbi
~,6 MeV! and beam energies greater than 40A MeV, pro-
vided the reaction samples the initial wave function at d
tances rather larger than the sum of the radii of the reac
partners.
4-3
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It must be noted that here as in Eq.~3! we have adopted
the so-called no-recoil approximation@3# which consists in
factorizing out from the matrix element the core-targetS
matrix. Another important remark has to do with the exte
sion of the lower limit in thekz integral to2`. Values of
kz smaller thankz

min obtained when« f50 would correspond
to final states in the projectile below the breakup thresh
for the diffraction term. For the stripping term they wou
correspond to final bound states in the target. Takingkz

min

→2` is analogous to the completeness relation introdu
in @1#. For this reason in Eq.~14! the diffraction term has
usually been corrected by subtracting terms likeu^c i u1
2S̄Sctuc i&u2. In the transfer to the continuum model th
correction is not as important because the neutron final
ergy is always positive and thekz integration is performed in
the kinematically allowed region.

Estimates of absolute breakup cross sections publishe
far have been made either using Eq.~3! with the breakup
probability given by the transfer to the continuum theo
Eqs. ~4!–~8! @10–12#, or with Eq. ~14! @1,2,5,7,17#. There
are a number of assumptions contained in both models,
validity of which we are going to study in this paper.

III. n-TARGET OPTICAL POTENTIAL AND S MATRIX

Experimentalists often use light targets such as9Be or
12C to study spectroscopy by projectile fragmentation re

FIG. 1. Ratio of phase space integrals with and without mom
tum cutoffs, for ad-wave neutron wave function. The effect of th
cutoff is to include less than 90%, between 90% and 95%, and m
than 95% of the initial momentum distribution as marked on
figure.
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tions. The definition of an optical potential for light targets
a very delicate issue which has been discussed in the lit
ture for long time@18#. There are two main issues:~i! global
parametrizations are based on large nuclei;~ii ! the imaginary
optical potential changes drastically for light nuclei. R
cently these problems have been faced in the contest of
breakup studies@5,11,12# where different choices have bee
made by different authors. Bertschet al. @2# used the Varner
et al. parametrization@19#. Such parametrization has bee
obtained taking into account relatively low energy prot
and neutron cross sections~10–26 MeV! on heavy targets,
A540–209. In Ref.@5# a neutron targetS matrix was con-
structed in the optical limit of Glauber theory. The corr
sponding optical potential does not need to be given exp
itly, but the behavior of the transmission coefficient given
@5# would suggest a strongly absorbing potential of volum
type. Bonaccorso@11# extended to high energies a paramet
zation of a phenomenologicaln-9Be optical potential fitted
to low energy data. This potential seemed however to ov
estimate the free particle cross sections at high energies@11#
and therefore Ref.@12# also considered a microscopic optic
potential calculated according to the method of Jeuken
Lejeune, and Mahaux~JLM! @18#. The JLM potentials are
more complicated to calculate and to use than a simple s
dard parametrization. Then for the purpose of the pres
paper we have attempted to fit the available experime
n-9Be total cross sections with a new potential of the st
dard form. The potential is given by a real Woods-Sax
well and it has both volume and a surface derivative Woo
Saxon forms for the imaginary part. In obtaining the para
eters given in Table I we have been guided by some exis
parametrizations@20,21# obtained by fitting low energy data
We have modified such parametrizations to get a smo
behavior of the free particle neutron-9Be cross section in the
energy range 10–180 MeV. The free-particle cross sec
has been obtained in an optical model calculation. A go
agreement of calculated free neutron angular distributi
with the data of Ref.@20# has also been obtained. This p
tential satisfies very well the subtracted dispersion relati
as given for example in Ref.@22# at energies larger than 4
MeV. For lower energies the agreement is less good at sm
radii.

In Fig. 2, top left, we show the experimental cross se
tions @23# together with the optical model cross section
where the full curve is the total cross section, the dot-das
curve is the elastic cross section while the dashed curv
the reaction cross section. At the bottom left we show
same quantities calculated in the eikonal approximation. T
effect of the eikonal approximation is to reduce the calc

-

re
e

TABLE I. Energy dependent optical model parameters.aR50.387 fm, r I51.368 fm, andaI50.3 fm at
all energies.

« f VR r R WS WV

~MeV! ~MeV! ~fm! ~MeV! ~MeV!

20–40 38.520.145« f 1.44720.005(« f220) 1.66610.365« f 0.375« f27.5
40–120 16.22620.1(« f240) 7.520.02(« f240)
120–180 8.22620.07(« f2120) 5.9
4-4
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FIG. 2. Top left: Experimental
cross sections for neutron scatte
ing on 9Be together with the opti-
cal model cross sections using th
potential of Table I. The full curve
is the total cross section, the do
dashed curve is the elastic cros
section, while the dashed curve
the reaction cross section. Bottom
left: same quantities calculated i
the eikonal approximation. Top
and bottom right: the same quan
tities calculated with the Varne
potential.
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lated cross sections, in particular at the lower energies.
reduction is more pronounced for the elastic cross sect
probably because quantum mechanical reflection effects
the potential barrier cannot be reproduced by the eiko
approximation. For comparison we show at the top right a
bottom right, respectively, the same quantities calcula
with the Varner parametrization. Varner potential does
reproduce the high energy data, also it gives a dominanc
the elastic scattering up to about 80 MeV. Here too the
konal calculations underestimate the elastic scattering at
energies.

Our potential has a rather strong surface term. It gi
also large volume integrals (JW /A'200 MeV fm3) in accor-
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dance with the light nuclei systematics@18,24#. The micro-
scopic origin of it can be understood since9Be is weakly
bound and it has rather high breakup probability. Also it h
been known for a long time@25# to have an unusually large
mean square radius and to be strongly deformed. Finally
notice that we get a very large elastic vs reaction cross
tion ratio at low energy. The JLM potential gives the sam
behavior. The little experimental free particle data availa
show similar trend and it would be interesting to see
breakup reactions around 20A MeV which will soon be fea-
sible at GANIL, will parallel such a behavior.

In Fig. 3 we show the behavior of the termu12Su2 and of
the transmission coefficient 12uSu2 when calculated by the
r

-

h
-
s

FIG. 3. The behavior of the
term u12Su2 and of the transmis-
sion coefficient 12uSu2 calculated
by the optical model~solid and
dashed line, respectively! and by
the eikonal approximation~dotted
and dot-dashed line!. Results are
shown as a function of the angula
momentuml n . In the case of the
eikonal calculations the semiclas
sical relation l n11/25kbn was
used to make the connection wit
the neutron impact parameter. Re
sults are given at incident energie
ranging from 20 to 100 MeV.
4-5
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optical model~solid and dashed line, respectively! and by the
eikonal approximation~dotted and dot-dashed line!. The re-
sults are shown as a function of the angular momentuml n

and in the case of the eikonal calculations the semiclass
relation l n11/25kbn was used to make the connection b
tween the angular momentum and the neutron impact par
eter. We give results at energies ranging from 20 to 1
MeV. An interesting characteristic of these results is that
eikonal seems to concentrate the scattering at larger im
parameters than in the optical model case. Such effects
been seen by other authors@26# in different situations than
ours and sometimes it has also been shown@7,26# that higher
order eikonal corrections can improve the agreement w
the quantum mechanical calculations. It is possible tha
our case the effect is amplified by the deep surface part of
imaginary potential. It is well known that the eikonal a
proximation works well in the presence of strongly abso
ing volume potentials and differences would also be l
extreme for potentials that have more diffuse edges. Thi
because the reflection effects at the barrier that modify
neutron trajectory are not taken into account in a semicla
cal approach.

From the differences seen here, we would expect q
large differences between predictions of the two treatme
of theSmatrix. The quantification of these differences is t
subject of Sec. IV.

TABLE II. Initial state parameters in12Be. Binding energies in
MeV; asymptotic normalization constantsCi in fm21/2.

J,p l j u« i u Ci

1/21 0 0.5 3.32 2.45
1/22 1 0.5 3.52 1.29
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IV. CROSS SECTIONS AND CONCLUSIONS

We start this section by showing some results for the to
probability P(bc)5P2n(bc)Pct(bc) obtained from the inte-
grand of Eq.~3! after integrating overkz and using Eq.~A2!.
The Rs values are given in Table III at each energy. Th
were obtained, as explained in Appendix A, from theS ma-
trix calculated by folding the neutron-target optical potent
of Table I with the projectile density, at all energies b
20A MeV. At such a low energy the optical limit of the
eikonal model cannot be justified, but calculations by Ca
toiu @27# in second order eikonal approximation, folding th
JLM potentials agree with ourRs at all energies, including
20A MeV. The same values are also obtained from the
tical potential of@28#.

For our numerical comparison of the various methods,
have chosen to study the breakup from thes andp states in
12Be which were recently measured by Navinet al. @17#. The
initial bound state parameters are given in Table II.

In Fig. 4 we show the total probabilities for diffractio
obtained in the TC calculation by the solid lines. The dash
lines are for the absorption or stripping. Energies are as
Fig. 3. The dotted lines are the calculations from the diffra
tion integrand of Eq.~11! while the dot-dashed lines are fo
the stripping. Because of the shift in theSmatrices of Fig. 3,
we see here that the eikonal calculations have their max
at slightly larger core-target distances than the optical mo
calculations. At the lowest energy the optical model giv
almost equal diffraction and stripping probabilities. The
konal calculation gives a rather larger diffraction probabili
In all other cases the stripping is the dominant term. T
effect was first pointed out in normally bound nuclei@29,30#
and it has been confirmed by some experiments@31# and
other theoretical calculations@12#.

The TC calculations discussed in this paper are perform
using the asymptotic, Hankel form of the initial state wa
s
s
d

FIG. 4. Total breakup prob-
abilities from the 1/22 state in
12Be, as a function of the ion-ion
impact parameter for diffraction
obtained in the TC calculation by
the solid line. The dashed line i
for the stripping. Energies are a
in Fig. 3. Dotted and dot-dashe
lines are diffraction and stripping
probabilities from the eikonal cal-
culation.
4-6
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function, which can be the origin of some divergence if t
projectile and target potential have an important overlap d
ing the reaction. This problem was discussed in@9# where it
was shown to be more important for the stripping term sin
it is proportional to the neutron target phase shift, while
diffraction term, being proportional to the square of t
phase shift converges more rapidly. This situation reflects
fact that diffraction reactions are more peripheral than st
ping reactions. Here we can easily see from Eq.~11! that the
integral overbn , the neutron target impact parameter is w
behaved provided the neutron-target potential and the co
spondingS matrix fall off more rapidly than the tail of the
initial wave function. A practical way to satisfy such a co
dition and to avoid any divergence in the sum over neut
partial waves in Eq.~6! is to use a small value for the dif
fuseness of the imaginary part of the optical model~cf. Sec.
IV of @9#!. Otherwise, as is shown in Appendix B it is po
sible to start again from Eq.~1! and obtain a formula which
contains the realistic single particle wave function and
optical modelS matrix, still keeping the information on th
proper kinematical limits for the neutron parallel momentu
The only hypothesis involved is that high neutron angu
momenta are dominant.

To show the amount of error that is introduced by t
Hankel approximation, we show in Fig. 5 the integrand fun
tions of the stripping and diffraction terms of Eq.~11!, after
integrating overkz , obtained from the realistic bound sta
wave function and the corresponding terms in the sum o
partial waves of Eqs.~5! and ~6! in the case of the inciden
energy of 78A MeV. The calculations were done at the fixe
impact parameterbc55.6 fm between the projectile and ta
get. The left figure is for the diffraction term while the righ
figure is for the stripping term. We can see that the calcu
tion for stripping according to Eq.~6! which is done with the

FIG. 5. The integrand function of the diffraction~a!, and strip-
ping ~b! term of Eq.~11! after kz integration, full curve, obtained
from the realistic bound state wave function and the correspon
terms, diamonds, in the sum over partial waves of Eqs.~5! and~6!
in the case of the incident energy of 78A MeV. Crosses are the
results of a calculation of Eq.~11! in which the eikonal phase shift
have been substituted by the optical model phase shifts as in
~B9!. All calculations done at fixed impact parameterbc55.6 fm
between the projectile and target.
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Hankel function and optical modelS matrix ~diamonds!
shows a slower decrease in the interior of the projec
~largebn , than the calculation with the realistic wave fun
tion ~crosses! done according to Eq.~B9! of Appendix B.
Therefore the comparison between these two results give
indication of the effect of the Hankel function approxim
tion. On the other hand the eikonal calculations~full curve!
done with the full wave function have higher maxima whi
occur at a larger distance than the optical model calculat
This effect is due to the behavior at large impact parame
of the eikonalS matrix, as we have discussed before. T
comparison of the full curve with the crosses gives an in
cation of the effect of the eikonal approximation. In the e
the integrated probabilities obtained with the three poss
approximations contained in Eqs.~5! and~6!, ~B9!, and~B6!
differ by not more than about 10%. This leads to about 2
difference in the total cross sections because of the fur
integration overbc , the core-target impact parameter. Fro
the peak values of the diffraction and stripping curves it
easy to see that the stripping is almost three times larger
the diffraction.

The values of the total cross sections are given in Ta
III. Because the eikonal probabilities are shifted towar
larger distances we get total cross sections which are la
by about 20% than the TC calculations at all energies
20A MeV. At this lowest energy two effects tend to com
pensate each other: the eikonal free particle cross sectio
largely underestimated while there is an overestimate of
phase space kinematically allowed. Then the eikonal and
tical model calculations seem to give very close results.

Considering all the effects discussed above we concl
that present models used to calculate the breakup cross
tion might tend to overestimate the true value, but the er
should be of the order of 20% or less. On the other ha
presently available experimental data are inclusive with
spect to the target which was unobserved. In the case of9Be
it is possible that some part of the cross section comes f
reactions in which the target itself underwent breakup. Th
reactions could account for about 20% of the measured c
sections and they are certainly not taken into account
presently available theoretical models. We suggest there
that future experiments detect the final excitation state of
target in coincidence with breakup events~as done for ex-
ample in Ref.@31# for ‘‘normal’’ heavy ions! and at the same
time that theoretical models be improved through a m
realistic treatment of the core-target interaction, as m
tioned in Sec. IV. We propose also an improved calculat
of the breakup amplitude using the new formula, Eq.~B9!,
derived in Appendix B that combines the better treatmen
the wave function in the eikonal model with the better tre
ment of the target interaction in the transfer-to-continuu
model. We leave it to a future study to apply this equation
the reaction data.

Ejectile momentum distributions are not shown in th
paper. They have been discussed in great detail in@10–12#
where it was shown that there can be noticeable differen
in the results of the TC and eikonal methods. Present dat
not have enough statistics to distinguish clearly between
two models.

g

q.
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TABLE III. Breakup cross sections in mb from the initial states 1/21 and 1/22 in 12Be on 9Be, at several
incident energies. Incident energies inA MeV; Rs in fm. Experimental data and shell model spectrosco
factors from@17#.

J,p Einc Rs sstr sstr sdi f f sdi f f s2n s2n sexp SSM STC Seik

TC eik TC eik TC eik

1/21 20 6.5 35 31 45 46 80 77
40 6.1 41 51.6 31 35 72 86.6
60 5.8 43.5 54.6 24 31 67.5 85.6
78 5.6 43 54.8 19 24.7 62 79.5 32~5! 0.69 0.65 0.51
100 5.4 42 53 13 17.6 55 70.6

1/22 20 6.5 19 16.5 21 22.7 40 39.2
40 6.1 23.4 29.6 16.3 18 39.7 47.6
60 5.8 27.2 32.7 13 15.9 40.2 48.6
78 5.6 28 34 11 13 39 47 18~3! 0.58 0.54 0.45
100 5.4 28.4 33.7 8.4 9.7 36.8 43.4
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APPENDIX A: ION-ION S MATRIX

We discuss here the theory of the core-targetS matrix,
needed to calculatePct(bc) in Eq. ~3!. The best source o
information comes from the ion-ion reaction cross sect
which is related to the core-targetS matrix by

sR
ct5E

0

`

d2bc„12uSct~bc!u2…. ~A1!

Here we have assumed that the semiclassical replace
of the partial wave sum by an integral overbc is permitted.
Unlike the nucleon-nucleus scattering, this is always a g
approximation, because of the smaller wave length involv
and one can safely calculate thisS matrix in the eikonal
approximation. The usual procedure is to define an opt
potential for the core-target scattering, and calculate thS
matrix from it. In practice the behavior of theS matrix is
determined by two parameters. The first and most impor
is the strong absorption radiusRs , defined as the distance o
closest approach for a trajectory that is 50% absorbed f
the elastic channel. The reaction cross section practic
speaking is determined by the strong absorption radius.
next most important parameter is the thicknessa of the ab-
sorption region. In optical model fits, it is closely related
the asymptotic behavior of the imaginary potentialW(r )
;e(2r /a). Just as the reaction cross section strongly c
strains the strong absorption radius, measurements of
elastic angular distribution provide information abouta.

In this work we shall use a simple parametrized form@11#
for Pct(bc), namely

Pct~bc!5exp~2 ln 2e(Rs2bc)/a!. ~A2!
04460
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It would be correct to use the elastic scatteringSmatrix if
the experimental cross sections were reported for projec
breakup leaving the target in its ground state. In fact
target final state is difficult to measure and most experim
tal cross sections are inclusive with respect to the target fi
state. Thus the measured cross sections should be some
larger than one would calculate with an elastic core-targeS
matrix.

A way to include absorption of the projectile core witho
regard to the target is to construct an optical potential c
volution of a nucleon-ion potential with the target density.
the calculations of this work we have determined strong
sorption radii by this method, using the optical potential
Sec. III. We also take a diffuseness parametera50.6 fm.

APPENDIX B: BREAKUP AMPLITUDE

In this section we give a more general formulation of t
breakup problem which is less dependent on the reac
model assumptions of the text. We start with Eq.~1!, again
assuming a straight-line trajectory. Using a Galilean trans
mation for the initial wave function as described in Ref.@9#,
Eq. ~1! becomes

Af i5
1

i\vE dbndzf f~r !Vnt~r !eik f z
zf̃ i~bn2bc ,kz!, ~B1!

where kz5k152(« i2«n11/2mv2)/(\v) and kf z
5k2

52(« i2«n21/2mv2)/(\v) are thez components of the
neutron momentum in the initial and final state, respective

Introduce now aT matrix in a mixed representation as

T~kn ,bn ,k2!5
1

i\vE dzf f~b,z!Vnt~b,z!eik2z, ~B2!

wherekn is the neutron final~measured! momentum.
If the eikonal approximation for the final wave function

used

f f* ~b,z!5e2 iq'•bne2 iqzze( i /\v)*1`
z Vnt(x,y,z8)dz8, ~B3!

the dz integral in Eq.~B2! can be calculated by parts whe
the initial binding energy is small and the final neutron e
4-8
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ergy is close to the neutron incident energy and the neu
scattering angle is small such thatk22qz.0. Then

i

\vE dzei (k22qz)zVnt~bn ,z!e( i /\v)*2`
z ei (k22qz)z8Vnt(x,y,z8)dz8

512e2 ix(bn), ~B4!

where

x~bn!5
1

\vE2`

`

ei (k22qz)z8Vnt~x,y,z8!dz8'
1

\v
Ṽnt~bn,0!,

~B5!

whereVnt is a complex potential whose real and imagina
strengths are negative. We finally obtain the breakup am
tude in the eikonal form as

Af i5E
0

`

dbne2 iq'•bn~12e2 ix(bn)!f̃ i~bn2bc ,kz!. ~B6!

Similarly a more generalT matrix in a mixed representa
tion can be obtained starting from the partial wave form

T~kn ,k' ,k2!5
\2

2m

4p

2ikn
S l n

~2l n11!~Sl n
21!Pl n

~ k̂n• k̂a!,

~B7!

on the energy shell such thatkn5ka , and defining

T~kn ,bn ,k2!5E dk'

~2p!2
e2 ik'•bnT~kn ,k' ,k2!

5
\2

2m

4p

2ikn
S l n

~2l n11!~Sl n
21!

3E dk'

~2p!2
e2 ik'•bnPl n

~ k̂n• k̂a!. ~B8!
04460
n
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This is unfortunately off shell but we will do the following
high energy approximations similar to what we have do
above in the eikonal case. In the large angular moment
small scattering angle limit, definebn85( l n11/2)/kn , we can
substitute the partial wave sum with an integral and also

Pl n
~ k̂n• k̂a!→J0~ ukn2kaub8!5~2p!21*dfe2 i uq'2k'u•bn8,

whereq' is the transverse component ofkn . Then

Af i5
1

i\vE dbnE dk'

~2p!2
e2 ik'•bnT~kn ,ka!f̃ i~bn2bc ,k1!

5
1

i\v
\2

2m

4p

2ikn
S l n

~2l n11!~Sl n
21!

3E dbnE dk'

~2p!3E dfe2 i uq'2k'u•bn8e2 ik'•bf̃ i

3~bn2bc ,kz!

'2
\kn

mv E dbn8e
2 iq'•bn8~Sl n

21!E dbnE dk'

~2p!2

3e2 ik'•(bn2bn8)f̃ i~bn2bc ,kz!

5E dbne2 iq'•bn~12Sl n
!f̃ i~bn2bd ,kz!. ~B9!

This formula combined the improved treatment of the
teraction by the TC theory with the better treatment of t
neutron wave function by the eikonal theory.
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