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Resonances in the Hartree-Fock BCS theory
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Resonance states are introduced into the Hartree-Fock BCS model using a complex scaling method in order
to take into account the effect of pair scattering into continuum states. The applicability of the state-dependent
BCS model based on bound and resonance states is checked at the proton drip-line region around the double
magic nuclei*®Ni by comparing with Hartree-Fock-Bogoliubov calculations.
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[. INTRODUCTION This restriction should not be too difficult to eliminate when
a spherical symmetry is imposed on the nuclear density, but
Self-consistent mean-field models based on effective init would be hard to remove for deformed nuclei. A second
teractions are quite succesful in describing a large range difficulty comes from the fact that even with a discretized
nuclear properties. A key ingredient of such models is thecontinuum, the number of scattering states is huge. Again,
treatment of pairing correlations. For nuclei close to stability,the main difficulties arise when all the degeneracies of the
these are usually incorporated with the help of the BCS apsingle-particle wave functions are removed. However, the
proximation. However, it has been known since the begin€ontinuum of a Hamiltonian is not structureless. The struc-
ning of the 1980s that the BCS approximation becomes unture of the continuum is reflected in the appearance of reso-
reliable for nuclei close to drip lines because the couplingnance states. Narrow resonances are well localized inside the
between bound and free single-particle states is not correctlyuclear surface, and they resemble bound states. The differ-
treated[1-3]. Too simple a treatment of pairing correlations ence between bound states and narrow resonances turns up
leads to a sizable probability of the presence of particleonly very far away from the nuclear surface. One may hope
outside the nucleus, creating a nonphysical gas. that using only resonance states instead of the full con-
It was shown[1-3] that a treatment of pairing correla- tinuum, the configuration space will be large enough for the
tions by the Bogoliubov method always permits one to con-airing to give good binding energies, even within the BCS
struct localized normal and pairing densities, provided thagapproximation. However, this requires some kind of regular-
the energy of the Fermi level is negative. The quasiparticlézation procedure to avoid the spurious effects of a particle
wave functions then satisfy either bound-state or scatteringgas surrounding the nucleus.
state boundary conditions. The fact that the density matrix Such a procedure was already developed to avoid spuri-
vanishes at large distances has the important consequeneas effects due to the population of mean-field states in the
that states of the canonical basis are also localized, despit®ntinuum. In their studies of the statistical properties of hot
the fact that a large fraction of the quasiparticle states iswuclei, Boncheet al. [6,7] also encountered problems of the
comprised of scattering states. The breakdown of the BC&ppearance of a particle gas surrounding the nucleus, but in
approximation is due to the fact that the Hartree-F@dk)  this case created by temperature effects at the HF level of
states, which diagonalize the HF Hamiltonian, do not haveapproximation. Bonchet al. introduced a procedure to re-
this property. move the contribution of unbound nuclear states present in
Several applications of the Hartree-Fock-Bogoliubovthe external nucleon vapor. They also showed that this sub-
(HFB) theory to nuclei far from stability were performed in traction procedure leads to nuclear properties independent of
the last few year$3—5]. In most cases, the HFB spectrum the external vapor. An important consequence of this work is
was discretized by limiting the coordinate space to a box. Irthat it proves that it is possible to eliminate the spuriousness
applications using finite-range Gogny force, the equationslue to the coupling between bound and continuum states
were solved by expanding the individual wave functions onwithout relying on a Bogoliubov framework.

an oscillator basis. However, it was shown in Ré] that Appropriately selected scattering states around a reso-
the convergence of the continuous part of the spectrum isance were introduced into the BCS theory in RE8s9]. A
extremely slow as a function of the size of the basis. genuine resonand&amow state, however, is not a scatter-

Two main difficulties are related to the use of the Bogo-ing state. The Gamow states correspond to poles ofSthe
liubov method. As implemented up to now, the continuum ismatrix. These discrete states satisfy a Sdhnmger equation
discretized, and quasiparticle states in the continuum do natith complex energy. One of the aims of this paper is to
verify the correct boundary conditions of scattering statesincorporate Gamow states into the BCS formalism. The use
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of Gamow states in BCS theory is not trivial, since the Upj(1)
Gamow wave functions are not square integrable. Therefore, Xal(l)=
a calculation of the corresponding matrix elements requires

some type of regularization technique. We will use a COMyyhere[ - - - IM stands for the angular momentum coupling of

plex scaling method, which is actuall_y a general theory tone orpital and spin angular momenta, aaddenotes the
treat resonancefl0,11. Complex scaling was already ap- quantum numbers, 1, j, andm. Operator(2) contains first-
plied in a self-consistent mean-field modi&R,13 but with- 514 second-order derivatives.

out pairing correlations. Our aim in this paper is to investi- Using the transformation

gate whether one can define a BCS scheme within a well

chosen basis which will also enable one to incorporate the u(r)y="F(r)y/M(r)¥? (4)
behavior of resonant states correctly.

We will apply the BCS formalism with resonances to the we obtain the second-order differential equation
proton-richN=20 and 22 isotones. The structure of these
nuclei has been investigated within the HFB framework in d?
Ref. [4]. It is expected that the BCS formalism performs N d_r?+

. [Yixal™, 3

foI1+1) f( V(r)+VI(r)+Vy(r)
2

M (1) f(r)
better in the proton drip-line region than in the case of neu-
tron drip line nuclei[4,14] but that it can accurately give e 1 £(r) ®)
only relative binding energies, i.e., separation energigdn T TM(r) (r),

this paper we show that the extended BCS theory, which

uses only a few resonances instead of the full continuumywhere a new “potential” term occurs:

often gives absolute binding energies in very good agree- , 2 )

ment with the HFB description. At the same time we obtain V() = M M_+ M’ 5
correct values for the nuclear radii, and the “particle-gas” m(r)= 2 4M  MT ©
problem is partly avoided.

The paper is organized as follows. In Sec. Il, the bound)n order to obtain a unique solution of E¢b), one must
scattering, and resonance states of the HF mean field agupply two boundary conditions. The first is the regularity
introduced. The resonance states are included in the BC®quirement at the origin:
formalism in Sec. lll. In Sec. IV, the resonances of the nuclei
40Ca and“®Ni are calculated in the HF model. The proton f,(0)=0. )
drip-line nuclei with neutron numbers 20 and 22 and charge . . .
numbers 22, 24, and 26 are considered in the BCS theor f-or larger the particle-hole inertia parametkt(r) tends to

!2 . .
with resonances, in Sec. V. The conclusion is given in Sec? /(2m), wheremis the nucleon mass, so E@) looks like
V1. a radial Schrdinger equation. The second boundary condi-

tion is then the outgoing wave,

Il. BOUND, SCATTERING, AND RESONANCE £/ (R)/f ,(R)=k,O! (k,R)/O,(k,R) ®
STATES IN HF MEAN FIELD @ @ g a™s

The standard HF approximation is valid only for bound ata _distanceR where the potential terms of EQ_S) can Pe
ngonsidered to be zero. In EB), O,(p)=G(p)+iF(p) is

nuclei. The mean-field potential is then determined by boun& i ;
orbits. However, the spectrum of the HF Hamiltonian con-the outgoing-wave C°U|°mb2Wf/‘;’e function. The wave num-
tains not only bound states but also scattering and resonancB€" IS given byk,=(2me,/A7)"%. Purely imaginary wave
states. In this section we present definitions concerning thed#Mmbersk,=ix, (x,>0) correspond to a bound state with
unbound states. energye,= —ﬁzxi/Zm. Once the self-consistent HF mean-
For Skyrme-type interactions, the Hartree-Fock equationfie|d potential has been determined, its continuoys spectrum
assuming spherical and time-reversal symmetry, is of th&nd the resonances can be calculated by replacing boundary

form [2] condition (8) with a new one.
The self-consistent mean field supports scattering states
Au(r)=eur) 1) which are solutions of Eq(5), with the following set of
’ boundary conditions:
where the HF operator reads
p f5(0)=0 9
fe dM d M [(1+1) v Vi dM 1 and
——a (I’)a'f‘ (r) 2 +V(r)+ so(l’)‘f‘FF.
@ fF(R)=3i exqiomE)][ol(kR)*—s,j<E>o|<kR>].(
10

The r-dependent form factors—the particle-hole inertia pa-

rameterM(r), central potentialV(r) and spin-orbit term HereE is an arbitrary positive real number, the wave number
Vi (r)—are expressed by the functionals of the occupieds k=(2mE/#2)¥2 ando(E) is the Coulomb phase shift.
single-particle orbit$2], The scatterindgS matrix can be expressed by the phase shift
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61j(E) as§ j(E)=exfd2i§;(E)]. In analogy with the bound

states, we can define the scattering solutions hyj =t +% (Vikjt +Viigi) i (14
fF(r) . and the pairing gap matrix reads
Xeijm(N)=——[Yixal™ (11)
Ajj= % VijkiKi - (15

The bound and scattering states form a basis on which any
state can be decomposed. We shall call this the standard i _
basis. In these expressions, and k;, are the matrix elements of
The poles of the scattering matrix on the complex energyhe one-body density matrix and the pairing tenso, re-
plane(which is a Riemann surface with two sheedse very spectlvely._For a given basis statthe time-reversed state is
important. Their positions correspond to the energies of thelenoted byi. From the solution vectord , andV, the ma-
bound and resonance states. These latter have complex enttieesU andV can be composed, and the density and pairing
giesw,=e,—il' /2, whose imaginary part determine the matrices can be written gs=VV* andk=UV".
half-life-time of the statel',,,=In(2)A/T,,. The HFB equation(12) is nonlinear, and is solved by
The resonance or Gamow states satisfy boundary conditerations. At any iteration step, approximations of the opera-

tions similar to the bound stat¢see Eqs(7) and (8)], but  torsh andA are constructed from the wave functions of the
with a complex wave numbek,=x,—iv, (k,,7.>0).  previous iteration. To write Eq12) in the form of Eq.(13),
The relationship between the energy and the wave number ige will follow the two-bases method described in Refs.
also unchangedw,=7%2k%/2m. Gamow states represent de- [5,19], in which the eigenfunctions of EQ12) are expanded

caying systems. They do not belong to the Hilbert space ofp the complete set of eigenfunctions of the HF operhtor

the physical system, and are not normalizable in the usuafhjs pasis is composed of the bound and scattering states of
sense. Different but equivalent methods have been introp ie

duced to normalize them in a generalized sdi&¢ For our
purposes we will use another property of Gamow states. The standard basis{x,, xeijm/E € (0) and
resonances, together with bound states and with suitably de-
fined scattering states with complex energy, form a complete a e bound statés (16
set of stateg§16] which is sometimes called the Berggren
basis[17]. The scattering states are usually discretized using box
boundary condition§2,3]. The indexi in Egs.(14) and(15)
refers either to a bound state or to a discretized continuum
state. Since the HF basis is used, the matii®#) can be
. . . . . simplified, h;; = &;:e;, wheres;; is the Kronecke® ande; is

In this section, a brief reminder of the HFB theory is 1, gnergy of a bound or a discretized continuum state. Basis
presented first, and then the resonance states are mtroduc& : -
into the HF-BCS theory. In coordinate space the HFB equa ) IS t_he standard comple’Fe system gf the HF operator

Within the Berggren basis the continuum part of a self-

IIl. RESONANCES IN HF-BCS THEORY

tions are L A :
adjoint Hamiltonian is replaced by resonance states and suit-
N A (1) 1) ably chosen scattering states with complex energy. This basis
—A ( 2 (r)) _ ( Pa (r)) 12 is also complet¢16], and is composed of
R a=h/\ 2] 2]

Berggren basis{x,,xzjmlzeL™ and

where \ is the Fermi energy ané&, is the quasiparticle a e bound and resonance stajes (17)
energy. For simplicity the spin degree of freedom is omitted.

The operatorsﬁ andA are the mean-field particle-hole and whereL™ is a properly chosen path in the compleyplane
particle-particle Hamiltonians, respectivel®,3]. Generally [16,17. The Berggren basis was already used in nuclear

h andA are integral operators. They are complicated func-Structure calculations, for example in the resonance random-

tionals of ) and ¢@. Assuming time-reversal invariance, Phase approximation developed in Rgf0] and in the mul-

spherical symmetry and a Skyrme-type effective interactiorfiStep shell model of Ref21]. The properties of the Berg-

h are given by Eq(2). gren basis were thoroughly investigated in t_he literafaes. _
The quasiparticle wave functions® and ¢ can be The continuum part of the Berggren basis, corresponding

4 . :
expanded on any basis to transform the coordinate spac%g the_complex pati. can be dlsc.re'qzed. The HFB equa-
HFB equation(12) in matrix form [18]; ions m_the_ Berggren ba_S|s are similar to E¢E3)—(15),
with indicesi andj belonging to Eq(17).
hex A U U We shall_ now introduce two approximations to .solve the
( )( “) a( ) (13) HFB equations. First, the complex continuum will be ne-
a glected. The validity of this approximation in some nuclear
models was investigated in Ref®3,24], with the conclu-
The matrixh corresponds to the HF mean field, sion that the nonresonant background continuum can be

A a—=h)lv, ] eV
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safely neglected. This means that the resonance part of the TABLE I. The position and width of the single-particle proton
Berggren basis takes care of a large portion of the continuurfesonance states of the nucletfsli with Skyrme force Sly4 ob-
part of the standard basis. However, the observables willeined with the HF approximation. The results correspond either to
become complex numbers in this approximation. The magthe poles of theS matrix (Gamow statgor to the phase-shift defi-
nitude of their imaginary parts gives a measure of the valigitions of the energies and widths
ity of this approach. -
In order to further simplify the solution of the HFB equa- Gamow Phase shift
tion, we make a state-dependent BCS approximation. That iSt&te €. (Mev) — I', (Mev) e, (MeV) T, (MeV)

th_e off-diagonal p_art of the pairing .matrix is neglected. In2p3/2 > 856 00132 5 856 0.0132
this way the solution of Eq12) acquires the forms 2P1rs 4288 0.168 4088 0171
1f 6.811 0.113 6.811 0.114
(1= ) (¢ 52
¢ =Uaxi and HT=vixi. (18 199 10.266 0.255 10.266 0.256

Here the index refers to the bound and resonance solutions

of h, andu; andv; are the usual BCS parameters. Havingmethod to regularize integrdll9). Within this method the
solved Eq.(12), at a given iteration we recalculate the den- resulting integral does not depend upon any cutoff param-
sities and generate new particle-hole and particle-particlgter, In particular, it can be shown that the value of the inte-
Hamiltoniansh and A. The bound and resonance states ofgral is in general independent upon the complex scaling pa-
this new HF operator constitute the basis of the next iteratiomameter.

step. This procedure is repeated until convergence is

achieved. We will call this method the self-consistent HF-

BCS model with resonance$iF-BCS-R. In Ref. [1] the IV. RESONANCE STATES IN THE HF MEAN FIELD

effect of the quasiparticle continuum of the HFB equation  For the numerical integration of differential equatits,

and its relation to the BCS approach was investigated thowe have used the Fox-Goodwin method. The eigenvalue

oughly. However in the model of Refl] the HF Hamil-  problem is solved using a generalization of the method de-

tonian was kept fixed during the iteration. scribed in Ref[25]. For the effective nucleon-nucleon inter-
Because the resonance wave functions are not localizeg@ction we have selected the Skyrme force $84@]. The HF

the potentials oh andA do not tend to zero for large To  equation is solved by an iteration technique. The starting

overcome this difficulty we carry out a complex scaling from single-particle orbits are generated using an appropriately

the very beginning of the calculation. The complex scaledcchosen Woods-Saxon potential.

operatothg=UohUg! is taken in Eq(12) instead ofh. The We have investigated the resonance states of two nuclei

- - - : ithin the HF approximation: a stable on&’Ca, and its
nonunitary scaling operator is defined bygf)(r) Wi hatl , » and
— f[exp(@r)], wheref(r) is an arbitrary wave function. isotone at the proton drip liné®Ni. The real and imaginary

The calculation of the pairing gap matrix in the BCS ap_parts of the energy of the proton resonance states are shown
proach with contact interaction in the particle-particle chani Tables I'and II. The only resonances below the Coulomb
nel requires the evaluation of the following integral: barrler. are the f_|rst two. Since the Coulomb barrier is not

very high, the widths of the states are not very narrow.
o1 In Fig. 1, the wave functions of thep3,, proton orbit are
f —U2(r)u, (r)dr. (190  displayed for both**Ni and *°Ca. They are very similar up
of to r=10 fm, which corresponds to the position of the Cou-
) . ) . lomb barrier. Beyond this point, the characteristic oscillatory

If one of the wave functions in the above integrand is apghavior of the Gamow states appear very clearly only for
resonance state, _the mteg_ral is divergent. It is made CONVEREN; in which case the imaginary part becomes significant at
gent by calculating the integral along the complex ray,_ 15 fm This difference in behavior between both nuclei is
r exp(®). The result is independent of the value of the com-q|ated to the different widths of the statp,.
plex scaling parameted. This type of technique was used,  ag explained above, for the resonance wave functions we

for example, in Ref[20]. use the transformatiom—r exp(®). The wave function

A BCS model with resonances was introduced in Refs : :
u [r exp(®)]is the solution of the complex scaled HF equa-
[8,9]. In these works, the standard basis was used instead of’[ P(®)] P a

the Berggren basis. The continuum states were considered
around a resonance, and the corresponding scattering solu-
tions weighted to take into account the effect of the width. In
contrast, in our approach we follow the procedure of Refs
[17,21-24. The standard basis is replaced by the Berggren

TABLE Il. As in Table I, for the nucleus®Ca.

Gamow Phase shift
tate e, (MeV) r, (Mev) e, (MeV) ', (MeV)

one, and the effect of the Gamow states is investigated. 2ps, 1.111 0.000162 1.111 0.000172
Integral (19), which in principle diverges for Gamow as 2p,, 2.755 0.0931 2.755 0.0940

well as scattering states, is made convergent in Radfby  1f,, 4.820 0.0570 4.820 0.0572

restricting the upper limit of the integration to a finite value. 19, 8.423 0.176 8.423 0.177

The complex scaling, on the other hand, is a well-established
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FIG. 1. The wave function of thef®,, proton resonance orbit in
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“8Ni and “°Ca using the Skyrme force Sly4 and the HF model.

tion[12]. In Fig. 2 the wave function of thef,, orbit of the

nucleus*Ni is displayed for® =0 (original Gamow state cula -2[de .
and for®=0.1 rad. The amplitude of the oscillation of the derivative of the phase shift with respect to the energy is

wave function is damped when complex scaling is appliedtaken at the position of the resonance. These definitions fol-
The square integrability of the resonance wave functiodow from the R-matrix theory, with the assumption that the
along the complex ray exp(0) is essential in the calcula- background phase shift can be neglected, and that the one-

tion of the pairing matrix. . :
The position and width of a resonance can also be deteffance due to the pole of tHg#matrix and to an analysis of

mined by the behavior of the phase shifts. We have solve#he phase shifts should agree only for narrow resonances. In

the differential equation(5) using the boundary conditions Tables | and Il we present the positions and widths of the
given by Egs.(9) and (10). In Fig. 3 the phase shifts are states determined by both methods. The agreement between

displayed for*®Ni, and for the partial wavegs,, P12, fs2, 0 calculations Is . th
andgo,. At the position of the resonance, the phase shiftSmatrix definition is unique, whereas the phase-shift defini-

increases rapidly with a slope, depending on the width of théion depends on the assumption that the background phase
resonance. The position is determined by the energy at whicBhift is negligible.

the phase shift presents an inflection point. Its width can be

05

u(n) (fm™%)

FIG. 2. The wave function of the[®,, proton resonance orbit in
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FIG. 3. Partial-wave phase shifts for the nucléfisi using the
Skyrme force Sly4 and the HF model.

calculated by the formul=2[dé; ;(E)/d E]"!, where the
level R-matrix expression is valid. The definitions of a reso-

the two calculations is excellent. We emphasize that the

V. BCS CALCULATIONS WITH RESONANCES

The weakly bound drip-line nuclei are most sensitive to
coupling by pairing correlations between bound and con-
tinuum states. This is the region where the effects of the
breakdown of the BCS approximation should be the largest
[1,24,27. In this section, we focus on the proton drip-line
nuclei for 26sZ=28. A restriction to spherical shapes for
the proton-rich nuclei witiN=18, 20, and 22 is well justi-
fied[28,29. The calculations are performed with the Skyrme
parametrization Sly®. The mean-field interaction SI\26]
is supplemented by a density-dependent surface-pairing in-
teraction[27] in the pairing channel,

Vp:

1
Vot EVSp(rl)“/) o(ry—ry) (20

with V,=2488.91 MeVfni, V3=19990 MeV fnt, and y

=1/6.
We shall compare our results obtained with the HF-

“8Nj using the Skyrme force Sly4 and the HF model. The originalBCS-R approximation to spherical HFB calculatiofg0].

Gamow state @ =0.0) and the complex scaled wave functid® (

=0.1) are displayed.

Before doing this, to be able to compare absolute energies,
one must check the numerical accuracy of the different com-
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TABLE lll. The binding energy E), root mean square radius?), and Fermi level X) in different
self-consistent mean-field models for tNe= 20 isotones.

42Tj 44cr e =)
-E r2 -\ -E r? -\ -E r2 -\
HFB 350.84 3.50 2.88 354.39 3.58 1.49 355.51 3.65 0.33
HF-BCS-B 350.52 3.50 2.84 353.95 3.57 1.59 355.15 3.64 0.54

HF-BCS-R1 350.65 3.51 2.89 354.13 3.58 1.61 355.28 3.64 0.51
HF-BCS-R2 350.90 3.51 2.98 354.44 3.58 1.63 355.51 3.65 0.45

puter codes in cases where there are comparable. For tloé a gas external to the nucleus. Its form in the HF-BCS
doubly magic nucle®Ni and “°Ca, the HF energies that we approach is given by
obtain are —354.49 and —344.26 MeV, respectively
whereas the calculation of Ref30] gives —354.46 and
—344.25 MeV. The agreement between the two calculations p(n)=2 vZxi(n% (22)
is excellent. This implies that in the comparisons done be- '
low, discrepancies larger than 100 keV will be due to reasons ) N
of physical relevance and not to the numerical procedures. Since we used the complex scaling method, the densities are
The total binding energies in the HFB, HF-BCS-R, andobtained on the complex rayexp(®). In order to obtain the
HF-BCS-B calculations are given in Table Ill. The proton Physical densities, we have to rotate the single-particle wave
Fermi level and the root-mean-square Charge radii are a|swncti0ns back onto the real axis. This is done numerica”y
shown. In the case labeled by HF-BCS-B, only bound statélsing the fact that the complex scaling operator acting on the
orbits are used in the BCS calculation. In the HF-BCS-R1radial wave functions can be written adJ(6)
calculations, withN=20 (Table 1), only the 25, reso- =exdiOr(d/dr)]. We have performed a Taylor expansion of
nance is included, whereas in the HF-BCS-R2 calculatiorihe exponential, and truncated it to the fourth order.
both the 24, and 1f 5/, resonance states are used. The HFB It is difficult to distinguish between the resonant and non-
calculations[30] have been carried out using a box with a resonant continua if the standard basis is used. If all the
20-fm mesh size, and a step length for the numerical integradiscretized states are introduced in a BCS calculation, then
tion of 0.25 fm. The pairing phase space has been restrictetie nonlocalized continuum states contribute significantly to
to j<9/2. The HFB results do not change if the phase spacéhe matter density, leading to a particle gas. This unphysical
is cut off atj <19/2. However, the HFB results do change byproperty is in principle also present in our HF-BCS-R ap-
at least 1 MeV if all quasiparticle states up to the height ofproach: the resonance wave functions are not localized, and
the barrier in a giverj and| are taken into account. produce nonvanishing densities far away from the nucleus.
It is clear from Table Il that including only bound orbits However, if only a few narrow resonance states are used, one
in the BCS theory leads to too small a space. The bindingan expect that they do not contribute to the matter density in
energy in the HF-BCS-B case deviates from the HFB resul@ny physically meaningful region.
by 0.5 MeV. However, the BCS scheme, including the two To look at this problem quantitatively, we display the
narrowest proton resonance states, agrees very well with thgroton density for the nucleu®Fe in Fig. 4. The energy of
HFB result. The root-mean-square radius of the HF-BCS-Rts Fermi level is—0.45 MeV, and it is expected that the
models in Table Il shows no sign of the “particle-gas” isotone closest to the drip line is where proton pairing cor-
problem. relations will be significant. Figure 4 shows the magnitude of
Since we are using resonance states and neglecting tilee real part of the density. The imaginary part is smaller
complex continuum part of the Berggren basis, all physicathan 10* fm~2 everywhere. The density exhibits an oscil-
quantities contain an imaginary part. It is only when the condatory behavior for very large. This is inherited from the
tributions of the complex continuum to the resonance partesonance states taking part in the Berggren basis. For the
are included that all physical quantities are given by reaHF-BCS-R2 calculation the contribution of the density of the
numbers. This compensation was observed, e.g., in[REf.  2ps;, and If5;, resonance orbits is also plotted. Beyond 12
where the Berggren basis was introduced in a differenfm the total density is determined solely by the resonances.
nuclear model. The imaginary parts of the quantities listed irBelow this radius, the contribution of these resonances is
Table Il are small. The binding energy has an imaginarysmall, and does not significantly affect the density.
part of around 5 keV in the HF-BCS-R1 calculation. Adding  An interesting feature of our calculation is that the values
one more resonance, in the HF-BCS-R2 calculation, thef the mean-square radii are reasonable. This may be surpris-
imaginary part of the binding energy is increased to 100 keVing considering the unphysical oscillatory pattern of the den-
The imaginary parts of the root-mean-square radius arsity at larger, or, more importantly, considering that the
0.0007 and 0.01 fm in the HF-BCS-R1 and HF-BCS-R2 cal-Gamow wave functions are not localized and diverge at in-
culations, respectively. finity. However, due to the definition of the inner product in
The proton density, close to the proton drip line, is a keythe Berggren representation, the matrix elements of observ-
quantity which enables one to put into evidence the presencgbles, such as the root-mean-square radius, converge. This
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TABLE IV. As in Table I, but for neutron resonances in the
nucleus*Ni.

—— HF-BCS-R2

HF-BCS-R1

——- HF-BCS-B

—-— HF-BCS-R2 resonance part

Gamow
e, (MeV) r, (MeVv)

Phase shift

State e, (MeV) r, (MeVv)

2d3,

197
1hyip

1.099
3.397
6.513

0.256
0.073
0.115

1.099
3.397
6.513

0.273
0.073
0.115

IRep(n)l (fm™)

underestimates the binding energy by about 1 MeV due to
the insufficient number of states included in the basis. The
HF-BCS-R model agrees very well with the HFB calcula-
tion. It is remarkable that, when resonance states are in-
cluded in the BCS model, the results improve greatly. This is
a consequence of the fact that the particle-gas problem is
avoided in our BCS formalism.

4.0 8.0 12.0

T (fm)
FIG. 4. Magnitude of the real part of the proton density of the
nucleus*Fe obtained using the Skyrme force Sly4 and the BCS
approximation including different number of resonant states. In the In a description of drip-line nuclei, continuum states play

case of HF-BCS-R2, the resonance contribution to the total density, | important role. In the HFB model the quasiparticle con-

is shown by a dot-dashed line. tinuum is properly taken into account, and one obtains spa-
tially localized matter densities. The traditional BCS ap-
feature supports the use of the Berggren basis, as alreaglyoximation of the HFB theory has an important drawback if
pointed out in Ref[32] where the definition of the root- the full single-particle continuum is taken into account: an
mean-square radius was studied for resonance states. unphysical particle gas surrounds the nucleus. Our BCS
Up to now, we have looked thl=20 nuclei with 26sZ  model with resonances partly overcomes this difficulty.
<28. Due to theN= 20 shell closure, neutron pairing corre-  The standard HFB theory uses a complete system. This
lations can be neglected. This is no longer true for khe basis contains bound and real energy scattering states of a
=22 nuclei. In order to determine which are the relevantmodel Hamiltonian. We replaced this basis by the Berggren
resonance neutron orbits, we have calculated the neutrdsasis, which contains bound, resonance, and complex energy
resonances in the HF mean field #iNi. The results are continuum states. If this basis is truncatée., scattering
shown in Table IV. Since the HF-BCS-R calculation is states with complex energy are neglegtagt have a HFB
meaningful only for narrow resonance states, we will usetheory based on bound and resonance states. In this approxi-
only one resonance neutron orbit, the statg,, and the mation the virtual pair scattering occurs between discrete
same orbits for the protons as for tNe=20 isotones. Inter- states. The traditional nuclear structure picture can be main-
estingly, during the iterative solution of the HF-BCS-R equa-tained, since narrow resonances are very similar to bound
tions, the energies of the four proton orbits given in Tables Istates.
and Il for *8Ni for the HF model decrease, and their widths  To simplify the calculation further, we have applied the
become lower than 100 keV. We then performed severadtate-dependent BCS approximation with bound and reso-
calculations including resonances of increasing widths. Thusjance states. We have shown that the proton drip-line region
in Table V, HF-BCS-R means that the narrowest single- around the double magic nucled®i can be very well de-
particle resonances are taken into account in the BCS proceeribed by the generalized BCS approach. The absolute bind-
dure. ing energies and nuclear radii are in good agreement with the
From this table we can draw the same conclusions as faHFB theory. This of course does not mean that the BCS
the N=20 isotones. The BCS calculation with bound orbitsmodel with resonances always works well. Probably the

VI. CONCLUSION

TABLE V. As in Table Ill, but for theN=22 isotones.

44Ti 46cr 48Fe
-E r? -\ -E r? -\ -E r? -\
HFB 376.28 3.51 4.62 383.20 3.58 3.15 387.54 3.65 1.95
HF-BCS-B 374.93 3.50 4.68 382.28 3.57 3.39 383.88 3.64 2.30
HF-BCS-R1 375.49 3.51 4.72 382.45 3.58 3.41 387.02 3.64 2.27
HF-BCS-R2 375.53 3.51 4.74 382.50 3.58 341 387.06 3.64 2.25
HF-BCS-R3 375.78 3.51 4.83 382.80 3.58 3.43 387.58 3.65 2.13
HF-BCS-R4 376.20 351 4.97 383.32 3.59 3.46 387.68 3.65 2.12
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structure of the continuum determines the applicability of the ACKNOWLEDGMENTS
BCS description.
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