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“Beat” patterns for the odd-even staggering in octupole bands
from a quadrupole-octupole Hamiltonian
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We propose a collective Hamiltonian which incorporates quadrupole terms, octupole terms classified ac-
cording to the irreducible representations of the octahedron group, a quadrupole-octupole interaction, as well as
a term for the bandhead energy lineakKirithe projection of angular momentum on the body-fizexis). The
energy is subsequently minimized with respecKtfor each given value of the angular momentymesulting
in K values increasing with within each band, even in the case in whi€hs restricted to a set of micro-
scopically plausible values. We demonstrate that this Hamiltonian is able to reproduce a variety of “beat”
patterns observed recently for the odd-even staggering in octupole bands of light actinides.
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[. INTRODUCTION collective rotations if the presence of stable quadrupole-
octupole deformations is assumed.

The properties of nuclear systems with octupole deforma- Based on the octahedron point symmetry parametrization
tions[1] are of current interest due to increasing evidence fof the octupole shag@-10], we propose a collective Hamil-
the presence of octupole instabilities in various regions of théonian which incorporates the interactions responsible for the
nuclear tabl§2—4]. Furthermore, some “beat” patterns have rotations associated with the different octupole deformations.
been observed recently for the odd-even staggdtimgrela- N addition we take into account the quadrupole degrees of
tive displacement of the odd levels with respect to the posifféédom and the appropriate higher order quadrupole-
tions at which they should have been located according to 6tuP0le interaction. Below it will be shown that such a gen-
fit of the even levels by the formula(1)=Al(l +1), where eral model Hamiltonian could incorporate the basic proper-
| denotes the angular momentlim octupole bands of light ties of a nuclear system rotating under the above assumption.
actinideg[5] based on recent experimental dgda/], calling Although this assumption seems o be rather stiice

for a studv of the interactions which could give rise to SuChthe presence of stable octupole deformations in nuclei is not
shapes y 9 yet a well elucidated problenwe suppose that it could give

a natural possibility to estimate the extent to which some of

Various parametrizations of the octupole degrees of freegq ohserved nuclear octupole bands carry the characteristics
dom[8-11] already exist, being a useful tool for understand- ¢ the stable octupole shapes. Generally, the proposed con-

ing the_ role of the ref_lection asymmetry correlations and forgigeration will provide a direct physical insight into the
analyzing the collective properties of such systems. Somgyclear collective motion as far as the shape of the system
important questions in this direction concern the collectivegnd the respective moments of inertia are slightly changed
nuclear interactions that correspond to the different octupol@nder the collective motion. Similarly to the case of the pure
shapes and how they determine the structure of the respequadrupole deformations this requirement will be naturally
tive energy spectra. Physically meaningful answers shouldatisfied for the low angular momentum region of the spec-
be obtained by taking into account the simultaneous presengeum which is, from another perspective, accessible for de-
of other collective degrees of freedom, such as the quadruailed microscopic analysis, the length of this region depend-
pole oneq12]. ing on the particular system.

In the present work we address the above problems by Furthermore, we expect that in the higher angular mo-
examining the interactions that generate collective rotationsnentum regions the approach suggested will outline some
in a system with a simultaneous presence of octupole angeneral properties of the system and thus will provide a rel-
quadrupole deformations. The basic assumption of our corevant guide for respective more detailed studies from both
sideration is that the rotational motion of such a system camicroscopic and phenomenological points of view. In par-
be interpreted in first approximation as the motion of a bodticular it will be shown that the model formalism developed
with a stable quadrupole-octupole shape. In this respect oun the present work proposes a schematic explanation of the
purpose is to examine how the nuclear system behaves undescently observefb] “beat” patterns for the odd-even stag-

gering in octupole bands of light actinides based on recent
experimental dat@6,7].

*Electronic address: nminkov@inrne.bas.bg In Sec. Il of the present work the octupole terms of the
"Electronic address: sdren@inrne.bas.hg Hamiltonian, classified by the irreducible representati@ns
*Electronic address: raychev@inrne.bas.bg rep9 of the octahedron group, will be described, while the
$Deceased. quadrupole terms and the octupole-quadrupole interaction
IElectronic address: bonat@mail.demokritos.gr will be examined in Sec. Ill, along with the bandhead term of
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the Hamiltonian and the minimization procedure, which is a
basic ingredient of the present work. In Sec. IV the diagonal
parts of the Hamiltonian will be analyzed and used for the
production of schematic odd-even staggering patterns, while
the same procedure will be repeated including the nondiago-
nal parts of the Hamiltonian in Sec. V. In Sec. VI an analysis
of the model formalism under some restrictions on the per-
mitted values of the angular momentum projection on the
body-fixedz axis will be presented, while further tests of the
formalism will be performed in Sec. VII. Finally, Sec. VI
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1 1
Fa(2)= Z\/§(Y33— Y3_3)+ Z\/E(Y?,l_ Y3-1)
1 105
=3 V _1677X(y2_22)’ 8

1 1
F2(3)= =i 7V3(Yag+ Ya_g) +i 7V5(Yar+ Ya1)

will contain discussion of the present results, while in Sec. 1 /105 ., -,
IX a summary of the present results and plans for future = 3 EV(Z —X9) 9

work will be given.

IIl. PARAMETRIZATION OF THE OCTUPOLE
DEFORMATION

(with r?=x?+y?+z%) belong to irreducible representations
(irrep9 of the octahedron group. In particular, the first
quantity [Eq. (3)] belongs to the one-dimensional irrép,

Our model formalism is based on the principle that theWhile the next three quantitigqgs. (4)-(6)] belong to the

collective properties of a physical system in which octupoletlree-dimensional irref; and the last three quantitigggs.
correlations take place can be expressed by the following?)—(9)] belong to the three-dimensional irrép. The seven

most general octupole field in the intrinsidody-fixed

frame[9]:

3

v3=M:E_3 aevs,, (1)
with (a5)* =(—1)*a5,
This field can be written in the forri®]
3 3
Va=eohot 2, ei)Fu(i)+ 2 e)Fa(), @
where the quantitief9]

o 1 [105
AZ__E(Y32_Y3—2)_F3 EXYZ ©)
Fl—Y—1\/7 232 30 4
1(1)= 30_r_3 EZZ EX Ey . (4)

1 1
F(2)= = 2V5(Yss~ Ya-3)+ 73(Ya1~ Ys-1)
_ 1 ’ 2 3 2 3 2
—r—BVEX<X—Ey—§Z , (5)
1 1
F1(3)==i7V5(Yss+ Ya-5) =i 73(Ya1+ Y31)
— 1 ’ 2 3 2 3 2
_F\/Ey(y_iz_fx , (6)
_ _ 1 105 5 o
Fz(l)—ﬁ(Y3z+Y372)—r_3 EZ(X -y, (7

real parametergy ande, (i) (r=1,2;i1=1,2,3), appearing

in Eq. (2), determine the amplitudes of the various compo-
nents of the octupole deformation. Their relation to the co-
efficients a3, has been given in Ref9].

As we have already seen, the quantities appearing in Egs.
(3)—(9), when expressed in terms of the Cartesian coordi-
natesx, y, andz, contain linear combinations of terms cubic
in the Cartesian variables. These specific linear combinations
correspond to various octupole shafgas seen from their
expressions in terms of the spherical harmopiasd in ad-
dition correspond to the above mentioned irreps of the octa-
hedron group. Our proposition is the following.

(8 We construct a Hamiltonian using the same cubic
terms appearing in Eq$3)—(9), but replacing the Cartesian
coordinates x,y,z by the angular momentum operators
T 0y.1, (with T2=12+17+12). For example, the terre® is
replaced byl>.

(b) Due to the fact that the operatdrs,i, i, do not com-
mute, while the coordinatesy,zdo commute, when making
step(a) we symmetrize each cubic expression when we write
it in terms of the angular momentum operators. For example,
the termz(x?—y?) is replaced by ,(1Z—12)+ (1Z=19)1,.

(c) During the procedure described above, tidactors
appearing in the denominators of Eq3)—(9) are replaced

by 12 factors. In the final result we normalize with respect to

13, i.e., we multiply the results b}?, an operation which is
equivalent to the transition to a unit sphere, a natural thing to
do since we are interested in surface shapes. Indeed, this
operation is equivalent to the multiplication of the quantities
appearing in Eqs(3)—(9) by r3, an action which eliminates
their radial dependence, leading to a transition to the unit
sphere. The transition to the unit sphere is the reason that the
standard quadrupole and octupole operators are defined to be
proportional tor?Y,, andr®Y,,, respectively[1].

(d) As a result, we obtain a Hamiltonigas a function of
the angular momentum operatotg,i,,i,) the terms of
which correspond to the same octupole shapes which appear
in the Hamiltonian of Eqs(2)—(9).
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(e) The terms of the resulting Hamiltonian in addition Ill. INCLUSION OF QUADRUPOLE DEGREES
belong to the same irreps of the octahedron group as the OF FREEDOM
terms of the original Hamiltonian, appearing in E¢®~(9). .
. ' : It is known, however, that the use of the pure octupole
In other words, through this procedure we determine the OCold of Eq. (1) is not sufficient for the description of the

tahedron point symmetry properties of the system in angular : : : N
momentum space. collective properties of nuclei exhibiting octupole deforma-

Our proposition is similar to the procedure used in Ref tion, since the quadrupole deformation is also present. There-

' ) ...~ fore one has to consider the octupole degrees of freedom
i[i?;];%rggfaizzﬁa}decapole field. The following Hamiltonian together with the quadrupole deformations, and in addition

one has to deal with their coupling. A general treatment of a
2 3 combined quadrupole-octupole field has been given earlier in
ﬂoct=HA2+2 2 |:|Fr(i)' (100  the framework of a general collective model for coupled
r=1i=1 multipole surface mode®,12].
According to the above considerations it is reasonable to
suggest that the most general collective Hamiltonian of a
1 . system exhibiting octupole deformations should also contain
Ha :aZZ[(IXIerIyIX)IZ+IZ(IXIy+Iy D1 (11)  the following quadrupole rotation part:

with

1 H o= AP +AT2, (19)
F'F 1)— _fll’[ (51\2_31\2), (12)
) g whereA andA’ are the inertial parameters. In addition, it is
reasonable to try to describe the coupling between the quad-
Ae 2= Eflz(STf—SIAXTZ), (13) rgpole and the.octupole degrees of freedom.by the following

1 2 higher order diagonal quadrupole-octupole interaction term,
which corresponds to the produ¢sgY 3,

" 1 13 T 12
HF1(3): §f13(5|y_3|y| ), (14) R 1 . o R
quc=fqocl—2(15|§—144§|2+3|Z|4), (20)
. 1. . . PO
He = for=[1,(12=12)+(12-12)1,], (15)
F = faag Ll 1)+ (K=l since it is known that the axial deformation corresponding to
R L Y30 is the leading mode in systems with reflection asymmet-
HFZ(z)Zfzz(lxlz—|§—|x|§—|§|x), (16)  ric shapeg4] and, in an analogous way, the axial deforma-
tion corresponding tor,, is the leading mode in systems
A =1 02+712 +713=7.12). 1 with quadrupole deformations. The operator of E2Q) is
Fo(@ = Fadly Ly =1 a7 also normalized with respect to the multiplication factdy
The Hamiltonian parametersa, and f, (r=1,2; in the same way as the operators of Edsl)—(17) are, as

described in the previous section. In other words, we use the
productl®Y,,Y,, in order to ensure that all nonquadrupole
Hamiltonian terms will be of the same order.

=1,2,3), appearing in Eqs(11)—(17), are formally related
to the parameters in E@2) as follows:

105 7 As a result, the total Hamiltonian of the system can be
=€\ 7 fu=eal)\ written in the form
18 N ~ ~ ~
) 105 ) (18 H=Hpn+Ho+ Hoert quc: (22)
fa=ei) \/15— 1=1.2.3. where
The nonvanishing matrix elements of the operators of Egs. A= P+, (22)

(12)—(17) in the states with collective angular momentlim

are given in the Appendix. . . . .

] N is a pure phenomenological part introduced in order to repro-

In the Appendix we remark that the operatdg (1) [EQ.  gyce the bandhead energy in the form

(12)], which corresponds to the tervy, [see Eq(4)], char-
acterized by axial deformation, is the only octupole operator Epn=Eq+ fi K, (23
possessing diagonal matrix elements. Below it will be seen
that this operator is of major importance in determining thewere E, and f,, are free parameters. The bandhead energy
fine structure of collective bands with octupole correlationsE,, is considered proportional t€ in analogy to what hap-
This fact does not come as a surprise, since it is well knowmpens in the five-dimensional quadrupole oscillator model
that theYy, (axial) deformation is the leading mode in sys- (see Appendix 6B of Refl1]), as well as in the standard
tems with reflection asymmetric shapese Ref[4] for a  rotation-vibration model(see Sec. 6.5 of Ref14]). The K
relevant review. dependence dE,, plays an important role in our approach,
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since it provides the correct value of the bandhead angular TABLE I. The “yrast” energy levels,E(l) (in keV), and the
momentum projectioiK in the variation procedure described respectivek values(in 7) obtained from Eq(25) for the parameter
below. set E;=500 keV, f,=—7.5 keV,A=12 keV, A’ =6.6 keV, f;
We remark that the Hamiltonian of E(1) is not a rota- = 0-56 keV, f4,=0.085 keV, by minimizing the energy with re-
tional invariant in general. It does not commute with the totalSPect toK for each given value of. See Sec. IV for further discus-
angular momentum operators and, as a result, any state wi#":
given angular momentuinis energy split with respect to the
guantum numbekK. Therefore, the physical relevance of this : E( Ko E() Ko E( K
Hamiltonian depends on the possibility to determine in a; 522.772

, y 10 . 1 13 233581 5 25 545312 11
unique way the angular momentum projection. Our basic as, 568.327 1 14 257657 6 26 569449 12
sumption is thak is not frozen within the sequence of states 5 637.095 1 15 282757 6 27 593550 12
of the collective rotational band. We suggest that for any, 728710 1 16 308236 7 28 615750 13
given angular momentuiinthe projectiork should be deter- 840857 2 17 334494 7 29 637829 13
mined so as to minimize the respective collective energy, 971'155 5 18 3608-18 8 30 6575'37 14
The resulting octupole band is then the yrast sequence of th.F 112'3 22 2 19 3877'05 s 31 6770'62 14
energy levels produced by our model Hamiltonian. It should ' ' '
be mentioned that a similar procedure has been used in Refs. 1232'33 2 2(1) jii’g'ég 3 g; ?igz'gi 12
[15,16 in relation to theA| =2 staggering effect in superde- : : '
formed nuclei. 10 1668.56 4 22 4676.45 10 34 723221 16
11 1880.56 4 23 494201 10 35 736044 16
IV. THE DIAGONAL PARTS OF THE HAMILTONIAN 12 210168 5 24 519718 11 36 744945 17
As a first step in testing our Hamiltonian we consider its ) o i
diagonal part A schematic energy spectrum of this kind, obtained for a
sample set of parameter values, is given in Table I. It is seen
Nd_ " " " hat the “yrast” val f th ntum num resultin
Hd:th+Hrot+cht+HqOCv (24) that the “yrast” values of the quantum numbiér resulting

from the minimization procedure described above, gradually

increase with the increase of the angular momentuive
N remark that these values Kfcorrespond to the local minima

of the pure octupole HamiltoniaH ,.; of Eq. (10). of the energy expression of EG25) as a function ofK,

The following diagonal matrix element is then obtained: which is illustrated in Fig. 1 for the same set of parameters.
We see that these minima appear for positive valug§ afe

Ex(1)=Eq+ flK +AI(I+1)+A'K? well determined, and their depth increases with the increase

1 of the angular momenturh

5 .3
3
il FKE=SKIN+D) [+ for

3
X[15K5—14K31 (1 +1)+3KI?%(1+1)2]. (25
Following the above-mentioned assumption for the angu- 25
lar momentum projectioK, we determine the yrast sequence
E(1) by minimizing for each value dfthe expression of Eq.
(25) as a function of integeK in the range—I<K<I. The > 2
obtained energy spectrum depends on six model parameter% /\ T =10
E, is a constant contributing to the bandhead enefgyis s /\
determined in order to correspond to the correct bandheai
energy of the octupole band foe1, in which case one has ‘; /\
/—\
] 3
e

where the operatd§.=H 1) represents the diagonal part

K=1 as well.(This is appropriately modified in the case of =
bands starting with higheK. For example, irK=5 bands

the lowest angular momentum Is=5, andf, is fixed in —E

order to provide the correct bandhead energylfeK =5.) 0.5 T

A and A’ are the quadrupole inertial parameters which T =1

should in general correspond to the quadrupole sliapes

ratio) of the relevant nucleus;;; andf, are the parameters 0

of the diagonal octupolEEq. (12)] and quadrupole-octupole -10 -5 0 5 10
[Eq. (20)] interactions respectively. In what follows we give K

fixed values to the first four parameteisy( fy, A, A’) and FIG. 1. The diagonal energy matrix eleme®g(l) (in MeV),

vary the last two parametersq(,fq.0 in order to examine Eq.(25), is plotted as a function df (in %) for 1=1,2, .. .,10, for
the influence of the last two terms of E@5) on the odd- the parameter seEy,=500 keVf,=—7.5 keVA=12 keVA'

even staggering pattern. =6.6 keVf;,;=0.56 keVf,,=0.085 keV.
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6.5 appears as an effect of the higher multipolarity of the con-
sidered collective interactions. The extent to which e
values appearing in our procedure provide physically reason-
able interpretations of various nuclear collective modes wiill
be considered in Sec. VI, where the limitationKe=3 will

be studied.

Now we can examine the fine structure of the collective
bands obtained in the above model procedure. We see in
Table | that theK values characterizing the levels with in-
creasingl are grouped in couples containing two successive
values ofl (one even and one oddThis fact implies the
presence of an odd-even staggering effect, as we shall imme-
diately see. A measure of the odd-even staggering effect is
the quantity

5.5

Stg 1) =6AE(1)—4AE(1—1)—4AE(1 + 1)+ AE(1 +2)
+AE(1-2), (26)

23 24 25 26 27 28 with
I

FIG. 2. The diagonal energy matrix elemefit(l) (in MeV), AR(N=E(+1)—E(). 27)

Eq. (25), is plotted as a function df(in #) for K=10,11,12,13, for

Th i i i [ i-
the parameter set of Fig. 1. e quantity Stgl() is proportional to the discrete approxi

mation of the fourth derivative of the functiahE(l), i.e.,
These results indicate that the rotational motion of a sysproportional to the fifth derivative of the energy!), and is
tem with stable quadropole-octupole deformation is associable to demonstrate fine deviations from the pure rotational

ated with complex angular momentum dynamics, due to th&ehavior, as has been demonstrated in Rffor the octu-
complex shape contributions to collectivity. More precisely,pole bands of several light actinides. An analog of this quan-
the following theoretical proposition is formed. For this kind tity has been introduced earligt8—2Q for the study ofAl
of rotational motion the increase in the total angular momen=2 staggering in nuclear superdeformed bands.
tum of the system is associated with an energetically favor- The way in which the appearance of tie values in
able increase in its third projectidf on the body-fixed axis. ~couples for successive valuesideads to odd-even stagger-
This means that the vector of the angular momentum deviing can be seen from Table I, using the second term of Eq.
ates “step by step” from the X-y” body-fixed plane(which ~ (25 as an example. In Table | we see that coupleof
is perpendicular to the body-fixedz'axis”) as its magnitude Vvalues appear for=8. In this region the contribution of the
increases. In other words, the higher angular momenta wilsecond term of Eq(25) to AE(1) is zero for even values of
be attended by stronger precession, or “wobbling motion”!, while it is +f, for odd values ofi. Then we easily see
of the system. These findings resemble the recent rddiflfs  from Eq. (26) that the contribution of the second term of Eq.
obtained within the framework of a self-consistent cranked25) to Stg() is +8f, for odd values ofl, while it is
HFB approach. Application of the method to some Os iso-—8f, for even values of. Therefore the second term of Eq.
topes has demonstrated that highsands become important (25) leads to odd-even staggering of constant amplitude. The
in the high angular momentum regidh7]. fourth, fifth, and sixth terms of Eq25) depend nonlinearly
Such a behavior of the spectrum could also be interpretedn K and/or |, and therefore give odd-even staggering of
as a multiband-crossing phenomenon, since the obtainecarying amplitude. In the case of the fourth term, it is easy to
yrast sequence can be considered as the envelope of teee that it gives staggering with amplitude increasing linearly
curves with different values of the quantum numbgras it  as a function ofl. [The termsE, and Al(I+1) do not
is illustrated in Fig. 2. This interpretation can, however, becontribute to the odd-even staggering, as it is known from
considered as a mathematical description, not necessarily infRef. [5].]
plying the physical existence of several bands with different Several examples of odd-even staggering occurring from
values ofK. Eq. (26) for different sets of parameter values used in Eq.
Thus, our schematic consideration suggests that the rot425) are given in Fig. 3. The parametdfg andf, have been
tional motion of a system with stable quadrupole-octupolekept constant in all parts of Fig. 3, while the paramet&rs
deformations invokeX values essentially higher than the andA’ have been kept constant in all parts of Fig. 3 except
ones usually considered in microscopic studies. We remarthe last ondFig. 3(f)]. In contrast, the parametefsg, and
that the situation considered here is essentially different froni .. have been given different values in the various parts of
the case of pure quadrupole rotations, where the bandkeadFig. 3.
value always provides the minimum of the collective rota- Figure 3a) illustrates a long odd-even staggering pattern
tional energy along the whole bandor example, E,,;  which looks similar to the “beats” observed in the octupole
=Al(l+1)+A’K?]. Thus the obtained wobbling motion bands of some light actinidd$] (with ?*°Ra, ?*’Ra, and
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FIG. 3. Odd-even staggering pattefesiculated using Eq26)] as functions of, obtained from the diagonal Hamiltonian of EQ4)
for several different sets of model parameters, given on the figures(dpaxrresponds to the same set of parameters as Table | and Figs.
1 and 2. The first four parameters remain the same in all parts of the figure, ékcept

22%Ra being probably the best examples difference being
that in the realistic cases of Rdf] the amplitude of the
“beats” seems to be decreasing with increaslngvhile in
Fig. 3@ the opposite seems to hold.

In Fig. 3(b) the increased values 6f; andf, provide a
wide angular momentum regidap tol ~40) with a regular
staggering pattern. The further increasefgf; results in a

3(c).
The further increase df;; andf . leads to a staggering
pattern with many “beats,” as shown in Fig(dB. Notice

that in Fig. 3d) the first three “beats” are completed by

~ 40, while in Fig. 3a) the first three “beats” are completed

by 1=70.
Figure 3e) illustrates what happens in the case of vanish-

ing quadrupole-octupole interaction terry{.=0), keeping

the rest of the parameters the same as in Figs.&hd 3c).

We see that in the present case the “beat” effect occurs very

staggering pattern with different amplitudes, shown in Fig.frequently, while in Figs. @) and 3c) the change was much

slower.

Finally, an example with almost constant staggering am-
plitude is shown in Fig. @). It resembles the form of the
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odd-even staggering predicted in the (8Ulimit of various 100 - - -
algebraic model¢see Ref[5] for details and relevant refer- (@

ences. It also resembles the odd-even staggering seen in
some octupole bands of light actinidgg (with 2°Th being
probably the best example

.
50 |- 1

bl v/\/'\.A\/\v/-\/-\\/ v/\v/\v/\\

After seeing in the previous section the main features of B O e ———— ]

the diagonal part of the Hamiltonian, we can now focus our £ =0.56, £,=0.03, £,=0.002,

attention on the general Hamiltonian of E&1), including Fan0:093 £,.70.099

the various nondiagonal terms given in E¢sl),(13)—(17). 00 e 2 e e

The main problem in this case is the fact tKais in general I (2]

not a good quantum number. We can, however, make analy- 30

sis for small values of the respective parameters b)

(ay,f12,f13,f21,F20,T23), Which keepK “asymptotically” 20f 3

good. Keeping these parameters small means that we use Tl .

weak K-band-mixing interaction, which guarantees that for 3 /\ /\ /\ I, 3
T,

V. THE NONDIAGONAL PARTS OF THE HAMILTONIAN

Stg(I) [keV]

any explicit energy minimum appearing in the diagonal case
the corresponding eigenvalue of the perturbed Hamiltonian
will be uniquely determined. Thus we are able to obtain for
the perturbed Hamiltonian lé-mixed yrast energy sequence

analogous to the one we got in the previous section for the

Stg(I) [keV]
|
T |
— |
— |
— |
|
|

1

diagonal part of the Hamiltonian. 20 Eoee tin s to0oe |3
Our numerical analysis of the Hamiltonian eigenvector £,,=0.06, £,.=0.085

systems shows that the parameters of the nondiagonal term %0 L = = w0

should be smaller by an order of magnitude in comparison to I A

the value of the parametéy;. In addition, by examining the
corresponding matrix elements in the Appendix, we deduce FIG. 4. Odd-even staggering pattefoalculated using Eq26)]
that the following pairs of nondiagonal terms give identical obtained by adding the three nondiagonal tets ,) [Eq. (13)],
contributions to the energy spectrurﬁ-lA2 and I:|,:2(1); He 1) [EQ. (15)], andH () [Eq. (16)] to the diagonal Hamiltonian
of Eq. (24), for two different sets of model parameters, given on the
2 N R figures. The first six parameters are the same as in Figs. 1, 2, and
to keep from now on only the ternH,:l(z),H,:z(l) ,HFZ(Z). 3(b).
In Fig. 4 two staggering patterns in the presence of
K-band-mixing terms are illustrated. In the calculation we
have included, as we have already mentioned, the nondiago- VI LOW-K (K=<3) ANALYSIS OF THE MODEL

nal termsHig (), He (1), andHe (5, along with the already FORMALISM

considered diagonal Hamiltonian of EQ4). The three non- A discussion on th& values appearing in our model con-
diagonal terms have been included with two different sets osideration is appropriate in this place. Usually from micro-
parametergboth obeying the above mentioned condition thatscopic point of view the eigenvalues of the total angular
the values of the parameters accompanying the nondiagonalomentum projection, are restricted t&K==<3. This re-
terms should be at least an order of magnitude smaller thaquirement is well justified in the case of octupole vibrations
the value of the parametéy,), shown in Figs. &) and 4b), of quadrupole deformed nuclei. It reflects the shell model
while the parameters of the diagonal part have been kept theoncept that the octupole degrees of freedom could be gen-
same as in Fig.®) (and in Table J. Comparing Figs. ®)  erated by an octupole-octupole=3 interaction(where A

and 4a) we see that the nondiagonal terms affect more sestands, as usual, for the multipolajitwhich couples single-
verely the higher angular momentum region by decreasingarticle states of opposite parif¢t]. In particular, this as-
the staggering amplitude. Moreover, the larger values for theumption gives a satisfactory interpretation for the fine struc-
parameters of the nondiagonal terms, shown in Fidp),4 ture of negative parity rotational bands built on octupole
reduce more seriously the staggering pattern in the higheribrations.

angular momentum region, as one can see by comparing In view of the above, it is interesting to examine our
Figs. 3b) and 4b) and noticing the different scales on the formalism in the case when the space of Kevalues is
vertical axes of the two figures. The pattern appearing in Figrestricted toK,,,,= 3. Indeed such a test is important espe-
4(b) resembles the experimental situatior?#Rn and??Th  cially for the low angular momentum regions, where the in-
[5] (odd-even staggering with amplitude decreasing as #&insic structure of octupole degrees of freedom is micro-
function of1). scopically well studied.

He 2) andHEe (a); H,2) andHE (). Therefore it suffices
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TABLE Il. Same as Table I, but for the parameter &gt=0 30 T T
keV[f=0 keVA=12 keVA'=9.96 keVf;;=0.75 keVfgqy (a)
=0.15 keV. The restrictioiK <3 has been imposed. See Sec. VI 20F . [
for further discussion. \

[ E(I) K [ E(1) K

24.00
72.00
144.00
237.97
351.64

[keV]

487.94 1
640.19 2
811.21 2
3
3

Stg (1)
=
T

/ [

20 B E,=0, £,=0, A=12, u E

© 0o N o

994.40
10 1194.18

g b~ WN PP
= = O OO

a'=9.96, £,=0.75, f_.=0.146

230 ! I I I )

Along these lines, we performed a schematic calculation
including the valueK=0,1,2,3 in the angular momentum D
region up tol =10, as well as another calculation including (b)
the valueKk =0, 1,2,3 in the angular momentum region up to 2F A /\ 1
|=16. The yrast sequences obtained are given in Tables Il A / \ /
and Ill, respectively, while the resulting staggering patterns - / \ /o \ 3
are shown in Fig. 5. We see that our formalism provides a ¢ \ '\ / \ \
regular staggering pattern for the states upl 010 [Fig. R T
5(a)] and a “beat” pattern for the spectrum uplte 16 [Fig.
5(b)]. These examplesobtained for the parameter values
given in Tables Il and lll, respectivelyillustrate that our ok P f=0'9 s i
approach is capable to provide reasonable staggering pattern o e v
under the restriction t&K<3, at least in the low angular 50 ———
momentum region with=10-16. In other words, the sche- 2 3 4 5 8 7 8 9 10 A1 12 93 M4
matic model gives reasonable results under the restriction to L

K=3, at least in the microscopically accessible angular mo- fiG. 5. Same as Fig. 3, but with the restrictiés<3 imposed in

men'fum regions._ the angular momentum region&) 1 <10 and(b) 1<16. The pa-
It is, however, important to remark that our approach sugrameter sets correspond to Tables Il and IlI, respectively.
gests a rather more extended treatment of the collective oc-

tupole degrees of freedom, which is expected to be useful in S . . .
view of the increasing bulk of data indicating possible stabIeOCtUpOI_e |n.tr|nS|c configurations should b? restnctedKFo
octupole deformations in several nuclei, the light actinides=3 Projection values. Namely, for these kinds of rotational
providing the best examples. Some of these batidsoctu- mohon our collective formghsm suggests thétcoul_d be
pole bands irf2* 22%Ra and??* 22%Th, for examplg possess higher than 3. One can easily see that for the relatively well
rather well pronounced rotational structuteee Table | in deformed nuclei, such &% *Ra and®** #*Th, the Nils-
Ref.[5]). Our proposition is that in these cases the concept o$0N orbitals do not exclude the presence of reasonkble
a rotating quadrup0|e_octupo|e Shape should be more evP3 intrinsic Configurati0n$21]. This remark is of partiCUlar
dent. In these cases, in contrast to the pure octupole vibramportance for the higher angular momentum regidn (
tions, it is nota priori clear why the combined quadrupole- =10-16), where pair breaking effects are possible.
Another important question to be examined is whether the
TABLE Ill. Same as Table I, but for the parameter &  €NETgy gain in case of yrast rotations wi3 is larger
=100 keV, f,=0.896 keV,A=19.2 keV, A'=18.24 keV, f,, than the intrinsic energy necessary to raisabove 3. There
=0.49 KeV, f oc=0.074 keV. The restrictiok <3 has been im- is no a priori answer to this question, which would be an

Stg(I)
=)
T
<
\/4

A'=18.2, £,,=0.49, £ .=0.074

posed. See Sec. VI for further discussion. interesting problem for future combined efforts from both
collective and microscopic points of view. Here we just re-
I E(l) K I E() K mark that for the collective motion considered the energy

gain rapidly increases with the increase of the angular mo-

138.40 mentum(see the depth of the minima in the curves of Fig. 1

0 9 1803.42
215.20 0 10 2177.43
330.40 0 11 2580.53
484.00 0 12 3017.25 VIl. FURTHER TESTS OF THE MODEL FORMALISM
676.00 0 13 3490.32
905.66 1 14 3991.13
1167.54 1 15 4521.73
1

1466.79 16 5087.69

The restriction toK <3 values, used in the previous sec-
tion, demonstrated that odd-even staggering and “beat” pat-
terns can indeed appear in this special case. This particular
collection ofK values K=0,1,2,3 has certain probability to

0O ~NO Ok WN P
W WWNNDNN PP
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appear low in energy in the case of nuclei exhibiting octu-odd-even staggering and “beat” patterns within the frame-
pole deformation, but other possibilities also exist. In fact, itwork of the present model.
is well known from experiment that the variosvalues are In conclusion, the assumption thatis a good(or asymp-
built up through the pair-breaking mechanism. As a re&ult, totically good quantum number, therefore taking integer
is not a smoothly increasing functidwhile | is). Which K values only, is a fundamental one as far as the appearance of
values will appear lower in energy in each nucleus dependsdd-even staggering and “beat” patterns within the present
strongly on the microscopic structure of the nucleus. One isnodel is concerned. On¢€is assuming only integer values,
therefore confronted with the following questions. odd-even staggering and “beat” patterns can in principle be
(1) Given a collection oK values, which appear low in constructedfor appropriate parameter values in the Hamil-
energy in a specific nucleus because of microscopic reasongnian for any set of microscopically directetvalues lying
is the present formalism predicting odd-even staggering ofow in energy.

not?
(2) What is the meaning of minimization with respectto
in this case? _ VIll. DISCUSSION
(3) In which order do the various allowed values ¥f
appear a$ is increasing? The staggering patterns illustrated so €&igs. 3 and #

We have performed several numerical tests, which needover almost all odd-even staggering patterns seen in nuclear
not be reproduced here in detail, in order to answer thesectupole bands. The amplitudes obtained for the sets of pa-
questions. The following conclusions have been reached. rameters considered vary up to 300 keV. Staggering patterns

(1) Given a collection oK values which are nonsucces- with larger values of Std{j can be easily obtained for dif-
sive integerdfor example,K=5,7,9,10,1% odd-even stag- ferent parameter sets. On this basis it is reasonable to assume
gering and “beat” patterns do appear for certain values Ofihat the model parameters can be adjusted appropriately so as
fche I—_|arr_1|lton|an parameters. Qne is therefore persuaded thgy reproduce the staggering patterns seen in the octupole
in principle the model formalism can produce "beat” pat- hanqs of the light actinidd$], as well as in rotational nega-
terns for any mlcroscqplcally dlreqted coIIectlo.nK)f\/aIues.. tive parity bands withK=1 built on octupole vibrations. In

(2) In the just mentioned cask, is not a continuous vari- the fitting procedure one should take into account the mini-

able. HOW?VE‘“ one can still m|n!m|_ze the energy with "€ mization of the energy with respect kofor each given value
spect toK, in the following sense: Given a collection &f LSS
of I. Work in this direction is in progress.

values, for each value dfone determinesamong the mem- . . .
At this point the following comments on the structure of

bers of the collectionthe K value for which the energy is o X i
the collective interactions used and the related symmetries

minimum. -
(3) In all cases the allowed values Kfappear in increas- ar€ !n place.

ing order asl is increasing, similarly to what occurs in (1) The above-mentioned fact that the six nondiagonal
Tables I—-III. terms of the octupole Hamiltonian can be arranged into three
In all of the above we have been assuming tkabkes Pairs, the terms belonging to the same pair giving equal con-
only integer values, i.e., tha is a good quantum number. tributions, indicates that only four terms of the octupole
This is an assumption of the model, which is quite usual inrHamiltonian(the diagonal term plus three appropriately cho-
the realm of phenomenological modébsit not in the case of sen nondiagonal termsuffice for the determination of the
microscopic modelsin whichK is assumed to be a gogdr ~ energy spectrum. This result reflects the fact that in the in-
asymptotically goofquantum number. One might wonder, trinsic frame of reference three octupole degrees of freedom,
however, how strongly the appearance of odd-even staggefrom the total of seven ones, are related to the orientation
ing and “beat” patterns in the present model depends on thigingles. In the present case we chose in Sec. V and in Fig. 4
assumption. In ord_er to confront this question, we have_perf0 keep the diagonal terrﬁF (1) and the nondiagonal terms
formed the following tests: We repeated the calculations, . . L
concerning Figs. @) and 3b) allowing K to vary not witha  Hr,(2), Hr 1), andHg_(;). Our analysigrelated to the col-
step of 1.0, but with a step of 0.5, or 0.1, or 0.01, or 0.0001)ective rotations of the systengives a natural way for de-
as well as allowing to be a continuous variable. The results termining the four collective octupole interaction terms
need not be reproduced here in full detail, but the conclusiovhich give independent contributions.
was that in both cases the odd-even staggering drops dra- (2) The symmetry of the various combinations of spheri-
matically as the step of the variation & decreases, and ca| harmonics appearing in Eq8)—(9) has been considered
practically vanishes wheK is a continuous variable. One , detail in Ref.[10]. The Y, term is axially symmetric, i.e.,
Fherefore“concyl’udes that t_he appearance of odd-even stagg@ryas the symmetry of th®,, group, while the termYs,
ing and “beat patterr}s in thg present model strongly de'—Y3_1 has the symmetry of th€,, group, the termys,
pends on the assumption thatis a good(or asymptotically +Y3_, has the symmetry of th&, group, and the term

good quantum number, taking integer values, an assumptio a3~ Y5_5 has the symmetry of th®s, group. From the

which is rather common among phenomenological modelsCorres ondence between E(—(9) and Eas(11)—(17) we
On the other hand, as has already been mentioned in the hp he di | terfh ®'_( ) all as(1y ( 7 hil
beginning of this section, practically any microscopically di- S€€ that the diagonal terhh () Is axially symmetric, while

rected set of integer values Kifcan lead to the appearance of the nondiagonal termsi Fl(2) I:|F2(1) , and sz(z) (men-
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tioned in the previous item)lare constructed by using the son to restrict the analysis by assuming the presence of small

combinations  ¥31;—Ys_1), (Y3>+Ys_,), and (Ys3  nonaxial deformations onl{25]. In this direction an exten-

-Ys3_3). sion of the present work not limited to small nondiagonal
(3) Concerning the role of the various terms in the odd-contributions could be of interest.

even staggering effect, our schematic results of Secs. IV and

V indicate that the nondiagon#&-band-mixing interactions

suppress the staggering pattern, while the axially symmetric

term I:|Fl(1) is able to provide a “beat” staggering behavior

[see Fig. 8)]. The quadrupole-octupole terﬁhqoc does in- In summary, we have considered a Hamiltonian involving
fluence the staggering pattern, providing wider angular mo®ctupole and quadrupole terms, along with an octupole-
mentum regions with regular staggering. In short, the axiallydu@drupole interaction and lé-dependent bandhead term.
symmetric term seems to be the most important @meong The octupole terms have been classified by using the irreduc-

the terms involving the octupole degrees of freegléon the ibI_e_re_p_resentationérreps)_ of the octahedron grouf. By
production of “beat” behavior in the odd-even staggering minimizing the energy with respect to the angular momen-
fum projectiorK for each given value of the angular momen-

pattern. However, it should be remembered at this point th I h hed ih lusion thais i :
the octupole and octupole-quadrupole terms are not the onl m | we have reached the conclusion Tirals increasing
ith increasingl, even in the case in whicK is allowed to

ones contributing to the odd-even staggering effect. As w . . ) :
9 ggenng assume only a restricted set of microscopically dictated val-

have already mentioned in Sec. IV, the tefgK, coming s, a result which can be interpreted as corresponding to a
from the bandhead energy, makes to the odd-even staggerirbjg)’ L resutt wht . Interp -orresponding
a contribution of constant amplitude, while tAéK? term, bbling motion. VaT'OUS terms.of th? Ha}m|lton|an give nse
coming from the quadrupole part of the Hamiltonian, makezttﬁiOde'eV?nn Eitr?ggtinngH dririi'?nndimng Iotr)nll dl[ffer?ngways, |\r/1 al
a contribution to the odd-even staggering with an amplitud diffsereiﬁ/ odz-evgn s?a aerino <’:uteerlnse s(())rr?eoofu Svehiiﬁ P?ase
which is increasing linearly as a function bflt should be en observed in theggctu %Ig bands’ of liaht actinides. In
noticed, though, that these remarks are based only on a feW . tupc 9 . '
order to examine the relative importance of the various terms

schematic calculations and in no way are final conclusions

In order to reach safer conclusions about the relative imporg'vIng rise to odd-even staggering, detailed fits of the octu-

tance of the various terms in giving rise to a “beat” behavior pole bands_ of Fhe light actinjdes should be performed, a pro-
of the odd-even staggering, one has to perform detailed fit edure which is not very simple because of the abovemen-

to the octupole bands of the light actinides, as mentione oned minimization procedure involved in it. In addition, the
above ' applicability of the present formalism to rotational bands

(4) As has already been commented on in Secs. IV and VYVi'[h K=1 built on octupole vibrations, which also demon-
the most general schematic results we have obtained suggé&ate odd-ev_en staggering effects, should _be examined. The
that in the high angular momentum region some Highal- present Hamlltonlaq, because of the variety of odd-even
ues should be involvets a result of the minimization of the staggering patterns it can produce, seems to be a good start-

ing point for systematizing the different odd-even staggering

energy with respect t for each given value of, which is patterns seen in octupole bands, as well as in rotational bands
an important ingredient of our approacfihe fact that the built on octupole vibrations. Work in this direction is in

guantum number is not a good quantum num{ret even
approximately of the relevant states has been realized |Ongorogress.

ago[22-24. In microscopic calculations in the rare earth

region (with 152<A<190) [22], in which the valuesK

=0,1,2,3 have been included, it has been seen that in the ACKNOWLEDGMENTS

beginning of the region the valués=0,1 are important for The authors are grateful to Professor P. Quentin for
the lowest 3 state, while in the middle of the region the several illuminating discussions at various stages of the
valuesk =1,2 are important and in the far end of the region gevelopment of this work, as well as to Professor S. Pittel for
the valuesK =2,3 are importan22]. These results are con- 5 careful reading of the manuscript and useful comments.
sistent with our lowk model analysis given in Sec. VI. The Qne of the author§N.M.) is grateful to Professor N. Lo
same authors have dealt with the actinide regid®@22) in |ydice for hospitality during his stay in Universith Napoli

Ref. [23]. One of the authors of Ref§22,23 in Ref. [24]  “Federico II” and for detailed discussions on the subject of
finds that the restriction t&<3 is not ]US“ﬁabIe for Iarge this work. This work has been Supported by the Bulgarian

energies. These findings are in agreement with our result§ational Fund for Scientific Research under Contract No.
given in Table | as well as with our comments in the end ofpjy-EF-02/98.

Sec. VI.

(5) Concerning the analysis in Sec. V and the above com-
ments(3) and(4), we remark that the restrictions imposed on
the nondiagonal Hamiltonian tern{&eepingK asymptoti-
cally good are rather strong and reflect the particular physi- Nonzero matrix elements of the operators of Edd)—
cal assumptions of our consideration. However, for a morgl7) in the state§IK) with total angular momenturh and
general quantum mechanical system there is no principal regrojectionK, with X=1(1+1):

IX. CONCLUSIONS AND OUTLOOK

APPENDIX

044305-10



“BEAT” PATTERNS FOR THE ODD-EVEN.. .. PHYSICAL REVIEW C63 044305

(IK+2|I:|A2|I,K)=iza2(K+1)\/X—(K+1)(K+2)\/X—K(K+1),

4

(IK—2|I:|A2|IK):— ay)(K—1)yX—(K—1)(K—2)yX—K(K—-1),
. 1
<|K|HF1(1)||K>:§f11K(5K2—3X),
. 1
(IK+1|H,:1(2)|IK)=1—6f12(3X—15K2—15K—1O)\/X—K(K+ 1),
. 1 )
(IK—1|HF1(2)|IK):Ef12(3X—15K +15K —10) yX—K(K—1),

. i
(IK+ 1A (31 [K) =75 f1a(3X — 18K?~ 15K — 10) X —K(K+1),

. i
(IK=1|Hg g IK) == 75 f1d(3X— 15K+ 15K — 10) X —K(K—1),

(IK+2|I:I,:2(1)|IK>=%f21(K+1)\/X—(K+1)(K+2)\/X—K(K+1),

. 1
<|K_2|HF2(1)||K>:§f21(K_1)\/X_(K_l)(K_Z)\/X_K(K—l),
N 1
(1K + 1] g | 1K) = 5 T4 X~ 5K2= 5K = 2) (X—K(K+ 1),
- 1
(1K = 1] g 1K) = F2o X~ 5K+ 5K —2) X =K (K—1),
- i
(IK+ 1P o)|IK) = = 5 X —5K2= 5K —2) X —K(K+ 1),

. i
(IK = 1|, 3)[1K) = F25( X~ 5K?+ 5K~ 2) X~ K(K—1).
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