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Comparison of transfer-to-continuum and eikonal models of projectile fragmentation reactions
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Spectroscopic properties of nuclei are accessible with projectile fragmentation reactions, but approximations
made in the reaction theory can limit the accuracy of the determinations. We examine here two models that
have rather different approximations for the nucleon wave function, the target interaction, and the treatment of
the finite duration of the reaction. The nucleon-target interaction is treated differently in the eikonal and the
transfer-to-continuum model, but the differences are more significant for light targets. We propose a new
parametrization with that in mind. We also propose a new formula to calculate the amplitudes that combines
the better treatment of the wave function in the eikonal model with the better treatment of the target interaction
in the transfer-to-continuum model.
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I. INTRODUCTION Il. THEORETICAL MODELS

Heavy ion reactions at intermediate energy offer grea AI-I thepreUcaI met'hods used S9 far rely on a basic ap-
. ) ) .. proximation to describe the collision with only the three-

promise t.o' measure spectroscopic propert|es.of nuclei f%ody variables of nucleon coordinate, projectile coordinate,

from stability, but one needs a tractable reaction theory 1Q,nq'target coordinate. Thus the dynamics is controlled by the

interpret the experiments. In this respect the availability Ofyyree potentials describing nucleon-core, nucleon-target, and

higher energy heavy ion beams is most welcome, because dhre-target interactions. In most cases the projectile-target

becomes a reasonable theoretical approximation to neglegéjative motion is treated semiclassically by using a trajec-

exchange of nucleons between the colliding nuclei. One cafpry of the center of the projectile relative to the center of the

therefore consider the interaction in each nucleus as that @frgets(t) =b,+ vt with constant velocity in thez direction

an externalcomple® potential field. Within the framework and impact parametdr, in the xy plane. Along this trajec-

of this basic approximation and with given potentials, wetory the amplitude for a transition from a nucleon stéteo

will here address the question of the accuracy of further sima statey; is given by

plified models of the reaction cross sections. A number of

theoretical models have been proposed and calculateti?] 1 (=

in which different approximations were made. In this work AfF@f dt(ys () [Va(D i (1)), D)

we focus on two of the models, the eikonal mofdiet7] and o

the transfer-to-the-continuuiT C) model[8-12]. i . . .
There are several cross sections that are measured ag@erevm Is the neutron-target interaction. The staiewill

calculated in the models. The simplest measurement is th € the bound state of the nucleon in the projectile, while the

single-neutron removal cross section, in which only the pro-'nal stateyy Is a continuum state. The det_al_led der|vat|o_n of
Eqg. (1) from a scattering amplitude containing the full time

jectile residue, namely the core with one less nucleon, is ependent propagator can be found in Sec. Il of Ref
observed in the final state. Besides the integrated remov here it was shown to hold under the hypo.thesis tha;t the
cross section, denolicsaq hy_,, the differential momentum oo n process is limited to peripheral projectile-target tra-
distributiond”o_, /dk” is also measured. A particularly use- jeciories and that it is due mainly to the neutron interaction
ful cross section igdo_,/dk;, the removal cross section \th the target potential. The probabilities for different pro-

diffel‘ential in |0ngitudina| momentum. If the ﬁnal state neu- cesses can be represented in terms Of the amp"tude as
tron can also be measured, the corresponding coincident

cross sectionA,—(A,—1)+n is called the diffractive dp
breakup cross section. The difference between the removal _:2 |Asil26(6— &), 2)
and diffractive breakup is called the stripping cross section. dé

This paper is organized as follows. In Sec. Il we summa-
rize the essential ingredients of the TC model and the eikonakhere& can be momentum, energy or any other variable for
model, and discuss the accuracy of the neglect of finite inwhich one measures a differential cross section.
teraction times in the eikonal model. In Sec. Ill we discuss The effects associated with the core-target interaction will
the different treatment of the neutron-targ@matrix in the  be included by multiplying the above probability by the
two models. We will not discuss the accuracy of the Hankeb.-dependent probability for the core to be left in its ground
function approximation separately, but it of course plays astate.
role in the comparison of cross sections that we make in Sec. Thus the differential cross sections with respect to the
IV which contains also our conclusions. longitudinal momentum is
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do_, e [ dP_(k,,b.) to the initial state binding energy by,=+—2me;/#. The
dk, =C SL dbcd—kzpct(bc)’ 3 variable 77=\/k22+ yzi has the interpretation as the modulus

of the transverse component of the neutron momentum. In
wherek, is the (longitudina) recoil momentum of the neu- OUr notatione; is the energy of the neutron relative to the
tron [see Eq.(2.9 of [11]] and C2S is the spectroscopic targetin the final state. For diffraction this is the same as the
factor for the initial single particle orbital. The cross sectionfinal laboratory energy of the neutron if the target recoil ki-
can be further divided into a stripping cross sectiag and ~ Netic energy is neglected. In the case of stripping, if it goes
a diffractive breakup cross sectiony; depending on through compound nucleus formatios; is the excitation _
whether the removed neutron is detected in the final state dinergy of the compound state above the neutron threshold in
not. We accordingly will consider these individual probabil- the residual nucleus. For inelastic scattering it is the energy

ity distributions, of the breakup neutron before it scatters from the target. This
is equivalent to the sum of the excitation energy of the target
P_n=Psy+ Pyis (4) final state and the final neutron energy relative to the target.

If the target recoil kinetic energy is neglected the final ki-

and use a similar notation for the cross sections. netic energyg; of the ejectile is given by the energy conser-

We first summarize the transfer-to-the-continu@WC)  vation condition
model. This model treats the time dependence of the reaction
explicitly, thus conserving energy. It uses the on-shell
neutron-target scattering matrix, therefore making it in o PESTE. P
principle model-independent with respect to that interactionmhtehrg Ifé”bcoztct:; énE’cslalthlgc:gz(r:lttioenrgr\gljglucg g?\?er? rzj;:glle
It also makes use of the asymptotic form of the neutron_ ’

function in th ctile. This | tin that the &1 &f andg; is the initial neutron binding energy in the
wave function in the projectiie. IS is an asset in tha egrojec:tile. With this approximation Eq9) relatesk, to the

formulas have an analytic limit, but a disadvantage in tha rojectile residue parallel momentum. Finallg;|? is the

the results are only reIiabI.e. at periphe_ral impact paramét.ersasymptotic normalization constant of the initial bound wave
The two breakup probabilities are given by the following function

expressions:
$i(r)==i'Ciyh{Uiyin Y m(6.¢), wr=1. (10

Ei—En.=Q=¢gi—¢g, 9

dPstr(bc) 2
dk, _Zn |1_S‘n| B(ln.kz.b), ®) It is obtained by fitting a realistic radial wave function
to the Hankel formh(! outside the potential radius. In
dPgiss(be) this way the transfer to the continuum results are model

— 2
dk, _Z (1_|S|n| )B(ln .k, be), (6) dependent. On the other hand, the dimensionless quantity
! Aj= ¥ Y|Ci|>C?S has been called reduced normalization in

where the factoB(l,,k,,b.) is a transfer probability which the contest of spectroscopy done with transfer reactions
depends on the details of the initial and final states, and ofil4,15. If one considersMi as the prefactor of the theoret-

the energy of relative motion. It is given by ical cross section obtained with the Hankel function, the ratio
between the experimental cross section and the theoretical
cross section would determine its value.

Equations(5)—(7) were derived assuming no overlap be-
tween neutron-core and neutron-target potential. This as-
wherel; is the angular momentum of the bound neutron insumption can be avoided if one makes an eikonal approxi-
the initial state with respect to the core. The varidhldhas  mation to the basic expression for the amplitude, @g. as
the interpretation as the angular momentum of the neutroshown in Appendix B. Then one derivg$,10]
with respect to the target. Also

dP_n(be)

1 (= :
~— — 7|X(bn) 2
G~ e | dnnla—e e

e—277bc

1/ A4 \1 )
B(lnkz,be)= 5| k_f(2|n+l)|ci| by M, (7)
C

1 0
M'n'i:T—f dxe P, (X;+Bx®)Py (X;+Bx?). (8) | .
e +1—]e”x®0) 2]y (by—bg ky)|2 (1D)

The arguments of the Legendre polynomiRIhs and P where b,, is the transverse coordinate of the neutron with
are X;=1+2(k,/y)? and X;=2(k,—mv)?/(y*+2mvk, respect to the target. The neutron-tar§enatrix is approxi-
—(mv)?)—1, Bi=27/dy,, andB;=275/dk;. v, is related mated by the eikonal forn§(b,)=e X0 related to the

optical potentialV,,; by x(b,)=(1/4v) % . Va(X,y,2')dZ .
Finally, |4;(b,—b.,k,)|? is the longitudinal Fourier trans-
'The derivation of the TC model requires that the neutron-targeform of the initial state wave function. Also the connection
and the neutron-projectile potentials do not overlap. In this respeddetween Eqs(5)—(7) and Eq.(11) is made by replacing the
the result that can be expressed entirely in terms of asymptotisum over partial waves in Eq§5) and (6) by the integral
properties reminds one of Bes theorem{13]. over impact parameters as in E@1), and by evaluating the
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longitudinal Fourier transform in Eq.11) using the the minimum value ofy=y;. Therefore we gek™"|> v, if
asymptotic initial state wave function, EGL0). The one- /E; /2> /¢;. For a real halo with separation energy around
dimensional Fourier transform of the initial wave function 9 5 MeV the condition| |(fznin|>7,i is satisfied at all initial

tion approximation, Eq(10), yielding to higher incident energies in order for the parallel momen-
1 tum component to be larger than the transverse one. For a
——— > U m(be—by k)| typical binding of 10 MeV or more the conditions for the
(2i+1) = n sudden eikonal approximation to be valid are satisfied from

1 about 8@\ MeV. It is useful also to consider the values of
- - _ i 2 neutron-target center-of-mass momentips nv/f where
(21;+1) % |2C'Y'i ‘mi(kZ)Kmi(W” u=A/(A;+1) is the neutron-target reduced mass. Here too
we see that for a typical diffusenessa# 0.5 fm the semi-
P (X)), (12)  classical conditiorak,>1 is satisfied starting from about 80
: MeV. Finally if such a condition is satisfied we can extend
the lower limit in thek, integral to —e. There is however
also an upper limit to the final neutron or ejectile momentum
value in the parallel direction, due to the energy and momen-
tum conservation. It was discussed in Ha6] where it was
max shown that
in dkz| 'pi(bn_bmkz”z- (13

z
mi
I(Z

e 2

~C?2
Ci 29p

wherep=|b;,—Db,|.
The total breakup probability is obtained from the integral
of Eq. (11) involving

| (krznin ,krznax) —

K= ( 1- %) m, (15
kI'" and k]'®* are the kinematically allowed minimum and P
maximum neutron parallel momenta discussed in the followy, is the neutron mas&™*=4.5 fm* for a 2Be projectile.
ing. Therefore although E@11) describes the neutron-target In terms of the maximzum neutron final energy in the con-
rescattering in the eikonal approximation, it still satisfies;, ,um the above condition reads
neutron energy and momentum conservation.

On the other hand, a sudden approximation or frozen halo 1
form of the eikonal method has been used 6,5 where ep V=Ko + 5m02+ gj. (16)
energy conservation was neglected. This approximation can
be derived from Eq(11) when the integration limits in Eq.
(13) can be extended tarce. Then Eq.(13) is just the longi-
tudinal density, and the formulas for the TC and eikonal
model become identical. In fact in this limit the removal
cross section reduces to

If this upper limit is also extended te-o then thek,
integral gives as function and inserting Eq(11) and the
damping factoiP=|S|? in Eq. (3) we finally get Eq(14).

These very strict conditions necessary to extend the theo-
retical limits of thek, integral to infinity, can be somewhat

. revised in practical calculations. To see how accurate the
0'_n=CZSf dzbcf d3r[|(1-9)|? sudden approximation is, we have calculated the integral
(k3" ,k3'®) under various conditions of angular momen-
+1-[52]|Su(bo)|2|di(by—be,2)|2, (14  tum, neutron binding energy in the projectile, and projectile
velocity. For values of the parameters of interest there can be
which is consistent with the breakup cross sectioi1g6].  a rather large reduction for small values of the neutron trans-
In Eq.(14) Sis an eikonaSmatrix, as defined after EL1).  Verse radius in the projectilgb,—bc|. However, the ap-

The steps necessary to obtain Ha4) from Eq.(11)  Proximation becomes mcregsmgly accurate as the transverse
and Egs(4)—(6) can be justified in the high energy limit as rgdlug is made Iarge.r. In Fig. 1 we show the region of ener-
follows. If the neutron binding energy is not too large, the 9i€s in which the ratio
final energy or momentum distributions are strongly peaked
at the incident energy per nucleon. Therefore it is possible (o)
to average the dependence of the neutron target optical - (KMin max)
model S matrix of Egs.(5) and (6) over the full range of 2o
neutron continuum energies and assume that3fieatrix s within 10% of being unity, for a-wave orbital at a trans-
can be approximated with the eikonal valugobtained at  verse radius corresponding to strong absorptidp,— b|
g¢=2mu2. On the other hand, for the eikonal approximation~6.1 fm. The region of good agreement is somewhat larger
to be good it is necessary that the parallel component ofor s andp waves. Thus it seems that the sudden approxima-
the neutron momenturk, be large with respect to the trans- tion should be acceptable for weakly bound neutron orbitals
verse componeny. In particular such a condition must be (<6 MeV) and beam energies greater tharA4@eV, pro-
satisfied for the minimum values of both. From the definitionvided the reaction samples the initial wave function at dis-
of k, it is easy to see that its lowest possible valu«J8"  tances rather larger than the sum of the radii of the reaction
=—(&;+ 2mv?)/(hv) in correspondence t&=0. And that  partners.
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10 T T T tions. The definition of an optical potential for light targets is
<90% a very delicate issue which has been discussed in the litera-
3 | ? i ture for long timeg[18]. There are two main issue@) global

90-95% parametrizations are based on large nug¢lgithe imaginary
optical potential changes drastically for light nuclei. Re-

. cently these problems have been faced in the contest of halo
>95% breakup studief5,11,13 where different choices have been

i made by different authors. Bertsehal.[2] used the Varner

et al. parametrization19]. Such parametrization has been
obtained taking into account relatively low energy proton
and neutron cross sectioi$0—26 Me\j on heavy targets,

A=40-209. In Ref[5] a neutron targe§ matrix was con-

S, (MeV)

0 L L L L L 4 L structed in the optical limit of Glauber theory. The corre-
20 25 3 35 40 45 50 55 60 sponding optical potential does not need to be given explic-
Beam Energy (MeV/nucleon) itly, but the behavior of the transmission coefficient given in

_ _ _ _ [5] would suggest a strongly absorbing potential of volume
FIG. 1. Ratio of phase space integrals with and without momenv[ype_ Bonaccorsfl] extended to high energies a parametri-

tum cutoffs, for ad-wave neutron wave function. The effect of the . .9 - L
cutoff is to include less than 90%, between 90% and 95%, and morZatlon of a phenomenologicat"Be optical potential fitted

than 95% of the initial momentum distribution as marked on theFO I.OW energy data. T.h's potential sgemed h_owever to over-
figure. estimate the free particle cross sections at high enefijids

and therefore Ref12] also considered a microscopic optical
potential calculated according to the method of Jeukenne,
Lejeune, and MahauxJLM) [18]. The JLM potentials are
more complicated to calculate and to use than a simple stan-
dard parametrization. Then for the purpose of the present
paper we have attempted to fit the available experimental
n-°Be total cross sections with a new potential of the stan-
ard form. The potential is given by a real Woods-Saxon
ell and it has both volume and a surface derivative Woods-

It must be noted that here as in E§) we have adopted
the so-called no-recoil approximatigB] which consists in
factorizing out from the matrix element the core-tar@et
matrix. Another important remark has to do with the exten-
sion of the lower limit in thek, integral to —. Values of
k, smaller thark]"'" obtained whers;=0 would correspond
to final states in the projectile below the breakup threshol

for the diffractiqn term. For the st_ripping term they_would Saxon forms for the imaginary part. In obtaining the param-
correspond to final bound states in the target. Takllf  iorg given in Table | we have been guided by some existing
— — % is analogous to the completeness relation introduced arametrization§20,21] obtained by fitting low energy data.
in [1]. For this reason in Eq(14) the diffraction term has \ye have modified such parametrizations to get a smooth
usually been corrected by subtracting terms like/|1  penavior of the free particle neutrdiBe cross section in the
—SS.|#1)]. In the transfer to the continuum model this energy range 10-180 MeV. The free-particle cross section
correction is not as important because the neutron final erhas been obtained in an optical model calculation. A good
ergy is always positive and the integration is performed in  agreement of calculated free neutron angular distributions
the kinematically allowed region. with the data of Ref[20] has also been obtained. This po-
Estimates of absolute breakup cross sections published sential satisfies very well the subtracted dispersion relations
far have been made either using E8) with the breakup as given for example in Ref22] at energies larger than 40
probability given by the transfer to the continuum theory,MeV. For lower energies the agreement is less good at small
Egs. (4)—(8) [10-12, or with Eq. (14) [1,2,5,7,17. There radii.
are a number of assumptions contained in both models, the In Fig. 2, top left, we show the experimental cross sec-

validity of which we are going to study in this paper. tions [23] together with the optical model cross sections,
where the full curve is the total cross section, the dot-dashed
. n-TARGET OPTICAL POTENTIAL AND S MATRIX curve is the elastic cross section while the dashed curve is

the reaction cross section. At the bottom left we show the
Experimentalists often use light targets such®& or  same quantities calculated in the eikonal approximation. The
12C to study spectroscopy by projectile fragmentation reaceffect of the eikonal approximation is to reduce the calcu-

TABLE |. Energy dependent optical model parametegs=0.387 fm,r;=1.368 fm, anda,=0.3 fm at

all energies.
&f VR Mr Ws Wy
(MeV) (MeV) (fm) (MeV) (MeV)
20-40 38.5-0.14%; 1.447-0.005@;—20) 1.666+0.365%; 0.37%¢—7.5
40-120 16.226 0.1(s;— 40) 7.5-0.02(¢—40)
120-180 8.226 0.07(g;—120) 5.9
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1500 ¢ 1500 [
1250 & 1260 T
oo L 1000 FIG. 2. Top left: Experimental
B . .
g 750 £ g 750 < cross sections for neutron scatter-
5 500 = 5 500 Fo o Mg ing on °Be together with the opti-
250 ; : g 250 = T - cal quel cross sections using the
o bl Tymimd ] P S I e 2 potential of Table I. The full curve
50 100 150 50 100 150 is the total cross section, the dot-
E (MeV) E (MeV) dashed curve is the elastic cross
1500 ¢ 1500 £ section, while the dashed curve is
12503% 1250"? the reaction cross section. Bottom
1000 B2 1000 E5% left: same quantities calculated in
= B X, = EN the eikonal approximation. Top
R CRERG and bottom right: the same quan-
b 500 < b 500 F— tities calculated with the Varner
Ermimeea T RH ety Feee, P .
250 -~ - ITTT-—- T 250 [~ T T~ potential.
0 E. | L |\I§|T‘l-|—-+.|— 0 E L
50 100 150 50 100 150
E (MeV) E (MeV)

lated cross sections, in particular at the lower energies. Théance with the light nuclei systematif$8,24]. The micro-
reduction is more pronounced for the elastic cross sectiorscopic origin of it can be understood sinéBe is weakly
probably because quantum mechanical reflection effects omound and it has rather high breakup probability. Also it has
the potential barrier cannot be reproduced by the eikonabeen known for a long timg25] to have an unusually large
approximation. For comparison we show at the top right andnean square radius and to be strongly deformed. Finally we
bottom right, respectively, the same quantities calculatedhotice that we get a very large elastic vs reaction cross sec-
with the Varner parametrization. Varner potential does notion ratio at low energy. The JLM potential gives the same
reproduce the high energy data, also it gives a dominance ddehavior. The little experimental free particle data available
the elastic scattering up to about 80 MeV. Here too the eishow similar trend and it would be interesting to see if
konal calculations underestimate the elastic scattering at lowreakup reactions around RMeV which will soon be fea-
energies. sible at GANIL, will parallel such a behavior.

Our potential has a rather strong surface term. It gives In Fig. 3 we show the behavior of the tefft— S| and of
also large volume integrals(,/A~200 MeV fn?) in accor-  the transmission coefficient-1/S|? when calculated by the

B N 2
3 souer| TS 40 Mev)  [1-8 60 MeV]
l1-s,® [ il :
o[- 1—|Sl|21 o b 1.0 -
R -, N O e Y 2 B
AR R =7 \\ s FIG. 3. The behavior of the
1 [ R o5 [ \\ 0.5 term |1—S_|2_ and of the transmis-
2 koo T s L r sion coefficient 1 |S|? calculated
e R A \ L \ . . by the optical model(solid and
o Lonlon by 0.0 Buluulunlil 0.0 Donlonn vl dashed line, respectivglyand by
0 1 2 3 4 0123456 0 2 4 6 8 the eikonal approximatiofdotted
1y 1, L, and dot-dashed line Results are
shown as a function of the angular
l1-s® [ momentuml,,. In the case of the
0.8 [ ~ 100 MeV eikonal calculations the semiclas-
1-8,2 sical relation |,+1/2=kb, was
06 — used to make the connection with
L the neutron impact parameter. Re-
0.4 _ \'\ sults are given at incident energies
o \’\ ranging from 20 to 100 MeV.
02 Rt
L \\ ——————— [1-8* opt. mod.
0.0 TOLTIT N VY1 oo [1-S[? eikonal
"0 2 48810 ——-——-- 1—|S[? opt. mod.

1, - —. —. —. 1-|S]® eikonal
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TABLE Il. Initial state parameters if?Be. Binding energies in IV. CROSS SECTIONS AND CONCLUSIONS

MeV; asymptotic normalization constar® in fm~ %2, _ ) _
We start this section by showing some results for the total

Jm | j lei| C probability P(b.) =P _,(b.)P¢(b;) obtained from the inte-
grand of Eq.(3) after integrating ovek, and using Eq(A2).

12t 0 0.5 3.32 2.45 The R, values are given in Table Il at each energy. They

172 1 05 3.52 1.29 were obtained, as explained in Appendix A, from Biea-

trix calculated by folding the neutron-target optical potential
of Table | with the projectile density, at all energies but
optical modelsolid and dashed line, respectiveind by the  20A MeV. At such a low energy the optical limit of the
eikonal approximatioridotted and dot-dashed lineThe re-  €ikonal model cannot be justified, but calculations by Cars-
sults are shown as a function of the angular momenitym toiu [27] in second order eikonal approximation, folding the
and in the case of the eikonal calculations the semiclassical-M potentials agree with ouR; at all energies, including
relation| ,+1/2=kb, was used to make the connection be-20A MeV. The same values are also obtained from the op-

tween the angular momentum and the neutron impact parantic@l potential of{ 28]. , .
eter. We give results at energies ranging from 20 to 10 For our numerical comparison of the various methods, we

MeV. An interesting characteristic of these results is that th ave chosen to study the breakup from ¢nendp states in

2 . .
eikonal seems to concentrate the scattering at larger impac .Be which were recently measured by Naeinal.[17]. The

arameters than in the optical model case. Such effects ha\'/%Itial bound state parameters are given in Table II.
b P ' In Fig. 4 we show the total probabilities for diffraction

been s%en by ?ther iu#hc[@fi] i?) differﬁnt sgut?]ti(:r;]s_ tr?an obtained in the TC calculation by the solid lines. The dashed
ours and sometimes it has also been shpivg that higher lines are for the absorption or stripping. Energies are as in

order eikonal corrections can improve the agreement witlyy 3 The dotted lines are the calculations from the diffrac-
the quantum mechanlcal _c.alculauons. It is possible that iRy, integrand of Eq(11) while the dot-dashed lines are for
our case the effect is amplified by the deep surface part of thg,e stripping. Because of the shift in tBenatrices of Fig. 3,
imaginary potential. It is well known that the eikonal ap- e see here that the eikonal calculations have their maxima
proximation works well in the presence of strongly absorb-at sjightly larger core-target distances than the optical model
ing volume potentials and differences would also be lesgalculations. At the lowest energy the optical model gives
extreme for potentials that have more diffuse edges. This ialmost equal diffraction and stripping probabilities. The ei-
because the reflection effects at the barrier that modify th&onal calculation gives a rather larger diffraction probability.
neutron trajectory are not taken into account in a semiclassin all other cases the stripping is the dominant term. This
cal approach. effect was first pointed out in normally bound nudl29,30
From the differences seen here, we would expect quitend it has been confirmed by some experimgBty and
large differences between predictions of the two treatmentsther theoretical calculatiofd2].
of the Smatrix. The quantification of these differences is the The TC calculations discussed in this paper are performed

subject of Sec. IV. using the asymptotic, Hankel form of the initial state wave
0.100 E 0.100 3 0.100 3
0050 20A MeV] 0060 [ 40A MeV 0080 60A MeV|
i //\:\\
0.010 — 0.010 \ 0.010 [
é 0.005 E {9: 0.005 E Lnj 0.005 E
& 8 & H &~ - FIG. 4. Total breakup prob-
L \ abilities from the 1/2 state in
\ \ 12Be, as a function of the ion-ion
o001 LLikilivei b o.00s Wilibiliiiliy 0.001 , € 1on-|
4 8 8 10 4 8 8 10 4 8 8 10 impact parameter for diffraction
b, (tm) b (fm) b(fm) obtained in the TC calculation by
the solid line. The dashed line is
0.100 [ 0.100 [ for the stripping. Energies are as
o050 [ 784 MeV o050 [ 100A MeV| in Fig. 3. Dotted and dot-dashed
N AN lines are diffraction and stripping
F b v probabilities from the eikonal cal-
0.010 = 0.010 3 : CU|atlon'
f’: 0.005 F '3: 0.005
] r [ r
| T O e L O O et diffraction TC.
.................. diffraction eikonal

0.001 0.001 Lovidive o v bl

————— stripping TC
—. —. —. —. stripping eikonal
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005 Hankel function and optical modebs matrix (diamond$

® [ ) shows a slower decrease in the interior of the projectile
(largeb,,, than the calculation with the realistic wave func-
tion (crosses done according to EqB9) of Appendix B.
Therefore the comparison between these two results gives an

i 0.04 [—
0.015 L

0.03 * indication of the effect of the Hankel function approxima-
~ 0010 - i tion. On the other hand the eikonal calculatighsl curve)
£ R done with the full wave function have higher maxima which

occur at a larger distance than the optical model calculation.
This effect is due to the behavior at large impact parameters

0.006

oot |- of the eikonalS matrix, as we have discussed before. The

I comparison of the full curve with the crosses gives an indi-

L " om L catiqn of the effect of _thg eikona_l apprqximation. In the e.nd

0000 4 AT I00r AT 000 R T RS the integrated probabilities obtained with the three possible
Ba (fm) approximations contained in Eq&) and(6), (B9), and(B6)

FIG. 5. The integrand function of the diffractida), and strip-  differ by not more than about 10%. This leads to about 20%
ping (b) term of Eq.(11) after k, integration, full curve, obtained difference in the total cross sections because of the further

from the realistic bound state wave function and the correspondingitegration ovemb., the core-target impact parameter. From
terms, diamonds, in the sum over partial waves of Egsand(6)  the peak values of the diffraction and stripping curves it is
in the case of the incident energy of A8leV. Crosses are the easy to see that the stripping is almost three times larger than
results of a calculation of Eq11) in which the eikonal phase shifts the diffraction.
have been substituted by the optical model phase shifts as in Eq. The values of the total cross sections are given in Table
(B9). All calculations done at fixed impact parameter=5.6 fm Ill. Because the eikonal probabilities are shifted towards
between the projectile and target. larger distances we get total cross sections which are larger
by about 20% than the TC calculations at all energies but
function, which can be the origin of some divergence if the20A MeV. At this lowest energy two effects tend to com-
projectile and target potential have an important overlap durpensate each other: the eikonal free particle cross section is
ing the reaction. This problem was discusse@i@hwhere it  largely underestimated while there is an overestimate of the
was shown to be more important for the stripping term sincgphase space kinematically allowed. Then the eikonal and op-
it is proportional to the neutron target phase shift, while thetical model calculations seem to give very close results.
diffraction term, being proportional to the square of the Considering all the effects discussed above we conclude
phase shift converges more rapidly. This situation reflects théhat present models used to calculate the breakup cross sec-
fact that diffraction reactions are more peripheral than stription might tend to overestimate the true value, but the error
ping reactions. Here we can easily see from @4) that the  should be of the order of 20% or less. On the other hand
integral overb,,, the neutron target impact parameter is well presently available experimental data are inclusive with re-
behaved provided the neutron-target potential and the correspect to the target which was unobserved. In the cas@ef
spondingS matrix fall off more rapidly than the tail of the it is possible that some part of the cross section comes from
initial wave function. A practical way to satisfy such a con- reactions in which the target itself underwent breakup. These
dition and to avoid any divergence in the sum over neutrorreactions could account for about 20% of the measured cross
partial waves in Eq(6) is to use a small value for the dif- sections and they are certainly not taken into account by
fuseness of the imaginary part of the optical mo@él Sec.  presently available theoretical models. We suggest therefore
IV of [9]). Otherwise, as is shown in Appendix B it is pos- that future experiments detect the final excitation state of the
sible to start again from Ed1) and obtain a formula which target in coincidence with breakup everigs done for ex-
contains the realistic single particle wave function and arample in Ref[31] for “normal” heavy iong and at the same
optical modelS matrix, still keeping the information on the time that theoretical models be improved through a more
proper kinematical limits for the neutron parallel momentum.realistic treatment of the core-target interaction, as men-
The only hypothesis involved is that high neutron angulartioned in Sec. IV. We propose also an improved calculation
momenta are dominant. of the breakup amplitude using the new formula, E8P),

To show the amount of error that is introduced by thederived in Appendix B that combines the better treatment of
Hankel approximation, we show in Fig. 5 the integrand func-the wave function in the eikonal model with the better treat-
tions of the stripping and diffraction terms of Ed.1), after  ment of the target interaction in the transfer-to-continuum
integrating overk,, obtained from the realistic bound state model. We leave it to a future study to apply this equation to
wave function and the corresponding terms in the sum ovethe reaction data.
partial waves of Eqs(5) and (6) in the case of the incident Ejectile momentum distributions are not shown in this
energy of 7& MeV. The calculations were done at the fixed paper. They have been discussed in great detdil@3-12
impact parameteb.=5.6 fm between the projectile and tar- where it was shown that there can be noticeable differences
get. The left figure is for the diffraction term while the right in the results of the TC and eikonal methods. Present data do
figure is for the stripping term. We can see that the calculanot have enough statistics to distinguish clearly between the
tion for stripping according to Eq6) which is done with the two models.
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TABLE llI. Breakup cross sections in mb from the initial states"14hd 1/2 in 1?Be on°Be, at several

incident energies. Incident energiesAnMeV; R in fm. Experimental data and shell model spectroscopic
factors from[17].

J,m Einc R Ostr Ostr Odiff Odiff O_n O_n Oexp Ssm Src Seik
TC eik TC eik TC eik

1/2* 20 6.5 35 31 45 46 80 7
40 6.1 41 51.6 31 35 72 86.6
60 58 435 546 24 31 675 85.6
78 5.6 43 54.8 19 24.7 62 795 @@ 069 065 051
100 54 42 53 13 17.6 55 70.6
1/27 20 6.5 19 16.5 21 22.7 40 39.2
40 6.1 234 296 163 18 39.7 476
60 58 272 327 13 159 40.2 486
78 5.6 28 34 11 13 39 a7 ® 058 054 045
100 54 284 337 8.4 9.7 36.8 434
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n-target optical potential satisfies the dispersion relations. Lﬁs;%ﬁ;than one would calculate with an elastic core-tagjet

A way to include absorption of the projectile core without
APPENDIX A: ION-ION S MATRIX regard to the target is to construct an optical potential con-

We discuss here the theory of the core-tar§enatrix, volution of a nucleon-.ion potential with the target density. In
needed to calculat®,(b.) in Eq. (3). The best source of the calculations of this work we have determined strong ab-

information comes from the ion-ion reaction cross sectionsorption radii by this method, using the optical potential of
which is related to the core-targstmatrix by Sec. lll. We also take a diffuseness parametel0.6 fm.

APPENDIX B: BREAKUP AMPLITUDE

ct_ F 2 _ 2
7R fo A1~ Seu(be) ). (A1) In this section we give a more general formulation of the

breakup problem which is less dependent on the reaction

Here we have assumed that the semiclassical replacememodel assumptions of the text. We start with ELj, again
of the partial wave sum by an integral over is permitted. ~assuming a straight-line trajectory. Using a Galilean transfor-
Unlike the nucleon-nucleus scattering, this is always a goodnation for the initial wave function as described in RéX,
approximation, because of the smaller wave length involvedEd. (1) becomes
and one can safely calculate th&matrix in the eikonal 1
approximation. The usual procedure is to define an optical Aﬁ:__f db,dze(r)V,(r)e*2h (b,—be k,), (Bl)
potential for the core-target scattering, and calculateShe it
matrix from it. In practice the behavior of th® matrix is L 2 -~
determined by two parameters. The first and most importan‘?’here K=k = _(zi_8”+ V2mu=)/(hv) - and ki, =ke
is the strong absorption radi®s, defined as the distance of = —(&i—&n—1/2mv°)/(%v) are thez components of the
closest approach for a trajectory that is 50% absorbed frorf€utron momentum in thg |r)|t|al and final state, respecﬂvely.
the elastic channel. The reaction cross section practically 'ntroduce now & matrix in a mixed representation as
speaking is determined by the strong absorption radius. The 1
next most important parameter is the thicknassf the ab- T(ky, by ko) = _j dz¢f(b,z)Vm(b,z)e‘k22, (B2)
sorption region. In optical model fits, it is closely related to v
the asymptotic behavior of the imaginary potenti®(r)  \yherek, is the neutron finalmeasurefimomentum.

— / . .
Ne(, 9. Just as the reaction cross section strongly con- i the eikonal approximation for the final wave function is
strains the strong absorption radius, measurements of thgaq

elastic angular distribution provide information abaut
In this work we shall use a simple parametrized fdrf] d)}k(byz):efiqi-bnefiqzze(i/ﬁu)fimvm(x,y,z’)dz’1 (B3)
for P.i(b.), namely
thedz integral in Eq.(B2) can be calculated by parts when
Pei(be) =exp( —In 2e(Rs~bo)/ay (A2)  the initial binding energy is small and the final neutron en-
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ergy is close to the neutron incident energy and the neutroifihis is unfortunately off shell but we will do the following

scattering angle is small such thHgt—q,=0. Then high energy approximations similar to what we have done
) above in the eikonal case. In the large angular momentum,
I_f dzdke=a2y (b Z)e(i/ﬁv)fz,mei(kz’qz)zrvm(x,y,z’)dz' small scattering angle limit, defing = (1,,+1/2)/k,,, we can
ho ntn substitute the partial wave sum with an integral and also use
=1—g X(bn) (B4)
where P (Kn-K)— Jo(|kn—k|b") = (27) L[ dpeld Kl Br,

1 ” i(ko—q,)z’ ’ ’ 1o
X(bn):% —ooe 2z Vnt(xiyaz )dz %%Vnt(bnvo)!

(5 whereq;, is the transverse componentlaf. Then
B5

whereV, is a complex potential whose real and imaginary
strengths are negative. We finally obtain the breakup ampll- f f —ik, -by
tude in the eikonal form as A= (2m) =T (ke Ka) (b= bg ko)

1 #% 4x

A~=fwdb e i b1 — e~ X)) (b —Db. ,k,). (B6
fi o n ( )d’|( n c z) ( ) Ihv 2m 2Ik

S (2l +1)(§ —1)

Similarly a more general matrix in a mixed representa- ilay kbl ik, b
tion can be obtained starting from the partial wave form f db f f dge 1% L0,
2
T(kn ok, ko) =50 50 51,21+ (S, ~ )Py (Ry Ky, X (bn=be ko)
(B7) fik, )
~——"| dpjeiab n—l)jdbnj -
on the energy shell such thiat=k,,, and defining Mo (2m)
dki A Xeiiki.(bnibr")’é)i(bn_bcvkz)
T(kn!bnuk2):f(2 )ze_'k“b“T(kn,kl,kz)
a . ~
.2 Zf db,e™% P(1-§ )i(by—bg.ky). (B9)
47
= am 2k 2t (S, - 1)

dk This formula combined the improved treatment of the in-
X f —— e ikibap, (k,-k,). (B8)  teraction by the TC theory with the better treatment of the
(27)? " “ neutron wave function by the eikonal theory.
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