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T=0 and T=1 pairing in rotational states of the N=Z nucleus 8%zr
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Hartree-Fock-Bogoliubov calculations for tié=Z nucleus 8Zr give a ground state band with=1
Cooper pairs and an excited band with-0 Cooper pairs. The bands cross at dp#b#, providing a “phase
transition” from T=1 pairs forl <5% to T=0 pairs forl >5%. There is also &=0+T=1 pair band, which
forms an envelope to thE=1 pair band and th& =0 pair band. In this band there is a more gradual transition
from T=1 pairs atl =0 to T=0 pairs at high spins, witfi=0 pairs andl =1 pairs coexisting at intermediate
spins. The Coriolis antipairingCAP) effect breaks thd =1 pairs, but there is no CAP effect far=0 pairs
in which then andp occupy identical space-spin orbitals. The-1 pair band has a moment of inerfifw)
which backbends at spins betweet 8nd 14, but theT=0 pair band does not backbend. Both bands have
Jgy Spin alignments. For th&=0 pair band, the dominant angular momentum of a pai=i$, notJ=1 or
J=Jna=9 as was anticipated. For a rotatihg=Z=even nucleusT =0 pairing produces a twofold degen-
eracy in the canonical orbital occupation probabilify althoughT=1 pairing produces a fourfold degeneracy
in v
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[. INTRODUCTION ability v? have the same degeneracy fb=0 pairs as for
T=1 pairs? How significant is the time-reversal symmetry

Most nonrotating atomic nuclei are superfluids, in whichbreaking in the rotatingil=0 pair potential? In a rotating
each Cooper pair contains two neutrons or two protons, anducleus withT=1 pairing, the lowest quasiparticle energy
each pair has isospifi=1. However, the introduction of usually vanishes at a critical rotational frequency; does this
radioactive nuclear beams and more sensitive detectors hasso occur forT=0 pairing? If a rotational band has a mo-
generated an intense search for superfluid nuclei in whicinent of inertia which does not backbend or upbend, does it
each Cooper pair contains one neutron and one protoﬁ],ecessarily follow that this band has no spin alignments?
where each neutron-proton pair may havel or T=0 [1].
The most likely candidates for neutron-proton pairing are Il. HARTREE-FOCK-BOGOLIUBOV THEORY
N=Z nuclei, where the neutrons and protons occupy identi-
cal space-spin orbitals, and have maximum spatial overlap.
One possible signature for neutron-proton pairing may be the The nonrotating Hartree-Fock-Bogoliubd¥iFB) states
response of the nucleus to a rotatj@-15]. Rotation might  of 8%Zr with spinl =0 were calculated in Ref$16,17. The
affectT=0 pairs in a different manner than=1 pairs. This  state with the lowest energy, i.e., the ground state, has a
could provide an observable distinction betwden0 pairs ~ Prolate deformation and contains onlfy=1 Cooper pairs.
andT=1 pairs. For convenience these pairs are chosen as neutron-neutron

This article calculates the rotational states of Mez  @nd proton-proton pairs(Including T=1 neutron-proton
nucleus®®Zr. The isospinT and angular momentughof the ~ P&Irs makes absqlutely no dl_ffe_rence_ in the energy, since the
Cooper pairs will be determined for each nuclear yrast statgUcléon-nucleon interaction is isospin invariant awet Z.)
with spinl. (Throughout this articld refers to the isospin of 1h€ nonrotating even-even wave function is time reversal
one pair of nucleons, not the isospin of the nuclede invariant. So the Cooper pairs arfern,an, T=1) and
conventional yrast line, which permits only neutron-neutron|ap,ap,T=1), where|a) is a HFB canonical space-spin
and proton-proton pairs, will be compared to the yrast lineyrpital and|a) is the time reverse df). These aren pairs

which also permits neutron-proton pairs. — . .
- . . ) . andpp pairs, where the bar indicates that the second nucleon
The following questions will be addressed: Are there sig-. . . : . S .
in a pair occupies a space-spin orbital which is the time

n|f|_cant alteratu_)ns ’|)n the yrast line wh(_an neutron-protonreverse of the first nucleon’s orbital. Rotation breaks the
pairs are permitted? Does the competition betw@enl time-reversal symmetry. Then the Cooper pairs are

pairing andT=0 pairing cause substantial changes in the A A ~
yrast line? Does the inclusion of neutron-proton pairs caust?™ an, T=1) and |ap,ap,T=1), where|a) is not the

the yrast line of8%Zr to have a “phase transition”? I  time reverse ofa). These aren pairs andpp pairs, where
=0 Cooper pairs exist, is their angular momentum either the hat indicates that the orbital of the second nucleon in a
=1 orJ=J,.=2] (Wherej is the nucleon spinas is often  pair is not the time reverse of the first nucleon’s orbital. The
stated, or do they have another value 36r For a rotating orbitals| ) andl&} depend upon the rotational frequengy
N=Z= even nucleus, dd =0 pairs generate a density ma- At spinl =0 there is an HFB excited state with excitation
trix p which has the same degeneracy as would occuill for energyE=0.645 MeV. This state has a prolate deformation
=1 pairs; i.e., does the canonical orbital occupation proband contains onlyT=0 neutron-proton pairs. This state is

A. Cooper pairs
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time-reversal invariant, and contains the Cooper pairs al C,TJ
|an,ap,T=0) and |an,ap,T=0). The two nucleons in T T

. . . . . L a, C,
each pair occupidentical space-spin orbitals. The orbitals in at= ct— 2.4
the second pair are the time reverse of the orbitals in the first al ' C% '
pair. These arep pairs andnp pairs. Rotation breaks the T ct
time-reversal symmetry. Then the pairs duen,ap, T=0) % n

and|an,ap,T=0), where the orbitals in the second pair are_ worc! has di oM and contains th
no longer the time reverse of the orbitals in the first pair.' ¢ VE¢tOrty Nas dimensiorivl and contains the compo-

T . .

However, the two nucleons in each pair still occugigntical ~ N€NtSCip .WhereM is the numberT of single protop states
space-spin orbitals, which depend upon the rotational frefK), and similarly for the vectolC;. The vectorC - has
quencyw. These arenp pairs andnp pairs. dimensionM and contains the componerﬁﬁ(p, and simi-

_At'spin|=0 there is another HFB excited state with ex- Jarly for the vectorC-. The vectora] has dimensioM with
C|tat|on energyE= 1.5?9 MeV. This state has a prolatg de- componentsajTl, wherej=1,2...M, and similarly forag,
formation and contains onlyT=0 neutron-proton pairs, _+ + . . .

a;, anda;. For a nucleus witiN=Z=even, isospin sym-

which are [an,ap,T=0) and |ap,an,T=0). The two metry creates a degeneracy factor of 2 in the quasiparticle
nucleons in each pair occupy orbitals which are related b¥energies Then the matricesandV have the forms

time reversal. The two nucleons in each pair do not occupy
identical orbitals. These arep pairs andpn pairs. Rotation U,

0 0 0
breaks the time-reversal symmetry. Then the pairs become
|an,ap,T=0) and|ap,an, T=0). These arenp pairs and 0 U 00
pn pairs. These pair states exist only up to nuclear $pin U=t o o 0, 0] 29
=1 and vanish at=2. 0o 0 0 01
B. Quasiparticle transformation

These calculations fof%Zr shownn pairs, pp pairs, and 0 Vi Vo 0
np(T=0) pairs for nuclear spih=2. However, they do not -V; 0 0o -V,
shownp(T=0 andT=1) pairs forl=2. Of coursenp(T V=- X, 00 Ak (2.6
=1) pairs(wheren andp occupy identical space-spin orbit- 2 R R !
als) are forbidden by the Pauli exclusion principle. Conse- 0O v, -v; O

quently the formalism presented here will be restrictedto

pairs, pp pairs, andnp(T=0) pairs in rotating nuclei. The Where the matricesU;, Vy, and V, have dimension
calculations were performed in the balis=|nljm). How- MXM. It should be emphasized that the matri¢esnd V
ever, the formalism acquires a simpler form when it is given@re functions of the rotational frequenay The quasiparticle
in the basis of eigenvectors of the reflection symmetry Op_operatorsaT are spin dependent. The matrid¢g andV, are

eratoro, , which are real. Permitting the matriy/; to be complex creates no
change in the energy of this statedfzr, soV, is chosen to
|K>=2*1’2[|k>+|F)], (2.1)  be real.(The amplitudeV, describes thexp(T=0) pairs.

The isospin generalized BCS thedB0] has a complex am-
_ _ plitude v, for these pairs. For other nuclei, a complex
|Ky=2"Y4—|k)+ k)], (2.2 sometimes permits a lower energy, but for most nuclei the

energy is not lowered with a complex.) Combining Egs.

where|k) is now restricted to states wheme— 1/2 equals an (2.39—(2.6), the quasiparticle operators are explicitly given as

even integer|k) is the time reverse ofk), and|K) is the

time reverse_oﬂK}. It was demonstrated in Reff18,19 ajTl:E [(Ul)ch;Qp_(Vl)chKn_(vz)jKCEp], 2.7
that this|K),|K) basis greatly simplifies the HFB formalism K

for nn pairs andpp pairs in rotating nuclei.

Parity is a conserved symmetry. For each parity, the quagt _ U CE b (V) iw Crt (Vo) o Co 28
siparticle operatora’ are defined by a unitary transforma- 12 ; U2k Crnt (Va)ikCrpt (Va)ik Cicnl. 28
tion of the particle operator€”,

af
a

where the vectora' andC" are

U v \/ct a}rl:EK: [(Ol)jKCTEpJF(vz)jKCKp_(Vl)jKCEn], (2.9
UL e

2, ;[(Ol)JKC%n_(\A/Z)jKCKn"'(vl)jKCEp]- (2.10
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If the rotational frequencyw=0, thenU,;=U;, V,;=V,,

andV,=V,. This is the time-reversal symmetry. However,
for a rotating nucleus witlw#0, the time-reversal symme-

try is broken, so thatl;# U, V,#V;, andV,# V..
The density matrix and the pairing tensor,

(2.10)
(2.12

pij=(CCi),

t;;=(C;Cy),

are evaluated with respect to the spin-dependent HFB quasi-

particle vacuum, so that

(2.13
(2.19
They are functions of the rotational frequeney Substitut-

ing Eq. (2.6) into Eq. (2.13, and using the unitarity con-
straint

p=V'V,

t=V'u.

UTu+Vv*r =1, (2.15
it follows that p is block diagonal
pop O 0 0
0 ppp O 0
P=| 0 0 pp O | (2.1
0 0 0 ppp

where

(pTsz)Klez pKlTl Kory (pa?z)Klez pR]_Tl ,EZTZ’

(2.17

risnorp, and
Ppp:Pnn:VIVl"'\’\/;\?Zy (2.18
Ppp=Prn=V1V1+ VIV, (2.19

The M XM matricesp,, andpp, are real and symmetric. If
w=0, thenV;=V; andV,=V,, so thatp,,=pp,. This is
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(tr )k K, = g ry Ky (L )k, =ty Ky

(2.21
() K K, = T 7y Ky
and
top=—tmn, (2.22
tpn=ViUy, (2.23
ton=V10,, (2.24
tpo=V30, (2.29

The matriced,,, ty,, andt,, have dimensiorM XM and
are real. The matrices,, andt,, are symmetric. lfw=0,

then time-reversal symmetry givés,=t,,. However, if w

#0, then time-reversal symmetry is broken, apg# ty,. If

»=0, then time-reversal symmetry causgsto be symmet-
ric. However, ifw#0, thent,; is not symmetric.

The Hartree-FockHF) Hamiltonian and HF potential are

h=e+U, (2.26

u”-=§ (ik|valil)pik.- (2.27)

The isospin structure di is the same as that of the density
matrix p in Eqg. (2.16). The pair potential is

1
Aijzzé (ijlvalkty . (2.28

The isospin structure ok is the same as that of the pairing
tensort in Eq. (2.20. Both h and A depend upon the rota-
tional frequencyw. For each value ok, the HFB energy is

Enrg=(H)=Tr

! 1AT 2.2
e+§up+§ t'. (2.29

The HFB equation is

aely)
v =Ej|, |- 230

(h—=A—wl,) A )
J

—A* —(h=A—wd)*

the time-reversal symmetry. However, for a rotating nucleus

where w#0, thenV;#V; and V,#V,, so thatp,,# ppp-
The time-reversal symmetry is broken.

The pairing tensor is obtained by substituting E@s5)
and(2.6) into Eq.(2.14), so that

0 tpn thp 0
—ton O 0 —typ

= 1, O . e (220
0 Tp— —ton 0

where

The chemical potentials, and\, are adjusted so that the
number operatordl, and N, have the correct expectation
values. The HFB mean field approximation is used, and par-
ticle number projection is not included.

C. Limiting case: np(T=0) pairs

For aN=Z= even nucleus, consider the case where there
are onlynp(T=0) pairs, where the neutron and proton in
each pair occupy identical space-spin orbitals if the rota-
tional frequencyw=0. There are nan pairs orpp pairs.
This is achieved by choosing; # 0 andV,=0 in the initial
trial wave function. Then the final self-consistent wave func-
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tion will have the same properties. Then the density matrix

of Egs.(2.18 and(2.19 reduces to

Ppp:Pnn:VI\/la (2.3)

(2.32

The only nonzero components of the pairing tensortgge
andty,, given by Egs(2.23 and(2.24).

Pop=Pm=V1V;.

1. Canonical representation

The Bloch-Messiah theorerf21] states that any HFB
guasiparticle vacuum may be expressed in BCS form, wher;
each paired orbital is paired with only one other orbital. Tha

is, there exists a single-particle basis such th& diagonal

This is the canonical representation.

For a nonrotatingN=Z=even nucleus, time-reversal

PHYSICAL REVIEW C 63 044325

|an)=; D .«/Kn). (2.40
The corresponding eigenvalues @f, andp,,, are
Pa=v>. (2.4)
From Eq.(2.37) it follows that the eigenvalues df,, are
0.=pa—pe=vi(1-v2). (2.42

Equationg2.39—(2.41) show that even in a rotating nucleus,
a neutron and a proton occujyentical space-spin orbitals
for) with equal occupation probability? , where|a) andv?

tdepend uporw. In a similar manner, it follows from Eq.

. ... (2.38 that the eigenvectors g¢f,, are
andt has nonzero components only between paired orbltals(. 8 g PP

symmetry and isospin symmetry generate a fourfold degen-
eracy in the single-particle orbital energies. Then the pairg g the eigenvectors gf.— are

arenp(T=0) andnp(T=0), where the orbitals in the sec-
ond pair are the time-reverse of the orbitals in the first pair.

Also the four orbitals|an), |ap), |an), and |ap) have
identical occupation probabilitie@i. SinceJ, is not time-
reversal invariant, in a rotating nucleus the(T=0) pairs

cannot be related by time reversal. It is therefore interesting

to determine the nature of the correlateg( T=0) pairs in a
rotating nucleus.
The HFB unitarity constraint is

R?=R, (2.33
whereR is the generalized density matrix
p t
R= ot 1_7)). (2.39
From Eq.(2.33 it follows that
p—p?=ttT=, (2.35
pt=tp. (2.3

Substitute Egs(2.16 and (2.20 into Eq. (2.39, usingt,,
=0, ppp=pnn, aNdpyp=pnn- The result is

ons (2.37)

(2.38

Note that6,, and 6,, are hermitian. From Eq2.37) it fol-
lows that 6, commutes withp,, and p,,. Consequently

2 2
Ppp~ Ppp= Pnn— pnn:tpntgn 0
T

|}|

. 2 . 2
Ppp~ Ppp=Prn~ Ppn=tpntpn= Fpn -

|ap)= 2. Daux|Kp), (2.43
|&n)=; D «|Kn). (2.44
The corresponding eigenvalues @f, and p,,, are
p;l=vz. (2.495
From Eq.(2.38) it follows that the eigenvalues df;; are
0a=pa—po=v5(1-v%). (2.46

Equationg2.43—(2.45 show that even in a rotating nucleus,
a neutron and a proton occujyentical space-spin orbitals
|) with equal occupation probabilitzyi, where| a) andvfr
depend uporw. For a nonrotating nucleus with=0, time-
reversal symmetry give® =D, so thatla)=|a), as well as
v§=vi. The density matrixp is fourfold degenerate. How-
ever, for a rotating nucleus witw+#0, the time-reversal
symmetry is broken, so thaD#D, |a)#|a), and v?
a&vi. The density matriyp is only twofold degenerate.

In 1974[18] it was proven that fonn pairs andpp pairs
in a rotating nucleus, the density matgixs fourfold degen-
erate, withvizvi, even though the time-reversal symmetry
is broken in the density matrip, with p,,# pp,. So the
result shown here that is only twofold degenerate for a
rotating nucleus wittnp(T=0) pairs(where the neutron and
proton in a pair occupy identical orbitalss interesting. It
demonstrates that the pairing tengohnas a fundamentally

different structure fopp pairs andnp(T=0) pairs(where

they can be diagonalized by the same unitary transformatiorihe two nucleons occupy identical orbitgland that this dif-

The eigenvectors gb,, are
|ap)=23) DoklKp), (239

and the eigenvectors @f,, are

ference acts through the unitarity constrdigg. (2.33] to
alter the degeneracy of the density maisix

Substitute Egs(2.16 and (2.20 into Eq. (2.36), using
top=0, Ppp=pPnn, @aNdpppy=pnn . The result is

(2.47

Ppptpn:tpnpnny
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breaking the densities and fields into time-reversal even and
time-reversal odd components.

Express Eq(2.47 in the|a) basis and Eq(2.48 in the|a) Define
basis, so that

Popton=tonPmn - (2.48

(*)— —
Poo’ == (PopE Pop)- (2.53
(tpn)aa’[(ppp)aa_(pnn)a’a’]:(tpn)aa’[pa_pa’]z(zohg) PP 2°0PP PP
' Then from Egs(2.17) and (2.53) it follows that
(tpn) aarL(Ppp)aa— (Prn)arar 1= (ton)aarlpa—par]1=0. ) .
e e " (250 ol T =200, (2.54

The pairing tensot,, has nonzero components only betweenwhere T is the time-reversal operator, andrNIT %),
stateg ap) and|an) having the same occupation probability =M5j for any matrixM. Thereforep(;) and p{) are the
v2. The pairing tensott;, has nonzero components only time-reversal even and odd componentspgf. The matri-

between statekp) and |an) having the same occupation CeSpby’ and pf;) are real and symmetric. It follows from
probability v . Egs.(2.1) and(2.2) that

From these results on the structure of the density matrix )y, = , 25
and pairing tensot, it follows that the HFB quasiparticle (Ppp’) ki = (Ppplice (2.59
vacuum can be expressed as (PéB))KK'Z(Ppp)kI' (2.56

|Dg)= 11 (Ua+UaCZpCZn)(UHU&Cgpcgnﬂo% (2.51) For a nonrotating nucleus with=0, thenpg;)zo. For a
a>0 rotating nucleus withw#0, then p{)#0. In a rotating
nucleus, Eq(2.16 shows thapyic: = 0; however, Eq(2.56
shows thapy;: #0. This demonstrates that thi€), |K) ba-
sis reduces the dimension pfby a factor of 2, compared to
the |k), |k) basis, for a rotating nucleus. The Hartree-Fock
A—éamiltonian h separates into time-reversal even and odd
gomponents in the same mannerpasso that

whereu?+v2=1, u:+v2=1, and the orbital$a) and|a)
are given by Eqs(2.39 and(2.43. The canonical orbitals
|@) are not imposea priori, but instead are determined by
the final self-consistent HFB density matyx It should be
remembered that this is a spin-dependent state, where t
orbitals and their occupation probabilities depend upon th
rotational frequency». The nonzero elements of the density 1
matrix are Pap,ap:Pan,an:Ui and P&p,&pzp&n,&nzvz- hgtp)zi(hppi Ppp)- (2.57)
The nonzero elements of the pairing tensor &gg ,n

=Uu., andt;, ;n=Uzv, . For a rotating nucleus wher@  Also, one can substitute for p in Egs.(2.54—(2.56).

#0, the time-reversal symmetry is broken, so tha Define

¢|Z>, u,#u,, andv,#v,. For a nonrotating nucleus 1

V\fhereg=0, the time-reversal symmetry is restored, so that tgﬁ)zi(tpnitp_n)- (2.59
|@)=|a), uz=u,, andv,=v,. Then the wave function

simplifies to Then from Egs(2.21) and (2.58 it follows that
[@0)=IT (Ua v, CloClo (Ut o,Chch)l0). (252 THRT 1=t (2.59

Thereforetg’]) andtf);) are the time-reversal even and odd
In wave functions(2.51) and (2.52 bOchOVbitaB in a  components of,,. The matrices!;’ andt{) are real and
given pair have the same occupatimi;l (orv?). Therefore  symmetric. It follows from Eqs(2.1) and(2.2) that
these wave functions contain no blocked orbitédsblocked

orbital occurs when one orbital in a pair is fully occupied, pn JKK pn)KK’ »
i.e.,v2=1, and the other orbital in the same pair is empty, )
i.e.,v?=0.) These wave functions do not exhibit the block- (tpn kK = (tpn)ki - (2.61

ing effect which is characteristic of odd-odd nuclei. ) . =)
For a nonrotating nucleus with=0, thent,.’=0. For a

2. Breaking of time-reversal symmetry rotating nucleus withw#0, thent{)#0. In a rotating
. . . nucl Eq(2.20 shows that if there are on irs an
For a nonrotatindN=Z=even nucleus withw=0, time- ucleus, Eq(2.20 shows that if there are onlyp pairs and

reversal symmetry is preserved in the densitiesdt and in "0t PP Pairs, thertyi: =0; however, Eq(2.61) shows that
the mean fields andA. However, when the nucleus rotates tk #0. This demonstrates that thi), [K) basis reduces
with w# 0, the cranking term- wJ, breaks the time-reversal the dimension of by a factor of 2, compared to thk), |k)
symmetry in the densities and mean fields. It is then interestasis, for a rotating nucleus. The wave function in 951

ing to determine the extent of the time-reversal violation byshows that the neutron and proton in a given pair occupy
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identical space-spin orbitals, i.eap(T=0) pairs. It is then Because statg2.52 and(2.66) have different pair potentials
interesting to find that, i, # 0 in a rotating nucleus. For a A, self-consistency then leads to different HFB density ma-
nonrotating nucleus, would connect thék) state andk’)  trices p. Therefore state$2.52 and (2.66 have different
state only if the neutron orbital were the time reverse of theorbitals |) and different occupation probabilities,. The
proton orbital in the same pair, i.e., if there werp(T=0)  time-reversal even and odd componentgof, h, andA are
pairs rather thanp(T=0) pairs. It is also interesting to note 9iven in Ref.[19].

that in a rotating nucleusp(T=0) pairs give &, which

is real; whereas in a nonrotating nucleus, tiggT=0) pairs E. Angular momentum and isospin of Cooper pairs

give aty, i, which is imaginary[1]. The pair potentiald Each Cooper pair has an angular momenfamd isospin
separates into time-reversal even and odd components in tffe The HFB calculation provides the components of the pair
same manner ds so that potentiaIAJ-lmlTl'jzmzf2 wherer is n or p. The pair potential
1 can then be expressed in terms of the spin and isospin of the
Agﬁ>=§(ApniAp7). (2.62  par
Also, one can substitut& for t in Egs.(2.59—(2.61). AjljZJMTTz:m mZ (i1myjoma|IM)
1M 7172
D. Limiting case: nn and pp pairs X(3 713 T2 TTDA iz i pmyry (2.67)

For aN=Z=even nucleus, consider the case where there ) , ) ,
are neutron-neutron pairs and proton-proton pairs, but nd he strength of the pair potential fOMTTS, is defined as
neutron-proton pairs. This is accomplished by choodiiRg

=0 andV,#0 in the initial trial wave function. Then the A= 2 |Aj i mTT) (2.68
final self-consistent wave function will have the same prop- ISP
erties. Then the density matrix of Egs.(2.18 and (2.1 . . . '
Y X as.(2.18 219 The total strength of the pair potential foi is defined as
reduces to
. 12
ppp:pnn:VZVZa (263) AJT: E |AJMTTZ|2 (269)
MT,
Pop=Pmn=V3V2. (2.64

The pair potential has a time-reversal even componént
The only nonzero components of the pairing tensortgge and a time-reversal odd componekf ), whereA=A(")
andt,,, given by Eqs(2.22 and(2.25. + A7), Consider the case ofn pairs andpp pairs, as in Eq.
The analysis of neutron-neutron pairs and proton-protori2.65. ThenA(™) hasM =even andA(~) hasM = odd. Also
pairs in rotating nuclei, using the),|K) basis states, was A hasM=even ifw=0 andA hasM =even and odd it
given in Refs[18,19. The result is that the HFB quasipar- #0. Next consider the case ofp(T=0) pairs, as in Eq.

ticle vacuum has the canonical representation (2.51). ThenA(*) hasM = odd andA(~) hasM =even. Also
A hasM=o0dd if =0 andA hasM=even and odd ifw
#0.

@)= I (Ut v,ClpCl,) (U =v,CLaCLI0), (269

IIl. HFB CALCULATIONS
whereu®+v2=1, and the canonical orbitale) and|«) are .
given by Egs.(2.39 and (2.43. It should be remembered Thehml?delTspacg mcluldesdthepgz,égZ,\ﬁ)_g,zl,: 1f§{$ ?Ed
that this is a spin-dependent state, where the orbitals anfiJor2 shells. There is a closed core . For “Zr the

their occupation probabilities depend upon the rotational freMMaximum spin permitted_ by this model space isi38his
quencyw. The nonzero elements of the density matrix aremOdeI space was used in shell model Monte Carlo calcula-

. 74 - .
Pap,apzPan,anzp&p,&pzp&n,&nzvi- The density matrixp tions for ““Rb[6] and in HFB calculations for Sr, Zr, and Mo
is fourfold degenerate, even though the time-reversal sym-

isotoped 22]. The HamiltoniarH contains an effective inter-
ety s broke i e Gensty s, Wil The . ~cion oo bY T Kuo fom the Parispotertal i
nonzero elements of the pairing tensor &fg.p= ~tan,an also contains single-nucleon energigs which are téken
=u,v,. For a rotating nucleus where+#0, the time- 9 9&s

} A from Table Il in Ref.[22], which extractse; from experi-
reversal symmetry is broken, SO.tH&t>¢|a). Foranonro-  mental spectra in this mass region. The Coulomb interaction
tating nucleus wherewv=0, the time-reversal symmetry is

S _ S is not included. Further details regardiHgare given in Refs.
restored, so thdir)=|a). Then the wave function simplifies [16,17. Axial and triaxial deformations are included. The
to pair potentialA includes components with isospih=0,1
and angular momentumJ=0,1,2,3,4,5,6,7,8,9. Self-
d)= u+v.ctciyu.—v.ct clyo. 26 consistency is obtained in bothandA for each nuclear spin
[®o) LLIO (Ut 00CapCop) (Ua™VaCanCor)0). (266 I. [This means that E¢2.30 is solved in the usual iterative
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T=0 + T=1 pairs
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FIG. 1. Energies of the rotational bands versus the kpin

procedure. On each iteratidrandA are calculated from the
density matrixp and the pairing tensdr respectively; thep
andt are calculated from the eigenvectond;(V;) in Eq.
(2.30. The iterations continue until andA do not vary on
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FIG. 2. Pair correlation enerdyy,, for the T=0 pair band, the
T=1 pair band, and th& =0+ T=1 pair band.

lated up to spin =26A. At high spins, theT=1 pair band
has a higher energy than thie=0 pair band. As will be
shown below, thél' =1 pair band has a large backbend be-

successive iterations.Because the model space containstween spind =8 andl=14. The spinl=10,12 states have

only one value of the radial quantum numlrefor eachlj,

not been found for this bandThis sometimes occurs for

there is no self-consistency in the radial coordinate. NumbeHFB states in the middle of a backbend, as they may be

parity is conserved on each iteration.

A. Rotational energies

As described in Sec. Il A, the ground state mas pairs

and pE pairs. These ard=1 pairs. It has the canonical
representation given in E§2.66). The HFB equatior{2.30
is used to rotate th& =1 pair statg2.66). This generates a

rotational band withl =1 (nﬁ andpb) pairs. The calculated

unstable.

In the band crossing region is there a lower energy HFB
state which contains both=1 pairs andT=0 pairs in the
same HFB wave function@uch wave functions have been
found for the ground states &Mo and ®8Ru[16,17].) The
HFB equation is used to obtain a band which contains both
T=1 (nn,pp) pairs andT=0 (np,np) pairs. This band is
shown in Fig. 1. This band forms an envelope to Thel
pair band and thd =0 pair band. It joins smoothly to the

energies of thd”=2" and 4" states are 0.274 and 0.826 T=1 pair band al =0 and to theT=0 pair band at high
MeV, respectively. (This calculation has no parameters spins. For spins near5 bothT=1 pairs andlT =0 pairs are

available to adjust the energies of rotational staf€se cor-

contained in the same HFB wave function for a given dpin

responding experimental energies are 0.290 and 0.828 MeXt | =0 the HFB state for the envelope is exactly the same as

[23,24). For each spinl, the HFB state has the spin-

dependent canonical form given in EQ.65.
Section Il A also describes the HFB excited stateEat

=0.645 MeV, which hasnp(T=0) pairs andnp(T=0)

the HFB state in théf=1 pair band, and it contains only
T=1 pairs. Atl =11 the HFB state of the envelope is almost
the same as the HFB state of the=0 pair band, and it
contains primarilyT=0 pairs. The envelope band provides

pairs. This state has the canonical representation given in EQn yrast line which is much smoother than the yrast line

(2.52. The HFB equatior(2.30 is used to rotate th&=0
pair state(2.52. This generates a rotational band with
=0 (np andnp) pairs. For each spih the HFB state has the
spin-dependent canonical form given in E.51).

The energies of th@=1 pair band and thd=0 pair

given by the two crossing bands. For the0+T=1 pair
band, the energy of th€=4" state is below the experimen-
tal energy.

Figure 2 shows the pairing energ:}/pai,=Tr[%AtT]. The
T=1 pair band has a larg@egative pairing energy at spin

band are shown in Fig. 1. The two bands cross at $pin | =0. However, as the spin increases, this band rapidly loses
~bf. Consequently the yrast line obtained from these twdts pairing energy, which vanishes lat 26. In contrast, the

crossing bands has a “phase transitionl at54. The yrast

T=0 pair band has a pairing energy which is approximately

states fol <44 haveT=1 Cooper pairs, whereas the yrast constant for increasing spirfThe pairing energy actually

states fol =67% haveT=0 Cooper pairs. If this HFB calcu-

increases witH at low spins, i.e., becomes more negative.

lation had been performed with only neutron-neutron pairingThe T=0+T=1 pair band loses its pairing energy less rap-
and proton-proton pairing, and the neutron-proton pairingdly than theT=1 pair band.

had been omitted, then tHe=0 pair band would not have
been found, and the yrast line would coincide with the

Why doesE,,;(1) behave so differently for the=1 pair
band and théel =0 pair band? First consider thle=1 pair

=1 pair band at all spins. No phase transition would haveband. At spinl =0 the two nucleons in each Cooper pair are
been predicted. The energies of both bands have been caldua-time-reversed orbitals, wher, is a good quantum num-
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ergy does not vanish until=26. In sharp contrast, for the

"o 5 T=0 pair bandE, is approximately constant with spin, and
Zr it does not change sign. This is another signal of the radically

1.0 different manner in whichT=1 pairs andT=0 pairs re-
< spond to rotation. For thE=0+ T=1 pair bandE, initially
2 ~ J follows the decrease of the=1 pair band, but quickly lev-
= 057 T=0+T=1 pairs els off and then joins the path of tie=0 pair band, so that
uF E, is never close to zero. So for=6, where this band con-

0.0 — e tains bothT=0 pairs andT=1 pairs at the same splnthe

: presence of th& =0 pairs prevent&; from decreasing very
. 7\/ much.
T=1 pairs
0.5 : : : : :
0 5 10 15 20 25 30 C. Pair potential
Spin | The pair potential has a matrix representatibp. It is

therefore convenient to define various ways of characterizing
the average properties of this matrix. Each pair mode is de-
scribed by a submatrix oA. Consider the average of the

“diagonal” elements for each submatrix df
ber, and the first nucleon hasm while the second has

—m. When this state is rotated, the Coriolis force has a 1 M 1
. ’ ) _A(H)_ (H)_ | — —

opposite effect on the angular momentum vectors of the mr;&_i);)—ﬂ;)—m K21 Aokl =M kZl | Akpkpl» (3.1
nucleons, thereby breaking the time-reversal symmetry, and - -

breaking the pair bond. This is the Coriolis antipairing LM LM

(CAP) effect, which causes the rapid loss of pairing energy (o) _ (o) _ — AC_ == A =0 32
as the spin increase$25]. For T=1 pairs the isospin state PP nn M Kz:l | vaKp| M kgl [Bipspl =0, (3.2
is symmetric, so the space-spin state must be antisymmetric.

FIG. 3. Lowest quasiparticle enerdy for the T=0 pair band,
the T=1 pair band, and th&=0+T=1 pair band.

This permitsJ=0 pairs, which is the strongest pair mode. 1 M 1 M
The rotation breaks thesk=0 pairs in order to realign the AEJ;):M > |Af<*p?Kn|:M 2 Mgl (3.3
nucleon spins along the& rotation axis and generate the K=1 k=1
nuclear spin. " "
Next consider th'=0 pair band. At spii=0 the neu- —_, 1 ) 1L _
tron and proton in each Cooper pair occupy identical spaceépn ™M Kzl |AKp,Kn| M gl |Akp,kn|' 3.4

spin orbitals, wheram, is a good quantum number. When

this state is rotated, the Coriolis force has eXaCtly the Sam?he last sum in each of these equations considers a subma-
effect on the angular momentum vectors of the two nucleons,; ¢ A in the Ik),[K) basis. They are related to the corre-
The two spin vectors can be gradually rotated towardscthe sponding time-reversal even or odd componentAofex-

rotation axis, and at each spirthe neutron and proton in a : — i
pair will have the same space-spin wave function, thereb'€Ssed in theK),|K) basis. The 0 at the end of E¢B.2)
ccurs becausak?,kpzo (A is antisymmetrig, although

maintaining maximum spatial overlap. The pair is not broken® X )
by the rotation. There is no CAP effect for thébe 0 pairs.  Akpk'p# 0 andA °+0 for w#0. A single average value of
Therefore the pairing energy is approximately constant fo is defined as

increasing spin. For T=0 pairs the isospin state is anti-

symmetric, so the space-spin state is symmetric. This forbids T 2 2 211/2

J=0 pairs. Each pair has at leakt 1. Then each pair can =M kzl [1Akp kol “+ [ Aipnl “+ | Akp nl 7172 (3.5)
contribute to the nuclear spinby gradually realigning its
spinJ from thez axis to thex rotation axis, without breaking

the pair. Figure 4 shows\. For theT=1 pair bandA decreases with

spin, and vanishes at spirs26. For theT=0 pair band A
is approximately constant with spin, up te-26. There is a

small bump atl =18, which will be explained below. Al

The COI’IO|IS.f0rCE can cause the lowest qu_a3|part|cle €N=0 the value ofA is larger for theT=1 pair band than for
ergy E; to vanish at a critical angular velocity., even

though the pair fieldh is not zero[26]. For > w,, it is the T=0 pair band. This is primarily because fior 0 with

necessary to have negative value€gfin order to conserve =0 pairs, only certain orbitals near the Fermi energy par-
. ticipate in the pairingas described belowso that the aver-
the number parityf27]. One must also ensure that the two pak pairing

guasiparticle excitation energye;+E, remains non- age A includes some large te_rms and_ Some zero ter_ms,
negative. The lowest quasiparticle enery is shown in whereas fofT=1 pairs more orbitals participate in the pair-

Fig. 3. For theT=1 pair band,E; decreases rapidly with ing. For theT=0+T=1 pair band A initially follows the
spin and changes sign k&6, even though the pairing en- T=1 pair band; then at~5, A is larger than for th&d =1

B. Quasiparticle energies
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FIG. 4. Average pair potentiah for the T=0 pair band, the

T=1 pair band, and th& =0+ T=1 pair band.
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FIG. 6. Average time-reversal even and odd components of the

pair potentialxﬁ) for the T=0 pair band.

pair band because bofh=0 andT=1 pairs coexist; and Recall that in the canonical basis,p ;,=0, SO this term

finally for 1>10, A follows theT=0 pair band.

does not contribute. Figure 5 showsfor the canonical basis

The discussion above considers the matrix representatiq% and compares it to the values for the spherical bigis

of A in the spherical basigk). Alternatively, one can ex-
pressA in the canonical basiky) described in Sec. 1IC 1.

The two bases give similar results far
Next we compare the time-reversal even and time-

Then the average value of the “diagonal” elements for ead}eversal odd components of the pair potential. The average

submatrix ofA are defined by

1 M
Apb:Anﬁ:M aZl |Aap,;1p|l

(3.6
1 2M
Apn:ma:l |Aap,an|1 (3.7

where the sum in Eq(3.7) includes the terms wherfy)
=|Ex>. A single average value df is defined as

1 2M
A=gi 2 HAapipl®+Aupanl 1% 38

1.6
soZr Canonical basis

121 _ Spherical basis

T=1 pairs
=~ /"\\

A (MeV)

Spin |

FIG. 5. Average pair potentia‘Tfor the T=0 pair band and the
T=1 pair band. The canonical basig) is compared to the spheri-

cal basigk).

values of these components are defined in Eg4)—(3.4).
Figure 6 shows\!})) and Al)) for the T=0 pair band. At
spinl =0 the pair potential is time-reversal invariant, so that
KEJ;,)ZO. However, as the spin increases, the time-reversal
symmetry is broken, so thz?(tp;) increases. At~ 18 there is
a sudden increase E,;). ThenKE);) is almost as large as
Kf;), and it would clearly be impermissible to neglect the
time-reversal violation of the pair potential. This sudden in-
crease irKf);) is reflected in the small bump &t=18 in the
T=0 curve in Fig. 4.

Figure 7 showsA(}), AL, andxﬁ) for the T=0+T
=1 pair band. At spin =0 only Kﬁ) is nonzero, so there
are only pH andnn pairs. As the spin increaseg,%) de-

1.6
807,

T=0 + T=1 pairs |

0 5 10 15 20 25 30
Spin |

FIG. 7. Average time-reversal even and odd components of the

pair potentialA ;) andKEf;) for the T=0+T=1 pair band.
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FIG. 8. Angular momentum components of the pair potential
Aj -4 for the T=1 pair band.

creases anm\éﬁ) increases. This figure shows that for the
spin intervall =2-10, there ar@p pairs as well app and
nn pairs coexisting at each spin. At=10, Ké%) suddenly
becomes very small, and it vanished at16.

Each Cooper pair has an angular momenguand isospin
T. The pair potential has spin and isospin componéngts,
given by Eq.(2.69. Figure 8 shows\;; for the T=1 pair
band. As expected, at spir=0 the monopole (=0) pairs
dominate, while thel=2 andJ=4 pairs are much less im-
portant. However, as the spinincreases, thed=0 pairs
decrease, whereas tle=2 andJ=4 pairs increase. How-
ever, at all sping the monopole pairing is the largest. At
=26, theT=1 pairs vanish, simultaneously for éll

The pair potential\ ; for the T=0 pair band is shown in
Fig. 9. The conventional wisdom far=0 pairs is that the
most important value of for a pair isJ=1; although it is
sometimes stated that the dominant value is eithefl or
J=Jmax=2], Wherej is the nucleon spin. Figure 9 shows
that neither of these typical assumptions is correct®r.
At spin 1 =0 there are nd=1 pairs and nal= 3 pairs. As
the spinl increases)J=1 andJ=3 pairs emerge, but their

Ar (MeV)

Spin |
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FIG. 10. Angular momentum components of the pair potential
Aj7—, for the T=0+T=1 pair band.

strength remains relatively weak for spins 10. It is only at
spins 1=20 that theJ=1 pairs become strong. For our
model space the dy, shell provides),,.,x=9. There is a
large component al=9 pairs for alll. TheJ=7 pairs exist

at all I, but are less important. The surprise which upsets the
conventional wisdom forT=0 pairs is that the greatest
strength at all sping comes from thel=5 pairs.

Why are theJ=5 pairs the most importarnt=0 pairs?
The reason is as follows. The orbitals which make the largest
contribution to the pair potential are the orbitals which are
closest to the Fermi energy. For thie=0 pair band at spin
=0, these are th@ and p 1fs, m==5/2 orbitals, with
occupation probability?=0.35, and then and p 1gg, m
= +5/2 orbitals, withv?=0.65. This identifies the four Coo-
per pairs which are closest to the Fermi enel@ar spinl
=0, all other pairs have?=0 or 1, and do not contribute to
A.) Because the neutron and proton in each pair have the
same space-spin orbital, each of these four pairsNas
+5. Therefore these pairs haverestricted toJ=5,7,9,
whereasl=1 andJ=3 are forbidden. All four of thesés;,
pairs andgg, pairs can contribute to th&=5 pair mode, but
only the two gg, pairs can contribute to th@=7,9 pair
modes. The result is that tide=5 pair mode is dominant. Of
course this result occurs because of the position of the Fermi
energy in®%Zr, and the result could be completely different
in otherN=2Z nuclei.

Finally consider theT=0+T=1 pair band. Figure 10
showsA; t—; and Fig. 11 shows\; 1_q for this band. Ob-
serve that for the spin intervdl=2—10 there are botiT
=0 pairs andT=1 pairs at each spih coexisting in the
same wave function. For th€=1 pairs, the monopoleJ(
=0) pairs are largest. Thd=0 pairs decrease with,
whereas thel=2 andJ=4 pairs increase with. At | ~11,
the T=1 pairs suddenly become very weak, simultaneously
for all J. There are nor=0 pairs atl=0. However, atl
=2 the T=0 pairs emerge, with increasing strength las
increases. For>10 theT=0 pairs remain large, while the
T=1 pairs are negligible. For thE=0 pairs,J=9 has the
greatest strength for<10, whereasl=5 is largest forl

FIG. 9. Angular momentum components of the pair potential>10. It is interesting to compar&; t_o for the T=0 pair

A;1-o for the T=0 pair band.

band(Fig. 9 andA; t_, for theT=0+T=1 pair bandFig.
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has a large backbend between spirs8 and|=14. The
8 spinl=10,12 states have not been found for this bdimtis
T=0 + T=1 pairs Zr sometimes occurs for HFB states in the middle of a back-
3l T=0 | bend, as they may be unstablén contrast theT=0 pair
— band has no backbend, but only a slow increase in the mo-
;o T T J=5 ment of inertia up td =16, followed by a considerable de-
/—{\\ J=1 1 crease at higher spins. This demonstrates Aowl pairs
| N andT=0 pairs respond to rotation in a significantly different
/ /' ~N_ o9 manner. TheT=0+T=1 pair band coincides with th&
1t / /s . J=3 =1 pair band atl=0 and joins theT=0 pair band atl
7 BEREEA =11. It has a small backbend bt 11. If T=0 pairing had
/ (;/ »._—_-_~_,«¥33—~~-.~.. ......... _J=7 been omitted in this calculation, then the yrast line would
Q Lo . ; . simply follow theT=1 pair band for all, and the yrast line
0 5 10 15 20 25 30 would have a large backbend between spins 8 and 14. It
Spin | should also be observed that if a different Hamiltonkdn
would produce band-head energies so tligt o(1=0)
FIG. 11. Angular momentum components of the pair potential<E;_,(1=0), then theT=0 pair band would be lower in
A, 1= for the T=0+T=1 pair band. energy than th& =1 pair band for all spins. Then the yrast
line would coincide with theT=0 pair band, and show no
11). Forl <10 theT=0 pair band hag=5 largest, whereas backbend.
the T=0+T=1 pair band hag=9 largest withJ=5 much At spin| =0 the moment of inertia fof =0 pairs is much
smaller. The presence of tile=1 pairs in theT=0+T=1  larger than forT=1 pairs. The essential reason is obtained
pair band has caused a reductionAip_s t—o. The mecha- from the Belyaev formul§28] for Zgcgat1=0
nism for T=1 pairs to affeciT=0 pairs is through the or-
bital occupation probabilities. Each orbital can gain occupa- |<a|Jx|:3>|2(u U2
tion probability through its participation in =0 pair and E,+Ep aVp™HpVa)
through its participation in &=1 pair. Therefore for each
orbital |a) the occupation i$i:v§,T=0+U§,T=l' Since 0  Isospin generalized BCS calculationslat0 give ZgcT
<v2<1, and since the sum of the occupatiarfsmust be ~ =0)/Zgc(T=1)=2.04. The essential reason why the mo-
constrained to equal the particle number, it follows that anment of inertia is larger folf =0 pairs thanzforTzl pairs
increase inv2 ;_, might cause a decrease irf ;_,. This ~ COmMes from the factoff ;5= (Uavp—Upv,)". Let a=m,
mechanism can divert occupation probability from=0  designate the orbitagm,. Then the terms igcs with

pairs toT=1 pairs for the Ts, m=+5/2 orbitals, thereby (@.8)=(3/2,5/2) and (5/2,7/2Jand their time reversgsc-

ratiof ,5(T=0)/f ,5(T=1) is 2.41 for @, B8) = (3/2,5/2) and
1.89 for (a,B)=(5/2,7/2), which accounts for the large
D. Moment of inertia value of Zgc{T=0). These ratios of ,; are large because
The static moment of inertia i=(J,)/w, where(J,)  for T=1 pairs, all orbitals participate in the pairing and have
=[1(1+1)]"2 It is shown in Fig. 12. Th&=1 pair band partial occupation probabilitiezsi, sof,z is small; whereas
for T=0 pairs atl =0, only them,= *+5/2 orbitals partici-
pate in the pairing, so tha,=1 andv?,=0, and thesé

Ay (MeV)
N

Tgcs™ 2a2 (3.9

B>0

80
—~ 14 are large. Whereas the factbg,; greatly reduced for the
- 8zr T=1 pair superfluidwhereJ=0 is primary, this is not so
2 60t T=1 pairs ] for this T=0 pair superfluidwhereJ>0), so thatZgc{T
: =0)/Zy=0.99. Rotating pairs witldd>0 is different than
g~ rotating pairs withJ=0.
[}
= 40 + .
— T=0 pairs 18 ) )
o T=0 + T=1 pairs E. Spin alignments
é 20 | 8 1 In this section we consider how rotatiig=1 pairs and
L T=0 pairs generates the nuclear angular momentum. Figure

13 shows(J,)=[1(1+1)]"2 where
O 1 I
0.0 0.2 0.4 0.6

= = a a)v? .
® (MeV) (I)=TrIpl=22 (aldfajy, (310

FIG. 12. Static moment of inerti@ versus rotational frequency where|a) are the canonical orbitals, the sum includes the

 for the T=0 pair band, theT=1 pair band, and th=0+T  terms with|a)=|a), and the factor of 2 indicates that neu-
=1 pair band. trons and protons have identical orbitals and occupation
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FIG. 13. Angular momenturf,) versus rotational frequeney
for the T=0 pair band, théeT=1 pair band, and th&=0+T=1
pair band.

FIG. 15. Spin alignments for each orbital in the rotation aligned
Jgy» pairs for theT=1 pair band.

probabilities. For thef=1 pair band there is a large back- Zdeformation symmetry axis, whereas at13 each pair has

bend with a sudden increase in the angular momentum. IRMOst parallel nucleon spins aligned along theotation
contrast thél' =0 pair band has a gradual increase in the spinax's' _Th's IS the rotgtlonal r_eahgnment effé_ﬁg]._ .
with no backbend. .Th|s conjecture is confirmed by con5|d§rlng tr_le spin
Which nucleons are responsible for generating the nuclediignment(a|J,| @) for eachge, neutron canonical orbital in
spin? Figure 14 shows the contributions to the nuclear spithenn pair, shown in Fig. 15. The proton spin alignments in
generated by different shells for tHe=1 pair band. Theof  the pp pair are identical to the neutron spin alignments. At
shells have a very small contribution to the spin. Almost allhigh spins these orbitals have spin alignments which are very
of the angular momentum originates from th, shell. This  close to the values for completely aligngg), orbitals. At
figure also shows the contribution td,) from two gg, | =13, the first orbital in a pair has a 98.5% overlap with the
pairs, i.e., onen pair and oneop pair, where the orbitals are Jx eigenstatégy,m,=9/2), and the second orbital in a pair
canonical orbitals. Since the space-spin wave functions das a 94.3% overlap with tha, eigenstategg,m,=7/2).
thenn pair are identical to those of thep pair, the two pairs 1 His confirms that in the backbend of tffe=1 pair band,
have identical responses to rotation at each spikt |=13 WO Jgjz Neutrons and twag, protons are realigning their
the total (J,)=13.49 while these two pairs havél,)  SPINS along thecrotation axis. . .
=15.35. All of the other orbitals actually combine to have a__ NOW consider the spin alignments in tfie-0 pair band.
negative contribution to the spin. The maximid) for one F]gure 16 shows the contributions to the nuclear spin from
Gor PAIF is 9/2+ 7/2=8, so that the maximum spin for two different shells. The f shells make a very small contribution
pairs is 16. This suggests thatlat 13 these two pairs have to the spin. Alm(_)st.all of the angular momentum comes from
come close to their maximum possible spin alignment! At theggy, shell. This figure shows the contribution{a,) from

=0 each pair has antiparallel nucleon spins aligned along thiV0 9er2 NP pairs, where the andp in a specific pair have

30 ' ' ' ' ' 30
80
Zr 80
o5 [ o5 © Zr Total 1
T=1 pairs T= i — o
ool 2ol 0 pairs 7 ;
o
& 15 : ~
- [ A5 L ey ]
v v S ot 2 pairs (gq,)
10 ] 10} =
/‘/ 7
5t < ) 1 5t e
e et : P A e ear SN
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Spin | Spin |

FIG. 14. Angular momentum contributions from different shells  FIG. 16. Angular momentum contributions from different shells
for the T=1 pair band. for the T=0 pair band.
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6 0.4
St 9/2 1 T=0 pairs 80
_____ S 031 % &
g 4 N T=0 + T=1 pairs
=3 7/2 /’—’f B [ N
= 80
v 2} Zr ]
T=0 pairs 017
s Yoro
0 , , , , , 0.0 : ‘ : : .-
0 5 10 15 20 25 30
0 5 10 15 20 25 30

Spin | Spin |

- L . . FIG. 18. Quadrupole deformation paramegeior the T=0 pair
FIG. 17. Spin alignments for each orbital in the rotation allgnedband theT=1 pair band, and th&=0+T=1 pair band
goy pairs for theT=0 pair band. ' ' '

layed alignment(Similar delayed alignments have been ob-

identical canonical orbitals. Therefore thendp in a given  served in theN=Z nuclei "*Kr and "°Sr[32].) The HFBT

pair respond to rotation in an identical manner.|At13 the =1 pair band and’ =0 pair band were completed before |
total (J,)=13.49 while these two pairs havd,)=14.32. became aware of thi€’zr experiment. The HFB yrast band

All of the other orbitals combine to have a negative contri-(T=0+T=1 pair band is not similar to the experimental
bution to the spin. At =13 these twal =0 pairs have a spin Pband. Although this HFB calculation does not explain the
alignment which is not far from the maximum possible value *’Zr experiment, it offers one ingredient of a possible expla-
of 16, and only % less than the spin of thi€=1 pairs atl  nation. It shows that fol =0 pairing in ®°Zr, there aregg,

=13. At1=0 each pair has parallel nucleon spins alignedspin alignments with no backbending or upbending. In con-
along thez deformation symmetry axis, whereas lat13  trast, forT=1 pairinggg, alignments produce a large back-
each pair has parallel nucleon spins aligned alongxthe ~ bend. Because the experimental spectrum does not have a

tation axis. This is a rotational realignment effect. backbend or upbend, it does not follow that there are no spin
The spin alignmenta|J,|a) for the gy, neutron canoni- ~ alignments.
cal orbital in each of the twap pairs is shown in Fig. 17. It has been shown that a small neutron excess weakens the

The proton spin alignments are identical to the neutron spif =0 pair mode relative to th&=1 pair mode[33]. There-
alignments. At high spins these orbitals have spin alignmentfre it is possible that for neighboring isotopes suctfas
which are near the values for aligneg,, orbitals. At  or ®Zr theT=0 pairing might be sufficiently weakened that
=13, then and p orbitals in the first pair have a 90.5% the T=1 pair band remains lower in energy than fhe 0
overlap with thel, eigenstatégg,m,=9/2), and then andp pair band until a spin which is much higher thaf .5t is
orbitals in the second pair have a 90.4% over]ap With\l)he .a|SO possible that th€=0 pair band does not exist for t.hese
eigenstatégy,m,=7/2). These orbitals are substantially, but isotopes. In these scenarios, the yrast band of these isotopes
not completely, aligned. This confirms that in the=0 pair ~ Would follow theT=1 pair band, and the yrast band would
band, tWOngZ neutrons and tW@g/Z protons are rea"gning then probably have a backbend between SpinS 8 and 14.
their spins along th& rotation axis. However, the spin align-

ments in theT=0 pair band do not produce an upbend or G. Deformation

backbend in the moment _of inertia. It is sometimes stated ¢ quadrupole deformation paramete8sand y are
that an energy spectrum without an upbend or backbend doeg,oin in Figs. 18 and 19. The convention is that60° is

not contain spin alignments. However, this analysis demo”()blate collective andy=—60° is oblate noncollective. At

strates that. the. absence Of an upbend or backbend in tr%‘f)in I=0 all of the bands have a prolate axially symmetric
moment of inertia does not imply the absence of spin align

for aT=0 pair band 'shape. Rotation introduces a small amount of triaxiality. At
ments for aT=0 pair band. low spins theT=0 pair band and’ =1 pair band have very
similar deformations. Even at high spins the two bands have
F. Delayed alignments deformations which are not dramatically different.

A new experiment orf%Zr has identified states up to
=12 [30]. At low spins the experimental energies are very
close to the HFBT=1 pair band, and at higher spins the  HFB calculations for®%Zr find a ground state band with
experiment shows a slowly rising moment of inertia, with noT=1 pairing and an excited band wifi=0 pairing. The
backbend or upbend. Sinc#zr and #Zr have upbends bands cross at spih~5#, providing a “phase transition”
caused by, alignments at spins belolw=12[31], the8zr  from T=1 pairs forl <5# to T=0 pairs forl >5#. There is
spectrum is anomalous, and has been characterized as a &¢so aT=0+T=1 pair band, which forms an envelope to

IV. CONCLUSIONS
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FIG. 19. Quadrupole deformation paramejefior the T=0 pair
band, theT=1 pair band, and th&=0+T=1 pair band.

the T=1 pair band and th =0 pair band. In this band
there is a more gradual transition frofs=1 pairs atl =0 to
T=0 pairs at high spins, witi=0 pairs andT=1 pairs
coexisting at intermediate spins.

PHYSICAL REVIEW C 63 044325

The Coriolis antipairing effect breaks tie=1 pairs, but
there is no CAP effect fol =0 pairs in which then andp
occupy identical space-spin orbitals. The=1 pair band
backbends and hagy,, spin alignments. Even though tfie
=0 pair band does not backbend or upbend, it still bgs
spin alignments. This demonstrates that if a rotational band
does not have a backbend or upbend, it does not necessarily
follow that there are no spin alignments. The dominant pair
angular momentum for th& =0 pair band isJ=5, notJ
=1 orJ=J,.=9, as was expected. In tHe=1 pair band
the lowest quasiparticle energy vanished =6. However,
for the T=0 pair band the lowest quasiparticle energy is
approximately constant with spin, and does not vanish. For
rotatingN=2Z= even nuclei,T=0 pairing produces a two-
fold degeneracy in the canonical orbital occupation probabil-
ity v2, althoughT=1 pairing produces a fourfold degen-
eracy inv?. Rotation induces a significant breaking of time-
reversal symmetry in the pair potential.
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