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One-body density matrix, natural orbits, and quasihole states in16O and 40Ca
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The one-body density matrix, momentum distribution, natural orbits, and quasihole states of16O and 40Ca
are analyzed in the framework of the correlated basis function theory using state-dependent correlations with
central and tensor components. Fermi hypernetted chain integral equations and single operator chain approxi-
mation are employed to sum cluster diagrams at all orders. The optimal trial wave function is determined by
means of the variational principle and the realistic Argonnev88 two-nucleon and Urbana IX three-nucleon
interactions. The correlated16O momentum distribution is in good agreement with the variational Monte Carlo
results and shows the well-known enhancement at large momentum values with respect to the independent-
particle model. A similar behavior is found in40Ca. The relative importance of the different types of correla-
tions ~mainly Jastrow and tensor! on the momentum distribution appears to be similar in the nuclei and in
nuclear matter. Diagonalization of the density matrix provides the natural orbits and their occupation numbers.
Correlations deplete the occupation number of the first natural orbital by more than 10%. The orbitals follow-
ing the first one result instead, occupied by a few percent, or less. The single particle overlap functions and the
spectroscopic factors are computed in the correlated model for both nuclei and compared with previous
estimates. Jastrow correlations lower the spectroscopic factors of the valence states by a few percent
(;1 –3 %) with respect to unity. An additional;8 –12 % depletion is provided by spin-isospin tensor cor-
relations. It is confirmed that a variational treatment of short-range correlations does not explain the spectro-
scopic factors extracted from (e,e8p) experiments. Such an approach corresponds to the zeroth order of the
correlated basis function theory and two-hole one-particle perturbative corrections in the correlated basis are
expected to provide most of the remaining strength, as in nuclear matter.

DOI: 10.1103/PhysRevC.63.044319 PACS number~s!: 21.60.Gx, 21.10.Jx, 27.30.1t, 27.40.1z
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I. INTRODUCTION

The notion of nuclei as a set of mutually, strongly inte
acting particles is now generally accepted and it is wid
recognized that correlations beyond the mean field pla
substantial, if not decisive, role in the microscopic descr
tion of nuclear properties. This is intuitive when energies
evaluated, but there are also clear signatures of the pres
of correlations in some quantities related to the behavio
the single nucleon in the medium. For instance, it is kno
that the one nucleon momentum distribution~MD! has domi-
nant high momentum components that are due to short-ra
nucleon-nucleon~NN! correlations and are not describable
any independent-particle model~IPM! @1,2#. In addition,NN
correlations may be responsible for the reduction of the sp
troscopic strengths of the hole states@3#.

The ideal way of describing the nucleus would consist
solving the many-body Schro¨dinger equation with realistic
interactions. Exact solutions have been obtained in light
clei up toA58 within a variety of methods: quantum Mon
Carlo @4,5#, Faddeev-like@6#, and correlated hyperspheric
harmonics@7# expansions.

The treatment of heavier nuclei has not yet attained
same degree of accuracy as the light ones. However,
situation is rapidly improving, at least for doubly closed sh
nuclei. The 16O nucleus has been studied by variation
Monte Carlo @8# ~VMC! and coupled cluster@9# methods.
The variational theory underlying the correlated basis fu
0556-2813/2001/63~4!/044319~14!/$20.00 63 0443
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tion ~CBF! @10# method has been used in doubly closed sh
nuclei by Fermi hypernetted chain~FHNC! integral equa-
tions @11,12#. The same accuracy as in the best variatio
studies of nuclear matter has been obtained in16O and 40Ca
by using spin and isospin dependent correlations and m
ern, microscopic potentials@13#. To this aim, the nuclear
matter single operator chain~SOC! approximation@14# has
been extended to finite nuclear systems to deal with st
dependent correlations in the framework of the FHNC te
nique @15# ~FHNC/SOC!. The variational and the couple
cluster approaches have provided an overall satisfying
scription of such ground state properties as binding energ
one- and two-body densities and structure functions.

In medium heavy nuclei the microscopic approach has
be compared with the independent-particle model and its
scription of various nuclear features. The use of this mode
so wide and well established that great part of the nomen
ture on medium and heavy nuclei is based upon conc
defined within the IPM itself. For example, the ideas of c
lective excitations, single particle levels, occupation pro
abilities, and spectroscopic factors are meaningful only i
theoretical framework where the IPM is a first-order appro
mation.

The sources of effects beyond the IPM description
generally termed as correlations. This name is hiding t
rather different kinds of physical effects. Long-range cor
lations are generated by the so-called residual interact
neglected in the IPM and responsible for the collective ex
©2001 The American Physical Society19-1
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A. FABROCINI AND G. CO’ PHYSICAL REVIEW C63 044319
tations. The short-range correlations~SRC! are mainly pro-
duced by the repulsive core of the nucleon-nucleon inte
tion. Moreover, important noncentral components
intermediate range are needed for most realistic descripti
While collective phenomena have been known since
early times of nuclear physics, effects produced by the S
are more difficult to be experimentally singled out. Only
these last few years, thanks to the advances of the ex
mental techniques, there have been some consistent e
aimed at their identification.

The sensitivity of the two-nucleon emission cross sect
to the SRC is evident@16#, but also other quantities related
the behavior of the single nucleon in the medium seem
depend on them. For instance, (e,e8p) data in the quasielas
tic region need a consistent reduction of the IPM h
strength to be reproduced@17#. The same holds for the elec
tromagnetic form factors of low-lying states with high ang
lar momentum@18#. Furthermore, charge density distrib
tions obtained by elastic electron scattering experiments
in the nuclear interior, smaller than those predicted by
IPM @19#. All these facts could be explained by assumi
occupation probabilities of the single particle levels differe
from that of the IPM@20#.

From the theoretical point of view, the basic quantity
be investigated in order to verify the hypothesis of par
occupation probability is the one-body density mat
~OBDM!, r(r1 ,r18) defined as

r~r1 ,r18!5^C0~A!ua†~r1!a~r18!uC0~A!&, ~1!

whereC0(A) is the ground stateA-body wave function and
a†(r1) is the creation operator of a nucleon at the positionr1.
Much theoretical effort has been devoted to understand
behavior of the OBDM and also of the MD,n(k), given by
the Fourier transform ofr(r1 ,r18). The MD is also obtained
by the energy integral of the spectral function, that is of
used in plane wave impulse approximation to study inclus
and exclusive reactions. In some approximations and k
matics, the MD is directly employed. The natural orbits~NO!
@21#, with their occupation numbers (na), are defined as the
basis where the OBDM is diagonal. In the IPM, the nucle
ground state is described by a Slater determinant of f
occupied single particle~SP! wave functions below the
Fermi surface,aF . In this case, the NO and the SP wa
function ~w.f.! coincide andna<aF

51 andna.aF
50. De-

viations from this situation are a measure of the correlatio
since they allow higher NO to become populated withna
Þ0.

Quantities not directly related to the OBDM, but acce
sible to the experimental investigation by means of kno
out experiments, are the quasihole~QH! wave functions
ch(r ), defined as the overlaps betweenC0 and the hole
statesCh , produced by removing a nucleon from the po
tion r . From (e,e8p) experiments it is possible to obtain a
accurate determination of the QH overlap functions@22#.
Their normalizations give the spectroscopic factorsSh that
deviate from unity~the IPM value! because of various ef
fects, from center of mass to correlation corrections. Typ
values extracted from the experiments areSh;0.6–0.7@23#,
04431
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and their correct calculation represents a severe challeng
the available many-body theories.

The FHNC theory for the OBDM in correlated infinit
matter was developed by Fantoni@24#. Subsequently, FHNC
SOC was applied to nuclear matter to calculate both the
@25# and the spectral function@26#. The technique has bee
then extended to evaluate the OBDM in doubly closed sh
nuclei described by a correlated wave function contain
scalar, spin-isospin independent~or Jastrow! correlations
@27#. Isospin dependence was later introduced to treat clo
shell nuclei in thejj coupling scheme@12#. The 16O momen-
tum distribution has been calculated by using sta
dependent correlations@8# within the VMC approach. Low-
order cluster expansions have been employed in closed
nuclei @28,29# and insp andsd shell nuclei withN5Z @30#.
Local density approximation was used to estimate the MD
medium-heavy nuclei@31# from the nuclear matter results
The effect of short-range correlations on the OBDM and
NO in 16O has been studied by means of the Green func
method@32#. As far as the overlap functions are concerne
in the 7Li( e,e8p)6He reaction the experimental data ha
been successfully compared with the VMC, parameter-f
theoretical predictions@33#. VMC has been used also in th
analysis of the16O(e,e8p) knockout experiments@34#. A
relationship between the OBDM and the QH overlaps@35#
has been recently exploited@36,37# to evaluate the spectro
scopic factors for the same reaction, using several correl
models for the density matrix. The effect of long-range c
relations has been considered in Refs.@38,36#.

In this paper we extend the FHNC/SOC methodology
deal with the OBDM of16O and 40Ca using wave functions
with central and tensor correlations. The correlatedA-body
wave functionC0(1,2, . . . ,A) is written as

C0~1,2, . . . ,A!5G~1,2, . . . ,A!F0~1,2, . . . ,A!, ~2!

where G(1,2, . . . ,A) is a many-body correlation operato
acting on the mean field wave functionF0(1,2, . . . ,A),
given by a Slater determinant of single particle wave fun
tions fa( i ). The correlation operator is given by a symm
trized product of two-body correlation operatorsFi j ,

G~1,2, . . . ,A!5SF)
i , j

Fi j G . ~3!

In the most sophisticated variational calculations~both in
nuclear matter and in nuclei! Fi j assumes the form

Fi j 5 (
p51,8

f p~r i j !Oi j
p , ~4!

where

Oi j
p51,85@1,si•sj ,Si j ,~L•S! i j # ^ @1,ti•tj # ~5!

andSi j 5(3r̂ i j •si r̂ i j •sj2si•sj ) is the tensor operator. Th
spin-orbit components of the correlation (p57,8) have been
omitted in this paper (f 6 model!, as well as spin-orbit and
Coulomb interaction terms in the mean field potential gen
ating the single particle wave functionsfa( i ).
9-2
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ONE-BODY DENSITY MATRIX, NATURAL ORBITS, . . . PHYSICAL REVIEW C 63 044319
The variational principle allows for fixing the correlatio
functions f p(r ) and the single particle wave functions b
minimizing the ground state energy,

E@C0#5
^C0uHuC0&

^C0uC0&
. ~6!

In our calculation we adopt a nonrelativistic nuclear Ham
tonian of the form,

H5
2\2

2m (
i

¹ i
21(

i , j
v i j 1 (

i , j ,k
v i jk . ~7!

Modern two-nucleon potentialsv i j are built on the very high
quality phase-shift analyses of theNN scattering data
@39,40#. We have used thev88 reduction of the Argonnev18

@41# potential. For the three-nucleon interaction the Urba
IX model @5# has been adopted.

The plan of the paper is as follows: Sec. II is devoted t
brief description of the FHNC/SOC theory for the OBDM;
Sec. III the results obtained for the16O and 40Ca momentum
distributions and natural orbits are presented and discus
in Sec. IV we describe the FHNC theory for the overl
functions and give the results for the spectroscopic fact
and the conclusions are drawn in Sec. V.

II. FHNC ÕSOC THEORY FOR THE ONE-BODY DENSITY
MATRIX

The one-body density matrix~1! may be written as

r~r1 ,r18!5
A

NE d3r 2•••E d3r AC0
†~1,2, . . . ,A!

3C0~18,2, . . . ,A!, ~8!

where N5*d3r 1•••*d3r AuC0u2. The one-body density
r1(r1) is the diagonal part of the OBDM, whose Fouri
transform gives the momentum distribution,

n~k!5
1

AE d3r 1E d3r 18 r~r1 ,r18!e
ik•(r12r18). ~9!

In the independent-particle model, the OBDM is given b

r IPM~r1 ,r18!5(
a

fa
†~1!fa~18!

5S (
st

xst
† ~1!xst~18! DN0~r1 ,r18!, ~10!

and

r1,IPM~r1!5(
a

ufa~1!u25nN0~r1 ,r1!, ~11!

wherexst(1) is the spin-isospin single particle eigenfun
tion and n the degeneracy number (n54, for the doubly
04431
-

a

a
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,

closed shell,N5Z nuclei we are considering!. The second
equalities in the above equations are valid since we are w
ing in ls coupling.

In analogy, we define the functionN(r1 ,r18) via the rela-
tion

r~r1 ,r18!5S (
st

xst
† ~1!xst~18! DN~r1 ,r18!. ~12!

We have already presented in Ref.@27# the FHNC theory of
the OBDM for Jastrow correlated wave functions,

GJ~1,2, . . . ,A!5)
i , j

f 1~r i j !, ~13!

having only thep51 scalar component in the correlatio
factor Fi j . The density matrix is expanded in powers of t
dynamical correlations, h(r )5@ f 1(r )#221 (h bond! and
v(r )5 f 1(r )21 (v bond!, and of thestatistical correla-
tions, N0(r i ,r j ) ~exchange ore bonds!. The expansion gen
erates cluster terms classified according to the numbe
particles and to the number of the correlations. The FH
equations allow for summing cluster terms at all orders. D
tails of the finite systems FHNC theory may be found in@27#
and in Ref.@11#.

The FHNC/SOC equations for the more generalf 6 corre-
lation were derived in Ref.@15# for the one- and two-body
densities. In the case of the OBDM, we can write

N~r1 ,r18!5jv
c ~r1!@11Djv

op~r1!#jv
c ~r18!

3@11Djv
op~r18!#e

Nvv
c (r1 ,r18)@N0~r1 ,r18!

2Nvcvc

c ~r1 ,r18!#1jv
c ~r1!jv

c ~r18!e
Nvv

c (r1 ,r18)

3 (
p>2

ApDp$Nvv
p ~r1 ,r18!@N0~r1 ,r18!

2Nvcvc

c ~r1 ,r18!#2Nvcvc

p ~r1 ,r18!%. ~14!

Nvv
p andNvcvc

p arenodal functions~see@27#! of thevv and

vcvc type, jv
c and Djv

op are the central vertex correction
and their operational contributions@25#, and the matricesAp

and Dp are defined in@15#. The components will be often
labeled asc (p51) ands ~spin!, t ~isospin!, andt ~tensor!.

The nodal functions are obtained by the equations

Nvv
p ~r1 ,r18!5(

xx8
(
qr

E d3r 2 j1218
qrp Xvx

q ~r1 ,r2!Vxx8
qr

~r2!

3@Xx8v
r

~r2 ,r18!1Nx8v
r

~r2 ,r18!# ~15!

and
9-3
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Nvcvc

p ~r1 ,r18!5(
qr

E d3r 2 j1218
qrp Xvcc

q ~r1 ,r2!Vcc
qr~r2!

3@Xcvc

c ~r2 ,r18!1Ncvc

c ~r2 ,r18!#D
r

1 (
qr>2

E d3r 2 j1218
qrp DqXvcc

c ~r1 ,r2!Vcc
qr~r2!

3@Xcvc

r ~r2 ,r18!1Ncvc

r ~r2 ,r18!#

1Nrr
p ~r1 ,r18!1Nrvc

p ~r1 ,r18!

1Nvcr
p ~r1 ,r18!. ~16!

The indexx(x8) may assume the valuesx(x8)5d,e and de-
notes the exchange pattern and the type of correlation
specific point. In general, we may haved andv vertices, if
the point is reached byh andv bonds, respectively, and doe
not belong to any exchange loop; ane vertex if the point
belongs to a closed exchange loop and it is reached by twe
bonds;c and vc vertices if the point belongs to an ope
exchange loop and it is reached by a single exchange
The allowed (xx8) combinations aredd, de, ed. We indi-
cate withVxx8

qr the vertex corrections, and withj1218
qrp the an-

gular couplings. The expressions of these equations ar
given in @15#.

The above equations are derived in the FHNC/0 appro
mation, which does not include the contribution of theel-
ementarydiagrams. A detailed discussion of the importan
of these diagrams and of the accuracy of the approximat
used in solving the FHNC equations can be found in Re
@42,43#. The FHNC/0 choice has been used in studies of
equation of state of nuclear matter@10#, where it was found
that the elementary diagrams contribution is not import
because of the relatively low densities of the system. In fin
nuclei elementary diagrams may play some role in the ev
ation of the expectation value of potentials having stro
exchange components@11#. In general, a measure of the re
evance of the missing diagrams is provided by the accur
of the sum rules of the one- and two-body densities.

The partial nodal functionsNvx
p are solutions of the inte

gral equations

Nvx
p ~r1 ,r2!5(

yy8
(
qr

E d3r 3 j132
qrpXvy

q ~r1 ,r3!Vyy8
qr

~r3!

3@Xy8x
r

~r3 ,r2!1Ny8x
r

~r3 ,r2!#. ~17!

The Xvx
p>2 links are

Xvd
p>2~r1 ,r2!5hv

p ~r1 ,r2!hv
c ~r1 ,r2!2Nvd

p ~r1 ,r2!, ~18!

Xve
p ~r1 ,r2!5hv

c ~r1 ,r2!@hv
p ~r1 ,r2!Nve

c ~r1 ,r2!

1 f c~r 12!Nve
p ~r1 ,r2!#2Nve

p ~r1 ,r2!, ~19!

hv
p ~r1 ,r2!5 f p~r 12!1 f c~r 12!Nvd

p ~r1 ,r2!, ~20!
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and hv
c (r1 ,r2)5 exp@Nvd

c (r1 ,r2)#. Moreover, the
N(X)xy

p (r1 ,r2)5N(X)yx
p (r2 ,r1) property holds. The centra

Xvx
c links are defined in@27#, and theXxy

p andNxy
p functions

in @15#.
For the vcc-type nodals we haveNvcc

p 5Nvcx
p 1Nvcr

p

1Nrx
p 1Nrr

p . Nvcx
p andNvcr

p are solutions of

Nvcx
p ~r1 ,r2!5(

qr
E d3r 3 j132

qrpXvcc
q ~r1 ,r3!Vcc

qr~r3!

3@Xcc
c ~r3 ,r2!1Nxx

c ~r3 ,r2!1Nrx
c ~r3 ,r2!#D r

1 (
qr>2

E d3r 3 j132
qrpDqXvcc

c ~r1 ,r3!Vcc
qr~r3!

3@Xcc
r ~r3 ,r2!1Nxx

r ~r3 ,r2!1Nrx
r ~r3 ,r2!#,

~21!

Nvcr
p ~r1 ,r2!5(

qr
E d3r 3 j132

qrpXvcc
q ~r1 ,r3!Vcc

qr~r3!

3@2N0~r3 ,r2!1Nxr
c ~r3 ,r2!1Nrr

c ~r3 ,r2!#D r

1 (
qr>2

E d3r 3 j132
qrpDqXvcc

c ~r1 ,r3!Vcc
qr~r3!

3@Nxr
r ~r3 ,r2!1Nrr

r ~r3 ,r2!#. ~22!

The equations forNrx
p andNrr

p are given in@15#. The links
Xvcc

p>2 are

Xvcc
p>2~r1 ,r2!5hv

p ~r1 ,r2!hv
c ~r1 ,r2!@Nvcc

c ~r1 ,r2!

2N0~r1 ,r2!#1@ f c~r 12!hv
c ~r1 ,r2!21#

3Nvcc
p ~r1 ,r2!. ~23!

Again, Xvcc
c is defined in@27#.

The vertex correctionsjv
c are discussed in@27# andDjv

op

is given by

Djv
op~r1!5Uv

op~r1!

1 (
p>2

Ap

2 E d3r 2$Xvd
p ~r1 ,r2!Nvd

p ~r1 ,r2!r1
c~r2!

1@Xvd
p ~r1 ,r2!Nve

p ~r1 ,r2!

1Xve
p ~r1 ,r2!Nvd

p ~r1 ,r2!#Cd~r2!%. ~24!

r1
c ~the Jastrow part of the one-body density! and Cd are

given in @15#, andUv
op is obtained by Eq.~2.12! of @27# with

the substitutionsr1
c→r12r1

c andCd→CdUd
op .

III. RESULTS FOR THE MOMENTUM DISTRIBUTION
AND NATURAL ORBITS

In our work we used the Argonnev88 NN potential. This
model is based upon thev18 potential and it is constructed b
9-4
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considering only the first eight operator terms, up to the sp
orbit ones. It reproduces the isoscalar part of the full int
action v18 in the S, P, and 3D1 waves and the3D1-3S1

coupling. Argonnev88 was introduced in Ref.@5# because its
parametrization@simpler than that of other realistic poten
tials, sinceL2 and (L•S)2 components are missing# allowed
for a large simplification in the numerically involved qua
tum Monte Carlo calculations. Thev88 potential is slightly
more attractive thanv18, and, for this reason, the strength
the associated repulsive part of the three-nucleon force~Ur-
bana IX model! has been increased by 30% with respect
the original version. The results presented in this paper h
been obtained with this Hamiltonian~A8’1UIX model!.

The correlation functionsf p(r ) and the single particle
functions fa( i ) are the two ingredients necessary to co
struct the many-body wave function~2!. We use af 6 corre-
lation, therefore, with respect to the structure of the Ham
tonian, we neglect the spin-orbit components. T
correlation is determined by minimizing the nuclear mat
energy at the lowest order of the cluster expansion, con
ering the Fermi momentumkF as one of the variational pa
rameters. The resulting two-body Euler equations are so

FIG. 1. Nuclear one-body densities. The solid lines are
FHNC/SOC results with thef 6 correlation, the dot-dashed lines a
the densities with the Jastrow correlation, the dashed lines are
IPM densities.
04431
-
-

o
ve

-

-
e
r
d-

d

with the healingconditionsf 1(r>d1)51, f p.1(r>dp)50,
and requiring that the first derivatives vanish atr 5dp . Only
two healing distances are introduced,dc for the four central
channels anddt for the tensor ones, and they are variatio
ally fixed. More details on this procedure are given in R
@14# for nuclear matter and in@15# for nuclei.

The single particle wave functions have been obtained
solving the single particle Schro¨dinger equation with a
Woods-Saxon~WS! potential,

VWS~r !5
V0

11 exp@~r 2R0!/a0#
. ~25!

A full minimization for the A8’1UIX model has been
obtained in Ref.@13# and it has provided a binding energ
per nucleonB/A of 5.48 MeV in 16O and 6.97 MeV in40Ca,
to be compared with the experimental values of 7.97 M
(16O) and 8.55 MeV (40Ca). These differences are comp
rable with those obtained in nuclear matter at the empir
saturation density,rNM50.16 fm23, with the same Hamil-
tonian. In fact, the FHNC/SOC nuclear matter energy
nucleon,ENM , is ENM5210.9 MeV @13#, against the em-
pirical value of216 MeV.

e

he

FIG. 2. FHNC/SOC momentum distributions in16O and 40Ca.
Solid lines, f 6 model; dot-dashed, Jastrow; dashed, IPM. T
squares are the VMC results of Ref.@8#.
9-5
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FIG. 3. FHNC/SOC momentum distribution
in 16O, 40Ca, and nuclear matter~NM!. Solid
line, NM f 6 model; dot-dashed, NM Jastrow
model; thin solid line,16O f 6 model; thin dashed
line, 40Ca f 6 model.
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The nuclear rms radii were found to be 2.83 fm in16O
and 3.66 fm in40Ca ~the experimental radii are 2.73 fm an
3.48 fm, respectively!. However, the one-body densities
the variational minimum did not show a satisfactory agr
ment with the experimental ones. Moreover, shallow mini
with respect to variations of the mean field paramet
around the minimum itself were found in Ref.@13#. In par-
ticular, if one chooses a set of single particle wave functio
that reproduces at best the empirical densities, the A8’1UIX
model providedB/A55.41 MeV in 16O and B/A56.64
MeV in 40Ca, with rms (16O)52.67 fm and rms (40Ca)
53.39 fm. Therefore, the density description has largely
proved while the energy variations are kept within the ac
racy of the FHNC/SOC scheme. The results presented in
paper have been obtained by means of this type of w
function, whose parameters are given in Table V of R
@13#.

The one-body densities generated by the FHNC/S
scheme are shown in Fig. 1, where the solid lines give
densities obtained with the full correlation, the dot-dash
lines are those obtained with the Jastrow correlation~retain-
ing only thep51 component! and the dashed lines are th
IPM densities. The effect of the operatorial correlation
large with respect to the Jastrow case, that is hardly dis
guishable from the IPM one. The comparison with the e
perimental results has been presented in Ref.@13#, where the
proton densities are folded with the electromagnetic nucl
form factor.

The momentum distributions are given in Fig. 2. Aga
the solid and dot-dashed lines are the fully correlated
Jastrow results, respectively, while the IPM ones are sho
as dashed lines. The squares are the VMC results@8# for 16O
obtained with the Argonnev14 @44# NN interaction.

The MD is normalized as

15
n

~2p!3E d3k n~k!, ~26!
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wheren is the spin-isospin degeneracy. For the Jastrow c
relation this normalization is satisfied within the 0.2–0.3
in both nuclei, while for thef 6 model the error is;3 % in
16O and;2 % in 40Ca, reflecting the approximations of th
SOC approach.

In Fig. 3 the MD of 16O ~thin continuous line! and that of
40Ca ~thin dashed line! are compared with those of nuclea
matter normalized as in Eq.~26! and calculated in the
FHNC/SOC framework by using the same interaction. It
worth noticing that the differences between the Jastrow
the f 6 correlations are similar in the infinite and finite sy
tems and that the three cases show an analogous behav
large momentum values. This momentum region is do
nated by the short-range structure of the nuclear wave fu
tion, which is heavily affected by theNN correlations. The
effect appears to be, to a large extent, independent on
nucleus. A similar behavior was found in Ref.@8#, where the
comparison was made among the4He, 16O, and nuclear
matter momentum distributions. With respect to the Jastr
estimates the noncentral, tensor correlations enhance the
of the MDs by a factor of 2–3, slightly smaller than the o
found in Ref.@8#, which is roughly;4. The difference may
be understood in terms of the stronger tensor force of
Argonnev14 potential adopted in that reference. Part of t
discrepancy may also be ascribed to the presence of s
orbit correlations in the wave function of Ref.@8#. However,
we notice that, in the same paper, it was found that th
correlations contribute to the kinetic energy by only;1%
(0.4 MeV/nucleon out of a total kinetic energy of 34.4 MeV
nucleon!.

A more demanding sum rule forn(k) than that expressed
by Eq. ~26! can be obtained from the kinetic energyT. The
kinetic energy per particle can be evaluated via the MD

T

A
5

\2

2m

n

~2p!3E d3k k2n~k![TMD . ~27!
9-6
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The value ofT/A can also be computed in the FHNC/SO
framework (TFHNC), for example, by means of the Jackso
Feenberg identity, as it has been done in Ref.@13# for the
A8’1UIX model. The differences betweenTMD andTFHNC
are a severe measure of the importance of the approx
tions made in the cluster expansion~FHNC/0 and SOC!. For
the Jastrow cases the relative disagreement,dT5uTMD
2TFHNCu/TFHNC , is ,5% (TMD520.52 MeV andTFHNC
519.57 MeV in 16O and TMD522.98 MeV andTFHNC
522.05 MeV in 40Ca) and it is due to the absence of t
elementary diagrams in the FHNC/0 truncation. In thef 6
model we obtainedTMD529.42 MeV,TFHNC532.64 MeV,
anddT59% in 16O andTMD536.63 MeV,TFHNC538.15
MeV, and dT59.6% in 40Ca. This larger disagreement
due to the SOC approximation. TheTMD value is largely
influenced by the behavior of the momentum distribution
high k values. The contribution of thek.5 fm21 tail has
been evaluated by an exponential extrapolation of the c
puted MD. The tail contributions for the Jastrow and ope
torial correlations are about 5% and 10% of the totalTMD ,
respectively. So, we believe that the uncertainty inTMD re-
lated to the MD tails may be fixed to a few percent in bo
cases. As an additional check of the numerical accurac
the algorithm used to evaluate the momentum distributi
we have verified thatTMD coincides withTFHNC for the
IPM.

The NO and their occupation numbers are obtained
diagonalizing the OBDM,

r1~r1 ,r18!5(
a

nafa
NO~r1!†fa

NO~r18!. ~28!

We treat spherical nuclei inls single particle coupling,
saturated in both spin and isospin. For this reason the s
isospin part of Eq.~12! provides the degeneracyn54. Be-
cause of the spherical symmetry the functionN(r1 ,r18) of
Eq. ~12! can be expanded in multipoles, and we obtain
the OBDM

r1~r1 ,r18!5n(
l

2l 11

4p
Pl~cosu118!r l~r 1 ,r 18!, ~29!

wherePl(x) represents the Legendre polynomials andu118 is
the angle betweenr1 and r18 .

Exploiting again the spherical symmetry, the natural
bitals can be written as

fa5nlm
NO ~r !5fnl

NO~r !Ylm~ r̂ !xst , ~30!

where we indicate withYlm( r̂ ) the spherical harmonics an
with xst the spin-isospin part of the wave function. Th
normalization condition is

15E r 2 drufnl
NO~r !u2. ~31!

Therefore we obtain
04431
a-

t

-
-

of
,

y

in-

r

-

r l~r 1 ,r 18!5n(
n

nnlfnl
NO~r 1!fnl

NO~r 18!. ~32!

The nl-natural orbitals and their occupations have been
tained by discretizing and diagonalizing the matr
r l(r 1 ,r 18) in a 1003100 equally spaced grid, up tor max
56(7) fm for 16O (40Ca).

The first three NO of16O and 40Ca, calculated for the
three lowestl values are shown in Figs. 4 and 5. In Table
the occupation numbers of the various NO for Jastrow andf 6

correlations are presented.
The effect of the correlations on the shell model orbit

are mainly visible in the short-range part of the 1s state,
making this NO more localized than its IPM counterpa
The shape of the other IPM states is barely influenced by
correlations. The occupation of the NO corresponding to
shell model ones is depleted by as much as 22%~the 2s state
in 40Ca). In contrast, the mean field unoccupied states
come sizably populated. The two effects are largely due
the tensor part of the correlation operator.

FIG. 4. 16O natural orbits. Solid lines,f 6 model; dashed, IPM.
9-7
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It was pointed out in Ref.@45#, that when there is more
than one occupied state in the IPM for a givenl value~as for
the s states in40Ca), then the natural orbitals may be qua
tatively different from the IPM ones. In fact, any orthogon
combination of the mean field orbitals does not change

TABLE I. Occupation numbers of thenlth natural orbits for
16O and 40Ca in CBF, with thef 6 and Jastrow correlation models

nl nnl( f 6 ;16O) nnl(J;16O) nnl( f 6 ;40Ca) nnl(J;40Ca)

1s 0.858 0.960 0.864 0.952
2s 0.019 0.005 0.780 0.962
3s 0.010 0.002 0.052 0.002
4s 0.005 0.001 0.013 0.001
1p 0.919 0.980 0.841 0.949
2p 0.021 0.004 0.024 0.009
3p 0.011 0.003 0.016 0.006
1d 0.025 0.006 0.956 0.983
2d 0.011 0.003 0.030 0.007
3d 0.006 0.001 0.019 0.006

FIG. 5. 40Ca natural orbits. Solid lines,f 6 model; dashed, IPM.
04431
l
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corresponding density matrix. New mean fields orbitalsf̂ns
consistent withr IPM(r1 ,r18), can be obtained in40Ca by the
transformations

f̂1s~r !5 cos~a!f1s~r !1 sin~a!f2s~r !, ~33!

f̂2s~r !5 cos~a!f2s~r !2 sin~a!f1s~r !, ~34!

for any choice of the anglea. The IPM orbitals of thel
50 panel in Fig. 5 are obtained by a numerical diagonali
tion of the one-body density matrix and roughly correspo
to cos(a)50.8.

The 16O natural orbits have been evaluated in Ref.@32#
within a Green function approach and using the one-bos
exchange BonnB potential of Ref.@46#. The authors find the
n51 NO more populated than the CBF ones for the oc
pied states in the shell model approach (l 50, 1!, and, con-
sequently, lower occupations for all the remaining orbita
Specifically, the n51 Green function results aren1s
50.921,n1p50.941, andn1d50.017. The 1p (1d) occupa-
tion number has been taken as the average of the 1p1/2 and
1p3/2 (1d3/2 and 1d5/2) orbitals given in the reference. Th
discrepancies are probably to be ascribed more to the di
ent potentials adopted, rather than to the methodologies.
A8’1UIX model induces stronger correlation, so giving
larger depletion of the lowest NO. This effect was also fou
in the study of 3He atomic drops of Ref.@45#, where the
strong repulsive interaction between the3He atoms depletes
the shell model occupations by 15–46 %. The CBF to
occupation numbers in thel th orbitals for 16O and 40Ca with
different correlations (f 6 , f 4, without tensor components
and Jastrow,J) are given in Table II, together with the16O
Green function ones from Ref.@32#. It appears clearly tha
the longer ranged tensor correlations are responsible for m
of the deoccupation of the shell model natural orbitals
favor of the higher ones.

Figure 6 presents a comparison between the16O NO in
FHNC/SOC and in the lowest-order approximation. This a
proach consists in truncating the cluster expansion at the
order in the dynamical correlation lines@47,48,29# and it has
achieved a certain degree of popularity because of its s
plicity. The approximation provides a good description of t
n51 NO corresponding to the occupied shell model sta
but it fails to reproduce the other ones.

TABLE II. The occupation numbers of thel th natural orbits for
16O and 40Ca in CBF, with three correlation models and in th
Green function~GF! approach.

Corr. ns np nd nf

16O J 0.971 0.991 0.011 0.002
f 4 0.977 0.988 0.015 0.004
f 6 0.899 0.966 0.047 0.006
GF 0.936 0.951 0.022 0.007

40Ca J 1.932 0.975 1.003 0.022
f 4 1.907 0.964 1.005 0.022
f 6 1.727 0.920 1.026 0.071
9-8
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To conclude this section, we give in Fig. 7 the part
wave decomposition of the correlated and IPM one-bo
densities in terms of their natural orbits.

IV. QUASIHOLE STATES AND SINGLE PARTICLE
OVERLAP FUNCTIONS

A considerable amount of information on the properties
the single nucleon in the nuclear medium can be dedu
from (e,e8p) reactions. These experiments have been a
lyzed to extract the quasihole functionch(r ) given by the
overlap between theA-body ground state and th
(A21)-body hole state of the residual system.

In a fixed center reference frame, the QH function is d
fined as

ch~x!

5AA
^Ch~A21!ud~x2xA!uC0~A!&

^Ch~A21!uCh~A21!&1/2^C0~A!uC0~A!&1/2.

~35!

In doubly closed shell nuclei in thels coupling scheme it is
possible to separate the radial dependence of the QH f
tion from the angular, spin and isospin ones, as

FIG. 6. 16O l 50, 1 natural orbits in FHNC/SOC~solid lines!
and LO approximation~dashed lines!.
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ch~x!5ch~r !Ylm~ r̂ !xst5ch~r !Ylmst~ r̂ !. ~36!

In the IPM, the QH overlaps are simply the shell mod
functions andch

IPM(r )5Rh5nl(r ), whereRh(r i) is the radial
part of fa( i ).

In CBF theoryC0(1,2, . . . ,A) is given by Eq.~2! and

Ch~1,2, . . . ,A21!5G~1,2, . . . ,A21!Fh~1,2, . . . ,A21!,
~37!

where Fh(1,2, . . . ,A21) is a Slater determinant obtaine
by removing fromF0(1,2, . . . ,A) a nucleon in the stateh.

In order to develop a cluster expansion forch(r ) it is
convenient to rearrange Eq.~35! as,

ch~r !5Xh~r !N h
1/2, ~38!

where

Xh~r !5AA
^Ch~A21!uYlmst~ r̂ ,s,t!d~r2rA!uC0~A!&

^Ch~A21!uCh~A21!&
,

~39!

FIG. 7. Partial wave contributions to the one-body densities
the natural orbits representation. The upper lines are the total
sities. The remaining lines given(2l 11/4p)r l(r ,r ). Solid lines,f 6

model; dashed, IPM.
9-9
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A. FABROCINI AND G. CO’ PHYSICAL REVIEW C63 044319
and

Nh5
^Ch~A21!uCh~A21!&

^C0~A!uC0~A!&
. ~40!

Cluster expansions are used to computeXh andNh , along
the lines followed in Ref.@50# to evaluate the overlap matri
elements in the CBF approach to the nuclear matter spe
function.

The expansion forXh is linked, in the sense that discon
nected diagrams in the numerator are exactly canceled
those coming from the denominator. Its FHNC/0 express
when only Jastrow correlations are considered, is

X nl
J ~r !5jv

nl~r !HRnl~r !1E d3r 1 Rnl~r 1!Pl~cosu!

3~gvd
nl ~r ,r1!Cd

nl~r1!@2r IPM
nl ~r ,r1!1Nvcc

nl ~r ,r1!#

1r IPM
nl ~r ,r1!2Nvcr

nl ~r ,r1!2Nrr
nl ~r ,r1!!J , ~41!

whereu is the angle betweenr and r1, and r IPM
h is the A

21 one-body density matrix in the independent parti
model,

r IPM
h ~r1 ,r18!5 (

aÞh
fa

†~1!fa~18!. ~42!

In Nh only those diagrams from the denominator conta
ing explicitly the h orbital survive. The Jastrow, FHNC/
expression is

@N nl
J #215E d3r Cd

nl~r !H ufnl~r !u21E d3r 1 fnl
† ~r !fnl~r1!

3~gdd
nl ~r ,r1!Cd

nl~r1!@2r IPM
nl ~r ,r1!1Ncc

nl ~r ,r1!#

1r IPM
nl ~r ,r1!2Nxr

nl ~r ,r1!2Nrr
nl ~r ,r1!!J . ~43!

The FHNC quantities enteringX nl
J and N nl

J correspond to
those given in Refs.@27,11#, but evaluated with theA21
densities,r IPM

h (r1 ,r18) and r1,IPM
h (r1)5(aÞhufa(1)u2. In

absence of correlations,X nl
J (r )→Rnl(r ) andN nl

J →1.
The FHNC/SOC expressions ofXnl andNnl , with opera-

torial correlations, are given in the Appendix.
The quasihole normalization gives the spectroscopic

tor

Sh5E r 2 dr ch
2~r !. ~44!

In a fixed center IPM~as the one we adopt as model fun
tion!, Sh

IPM51. Center of mass~c.m.! corrections are source
of deviation. In the harmonic oscillator~HO! model they
enhanceSh for the valence hole states~those with the larges
oscillator quantum number,Nv) by a @A/(A21)#Nv factor
@49#. As a consequence, the c.m.-corrected 1p-shell spectro-
scopic factor of16O is S1p,c.m.

HO 516/15;1.07, while the av-
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erage between the 2s and 1d states in 40Ca is S2s/1d,c.m.
HO

5(40/39)2;1.05. More realistic Woods-Saxon orbitals d
not allow for an analytical treatment of c.m. effects, whi
have to be computed numerically. It has been found tha
16O the 1p WS spectroscopic factor practically coincide
with the HO one@34#.

The correlated spectroscopic factors~without c.m. correc-
tions! in 16O and 40Ca are given in Table III forf 6 , f 4, and
Jastrow correlation factors. Jastrow correlations margin
reduceSh ~at most3%). TheJastrowl th spectroscopic fac-
tors may result slightly larger than the total occupation of
corresponding natural orbits, given in Table II. A simil
feature was found in Ref.@48#. The small deviations of the
Jastrow model from the correct behavior are, in our opini
well within the accuracy of the numerical procedures
have adopted and of the approximations in the cluster s
mation. Central spin-isospin correlations (f 4 model! also
provide a few percent depletion in the valence stat
whereas the tensor ones (f 6) give most of the reduction
bringing S1p in 16O to 0.90 andS2s andS1d in 40Ca to 0.86
and 0.87, respectively. The 1p CBF 16O result is in complete
agreement with the VMC estimate@34#. The influence of the
operatorial correlations is much larger in the low-lyin
states, whose spectroscopic factors are drastically reduce
both central and tensor components:S1s in 16O is 0.70,S1p
and S1s in 40Ca are 0.58 and 0.55, respectively. An ana
gous behavior was found by Benhar@51#, who first used
low-order cluster expansions to estimateSh in the
12C(e,e8p)11B reaction with state-dependent correlatio
and foundS1p50.55 andS1s50.25.

Results similar to those presented in this paper have b
obtained in Refs.@36,37#, where the16O S1p has been ex-
tracted by several models of OBDM@35#. In particular, in
both references it is confirmed that correlation effects on
spectroscopic factor are dominated by tensor compone
The lowest-order truncation of the OBDM cluster expans
adopted in Ref.@37# provides S1p,LO;0.90, in agreemen
with the FHNC/SOC results. However, the authors fi
S1s,LO;0.86, in contrast with the 0.70 FHNC/SOC valu
The origin of this large difference may lay in the lowes
order approximation in the cluster expansion. This issue
presently the object of investigation.

The latest experimental extraction ofSp from the
16O(e,e8p)15N reaction@52# reportsSp1/2

50.61 for the 1/22

ground state in15N and Sp3/2
(6.32)50.53 for the lowest

TABLE III. CBF spectroscopic factors for16O and 40Ca, with
Jastrow ~J! and spin-isospin correlations, with (f 6) and without
( f 4) tensor components.

Corr. 1s 1p 1d 2s

16O J 0.98 0.98
f 4 0.79 0.96
f 6 0.70 0.90

40Ca J 0.98 0.99 0.97 0.98
f 4 0.71 0.76 0.96 0.97
f 6 0.55 0.58 0.87 0.86
9-10



ONE-BODY DENSITY MATRIX, NATURAL ORBITS, . . . PHYSICAL REVIEW C 63 044319
FIG. 8. Squared quasihole wave functions. Solid lines,f 6 model; dot-dashed, Jastrow; dashed, IPM. The 1p panel of16O shows also the
empirical overlap~stars! and thef 6 one, rescaled as explained in the text~lower dot-dashed line!.
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3/22 state at 6.32 MeV. This state exhibits 87% of the to
Sp3/2

strength, that is fragmented over three states at 6

9.93, and 10.70 MeV. So, the totalSp3/2
may be estimated to

be Sp3/2
50.53/0.8750.61 @34#.

A corresponding situation is met in the40Ca(e,e8p)39K
reaction@23#, where the transition to the 1d3/2 ground state
gives Sd3/2

;0.6160.07, while the FHNC/SOC value isSd

50.87. The40Ca spectroscopic factors have been compu
by the low-order cluster expansion of the OBDM in a J
strow model in Ref.@53#. The results are consistently lowe
than the FHNC ones, reported in the 5th column of Table
For instance, S2s,LO50.95 and S1d,LO50.91, whereas
S2s,FHNC50.98 andS1d,FHNC50.97. The discrepancies ar
probably to be ascribed to the approximation used in
reference to evaluate the OBDM.

The squared quasihole functions are shown in Fig. 8.
solid and dot-dashed lines give the fullf 6 and Jastrow re-
sults, respectively. The IPM estimates are given as das
lines. The spin-isospin dependent correlations are mainly
sponsible for the quenching for the IPM QH functions an
consequently, of the spectroscopic factor. The Jastrow c
ponents have little effect on the overlaps, and mostly in
valence states. In Ref.@54# a Woods-Saxon potential wa
04431
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used to generate a single particle wave function to fit
16O(e,e8p)15N cross section to the 6.32 MeV state wi
Sp3/2

(6.32)50.53. ucWSu2 is shown in theuc1pu2–16O panel
as stars. In order to give a meaningful comparison, we
scale uc1p,FHNCu2 by the factor 0.53/0.90. The result i
shown as a dot-dashed line and it is in nice agreement w
the empirical estimate.

The knowledge ofch(r ) may give access to the cros
sections. However, both Coulomb distortion and final st
interactions should be properly accounted for, by evaluat
the Fourier transform of a distorted overlap@55#, to perform
a quantitative comparison with the experiments. Work in t
direction is in progress. In this paper we limit ourselves
give in Fig. 9 the squared Fourier transform of some qua
hole functions,

ch~k!5E d3r eik•rch~r !. ~45!

In the valence states (1p for 16O and 1d for 40Ca) short-
range correlations slightly depleteuch(k)u2 at large momenta
with respect to the IPM. This behavior is in contrast with th
of the total momentum distributions at largek, given in Fig.
2 and showing a large enhancement due to the correlati
9-11
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FIG. 9. Squared transform of the quasihole wave function for16O and 40Ca. Solid lines,f 6 model; dot-dashed, Jastrow; dashed, IPM
re

th
h
un

tri
o
n
n
e

o
th
m
th
in
o

e
ef-
en-
tail
la-
en-
ults

al-
ts.
he
ified
the
ther
ve

a
the
er
ith
by

lu-
he
This discrepancy has been already observed@48# and it is
confirmed by our approach. The effect of the correlations
more visible in the two low-lying states given in the figu
(1s for both nuclei!. For instance, in the 1s 16O case Jastrow
correlations are effective at large momenta only, beyond
first IPM zero; instead, tensor correlations modify both t
low and large momenta behaviors. The same effect is fo
in 40Ca.

V. SUMMARY AND CONCLUSIONS

In this work we have calculated one-body density ma
ces, momentum distributions, natural orbits and quasih
states of16O and 40Ca using the FHNC/SOC resummatio
technique, which allows for using realistic interactions a
state-dependent correlations. The calculations have b
done with the Argonnev88 two-nucleon potential plus the
Urbana IX three-nucleon interaction, together with a set
single particle wave functions fixed to reproduce at best
empirical charge distributions of the two nuclei. The para
eters of the correlation have been chosen to minimize
binding energies. Using these wave functions, we have
vestigated the role of the correlations on the quantities ab
mentioned.
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Our density and momentum distributions confirm som
well-known results. Short-range correlations have small
fects on the density distributions and mainly around the c
ter of the nucleus. On the contrary, the high-momentum
of the momentum distribution is dominated by the corre
tions. We have pointed out that the tensor correlations
hance these tails by a factor of 3–4 with respect to the res
obtained with Jastrow correlations.

The tensor part of the correlation is important in the c
culation of the occupation probabilities of the natural orbi
The effect of reducing the occupation of the level below t
Fermi surface and enhancing those that lie above is ampl
by the tensor terms of the correlation. We found that
shape of the natural orbits below the Fermi surface is ra
similar to that of the corresponding single particle wa
functions.

The natural orbits have also been calculated within
lowest-order computational scheme. The agreement with
orbit below the Fermi surface is excellent. The lowest-ord
calculation produces orbits above the Fermi surface w
completely different shape with respect to those obtained
the full calculation.

Tensor correlations play a relevant role also for the eva
ation of the overlap functions and spectroscopic factors. T
9-12
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correlated overlap functions are close to the correspond
single particle wave functions if only Jastrow correlations
used. The inclusion of the tensor correlations strongly mo
fies their shapes. This behavior is also clear from the anal
of the spectroscopic factors. The depletion of a few perc
with respect to one obtained with Jastrow correlations,
comes of about 10–15 % for the valence levels and 30–4
for the deeply lying ones.

In spite of this noticeable reduction, the FHNC/SOC a
proach in16O is still unable to reproduce the empiricalSp3/2

spectroscopic factor extracted from (e,e8p) reactions. A
similar behavior was found in Ref.@56# for nuclear matter,
where the variational FHNC/SOC calculation of the one-h
strengthZ(e) around the Fermi level providedZv(e;eF)
;0.88, mostly due to tensor correlations. Second-order
turbative corrections in a correlated basis, obtained by c
sidering the contribution of two-hole one-particle, (2h-1p),
correlated statesC2h-1p5GF2h-1p were found to bring the
ar
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strength toZCBF(e;eF);0.70, so explaining almost half o
the discrepancy with the empirical208Pb spectroscopic fac
tor, Z(208Pb);0.5–0.6. The remaining part of the differenc
was attributed to the coupling of the single-particle waves
the collective low-lying surface vibrations, not reproducib
in infinite nuclear matter. We expect that in finite nuclei, t
inclusion of correlated 2h-1p corrections can take into ac
count also great part of the coupling with surface vibratio
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APPENDIX

We present in this appendix the FHNC/SOC expressi
for the Xnl andNnl functions,
Xnl~r !5X nl
J ~r !@11Djv

op,nl~r !#1jv
nl~r !E d3r 1 Rnl~r 1!Pl~ r̂ , r̂ 1!H gvd

c,nl~r ,r1!Cd
nl~r1!Ud

op,nl~r1!@2r IPM
nl ~r ,r1!

1Nvcc
c,nl~r ,r1!#1 (

p>2
$hv

p,nl~r ,r1!hv
c,nl~r ,r1!Cd

nl~r1!@2r IPM
nl ~r ,r1!1Nvcc

c,nl~r ,r1!#1gvd
c,nl~r ,r1!Cd

nl~r1!Nvcc
p,nl~r ,r1!

2Nvcr
p,nl~r ,r1!2Nrr

p,nl~r ,r1!%ApDpJ , ~A1!

@Nnl#
215E d3r Cd

nl~r !@11Ud
op,nl~r !#H ufnl~r !u21E d3r 1 fnl

† ~r !fnl~r1!$gdd
nl ~r ,r1!Cd

nl~r1!@2r IPM
nl ~r ,r1!1Ncc

nl ~r ,r1!#

1r IPM
nl ~r ,r1!2Nxr

nl ~r ,r1!2Nrr
nl ~r ,r1!%J 1E d3r Cd

nl~r !E d3r 1 fnl
† ~r !fnl~r1!H gdd

c,nl~r ,r1!Cd
nl~r1!Ud

op,nl~r1!

3@2r IPM
nl ~r ,r1!1Ncc

c,nl~r ,r1!#1 (
p>2

$hp,nl~r ,r1!hc,nl~r ,r1!Cd
nl~r1!@2r IPM

nl ~r ,r1!1Ncc
c,nl~r ,r1!#

1gdd
c,nl~r ,r1!Cd

nl~r1!Ncc
p,nl~r ,r1!2Nxr

p,nl~r ,r1!2Nrr
p,nl~r ,r1!%ApDpJ . ~A2!
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