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A spherical-deformed shape coexistence for semimpfghell nuclei is investigated. Deformed states can
arise by breaking thé,, submagic shell, and coexist with spherical yrast states*f6e. These states are
shown to be primarily two-particle two-hole excitations on top of the respective correlated ground states. In
addition to these modes, a four-particle—four-hole excitation can be founeffer which is related to the
deformed band of doubly magitNi. To investigate this shape coexistence, we use the conventional shell-
model diagonalization, constrained Hartree-Fock, generator coordinate, variation-after-projection, and Monte
Carlo shell-model methods.
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[. INTRODUCTION after-projection (VAP), and the Monte-Carlo shell-model
(MCSM) approach are taken.

Coexistence between spherical and deformed shapes can This paper is organized as follows. In the next section we
take place rather predominantly in and near semimagic odiscuss the shell-model calculation by the various methods
doubly magic nuclei. A clear example of such shape coexmentioned above: CHF, large-scale shell-model diagonaliza-
istence occurs in the Sn isotopes, where the yrast states df@ns, GCM, VAP, and Monte Carlo. The third section is
spherical, while deformed intruder bands appear at low exdevoted to a discussion of the spherical-deformed shape co-
citation energy for'1%-12%5n (for a review, see Refd]). In existence in theN=28 magic nuc!el. In the last section, we
general, a closed magic shell leads to a spherical configur&r€Sent & summary. All calculations are based uponpthe
tion for yrast states, while the coexisting deformed mode i§hel|—model space with the FPD6 realistic residual interac-

: : o tion [11]. The quadrupole matrix elements are calculated
produced by breaking the magic shell. The stability of the Jith the same values of the effective charggs- 1.23 and

fsphencal .egwhbrlum helps to assure the presence of a déé\:1:o.54e, as used in Ref43,.7].
ormed minimum due to its orthogonal structure.
Recently, such a spherical-deformed shape coexistence
has been experimentally found in the doubly magic nucleus Il. SHELL-MODEL METHODS
Ni [2]. For the description of this spherical-deformed A. Constrained Hartree-Fock
shape coexistence, shell-model and mean-field approaches L
[2,3] are both suitable. The shell-model approach has the. In the CHF[12] one constructs a PES, which is used to

advantage that it can handle spherical and deformed states Xﬁuahze the _mean-fleld structure embedded in the shell-
. o . . model space in terms of the quadrupole degrees of freedom
the same footing within a single theoretical framework.

Therefore®®Ni has been a frontier for state-of-the-art large- as shown in Refl3]. Here we take (the intrinsic quadru-

. o pole moment and y (the triaxial anglg¢ as constrained pa-
scale shell-model diagonalizatiof 3] and new methods of rameters. In Fig. 1, contour plots for the PES’s are shown for

shell—mpdel calculation$3—10]. In Ref. [3], py using the the N=28 nuclei 5Cr-5%Ni. The PES's for®?Cr, 5%Fe. and
constrained Hartree-Fock, generator coordinate, and Mon.tesNi show two minima, suggesting a spherical-deformed
Carlo shell-model methods, we successfully described this

shape coexistence within the-shell model space using the
FPD6 realistic residual shell-model interactigttl]. In this
paper we investigate the spherical-deformed shape coexist
ence in a wider range gff-shell nuclei withN=28 which
includes the doubly magic nucléifCa and **Ni and the
semimagic nuclei®®Ti, %2Cr, and >Fe. This investigation /3
provides a deeper understanding of the deformed band o9
®Ni. To solve the shell model problem, the conventional
shell-model diagonalization, the potential energy surface FIG. 1. PES's on the-y plane for%Cr-*Ni. The dotted con-
(PES generated from the constrained Hartree-FOCKIF)  tours are separated by 0.3 MeV. The solid contours are separated by
method, the generator coordinate meti@LCM), variation- 1.5 MeV. The local minima are indicated by arrows.
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TABLE I. Occupation numbers fof7;,, psp,, fs, andpy,  handle a shell-model problem with dimensions up to 1
orbits for the CHF states at the spherical and deformed localk 10% on a current workstation or parallel computer.

minima. The second column is the valuegdt the local minimum. The M-scheme dimensions foffCa—"Ni are 10-1C.
Columns 3—6 correspond to the occupation numbers for neutronds the mass number increases, the shell-model dimension
proton orbits. rapidly increases. The dimensions f&iCa, °°Ti, and 5%Cr
> are within the limit of our shell model code, while f3fFe

Nucleus g (fm%)  f7e P32 fsrz P and 5®Ni, a diagonalization with a full shell-model space is
52¢r 35 76/3.7 03/02 01/01 0.0/0.0 nhotyetavailable. However, shell-model diagonalization with

70 54/31 08/0.7 1.3/02 05/0.0 @ truncated shell-model space is still feasible. We use the
Sire 30 77557 02002 0101 00/0.0 truncation scheme s (f;)" *°"S(r)® wherer means the

65 5.6/5.4 0.7/0.4 1.2/0.2 0.5/0.0 set of thef5/2, P32, and P12 orbits andt is the maximum
56N 0 8.0/8.0 0.0/00 0000 0000 humber of particles allowed to be excited. This truncation

85 5.4/54 0808 14/1.4 04/0.4 Scheme is natural because there is some gap betfvgen

orbit and the others. For‘Fe, up to at=7 calculation is
feasible by our code. By such truncated shell model calcula-
i ) ) , tions, we could get well-converged energy eigenvalues for
shape coexistence. One is spherical and the other is prolatg . states. However, for nonyrast states which have a cor-
Prolate mihima are Iocat%(g gt=70, 65, and 85e£m2, and  yelated -2h or 4p-4h structure, we need several eigen-
y=0 for *2Cr, *Fe, and*Ni, respectively. For Crand  states with the same angular momentum. This requires a
>Fe, the PES'’s are rather shallow, while f8Ni, the PES  |arger number of iterations in the Lanczos process, and the
forms a pronounced prolate minimum with an axig<0)  diagonalization is much more time consuming and storage
nature. requirement becomes extremely severe compared to the yrast
Next we consider the configuration of these prolatestates. Currently such a shell model calculation ¥te and
minima. The configurations of the CHF states at the local®Ni is still quite difficult.
minima are shown in Table |. Fo¥Fe, the occupation num-
bers of upper orbitsf,, ps», andp4) are 0.6 and 3.0 for C. GCM calculations

spherical and prolate minima, respectively. Althouyfe is A description more realistic than the CHF picture can be

a semimagic nucleus, the ground state corresponding to th@fchieved by carrying out a GCM calculation within thé
spherical minimum, is composed of various components igna|i-model spacé3,12—14. The GCM uses various CHF

g 14 . . .
addition to )™ configuration. Therefore we call it the siates specified by collective coordinates. Here we have car-
correlated ground state hereafter. By subtracting these tWH

occupation numbers, on average, 2.4 nuclg@it neutrons fuendct(i)gr: g(\:lvl\:lit;::r:cglsatlons witlg=(q,). The GCM wave
and 0.3 protonsare excitedrelative to the correlated ground

state from thef,, orbit into the upper orbits. Thus, in terms R - -

of the occupation numbers, these states are related to the |‘I’JM>=f daf ;u(a)[P;ym(a)) 1)
correlated ground state by the excitation of approximately

two neutrons out of the7, shell. We will refer to these py superposing the projected CHF state;,,(q)), where

states as “correlated two-particle—two-holept2h)” states fJM(a) are the amplitudes of each projected wave function
wherefs),, ps», andpq, are the particle states afg, is the - . L .
hole state. The “correlatedpt4h” states will be those in |®5m(a)). Here the projected wave function is determined

which approximately fouf,,, particles are excited out of the
correlated ground state. The orbit occupations of these neu- J
tron excitations are similar to those of the nestétr_on compo- |¢JM(5)>: 2 ngﬁAYK|¢(§)>, 2)
nent of the deformedcorrelated 4-4h) state of°°Ni. Thus K=-J
at the mean-field level, spherical-deformed shape coexist- R R
ence is suggested foi?Cr, 5%Fe, and 5®Ni. Core excited Where|[¢(q)) is a CHF states af and thegy is determined
configurations(e.g., coexistengewere first discussed for by the diagonalization for each basis. To determine the am-
%Fe in Ref.[15]. Heydeet al. also suggestefil] the shape plitude f;,,(q), we evaluate the Hamiltonian and norm pro-
coexistence for“Fe and its neighboring even-odd nuclei.  jected matrix elements as
B. Large-scale shell-model diagonalization HJKK,(q,q’) < >, [H] PJ

Large-scale shell-model calculations are often carried out NY,.(9,9") #a’) 1) KK
in the M scheme, where a Hamiltonian matrix, constructed
from basis with a fixed total magnetic quantum number, isand we solve the generalized eigenvalue problem.
diagonalized. Recent largest shell model calculations have As an example, we také“Fe. We represent theq(y)
been carried out by Uet al. [16]. Their largest shell model plane by 121 mesh points. Then we solve the generalized

dimension reached about®l@e have also developed a new eigenvalue problem. In Fig. 2, we show the results of the
M-scheme shell model cod®isHELL [17], which could triaxial GCM. For each spin, we show the lowest 13 states.

¢<ﬁ)> (3)
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FIG. 2. GCM eigenenergies fo¥'Fe in triaxial GCM. Among FIG. 3. VAP and MCSM level schemes f&fFe

three levels, yrast, correlate¢gh2h and correlated g-4h states are

selected shown fa#=0, 2, 4, 6, 8, and 10 in the right-hand part. . ) )
than GCM calculation. The improvement is due to the cor-

relation out of theg-y plane, while the VAP energy is still

are fragmented, but the levels characterized predominant20ut 1 MeV higher than the=7 shell-model diagonaliza-
by this nature are shown as the bands on the right-hand sidn- For the yrast level scheme, the VAP level scheme is
of Fig. 2. In the triaxial calculation, the ground state is low- Similar to those ot =7 diagonalization. _
ered by 5.2 MeV compared to the HF energy. The total cor- In the VAP we also find a local minimum in theenergy
relation is defined by the difference between the HF andurface for the correlatedp22h mode as expected from the
exact energies. As this energy is about 6.5 MeV, the GCMPES and GCM. These local minima are not very well defined
calculation is good as an approximation. This is due to thén J-energy surface because the norm of gradient vector be-
mixing among the GCM bases and angular momentum procomes small but is not zero. In Fig. 3, the energy spectrum
jection. for the correlated g-2h mode is shown at the point when
Furthermore, it is interesting that a correlatqu-4h band  the norm of gradient vector is smallest. This energy is higher
appears, which is shown on the right-hand side of Fig. 2than that of GCM. The correlatedo22h states are strongly
This mode was not anticipated in the PES. The correlategoupled with states nearby. The quadrupole moments are
4p-4h character of this band is determined by analyzing the—30, —39, —39, —39, and—38 for the 2, 47, 6", 8",
occupation numbers. The deformation of this correlatedand 10" states, respectively.
4p-4h band is significantly larger than that of the correlated The correlated g-4h mode is quite interesting because
2p-2h band and is similar to the correlategh-4th band of  this mode has no minimum in the PES, while in thenergy
5N [3]. The nature of this correlatedp44h mode will be  surface, these states form a distinct local minima. The quad-
further discussed in the next subsection. rupole moments are-42, —55, —56, —59, and—61 for
2%, 4%, 6%, 8%, and 10, respectively. The, occupation
number is rather constant concerning spin with values of 3.3
to 3.4 for protons and 5.2 to 5.3 for neutrons. The excited
To go beyond a mean-field description, the VAP andnucleon number is about 2.7 for both protons and neutrons
GCM methods are known to be useful. In the VAP methodwhich is quite similar to the deformed band #Ni [3].
we consider the angular momentum projected energy surface Here we note that, in stead of HF, the VAP based upon
(J-energy surface of a given shell-model Hamiltonian, the Hartree-Fock-Bogoliubov method is considered to give a
which is general and is not restricted by the collective coorpetter approximation. Such a method and its extension have

The spherical yrast and correlate@-2h (deformed states

D. Variation after projection

dinates. In the VAP, we consider the variation been developed by the Bingen groug 10,20.
(WomlHIW ) ~0 @
(W ml¥ M) ' E. Monte Carlo shell model

o ) In order to obtain a more accurate description, we move
where the variational wave function has the same form ag the Monte Carlo shell model. Within one projected Slater
Eq. (2), except the variational parametersHere the varia- determinant, VAP is the best method. To improve the VAP
tional parameters amgy and|¢) itself. We solve this varia- approximation, we should express eigenstates by projected
tional problem by the gradient methdd8]. As there are multi-Slater determinants. The GCM calculation meets this
several energy minima in theenergy surface, we can obtain requirement but its multi-Slater determinants are restricted
several solutions in the VAP method. In the VAP, the num-by generator coordinates. Namely, the GCM is a diagonal-
ber of variational parameters is too large to graphically visudization of the shell-model Hamiltonian within the truncated
alize the energy surface. Therefore, we mathematically judgshell-model space concerning the quadrupole degrees of
local minimum when the norm of gradient vector vanishes. freedom. To evaluate shell-model eigenstates precisely, we

The VAP results for®*Fe are shown in Fig. 3. For the should express eigenstates by well-optimized projected
%4Fe ground state, the VAP calculation gives a lower energynulti-Slater determinants without any shape assumption. The
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FIG. 5. (a) The average number of nucleons excited from the
f4, orbit (n,) for the G (white ba) and O; (black bay states in
48Ca®Ni. For e, the results of correlatedp4h mode are
added.(b) B(E2:2*—0") values are shown. Open circles are the
experimental dat§22,23.

doubly magic nucleus. The low-lying states are neutron
2p-2h states and are the neutron pairing vibration modes
[19]. On the other hand, thé®Ni nucleus has eight protons
and eight neutrons in thpf shell. The partial shell-gap be-
U= = tween thef,, and the othepf-shell orbits gives rise to an
8oy O Por Pre N interesting feature. Contrast witfiCa, °®Ni has a rather soft
spherical yrast band with a well developed excited deformed
FIG. 4. Level schemes fd®Ca®®Ni. In the upper panel, spheri- band. This deformed band has been recently observed ex-
cal yrast states are shown, while in the lower panel, nonyrast statggerimentally[2]. The PES analysis in Fig. 1 indicates this
are summarized. Two columns are paired for each nucleus. In thgeformed band. The MCSM calculation with the FPD6 in-
upper panel, the left level scheme is experimental data and the righéraction can describe this spherical-deformed shape coexist-
one is the results of the shell-model diagonalization calculations. Iance quite wel[3,7] and it clarifies that this deformed band
the lower panel, the results of shell-model calculations for the Correpresents a four-particle—four-hole excitation on top of the
related 2-2h ant_j dp-4h stgtes are shown. The open circlesn-  qrelated ground staf&]. Thus the doubly magiéSCa and
necte_d by gray lines to gmde the ¢yare the results of the weak- 56N are completely different in structure.
coupling scheme. Experimental data are taken from R2f21]. Next we examine how this difference evolves in the struc-
ture of theN=28 semimagic nuclei in terms of energy lev-
problem is how to choose the set of Slater determinants. Thisls, B(E2) values, and occupation numbers. In the upper
problem is solved within the QMCD method as discussed irpanel of Fig. 4, the spherical yrast states are shown. The
Refs.[4-7]. “8Ca nucleus is doubly magic and it has a rather large exci-
The results for yrast and correlateg-2h (prolate states  tation energy for the 2 state. The yrast level scheme Ui
in 54Fe are shown in Fig. 3. For the calculation of the non-and >*Fe are composed mainly of the-{)2 or (f7,).?
yrast states, we must take into account the orthogonalitgonfiguration with the neutrorii,;, closed shell up to §,
among eigenstates. As shown in Fig. 3, the eigenenergies eéspectively. These spectra are typical df-al short range
the MCSM results are several MeV lower than the VAP. Atattractive force. On the other hand, for higher spins, neutrons
present the correlatedpddh deformed mode is too high in in the f,,, orbit must be promoted into the upper orbits. Con-
excitation energy and appears to be outside the practicallyequently there is a large gap betweeh @&nd 8". Experi-

applicable region of the MCSM calculation. mental data and shell-model results clearly show such gaps
in both spectra, in a consistent manner. Thus, particle-hole
Ill. SHAPE COEXISTENCE IN THE N=28 NUCLEI symmetry is seen. On the other hand, the main components

of the low spin states of“Cr should be {,)% up to 8" and

the gap should be between thé &nd 10°. The shell-model
Now we focus on the systematics of the spherical-results show such a tendency, but the wave functior$Qm

deformed shape coexistence for the entire set of even-evaiave appreciable mixing with other configurations. Conse-

pf-shell nuclei withN=28. We start with the doubly magic quently the actual gap is not as pronounced as%fi and

nuclei “Ca and**Ni. The **Ca nucleus has no valence pro- >¥Fe. Thus, the spherical yrast states are nicely described by

tons(in the pf shel). The PES of*Ca is completely spheri- the FPD6 interaction.

cal. The ground state is composed mainly (90%) of the Next we move to the lower panel of Fig. 4, where the

(f719® configuration, which indicates th&fCa is a good nonyrast states are shown. We will refer to the states of

A. Systematics ofN=28 magic nuclei
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o B Fig. 4, give the trend and a qualitative value for the excita-
(A) Eﬁ—[[:(ﬂ[[ )+(|— —|— ) tion energies of these coexisting configurations.
TV WV TV, TRV TV RV The model of Fig. éb) can be extended to give the weak-
coupling energie€,, of np-mh states relative to®®Ni in
B) _| =( TL )_,_(r-._ ) terms of the experimental binding energies of thp andnh
ground states. For example, the excitation energy of the cor-
nvy ®mwV TV TV nv TV

related -2h state in **Fe is given by E,(2p—4h)

FIG. 6. Schematic explanation of the weak-coupling scheme. —E,,(2h)=1.60 MeV and the excitation energy of the cor-
related 4-4h state in **Fe is given by E,(4p—6h)
—E.(2h)=5.71 MeV. These are again in qualitative agree-
ment with the results discussed in Sec. Il. The weak-coupling
estimate for the excitation energy of thp-8h configuration
in ®Ni is 10.56 MeV. Based upon the fact that there are no
minima found in the CHF approach which correspond to this
configuration, it would not form a distinct collective band

a%nd the states would be mixed with other configurations.

Although these weak-coupling models start out by assum-

lower panel by subscripp. In Fig. 5 we show expectation

value of nucleons excited into the upper orbits)(and the

B(E2) values for the ground ancﬁOstates.

°%Ti has a similar p-2h structure as**Ca, though its

energy is lower. A correlated@22h 2; state develops, but

theB(E2) andn, values are not very large. Thd8Ti shows

a transient aspect. For’Cr and %*Fe, the increase in the

number of valence protons lowers the deformed bandhe

energy due to the proton-neuron interaction. Thefor the . : :

sphegri)::al states inc?easessi?ﬁr, and then stays-l;cl?)nstant for N9 a_nf7,2 closed-shell ah =28, we realize frOT the d_ISC,EJS-
sion in Sec. Il, that they actually apply to the “effective” or

>Fe and*°Ni. On the other handy, for the O, states for . . :
48~ Sl : correlated” closed-shell configuration. The correlated
Ca~"Fe increases roughly in the same way as for the

ground states, such that the difference is roughly two. Thuglosed—shell cpnﬁguration already contains a considerable
for all of these nuclei the p states are @-2h excitations, amount of ex0|tat|on Energy across tie- 28 shell gap, apq
built on the correlated ground statdsorrelated p-2h the deformed coexisting states correspond to an additional
states. For 5Fe, the correlated g4h state appears, which two or four nucleons excited across the gap. In this sense, the
has a quite similan. as in %Ni According to the 'Eppe  Weak-coupling model is dealing with what we call the *“cor-

r .

interaction, such a deformed band seems to be a generig'atednp-nh” configurations.
feature arouncd®®Ni. The B(E2) values shown in Fig. 5 also

indicate the growth of collectivity. ThB(E2)’s of the yrast IV. CONCLUSION
states are rather constant and relatively small, while the
B(E2)’s in the coexisting p2h mode becomes much larger
as the valence proton number increases. B(E2) of the
4p4h mode of **Fe is much larger than those ofp2h

modes inN=28 isotones and is similar to the one of the . ) : : . .
4p4h mode in %Ni. Thus, the nonyrast modes of=28 semimagicpf-shell nuclei. Consistent with a naive shell-

isotones can be understood by a correlatpel® or 4p-4h model p.icture., the yrz.;\st states are r{;\ther spherical .and the
excitation mechanism. 4> configuration dominate the low spin states. As spin goes
up, excitations into upper orbits become important and gaps
appear in the yrast level scheme YT, 2Cr, and >Fe.

A collective deformed mode coexists with the above

To understand the behavior of the excited bandhead enspherical states. This mode can be understood in terms of the
ergy, we consider the weak-coupling schef8] based on o doubly magic nuclei*Ca and 5Ni. In the former, a
correlatech p-mh modes for proton and/or neutron degree ofy_neytron pairing vibration mode appears, while in the lat-
freedom. We start by assuming an effective closed-shell cong, yhore eyists a clear correlated-4h deformed band. For
figuration forN=28. Then if the average particle-hole inter- ser'nimagic nuclei, a correlatep2h deformed band rapidly
action is weakiwe assume zero herehe excitation energy gevelops as the \’/alence proton number increases’Ae a

can be estimated from the experimental binding energie
P 9 g orrelated 4-4h mode seems to come down &

[24] of neighboring nuclei. The bandhead energies of the® o . .
excited 0° of %3Ca are estimated from the binding energies~6 MeV. The description of this mode needs the consider-

of 46485Ca becaus€’Ca has two particles on top of the a-tio-n of aJ-projected energy surface. This modg is quite
magic core, and*Ca has two holes. This weak-coupling Similar to the correlated g-4h deformed band of°Ni.

situation is illustrated in Fig. @). The same picture can be N addition to the shell-model results, we presented a
used to estimate the excitation energies of the correlatedimple argument based on the weak-coupling scheme to un-
2p-2h neutron excitations for the other semimagic nuclei upderstand these states. These estimates rely on experimental
to %Fe. For °®Ni we must consider the excitation of four binding energies and are free of the shell-model residual in-
nucleons(two protons and two neutronacrossN=28. The teraction. These estimates reinforce our interpretation of de-
relevant weak coupling picture is depicted in Figo)6 These  formed bands. Also, our microscopic calculations provide an
estimated values are shown in the lower panel of Fig. 6interpretation of the weak-coupling model in terms of exci-
These weak-coupling estimates, as shown in the bottom dftions out of a correlated ground state.

In summary, in the first part of this paper, we discussed
the GCM, VAP, and MCSM approaches for nuclear shell

model. In the next part, we reported a shell-model treatment
of the spherical-deformed shape coexistence for doubly and

B. Weak-coupling scheme

044306-5



MIZUSAKI, OTSUKA, HONMA, AND BROWN PHYSICAL REVIEW C 63 044306

ACKNOWLEDGMENTS from the Ministry of Education, Science and Culture. B. A.

We thank Professor S. Pittel for delightful comments.Brown was also supported in part by U.S. NSF Grant No.
This work was supported in part by Grant-in-Aid for Scien- PHY-0070911. Numerical calculations were carried out by
tific Research Nos(A)(2)(10304019 and (B)(2)(10044059  the massively parallel computer Alphleet in RIKEN.

[1] K. Heyde, P. Van Isacker, M. Waroquier, J.L. Wood, and R.A.[12] For instance, P.-H. Heenen, P. Bonche, J. Dobaczewski, and

Meyer, Phys. Repl02, 291(1983. H. Flocard, Nucl. PhysA561, 367 (1993; P. Bonche, J. Do-
[2] D. Rudolfet al, Phys. Rev. Lett82, 3763(1999. baczewski, H. Flocard, and P.-H. Heené&®30, 149 (1991).
[3] T. Mizusaki, T. Otsuka, Y. Utsuno, M. Honma, and T. Sebe, [13] K. Hara, Y. Sun, and T. Mizusaki, Phys. Rev. L&8, 1922
Phys. Rev. (59, R1846(1999. (1999.
[4] M. Honma, T. Mizusaki, and T. Otsuka, Phys. Rev. L&8, [14] P. Ring and P. SchuckThe Nuclear Many-Body Problem
1284(1995. (Springer-Verlag, New York, 1980
[5] T. Mizusaki, M. Honma, and T. Otsuka, Phys. Re\6& 2786 [15] S. Pittel, Phys. Lett33B, 158(1970.
(1996. [16] C.A. Ur et al, Phys. Rev. (58, 3163(1998.
[6] M. Honma, T. Mizusaki, and T. Otsuka, Phys. Rev. L&, [17] T. Mizusaki, RIKEN Accel. Prog. Re[83, 14 (2000.
3315(1996. [18] J.L. Egido and P. Ring, Nucl. PhyA383, 182(1982.
[7] T. Otsuka, M. Honma, and T. Mizusaki, Phys. Rev. Létt, [19] B.A. Brown and W.A. Richter, Phys. Rev. &8, 2099(1998.
1588(1998. [20] A. Petrovici, K. W. Schmid, and Amand Faessler, Nucl. Phys.
[8] T. Otsuka, T. Mizusaki, and M. Honma, J. Phys.26 699 A665, 33 (2000, and references therein.
(1999. [21] Table of Isotopgsedited by R. B. Firestonet al. (Wiley, New
[9] S.E. Koonin, D.J. Dean, and K. Langanke, Phys. R&fY, 1 York, 1996.
(1996. [22] S. Raman, At. Data Nucl. Data Tabl@§, 1 (1987.
[10] A. Petrovici, in Proceedings of the Conference on SM2000[23] G. Krauset al, Phys. Rev. Lett73, 1773(1994.
[Nucl. Phys.(to be published. [24] G. Audi and A.H. Wapstra, Nucl. PhyA565, 1 (1993.
[11] W.A. Richter, M.G. van der Merwe, R.E. Julies, and B.A. [25] G. E. Arenas Peris and P. Federman, Phys. Lett7B 359
Brown, Nucl. PhysA523, 325(1991); A577, 585 (1994. (1986.

044306-6



