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Removal of spurious center of mass effects in nuclear many-body systems
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The problem of the motion of the center of mass in nuclear many-body systems is revisited. In the first part
of the work, the counterterms needed to fulfill the translational and Galilean invariances are solved through the
exact albeit perturbative expansion underlying the random-phase approximation. Collective variables are in-
troduced in the second part of the work. The inherent problems of overcounting and infrared divergencies are
solved by means of the BRST invariance. Consistency between the two procedures is achieved by use of the
same perturbative expansion. The formalism is applied to the calculation of matrix elements of some of the
electroweak operators which are active in the (m2,e2) conversion process, to show the influence of center of
mass effects upon transitions induced by vector terms of the weak current.
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I. INTRODUCTION

The current predictions of effects associated with el
troweak interactions in nuclei rely both upon the stand
model ~SM! and the description of the nuclear structure@1#.
Setting up limits on the parameters of nontrivial extensio
of the SM is a challenging issue@2#, which is heavily depen-
dent upon nuclear model approximations. The interes
reader can find a recent review of the subject in Ref.@3#.

Among the nuclear structure aspects which can influe
the outcome of a SM analysis of nuclear electroweak dec
we have chosen the problem of symmetry violations and
consequences upon the calculation of nuclear matrix
ments of electroweak operators. Particularly, we have
cused our attention on the restoration of the translational
Galilean invariance of the nuclear Hamiltonians used in
calculation ofI p512 states. These invariances are requir
because the nuclear response to multipole excitations is
sitive to the spurious center of mass~c.m.! motion. This is
the case, for instance, of lepton-flavor violation proces
@4#, like the (m2,e2) conversion, where a sizeable part
the calculated transition strength is predicted to proceed
the excitation ofI p512 states.

The case of the spurious c.m. motion is perhaps one of
most studied examples of broken symmetries in nuc
Hamiltonians. Hereafter we briefly review some of the cla
sic papers existing in the literature.

The removal of spurious 12 states, i.e., states in which th
c.m. is not at rest, has been attempted in shell model tre
ments of two-body interactions in the harmonic oscilla
basis@5#. In Ref. @6# Gloeckner and Lawson have diagona
ized a modified Hamiltonian which includes a harmonic te
in the variables corresponding to the c.m. The scale at wh
the decoupling of intrinsic and c.m. excitations becomes
erative is defined by an externally introduced parameter
sociated with the included term. The use of this method
limited naturally by the number of configurations reach
by the extra term and the results are strongly depend
upon the truncation of the model space, as emphasize
Mac Grory and Wildenthal@7#. These authors have also su
0556-2813/2001/63~4!/044323~10!/$20.00 63 0443
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gested that effective interactions, constructed with sim
operators, can compensate for the spurious c.m. effe
However, the structure of these operators has not been
sented explicitly in Ref.@7#.

Bohr and Mottelson have derived the strength of effe
tive, separable, two-body interactions from geometrical ar
ments involving the self-consistency of either surface a
volume fields@8#. Following the same procedure as for the
finite-frequency modes, they have also obtained the stren
of a schematic residual force from the field generated b
small displacement of the nuclear central potential. Thus
procedure is not directly applicable if one starts from emp
cal single-particle energies and/or also includes residual
teractions which may restore~at least partly! the symmetry.
Pyatov and Salamov@9# have constructed a symmetry resto
ing interaction to be added to the symmetry violating to
Hamiltonian. However, as remarked in Ref.@10#, this proce-
dure may introduce purely intrinsic terms affecting the
trinsic excitations. Another method was proposed in
work of Meyer ter Vehn@10#. It is based on the identification
and subsequent elimination of the coupling between c.m.
intrinsic degrees of freedom. This formal decoupling leads
random-phase approximation~RPA! equations which include
also a finite frequency mode for the c.m. motion. The meth
resembles the Gaussian separation of variables know
field and gauge theories. In all three cases, Refs.@8–10#, the
treatments are extended to restore also the Galilean inv
ance of the interaction. Their validity is always restricted
the RPA or equivalent linearized approximations. A relat
approach was used in Ref.@17# to approximately decouple
spurious and physical 12 states. We would like to quote thi
work as an example of the effects of the center of m
motion upon physical observables, like the multipole ope
tors of the weak current which are proportional to the co
dinate.

A study of the invariance of single-particle and residu
interactions in deformed nuclei was published by Birbr
and Sadovnikova@11#. Translational and rotational invari
ance conditions were taken into account by adding deriva
terms to deformed trial central potentials. These derivat
©2001 The American Physical Society23-1
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terms are coupled and the decomposition in odd and e
multipolarities contains, for an effective potential, infini
terms. This condition casts some doubts on the feasibility
the method. Within the framework of the Landau prescr
tion, Sakamoto and Kishimoto@12# derived the expression
for a translational~and rotational! invariant effective interac-
tion from the mean field of deformed nuclei. Their resu
appear to be the first terms of a series that was summe
by Marshalek@13#, and that yields a peculiar, however ju
tified, interaction. The influence of c.m. motion upon prot
and neutron contra-rotations was also analyzed by Marsh
@14#. He worked with a Hamiltonian in which the c.m. ter
is represented by a three-dimensional harmonic oscill
centered at the origin of coordinates. The results of Ref.@14#
show that the transformation of angular momentum variab
to the c.m. frame is required to describe correctly the rela
motion of neutrons against protons.

The present treatment is developed in two steps, dea
with the reconstruction of the translational invariance of
Hamiltonian and with the specific application of the colle
tive treatment to translational motion, respectively. In t
first part we proceed along the conceptual lines underly
Refs. @8–10#, i.e., we introduce counterterms in the Ham
tonian. As a difference from these previous contributions,
obtain an exact~albeit perturbative! expression for the coun
terterms~i.e., we go beyond the RPA!. Thus the new inter-
actions may influence not only the strength of transitions
I p512 states but also other nuclear properties as well.1 The
calculation of the counterterms is made in Sec. II A and
Appendix A. The solution is applied to the most common
used single-particle terms in the nuclear Hamiltonian
Sec. II B.

Second, we apply a consistent procedure@15# to eliminate
the infrared problems that appear as a consequence o
zero-frequency RPA mode~Sec. III!. The collective treat-
ment is simplified by the Abelian nature of the linear d
placements. Consequently, this application is only outlin
in Sec. III and in Appendix B, since the procedure has b
thoroughly discussed in the literature, although, to o
knowledge, it has not been previously applied to the cas
the translational motion.

As an example about the use of the formalism we pres
and discuss, in the last part of the paper, some results on
calculation of matrix elements of the vector operator wh
induces transitions to 12 states in nuclear (m2,e2) conver-
sion processes. To get an insight about the scope of cent
mass effects in the (m2,e2) decay, the reader is kindly re
ferred to Ref.@17#, where the applied approximate remov
of spurious center of mass effects was not able to comple
eliminate admixtures to the dominant 12 multipole matrix
element.

1For instance, the calculation of rotational parameters may be
fected by the velocity dependence of the interactions that ins
Galilean invariance.
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II. HAMILTONIAN

A. Construction of the counterterms

Since the space is homogeneous, the HamiltonianH and
and the momentum componentpm should commute. Simi-
larly, Galilean invariance requires the commutation of t
interaction H2p2/2m with the coordinater m . A Hamil-
tonian derived self-consistently should satisfy these two c
ditions. However, this is not usually the case: while sing
particle energies are empirically obtained fro
~predominantly! single-particle nuclear states, the residu
interaction is obtained either from schematic forces
through several approximations, from phase shifts
nucleon-nucleon scattering. Therefore

pm[@H,pm#; rm[@H,r m#2
i

m
pm , ~1!

are usually nonvanishing operators.
As a consequence, we are forced to include counterte

in the Hamiltonian which we assume to be of the form

Hp5PW •rW; Hr5RW •pW , ~2!

in order to uncouple the three degrees of freedom (rW,pW ) from
the remaining ones in the problem. Here the~spherical! com-
ponentsPm andRm are determined from the conditions

05pm1 iAPm1~21!n@P2n ,pm#r n1~21!n@R2n ,pm#pn ,

~3!

05rm2 iARm1~21!n@P2n ,r m#r n1~21!n@R2n ,r m#pn .

~4!

The n-body contributions toP,R yield (n11) terms in
the effective interactions~2!. The one- and two-body term
of the solutionsPm ,Rm to these equations are obtained
Appendix A in terms of an expansion similar to the o
implicit in the RPA. In particular, the one-body terms a
given by

Pm(1v)5
i

A
pm(1v)1

A3

2A2
@p,p# (00)

0 r m(1v) ,

Rm(1v)52
i

A
rm(1v)1

A3

2A2
@r,r # (00)

0 pm(1v) , ~5!

where the notation (nm) in the subindices labels an-body
operator withm bodies crossing the Fermi sea. The orders
magnitude of the operatorsPm ,Rm are O(e/A1/2) and
O(e/A) for v51,0 respectively. The solution for th
particle-hole equations (v51) coincide with the one found
by Meyer ter Vehn for the case in which the boson asso
ated with the degree of freedom corresponding to the ce
of mass has zero energy@10#. The two-body terms read@cf.
Eqs.~A13! and ~A16!#

f-
re
3-2
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Pm(2v)5
i

A
tm(2v)

1
1

2A2 (
a
A2a11

3
~†@t (2v) ,p(11)#„1(v21)…

a r (11)‡

2†@h (2v) ,p(11)#„1(v21)…
a p(11)‡!m(2v)

1 ,

Rm(2v)52
i

A
hm(2v)

2
1

2A2 (
a
A2a11

3
~†@t (2v) ,r (11)# (1(v21))

a r (11)‡

2†@h (2v) ,r (11)#„1(v21)…
a p(11)‡!m(2v)

1 , ~6!

where the two-body operatorstm(2v) ,hm(2v) are derived
from the known operatorspm ,rm according to Eq.~A12!.
These expressions are ofO(e/A) for v52, O(e/A3/2) for
v51 andO(e/A2) for v50.

B. Application to single-particle Hamiltonians

The systematic application of the previous procedure
sociates residual interactions~2! to any single-particle
Hamiltonian. In the present section we study some appl
tions to the most frequent single-particle contribution
namely the harmonic oscillator potential, the spin-orbit a
the l 2 terms, and the empirical single-particle Hamiltonia
Details of the calculation are given in Appendix B.

1. Harmonic oscillator case

We assume a single-particle Hamiltonian of the form

Hsp
ho5

1

2m
p21

mv2

2
r 2. ~7!

Not surprisingly, the previously described procedure yie
the interaction

Hp
ho52xhorW•rW,

xho5
mv2

2A
, ~8!

with the strengthxho equal to the self-consistent value d
rived in Ref. @8#. The linear solutions~5! are exact for this
case. The addition of the single-particle~7! and residual in-
teraction~8! yields the well known two-body Hamiltonian

Hho5
1

2m
p21

xho

2 (
ab

urWa2rWbu2. ~9!

2. Spin-orbit and the l2 terms

We start from a single-particle term

Hsp
so52xso~ lW•sW !(1v) , ~10!
04432
s-
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which yields the two-body interactions

Hp
so5

xso

A (
w

~pW 3sW ! [1(v2w)]•rW (1w) ,

Hr
so52

xso

A (
w

~rW3sW ! [1(v2w)]•pW (1w) . ~11!

Therefore the three spin-orbit contributions may be writt
as

Hso5Hsp
so1Hp

so1Hr
so

52
xso

2A (
ab

~rWa2rWb!

3~pW a2pW b!•~sWa1sWb!1
xso

2A
~ lW•sW !(2v) , ~12!

i.e., as a two-body spin orbit interaction which is obvious
translational and Galilean invariant plus a term that, with
the RPA, is only operative for spin-spin correlations (I p

511 resonances!. The imposition of the form~2! to the
counterterms results in the existence of higher order te
which should compensate for the (lW•sW)(2v) interaction. In-
deed, Eqs.~3! and ~4! may be exactly solved also for th
spin-orbit case. They yield@cf. Eq. ~6!#

Pm5
xso

A S ~pW 3sW !m(1v)2
1

2A (
w

~pW (1(v2w))3sW (1w)!m(2v)D ,

Rm52
xso

A S ~rW3sW !m(1v)2
1

2A (
w

~rW (1(v2w))3sW (1w)!m(2v)D .

~13!

Let us consider now the term

Hsp
ll 52x l l ~ lW• lW !. ~14!

The resultant interactions are

Hp
ll 5

x l l

A
~pW 3 lW !•rW2

x l l

A
~ lW3pW !•rW2

2x l l

3A2
^p2&rW•rW,

Hr
ll 5

x l l

A
~ lW3rW !•pW 2

x l l

A
~rW3 lW !•pW 2

2x l l

3A2
^r 2&pW •pW . ~15!

The sum of the three contributions may be written as

Hsp
ll 1Hp

ll 1Hr
ll 52

x l l

2A (
ab

u~rWa2rWb!3~pW a2pW b!u2

2
2x l l

3A
^p2&S 1

A
rW•rW2~rW•rW !(11)1(10)D

2
2x l l

3A
^r 2&S 1

A
pW •pW 2~pW •pW !(11)1(10)D
3-3



la

n
as
ct
a
be
th

m

th
t
t

-

n

he
c
by
rg
he
a
te
r

gy
rit

th
c
ic

lle

o
ge

w
o
e

cy
f
ies,
ob-
s,

la-
is
ne
in

d by

ng

im-

or,
-

s a

d
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1
x l l

A
lW• lW1

x l l

A (
ab

rWb3pW a•rWa3pW b

1
x l l

A
~rW•rW !(11)1(10)~pW •pW !(11)1(10)

2
x l l

A (
m,a,b

~21!mr a,mpb,m~r a,m11pb,m11

1r a,m21pb,m21!. ~16!

Note that the right-hand side is irrelevant for RPA calcu
tions of I p512 resonances, but for the first line.

Since the form of the counterterms has been chose
order to eliminate the coupling between the center of m
and the other degrees of freedom, we should not expe
significant mixture of unperturbed excitations in the fin
normal modes. The only exception could be the mixture
tween the pair of degenerate excitations appearing with
~physical! choicex l l 51/4xso .

3. Empirical single-particle energies

We have performed three RPA calculations using the e
pirical single-particle energies as in208Pb and introducing as

interaction:~i! a rW•rW term with the self-consistent streng
~8!; ~ii ! the same interaction as in~i! with a strength such tha
there is an eigenvalue as close to zero as allowed by
computational facilities;~iii ! the counterterms with the val

ues ofPW (11) ,RW (11) as obtained from Eq.~B4!.
The results are given in Fig. 1, where the matrix eleme

of the operatorrW, corresponding to transitions between t
ground state and excited states, are represented as a fun
of the excitation energy. The two sides of the figure differ
the scale on the vertical axis. It is such that only the la
peak is shown on the left side of the figure. Although t
calculation ~i! with the self-consistent strength displays
prominent peak at low energies, the peak is finite and loca
at an energy significantly larger than zero. On the contra
the results~ii ! and~iii ! show the peak as close to zero ener
as allowed by the computational procedure. This simila
apparently supports the~frequent! use of the procedure~ii !
appearing in the literature. However, let us consider now
right side displaying the matrix elements to finite frequen
modes, which are the ones that interest us from the phys
point of view. In this case the calculations~i! and~ii ! are the
ones that yield very similar results, while the scale is sma
by two orders of magnitude for~iii !, although the excitation
pattern is quite similar. We conclude that the admixture
the spurious with the finite frequency modes is not chan

significantly by varying the strength of therW•rW interaction
and thus the use of this interaction does not insure that
obtain correct matrix elements to excited states. On the c
trary, the uncoupling of the spurious mode is accomplish
through the counterterms~2!.
04432
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III. THE COLLECTIVE FORMALISM

The solution~5! guarantees that there is a zero-frequen
RPA boson for each direction of space.2 This consequence o
the homogeneity of space gives rise to infrared divergenc
which should be taken care off. One way to solve the pr
lem is through the introduction of collective coordinate3

which in the present case represent the coordinatesRm de-
termining the position of a moving frame of reference re
tive to the laboratory frame. Within this description there
no way to distinguish between the motion of the body in o
direction and the displacement of the frame of reference
the opposite one. This gauge-type invariance is expresse
the constraint

pm2Pm50, ~17!

wherePm is the generator of displacements of the movi
frame, hereon the collective momentum„@R2m ,Pn#
5 i (21)mdmn…. Physical statesuphys& are annihilated by the

2Conversely, the existence of a vanishing frequency does not

ply that the Hamiltonian commutes with the momentumpW even at
the RPA level.

3We follow here the treatment presented in Ref.@15#.

FIG. 1. The matrix elements of the coordinate operat
^1n

2uur uug•s&, to thenth one-phonon state, in units of fm. The re
sults are scaled by a factor 1022 in cases~c! and~e! and by a factor
102 in case~f!. Cases~a! and ~b! show the results of the RPA
calculation performed with ther •r interaction of Eq.~8! and using
the harmonic oscillator couplingxho , cases~c! and~d! correspond
to the same interaction with a renormalized coupling which yield
solution at zero energy, cases~e! and ~f! show the results obtained
with the counterterms of Eq.~A18!. The single-particle basis use
in the calculations is an empirical one which includes theNosc55,
6, and 7 active shells, andA5126 particles.
3-4
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left-hand side of Eq.~17! and physical operatorsOphys com-
mute with it. As is well known, the constraints may be tak
into account by adding to the Hamiltonian terms proportio
to Lagrange multipliersVW

H→H2VW •~pW 2PW !, ~18!

and requiring the vanishing ofBW , the momentum conjugat
to VW „@V2m ,Bn#5 i (21)mdmn….

A. The BRST invariance

A gauge theory has an underlying invariance under tra
formations generated by the chargeQ. This is a Hermitian
and nilpotent operator that is linear in the constraints a

includes fermion ghost operatorshW ,p̄W with conjugate mo-

mentapW ,h̄W , „@h2m ,pn#15@h̄2m ,p̄n#15(21)mdmn…,

Q5~pW 2PW !•hW 1BW •p̄W . ~19!

The subspace of states which are annihilated by the chargQ
consists of physical states plus statesux& having zero norm.
Both physical operators and operators4 Ox mapping physical
states into zero-norm states, commute with the chargeQ.
Consequently, there are families of equivalent states
equivalent operators, namely

uphys&→uphys&1ux&; Ophys→Ophys1Ox , ~20!

which yield the same matrix elements as physical opera
between physical states. The constraints are automatic
taken into account by operating within the subspace carry
zero charge. Following Eq.~20!, we may add to the origina
Hamiltonian H a nil operator to obtain the~equivalent!
BRST Hamiltonian

HBRST5H2VW •~pW 2PW !1 ipW •p̄W

1v2S rW•BW

A
2

BW •BW

2mA
2 i h̄W •hW D . ~21!

In HBRST the original symmetry is restored at the collecti
level, since it commutes with the momentumPW . On the con-
trary, it does not commute with the intrinsic momentumpW ,
and thus the infrared divergencies become eliminated.
cause of the Abelian nature of the gauge generators~17!, the
ghosts are uncoupled from the remaining degrees of free
and may be ignored. Since the parameterv is arbitrary, it
should not appear in physical results.

B. Transformation to a moving system

In HBRST @Eq. ~21!#, the termVW •PW represents the cou
pling between the collective and the intrinsic motion. Th

4Henceforth ‘‘nil’’ operators.
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coupling may be eliminated via a transformation setting
motion the intrinsic system, namely

T5expF i

A
PW •S BW

m
2rW D G , ~22!

THBRSTT
15HBRST8 1

1

2mA
P 2, ~23!

which explicitly displays the collective kinetic energy. He
HBRST8 is the BRST Hamiltonian without the coupling term

VW •PW . Therefore the translational collective sector has
come totally uncoupled from the remaining degrees of fr
dom of the system.

All ~physical! operators must be transformed using E
~22!. We illustrate the consequences of such transforma
for the case of an operator which is represented by a func
of rW i , the coordinate of particlei. The vectorrW i is not a
physical operator, since it does not commute with the c
straints ~17!. This expresses the fact thatrW i measures the
position in the moving frame, which is an artifact. Therefo
the dependence of any physical operator on the particle
ordinate should be of the formF(rW i1RW ), becauserW i1RW is
the position in the laboratory frame. Consistently, the co
straints ~17! are satisfied. We transform now the opera
F(rW i1RW ) according to Eq.~22!, namely

TF~rW i1RW !T215FF rW i1
1

A
S BW

m
2rW D 1RW G→FS rW i2

rW

A
1RW D ,

~24!

sinceBW is a nil operator@c.f. Eq. ~C1!#. Therefore the trans-
formation ~22! replaces the collective coordinateRW by5 RW
2rW/A.

In the first place we may apply the formalism to the c
culation of the coordinate operatorrW itself. This operator
appears, for instance, in the excitation ofI p512 states. We
recall that, within the RPA, this operator creates a phon
with frequencyvg50, with an amplitude proportional to
1/Avg ~a clear example of infrared problems!. From the
practical point of view, this behavior leads to unphysic
predictions whenever even small amplitudes of the spuri
state are present in a finite frequency RPA mode.

The corresponding physical operator isrW1ARW , and it re-
duces toARW after being boosted: the vectorrW has disap-
peared from the calculation~and the associated infrared d
vergencies as well!. The problem is reduced to th
calculation of the well behaved operatorRW within the collec-
tive sector of the Hilbert space.

We give now a simple example of how the formalis
may be applied in nuclear reactions. Let us consider a he

5Since the collective and intrinsic degrees of freedom are indep

dent of each other, the operatorRW 2rW/A is different from zero.
3-5
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nucleus in which the particles are labeled by the subindi
and a point particle labeled by 0. Both systems interact v
two-body force depending on the particle distances, nam

(
i

V~ urW02rW i2RW u!→(
i

VS UrW02rW i1
1

A
rW2RW U D , ~25!

whereRW is the position of the c.m. of the heavy system. T
transformed interaction expresses the fact that the positio
particle i should be measured with respect to the cente
mass in the intrinsic frame of the heavy system.

C. Hilbert space

In the moving frame of reference the collective variab
RW are considered to be real variables and thus, as a trad
some original degrees of freedom must join the spurious
tor. At the level of elementary modes of excitation these
given by the RPA zero-frequency modes. The total~qua-
dratic! spurious sector reads

Hspur
(2) 5

1

2m
pW (11)•pW (11)2VW •pW (11)1v2S 1

A
BW •rW (11)2

1

2mA
BW •BW D

5v~GW 1
1
•GW 12GW 0

1
•GW 0!, ~26!

where the transformation to normal modes is given in A
pendix C. The following commutation relations are satisfie

@G1m ,G1n
1 #52@G0m ,G0n

1 #5dmn . ~27!

The unperturbed vacuum state is annihilated by the opera
GW 1 ,GW 0. The two spurious bosons~labeled by 0,1! have the
same excitation spectrum as a result of the anomalous c
mutation relation in Eq.~27! and the form of the quadrati
Hamiltonian~26!.

In addition to the spurious sectorun0m ,n1m&, the intrinsic
sector displays elementary modes of excitation, which
represented by the finite-frequency RPA modesunn&, (vn

.0). Therefore the total intrinsic HamiltonianHBRST8 may be
written

HBRST8 5Hintr
(2) 1Hres ,

Hintr
(2) 5Hspur

(2) 1(
n

vnS nn1
1

2D ,

Hres5H (21)1H (20)2VW •pW (10)1
v2

A
BW •rW (10) . ~28!

IV. TRANSITION OPERATORS TO BE USED
IN REALISTIC CALCULATIONS

The conversion of muons into electrons may proceed
cording to the lepton-flavor violating processes discusse
Refs.@4,16,17#. The main interest of such process lies on t
necessary mixing of muon and electron neutrinos. So
there are experimental upper limits for this process@4#. An
example of the current calculations is given in Refs.@16,17#.
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Considering the dominance of the contributions due to
excitation of 12 states, see Refs.@16,17#, in the context of
the RPA diagonalization, it is obvious that, from the nucle
structure point of view, one has to produce an estimation
accurate as possible of the nuclear matrix elements invo
in the transitions.

The vector operator excitingI p512 states may be written
~cf. Appendix D!

j 1~qr !Y1mu(11)5(
nn

^nnu j 1Y1u&@gnn ,m
1 2~21!mgnn ,(2m)#

2
i

A
~21!m^@ j 1Y1m ,p2m#&r m(11) , ~29!

wherenn denotes a finite-frequency RPA mode and a sim
expression should be used for the dipole axial-vector term
the weak current. Its contribution is not affected by the tre
ment of the spurious sector. The amplitude in the second
may be regularized as in Sec. III B. The results correspo
ing to the transition matrix elements of the shifted opera
~29!, obtained in the RPA diagonalization and for transitio
involving the states depicted in Fig. 1, are shown in Fig.
The similarity between the results obtained with the th
different Hamiltonians supports the above claim about
validity of the procedure. The same effects are expected
materialize in the case of realistic calculations and work is
progress to include the counterterms obtained in the prev
sections, starting from realistic two-body forces.

V. CONCLUSIONS

We have attacked the problem of the center of mass
tion in nuclear spectroscopy calculations in two success

FIG. 2. The matrix elements of the vector operator of Eq.~29!.
Cases~a!, ~b!, and~c! correspond to cases~b!, ~d!, and~f! of Fig. 1.
All values are scaled up by a factor 10.
3-6
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steps, namely~i! the reconstruction of the translational in
variance of the Hamiltonian and~ii ! the inclusion of collec-
tive variables in order to eliminate infrared singularities. T
solutions in both steps are exact, albeit perturbative. T
share in common the same perturbation parameter,A21/2,
which is a convenient feature if a given order of perturbat
is envisioned.

Quite generally, the first step requires the introduction
counterterms, which has been performed following speci
Ref. @10#. We have tried the procedure for pure independe
particle Hamiltonians: in the case of harmonic oscillator p
tential, the counterterms reproduce the dipole force with
self-consistent strength~see Ref.@8#!; for spin-orbit andl 2

terms in the central potential the procedure leads to the
troduction of two-body terms of similar character; finally, th
application of the procedure to an empirical single-parti
spectrum insures the elimination of all the matrix elements
the coordinate operator to excitedI p512 RPA states, which
is not the case for the dipole interaction, no matter how cl
to zero the lowest RPA energy is made by adjusting
strength of the interaction.

The introduction of the collective formalism is mad
along the same lines as in Ref.@15#, benefitting from the
Abelian character of the transformations associated w
translational motion. In this case the Hamiltonian displa
the collective energy term and this degree of freedom
comes uncoupled from the remaining part of the Ham
tonian. The procedure requires however a nontrivial trans
mation for all physical operators, which leads, for instan
to the substitution of the intrinsic center of mass opera
(1/A)rW by the collective operatorRW representing the sam
magnitude, and thus to the elimination of the infrared sin
larities associated with the former.

To conclude, we thus suggest the use of the counterte
~2! and of the operators~29! in cases where, like in (m2,e2)
conversion, the dominance of theI p512 channels is appar
ent.
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APPENDIX A: SOLUTION OF THE EQUATIONS THAT
DETERMINE THE COUNTERTERMS

We attempt a solution to the inhomogenous equations~3!
and~4! in terms of an expansion similar to the one implicit
the RPA. Since this expansion is not always well defin
from the point of view of an expansion parameter, we s
by discussing the meaning of it.
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Let X(nm) be an-body operator such that there arem bod-
ies crossing the Fermi surface and (n2m) bodies that do not
cross6 (0<n, 0<m<n). As is well known, within the
RPA, the expectation valueX(00) is privileged over the
particle-hole termX(11) , and this last component relative t
the termsX(10) representing the scattering of a particle abo
or below the Fermi surface,

O~X(00)!.O~X(11)!.O~X(10)!. ~A1!

Also, within the RPA, the~large! parameter measures th
collectivity and, for the case of motion of the center of ma
it should be represented by some power of the numbe
particlesA. A different power of the~small! parameterA21/2

may be assigned to each term in Eq.~A1!. Consequently,

O~X(00)!5X; O~X(11)!5X/A1/2; O~X(10)!5X/A,
~A2!

whereX is another parameter depending on the chosen
erator. For instance, in the case of the momentum compo
pm , pm(00)50, andX5A, while

O~pm(11)!5A1/2; O~pm(10)!51. ~A3!

We generalize the estimation~A2! for the case ofn-body
operators, namely

O~Xnm!5XA2n1m/2. ~A4!

As an illustration, we ascribe the following orders to th
different terms in the Hamiltonian:

O~H (00)!5eA; O@H (11)~50!#5eA1/2;

O~H (10)!5eO~H (22)!5e;

O~H (21)!5e/A1/2; O~H (20)!5e/A. ~A5!

Here we have taken the energy parametere as the order of
the single-particle energies. Note thatO(H (10))5O(H (22))
as befits the RPA.

This expansion is also valid for the commutation re
tions. The (n,m) terms in the the commutation of an oper
tor X5( (n8m8)X(n8m8) with a one-body operator reads

@X,~Y(11)1Y(10)!# (nm)5@X[(n11)(m11)] ,Y(11)# (nm)

1@X[n(m61)] ,Y(11)# (nm)

1@X(nm) ,Y(10)# (nm) . ~A6!

A particular example is

@r 2m ,pm# (nm)5dn0@r 2m(11) ,pm(11)# (00)5 iA~21!m.
~A7!

6We disregard exchange in the associated integrals.
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Let us now proceed to solve Eqs.~3! and ~4!. We may
split them into equations corresponding to a definite pair
quantum numbers (nm), and thus to a particular order o
magnitude. According to Eq.~A6!, the equations involving
only the one-body component of the operatorsPm(1v) and
Rm(1v) (v51,0) may be written as

05pm(1v)1 iAPm(1v)1~21!n@P2n ,pm# (00)r n(1v)

1~21!n@R2n ,pm# (00)pn(1v) ,

05rm(1v)2 iARm(1v)1~21!n@P2n ,r m# (00)r n(1v)

1~21!n@R2n ,r m# (00)pn(1v) .

These equations are ofO(eA1/2) for the casev51 and of
O(e) for v50. In both cases they uncouple, since the ti
reversal symmetry of the Hamiltonian requires that

@Rn ,pm# (00)5@Pn ,r m# (00)50. ~A8!

In order to solve the two equations thus simplified, w
commute the first and the second one with the operatorspm
andr m , respectively. The expectation value of such comm
tators yields the relations

~21!n@P2n ,pm# (00)5dnm

i ~21!m

2A
@p2m(11) ,pm(11)# (00) ,

~21!n@R2n ,r m# (00)52dnm

i ~21!m

2A
@r2m(11) ,r m(11)# (00) ,

~A9!

where, according to Eq.~A6!,

pm(11)5@H (10) ,pm(11)# (11)1@H (22) ,pm(11)# (11) ,

rm(11)5@H (10) ,r m(11)# (11)1@H (22) ,r m(11)# (11) . ~A10!

Substitution of Eq.~A9! into the first two equations yield
the one-body components of the operatorsPm ,Rm @Eq. ~5!#.

The equations for the two-body components (2v)(v
50,1,2) of the operatorsPm ,Rm read

05pm(2v)1 iAPm(2v)1~21!n@P2n ,pm# [1(v21)]r n(11)

1~21!n@R2n ,pm# [1(v21)]pn(11)

1~21!n@Pn ,pm# (1v)r n(10)1~21!n@Rn ,pm# (1v)pn(10)

5tm(2v)1 iAPm(2v)

2(
a
A2a11

3
~†@P(2v) ,p(11)# (1(v21))

a r (11)‡m(2v)
1

1†@R(2v) ,p(11)# (1(v21))
a p(11)‡m(2v)

1 !,
04432
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05rm(2v)2 iARm(2v)1~21!n@P2n ,r m# [1(v21)]r n(11)

1~21!n@R2n ,r m# [1(v21)]pn(11)

1~21!n@Pn ,r m# (1v)r n(10)1~21!n@Rn ,r m# (1v)pn(10)

5hm(2v)2 iARm(2v)

2(
a
A2a11

3
~†@P(2v) ,r (11)# [1(v21)]

a r (11)‡m(2v)
1

1†@R(2v) ,r (11)# [1(v21)]
a p(11)‡m(2v)

1 !, ~A11!

where

tm(2v)5pm(2v)2(
s
A2s11

3

3F(
w

~†@P(1) ,p(1)# [1(v2w)]
s r (1w)‡m(2v)

1

1†@R(1) ,p(1)# [1(v2w)]
s p(1w)‡m(2v)

1 !

1~†@P[2(v11)] ,p(11)# (1v)
s r (10)‡m(2v)

1

1†@R[2(v11)] ,p(11)# (1v)
s p(10)‡m(2v)

1 !G ,
hm(2v)5rm(2v)2(

s
A2s11

3

3F(
w

~†@P(1) ,r (1)# [1(v2w)]
s r (1w)‡m(2v)

1

1†@R(1) ,r (1)# [1(v2w)]
s p(1w)‡m(2v)

1 !

2~†@P[2(v11)] ,r (11)# (1v)
s r (10)‡m(2v)

1

1†@R[2(v11)] ,r (11)# (1v)
s p(10)‡m(2v)

1 !G . ~A12!

We try

Pm(2v)5
i

A
tm(2v)1

1

2A2 (
a
A2a11

3

3~ga
(P)

†@t (2v) ,p(11)# [1(v21)]
a r (11)‡m(2v)

1

1 j a
(P)

†@h (2v) ,p(11)# [1(v21)]
a p(11)‡m(2v)

1 !,

Rm(2v)52
i

A
hm(2v)1

1

2A2 (
a
A2a11

3

3~ga
(R)

†@t (2v) ,r (11)# [1(v21)]
a r (11)‡m(2v)

1

1 j a
(R)

†@h (2v) ,r (11)# [1(v21)]
a p(11)‡m(2v)

1 !.

~A13!

Introducing Eq.~A13! in Eqs.~A11! and using the identity

@t (2v) ,r (11)#
s5@h (2v) ,p(11)#

s~21!s, ~A14!
3-8
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we obtain

052
i

A (
s
A2s11

3

3S 12
gs

(P)

2
@11~21!s# D

3†@t (2v) ,p(11)# [1(v21)]
s r (11)‡m(2v)

1 1
i

A

3(
s
A2s11

3 S 11
j s
(P)

2
1

gs
(R)

2 D
3†@h (2v) ,p(11)# [1(v21)]

s p(11)‡m(2v)
1

1
1

2A3A2
~g1

(R)1 j 1
(P)!†@t (22) ,r (11)# (11)

1 ,p‡0(00)
0 @pr#m(2v)

1 ,

052
i

A (
s
A2s11

3 S 11
gs

(R)

2
1

j s
(P)

2 D
3†@t (2v) ,r (11)# [1(v21)]

s r (11)‡m(2v)
1 1

i

A

3(
s
A2s11

3 S 12
j s
(R)

2
@11~21!s# D

3†@h (2v) ,r (11)# [1(v21)]
s p(11)‡m(2v)

1 1
1

2A3A2

3~g1
(R)1 j 1

(P)!†@t (22) ,r (11)# (11)
1 ,r (11)‡0(00)

0 @pr#m(2v)
1 .

~A15!

The solution appears to be

gs
(P)5 j s

(R)51; s50,2,

gs
(R)5 j s

(P)521; s50,1,2. ~A16!

The coefficientsg1
(P) and j 1

(R) are not determined. The fol
lowing terms are left in the right-hand side of Eq.~A15!:

052
i

A
†@t (2v) ,p(11)# [1(v21)]

1 r (11)‡m(2v)
1

2
1

A3A2
†@t (22) ,r (11)# (11)

1 ,p‡0(00)
0 @pr#m(2v)

1 ,

051
i

A
†@h (2v) ,r (11)# [1(v21)]

1 p(11)‡m(2v)
1

2
1

A3A2
†@t (22) ,r (11)# (11)

1 ,r (11)‡0(00)
0 @pr#m(2v)

1 .

~A17!
04432
Equations~A17! should be satisfied in general only to lea
ing order. We may commute the first~second! one by
r (11) (p(11)) and consider only the leading order terms in t
RPA expansion, which in this case correspond to the o
body terms, namely

05
i

A3A
~†@t (22) ,p(11)# (11)

1 ,r (11)‡0(00)
0

2†@t (22) ,r (11)#
1,p(11)‡0(00)

0 !r m(11) ,

05
i

A3A
~†@h (22) ,r (11)# (11)

1 ,p(11)‡0(00)
0

2†@h (22) ,p(11)#
1,r (11)‡0(00)

0 !pm(11) . ~A18!

The differences enclosed by the parentheses vanish acc
ing to Eq.~A14!.

The general solution of Eqs.~3! and~4! may be written as
a superposition of the solution~6! of the inhomogenous
equations plus solutions of the homogenous equations
pm5rm50. However, we must drop the last contributio
since the residual interactions should vanish if the Ham
tonian is translational and Galilean invariant.

APPENDIX B: INTERACTIONS ORIGINATED
FROM SINGLE-PARTICLE HAMILTONIANS

The calculation of the one-body terms of the operat
Pm ,Rm requires the knowledge of the operatorspm ,rm and
of the expectation valueŝ@p2m,pm#&, ^@r2m,r m#& @cf.
Eq. ~5!#. The notation used as superscripts is obvious,

pm
ho5 imv2r m ; ~21!m^@pm

ho ,p2m#&52mv2A,

rho50, ~B1!

pm
so52 ixso~pW 3sW !m ; ^@pm

so ,p2m#&50,

rm
so52 ixso~rW3sW !m ; ^@rm

so ,r 2m#&50, ~B2!

pm
l l 5 ix l l ~ lW3pW !m2 ix l l ~pW 3 lW !m ;

~21!m^@pm
l l ,p2m#&5

4x l l

3
^p2&,

rm
l l 5 ix l l ~ lW3rW !m2 ix l l ~rW3 lW !m ;

~21!m^@rm
l l ,r 2m#&5

4x l l

3
^r 2&, ~B3!

^kuupspuu i &5eki^kuupuu i &,

^@pm
sp ,p2m#&52

2

3 (
ki

^kuupspuu i &^kuupuu i &,

^kuurspuu i &5eki^kuur uu i &1
i

m
^kuupuu i &,
3-9
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~21!m^@rm
sp ,r 2m#&52

2

3 (
ki

^kuurspuu i &^kuur uu i &,

~B4!

wherek( i ) denotes single-particle states above~below! the
Fermi sea andeki represents the excitation energy of t
corresponding particle-hole state.

APPENDIX C: THE TRANSFORMATION TO NORMAL
MODES IN THE BRST HAMILTONIAN

The transformation to normal modes in the BRST Ham
tonian ~cf. Sec. III C! is the following:

G1m
1 5

1

A2mAv
pm(11)2AmA

2v
Vm1

i

A
AmAv

2
r m(11) ,

G0m
1 5A v

2mA
Bm1AmA

2v
Vm1

i

A
AmAv

2
r m(11) .

~C1!

APPENDIX D: EXCITATION OF THE SPURIOUS MODES

The RPA transformation from particle-hole modesgki,m
1

to normal modesgn,m
1 reads

gn,m
1 5(

ki
@ln,kigki,m

1 2~21!mmn,kigki,2m#, ~D1!

where k( i ) denotes states above~below! the Fermi level.7

Any single-particle operator transforming as the coordin
r m under time reversal, such as Eq.~29!, may be written

7Coupling toI p512 is assumed.
a

. A

04432
-

e

j 1~qr !Y1m~u,f!u(11)

5
1

A3
(
ki

^kuu j 1Y1uu i &@gki,m
1 2~21!mgki,m#

5(
n

^nu j 1Y1u&@gn,m
1 2~21!mgn,2m#. ~D2!

Let us denote byn5g the zero-frequency mode, and byn
5nn a finite-frequency one. We can make the followin
choice:

r m(11)52
iA

A2vg

@gg,m
1 2~21!mgg,2m#,

pm(11)5Avg

2
@gg,m

1 1~21!mgg,2m#. ~D3!

As a consequence, the amplitudes in the RPA transforma
read

lg,ki5
1

A6vg

^kuupuu i &1
i

A
Avg

6
^kuur uu i &,

mg,ki52
1

A6vg

^kuupuu i &1
i

A
Avg

6
^kuur uu i &, ~D4!

and the amplitude to the spurious boson reads

^gu j 1Y1u&5
1

3Avg
(
ki

^kuu j 1Y1uu i &^kuupuu i &

52~21!m
1

2
^@ j 1Y1m ,p2m#&, ~D5!

as in Eq.~29!.
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