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The one-body density matrix, momentum distribution, natural orbits, and quasihole stafes ahd“*°Ca
are analyzed in the framework of the correlated basis function theory using state-dependent correlations with
central and tensor components. Fermi hypernetted chain integral equations and single operator chain approxi-
mation are employed to sum cluster diagrams at all orders. The optimal trial wave function is determined by
means of the variational principle and the realistic Argomijetwo-nucleon and Urbana IX three-nucleon
interactions. The correlate§O momentum distribution is in good agreement with the variational Monte Carlo
results and shows the well-known enhancement at large momentum values with respect to the independent-
particle model. A similar behavior is found #Ca. The relative importance of the different types of correla-
tions (mainly Jastrow and tenspon the momentum distribution appears to be similar in the nuclei and in
nuclear matter. Diagonalization of the density matrix provides the natural orbits and their occupation numbers.
Correlations deplete the occupation number of the first natural orbital by more than 10%. The orbitals follow-
ing the first one result instead, occupied by a few percent, or less. The single particle overlap functions and the
spectroscopic factors are computed in the correlated model for both nuclei and compared with previous
estimates. Jastrow correlations lower the spectroscopic factors of the valence states by a few percent
(~1-3 %) with respect to unity. An additionat8—-12 % depletion is provided by spin-isospin tensor cor-
relations. It is confirmed that a variational treatment of short-range correlations does not explain the spectro-
scopic factors extracted fromee’p) experiments. Such an approach corresponds to the zeroth order of the
correlated basis function theory and two-hole one-particle perturbative corrections in the correlated basis are
expected to provide most of the remaining strength, as in nuclear matter.
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I. INTRODUCTION tion (CBF) [10] method has been used in doubly closed shell
nuclei by Fermi hypernetted chaifFHNC) integral equa-
The notion of nuclei as a set of mutually, strongly inter-tions[11,12. The same accuracy as in the best variational
acting particles is now generally accepted and it is widelystudies of nuclear matter has been obtained®® and “°Ca
recognized that correlations beyond the mean field play &y using spin and isospin dependent correlations and mod-
substantial, if not decisive, role in the microscopic descrip-ern, microscopic potentialgl3]. To this aim, the nuclear
tion of nuclear properties. This is intuitive when energies aranatter single operator chaiisOQ approximation[14] has
evaluated, but there are also clear signatures of the presenibeen extended to finite nuclear systems to deal with state-
of correlations in some quantities related to the behavior oflependent correlations in the framework of the FHNC tech-
the single nucleon in the medium. For instance, it is knowmique [15] (FHNC/SOQ. The variational and the coupled
that the one nucleon momentum distributidfD) has domi-  cluster approaches have provided an overall satisfying de-
nant high momentum components that are due to short-rangsription of such ground state properties as binding energies,
nucleon-nucleoriNN) correlations and are not describable in one- and two-body densities and structure functions.

any independent-particle mod@PM) [1,2]. In addition,NN In medium heavy nuclei the microscopic approach has to
correlations may be responsible for the reduction of the spedse compared with the independent-particle model and its de-
troscopic strengths of the hole staf&s. scription of various nuclear features. The use of this model is

The ideal way of describing the nucleus would consist inso wide and well established that great part of the nomencla-
solving the many-body Schdinger equation with realistic ture on medium and heavy nuclei is based upon concepts
interactions. Exact solutions have been obtained in light nueefined within the IPM itself. For example, the ideas of col-
clei up toA=8 within a variety of methods: quantum Monte lective excitations, single particle levels, occupation prob-
Carlo [4,5], Faddeev-likg6], and correlated hyperspherical abilities, and spectroscopic factors are meaningful only in a
harmonicq 7] expansions. theoretical framework where the IPM is a first-order approxi-

The treatment of heavier nuclei has not yet attained thenation.
same degree of accuracy as the light ones. However, the The sources of effects beyond the IPM description are
situation is rapidly improving, at least for doubly closed shellgenerally termed as correlations. This name is hiding two
nuclei. The O nucleus has been studied by variationalrather different kinds of physical effects. Long-range corre-
Monte Carlo[8] (VMC) and coupled clustef9] methods. lations are generated by the so-called residual interaction,
The variational theory underlying the correlated basis funcneglected in the IPM and responsible for the collective exci-

0556-2813/2001/63)/04431914)/$20.00 63 044319-1 ©2001 The American Physical Society



A. FABROCINI AND G. CO’ PHYSICAL REVIEW C63 044319

tations. The short-range correlatiofBRQO are mainly pro- and their correct calculation represents a severe challenge for
duced by the repulsive core of the nucleon-nucleon interacthe available many-body theories.
tion. Moreover, important noncentral components at The FHNC theory for the OBDM in correlated infinite
intermediate range are needed for most realistic descriptionmatter was developed by Fant¢@#]. Subsequently, FHNC/
While collective phenomena have been known since th&OC was applied to nuclear matter to calculate both the MD
early times of nuclear physics, effects produced by the SRC25] and the spectral functiof26]. The technique has been
are more difficult to be experimentally singled out. Only in then extended to evaluate the OBDM in doubly closed shell
these last few years, thanks to the advances of the expemuclei described by a correlated wave function containing
mental techniques, there have been some consistent effodsalar, spin-isospin independefdr Jastrow correlations
aimed at their identification. [27]. Isospin dependence was later introduced to treat closed
The sensitivity of the two-nucleon emission cross sectiorshell nuclei in thgj coupling schem§12]. The %0 momen-
to the SRC is eviderjtl 6], but also other quantities related to tum distribution has been calculated by using state-
the behavior of the single nucleon in the medium seem talependent correlatior{8] within the VMC approach. Low-
depend on them. For instance, ¢’ p) data in the quasielas- order cluster expansions have been employed in closed shell
tic region need a consistent reduction of the IPM holenuclei[28,29 and insp andsd shell nuclei withN=2Z [30].
strength to be reproducéd?]. The same holds for the elec- Local density approximation was used to estimate the MD in
tromagnetic form factors of low-lying states with high angu- medium-heavy nuclej31] from the nuclear matter results.
lar momentum[18]. Furthermore, charge density distribu- The effect of short-range correlations on the OBDM and the
tions obtained by elastic electron scattering experiments aréJO in %0 has been studied by means of the Green function
in the nuclear interior, smaller than those predicted by thenethod[32]. As far as the overlap functions are concerned,
IPM [19]. All these facts could be explained by assumingin the ’Li(e,e’p)®He reaction the experimental data have
occupation probabilities of the single particle levels differentbeen successfully compared with the VMC, parameter-free
from that of the IPM[20]. theoretical prediction§33]. VMC has been used also in the
From the theoretical point of view, the basic quantity toanalysis of the'®O(e,e’p) knockout experiment$34]. A
be investigated in order to verify the hypothesis of partialrelationship between the OBDM and the QH overlgps]
occupation probability is the one-body density matrix has been recently exploitd86,37] to evaluate the spectro-
(OBDM), p(rq,rq1/) defined as scopic factors for the same reaction, using several correlated
models for the density matrix. The effect of long-range cor-
p(r,re)=(Vo(A)|a'(rya(ry)|[Wo(A)), (1) relations has been considered in R¢88,36.

In this paper we extend the FHNC/SOC methodology to
whereW(A) is the ground staté-body wave function and  deal with the OBDM 0f®0 and *°Ca using wave functions
a'(ry) is the creation operator of a nucleon at the position  with central and tensor correlations. The correlatetody
Much theoretical effort has been devoted to understand th@ave functionW,(1,2, ... A) is written as
behavior of the OBDM and also of the MD(k), given by

the Fourier transform of(r,,r,/). The MD is also obtained Po(L,2,... A)=G(1,2,... A)Dy(1,2,... A), (2
by the energy integral of the spectral function, that is often _ i

used in plane wave impulse approximation to study inclusivéVhére G(1,2, ... A) is a many-body correlation operator
and exclusive reactions. In some approximations and kine2cting on the mean field wave functiobo(1,2,...A),

matics, the MD is directly employed. The natural orht©) given by_a Slater determinant of single particle wave func-
[21], with their occupation numbersi(), are defined as the 1ONS &,(i). The correlation operator is given by a symme-
basis where the OBDM is diagonal. In the IPM, the nucleartrizeéd product of two-body correlation operatdts,

ground state is described by a Slater determinant of fully

occupied single particlgSP wave functions below the G(1,2,...A)=S H Fij
Fermi surface . In this case, the NO and the SP wave <]

i 1. incide andn,., =1 andn =0. De- - . . .
fL.mt(.:non f(Wf)t::_Om(_:t i a=aF ﬁﬁF lati In the most sophisticated variational calculatiob®th in
viations from this situation are a measure of the correlations, ,clear matter and in nucleF;; assumes the form

since they allow higher NO to become populated with
#0.

Quantities not directly related to the OBDM, but acces- Fij= _218 fp(rij)oipi' 4)
sible to the experimental investigation by means of knock- ==
out experiments, are the quasihdl®H) wave functions \yhere
n(r), defined as the overlaps betwedfn, and the hole
states®},, produced by removing a nucleon from the posi- Of **=[1,0:-0y,S; .(L-9);]@[15- 7] (5)
tionr. From (e,e’'p) experiments it is possible to obtain an . A
accurate determination of the QH overlap functid2g]. andS;;=(3r;- airjj- o;— 0;- g;) is the tensor operator. The
Their normalizations give the spectroscopic factBgsthat  spin-orbit components of the correlatiop= 7,8) have been
deviate from unity(the IPM valug because of various ef- omitted in this paper fF mode), as well as spin-orbit and
fects, from center of mass to correlation corrections. TypicalCoulomb interaction terms in the mean field potential gener-
values extracted from the experiments Sre-0.6—0.7[23], ating the single particle wave functios,(i).

. 3
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The variational principle allows for fixing the correlation closed shellN=Z nuclei we are consideringThe second
functions fP(r) and the single particle wave functions by equalities in the above equations are valid since we are work-

minimizing the ground state energy, ing in Is coupling.
H In analogy, we define the functidw(r,,r,/) via the rela-
(WolH[¥o) tion
E(Vol= 3+ 6
[ 0] <\P0|\I’0> ( )
In our calculation we adopt a nonrelativistic nuclear Hamil- p(rr)=| 2 xeADxoA1) [N(ry,ry). (12
tonian of the form, or
—#2 .
H= — V24 4 o 7 We have already presented in REZ7] the FHNC theory of
2m Z ' Z’, vl i<j2<k Vilk ) the OBDM for Jastrow correlated wave functions,
Modern two-nucleon potentialg; are built on the very high
quality phase-shift analyses of theN scattering data Gy12,...A=]] f(rip), (13)
[39,40. We have used theg reduction of the Argonne ;g i<

[41] potential. For the three-nucleon interaction the Urbana
IX model [5] has been adopted.

. . having only thep=1 scalar component in the correlation
The plan of the paper is as follows: Sec. Il is devoted to g only b P

Factor Fii . The density matrix is expanded in powers of the
. L o j-
brief description of the FHNC/SOC theory for the OBDM; in dynamical correlations h(r)=[f(r)]?>~1 (h bond and

; 40
Sec. Ill the results obtained for thé€0 and“*°Ca momentum (1)=f1(r)—1 (& bond, and of thestatistical correla-
distributions and natural orbits are presented and discusse .
) ! ibns, No(r;,ri) (exchange oe bondg. The expansion gen-
in Sec. IV we describe the FHNC theory for the overlap J e .
; . . erates cluster terms classified according to the number of
functions and give the results for the spectroscopic factors; .. .
: ) particles and to the number of the correlations. The FHNC
and the conclusions are drawn in Sec. V. . :
equations allow for summing cluster terms at all orders. De-
tails of the finite systems FHNC theory may be foundi2i]
Il. FHNC /SOC THEORY FOR THE ONE-BODY DENSITY and in Ref.[11].
MATRIX The FHNC/SOC equations for the more gendgatorre-
lation were derived in Refl15] for the one- and two-body

The one-body density matrid) may be written as densities. In the case of the OBDM, we can write

A
_ T
p(rry) =) &z f Pravo(12,... A N(ryry) = £5(r)[L1+AEP(r) 15 (ry0)

XWo(1h2,. . A, ® X1+ AEP(ry ) ]eNonl 1 ) No(r 1))

where N=[d3,---[d3s|¥y|2. The one-body density —NE (P Fa) ]+ E5(r) €5(rq ) eNoulrr)
p1(r4) is the diagonal part of the OBDM, whose Fourier ee

transform gives the momentum distribution,

X > APAPINP (r1,r1)[No(rq,r1r)
p=2

1 )
”“‘):des”fdg“’”(”’”’)e'k‘“r”')' © SNS, (rf)]=NP ()l (1)

In the independent-particle model, the OBDM is given by,

NG, andNg, , arenodalfunctions(see[27]) of the ww and
w.w type, € and AEP are the central vertex corrections
and their operational contributiof&5], and the matricea\P
and AP are defined inf15]. The components will be often

Z(E I (D)x (1')>No(f1,f1f), (10) labeled ax (p=1) ando (spin), 7 (isospin, andt (tensoj.

PIPM(rlvrl’):za: (1) pa(1)

The nodal functions are obtained by the equations

and
NP (rare) =2 > | d3rp &0 XA, (ry,ro) Vi, (rp)

xx'ar

P1,|PM("1):E |o(1)]2=vNg(ry,r1), (11 ) )
“ XX (F2:1) + Ny, (r2,r10)] (15

where x,,(1) is the spin-isospin single particle eigenfunc-
tion and v the degeneracy numbew€4, for the doubly and
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and  hS(rq,rp)=exgNe(ri,ra)]. Moreover, the
_ 3, Lrp
Nf’ocwc(rl,rlf)—; fd F2 €150 X0 (N1, 12)VEUr2) N(X) A(r1,12)=N(X)b,(r2,r1) property holds. The central
« links are defined if27], and thex¥, andNg, functions
X[ X (T2,r1) +Ng,, (r2,r1/)JAT in [15]

For the wcc-type nodals we haveNy (=N, +Ng |
+qu22 d3r, gi;'i,Aqu (P2 F)VI(ry) +Np,+NP,. N, andNE, , are solutions of
X[ngc(rZIrl’)+N::wc(rZIrl’)] Nzcx(rl,rz):E fd3r3 f%gxgcc(rl,rg)vgg(@)

qr

+NP (ry,ry)+NP (rq,rq
A pr( f) X[ch("s,rz)“‘Nix(ra,rz)"'N;x(ra,rz)]Ar
+Ng)cp(rlvrl’)' (16)

+ 2| dra E5BAXE, o(r1,ra) VEK(Ts)
=2

The indexx(x’) may assume the value$x’)=d,e and de- &

notes the exchange pattern and the type of correlation at a x[x[:c(rg,rz)+N;X(r3,r2)+N;,X(r3,r2)],

specific point. In general, we may hadeand o vertices, if 21)

the point is reached blyandw bonds, respectively, and does

not belong to any exchange loop; anvertex if the point

belongs to a closed exchange loop and it is reached byetwo Np S(r1,rp)= 2 J d3r g £90X C(rl,rg)vgg(r3)

bonds; ¢ and w vertices if the point belongs to an open

exchange loop and it is reached by a single exchange line. ST = Na(TaF2)+NE (faFs)+NE (Fa r)1AT

The allowed &x’) combinations areld, de, ed. We indi- [ (T5.r2) (T5.r2) SEREN

cate withVy, the vertex corrections, and witi", the an- s Larp

' q qr
gular couplings. The expressions of these equations are all +q2 d*rs &1550 Xw o(r1:r3)VeelTs)

given in[15].

The above equations are derived in the FHNC/O approxi- XN, (r3,r2) + N (r3,r2)]. (22)
mation, which does not include the contribution of thle
ementarydiagrams. A detailed discussion of the importanceThe equations foNP, andNP  are given in[15]. The links
of these diagrams and of the accuracy of the apprommaﬂon&p =2 are
used in solving the FHNC equations can be found in Refs.
[42,43. The FHNC/O choice has been used in studies of the X”>2(r1 r)=hP(ry,ro)hS (ry,ry)[NE c(rra)
equation of state of nuclear mat{eiO], where it was found
that the elementary diagrams contribution is not important =No(r1,r2) 1+ [f(rihS(rq,rp)—1]
because of the relatively low densities of the system. In finite
nuclei elementary diagrams may play some role in the evalu-
ation of the expectation value of potentials having strong
exchange componenf&1]. In general, a measure of the rel- Again, X;, . is defined in[27].
evance of the missing diagrams is provided by the accuracy The vertex correctiong’ are discussed if27] and A 2P

r=2

><N?,,Cc(r1,r2)- (23

of the sum rules of the one- and two-body densities. is given by
The partial nodal functionsl?  are solutions of the inte-
gral equations AEP(ry)=Ugo(ry)
p
(=3 3 | dira X,y ra) Vi (ra) t2 5 f ro{X0a(r rINEa(r2,72)P3(r2)
vy’

+[XE(re,r2)NPo(rq,r2)
+XPe(r1,r2)ND 4(r1,r2)1C4(r2)}- (24)

p; (the Jastrow part of the one-body densignd C, are
XP=2(r, 1) =hP(ry,ro)hS(ry,F2) —NP(r1.r5), (18) given in[15], andU®P is obtained by Eq(2.12 of [27] with
the substitutiong{— p;—p§ andCy— CqUSP.

X[X;/x(r31r2)+N;/x(rsyrz)]- (17)

The XP=2 links are

ri,r he(rq,ro)[hP(ry,ro)NS(rq,r
Xoe(r:r2) =N(rar2)[he(r.r2)Noe(rs.ro) lll. RESULTS FOR THE MOMENTUM DISTRIBUTION
+(r NP (ry,r2) 1= NP (rq,r2), (19 AND NATURAL ORBITS

. In our work we used the Argonne; NN potential. This
hD(ry,r2)=1P(ri) +f(rdNE4(ry,r2), (200 model is based upon thgg potential and it is constructed by
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6 ’ Solid lines, fg model; dot-dashed, Jastrow; dashed, IPM. The

the densn_u_es with the Jastrow correlation, the dashed lines are ths?quares are the VMC results of RE8].
IPM densities.

with the healingconditionsf(r=d;)=1, f***(r=d,)=0,
considering only the first eight operator terms, up to the spinand requiring that the first derivatives vanistr atd,. Only
orbit ones. It reproduces the isoscalar part of the full intertwo healing distances are introducet},for the four central
actionv,g in the S P, and %D, waves and the’D;-3S; channels andl; for the tensor ones, and they are variation-
coupling. Argonnev was introduced in Ref5] because its  ally fixed. More details on this procedure are given in Ref.
parametrizatior{simpler than that of other realistic poten- [14] for nuclear matter and ifil5] for nuclei.
tials, sincelL.? and (L - S)2 components are missihgllowed The single particle wave functions have been obtained by
for a large simplification in the numerically involved quan- solving the single particle Schiinger equation with a
tum Monte Carlo calculations. They potential is slighty —Woods-Saxor{Ws) potential,
more attractive than g, and, for this reason, the strength of

the associated repulsive part of the three-nucleon f@dce Viyd )= Vo (25
bana IX model has been increased by 30% with respect to w 1+ exd (r—Rg)/ag]”

the original version. The results presented in this paper have

been obtained with this Hamiltonig@8’ +UIX model). A full minimization for the A8+UIX model has been

The correlation functionsP(r) and the single particle obtained in Ref[13] and it has provided a binding energy
functions ¢,(i) are the two ingredients necessary to con-per nucleorB/A of 5.48 MeV in 10 and 6.97 MeV in**Ca,
struct the many-body wave functid). We use a 5 corre-  to be compared with the experimental values of 7.97 MeV
lation, therefore, with respect to the structure of the Hamil-(°0) and 8.55 MeV {°Ca). These differences are compa-
tonian, we neglect the spin-orbit components. Therable with those obtained in nuclear matter at the empirical
correlation is determined by minimizing the nuclear mattersaturation densitypyy=0.16 fmi 3, with the same Hamil-
energy at the lowest order of the cluster expansion, consideonian. In fact, the FHNC/SOC nuclear matter energy per
ering the Fermi momenturke as one of the variational pa- nucleon,Eyy, is Exyy=—10.9 MeV[13], against the em-
rameters. The resulting two-body Euler equations are solvedirical value of—16 MeV.
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FIG. 3. FHNC/SOC momentum distributions
in %0, “°Ca, and nuclear mattefNM). Solid
line, NM fg model; dot-dashed, NM Jastrow
model; thin solid line,*®0 f model; thin dashed
line, 4°%Cafg model.
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The nuclear rms radii were found to be 2.83 fmf0  wherev is the spin-isospin degeneracy. For the Jastrow cor-
and 3.66 fm in*°Ca (the experimental radii are 2.73 fm and relation this normalization is satisfied within the 0.2—0.3 %
3.48 fm, respectively However, the one-body densities at in both nuclei, while for thefg model the error is~3 % in
the variational minimum did not show a satisfactory agree-%0 and~2 % in “°Ca, reflecting the approximations of the
ment with the experimental ones. Moreover, shallow minimaSOC approach.
with respect to variations of the mean field parameters In Fig. 3 the MD of *é0 (thin continuous lingand that of
around the minimum itself were found in R¢L3]. In par-  4°Ca (thin dashed linpare compared with those of nuclear
ticular, if one chooses a set of single particle wave functionsnatter normalized as in Eq26) and calculated in the
that reproduces at best the empirical densities, thetABX FHNC/SOC framework by using the same interaction. It is
model providedB/A=5.41 MeV in ®0 and B/A=6.64  worth noticing that the differences between the Jastrow and
MeV in “°Ca, with rms {0)=2.67 fm and rms ¥Ca) the fg correlations are similar in the infinite and finite sys-
=3.39 fm. Therefore, the density description has largely imtems and that the three cases show an analogous behavior at
proved while the energy variations are kept within the accuiarge momentum values. This momentum region is domi-
racy of the FHNC/SOC scheme. The results presented in thisated by the short-range structure of the nuclear wave func-
paper have been obtained by means of this type of wavédon, which is heavily affected by thBIN correlations. The
function, whose parameters are given in Table V of Refeffect appears to be, to a large extent, independent on the
[13]. nucleus. A similar behavior was found in RE8], where the

The one-body densities generated by the FHNC/SOGomparison was made among tHele, %O, and nuclear
scheme are shown in Fig. 1, where the solid lines give thenatter momentum distributions. With respect to the Jastrow
densities obtained with the full correlation, the dot-dashedestimates the noncentral, tensor correlations enhance the tails
lines are those obtained with the Jastrow correlatietain-  of the MDs by a factor of 2—3, slightly smaller than the one
ing only thep=1 componentand the dashed lines are the found in Ref.[8], which is roughly~4. The difference may
IPM densities. The effect of the operatorial correlation isbe understood in terms of the stronger tensor force of the
large with respect to the Jastrow case, that is hardly distinArgonnewv,, potential adopted in that reference. Part of the
guishable from the IPM one. The comparison with the ex-discrepancy may also be ascribed to the presence of spin-
perimental results has been presented in R, where the  orbit correlations in the wave function of R¢8]. However,
proton densities are folded with the electromagnetic nucleomwe notice that, in the same paper, it was found that these
form factor. correlations contribute to the kinetic energy by ol %

The momentum distributions are given in Fig. 2. Again (0.4 MeV/nucleon out of a total kinetic energy of 34.4 MeV/
the solid and dot-dashed lines are the fully correlated anéucleon.

Jastrow results, respectively, while the IPM ones are shown A more demanding sum rule for(k) than that expressed
as dashed lines. The squares are the VMC ref8]t®r '°0 by Eq.(26) can be obtained from the kinetic ener@ly The
obtained with the Argonne, [44] NN interaction. kinetic energy per particle can be evaluated via the MD as

The MD is normalized as

v T hz 14
12@[ d3k n(k), (26) K:ﬁ(zw)?*f d*k k’n(k)=Typ . (27)
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The value ofT/A can also be computed in the FHNC/SOC
framework (Tryne), for example, by means of the Jackson-
Feenberg identity, as it has been done in R&8] for the

A8 +UIX model. The differences betweén,p and Teync

are a severe measure of the importance of the approxima-
tions made in the cluster expansifHNC/0 and SOC For

the Jastrow cases the relative disagreemefit=|Typ
—Truncl/Tenne, is <5% (Typ=20.52 MeV andTgync
=19.57 MeV in 0 and Ty,p=22.98 MeV andTgync
=22.05 MeV in °%Ca) and it is due to the absence of the
elementary diagrams in the FHNC/O truncation. In the
model we obtained yp=29.42 MeV, Tgync=32.64 MeV, 1.0
and 6T=9% in %0 andTp=236.63 MeV, Trync=238.15
MeV, and 65T=9.6% in “°Ca. This larger disagreement is
due to the SOC approximation. THg, value is largely
influenced by the behavior of the momentum distribution at
high k values. The contribution of thk>5 fm™?! tail has
been evaluated by an exponential extrapolation of the com-
puted MD. The tail contributions for the Jastrow and opera-

1 (fm—3/2)

NO

nk

torial correlations are about 5% and 10% of the tdtgh , ° | n=2

respectively. So, we believe that the uncertaintyl'jf, re- 10 . . ‘ .
lated to the MD tails may be fixed to a few percent in both ~o 2 4
cases. As an additional check of the numerical accuracy of 10

the algorithm used to evaluate the momentum distribution,
we have verified thafl,p coincides withTgyyc for the
IPM.

The NO and their occupation numbers are obtained by
diagonalizing the OBDM,

(o'
P11, r1) =2 o) ehor). (28 05 n= 1
-1.0 : ' : '
We treat spherical nuclei its single particle coupling, 0 2 4
saturated in both spin and isospin. For this reason the spin- r (fm)

isospin part of Eq(12) provides the degeneraay=4. Be-
cause of the spherical symmetry the functib(r,r,:) of
Eqg. (12) can be expanded in multipoles, and we obtain for
the OBDM

FIG. 4. %0 natural orbits. Solid linestg model; dashed, IPM.

p|(r1,r1f>=v; NudnC(ry) eao(ry). (32)

21+1
pi(ry,re)= V2| 2, Di(cosbu)pi(ry,ry),  (29)

The nl-natural orbitals and their occupations have been ob-
whereP,(x) represents the Legendre polynomials #qgd is  tained by discretizing and diagonalizing the matrix

the angle between, andr; . pi(rq,r1) in a 100K 100 equally spaced grid, up tQ,ay
Exploiting again the spherical symmetry, the natural or-=6(7) fm for 0 (“°Ca).
bitals can be written as The first three NO of!®0 and “°Ca, calculated for the
three lowest values are shown in Figs. 4 and 5. In Table |
¢Z‘Sn|m(f) — d)mo(f)Ylm(F)Xm, (30) the occupation numbers of the various NO for Jastrowf&nd

correlations are presented.
. ) - , , The effect of the correlations on the shell model orbitals
where we indicate with,(r) the spherical harmonics and 5o mainly visible in the short-range part of the state,
with x,, the spin-isospin part of the wave function. The paing this NO more localized than its IPM counterpart.
normalization condition is The shape of the other IPM states is barely influenced by the
correlations. The occupation of the NO corresponding to the
1= f r2dr| ¢N0(r)|2. (31) shell model ones is depleted by as much as 2% 2s state
ni in %°Ca). In contrast, the mean field unoccupied states be-
come sizably populated. The two effects are largely due to
Therefore we obtain the tensor part of the correlation operator.
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It was pointed out in Refl45], that when there is more
than one occupied state in the IPM for a giveralue (as for
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n=4

n=2

r (fm)
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TABLE II. The occupation numbers of tHéh natural orbits for
180 and “Ca in CBF, with three correlation models and in the
Green functionGF) approach.

Corr. Ng Ny Ny N¢
160 J 0.971 0.991 0.011 0.002
fa 0.977 0.988 0.015 0.004
fo 0.899 0.966 0.047 0.006
GF 0.936 0.951 0.022 0.007
“ca J 1.932 0.975 1.003 0.022
fq 1.907 0.964 1.005 0.022
fo 1.727 0.920 1.026 0.071

corresponding density matrix. New mean fisldrbitals fj)ns
consistent withp,py(r1,r1/), can be obtained if°Ca by the
transformations

b15(r) = cog @) dyg(1) + SiN(@) dog(1), (33
bas(1) = COL @) (1) — SiN(@) (1), (34)

for any choice of the angle.. The IPM orbitals of the

=0 panel in Fig. 5 are obtained by a numerical diagonaliza-
tion of the one-body density matrix and roughly correspond
to cos@)=0.8.

The 0 natural orbits have been evaluated in H&g]
within a Green function approach and using the one-boson-
exchange Boni potential of Ref[46]. The authors find the
n=1 NO more populated than the CBF ones for the occu-
pied states in the shell model approa¢kQ, 1), and, con-
sequently, lower occupations for all the remaining orbitals.
Specifically, the n=1 Green function results are
=0.921,n,,=0.941, anch,4=0.017. The p (1d) occupa-
tion number has been taken as the average of the and
1ps, (1ds, and 1dg,) orbitals given in the reference. The
discrepancies are probably to be ascribed more to the differ-
ent potentials adopted, rather than to the methodologies. The

the s states in“%Ca), then the natural orbitals may be quali- A8’ +UIX model induces stronger correlation, so giving a
tatively different from the IPM ones. In fact, any orthogonal larger depletlonsof the lowest NO. This effect was also found
combination of the mean field orbitals does not change thé" the study of *He atomic drops of Refl45], where the

TABLE |. Occupation numbers of thalth natural orbits for
180 and?°Ca in CBF, with thefs and Jastrow correlation models.

nl ng(fe;0)  ny(3**0)  ny(fei*Ca)  ny(J;*Ca)
1s 0.858 0.960 0.864 0.952
2s 0.019 0.005 0.780 0.962
3s 0.010 0.002 0.052 0.002
4s 0.005 0.001 0.013 0.001
1p 0.919 0.980 0.841 0.949
2p 0.021 0.004 0.024 0.009
3p 0.011 0.003 0.016 0.006
1d 0.025 0.006 0.956 0.983
2d 0.011 0.003 0.030 0.007
3d 0.006 0.001 0.019 0.006

strong repulsive interaction between thide atoms depletes
the shell model occupations by 15-46 %. The CBF total
occupation numbers in tHéh orbitals for*°0 and*°Ca with
different correlations f(g, f,, without tensor components,
and Jastrowy)) are given in Table Il, together with th€0O
Green function ones from Reff32]. It appears clearly that
the longer ranged tensor correlations are responsible for most
of the deoccupation of the shell model natural orbitals in
favor of the higher ones.

Figure 6 presents a comparison between #@ NO in
FHNC/SOC and in the lowest-order approximation. This ap-
proach consists in truncating the cluster expansion at the first
order in the dynamical correlation ling¢47,48,29 and it has
achieved a certain degree of popularity because of its sim-
plicity. The approximation provides a good description of the
n=1 NO corresponding to the occupied shell model states,
but it fails to reproduce the other ones.
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FIG. 6. %0 1=0, 1 natural orbits in FHNC/SOGsolid lineg FIG. 7. Partial wave contributions to the one-body densities in
and LO approximatioridashed lines the natural orbits representation. The upper lines are the total den-

sities. The remaining lines give(2l + 1/4) p\(r,r). Solid lines,fq
To conclude this section, we give in Fig. 7 the partial model; dashed, IPM.
wave decomposition of the correlated and IPM one-body
densities in terms of their natural orbits.

Un(X) = ()Y im(D) Xgr= (D) Vo). (36)

IV. QUASIHOLE STATES AND SINGLE PARTICLE In the IPM, the QH overlaps are simply the shell model
OVERLAP FUNCTIONS functions andji ™ (r)=Ry_ (), whereR(r;) is the radial

- : ; ; t of ¢, (1).

A considerable amount of information on the properties offadf a L
the single nucleon in the nuclear medium can be deduced In CBF theoryWo(1,2, ... A) is given by Eq.(2) and
from (e,e’p) reactions. These experiments have been ana- N _ _
lyzed to extract the quasihole functiaf,(r) given by the Pn(1.2,... A-D=G(1.2,... A-1)Py(1.2,... A (213)7)
overlap between theA-body ground state and the
(A—1)-body hole state of the residual system.

fixed ; f h f on is d where®,(1,2,... A—1) is a Slater determinant obtained
f. Ir:j a fixed center reference frame, the QH function is e'by removing fromd,(1,2, ... A) a nucleon in the statb.
Ined as In order to develop a cluster expansion fgg(r) it is
¥n(X) convenient to rearrange E(B5) as,
_ 1/2
A (TA- DX oA (1) = (DN 8
(W(A=D)[Wr(A—1)) X Wo(A)[Wo(A) P where
(35

In doubly closed shell nuclei in thes coupling scheme itis (1= VA (VA= 1) Vime-(1,0,7) 8(r =1 )| Wo(A))
possible to separate the radial dependence of the QH func-"" (Ph(A=1)|PL(A-1)) '
tion from the angular, spin and isospin ones, as (39
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TABLE Ill. CBF spectroscopic factors fot®0 and *°Ca, with
Jastrow (J) and spin-isospin correlations, withfg) and without

(f4) tensor components.

Np= (40)
<\PO(A)|\P0(A)> Corr. 1s 1p 1d 2s

Cluster expansions are used to comptiteand\V;,, along 160 3 0.98 0.98
the lines followed in Ref{50] to evaluate the overlap matrix ¢ 0'79 0l96
elements in the CBF approach to the nuclear matter spectral f: 0'70 0'90
function. 0 ' '

The expansion fo#, is linked, in the sense that discon- ca J 0.98 0.99 0.97 0.98
nected diagrams in the numerator are exactly canceled by fa 0.71 0.76 0.96 0.97
those coming from the denominator. Its FHNC/O expression, fo 0.55 0.58 0.87 0.86
when only Jastrow correlations are considered, is

HO

erage between thes2and 1d states in“°Ca is S1d.c.m.
=(40/39¥~1.05. More realistic Woods-Saxon orbitals do
not allow for an analytical treatment of c.m. effects, which
have to be computed numerically. It has been found that in
180 the 1p WS spectroscopic factor practically coincides
with the HO on€e[34].

The correlated spectroscopic facténsthout c.m. correc-
_ W tions) in %0 and“°Ca are given in Table Ill fofg, f,, and
where 6 is the angle between andry, andpjpy is the A jasirow correlation factors. Jastrow correlations marginally
—1 one-body density matrix in the independent particlereqyces, (at most3%). TheJastrowlth spectroscopic fac-
model, tors may result slightly larger than the total occupation of the
corresponding natural orbits, given in Table Il. A similar
feature was found in Ref48]. The small deviations of the
Jastrow model from the correct behavior are, in our opinion,
) ] _ well within the accuracy of the numerical procedures we

In AV, only those diagrams from the denominator contain-haye adopted and of the approximations in the cluster sum
ing eXp|ICIt|y the h orbital survive. The JaStI’OW, FHNC/0 mation. Central Spin_isospin COfre'ation$4(modeb also
expression Is provide a few percent depletion in the valence states,
whereas the tensor oned$g) give most of the reduction
bringing S, in 0 to 0.90 andS,s andS,4 in “%Ca to 0.86
and 0.87, respectively. ThepICBF 60 result is in complete
agreement with the VMC estimaf84]. The influence of the
operatorial correlations is much larger in the low-lying
states, whose spectroscopic factors are drastically reduced by
both central and tensor componerfg; in *°0 is 0.70,S;,,
and S in *°Ca are 0.58 and 0.55, respectively. An analo-
The FHNC quantities entering’y, and A5, correspond to  gous behavior was found by Benhkfl], who first used
those given in Refs[27,11], but evaluated with théa—1  low-order cluster expansions to estimat§, in the
densities,pfpy(r1,71/) and plpn (1) == gxnl ba(1)[2. In 12C(e,e'p)' B reaction with state-dependent correlations
absence of correlationsy (1) — Ry (r) and Ny —1. and founds,,=0.55 and$,s=0.25.

The FHNC/SOC expressions 4f, and.\,,;, with opera- Results similar to those presentelcé in this paper have been
torial correlations, are given in the Appendix. obtained in Refs[36,37, where the™™O S,, has been ex-

The quasihole normalization gives the spectroscopic faciracted by several models of OBDI&S]. In particular, in
both references it is confirmed that correlation effects on this
spectroscopic factor are dominated by tensor components.
The lowest-order truncation of the OBDM cluster expansion
adopted in Ref[37] providesS;,, 0~0.90, in agreement
with the FHNC/SOC results. However, the authors find
In a fixed center IPMas the one we adopt as model func- S;s.0~0.86, in contrast with the 0.70 FHNC/SOC value.
tion), S™=1. Center of masg.m) corrections are sources The origin of this large difference may lay in the lowest-
of deviation. In the harmonic oscillatdiHO) model they order approximation in the cluster expansion. This issue is

Xﬂ.(r)=§2,'(r)[ Rn|(r)+f d®r; Ry (rq)Py(coso)

X(gha(r.r)CG(r)[ = plam(rro) + N (r,r)]

+plem(1,r) =NG (1) =NDL(rr)) (- (41)

p.“pMm,rl/):;h L) pu(1'). (42)

[Nﬂ|]*1=f dsrcz'(r>[|¢n.(r>|2+f d3ry dH(r) pri(ry)
X(gau(r, 1) CY(r)l—pipum(r,re) +NoUr,ry)]

+pipw (1) = NG (r,ry) = NQ'p(r,fl))]- (43

tor

Shzf r2dr g(r). (44)

enhances,, for the valence hole statéghose with the largest
oscillator quantum numbef,) by a[A/(A—1)]e factor
[49]. As a consequence, the c.m.-correctgdshell spectro-

1p,c.m.

presently the object of investigation.
The latest experimental extraction df, from the
160(e,e’p) N reaction[52] reportsS, =0.61 for the 1/2

scopic factor of'0 is S0 ,=16/15~1.07, while the av- ground state in*N and S;,_ (6.32)=0.53 for the lowest
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FIG. 8. Squared quasihole wave functions. Solid lirfigsnodel; dot-dashed, Jastrow; dashed, IPM. Thepanel of %0 shows also the
empirical overlap(starg and thefg one, rescaled as explained in the tégtver dot-dashed line

3/2” state at 6.32 MeV. This state exhibits 87% of the totalused to generate a single particle wave function to fit the
Sps/2 strength, that is fragmented over three states at 6.32:°0(e,e’p)*°N cross section to the 6.32 MeV state with
9.93, and 10.70 MeV. So, the totd}__may be estimated to  Sp,,(6-32)=0.53. |ywd? is shown in thely;,|>~°0 panel

P32
be S;,,=0.53/0.870.61[34]. as stars. In order to give a meaningful comparison, we re-

A corresponding situation is met in tH@Ca(e,e’p)>K scale |¢1p runc|® by the factor 0.53/0.90. The result is
reaction[23], where the transition to thedk,, ground state tsrtlowrr:] ai?i a IdOt't?r?]sTed line and it is in nice agreement with
gives Sy ~0.610.07, while the FHNC/SOC value 8, € empinical estimate.

~ 0 ) The knowledge ofi,(r) may give access to the cross
=0.87. The™Ca spectroscopic factors have been computedeactions. However, both Coulomb distortion and final state

by the low-order cluster expansion of the OBDM in & Ja-jnteractions should be properly accounted for, by evaluating
strow model in Ref[53]. The rgsults are consistently lower ino Fourier transform of a distorted overlg5], to perform

than the FHNC ones, reported in the Sth column of Table Ill.5 gyantitative comparison with the experiments. Work in this
For instance, S5 0=0.95 and S,4,0=0.91, whereas gjrection is in progress. In this paper we limit ourselves to

Szs,pHnc=0.98 andS, g punc=0.97. The discrepancies are give in Fig. 9 the squared Fourier transform of some quasi-
probably to be ascribed to the approximation used in thegle functions

reference to evaluate the OBDM.

The squared quasihole functions are shown in Fig. 8. The 3 ikr
solid and dot-dashed lines give the fdilj and Jastrow re- ’//h(k):f dr e " y(r). (45
sults, respectively. The IPM estimates are given as dashed
lines. The spin-isospin dependent correlations are mainly re- In the valence states filfor %0 and i for *°Ca) short-
sponsible for the quenching for the IPM QH functions and,range correlations slightly deplefté; (k)|? at large momenta
consequently, of the spectroscopic factor. The Jastrow conwith respect to the IPM. This behavior is in contrast with that
ponents have little effect on the overlaps, and mostly in thef the total momentum distributions at largegiven in Fig.
valence states. In Ref54] a Woods-Saxon potential was 2 and showing a large enhancement due to the correlations.
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FIG. 9. Squared transform of the quasihole wave function'f@ and“°Ca. Solid linesfs model; dot-dashed, Jastrow; dashed, IPM.

This discrepancy has been already obser] and it is Our density and momentum distributions confirm some
confirmed by our approach. The effect of the correlations isvell-known results. Short-range correlations have small ef-
more visible in the two low-lying states given in the figure fects on the density distributions and mainly around the cen-
(1s for both nuclej. For instance, in thes *%0 case Jastrow ter of the nucleus. On the contrary, the high-momentum tail
correlations are effective at large momenta only, beyond thef the momentum distribution is dominated by the correla-
first IPM zero; instead, tensor correlations modify both thetions. We have pointed out that the tensor correlations en-
!ovxzoand large momenta behaviors. The same effect is founfiance these tails by a factor of 3—4 with respect to the results
in TCa. obtained with Jastrow correlations.
The tensor part of the correlation is important in the cal-
V. SUMMARY AND CONCLUSIONS culation of the occgpation probabil_ities of the natural orbits.
The effect of reducing the occupation of the level below the
In this work we have calculated one-body density matri-Fermi surface and enhancing those that lie above is amplified
ces, momentum distributions, natural orbits and quasiholy the tensor terms of the correlation. We found that the
states of'®0 and *°Ca using the FHNC/SOC resummation shape of the natural orbits below the Fermi surface is rather
technique, which allows for using realistic interactions andsimilar to that of the corresponding single particle wave
state-dependent correlations. The calculations have beédanctions.
done with the Argonneyg two-nucleon potential plus the The natural orbits have also been calculated within a
Urbana IX three-nucleon interaction, together with a set ofowest-order computational scheme. The agreement with the
single particle wave functions fixed to reproduce at best therbit below the Fermi surface is excellent. The lowest-order
empirical charge distributions of the two nuclei. The param-calculation produces orbits above the Fermi surface with
eters of the correlation have been chosen to minimize theompletely different shape with respect to those obtained by
binding energies. Using these wave functions, we have inthe full calculation.
vestigated the role of the correlations on the quantities above Tensor correlations play a relevant role also for the evalu-
mentioned. ation of the overlap functions and spectroscopic factors. The
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correlated overlap functions are close to the correspondingtrength toZ-gr(e~eg)~0.70, so explaining almost half of
single particle wave functions if only Jastrow correlations arethe discrepancy with the empiricaP®Pb spectroscopic fac-
used. The inclusion of the tensor correlations strongly moditor, Z(?°%b)~0.5-0.6. The remaining part of the difference
fies their shapes. This behavior is also clear from the analysiwas attributed to the coupling of the single-particle waves to
of the spectroscopic factors. The depletion of a few percenthe collective low-lying surface vibrations, not reproducible
with respect to one obtained with Jastrow correlations, bein infinite nuclear matter. We expect that in finite nuclei, the
comes of about 10—-15 % for the valence levels and 30—45 %nclusion of correlated B-1p corrections can take into ac-
for the deeply lying ones. count also great part of the coupling with surface vibrations.
In spite of this noticeable reduction, the FHNC/SOC ap-
proach in*°0 is still unable to reproduce the empiricgJ_,

spectroscopic factor extracted frone,€’p) reactions. A
similar behavior was found in Ref56] for nuclear matter,
where the variational FHNC/SOC calculation of the one-hole
strengthZ(e) around the Fermi level provided,(e~eg)
~0.88, mostly due to tensor correlations. Second-order per-
turbative corrections in a correlated basis, obtained by con-
sidering the contribution of two-hole one-particlehtap), We present in this appendix the FHNC/SOC expressions
correlated state¥ ,p, ;,=G®,y,;, were found to bring the for the X},; and .\, functions,
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APPENDIX

Xa(N) =20 (N[L1+ AP () ]+ €0)(r) fdsrl Rai(r)Py(r,r )1 958 (r,r) CH(rpUSP ™M (r)[— plam(r,ry)
ENGLErr 1+ 2 (M r) G (rr) CErl = plw(rr) + NG r) 1+ 953 (rr) C(rNG ()

—Np”'(r ry)—N2(r, rl)}ApN’} (A1)

[Nul t= Jd3fCm(r)[1+U°pn'(r)][|¢n|(f)|2 fd3r1¢m<r)¢n.<rl>{gdd(r r)CH(r)l—ppm(r.ro) +NX(r,r)]
+plaw(r,r) —Ng (r,r1>—N2L(r,rl>}]+fd3rc (r>f<z|3‘r1<¢>nI r>¢m<rl>{g°”'(r r)Cq(ryugP(ry)

X[ = pfpu(r,r)+ NS r,rl>]+p§2 (P (r,r )RS, r ) CR (r ) [ — pipp (1, r2) + NS (r,r )]

+g§é"(r,rl)c (ro)Ng! "rry)— NP nI(r ry)— an| r,rl)}ApAp]. (A2)
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