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Resonances in the Hartree-Fock BCS theory
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Resonance states are introduced into the Hartree-Fock BCS model using a complex scaling method in order
to take into account the effect of pair scattering into continuum states. The applicability of the state-dependent
BCS model based on bound and resonance states is checked at the proton drip-line region around the double
magic nuclei48Ni by comparing with Hartree-Fock-Bogoliubov calculations.

DOI: 10.1103/PhysRevC.63.044324 PACS number~s!: 21.60.Jz, 21.10.Pc, 21.10.Dr, 21.10.Ft
in
e
th
ity
ap
in
u
in
c
s
le

-
on
ha
ic
in
tr
e
sp

C

v

ov
in
m
. I
on
o

o
i
n
e

n
but
nd
ed
ain,
the
the
uc-
so-
the

iffer-
s up
pe
on-
the

S
ar-
icle

uri-
the
ot
e

ut in
l of
-
t in
ub-

nt of
k is
ess
tes

so-

r-
e

to
use
I. INTRODUCTION

Self-consistent mean-field models based on effective
teractions are quite succesful in describing a large rang
nuclear properties. A key ingredient of such models is
treatment of pairing correlations. For nuclei close to stabil
these are usually incorporated with the help of the BCS
proximation. However, it has been known since the beg
ning of the 1980s that the BCS approximation becomes
reliable for nuclei close to drip lines because the coupl
between bound and free single-particle states is not corre
treated@1–3#. Too simple a treatment of pairing correlation
leads to a sizable probability of the presence of partic
outside the nucleus, creating a nonphysical gas.

It was shown@1–3# that a treatment of pairing correla
tions by the Bogoliubov method always permits one to c
struct localized normal and pairing densities, provided t
the energy of the Fermi level is negative. The quasipart
wave functions then satisfy either bound-state or scatter
state boundary conditions. The fact that the density ma
vanishes at large distances has the important consequ
that states of the canonical basis are also localized, de
the fact that a large fraction of the quasiparticle states
comprised of scattering states. The breakdown of the B
approximation is due to the fact that the Hartree-Fock~HF!
states, which diagonalize the HF Hamiltonian, do not ha
this property.

Several applications of the Hartree-Fock-Bogoliub
~HFB! theory to nuclei far from stability were performed
the last few years@3–5#. In most cases, the HFB spectru
was discretized by limiting the coordinate space to a box
applications using finite-range Gogny force, the equati
were solved by expanding the individual wave functions
an oscillator basis. However, it was shown in Ref.@3# that
the convergence of the continuous part of the spectrum
extremely slow as a function of the size of the basis.

Two main difficulties are related to the use of the Bog
liubov method. As implemented up to now, the continuum
discretized, and quasiparticle states in the continuum do
verify the correct boundary conditions of scattering stat
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This restriction should not be too difficult to eliminate whe
a spherical symmetry is imposed on the nuclear density,
it would be hard to remove for deformed nuclei. A seco
difficulty comes from the fact that even with a discretiz
continuum, the number of scattering states is huge. Ag
the main difficulties arise when all the degeneracies of
single-particle wave functions are removed. However,
continuum of a Hamiltonian is not structureless. The str
ture of the continuum is reflected in the appearance of re
nance states. Narrow resonances are well localized inside
nuclear surface, and they resemble bound states. The d
ence between bound states and narrow resonances turn
only very far away from the nuclear surface. One may ho
that using only resonance states instead of the full c
tinuum, the configuration space will be large enough for
pairing to give good binding energies, even within the BC
approximation. However, this requires some kind of regul
ization procedure to avoid the spurious effects of a part
gas surrounding the nucleus.

Such a procedure was already developed to avoid sp
ous effects due to the population of mean-field states in
continuum. In their studies of the statistical properties of h
nuclei, Boncheet al. @6,7# also encountered problems of th
appearance of a particle gas surrounding the nucleus, b
this case created by temperature effects at the HF leve
approximation. Boncheet al. introduced a procedure to re
move the contribution of unbound nuclear states presen
the external nucleon vapor. They also showed that this s
traction procedure leads to nuclear properties independe
the external vapor. An important consequence of this wor
that it proves that it is possible to eliminate the spuriousn
due to the coupling between bound and continuum sta
without relying on a Bogoliubov framework.

Appropriately selected scattering states around a re
nance were introduced into the BCS theory in Refs.@8,9#. A
genuine resonance~Gamow! state, however, is not a scatte
ing state. The Gamow states correspond to poles of thS
matrix. These discrete states satisfy a Schro¨dinger equation
with complex energy. One of the aims of this paper is
incorporate Gamow states into the BCS formalism. The
©2001 The American Physical Society24-1
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of Gamow states in BCS theory is not trivial, since t
Gamow wave functions are not square integrable. Theref
a calculation of the corresponding matrix elements requ
some type of regularization technique. We will use a co
plex scaling method, which is actually a general theory
treat resonances@10,11#. Complex scaling was already ap
plied in a self-consistent mean-field model@12,13# but with-
out pairing correlations. Our aim in this paper is to inves
gate whether one can define a BCS scheme within a
chosen basis which will also enable one to incorporate
behavior of resonant states correctly.

We will apply the BCS formalism with resonances to t
proton-rich N520 and 22 isotones. The structure of the
nuclei has been investigated within the HFB framework
Ref. @4#. It is expected that the BCS formalism perform
better in the proton drip-line region than in the case of n
tron drip line nuclei@4,14# but that it can accurately give
only relative binding energies, i.e., separation energies@4#. In
this paper we show that the extended BCS theory, wh
uses only a few resonances instead of the full continu
often gives absolute binding energies in very good agr
ment with the HFB description. At the same time we obta
correct values for the nuclear radii, and the ‘‘particle-ga
problem is partly avoided.

The paper is organized as follows. In Sec. II, the bou
scattering, and resonance states of the HF mean field
introduced. The resonance states are included in the B
formalism in Sec. III. In Sec. IV, the resonances of the nuc
40Ca and 48Ni are calculated in the HF model. The proto
drip-line nuclei with neutron numbers 20 and 22 and cha
numbers 22, 24, and 26 are considered in the BCS the
with resonances, in Sec. V. The conclusion is given in S
VI.

II. BOUND, SCATTERING, AND RESONANCE
STATES IN HF MEAN FIELD

The standard HF approximation is valid only for bou
nuclei. The mean-field potential is then determined by bou
orbits. However, the spectrum of the HF Hamiltonian co
tains not only bound states but also scattering and resona
states. In this section we present definitions concerning th
unbound states.

For Skyrme-type interactions, the Hartree-Fock equat
assuming spherical and time-reversal symmetry, is of
form @2#

ĥu~r !5eu~r !, ~1!

where the HF operator reads

ĥ52
d

dr
M ~r !

d

dr
1M ~r !

l ~ l 11!

r 2 1V~r !1Vso
l j ~r !1

dM

dr

1

r
.

~2!

The r-dependent form factors—the particle-hole inertia p
rameterM (r ), central potentialV(r ) and spin-orbit term
Vso

l j (r )—are expressed by the functionals of the occup
single-particle orbits@2#,
04432
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xa~r !5
unl j~r !

r
@Ylx1/2#

jm, ~3!

where@•••# jm stands for the angular momentum coupling
the orbital and spin angular momenta, anda denotes the
quantum numbersn, l, j, andm. Operator~2! contains first-
and second-order derivatives.

Using the transformation

u~r !5 f ~r !/M ~r !1/2, ~4!

we obtain the second-order differential equation

2
d2f

dr2 1
l ~ l 11!

r 2 f ~r !1
V~r !1Vso

l j ~r !1VM~r !

M ~r !
f ~r !

5e
1

M ~r !
f ~r !, ~5!

where a new ‘‘potential’’ term occurs:

VM~r !5
M 9

2
2

M 82

4M
1

M 8

M
. ~6!

In order to obtain a unique solution of Eq.~5!, one must
supply two boundary conditions. The first is the regular
requirement at the origin:

f a~0!50. ~7!

For larger the particle-hole inertia parameterM (r ) tends to
\2/(2m), wherem is the nucleon mass, so Eq.~5! looks like
a radial Schro¨dinger equation. The second boundary con
tion is then the outgoing wave,

f a8 ~R!/ f a~R!5kaOl8~kaR!/Ol~kaR!, ~8!

at a distanceR where the potential terms of Eq.~5! can be
considered to be zero. In Eq.~8!, Ol(r)5Gl(r)1 iF l(r) is
the outgoing-wave Coulomb wave function. The wave nu
ber is given byka5(2mea /\2)1/2. Purely imaginary wave
numberska5 ika (ka.0) correspond to a bound state wi
energyea52\2ka

2/2m. Once the self-consistent HF mea
field potential has been determined, its continuous spect
and the resonances can be calculated by replacing boun
condition ~8! with a new one.

The self-consistent mean field supports scattering st
which are solutions of Eq.~5!, with the following set of
boundary conditions:

f l , j
E ~0!50 ~9!

and

f l , j
E ~R!5 1

2 i exp@ is l~E!#@Ol~kR!* 2Sl , j~E!Ol~kR!#.
~10!

HereE is an arbitrary positive real number, the wave numb
is k5(2mE/\2)1/2, and s l(E) is the Coulomb phase shift
The scatteringS matrix can be expressed by the phase s
4-2
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d l , j (E) asSl , j (E)5exp@2idl,j(E)#. In analogy with the bound
states, we can define the scattering solutions

xEl jm~r !5
f l j

E~r !

r
@Ylx1/2#

jm. ~11!

The bound and scattering states form a basis on which
state can be decomposed. We shall call this the stan
basis.

The poles of the scattering matrix on the complex ene
plane~which is a Riemann surface with two sheets! are very
important. Their positions correspond to the energies of
bound and resonance states. These latter have complex
gies wa5ea2 iGa/2, whose imaginary part determine th
half-life-time of the stateT1/25 ln(2)\/Ga .

The resonance or Gamow states satisfy boundary co
tions similar to the bound states@see Eqs.~7! and ~8!#, but
with a complex wave numberka5ka2 iga (ka ,ga.0).
The relationship between the energy and the wave numb
also unchanged:wa5\2ka

2/2m. Gamow states represent d
caying systems. They do not belong to the Hilbert space
the physical system, and are not normalizable in the us
sense. Different but equivalent methods have been in
duced to normalize them in a generalized sense@15#. For our
purposes we will use another property of Gamow states.
resonances, together with bound states and with suitably
fined scattering states with complex energy, form a comp
set of states@16# which is sometimes called the Berggre
basis@17#.

III. RESONANCES IN HF-BCS THEORY

In this section, a brief reminder of the HFB theory
presented first, and then the resonance states are introd
into the HF-BCS theory. In coordinate space the HFB eq
tions are

S ĥ2l D̂

D̂ l2ĥ
D S fa

(1)~r !

fa
(2)~r !

D 5EaS fa
(1)~r !

fa
(2)~r !

D , ~12!

where l is the Fermi energy andEa is the quasiparticle
energy. For simplicity the spin degree of freedom is omitt
The operatorsĥ and D̂ are the mean-field particle-hole an
particle-particle Hamiltonians, respectively@2,3#. Generally
ĥ and D̂ are integral operators. They are complicated fu
tionals off (1) andf (2). Assuming time-reversal invariance
spherical symmetry and a Skyrme-type effective interact
ĥ are given by Eq.~2!.

The quasiparticle wave functionsf (1) and f (2) can be
expanded on any basis to transform the coordinate sp
HFB equation~12! in matrix form @18#:

S h2l D

D l2hD S Ua

Va
D 5EaS Ua

Va
D . ~13!

The matrixh corresponds to the HF mean field,
04432
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hi j 5t i j 1(
kl

~Vik jl 1Vik̄ j l̄ !rkl , ~14!

and the pairing gap matrix reads

D i j 5(
kl

Vi j̄ k l̄k k̄l . ~15!

In these expressionsr ik and k ik are the matrix elements o
the one-body density matrixr and the pairing tensork, re-
spectively. For a given basis statei the time-reversed state i
denoted byī . From the solution vectorsUa andVa the ma-
tricesU andV can be composed, and the density and pair
matrices can be written asr5VV1 andk5UV1.

The HFB equation~12! is nonlinear, and is solved by
iterations. At any iteration step, approximations of the ope
tors ĥ andD̂ are constructed from the wave functions of t
previous iteration. To write Eq.~12! in the form of Eq.~13!,
we will follow the two-bases method described in Re
@5,19#, in which the eigenfunctions of Eq.~12! are expanded
on the complete set of eigenfunctions of the HF operatorĥ.
This basis is composed of the bound and scattering state
ĥ, i.e.,

standard basis5$xa ,xEl jmuEP~0,̀ ! and

aPbound states%. ~16!

The scattering states are usually discretized using
boundary conditions@2,3#. The indexi in Eqs.~14! and~15!
refers either to a bound state or to a discretized continu
state. Since the HF basis is used, the matrix~14! can be
simplified,hi j 5d i j ei , whered i j is the Kroneckerd andei is
the energy of a bound or a discretized continuum state. B
~16! is the standard complete system of the HF operatorĥ.

Within the Berggren basis the continuum part of a se
adjoint Hamiltonian is replaced by resonance states and
ably chosen scattering states with complex energy. This b
is also complete@16#, and is composed of

Berggren basis5$xa ,xzl jmuzPL1 and

aPbound and resonance states%, ~17!

whereL1 is a properly chosen path in the complexk plane
@16,17#. The Berggren basis was already used in nucl
structure calculations, for example in the resonance rand
phase approximation developed in Ref.@20# and in the mul-
tistep shell model of Ref.@21#. The properties of the Berg
gren basis were thoroughly investigated in the literature@22#.

The continuum part of the Berggren basis, correspond
to the complex pathL1, can be discretized. The HFB equ
tions in the Berggren basis are similar to Eqs.~13!–~15!,
with indicesi and j belonging to Eq.~17!.

We shall now introduce two approximations to solve t
HFB equations. First, the complex continuum will be n
glected. The validity of this approximation in some nucle
models was investigated in Refs.@23,24#, with the conclu-
sion that the nonresonant background continuum can
4-3
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safely neglected. This means that the resonance part o
Berggren basis takes care of a large portion of the continu
part of the standard basis. However, the observables
become complex numbers in this approximation. The m
nitude of their imaginary parts gives a measure of the va
ity of this approach.

In order to further simplify the solution of the HFB equ
tion, we make a state-dependent BCS approximation. Tha
the off-diagonal part of the pairing matrix is neglected.
this way the solution of Eq.~12! acquires the forms

f i
(1)5uax i and f i

(2)5v ix i . ~18!

Here the indexi refers to the bound and resonance solutio
of ĥ, andui and v i are the usual BCS parameters. Havi
solved Eq.~12!, at a given iteration we recalculate the de
sities and generate new particle-hole and particle-part
Hamiltoniansĥ and D̂. The bound and resonance states
this new HF operator constitute the basis of the next itera
step. This procedure is repeated until convergence
achieved. We will call this method the self-consistent H
BCS model with resonances~HF-BCS-R!. In Ref. @1# the
effect of the quasiparticle continuum of the HFB equati
and its relation to the BCS approach was investigated th
oughly. However in the model of Ref.@1# the HF Hamil-
tonian was kept fixed during the iteration.

Because the resonance wave functions are not locali
the potentials ofĥ andD̂ do not tend to zero for larger. To
overcome this difficulty we carry out a complex scaling fro
the very beginning of the calculation. The complex sca
operatorĥQ5ÛQĥÛQ

21 is taken in Eq.~12! instead ofĥ. The
nonunitary scaling operator is defined by (ÛQ f )(r )
5 f @exp(iQr )#, where f (r ) is an arbitrary wave function.

The calculation of the pairing gap matrix in the BCS a
proach with contact interaction in the particle-particle cha
nel requires the evaluation of the following integral:

E
o

` 1

r 2 ua
2~r !ua8~r !2 dr. ~19!

If one of the wave functions in the above integrand is
resonance state, the integral is divergent. It is made con
gent by calculating the integral along the complex r
r exp(iQ). The result is independent of the value of the co
plex scaling parameterQ. This type of technique was use
for example, in Ref.@20#.

A BCS model with resonances was introduced in Re
@8,9#. In these works, the standard basis was used instea
the Berggren basis. The continuum states were consid
around a resonance, and the corresponding scattering
tions weighted to take into account the effect of the width.
contrast, in our approach we follow the procedure of Re
@17,21–24#. The standard basis is replaced by the Bergg
one, and the effect of the Gamow states is investigated.

Integral ~19!, which in principle diverges for Gamow a
well as scattering states, is made convergent in Ref.@9# by
restricting the upper limit of the integration to a finite valu
The complex scaling, on the other hand, is a well-establis
04432
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method to regularize integral~19!. Within this method the
resulting integral does not depend upon any cutoff para
eter. In particular, it can be shown that the value of the in
gral is in general independent upon the complex scaling
rameter.

IV. RESONANCE STATES IN THE HF MEAN FIELD

For the numerical integration of differential equation~5!,
we have used the Fox-Goodwin method. The eigenva
problem is solved using a generalization of the method
scribed in Ref.@25#. For the effective nucleon-nucleon inte
action we have selected the Skyrme force Sly4@26#. The HF
equation is solved by an iteration technique. The start
single-particle orbits are generated using an appropria
chosen Woods-Saxon potential.

We have investigated the resonance states of two nu
within the HF approximation: a stable one,40Ca, and its
isotone at the proton drip line,48Ni. The real and imaginary
parts of the energy of the proton resonance states are sh
in Tables I and II. The only resonances below the Coulo
barrier are the first two. Since the Coulomb barrier is n
very high, the widths of the states are not very narrow.

In Fig. 1, the wave functions of the 2p3/2 proton orbit are
displayed for both48Ni and 40Ca. They are very similar up
to r 510 fm, which corresponds to the position of the Co
lomb barrier. Beyond this point, the characteristic oscillato
behavior of the Gamow states appear very clearly only
48Ni, in which case the imaginary part becomes significan
r 515 fm. This difference in behavior between both nuclei
related to the different widths of the state 2p3/2.

As explained above, for the resonance wave functions
use the transformationr→r exp(iQ). The wave function
ua@r exp(iQ)# is the solution of the complex scaled HF equ

TABLE I. The position and width of the single-particle proto
resonance states of the nucleus48Ni with Skyrme force Sly4 ob-
tained with the HF approximation. The results correspond eithe
the poles of theS matrix ~Gamow state! or to the phase-shift defi-
nitions of the energies and widths

Gamow Phase shift
State ea ~MeV! Ga ~MeV! ea ~MeV! Ga ~MeV!

2p3/2 2.856 0.0132 2.856 0.0132
2p1/2 4.288 0.168 4.288 0.171
1 f 5/2 6.811 0.113 6.811 0.114
1g9/2 10.266 0.255 10.266 0.256

TABLE II. As in Table I, for the nucleus40Ca.

Gamow Phase shift
State ea ~MeV! Ga ~MeV! ea ~MeV! Ga (MeV)

2p3/2 1.111 0.000162 1.111 0.000172
2p1/2 2.755 0.0931 2.755 0.0940
1 f 5/2 4.820 0.0570 4.820 0.0572
1g9/2 8.423 0.176 8.423 0.177
4-4
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tion @12#. In Fig. 2 the wave function of the 2p3/2 orbit of the
nucleus48Ni is displayed forQ50 ~original Gamow state!
and forQ50.1 rad. The amplitude of the oscillation of th
wave function is damped when complex scaling is appli
The square integrability of the resonance wave funct
along the complex rayr exp(iQ) is essential in the calcula
tion of the pairing matrix.

The position and width of a resonance can also be de
mined by the behavior of the phase shifts. We have sol
the differential equation~5! using the boundary condition
given by Eqs.~9! and ~10!. In Fig. 3 the phase shifts ar
displayed for48Ni, and for the partial wavesp3/2, p1/2, f 5/2,
and g9/2. At the position of the resonance, the phase s
increases rapidly with a slope, depending on the width of
resonance. The position is determined by the energy at w
the phase shift presents an inflection point. Its width can

FIG. 1. The wave function of the 2p3/2 proton resonance orbit in
48Ni and 40Ca using the Skyrme force Sly4 and the HF model.

FIG. 2. The wave function of the 2p3/2 proton resonance orbit in
48Ni using the Skyrme force Sly4 and the HF model. The origin
Gamow state (Q50.0) and the complex scaled wave function (Q
50.1) are displayed.
04432
.
n

r-
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e

calculated by the formulaG52@dd l , j (E)/dE#21, where the
derivative of the phase shift with respect to the energy
taken at the position of the resonance. These definitions
low from the R-matrix theory, with the assumption that th
background phase shift can be neglected, and that the
level R-matrix expression is valid. The definitions of a res
nance due to the pole of theS matrix and to an analysis o
the phase shifts should agree only for narrow resonance
Tables I and II we present the positions and widths of
states determined by both methods. The agreement betw
the two calculations is excellent. We emphasize that
S-matrix definition is unique, whereas the phase-shift defi
tion depends on the assumption that the background p
shift is negligible.

V. BCS CALCULATIONS WITH RESONANCES

The weakly bound drip-line nuclei are most sensitive
coupling by pairing correlations between bound and c
tinuum states. This is the region where the effects of
breakdown of the BCS approximation should be the larg
@1,14,27#. In this section, we focus on the proton drip-lin
nuclei for 20<Z<28. A restriction to spherical shapes fo
the proton-rich nuclei withN518, 20, and 22 is well justi-
fied @28,29#. The calculations are performed with the Skyrm
parametrization Sly4dr. The mean-field interaction Sly4@26#
is supplemented by a density-dependent surface-pairing
teraction@27# in the pairing channel,

VP5S V01
1

6
V3r~r1!gD d~r12r2! ~20!

with V052488.91 MeV fm3, V3519990 MeV fm3, and g
51/6.

We shall compare our results obtained with the H
BCS-R approximation to spherical HFB calculations@30#.
Before doing this, to be able to compare absolute energ
one must check the numerical accuracy of the different co

l

FIG. 3. Partial-wave phase shifts for the nucleus48Ni using the
Skyrme force Sly4 and the HF model.
4-5
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TABLE III. The binding energy (E), root mean square radius (r 2), and Fermi level (l) in different
self-consistent mean-field models for theN520 isotones.

42Ti 44Cr 46Fe
2E r2 2l 2E r2 2l 2E r2 2l

HFB 350.84 3.50 2.88 354.39 3.58 1.49 355.51 3.65 0.3
HF-BCS-B 350.52 3.50 2.84 353.95 3.57 1.59 355.15 3.64 0.5
HF-BCS-R1 350.65 3.51 2.89 354.13 3.58 1.61 355.28 3.64 0.
HF-BCS-R2 350.90 3.51 2.98 354.44 3.58 1.63 355.51 3.65 0.
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puter codes in cases where there are comparable. Fo
doubly magic nuclei48Ni and 40Ca, the HF energies that w
obtain are 2354.49 and 2344.26 MeV, respectively
whereas the calculation of Ref.@30# gives 2354.46 and
2344.25 MeV. The agreement between the two calculati
is excellent. This implies that in the comparisons done
low, discrepancies larger than 100 keV will be due to reas
of physical relevance and not to the numerical procedure

The total binding energies in the HFB, HF-BCS-R, a
HF-BCS-B calculations are given in Table III. The proto
Fermi level and the root-mean-square charge radii are
shown. In the case labeled by HF-BCS-B, only bound s
orbits are used in the BCS calculation. In the HF-BCS-
calculations, withN520 ~Table III!, only the 2p3/2 reso-
nance is included, whereas in the HF-BCS-R2 calculat
both the 2p3/2 and 1f 5/2 resonance states are used. The H
calculations@30# have been carried out using a box with
20-fm mesh size, and a step length for the numerical inte
tion of 0.25 fm. The pairing phase space has been restri
to j <9/2. The HFB results do not change if the phase sp
is cut off at j <19/2. However, the HFB results do change
at least 1 MeV if all quasiparticle states up to the height
the barrier in a givenj and l are taken into account.

It is clear from Table III that including only bound orbit
in the BCS theory leads to too small a space. The bind
energy in the HF-BCS-B case deviates from the HFB re
by 0.5 MeV. However, the BCS scheme, including the t
narrowest proton resonance states, agrees very well with
HFB result. The root-mean-square radius of the HF-BCS
models in Table III shows no sign of the ‘‘particle-gas
problem.

Since we are using resonance states and neglecting
complex continuum part of the Berggren basis, all physi
quantities contain an imaginary part. It is only when the co
tributions of the complex continuum to the resonance p
are included that all physical quantities are given by r
numbers. This compensation was observed, e.g., in Ref.@31#
where the Berggren basis was introduced in a differ
nuclear model. The imaginary parts of the quantities listed
Table III are small. The binding energy has an imagina
part of around 5 keV in the HF-BCS-R1 calculation. Addin
one more resonance, in the HF-BCS-R2 calculation,
imaginary part of the binding energy is increased to 100 k
The imaginary parts of the root-mean-square radius
0.0007 and 0.01 fm in the HF-BCS-R1 and HF-BCS-R2 c
culations, respectively.

The proton density, close to the proton drip line, is a k
quantity which enables one to put into evidence the prese
04432
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of a gas external to the nucleus. Its form in the HF-BC
approach is given by

r~r !5(
i

v i
2ux i~r !u2. ~21!

Since we used the complex scaling method, the densities
obtained on the complex rayr exp(iQ). In order to obtain the
physical densities, we have to rotate the single-particle w
functions back onto the real axis. This is done numerica
using the fact that the complex scaling operator acting on
radial wave functions can be written asÛ(u)
5exp@iQr(]/]r)#. We have performed a Taylor expansion
the exponential, and truncated it to the fourth order.

It is difficult to distinguish between the resonant and no
resonant continua if the standard basis is used. If all
discretized states are introduced in a BCS calculation, t
the nonlocalized continuum states contribute significantly
the matter density, leading to a particle gas. This unphys
property is in principle also present in our HF-BCS-R a
proach: the resonance wave functions are not localized,
produce nonvanishing densities far away from the nucle
However, if only a few narrow resonance states are used,
can expect that they do not contribute to the matter densit
any physically meaningful region.

To look at this problem quantitatively, we display th
proton density for the nucleus46Fe in Fig. 4. The energy o
its Fermi level is20.45 MeV, and it is expected that th
isotone closest to the drip line is where proton pairing c
relations will be significant. Figure 4 shows the magnitude
the real part of the density. The imaginary part is sma
than 1024 fm23 everywhere. The density exhibits an osc
latory behavior for very larger. This is inherited from the
resonance states taking part in the Berggren basis. For
HF-BCS-R2 calculation the contribution of the density of t
2p3/2 and 1f 5/2 resonance orbits is also plotted. Beyond
fm the total density is determined solely by the resonanc
Below this radius, the contribution of these resonances
small, and does not significantly affect the density.

An interesting feature of our calculation is that the valu
of the mean-square radii are reasonable. This may be sur
ing considering the unphysical oscillatory pattern of the d
sity at larger, or, more importantly, considering that th
Gamow wave functions are not localized and diverge at
finity. However, due to the definition of the inner product
the Berggren representation, the matrix elements of obs
ables, such as the root-mean-square radius, converge.
4-6
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feature supports the use of the Berggren basis, as alr
pointed out in Ref.@32# where the definition of the root
mean-square radius was studied for resonance states.

Up to now, we have looked toN520 nuclei with 20<Z
<28. Due to theN520 shell closure, neutron pairing corre
lations can be neglected. This is no longer true for theN
522 nuclei. In order to determine which are the releva
resonance neutron orbits, we have calculated the neu
resonances in the HF mean field of48Ni. The results are
shown in Table IV. Since the HF-BCS-R calculation
meaningful only for narrow resonance states, we will u
only one resonance neutron orbit, the state 1g7/2, and the
same orbits for the protons as for theN520 isotones. Inter-
estingly, during the iterative solution of the HF-BCS-R equ
tions, the energies of the four proton orbits given in Table
and II for 48Ni for the HF model decrease, and their widt
become lower than 100 keV. We then performed seve
calculations including resonances of increasing widths. Th
in Table V, HF-BCS-Rn means that then narrowest single-
particle resonances are taken into account in the BCS pr
dure.

From this table we can draw the same conclusions as
the N520 isotones. The BCS calculation with bound orb

FIG. 4. Magnitude of the real part of the proton density of t
nucleus 46Fe obtained using the Skyrme force Sly4 and the B
approximation including different number of resonant states. In
case of HF-BCS-R2, the resonance contribution to the total den
is shown by a dot-dashed line.
04432
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underestimates the binding energy by about 1 MeV due
the insufficient number of states included in the basis. T
HF-BCS-R model agrees very well with the HFB calcul
tion. It is remarkable that, when resonance states are
cluded in the BCS model, the results improve greatly. This
a consequence of the fact that the particle-gas problem
avoided in our BCS formalism.

VI. CONCLUSION

In a description of drip-line nuclei, continuum states pl
an important role. In the HFB model the quasiparticle co
tinuum is properly taken into account, and one obtains s
tially localized matter densities. The traditional BCS a
proximation of the HFB theory has an important drawback
the full single-particle continuum is taken into account:
unphysical particle gas surrounds the nucleus. Our B
model with resonances partly overcomes this difficulty.

The standard HFB theory uses a complete system. T
basis contains bound and real energy scattering states
model Hamiltonian. We replaced this basis by the Bergg
basis, which contains bound, resonance, and complex en
continuum states. If this basis is truncated~i.e., scattering
states with complex energy are neglected! we have a HFB
theory based on bound and resonance states. In this app
mation the virtual pair scattering occurs between discr
states. The traditional nuclear structure picture can be m
tained, since narrow resonances are very similar to bo
states.

To simplify the calculation further, we have applied th
state-dependent BCS approximation with bound and re
nance states. We have shown that the proton drip-line reg
around the double magic nucleus48Ni can be very well de-
scribed by the generalized BCS approach. The absolute b
ing energies and nuclear radii are in good agreement with
HFB theory. This of course does not mean that the B
model with resonances always works well. Probably

e
ity

TABLE IV. As in Table I, but for neutron resonances in th
nucleus48Ni.

Gamow Phase shift
State ea ~MeV! Ga ~MeV! ea ~MeV! Ga ~MeV!

2d3/2 1.099 0.256 1.099 0.273
1g7/2 3.397 0.073 3.397 0.073
1h11/2 6.513 0.115 6.513 0.115
.95
.30
.27
.25
.13
.12
TABLE V. As in Table III, but for theN522 isotones.

44Ti 46Cr 48Fe
2E r2 2l 2E r2 2l 2E r2 2l

HFB 376.28 3.51 4.62 383.20 3.58 3.15 387.54 3.65 1
HF-BCS-B 374.93 3.50 4.68 382.28 3.57 3.39 383.88 3.64 2
HF-BCS-R1 375.49 3.51 4.72 382.45 3.58 3.41 387.02 3.64 2
HF-BCS-R2 375.53 3.51 4.74 382.50 3.58 3.41 387.06 3.64 2
HF-BCS-R3 375.78 3.51 4.83 382.80 3.58 3.43 387.58 3.65 2
HF-BCS-R4 376.20 3.51 4.97 383.32 3.59 3.46 387.68 3.65 2
4-7
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structure of the continuum determines the applicability of
BCS description.

It would be very interesting to make HFB calculation on
truncated Berggren basis~bound and resonance states! but
without the BCS approximation. With this type of calcul
tion, one should clearly distinguish between the effect of
background continuum and the effect of the resonance st
y
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