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Role of deformation in the nonmesonic decay of light hypernuclei
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We discuss the nonmesonic decay of deformeshell hypernuclei. The Nilsson model with angular mo-
mentum projection is employed in order to take into account the deformation effects. The nonmesonic decay
rate and the intrinsie\ asymmetry parameter decrease as a function of the deformation parameter, while the
ratio of the neutron- to proton-induced decay rates increases. We find that the deformation effects change these
observables by about 10% f§Be from the spherical limit.
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[. INTRODUCTION of the initial hypernucleus was described in a shell-model
framework that assumed spherical configuration. In these
One of the main issues of nuclear physics is to understandalculations, the stron@®B interaction was accounted for
the nucleon-nucleonNNN) interaction. Thd AS|=1 NN in-  using the NijmegerB B potential mode[5]. Monopole form
teraction is particularly important in this respect, since thefactors at each vertex were included in order to regularize the
change of strangeness can be used as a signature to stut§ak potential, while the weak baryon-baryon-meson cou-
both the parity-conservingPC) and the parity-violatingPV) ~ Pling constants were derived based on,88) and soft-
amplitudes. This is in clear contrast to th&=0 weakNN ~ meson theorems. The total NMD rate and the asymmetry in
interaction, where the weak PC signal is masked by théhe distribution (_)f emltted protons from the decay of poIarT
strong interaction. ized hypernuclei were in good agreement with the experi-
Due to the lack of stablé-particle beams, the weak de- mental data. However, the theoretical values for the neutron-

cay of A_hypernuclei has been the only source of informa-to'pro.ton ratio were found to be very small compared to the
. D . . experimental data. Several attempts have been made to rec-
tion on the weak four-baryofAS|=1 interaction. Single

A-hypernuclei are typically produced via either hadronic re-OnCIIe this discrepanc}7-9,12-14, but none of them has

: _ o solved this problem yet.
actions, asK~, #~) [1,2] or (7", K7) [3], or electropro- Our aim in this paper is to investigate how much these

duction mechanisms, a®,e’ K™) [4]. These hypernuclei gpservaples depend on the deformation of hypernuclei. All
are typically produced in an excited state and reach theiprevious calculations were performed using the spherical
ground state by electromagnetjcand/or particle emission. configuration with no mixing, however, it is well known that
Once they are stable against strong decay, they decay Vigany p-shell nuclei are deformed in the ground state. For
weak interaction mechanisms that are nonleptonic in naturgstance, the quadrupole deformation parameter extracted
and violate isospin, parity, and strangeness. Since the M@gom the experimental quadrupole moméns) is B,=0.65
sonic decay modeA— mN, is Pauli blocked in the nuclear for 198 and—0.71 for X1C. It may be important to take these
medium, hypernuclei withA=5 predominantly decay deformation effects into account in order to describe quanti-
through the nonmesonic decayMD) mode, AN—NN. tatively the nonmesonic decay @tshell hypernuclei. De-

In order to learn about the weakN—NN interaction  formed hypernuclei can be described using several models
from the theoretical side, one has to take into account differsych as thea-cluster model[16] or the deformed self-
ent inputs as accurately as possible. These include the dgpnsistent Hartree-Fock method. In fact, one can also use
scription of nuclear structure, the choice of the strongrealistic wave functions obtained by a diagonalization of a
baryon-baryon(BB) potential model[5,6], Al=1/2 viola-  shell-model Hamiltonian fop-shell nuclei, as in Ref{17].
tions [7] and the importance of theN8 emission channel, |n the present paper, however, in order to perform a system-

Anp—nnp [8,9]. In Refs.[10,11, a one-meson-exchange atic study, we use instead the Nilsson mofie8,19 as a
(OME) model was applied to calculate the nonmesonic desjmplified Hartree-Fock method.

cay observables of thg-shell }'B and }*C and thes-shell The paper is organized as follows. In Sec. Il, we present
XHe and3H hypernuclei. We included the virtual exchange the relevant formulas to evaluate the NMD observables in a
of the ground-state pseudoscalar and vector mespms w, OME model. In Sec. lll, we briefly review the deformed

K, andK*, in addition to the long-ranged pion. Except for shell model based on the Nilsson model. Section IV presents
the hypertriton, where the hypernuclear wave function waghe deformation dependence of the nonmesonic observables
calculated exactly using the Faddeev formalism, the structurtor the decay of; Be, whose®Be core is known to be largely
deformed. Although there are no experimental data for this
hypernucleus at present, we choose this system as the sim-
*Present address: Yukawa Institute for Theoretical Physics, Kyotglest nonsphericgb-shell hypernucleus and as a representa-
University, Kyoto 606-8502, Japan. tive example of deformeg-shell nuclei. We compare our
"Present address: Department Estructura i Constituents de la M#heoretical predictions with the typical experimental data for
teria, Facultat de Fisica, Diagonal 647, E-08028 Barcelona, Spainotherp-shell hypernuclei. Section V summarizes the paper.
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II. NONMESONIC WEAK DECAY IN A ONE-MESON-
EXCHANGE MODEL

N

Assuming that the initial hypernucleus is at rest, the NMD

rate is
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where M, is the hypernuclear transition amplitude. The
guantitiesM,, Eg, E;, andE, are the mass of the hyper-

nucleus, the energy of the residu#l« 2)-particle system,
and the total asymptotic energies of the emitted nucleons,

respectively. The integration variabIE§ and IZZ are the mo-

menta of the two baryons in the final state. The momentum-
conservingd function has been used to integrate over the
momentum of the residual nucleus. The sum, together with

K,K*

the factor 1/(3d+1), indicates an average over the initial
hypernucleus spin projectionis], , and a sum over all quan-
tum numbers of the residual(- 2)-particle system{R}, as

well as the spin and isospin projections of the exiting par-

ticles,{1} and{2}. In general, one can write the total non-
mesonic decay rate d8,,=I*N"NN=T,+T,, wherel',
(An—nn) stands for the neutron-induced decay angl
(Ap—np) for the proton-induced one.

FIG. 1. Free Feynman diagrams for theN— NN transition
mediated by the exchange of the nonstrange,p,o (left) and
strangeK,K* (right) mesons. The shaded cirqlfilled) stands for
the weak(strong vertex.

In addition to the total and partial decay rates, we also

calculate the intrinsid\ asymmetry parameter. When wor
ing with polarized hypernuclei and in combination with co-

k. relates the hypernuclear asymmetry paraméfgto the in-

trinsic A asymmetry parametea,, such thatA=p,a,

incidence measurements of the decay particles, one can stud_”yPyAp-

the angular distribution of particles coming from tiAeN

— NN weak decay. Due to the interference between the p\Wo-DO : )
dransition amplitude in Eq(1), one has to decompose the

and PC amplitudes, the distribution of the emitted protons i
the weak decay displays an angular asymmetry with respe
to the polarization axis. The asymmetd; defined by

_p 3 Tr(MuSMy")
YIHL Tr MM

)

is expressed in terms of the hypernuclear polarization created

in the strong production reactio®,, the J-spin operator
along the polarization axisS,, and the total spin of the
initial hypernucleus). In Ref.[20] it is shown that the asym-
metry follows a simple cog dependence, i.e., A

=Py A, cosy, wherey stands for the angle between the di-
rection of the proton and the polarization axis. The hyper
nuclear asymmetry paramet@y, is characteristic of the hy-
pernuclear weak decay process and dependd and the

intensity of protons exiting along the quantization axis for

the different spin projections of the hypernucleus. At

=0°, the asymmetry in the distribution of protons is thus

determined by the producd=P,A,. In the following, we
assume a weak coupling scheme where Ahdwyperon is
coupled only to the ground state of th&<{ 1)-particle core.

In this scheme, simple angular momentum algebra relates the

hypernuclear polarizatio®, to the A polarizationp, and

The nonmesonic decay of hypernuclei proceeds through a
0-body mechanism. Therefore in order to evaluate the

&{p—1)-core wave function into a set of states in which a
nucleon couples to the residuah{ 2)-particle state. This
can be done using the coefficients of fractional parentage
(CFB, which are defined by

|\]|V|,TTz>:J Z ]_ <‘]T{|‘]RTRvjt>[|JRTR>®|jt>]JM,TTZa
3

where Jg and Ti are the spin and isospin of the residual
nucleus. The weak potential responsible for this transition
can be obtained by making a nonrelativistic reduction of the
free Feynman amplitude depicted in Fig. 1. In Table | we
‘show the strong and weak Hamiltonians for pseudoscalar
(P9 and vector(V) mesonsA, B, «, 8, ande stand for the
appropriate baryon-baryon-meson weak coupling constants,
while g (g¥,g") represents the stronector, tensor cou-
pling. Details of the derivation of the transition potential can
be found in Ref[10] and here only the final expression will
be presented. For pseudoscalar mesons, the potential is

B .
R § 2P
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TABLE I. Weak and strong Hamiltonians for pseudoscéR® IIl. DEFORMED SHELL MODEL
and vector(V) meson exchanges. The weak Hamiltonians are in . . . .
units of GemZ and¥ (@) stands for the baryofmeson field. As.we mentioned in the previous §ect|on,. we use a weak
coupling scheme for thé\ hyperon in the initial hyper-
PS Vv nucleus. To this end, we must describe the ground state of

the core nucleus which may be deformed. The Nilsson model

o Vo g’ . provides a simple and convenient framework to describe de-
Strong ig¥ys¥ o gy s ot | Ve formed nuclei, and has been widely used in the literature
B o [18,19,24-27. It is based on an anisotropic harmonic oscil-
Weak iW(A+Bys)¥ «Tf[aw_gi 2|\7V+87#75 Ve lator and its Hamiltonian reads

4 | 5
H= HO_ § gé‘monzo( (9), (7)
whereGme,z 2.21x10 ' is the Fermi coupling constarﬁ,
is the momentum carried by the meson directed towards the h? , 1 L N
strong vertexu is the meson mass, and (M) is the aver- =" mV tgMeor FClsTDUT(IDy)
age of the baryon masses at the strégwgak vertex (and

vice versa for the exchange of strange megoRer vector _ f \/E 2
mesons, the potential is 3 SémwOYZO( 9). ®)
(a+B)(g"+g") Here & is a deformation parametef,ands are the single-
.  (a .. ; . .
V, ()= GF”@( 9Va— ) (61X Q) (35X Q) parnclg orbital and the le? angular mome'nta, &hdndD
4MM are adjustable paramete($<)y=N(N+ 3)/2 is the expecta-

tion value ofi2 averaged over one major shell with quantum
(5)  nhumberN. The relation betweed and 3, is given by[28]

p 4 \/E B ©
2 3NV E1_9252"
The values of the strong and weak couplings are listed in 3 V51-243

Table Il of Ref.[10]. In Egs.(4) and(5) the operator®\, B, since the Nilsson Hamiltonia¢8) violates rotational invari-
a, B, ande contain, apart from the weak coupling constants,ance, the total angular momentups1 +s is not a good

tpe Qspecific isospin dependence of :[he potential, which i?]uantum number. However, the projection jobnto thez

71~ 7, for the isovectorr andp mesons, ¥or the isoscalar; direction, k, is conserved, and the single-particle levels are
and w mesons, an:j a combination of both operators for thgharacterized bi and other quantum numbers. We expand a
isodoubletk andK*. In order to derive Eq94) and(5) we  Nilsson single-particle levely,,, in terms of the eigen-

assumed the validity of thal =1/2 rule, which is known to  fynctions of the spherical harmonic oscillator Hamiltonian
experimentally dominate the decay afs into pions. Al Ho, dmijk, as

= 3/2 transitions for vector mesong (@nd K*) are easily

accommodated 7] in the formalism, and the results we @

present here account for sugh =1/2 violations. Pr@)= nzu Xnijk Pnijk » (10)
We obtain a regularized potential by including a mono-

pole form factor at each vertex(q?)=(A2—u?)/(A2  where q are quantum numbers other th&n We choose

+q%), where the value of the cutoffy, different for each X =(=1)"*x{{), so that the eigenvalues of the Nilsson
meson, is taken from the lich hyperon-nucleon interaction Hamiltonian do not depend on the sign of the projection of
[6]. To incorporate the effects of the strohdN interaction, ~ total angular momenturi27]. We denote the creation opera-
we solve al-matrix scattering equation in momentum spacetor of ¢ asa} and that of¢;, asb], . We explicitly express
for the outgoing nucleons using the Nijmegls] potential  only thej andk quantum numbers to simplify the notation.
models. For the initial bound two-baryon system we use dntrinsic wave functions, i.e., eigenfunctions of the Nilsson
spin independent parametrization of the type Hamiltonian(8), are given by

1
97+ u?

e(gV+g) - L .
i (01X 0)d

n
f(r)=(1—e ")+ pre=r1e?, () ) =aiak,-agjoy=11 (2 Xjkibkai)|0>a (1D
with a=0.5 fm, b=0.25 fm 2, ¢c=1.28 fm, andn=2. Where theK quantum number is the sum over &|l. The

The results obtained with this parametrizati@i] lay be-  intrinsic wave function11) is not an eigenstate of the total
tween those obtained with a microscopic finite-nucleusangular momenturd, and thus has to be projected out to a
G-matrix calculation[22] using the soft-core and hard-core good angular momentum state. This can be achieved by us-
Nijmegen[23] models. ing the projector given by19,24,25
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L, 23+1 ; .
PMK:WJ dQDMK(Q)R(Q), (12)

where() are Euler angles anDﬂ,,K(Q) and R(Q) are the
Wigner D function and the rotation operator, respectively.
For systems with a single Nilsson level, such %RBe

PHYSICAL REVIEW C63 044318

IV. NONMESONIC DECAY OF $Be

Let us now apply the deformed shell model of Sec. Il to
the nonmesonic decay ﬁBe. The quadrupole moment of
the neighbor nucleu$Be was measured to be 566m?
[15], from which we extract the quadrupole deformation pa-
rameter 8,=1.00 using the radius parameteg=1.2 fm.

which we discuss in the next section. the CFP can be anax€Veral theoretical calculations suggest that the core nucleus

lytically obtained[26,27]. Note that a single Nilsson level

Be and thef{Be hypernucleus also have similar deforma-

can accommodate up to four nucleons, i.e., two protons antion parameters with the same sigh6]. Our interest is to

two neutrons. For three-particle systeftwo neutrons and
one proton, for examplethe wave function is given by

Vinu=[N(3)s] Py —ahal wakl0) (13
=[N3 2 2 XK,k
j1.J2.03 J12
X (j1Kj2—k|J120)(I120j 3k| IK)
X ([a;.lvaszv]lea]TSw)JM| 0>’ (14)

wheres stands for proton and for neutron. The normaliza-
tion factorN(3); is given by[26]

[N<3>J12=§ 83, ever(Xj)2U(J12,K)(J10ik|IK)?,
(15

where

U<J,k>=2j2j (X110 2(X ) X 1Ki2—K[JO).  (16)

The isospin of this system is 1/2. For four-nucleon systemsf

the wave function reads

‘PJM:[N(4)J]7l|5‘|3/|,K:Oalva1kvalwazkﬂ'|0> (17)
=[N 20 2 XK, kXK —k
12 i34 J12.dR
X (j1Kj2—k|J120)(31,0j k| Igk)(IRK]4—k|JO)
x{[(af ,a] )31 13.8], tomlO), (18)

with the normalization given bj26]

[N(4)J]2: ZJ 5J12,euen5.]34,euenu(leyk)U(J34ak)

12:Y34

X (J1,033,0/J0)2. (19

The isospin of this wave function is 0. Comparing E{st)
and (18), the CFP for the four-particle system reads
N(3);,

N(4);
(20

C(j) = (IT{ [IRTr.jt) = — V2%, _(Jrkj—k|JO)

discuss such deformation effects on nonmesonic decay ob-
servables.

As is discussed in Sec. Il, the use of the CFP allows us to
write the hypernuclear transition amplitude;; in terms of
elementary two-body amplitudes. Therefore, our first task is
to compute these coefficients for the core nucléBs. We
assume the inert sphericiiie core and explicitly work with
only the four valence nucleons. Diagonalizing the Nilsson
Hamiltonian(8), one finds that the lowest Nilsson level for
the valence nucleons hds=1/2 for prolate deformation
[19]. We diagonalize the Nilsson Hamiltonian in theN
=0 states. Contributions from theN=2 can be neglected
unless the deformation is large. Tke- 1/2 state is thus

| ‘r/fk:l/2>:X| ¢p3/2’1/2>+y| ¢p1/2’1/2>: (21)
wherex andy are determined by diagonalizing the Nilsson
Hamiltonian within this configuration space and depend
upon the deformation ofBe. Using Eq.(20), the CFP’s are
found to be

3x8+ 3x%y2+ 9x4y?
x8+4x%y?+ 18x4y4+ 10y

[C(p3)]?= 3 (22)

or the p5, state, and

x8y2+9x4y4+10y8
3x8+4x8y2+ 18x%y*+ 10y8

[C(p1) 2= (23

07l ————T T
0.70F
0.69F
0.68f
0.67f
0.66f
0.65F

039F
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& I
e 037f
0.36f
035
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« 0371F ]
< -0.372F =
-0.373F -
-0.374F -

-0.376' o == .

B,

FIG. 2. The nonmesonic decay observables’Be as a func-
tion of the deformation parametg,.
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e
o
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TABLE II. Shell model spectroscopic factors of Cohen and bers have to be compared with the spherical limit values of

Kurath[17] for pickup of p-shell nucleons irfBe. 0.70, 0.35, and-0.37, respectively. The same type of calcu-
lation for \°C givesI"™/I"y =0.73 andl',/I",=0.27, to be

nlj Energy SF nlj Energy SF compared with the spherical values 0.71 and 0.32, respec-

1pl 0000 08940  p2 1979 31000 lvely. As we see, the amount of deviation of those observ-

1 2 0.301 0.0027 3 0.066 0.0003 ables with respect to the_spherlca! limit is of the same order
P3 ‘ ' b3 : ' as that obtained here using the Nilsson mddel.

1p% 10.222 0.0000 mg 9.929 0.0004

1p: 14.868 0.0002 p3 12.734 0.0000 V. SUMMARY

1p% 19.862 0.0001 mg 14.726 0.0020

We have discussed the role of nuclear structure in the
nonmesonic decay gi-shell hypernuclei, especially focus-
ing on the effects of deformation. To this end, we have used
the Nilsson model with explicit angular momentum projec-
tion. We have studied the nonmesonic decayl@fe as a
typical example of deformeg-shell hypernuclei. We have
shown that the deformation effects change the total NMD
rate and the neutron-to-proton ratio by about 10% from the

B Z spherical limit, while the\ asymmetry parameter shows less
the freeA decay ratel’,=3.8<10° 5™, the neutron-to- sensitivity. Although this value is not negligible, it still is

g:gtgﬂoratr:qgg FPZ’ Zgitfhijc\:t'iiyg;Eirgegg:;gféi%éram smaller than the present typical experimental uncertainty and
Wn n Fg. a funct lon p smaller than other theoretical uncertainties, e.g., the effects
eterB,. We use an oscillator lengthy of 1.65 fm for nucle-

ons, so that the experimental root mean square radidBef of SU3) symmetry breaking10,13 or Al =1/2 violations
is reproduced. Following Refg18,19, the parameter€ [7]. This indicates that the existing discrepancies between the

. . c experimental and theoretical values of hypernuclear weak
and D in the Nilsson Hgm|lton|an(8) are ta!<en to be decay observables cannot be attributed solely to deviations
—0.16iwg and 0O, respectively. As for the oscillator length

b. for the 1s functi fthe\ h timat from the spherical configuration and still remain an open
Dy forthe IS,/, wave function o yperon, we estimate question. New experiments are urged in order to reduce the
it to be 1.5 fm in order to reproduce its binding energy in

9 - N ) large experimental error bars, which prevent any definite
AE’me (=6.71£0.04 MeV[16). From the figure, we see that qncjusion about the reliability of the theoretical models.
I'"T is a decreasing function @, while I', /T, anda, Our conclusions may not be the same for heavier hyper-

are increasing functions. As we have already mentioned, thg,,cjei such a§38U [33,34. There are a lot of intruder states
deformgmon parameter dtBe is expected to be close to 1. ;, ¢ ,ch heavy deformed systems, unlikshell nuclei where
We notice that the nonmesonic decay observables are alter(aqere is only a few, or maybe zero, intruder states. Therefore
by about 10% from the spherical limit @, =1. an interesting future work would be to discuss the nonme-

An important question is whether this effect is significantsqic gecay of heavy hypernuclei including the deformation
when comparing to the experimental data. We note that thegects For that purpose, the projected shell model devel-

typical experimental uncertainties for nonmesonic decay o ped in Refs[24,25, which also uses the Nilsson model

p-shell hypernuclei are 7%-17.5% for the total decay rat§ith angular momentum projection, would provide a useful

[29-31, 46.2%-84.2% for the neutron-to-proton ratio v 1o describe the structure of deformed hypernuclei.
[30,31, and 50%—1000% for the asymme{B2]. These ex-

perimental uncertainties are much larger than the theoretical ACKNOWLEDGMENTS

one originating from the deformation effects. Thus we con-

clude that the spherical approximation gives a good estimate We thank David Brown and Amour Margarian for useful

of the nonmesonic decay pfshell nuclei, at least within the and illuminating discussions. This work was supported by

present experimenta| precision_ the U.S. Department of Energy under Grant No. DE-FGO03-
Before we close this section, we would like to stress thaf0-ER41132.

our conclusion is not altered qualitatively even if more real-

istic wave functions are used instead of the present schematic

ones. For instance, using the shell-model CFP of Cohen andinote that the behavior of the observables € and $Be is

Kurath [17] for the decay of}Be (see Table Il we obtain opposite, due partly to the fact that the residlig is oblate while

I'"T',=0.65,I',/I"';=0.40 anda,=—0.37. Those num- ®Be is prolate.

for the py/, state. Note thatC(ps) 12+ [C(p12) 12=1. In the
spherical limit, x=1 and y=0, so the CFP’s become
[C(psp)1?=1 and[C(pyp)]°=0. The CFP for the deeply
bound Is,, state is just equal to 1 sinc#e is a spin-isospin
saturated nucleus.

Our results for the nonmesonic decay rdt&?, in units of
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