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Effects of the final state interaction in the electrodisintegration of the deuteron at intermediate
and high energies
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The role of final state interactions~FSIs! in the inclusive quasielastic disintegration of the deuteron is
investigated treating the two-nucleon final state within the exact continuum solutions of the nonrelativistic
Schrödinger equation, as well as within the Glauber multiple-scattering approach. It is shown that for values of
the Bjorken scaling variablexB j.1 both approaches provide similar results, except for the casexB j*1, where
they appreciably disagree. It is demonstrated that present experimental data, which are mostly limited to a
region of four-momentum transfer@Q2&4 (GeV/c)2# where the center-of-mass energy of the final state is
below the pion threshold production, can be satisfactorily reproduced by an approach based on an exact
solution of the Schro¨dinger equation and not by the Glauber approach.
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I. INTRODUCTION

The role played by the effects of final state interactio
~FSIs! in electrodisintegration processes is a very relev
issue, for they may in principle hinder the extraction of re
able information not only on nuclear structure, but also
fundamental hadronic properties in the medium, which co
be obtained from different kinds of lepton scattering p
cesses off nuclear targets. Apart from few-body system
low energies, for which exact solutions of the Schro¨dinger
equation in the continuum are becoming available~see, e.g.,
@1,2#!, the treatment of FSI effects in complex systems
intermediate and high energies still requires the use of s
eral approximations. This concerns both the semi-inclus
processA(e,e8p)X ~see, e.g.,@3#! and the fully inclusive
processA(e,e8)X, for which several methods have been pr
posed with conflicting results~see, e.g.,@4#!. Most of these
approaches rely on the use of the Glauber multiple-scatte
theory, assuming that the struck nucleon, afterg* absorp-
tion, is on shell and propagates in the medium with to
energyA(q1p)21M2.Aq21M2 (q and p are the three-
momentum transfer and the momentum of the struck nucl
before interaction, respectively!. The latter assumption
which is a very reasonable one atxB j.1 @xB j5Q2/(2Mn)
is the Bjorken scaling variable@5#, Q25q22n2 the four-
momentum transfer, andM the nucleon mass#, could be
questionable at higher or lower values ofxB j , where the
struck nucleon, afterg* absorption, is far off shell; more
over, even at high values ofuqu, the two-nucleon relative
energy might be not sufficiently high to justify the use of t
Glauber high energy approximation, so that a careful con
eration of the two-nucleon kinematics is called for. As
matter of fact, it has been shown@6# that existing data on the
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inclusive electrodisintegration of the deuteron,D(e,e8)X
@7#, correspond, atxB j.1, to a very low relative energy o
the two-nucleon final state even ifuqu is very large, and that
they can be satisfactorily explained by using for the co
tinuum state the solution of the nonrelativistic Schro¨dinger
equation.1 It is, however, clear that, given a fixed value
xB j , if uqu ~i.e., Q2) is further increased, inelastic process
could become operative and the Schro¨dinger approach be
comes inadequate. Within these kinematical conditions,
at high relative energies of thenp pair in the continuum, the
Glauber approach has been frequently used to calculate
effects, which, however, requires several approximations
the case of complex nuclei. In the deuteron case, FSI eff
can be calculated exactly within both the Schro¨dinger and
Glauber approaches. It is just the aim of this paper to pres
the results of such a calculation for the inclusive electrod
integration of the deuteronD(e,e8)X in the quasielastic re-
gion, i.e., atn<Q2/2M or xB j.1. In order to better display
the effects of the FSIs, our results will be presented not o
in terms of cross sections, but also in terms ofy-scaling
functions @6#. Useful comparisons between the eikonal a
the partial wave decomposition approaches inA(e,e8p)X
andA(p,p8)A processes have been reported in the past~see,
e.g.,@8#!, whereas an exhaustive calculation of theexclusive

reactionsD(e,e8p)n andD(eW ,e8p)n within the Glauber ap-
proach has recently appeared@9#. To our knowledge, our
paper is the first one where the Schro¨dinger and Glauber
approaches for the treatment of FSI effects in theinclusive
D(e,e8)X process are presented. The paper is organize
follows. In Sec. II the basic formalism of inclusive process
within the plane wave impulse approximation~PWIA! is re-

,

1From now on, the method based upon the exact solution of
nonrelativistic Schro¨dinger equation to generate bound and co
tinuum two-nucleon states will be referred to as theSchrödinger
approach.
©2001 The American Physical Society01-1
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called, the formalism pertaining to the treatment of the F
within the Schro¨dinger and the Glauber approaches is illu
trated in Sec. III, the results of calculations are given in S
IV, and the conclusions are drawn in Sec. V.

II. ONE-PHOTON EXCHANGE AND THE PLANE WAVE
IMPULSE APPROXIMATIONS

In this section the relevant formulas describing the inc
sive cross sectionD(e,e8)X will be recalled. In the one-
photon exchange approximation, depicted in Fig. 1, the
clusive cross section reads as follows:

d3s

dV8dE8
5(

f
u^Pf , f uÔu i ,Pi&u2d~n1« i2« f !, ~2.1!

where u i & and u f & are the initial and final eigenfunctions o
the intrinsic nuclear Hamiltonian,Ô5K• j m(1/Q2)Jm, j m
and Jm are the electromagnetic currents of the electron
the deuteron, respectively, andK is a kinematical factor~see
below!.

The four-momenta of the initial and final electrons in t
laboratory system arek5(E,k) and k85(E8,k8), respec-
tively, the four-momentum transfer isq5k2k85(n,q), and
the orientation of the coordinate system is defined byq
5(0,0,qz).

At high energies the electron mass can be disregarded
that

k25~k8!2.0, kk852kq5
2q2

2
5

Q2

2
, ~2.2!

Q2[2q254EE8sin2
u

2
, ~2.3!

whereu is the scattering angle. The following relations w
be used in what follows:

E5
n

2 S 11

Asin2
u

2
1

Q2

n2

sin
u

2

D , E85E2n, ~2.4!

uqu5uqzu5AQ21n2. ~2.5!

FIG. 1. The one-photon exchange diagram for theD(e,e8)X
process.
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In the PWIA, depicted in Fig. 2, the three-nucleon m
menta in the deuteron, before interaction, arep152p2 and,
after interaction,p185q1p1 and p285p2; the relative and
center of mass~c.m.! momenta arep5(1/2)(p12p2)5p1
andP5(p11p2)50. The PWIA cross section in the labora
tory system has the following form (p152p2):

d3s

dV8dE8
5E sMott (

Ni51,2
@VLu^p1uĴL

Ni~Q2!up18&u
2

1VTu^p1uĴT
Ni~Q2!uP18&u

2#

3FM2dp2

E18E2

d~MD1n2E182E2!GnD~ upu!,

~2.6!

whereL(T) refer to the longitudinal~transverse! part of the
nucleon current operator,VL(T) are the corresponding well
known kinematical factors@VL5Q4/uqu4,VT5tan2(u/2)
1Q2/2uqu2#, and nD(upu) is the nucleon momentum distri
bution in the deuteron:

nD~ upu!5
1

3~2p!3 (MD

U E C1,MD
~r !exp~ ipr !drU2

,

~2.7!

whereC1,MD
(r ) is the nonrelativistic deuteron wave func

tion, with the two-nucleon relative coordinate given byr
5r12r2 and p5p182q. It is a common practice to expres
the cross section~2.6! in terms of the free electron-nucleo
cross section for an on-mass-shell nucleon, i.e., to extra
late the Rosenbluth cross section to the off-mass-shell c
@10#. Since energy conservation in the two cases is differ
~whereas the three-momentum conservation is the same!, the
extrapolation unavoidably requires additional,ad hoc as-
sumptions. In this paper we adopt the prescription of@10#,
according to which the hit nucleon is considered to be
shell, i.e., with a four-momentum equal to the one of a fr
nucleon, viz.,p1

on5(Ap1
21M2,p1), and in Eq.~2.6! the re-

placementn→ n̄5n1MD2AM21p1
22AM21p2

2 is done,

so thatd(MD1n2E182E2)→d(Ap1
21M21 n̄2E18); in this

way, the electromagnetic vertex of the nuclear tensor co
sponds to that of a free nucleon, evaluated at the sameq, but
at the transferred energyn̄ instead ofn, which means that the

FIG. 2. The PWIA diagram for the quasielasticD(e,e8)X pro-
cess.
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EFFECTS OF THE FINAL STATE INTERACTION IN . . . PHYSICAL REVIEW C63 044601
nucleon hadronic tensor has to be evaluated forpN5pN
on and

QN
2 5Q̄25q22 n̄2ÞQ2. By such a procedure one obtains

d3s

dV8dE8
5E s̄eNnD~ upu!dpd„n̄1AM21p2

2AM21~p1q!2
…

5~2p!E
uyu

pmax
s̄eN

Ep1q

uqu
nD~ upu!upudupu, ~2.8!

wheres̄eN is the extrapolated electron-nucleon cross sec
for an off-mass-shell nucleon @10#, Ep¿q5E18
5AM21(p1q)2, and the limits of integration, which ar
obtained from the energy conservation provided by thed
function, are as follows:

upumin5
1

2
UH ~MD1n!A12

4m2

s
2uquJ U[uyu, ~2.9!

upumax5
1

2 H ~MD1n!A12
4m2

s
1uquJ [pmax,

~2.10!

where s denotes the Mandelstam variable for theg* D
vertex,

s5~PD1q!25MD~MD12n!2Q2, ~2.11!

andy is the scaling variable according to@6#

y5
1

2 H uqu2~MD1n!A12
4m2

s J . ~2.12!

When the value ofuqu becomes large enough, one haspmax

;` and the dependence ofs̄eN upon upu becomes very
weak. In such a case Eq.~2.8! can be cast in the following
form @6#:

ds

dV8dE8
5~sep1sen!

Ey1uqW u

uqu ~2p!E
uyu

`

upudupunD~ upu!,

~2.13!

whereseN andEy1uqW u represents̄eN andEpW 1qW , calculated at
upu5upumin5uyu, and can therefore be taken out of the in
gral. Such an approximation, which has been carefully inv
tigated in Ref.@6#, turns out to be valid within a few percen
provided Q2.0.5 GeV2/c2. It is clear, therefore, that a
large values ofuqu the quantity~the nonrelativistic scaling
function!

F~ uqu,y![
uqu

Ey1uqW u
S ds

dV8dE8
D Y ~sep1sen! ~2.14!

will be directly related to the longitudinal momentum dist
bution
04460
n

-
s-

F~ uqu,y!→ f ~y!52pE
uyu

`

upudupunD~ upu!. ~2.15!

Thus the condition for the occurrence of nonrelativisticy
scaling is that Eq.~2.8! could be cast in the form~2.13!,
which means that~i! Q2.0.5 GeV2/c2, in order to make the
replacements̄eN→seN and EpW 1qW→Ey1uqW u possible, and~ii !
pmax5(uqu2uyu)@uyu @cf. Eqs.~2.9! and ~2.10!# in order to
saturate the integral of the momentum distributio
* uyu

pmaxupudupunD(upu)→* uyu
` upudupunD(upu). Condition ~ii ! ob-

viously implies that the larger the value ofuyu, the larger the
value of uqu at which scaling will occur. The satisfaction o
the inequalitiesuqu@2uyu,xB j.1 leads, for any well-behaved
n(upu), to the following conditions for the occurrence of no
relativistic y scaling:

2m/3&n,uqu, uqu*2m. ~2.16!

Note that the above conditions are very different from t
conditions for Bjorken scaling,n.uqu.

III. FINAL STATE INTERACTION

A. Schrödinger approach

In the calculation of the FSIs, depicted in Fig. 3, it is mo
convenient to perform calculations in the frame where
interactingnp pair in the final state is at rest. The phas
space factor can then be written as follows:

dp18dp2

E18E2

d (4)~PD1q2Pf !

5
dPfdprel

2E* 2
d (3)~q2Pf !dS E* 2

As

2 D , ~3.1!

whereprel5p1q/2 is the relative momentum of thenp pair
in the system where the pair is at rest, and the Mandels
variable iss54(prel

2 1M2). For the longitudinal current one
has

GE~Q2!exp~ iqr /2!

5~4p!2GE~Q2!(
l,m

i l j l~qr/2!Ylm* ~ q̂!Ylm~ r̂ !

[~4p!2GE~Q2!(
l,m

Ylm* ~ q̂!Ôlm , ~3.2!

FIG. 3. The FSI diagram for the quasielasticD(e,e8)X process.
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with Ôlm5 i l j l(qr/2)Ylm( r̂ ), and the corresponding cros
section is

d3sL

dV8dE8
5

4

3

M2sMott

2p
VLGE~Q2!2

3(
Jf

(
l

u^JDuuÔl~ uqu!uuprel ;JfL fSf&u2
uprelu

As
,

~3.3!

where the radial part of the two-nucleon wave function in
continuumuprel ;JfL fSf& has the following behavior:

uLS
J ~r ! →

r→` 1

prel
sinS prelr 2

Lp

2
1dLD . ~3.4!

It can be seen that Eq.~3.3! differs from the PWIA result
~2.8!. However, by using the identity

1

2uqu Euyu

pmaxupudupu
E

5
prel

As
,

one may cast the cross section in the form

dsL

dV8dE8
5~sep1sen!

L
Ey1uqW u

uqu E
uyu

pmax
upudupunS

D~ upu,uqu,n!,

~3.5!

where the following quantity has been introduced:

nS
D(upu,uqu,n)

5
1

4p

1

3 (
Jf

(
l

u^JDuuÔl~ uqu!uuprel ;JfL fSf&u2.

~3.6!

B. Glauber approach

In the Glauber approach the exact two-nucleon continu
wave functionu f & is approximated by its eikonal form. The
the cross section can be written in the same form as Eq.~2.8!
with the deuteron momentum distribution~2.7! replaced by
the Glauber distorted momentum distributionnG

D @11#,

nD~p!→nG
D~pm!5

1

3

1

~2p!3 (MD

U E drC1,MD
~r !S~r !x f

3exp~2 ipmr !U2

, ~3.7!

where

pm5q2p18 ~3.8!

is the missing momentum,x f the spin wave function of the
final np pair, andS(r ) theSmatrix describing the final stat
interaction between the hit nucleon and the spectator,
~see Ref.@11#!,
04460
e

m

z.

S~r !512u~z!Gel~b!, ~3.9!

with the elastic profile functionGel(b) being

Gel~b!5
s tot~12 ia!

4pb0
2

exp~2b2/2b0
2!. ~3.10!

In Eqs.~3.9! and ~3.10!, r5b1zq/uqu defines the longitudi-
nal, z, and the perpendicular,b, components of the relative
coordinater , s tot5sel1s in , a is the ratio of the real to the
imaginary part of the forward elasticpn scattering ampli-
tude, and, eventually, the step functionu(z) originates from
the Glauber’s high energy approximation, according
which the struck nucleon propagates along a straight-
trajectory and can interact with the spectator only provid
z.0.

Assuming that at high relative energies of thenp pair the
differences between the absorption of longitudinal~L! and
transverse~T! photons connected with the spin dependen
of FSI effects can be disregarded, Eq.~2.13! becomes

ds

dV8dE8
5~sep1sen!

Ey1uqW u

uqu ~2p!

3E
uyu

pmax
upmudupmunG

D~ upmu,cosuqpm
!. ~3.11!

It should be stressed, first, that in the absence of any F
the distorted momentum distributionnG

D(pm) reduces to
the undistorted momentum distributionnD(p) (pm52p1)
and, second, that unlikenD(p), nG

D(pm) depends also upon
the orientation ofpm with respect to the momentum tran
fer q, with the angle uqpm

being fixed by the energy

conserving d function, namely, cosuqpm
5$@2(MD

1n)Aupmu21M22s#%/(2uquupmu); thusnG
D(pm) depends im-

plicitly on the kinematics of the process, and the values oy
anduqu fix the value of the total energy~2.11! of the finalnp
pair, i.e., the relative energy of the nucleons in the fin
states. Consequently, the quantitiess tot , a, and b0 in Eq.
~3.10! also depend upon the kinematics of the process. In
sense, the distorted momentum distributionnG

D(pm) implic-
itly depends uponuqu andy as well.

C. Longitudinal sum rule

Let us now briefly discuss the charge conservation s
rule in the quasielastic processes. The longitudinal part of
hadronic current is the charge density of the target and
longitudinal cross section may be written in the form

d3sL

dV8dE8
5E VL

3 (MD ,Jf ,Mf

u^PD ,MDuĴL
D~Q2!uPf ,M f&u2

3F dp2

~2p!3
d~n1Ei2Ef !G . ~3.12!
1-4
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As is well known ~for details see, e.g., Ref.@12#!, inte-
grating over the energy lossn, summing over the final states
and disregarding, for ease of presentation, the neutron f
factor GE

n , the quantity

S~ uqu!5E @GE
2~Q2!VL#21

d3sL

dV8dE8
dn

5
1

3 (MD

E C1,MD
* ~r ! (

Jf ,Mf

^CJf ,Mf
uCJf ,Mf

&

3C1,MD
~r 8!exp$ iq•@~r2r 8!#drdr 8% ~3.13!

is obtained, which has to satisfy the so-called inelastic l
gitudinal sum rule

S~ uqu! in5 lim
uqu→`

@S~ uqu!2FD
2 ~ uqu!#→1, ~3.14!

whereFD
2 (uqu) is the elastic deuteron form factor.

The longitudinal sum rule~3.14! is fulfilled exactly within
the PWIA, as well as when the Schro¨dinger approach is
used to include the FSIs; on the contrary, if the lat
is considered within the Glauber approach as described in
previous paragraph, the sum rule is not satisfied. As a ma
of fact by placing in Eq.~3.13! CJf ,Mf

(r )5exp(ip18r )@1

2u(z)Gel(b)#, integrating overp18 , and introducing the in-
elastic profile functionG inel(b) through the unitarity relation

2 ReGel~b!5uGel~b!u21uG inel~b!u2, ~3.15!

one obtains

Sin5E dr uC1,M~r !u2@12u~z!uG inel~b!u2#, ~3.16!

which shows that if inelastic channels are absent, the lo
tudinal sum rule~3.13! is fulfilled, whereas in the presenc
of open inelastic channels one hasSin,1; i.e., the incident
nucleon flux is partially absorbed by inelastic process
Therefore the sum rule is satisfied if the total energy of
n-p pair in the continuum is below the value correspond
to the inelastic threshold; otherwise, the inelastic chan
contribution has to be explicitly taken into account in ord
to satisfy the sum rule.

IV. RESULTS OF CALCULATIONS

A. Schrödinger approach

The calculation of the cross section and the scaling fu
tion by Eqs.~3.5! and~2.14! requires knowledge of the wav
functionsuprel ;JfL fSf& of the finalnp pair, which are solu-
tions of the Schro¨dinger equation in the continuum with
given nucleon-nucleon potential. It is well known that t
nonrelativistic deuteron momentum distributions calcula
with different realistic potentials, viz., the Bonn@14#, Paris
@15#, and Reid@16# ones, exhibit rather different behaviors
moderate and large momenta. It has also been shown
relativistic calculations of the deuteron momentum distrib
04460
m
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tion within the Bethe-Salpeter formalism yield results whi
are very close to those obtained with the Reid soft c
~RSC! potential~see Ref.@13#!. In order to compare our re
sults with existing calculations@18#, we have used the RSC
and Paris potentials to solve the Schro¨dinger equation for the
uprel ;JfL fSf& states, taking into account all partial wave
with Jf,3. For higher values ofJf the PWIA has been
adopted~we have checked that the error introduced by su
an approximation amounts to about 10%, in agreement w
the results presented in Refs.@6,18#; as we shall see the pre
dictions by the Schro¨dinger and Glauber approaches diff
by appreciably larger factors!. For the sake of compariso
with the experimental data we have also assumed that
effects of the FSIs on the longitudinal and transverse part
the cross section is the same and is governed by the qua
~3.6!. In the Schro¨dinger approach, FSIs arise from the ela
tic rescattering of the two nucleons in the final states. T
threshold for inelastic channels corresponds to a value of
total energy of thenp pair, As*2 GeV or, equivalently,
plab*0.8 GeV/c, whereplab is the laboratory momentum
of the struck nucleon~i.e., with the spectator at rest!, corre-

sponding to a total energyAs5A2M212MAplab
2 1M2.

Experimentally@17#, the inelastic channel contribution star
to be relevant atplab.1.2 GeV/c. The results of our calcu-
lations corresponding to electron beam energyE
51.281 GeV and scattering angleu5180° is shown in Fig.
4. It can be seen that in the range 0.75 GeV,n,0.9 GeV,
FSIs increase the cross section and substantially improve
description of the data. Our results fully agree with tho
obtained in Ref.@18#. In the kinematics we have considere
the variation ofn, from threshold to the quasielastic pea
corresponds to a variation ofplab in the range 0.6 GeV/c

FIG. 4. The inclusive cross sectionD(e,e8)X versus the energy
transfern and the laboratory momentum of the struck nucleon
the final stateplab ~note that the inelastic threshold corresponds
plab.0.8 GeV/c). Dotted line: PWIA calculation, RSC interac
tion. Solid line: PWIA1FSI, RSC interaction. Dash-dot-dotted lin
PWIA, Paris potential. Dashed line: PWIA1FSI, Paris interaction.
The experimental data, from Ref.@7#, correspond to electron initia
energyE51.281 GeV and scattering angleu5180°.
1-5
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TABLE I. Kinematical variables for the inclusiveD(e,e8)X process corresponding to the results sho
in Figs. 4–9. The various quantities are as follows:uqu, n, and Q2 are the energy, three-momentum, a
four-momentum transfers, respectively;xB j is the Bjorken scaling variable;plab is the momentum of the
struck nucleon in the final state, defined by the equations52M212MAplab

2 1M2, wheres is the Mandel-
stam variable@cf. Eq. ~2.11!#; finally, sel ands tot are the elastic and total cross sections used in the Gla
calculation.

y52200 MeV/c

uqu n Q2 xB j plab s sel s tot

(GeV/c) ~GeV! (GeV2/c2) (GeV/c) (GeV2) ~mb! ~mb!

0.50 0.07 0.25 1.86 0.10 3.53 1744.52 1744.52

0.85 0.23 0.67 1.58 0.42 3.69 94.85 94.85

1.20 0.46 1.23 1.44 0.73 3.99 45.58 45.58

1.55 0.73 1.87 1.37 1.03 4.37 31.96 35.71

1.90 1.03 2.56 1.33 1.32 4.81 25.85 35.78

2.25 1.34 3.27 1.30 1.62 5.27 22.44 37.06

2.60 1.66 4.00 1.28 1.90 5.74 20.29 38.57

2.95 1.99 4.74 1.27 2.19 6.24 18.82 39.99

3.30 2.32 5.49 1.26 2.48 6.73 17.76 41.19

3.65 2.66 6.25 1.25 2.77 7.24 16.95 42.17

4.00 3.00 7.00 1.24 3.05 7.75 16.32 42.92

y52400 MeV/c

uqu n Q2 xB j plab s sel s tot

(GeV/c) ~GeV! (GeV2/c2) (GeV/c) (GeV2) ~mb! ~mb!

0.90 0.21 0.77 1.96 0.09 3.53 2057.63 2057.63

1.25 0.41 1.39 1.80 0.38 3.66 109.40 109.40

1.60 0.67 2.11 1.68 0.66 3.91 51.82 51.82

1.95 0.96 2.89 1.61 0.91 4.22 35.89 36.61

2.30 1.26 3.69 1.56 1.16 4.56 28.72 35.47

2.65 1.58 4.52 1.52 1.41 4.93 24.71 36.08

3.00 1.91 5.35 1.49 1.65 5.32 22.16 37.23

3.35 2.24 6.20 1.47 1.89 5.72 20.40 38.48

3.70 2.58 7.05 1.46 2.12 6.12 19.13 39.67

4.05 2.91 7.91 1.45 2.36 6.53 18.16 40.72

4.40 3.25 8.77 1.44 2.60 6.94 17.40 41.62

y52600 MeV/c

uqu n Q2 xB j plab s sel s tot

(GeV/c) ~GeV! (GeV2/c2) (GeV/c) (GeV2) ~mb! ~mb!

1.30 0.41 1.52 1.98 0.08 3.53 2572.76 2572.76

1.65 0.65 2.30 1.90 0.35 3.64 129.73 129.73

2.00 0.92 3.14 1.81 0.58 3.83 59.87 59.87

2.35 1.23 4.02 1.75 0.81 4.08 40.76 38.37

2.70 1.54 4.92 1.70 1.02 4.36 32.19 35.75

3.05 1.86 5.83 1.67 1.23 4.66 27.39 35.54

3.40 2.19 6.75 1.64 1.44 4.98 24.35 36.20

3.75 2.53 7.68 1.62 1.64 5.30 22.25 37.17

4.10 2.86 8.61 1.60 1.84 5.63 20.72 38.22

4.45 3.20 9.55 1.59 2.04 5.97 19.56 39.24

4.80 3.54 10.49 1.58 2.23 6.31 18.65 40.17
044601-6
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EFFECTS OF THE FINAL STATE INTERACTION IN . . . PHYSICAL REVIEW C63 044601
,plab,1.4 GeV/c ~cf. the upper scale in Fig. 4 and Tab
I! where the elastic nucleon-nucleon scattering still do
nates. Note that in this case the corresponding valuesy
and uqu change in the range2700 MeV/c,y&0 and
2.6 GeV2/c2,uqu2,3.3 GeV2/c2, respectively.

B. Glauber approach

To keep contact with the calculations of exclusive p
cesses@9,11#, we have used both the RSC and Bonn inter
tions. The results are presented in Fig. 5. It can be seen
as in the case of the Schro¨dinger calculation, at low values o
n, the cross section exhibits an appreciable dependence
the interaction, which mainly reflects the differences in t
bound state wave function. In the Glauber approach FSIs
entirely driven by the distorted momentum distributionnG

D ;
let us therefore discuss the properties of the latter within
kinematical conditions relevant toy scaling ~for a detailed
analysis ofnG

D at asymptotic energies see Refs.@9,11#!. It
turns out thatnG

D depends uponplab , which is a function of
y and uqu. More explicitly, theplab dependence ofnG

D arises
from the plab dependence of the parametersa and b0, ap-
pearing in the profile functionGel(b) @Eq. ~3.10!#; such a
dependence is shown in Fig. 6. It can be seen that when
energy is high enough (plab*1.5–2 GeV/c), the param-
etersa and b0 become almost constant and, consequen
the distorted momentum distributionnG

D becomes indepen
dent of the kinematics of the process. In the regionplab
,2 GeV/c, the parametersa and b0 exhibit a strongplab

dependence, and so does the momentum distributionnG
D .

The uqu dependence ofnG
D calculated atupmu5uyu and um

50 is shown in Fig. 7. It turns out that~i! the undistorted
momentum distributionsnD at large values ofy strongly de-
pend upon the potential model;~ii ! nG

D exhibits a stronguqu
behavior at low values ofq; ~iii ! at high values ofuqu ~which
correspond to high values ofAs andplab) the distorted mo-
mentum distributionnG

D scales to a quantity which, at larg

FIG. 5. The inclusive cross sectionD(e,e8)X calculated within
the Glauber approach. The deuteron wave function correspond
the RSC and Bonn potentials. The experimental data are the s
as in Fig. 4.
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negative values ofy, may differ from the undistorted mo
mentum distributionsnD(uyu) ~the straight lines in Fig. 7!, at
variance with the Schro¨dinger result, which predictsnS

D

.nD(uyu) at high values ofuqu. The explanation of points~i!
and ~ii ! is clear: at low values ofuqu the Glauber FSI is
driven by the elastic cross section, which strongly decrea

to
me

FIG. 6. The ratioa between the imaginary to the real part of th
forward elastic amplitude fornp scattering and the parameterb0

used in the parametrization of the profile function~3.10!. The ex-
perimental data fora are taken from Ref.@19#.

FIG. 7. The dependence of the distorted momentum distribu
nG

D , Eq. ~3.7!, uponuqu for various values ofy and fixed values of
um50° and upmu5uyu. The solid line corresponds to the Reid p
tential and the dashed line to the Bonn potential. The dotted~dot-
dashed! line represents the corresponding RSC~Bonn! undistorted
momentum distributionsn(uyu) @Eq. ~2.7!#.
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C. CIOFI degli ATTI, L. P. KAPTARI, AND D. TRELEANI PHYSICAL REVIEW C63 044601
with uqu; with increasing uqu, plab reaches the inelasti
threshold value (plab.0.8 GeV/c) and the total cross sec
tion scales to its asymptotic values tot;44 mb (a5
20.4, b050.5 fm), and so doesnG

D . The possible reason
for the differences between the asymptoticnG

D and nD(y)
@point ~iii !# will be briefly discussed later on.

Let us now analyze the effects of FSIs on the scal
functionF(uqu,y), defined by Eqs.~2.14!. The results, corre-
sponding to the RSC interaction, are presented in Fig. 8.
dotted line is the scaling function within the PWIA, and th
dashed ~solid! line includes the effects of Schro¨dinger
~Glauber! FSIs. On the top horizontal axes the correspond
value ofplab is also shown. At low values ofuqu the effects
of FSIs are very large and no scaling behavior can be
served. With increasingy, the scaling violation near the
threshold values ofuqu increases. This is due to the fact th
a larger value ofy results in a lower value ofplab , in corre-

FIG. 8. The scaling functionF(uqu,y) vs uqu andplab , for vari-
ous values ofy, corresponding to the Glauber~solid line! and the
Schrödinger~dashed line! approaches, respectively. The dotted li
represents the PWIA. The experimental scaling function was
tained using the experimental cross sections from Ref.@7#. All
curves correspond to the RSC potential.
04460
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b-

spondence of which the elastic cross section is much hig
@17#. FSIs decrease withuqu, and at values corresponding t
plab*1 GeV/c the functionF(uqu,y) exhibits a scaling be-
havior. It should be stressed that values ofplab;1 GeV/c
are still in the kinematics region where the Schro¨dinger ap-
proach can be applied. At asymptotic valuesuqu→`, the
total energy of thenp pair As→`; consequently the phas
shiftsdL in Eq. ~3.4! vanish and the final statesuprel ;JfL fSf&
become just the partial decomposition of plane waves,
that the Schro¨dinger approach and the PWIA coincide. F
large values ofy and below the pion production thresho
(plab.0.8 GeV/c), which is the region of existing experi
mental data, the Schro¨dinger approach provides a satisfa
tory description of the experimental scaling functio
F(uqu,y), unlike the Glauber approach, which overestima
the data at lowuqu and underestimate them at highuqu. The
difference between the Schro¨dinger and Glauber results i

FIG. 9. The scaling functionF(uqu,y) vs uqu for various values
of y and plab . The solid line was obtained using in the Glaub
approach the correct dependence uponplab of the quantitiesa, b0 ,
s tot , andsel , whereas the dashed line has been obtained with
asymptotic valuesa520.4, b050.5 fm, ands tot544.2 mb. The
dotted line represents the PWIA. All curves correspond to the R
potential.
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EFFECTS OF THE FINAL STATE INTERACTION IN . . . PHYSICAL REVIEW C63 044601
strongly reduced at low values ofy (xB j.1), where,
the target nucleon being almost free, the small-scatter
angle requirement necessary for the validity of the Glau
approximation is probably better fulfilled.

A common approximation, adopted by various authors
the Glauber-type calculation of the FSIs, is to consider tha
Q2.1 GeV2 the asymptotics tot;44 mb should be used
The validity of such an approximation is illustrated in Fig.
where the dashed line represents the results obtained u
the asymptoticn-p cross section, the solid lines the resu
with the quantitiesa, b0, ands tot (el) which properly include
the dependence upon the relative momentumplab , and the
dotted line the PWIA.

V. SUMMARY AND CONCLUSIONS

The aim of this paper was to address the long-stand
problem of the evaluation of FSI effects in inclusive pr
cessesA(e,e8)X, which have been described, to date,
various approximate approaches. To this end, we have
sidered the electrodisintegration of the deuteron and h
performed exact calculations within two different approach
to treat the final state, viz.,~i! the Schro¨dinger approach, in
which, given a realistic two-nucleon interaction, the Sch¨-
dinger equation is solved to generate bound and continu
two-nucleon states, with the latter describing elasticn-p res-
cattering, and~ii ! the Glauber high energy approximatio
paying, in this case, particular attention to a correct treatm
of the kinematics. Our aim was to understand the limits
validity of the two approaches and to pin down the ma
features of the FSI mechanism, having also in mind a be
understanding of these effects in complex nuclei, where
culations cannot be performed exactly. From the calculati
we have exhibited, the following remarks are in order.
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~1! The existing experimental data on theD(e,e8)X pro-
cess atxB j.1 ~negative values ofy) are, to a large extent
limited to a kinematical range where the invariant mass
the final hadronic stateAs is below the inelastic channe
thresholds&4 GeV2 ~or plab&0.8 GeV) ~cf. Fig. 8 and
Table I!; therefore, in spite of the large value ofQ2 involved,
the two nucleons in the continuum mostly undergo elas
scattering, so that the Schro¨dinger approach should represe
the correct description of the process and, as a matter of
the calculations describe the experimental data rather we

~2! The Glauber results overestimate the Schro¨dinger re-
sults at low values ofuqu and underestimate them at hig
values ofuqu. The reason for such a disagreement betwe
the two approaches, which is particularly relevant at la
values of xB j.1 ~large, negative values ofy), has to be
ascribed to the fact that atxB j.1, the direction of the ejected
nucleon sizably differs from the direction of the momentu
transfer.

~3! At values of s*4 GeV2 ~or plab*1 GeV), i.e.,
above the pion production threshold, both the Schro¨dinger
and the Glauber approaches might become inadequate
the propagation of nucleon excited states~inelastic rescatter-
ing! have to be explicitly taken into account. Calculations
this type, within the approach proposed in Ref.@20#, are in
progress and will be reported elsewhere.
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