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Removal of spurious center of mass effects in nuclear many-body systems
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The problem of the motion of the center of mass in nuclear many-body systems is revisited. In the first part
of the work, the counterterms needed to fulfill the translational and Galilean invariances are solved through the
exact albeit perturbative expansion underlying the random-phase approximation. Collective variables are in-
troduced in the second part of the work. The inherent problems of overcounting and infrared divergencies are
solved by means of the BRST invariance. Consistency between the two procedures is achieved by use of the
same perturbative expansion. The formalism is applied to the calculation of matrix elements of some of the
electroweak operators which are active in the (e~) conversion process, to show the influence of center of
mass effects upon transitions induced by vector terms of the weak current.
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[. INTRODUCTION gested that effective interactions, constructed with simple
operators, can compensate for the spurious c.m. effects.
The current predictions of effects associated with elecHowever, the structure of these operators has not been pre-
troweak interactions in nuclei rely both upon the standardsented explicitly in Ref[7].
model (SM) and the description of the nuclear struct{itg: Bohr and Mottelson have derived the strength of effec-
Setting up limits on the parameters of nontrivial extensiongive, separable, two-body interactions from geometrical argu-
of the SM is a challenging issu&], which is heavily depen- ments involving the self-consistency of either surface and
dent upon nuclear model approximations. The interestegolume fieldg8]. Following the same procedure as for these
reader can find a recent review of the subject in R&f. finite-frequency modes, they have also obtained the strength
Among the nuclear structure aspects which can influencef a schematic residual force from the field generated by a
the outcome of a SM analysis of nuclear electroweak decaysmall displacement of the nuclear central potential. Thus the
we have chosen the problem of symmetry violations and itprocedure is not directly applicable if one starts from empiri-
consequences upon the calculation of nuclear matrix elecal single-particle energies and/or also includes residual in-
ments of electroweak operators. Particularly, we have foteractions which may restor@t least partly the symmetry.
cused our attention on the restoration of the translational anByatov and Salamd®] have constructed a symmetry restor-
Galilean invariance of the nuclear Hamiltonians used in théng interaction to be added to the symmetry violating total
calculation ofl "=1" states. These invariances are requiredHamiltonian. However, as remarked in REE0], this proce-
because the nuclear response to multipole excitations is sedure may introduce purely intrinsic terms affecting the in-
sitive to the spurious center of mag@sm,) motion. This is  trinsic excitations. Another method was proposed in the
the case, for instance, of lepton-flavor violation processesvork of Meyer ter Vehrj10]. It is based on the identification
[4], like the (u™,e) conversion, where a sizeable part of and subsequent elimination of the coupling between c.m. and
the calculated transition strength is predicted to proceed bintrinsic degrees of freedom. This formal decoupling leads to
the excitation o "=1" states. random-phase approximatigRPA) equations which include
The case of the spurious c.m. motion is perhaps one of thalso a finite frequency mode for the c.m. motion. The method
most studied examples of broken symmetries in nuclearesembles the Gaussian separation of variables known in
Hamiltonians. Hereafter we briefly review some of the clas-field and gauge theories. In all three cases, R&fs10], the
sic papers existing in the literature. treatments are extended to restore also the Galilean invari-
The removal of spurious1states, i.e., states in which the ance of the interaction. Their validity is always restricted to
c.m. is not at rest, has been attempted in shell model treatéhe RPA or equivalent linearized approximations. A related
ments of two-body interactions in the harmonic oscillatorapproach was used in Rdfl7] to approximately decouple
basis[5]. In Ref.[6] Gloeckner and Lawson have diagonal- spurious and physical 1states. We would like to quote this
ized a modified Hamiltonian which includes a harmonic termwork as an example of the effects of the center of mass
in the variables corresponding to the c.m. The scale at whicmotion upon physical observables, like the multipole opera-
the decoupling of intrinsic and c.m. excitations becomes optors of the weak current which are proportional to the coor-
erative is defined by an externally introduced parameter adinate.
sociated with the included term. The use of this method is A study of the invariance of single-particle and residual
limited naturally by the number of configurations reachedinteractions in deformed nuclei was published by Birbrair
by the extra term and the results are strongly depender@nd Sadovnikovd11]. Translational and rotational invari-
upon the truncation of the model space, as emphasized nce conditions were taken into account by adding derivative
Mac Grory and Wildenthdl7]. These authors have also sug- terms to deformed trial central potentials. These derivative
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terms are coupled and the decomposition in odd and even Il. HAMILTONIAN
multipolarities contains, for an effective potential, infinite
terms. This condition casts some doubts on the feasibility of _ )
the method. Within the framework of the Landau prescrip- Since the space is homogeneous, the Hamiltorizand
tion, Sakamoto and Kishimotfi2] derived the expression @nd the momentum componepy, should commute. Simi-
for a translationaland rotationglinvariant effective interac- larly, Galilean nvariance requires the commutation of the
tion from the mean field of deformed nuclei. Their resultsNteraction H—p“/2m with the coordinater,,. A Hamil-
appear to be the first terms of a series that was summed Jgnian derived self-cpn§|stently should satisfy thesg two con-
by Marshalel{13], and that yields a peculiar, however jus- |t|o.ns. HOWGVGT’ this is not usual!y the case: Wh”e single-
tified, interaction. The influence of c.m. motion upon protonpartICIe energies ~are empirically ~obtained from

X redominantly single-particle nuclear states, the residual
and neutron cantra-rotations was also analyzed by Marshalei- teraction is obtained either from schematic forces or

.[14]' He worked with a Hamll_toman.m which the ¢.m. t(_arm through several approximations, from phase shifts in
is represented b)_/ a three-dlr_'nensmnal harmonic OSC'”atOﬁucleon-nucIeon scattering. Therefore
centered at the origin of coordinates. The results of Ref]
show that the transformation of angular momentum variables i
to the c.m. frame is required to describe correctly the relative T =H Pl pu=IHT L= 2P @
motion of neutrons against protons.

The present treatment is developed in two steps, dealingre usually nonvanishing operators.
with the reconstruction of the translational invariance of the As a consequence, we are forced to include counterterms
Hamiltonian and with the specific application of the collec-in the Hamiltonian which we assume to be of the form
tive treatment to translational motion, respectively. In the . o
first part we proceed along the conceptual lines underlying H,=P-r; H=R-p, 2
Refs.[8-10, i.e., we introduce counterterms in the Hamil-
tonian. As a difference from these previous contributions, wen order to uncouple the three degrees of freedomp) from
obtain an exactalbeit perturbativeexpression for the coun- the remaining ones in the problem. Here {hpherical com-
terterms(i.e., we go beyond the RPAThus the new inter- ponentsP, andR, are determined from the conditions
actions may influence not only the strength of transitions to
|7=1" states but also other nuclear properties as Wehe =~ 0= 7, HIAP, +(=1)'P_,,p,Ir,+(-=1)"[R-,.p,]Ip,.
calculation of the counterterms is made in Sec. Il A and in

A. Construction of the counterterms

Appendix A. The solution is applied to the most commonly 3)

used single-particle terms in the nuclear Hamiltonian in

Sec. IIB. O:pp._iAR;L_*—(_l)V[PfV!rp,]rv—i_(_1)V[R7V1r,u]p1)'
Second, we apply a consistent procedurg to eliminate

the infrared problems that appear as a consequence of the (4)

zero-frequency RPA modéSec. Ill). The collective treat- o ) ]
ment is simplified by the Abelian nature of the linear dis- '€ n-body contributions taP,R yield (n+1) terms in
placements. Consequently, this application is only outlinec}he effecﬂvg interaction€2). The one- z_and two-body _term§
in Sec. lll and in Appendix B, since the procedure has bee f the soluthnsPM R, 1o these equgﬂong are obtained in
thoroughly discussed in the literature, although, to our Pp.e’?d'.x A in terms of an expansion similar to the one
knowledge, it has not been previously applied to the case o'@p“ut in the RPA. In particular, the one-body terms are
: : given by
the translational motion.
As an example about the use of the formalism we present
and discuss, in the last part of the paper, some results on the
calculation of matrix elements of the vector operator which
induces transitions to 71 states in nucleary,e~) conver-
sion processes. To get an insight about the scope of center of o 3 0
mass effects in the(",e”) decay, the reader is kindly re- Ru@o) == aPuto)t E[p'r](oo)pﬂ(lv)’ ®)
ferred to Ref[17], where the applied approximate removal
of spurious center of mass effects was not able to completelyhere the notationr(m) in the subindices labels abody
eliminate admixtures to the dominant Imultipole matrix  operator withm bodies crossing the Fermi sea. The orders of
element. magnitude of the operator®,,R, are O(e/AY?) and
O(e/A) for v=1,0 respectively. The solution for the
particle-hole equationsv(=1) coincide with the one found
by Meyer ter Vehn for the case in which the boson associ-
IFor instance, the calculation of rotational parameters may be afated with the degree of freedom corresponding to the center
fected by the velocity dependence of the interactions that insur@f mass has zero ener%0]. The two-body terms reaftf.
Galilean invariance. Egs.(A13) and (A16)]

_ 0
Pou1o)= & Tuao)t 5 5[ ™ Pl0o) u(1o) »

2A2
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where the two-body operators, ,,),7,2,) are derived
from the known operatorsr,,,p, according to Eq(A12).

These expressions are ﬁ)‘(e/A) for v=2, O(elA%? for
v=1 andO(e/A?) for v=0

a 1
—[[ 7020y " (11)] Q- 1))p(11)])ﬂ(2u) '

B. Application to single-particle Hamiltonians
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which yields the two-body interactions

Xso .. R
HEOZ—A > (PXS) 10w T (1w) »
w

Xso - - -
HPo=— TS > (r XS)1w-w)]* Paw) - (11

w
Therefore the three spin-orbit contributions may be written
as

HSO=HZ +H*+HP°
= XS°Z (Fa=Tb)

- - - Xso » -
X (Pa=Pp)- (Sat )+ 51 (1S, (12
i.e., as a two-body spin orbit interaction which is obviously
translational and Galilean invariant plus a term that, within
the RPA, is only operative for spin-spin correlations” (
=1" resonances The imposition of the form2) to the

The systematic application of the previous procedure asS counterterms results in the existence of higher order terms
sociates residual interaction®) to any single-particle Which should compensate for thé-§),, interaction. In-
Hamiltonian. In the present section we study some applicadeed, Eqs(3) and (4) may be exactly solved also for the
tions to the most frequent single-particle contributions,Spin-orbit case. They yieltcf. Eq. (6)]
namely the harmonic oscillator potential, the spin-orbit and

the 12 terms, and the empirical single-particle Hamiltonian. P, XSO X3 N
Details of the calculation are given in Appendix B. (p )“(h’) 2A E (p(l(u " (1W))”(2U)
1. Harmonic oscillator case Xso

We assume a single-particle Hamiltonian of the form

1
ho 2
Hso=2m *‘?*

(@)

Not surprisingly, the previously described procedure yields

the interaction
ho__ g
Hy == Xxho T,
2

mMw

XhO: 2A ' (8)

with the strengthy,, equal to the self-consistent value de-

rived in Ref.[8]. The linear solutiong5) are exact for this
case. The addition of the single-parti€l® and residual in-
teraction(8) yields the well known two-body Hamiltonian

1
HIo= 5 P2+ 52 3 [Fa T ©
2. Spin-orbit and the 1 terms
We start from a single-particle term
HEp= — Xsol [ S) ). (10

o

(FXS),L(lv) A E (r(l(v—w))xs(lw))p,(Zv))'
w

(13
Let us consider now the term

Hi=—xu(T-1). (14)

The resultant interactions are

XN Xl

A (PXD)r="=(Ixp)-r

[

H',; ——(p2>r r,

Xl

Hy = (T )p———ﬂxl)p————«%5~ﬁ (15

The sum of the three contributions may be written as

X|| > > >
Hept Hp i == 58 25 [(Fa= 1o)X (Pa=Pu)|”
2)(|| 1.. ..
p%) Al r—=(r-r)au+ (o)
2X|| 1. . ..
2>(K P p-p)(11)+(1o))

044323-3



D. R. BES AND O. CIVITARESE PHYSICAL REVIEW (53 044323

=
Q

Xi= = Xi S > 4 ]
+ oo T+ 5= X Pg- T4 X a b
AII A%rb Pa- T aX Py 30 ()2 ()_
20 0‘ | L T T 11
X, - > > >
+ K(r “T)an+ao(P- P+ (10) _10 -2 ‘ 1
= -4
O ok 1 ;
Xl ? 8 2 1
- K #Ea:b (_ l)Mra,#pb,M(ra,M+lpb,u+l ;:: 6 © 1 (d)
a, 2 |
[ 0
+rau—1Pb,u-1)- (16) w 4 -1 | A ”.
x 2
= -2
. N s 0
Note that the right-hand side is irrelevant for RPA calcula- = 8 (e)] 2 (f) ]
tions ofI"=1" resonances, but for the first line. 6 1 | 1
Since the form of the counterterms has been chosen in 4 0 L Ll
order to eliminate the coupling between the center of mass 9 -1
and the other degrees of freedom, we should not expect a -2 ]
significant mixture of unperturbed excitations in the final 005 10 15 0 5 10 15

normal modes. The only exception could be the mixture be-
tween the pair of degenerate excitations appearing with the

(physica) choice x|, = 1/4xs. FIG. 1. The matrix elements of the coordinate operator,
(1,]Ir]lg-s), to thenth one-phonon state, in units of fm. The re-
sults are scaled by a factor 19in casegc) and(e) and by a factor
107 in case(f). Cases(d) and (b) show the results of the RPA

We have performed three RPA calculations using the emgalculation performed with the-r interaction of Eq(8) and using

pirical single-particle energies as #ePb and introducing as ¢ harmonic oscillator couplingy,, cases(c) and(d) correspond
to the same interaction with a renormalized coupling which yields a

interaction: (i) a r-r term with the self-consistent strength ¢qjution at zero energy, casé® and (f) show the results obtained
(8); (ii) the same interaction as {i with a strength such that with the counterterms of EqA18). The single-particle basis used
there is an eigenvalue as close to zero as allowed by thie the calculations is an empirical one which includes g =5,
computational facilities{iii) the counterterms with the val- 6, and 7 active shells, andi=126 particles.

ues ofP(y3),R(11) as obtained from EqB4).
The results are given in Fig. 1, where the matrix elements

of the operatorF, corresponding to transitions between the The solution(5) guarantees that there is a zero-frequency
ground state and excited states, are represented as a functi@®PA boson for each direction of spac€&his consequence of

of the excitation energy. The two sides of the figure differ bythe homogeneity of space gives rise to infrared divergencies,
the scale on the vertical axis. It is such that only the largevhich should be taken care off. One way to solve the prob-
peak is shown on the left side of the figure. Although thelem is through the introduction of collective coordinates,
calculation (i) with the self-consistent strength displays aWhich in the present case represent the coordinRtgsle-
prominent peak at low energies, the peak is finite and locatetrmining the position of a moving frame of reference rela-
at an energy significantly larger than zero. On the contrarytive to the laboratory frame. Within this description there is
the resultsii) and i) show the peak as close to zero energyn© Way to distinguish between the motion of the body in one

as allowed by the computational procedure. This similaritydiréction and the displacement of the frame of reference in
apparently supports thérequen use of the proceduréi) the opposite one. This gauge-type invariance is expressed by

appearing in the literature. However, let us consider now th(I,\he constraint

right side displaying the matrix elements to finite frequency

modes, which are the ones that interest us from the physical Pu—Pu=0, 17)
point of view. In this case the calculatiofi$ and(ii) are the

ones that yield very similar results, while the scale is smallewhere P, is the generator of displacements of the moving
by two orders of magnitude fdjii ), although the excitation frame, hereon the collective momentun(R_,,P,]
pattern is quite similar. We conclude that the admixture of=i(—1)*6,,). Physical statefphys are annihilated by the
the spurious with the finite frequency modes is not changed

significantly by varying the strength of ther interaction

and thus the use of this interaction does not insure that we?Conversely, the existence of a vanishing frequency does not im-
obtain correct matrix elements to excited states. On the cormply that the Hamiltonian commutes with the momentpneven at
trary, the uncoupling of the spurious mode is accomplishedhe RPA level.

through the counterterm@). SWe follow here the treatment presented in Héf].

Energy [MeV]

3. Empirical single-particle energies

Ill. THE COLLECTIVE FORMALISM
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left-hand side of Eq(17) and physical operator®,ys com- coupling may pe .eliminated via a transformation setting in
mute with it. As is well known, the constraints may be takenmotion the intrinsic system, namely
into account by adding to the Hamiltonian terms proportional

to Lagrange multipliers) T=ex |—73 E—F (22)
A" \m '
H—H-0-(p-P), (18 1
" THerstT " =Harst 5P (239
and requiring the vanishing d8, the momentum conjugate oReT PRT 2m

o Q[Q-, B, ]=i(=1)6,,). which explicitly displays the collective kinetic energy. Here

Hgrst is the BRST Hamiltonian without the coupling term

Q-P. Therefore the translational collective sector has be-
A gauge theory has an underlying invariance under transeome totally uncoupled from the remaining degrees of free-

formations generated by the charge This is a Hermitian dom of the system.

and nilpotent operator that is linear in the constraints and All (physica) operators must be transformed using Eq.

(22). We Illustrate the consequences of such transformation

for the case of an operator which is represented by a function

of r;, the coordinate of particlé. The vectorﬂ is not a
physical operator, since it does not commute with the con-

straints (17). This expresses the fact thﬁ,-t measures the

The subspace of states which are annihilated by the ch@rge position in the moving frame,_which is an artifact. Therefore
consists of physical states plus stafte’ having zero norm. e dependence of any physical operator on the particle co-
Both physical operators and operafog®, mapping physical ~ordinate should be of the forfi(r;+R), because;+ 7R is
states into zero-norm states, commute with the chagge the position in the laboratory frame. Consistently, the con-
Consequently, there are families of equivalent states angtraints(17) are satisfied. We transform now the operator
equivalent operators, namely F(r,+R) according to Eq(22), namely

hys —|phys +|x); Ophve— Ophvst O, , 20 . o
|p y3 |p Y$ |X> phys phys % (20 TF(ri+R)T‘1=F

which yield the same matrix elements as physical operators
between physical states. The constraints are automatically (24)
taken into account by operating within the subspace carrying

zero charge. Following Eq20), we may add to the original ginceB is a nil operatofc.f. Eq.(C1)]. Therefore the trans-

Hamiltonian H a nil operator to obtain thdequivalent . : L= -
BRST Hamiltonian forrr:t|on (22) replaces the collective coordinafe by® R
—r/A.

In the first place we may apply the formalism to the cal-

culation of the coordinate operata;r itself. This operator
r-B B-B - . appears, for instance, in the excitationl=1" states. We

+ w? . ——in 7. (2)  recall that, within the RPA, this operator creates a phonon

with frequency wg=0, with an amplitude proportional to

In Hgrst the original symmetry is restored at the collective 1/V“’9 (a clgar exa_mple O.f mfraregl problejnsFrom the_

level. si it commutes with the momentdnOn the con- practical point of view, this behavior leads to unphysical

€vel, since it co _ mentur N predictions whenever even small amplitudes of the spurious

trary, it does not commute with the intrinsic momentpm  state are present in a finite frequency RPA mode.

and thus the infrared divergencies become eliminated. Be- The corresponding physical operatorfiﬁ AR, and it re-

cause of the Abelian nature of the gauge generalafs the Iq'uces toAR after being boosted: the vector has disap-

ghosts are uncoupled from the remaining degrees of freedo . . ; .
and may be ignored. Since the parameteis arbitrary, it peared from the calculatiofand the as.souated infrared di-
should not appear in physical results. vergencies as well The problem is reduced to the
calculation of the well behaved operaf@rwithin the collec-
tive sector of the Hilbert space.
We give now a simple example of how the formalism
In Hgrst [EQ. (21)], the termQ- P represents the cou- may be applied in nuclear reactions. Let us consider a heavy
pling between the collective and the intrinsic motion. This

A. The BRST invariance

includes fermion ghost operaton%; with conjugate mo-
menta%!nv ([7]*/1,’771/]+:[7]*/,L!7TI/]+:(_1)M5/LV)Y

Q=(p-P)- p+B- . (19)

>

——r
m

-

+R +R

>| =

.01
ri-i—K

—)F(Fi_

B. Transformation to a moving system

5Since the collective and intrinsic degrees of freedom are indepen-
“Henceforth “nil” operators. dent of each other, the operatﬁrf r/A is different from zero.
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nucleus in which the particles are labeled by the subiridex 4F "]
and a point particle labeled by 0. Both systems interact via a ! (a) 1
two-body force depending on the particle distances, namely E 0 L
.. . O 1 ]
2 V(ro-ri-R)—2 V( ro—ri+—r—7z’), (25 O 4t
i i A w— .
o 4l i
. y @ (b)
whereTR is the position of the c.m. of the heavy system. The = 2t 1
transformed interaction expresses the fact that the position of o 0 —ud
particlei should be measured with respect to the center of £ 2f I
mass in the intrinsic frame of the heavy system. u;‘j 4|
C. Hilbert space >:< g (c) ]
= [ ]
In the moving frame of reference the collective variables g 0 —
R are considered to be real variables and thus, as a tradeoff, 2l
some original degrees of freedom must join the spurious sec- 4|
tor. At the level of elementary modes of excitation these are . L . .
given by the RPA zero-frequency modes. The tdtgia- 0 5 10 15
dratio spurious sector reads Energy [MeV]

we s Lo g

= 3.1 5 7 FIG. 2. The matrix elements of the vector operator of .
spur_zmp(ll)‘p(ll)_Q’p(11)+ w? KB‘I'(H)— HB.B p 9

Caseda), (b), and(c) correspond to caséb), (d), and(f) of Fig. 1.
oL All values are scaled up by a factor 10.
=w(ly-I'1=Tg Ty, (26)
) o ) Considering the dominance of the contributions due to the
where the transformation to normal modes is given in Ap-gygitation of 1~ states, see Ref§16,17, in the context of
pendix C. The following commutation relations are satisfiedthe RPA diagonalization, it is obvious that, from the nuclear

structure point of view, one has to produce an estimation as
[Flp,!FJJ_ry]:_[FOﬂ!ng]zalu.V' (27)

accurate as possible of the nuclear matrix elements involved
; 0 the transitions.
'I:heﬁunperturbed vacgum state is annihilated by the operatof'g The vector operator exciting'= 1 states may be written
I'y,I'g. The two spurious bosondabeled by 0,1 have the (cf. Appendix D
same excitation spectrum as a result of the anomalous com-
mutation relation in Eq(27) and the form of the quadratic
Hamiltonian(26). _ S AN Yyl ay= 2 (i YiDlvn = (=D v, (- w)]
In addition to the spurious sectfig, ,ny,), the intrinsic My
sector displays elementary modes of excitation, which are i
represented by the finite_-frgqqency F_QPA.m(,)cﬂleg, (w, - K(—l)“<[j1Y1M P Dr ., (29
>0). Therefore the total intrinsic Hamiltoniahzrgr may be
written

wheren,, denotes a finite-frequency RPA mode and a similar

Hirsr= Hi(gt)rJr Hies, expression should be usec_i foy the_ dipole axial-vector term of
the weak current. Its contribution is not affected by the treat-

ment of the spurious sector. The amplitude in the second line

may be regularized as in Sec. 11l B. The results correspond-

ing to the transition matrix elements of the shifted operator

(29), obtained in the RPA diagonalization and for transitions

28) involving the states depicted in Fig. 1, are shown in Fig. 2.
The similarity between the results obtained with the three
different Hamiltonians supports the above claim about the
validity of the procedure. The same effects are expected to
materialize in the case of realistic calculations and work is in
progress to include the counterterms obtained in the previous

The conversion of muons into electrons may proceed acsections, starting from realistic two-body forces.

cording to the lepton-flavor violating processes discussed in
Refs.[4,16,17. The main interest of such process lies on the
necessary mixing of muon and electron neutrinos. So far
there are experimental upper limits for this procpgs An We have attacked the problem of the center of mass mo-
example of the current calculations is given in R¢16,17].  tion in nuclear spectroscopy calculations in two successive

1
+ —
n, 1k

2 2
Hi(nt)r: |_|gp)ur+ 2 w,
14
2

> > w - o
Hres=HenytHeo— Q- pagt KB' r'(10)-

IV. TRANSITION OPERATORS TO BE USED
IN REALISTIC CALCULATIONS

V. CONCLUSIONS
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steps, namelyi) the reconstruction of the translational in-  Let X(,; be an-body operator such that there angbod-
variance of the Hamiltonian an() the inclusion of collec- ies crossing the Fermi surface and«(m) bodies that do not
tive variables in order to eliminate infrared singularities. Thecros§ (0<n, 0<ms=n). As is well known, within the
solutions in both steps are exact, albeit perturbative. TheRPA, the expectation valu& g, is privileged over the
share in common the same perturbation parameéter’?,  particle-hole termX(11y, and this last component relative to
which is a convenient feature if a given order of perturbationthe termsX ;o) representing the scattering of a particle above

is envisioned. or below the Fermi surface,
Quite generally, the first step requires the introduction of
counterterms, which has been performed following specially O(X(00)) > O(X(11)) > O(X(10))- (A1)

Ref.[10]. We have tried the procedure for pure independent-

particle Hamiltonians: in the case of harmonic oscillator po-Also, within the RPA, the(large parameter measures the

tential, the counterterms reproduce the dipole force with theollectivity and, for the case of motion of the center of mass,

self-consistent strengttsee Ref[8]); for spin-orbit andl? it should be represented by some power of the number of

terms in the central potential the procedure leads to the inparticlesA. A different power of thgsmal) paramete A~ /2

troduction of two-body terms of similar character; finally, the may be assigned to each term in £E41). Consequently,

application of the procedure to an empirical single-particle

spectrum insures the elimination of all the matrix elements of ~ O(X ) =A; O(X(11)) = A/AY% O(X(10) = VA,

the coordinate operator to excitefi=1"" RPA states, which (A2)

is not the case for the dipole interaction, no matter how close

to zero the lowest RPA energy is made by adjusting thevhere X is another parameter depending on the chosen op-

strength of the interaction. erator. For instance, in the case of the momentum component
The introduction of the collective formalism is made p,, P,g=0, andX=A, while

along the same lines as in R¢fl5], benefitting from the

Abelian character of the transformations associated with O(pM(ll))=A1’2; O(Pu(10) =1. (A3)

translational motion. In this case the Hamiltonian displays

the collective energy term and this degree of freedom be- We generalize the estimatidA2) for the case oh-body

comes uncoupled from the remaining part of the Hamil-operators, namely

tonian. The procedure requires however a nontrivial transfor-

mation for all physical operators, which leads, for instance, O(Xpm) = XA~ TM2, (A4)

to the substitution of the intrinsic center of mass operator

(1/A)r by the collective operatoR representing the same As an illustration, we ascribe the following orders to the

magnitude, and thus to the elimination of the infrared singudifferent terms in the Hamiltonian:

larities associated with the former.

To conclude, we thus suggest the use of the counterterms O(H (o) =€A; O[H11(=0)]=€A"?
(2) and of the operator®9) in cases where, like ing~,e™)
conversion, the dominance of th€=1" channels is appar- O(H10) = €O(H22)) =€;
ent.
O(H 21)) = €/AY% O(H (0) = €l A. (A5)
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DETERMINE THE COUNTERTERMS

We attempt a solution to the inhomogenous equat{@hs (7~ s Pud(nmy = nol T - u(11), Puanl oo =1A(=1)*.
and(4) in terms of an expansion similar to the one implicit in
the RPA. Since this expansion is not always well defined
from the point of view of an expansion parameter, we start
by discussing the meaning of it. We disregard exchange in the associated integrals.

(A7)
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D. R. BES AND O. CIVITARESE

Let us now proceed to solve Eg®) and (4). We may
split them into equations corresponding to a definite pair of
guantum numbersn(m), and thus to a particular order of
magnitude. According to EqA6), the equations involving
only the one-body component of the operaté¥g,,, and
R,y (v=1,0) may be written as

0= ,10) TIAP 41y + (= 1)"[P ., P ] (00) »(10)
+ ( - 1)V[ R*V 1pp.](00)pv(lv) '

= Mu(2v) ™

2a+1 N 1
—Ea: —3 ([P Fanliie-mif anlucy

PHYSICAL REVIEW (53 044323

0=pu)~ AR, 20+ (=)' [P_, Il u]i1w-1)" w11
+(=D'R-, 1 uliaw-1)1Pw(an)
_1)V[PV1 ,u.](lv)rv(10)+( 1) [va ,u.](lv)pv(lO)

AR, (20)

+[[Rev) 'r(ll)]ﬁ_(vfl)]p(ll)]:;,(Zv))1 (Al11)
0= Pu(iv) ™ IAR,LL(ll)) + ( - 1)V[ P_ v ,u](OO)r v(1v) where
+(_1)V[R—V!r,u](00)pv(lv)' 20+1
Tp(20) = Tu(20) ™ Ea: 3

These equations are @?(eA*?) for the casev=1 and of
O(e) for v=0. In both cases they uncouple, since the time
reversal symmetry of the Hamiltonian requires that

[Ry,Pul00y=[Py:r 1](00)= 0. (A8)

In order to solve the two equations thus simplified, we
commute the first and the second one with the operatgrs

1
X %‘4 ([P vp(l)]frl(ufw)]r(lw)]p,(Zv)

1
+[[Rey,Payl{1w-wiPawluczs))

1
+([[Pr2w+ 1)1 Pan] (i)' 10)i(20)

+[[Rp2w+1)] - Pan) E);I_U)p(lo)]};(Zu))} ,

andr ,, respectively. The expectation value of such commu-
tators yields the relations
20+1
I(_l)/_l, nﬂ(zv):pﬂ(zv)_g 3
(=D[P_,,pul00)= 5V,LT[7T—,L(11) Pl

|(—1)“
—x Lo w(11) s ,u(ll)](OO)a

(A9)

(=D'R-,,r,J00y= = oy

where, according to EqA6),

T =[H , +[H , ,
w=[Hao):PuanlanT[He2),Puanlay We try

Pun=[Hao) M wanlant[Heo r wanlay- (AL0)

P =

Substitution of Eq.(A9) into the first two equations yields
the one-body components of the operatBs,R,, [Eq. (5)].

The equations for the two-body componentsv )@
=0,1,2) of the operator®,, ,R, read

0= 20y TIAP L 20y T (= 1)'[P . P20 — 1)17 w(22)
—1)"[R_,,Pulinw-1)1Pra)
+ ( - 1)V[PV ip,u,](lv)r 1/(10)+ ( - 1)V[Rv ’ p,u](lv)pv(lO)

= Tu(20) T1AP 4(20)

2a+1 N 1
- % T([[P(Zu) Pl e -1 anluen

+[[Re2v) Pan)(ie- 1))p(11)];|-/,(2v))’

044323-8

Run)=—

[ 720y T anl 7= 720y Pan] (= 1)7,

1
X % ([P -r(l)]frl(ufw)]r(lw)],u(Zv)

1
R i w-wiPaw )

1
—([[Pr2@w+1)1:" ) (1o " 2020

+[Ri2w+ 1)1+ (1) (o) p(lO)],l;,(Zv))} . (A12

i 2+1
KT#(ZU) 2A2 2

P 1
x99Il T(20) Paniro - 01" anluaw)

(P 1
+i P M(20) ' Pa)i1w-11Pan]ue))

i 2a+1
Kn,u(ZU) 2A2 2

R 1
X (9P 720 T anlize - anleey

(R o 1
IR 720y anfiw-1PanThee)-
(A13)

Introducing Eq.(A13) in Egs.(A11) and using the identity

(A14)



REMOVAL OF SPURIOUS CENTER OF MASS EFFEGT. ..

we obtain

20+1

0= 3

®
x| 1= =5 [1+(-1) ])

i
1
X[ 7@ Pavliiw- i anluen + 3

i (P) (R)
T o

2 2

20+1

X2,

1
X720y Pan]ir-1Panducze

1
+ ——— (R + ) 722 10y DI c0ol P 1 20
2\/§A2(91 1 722" 1)1y PIooo) PT (a0

1+ 2+ -2

o i
2 2

i
1
X[ 7oy T anlr-iF anduce + A

20+1/ j®
XE 1—7[1+(—1)U])
o 1 1
X720 o an)fr - 11Pan]ue) + m
X (9 + [ 722 T anli 7r(11)]8(00)[pr],lt(2u) :
(A15)
The solution appears to be
gP=jP=1; 0=0,2,
gR=jP=—1; ¢=0,1,2. (A16)

The coefficientsg{™ and j{? are not determined. The fol-

lowing terms are left in the right-hand side of EA15):
__ i 1 1
0= K[[T(Zv)!p(ll)][l(v*l)]r(ll)],u,(Zv)

1 1 0 1
- J3A2 [[722).F anyl(a1) - PIocoo) PTTuc2v) »

i
1 1
0=+ K[[ N(20) o F (110 - 1P A u(20)

1 0 1
- \/§A2[[T(22)’r(ll)](ll)’r(ll)]O(OO)[pr],u(Zv)'

(A17)
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Equations(A17) should be satisfied in general only to lead-
ing order. We may commute the firgsecond one by
ra1) (Py) and consider only the leading order terms in the
RPA expansion, which in this case correspond to the one-
body terms, namely

i
0= ——([ 729, 1 T 0
\/§A([[ 22):Pan]any s anlocoo)

~[[722)." ] Py 18 00) T wany

i
1 0
= |r [
\/§A ([L 7¢22) anliy p(11)]0(00)

—[[ 22y, Panltr (11)]8(00)) Pu(11)- (A18)

The differences enclosed by the parentheses vanish accord-
ing to Eq.(Al4).

The general solution of Eq§3) and(4) may be written as
a superposition of the solutiof6) of the inhomogenous
equations plus solutions of the homogenous equations with
m,=p,=0. However, we must drop the last contributions
since the residual interactions should vanish if the Hamil-
tonian is translational and Galilean invariant.

APPENDIX B: INTERACTIONS ORIGINATED
FROM SINGLE-PARTICLE HAMILTONIANS

The calculation of the one-body terms of the operators
P..R, requires the knowledge of the operaterg,p, and
of the expectation value$[ 7_u,p,1), ([p—m,r,]) [cf.
Eqg. (5)]. The notation used as superscripts is obvious,

mO=ime?r,; (=17, p- )= —me?A,
p"°=0, (B1)
~ixsoPXS),; ([730.p-,])=0,
o= —ixsorXS),; ([p3°.r-,1)=0, (B2
m=ixn(1%p) = ixu(pxD),,;

XII

~DX[m,.p-u]) =3 (P,

pl=ixu(Ixr),—ixy(rxn),
1)“<[p,“rw]>—ﬂ< %), (B3)
(K[| 7sPl[i) = ekl pl]i),

(w2, =—5 3 (Kll==AKlplli),

(K1) = Kl 1+ = Klpli,

044323-9
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2
(D[P -y =—3 % (Kl p=Alli)CK][r[[i),
(B4)

wherek(i) denotes single-particle states abdbelow) the
Fermi sea andg; represents the excitation energy of the
corresponding particle-hole state.

APPENDIX C: THE TRANSFORMATION TO NORMAL
MODES IN THE BRST HAMILTONIAN

The transformation to normal modes in the BRST Hamil-
tonian(cf. Sec. Il Q is the following:

= 1 mAQ N i mAw
1y—mpﬂ(n> 20 v T A 5 w1y
N 0} mA i mAw
0u= N omalr ™ Vgt AN 72 Tuan:

(CD

APPENDIX D: EXCITATION OF THE SPURIOUS MODES

The RPA transformation from particle-hole modﬁéyﬂ
to normal modeSy,{M reads

%T,,L:%: [Nn ki Vi~ (— D pnkivii, -], (D1)

wherek(i) denotes states abovbelow) the Fermi levef.

Any single-particle operator transforming as the coordinate

r, under time reversal, such as Eg9), may be written

"Coupling tol "=1" is assumed.

PHYSICAL REVIEW (53 044323

j2(ar)Yq,(60,8)| a1
1

V3

=§ (nliaYalye = (=D Fyn 1.

2 (KIYllD G, = (= D]
(D2)

Let us denote byn=g the zero-frequency mode, and by
=n, a finite-frequency one. We can make the following
choice:

iA .
luan=— \/=[7g,#_(_1)#?’g,w]*

2wg

—\/ﬁ T (=1)H
pp,(ll)_ 2 [yg,p, ( 79,—;1,]'

As a consequence, the amplitudes in the RPA transformation
read

(D3)

1 ()
xg,ki:mwnpnm';\/%knruw,

1 i 0}
pow= T (KlIpll)+ 5\, 04
g

and the amplitude to the spurious boson reads

(alisa)= 5= 3 (sl I o)
Wqy [

(D5)

1
_(_1)#§<[j1Yl,u vpf,u]>y

as in Eq.(29).
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