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‘‘Beat’’ patterns for the odd-even staggering in octupole bands
from a quadrupole-octupole Hamiltonian

Nikolay Minkov,1,* S. B. Drenska,1,† P. P. Raychev,1,‡ R. P. Roussev,1,§ and Dennis Bonatsos2,i
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We propose a collective Hamiltonian which incorporates quadrupole terms, octupole terms classified ac-
cording to the irreducible representations of the octahedron group, a quadrupole-octupole interaction, as well as
a term for the bandhead energy linear inK ~the projection of angular momentum on the body-fixedz axis!. The
energy is subsequently minimized with respect toK for each given value of the angular momentumI, resulting
in K values increasing withI within each band, even in the case in whichK is restricted to a set of micro-
scopically plausible values. We demonstrate that this Hamiltonian is able to reproduce a variety of ‘‘beat’’
patterns observed recently for the odd-even staggering in octupole bands of light actinides.
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I. INTRODUCTION

The properties of nuclear systems with octupole deform
tions@1# are of current interest due to increasing evidence
the presence of octupole instabilities in various regions of
nuclear table@2–4#. Furthermore, some ‘‘beat’’ patterns hav
been observed recently for the odd-even staggering@the rela-
tive displacement of the odd levels with respect to the po
tions at which they should have been located according
fit of the even levels by the formulaE(I )5AI(I 11), where
I denotes the angular momentum# in octupole bands of light
actinides@5# based on recent experimental data@6,7#, calling
for a study of the interactions which could give rise to su
shapes.

Various parametrizations of the octupole degrees of fr
dom@8–11# already exist, being a useful tool for understan
ing the role of the reflection asymmetry correlations and
analyzing the collective properties of such systems. So
important questions in this direction concern the collect
nuclear interactions that correspond to the different octup
shapes and how they determine the structure of the res
tive energy spectra. Physically meaningful answers sho
be obtained by taking into account the simultaneous prese
of other collective degrees of freedom, such as the qua
pole ones@12#.

In the present work we address the above problems
examining the interactions that generate collective rotati
in a system with a simultaneous presence of octupole
quadrupole deformations. The basic assumption of our c
sideration is that the rotational motion of such a system
be interpreted in first approximation as the motion of a bo
with a stable quadrupole-octupole shape. In this respect
purpose is to examine how the nuclear system behaves u
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§Deceased.
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collective rotations if the presence of stable quadrupo
octupole deformations is assumed.

Based on the octahedron point symmetry parametriza
of the octupole shape@8–10#, we propose a collective Hamil
tonian which incorporates the interactions responsible for
rotations associated with the different octupole deformatio
In addition we take into account the quadrupole degrees
freedom and the appropriate higher order quadrupo
octupole interaction. Below it will be shown that such a ge
eral model Hamiltonian could incorporate the basic prop
ties of a nuclear system rotating under the above assump

Although this assumption seems to be rather strong~since
the presence of stable octupole deformations in nuclei is
yet a well elucidated problem! we suppose that it could give
a natural possibility to estimate the extent to which some
the observed nuclear octupole bands carry the characteri
of the stable octupole shapes. Generally, the proposed
sideration will provide a direct physical insight into th
nuclear collective motion as far as the shape of the sys
and the respective moments of inertia are slightly chan
under the collective motion. Similarly to the case of the pu
quadrupole deformations this requirement will be natura
satisfied for the low angular momentum region of the sp
trum which is, from another perspective, accessible for
tailed microscopic analysis, the length of this region depe
ing on the particular system.

Furthermore, we expect that in the higher angular m
mentum regions the approach suggested will outline so
general properties of the system and thus will provide a
evant guide for respective more detailed studies from b
microscopic and phenomenological points of view. In p
ticular it will be shown that the model formalism develope
in the present work proposes a schematic explanation of
recently observed@5# ‘‘beat’’ patterns for the odd-even stag
gering in octupole bands of light actinides based on rec
experimental data@6,7#.

In Sec. II of the present work the octupole terms of t
Hamiltonian, classified by the irreducible representations~ir-
reps! of the octahedron group, will be described, while t
quadrupole terms and the octupole-quadrupole interac
will be examined in Sec. III, along with the bandhead term
©2001 The American Physical Society05-1
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the Hamiltonian and the minimization procedure, which i
basic ingredient of the present work. In Sec. IV the diago
parts of the Hamiltonian will be analyzed and used for
production of schematic odd-even staggering patterns, w
the same procedure will be repeated including the nondia
nal parts of the Hamiltonian in Sec. V. In Sec. VI an analy
of the model formalism under some restrictions on the p
mitted values of the angular momentum projection on
body-fixedz axis will be presented, while further tests of th
formalism will be performed in Sec. VII. Finally, Sec. VII
will contain discussion of the present results, while in S
IX a summary of the present results and plans for fut
work will be given.

II. PARAMETRIZATION OF THE OCTUPOLE
DEFORMATION

Our model formalism is based on the principle that t
collective properties of a physical system in which octup
correlations take place can be expressed by the follow
most general octupole field in the intrinsic~body-fixed!
frame @9#:

V35 (
m523

3

a3m
fix Y3m* , ~1!

with (a3m
fix )* 5(21)ma32m

fix

This field can be written in the form@9#

V35e0A21(
i 51

3

e1~ i !F1~ i !1(
i 51

3

e2~ i !F2~ i !, ~2!

where the quantities@9#

A252
i

A2
~Y322Y322!5

1

r 3
A105

4p
xyz, ~3!

F1~1!5Y305
1

r 3
A 7

4p
zS z22

3

2
x22

3

2
y2D , ~4!

F1~2!52
1

4
A5~Y332Y323!1

1

4
A3~Y312Y321!

5
1

r 3
A 7

4p
xS x22

3

2
y22

3

2
z2D , ~5!

F1~3!52 i
1

4
A5~Y331Y323!2 i

1

4
A3~Y311Y321!

5
1

r 3
A 7

4p
yS y22

3

2
z22

3

2
x2D , ~6!

F2~1!5
1

A2
~Y321Y322!5

1

r 3
A105

16p
z~x22y2!, ~7!
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F2~2!5
1

4
A3~Y332Y323!1

1

4
A5~Y312Y321!

5
1

r 3
A105

16p
x~y22z2!, ~8!

F2~3!52 i
1

4
A3~Y331Y323!1 i

1

4
A5~Y311Y321!

5
1

r 3
A105

16p
y~z22x2! ~9!

~with r 25x21y21z2) belong to irreducible representation
~irreps! of the octahedron groupO. In particular, the first
quantity @Eq. ~3!# belongs to the one-dimensional irrepA2,
while the next three quantities@Eqs. ~4!–~6!# belong to the
three-dimensional irrepF1 and the last three quantities@Eqs.
~7!–~9!# belong to the three-dimensional irrepF2. The seven
real parameterse0 and e r( i ) (r 51,2; i 51,2,3), appearing
in Eq. ~2!, determine the amplitudes of the various comp
nents of the octupole deformation. Their relation to the c
efficientsa3m

fix has been given in Ref.@9#.
As we have already seen, the quantities appearing in E

~3!–~9!, when expressed in terms of the Cartesian coo
natesx, y, andz, contain linear combinations of terms cub
in the Cartesian variables. These specific linear combinat
correspond to various octupole shapes~as seen from their
expressions in terms of the spherical harmonics!, and in ad-
dition correspond to the above mentioned irreps of the o
hedron group. Our proposition is the following.

~a! We construct a Hamiltonian using the same cu
terms appearing in Eqs.~3!–~9!, but replacing the Cartesia
coordinates x,y,z by the angular momentum operato
Î x , Î y , Î z ~with Î 25 Î x

21 Î y
21 Î z

2). For example, the termz3 is

replaced byÎ z
3 .

~b! Due to the fact that the operatorsÎ x , Î y , Î z do not com-
mute, while the coordinatesx,y,z do commute, when making
step~a! we symmetrize each cubic expression when we w
it in terms of the angular momentum operators. For exam
the termz(x22y2) is replaced byÎ z( Î x

22 Î y
2)1( Î x

22 Î y
2)I z .

~c! During the procedure described above, ther 3 factors
appearing in the denominators of Eqs.~3!–~9! are replaced
by Î 3 factors. In the final result we normalize with respect
Î 3, i.e., we multiply the results byÎ 3, an operation which is
equivalent to the transition to a unit sphere, a natural thing
do since we are interested in surface shapes. Indeed,
operation is equivalent to the multiplication of the quantiti
appearing in Eqs.~3!–~9! by r 3, an action which eliminates
their radial dependence, leading to a transition to the u
sphere. The transition to the unit sphere is the reason tha
standard quadrupole and octupole operators are defined
proportional tor 2Y2m and r 3Y3m , respectively@1#.

~d! As a result, we obtain a Hamiltonian~as a function of
the angular momentum operatorsÎ x , Î y , Î z) the terms of
which correspond to the same octupole shapes which ap
in the Hamiltonian of Eqs.~2!–~9!.
5-2
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‘‘BEAT’’ PATTERNS FOR THE ODD-EVEN . . . PHYSICAL REVIEW C63 044305
~e! The terms of the resulting Hamiltonian in additio
belong to the same irreps of the octahedron group as
terms of the original Hamiltonian, appearing in Eqs.~3!–~9!.
In other words, through this procedure we determine the
tahedron point symmetry properties of the system in ang
momentum space.

Our proposition is similar to the procedure used in R
@13# for the hexadecapole field. The following Hamiltonia
is then obtained:

Ĥoct5ĤA2
1(

r 51

2

(
i 51

3

ĤFr ( i )
, ~10!

with

ĤA2
5a2

1

4
@~ Î xÎ y1 Î yÎ x! Î z1 Î z~ Î xÎ y1 Î yÎ x!#, ~11!

ĤF1(1)5
1

2
f 11Î z~5Î z

223Î 2!, ~12!

ĤF1(2)5
1

2
f 12~5Î x

323Î xÎ
2!, ~13!

ĤF1(3)5
1

2
f 13~5Î y

323Î yÎ
2!, ~14!

ĤF2(1)5 f 21

1

2
@ Î z~ Î x

22 Î y
2!1~ Î x

22 Î y
2! Î z#, ~15!

ĤF2(2)5 f 22~ Î xÎ
22 Î x

32 Î xÎ z
22 Î z

2Î x!, ~16!

ĤF2(3)5 f 23~ Î yÎ z
21 Î z

2Î y1 Î y
32 Î yÎ

2!. ~17!

The Hamiltonian parametersa2 and f ri (r 51,2;i
51,2,3), appearing in Eqs.~11!–~17!, are formally related
to the parameters in Eq.~2! as follows:

a25e0A105

4p
, f 1i5e1~ i !A 7

4p
,

~18!

f 2i5e2~ i !A105

16p
, i 51,2,3.

The nonvanishing matrix elements of the operators of E
~11!–~17! in the states with collective angular momentumI
are given in the Appendix.

In the Appendix we remark that the operatorĤF1(1) @Eq.

~12!#, which corresponds to the termY30 @see Eq.~4!#, char-
acterized by axial deformation, is the only octupole opera
possessing diagonal matrix elements. Below it will be se
that this operator is of major importance in determining
fine structure of collective bands with octupole correlatio
This fact does not come as a surprise, since it is well kno
that theY30 ~axial! deformation is the leading mode in sy
tems with reflection asymmetric shapes~see Ref.@4# for a
relevant review!.
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III. INCLUSION OF QUADRUPOLE DEGREES
OF FREEDOM

It is known, however, that the use of the pure octup
field of Eq. ~1! is not sufficient for the description of th
collective properties of nuclei exhibiting octupole deform
tion, since the quadrupole deformation is also present. Th
fore one has to consider the octupole degrees of freed
together with the quadrupole deformations, and in addit
one has to deal with their coupling. A general treatment o
combined quadrupole-octupole field has been given earlie
the framework of a general collective model for coupl
multipole surface modes@2,12#.

According to the above considerations it is reasonable
suggest that the most general collective Hamiltonian o
system exhibiting octupole deformations should also con
the following quadrupole rotation part:

Ĥ rot5AÎ21A8 Î z
2 , ~19!

whereA andA8 are the inertial parameters. In addition, it
reasonable to try to describe the coupling between the qu
rupole and the octupole degrees of freedom by the follow
higher order diagonal quadrupole-octupole interaction te
which corresponds to the productY20Y30,

Ĥqoc5 f qoc

1

I 2
~15Î z

5214Î z
3Î 213Î zÎ

4!, ~20!

since it is known that the axial deformation corresponding
Y30 is the leading mode in systems with reflection asymm
ric shapes@4# and, in an analogous way, the axial deform
tion corresponding toY20 is the leading mode in system
with quadrupole deformations. The operator of Eq.~20! is
also normalized with respect to the multiplication factorI 3,
in the same way as the operators of Eqs.~11!–~17! are, as
described in the previous section. In other words, we use
productI 3Y20Y30, in order to ensure that all nonquadrupo
Hamiltonian terms will be of the same order.

As a result, the total Hamiltonian of the system can
written in the form

Ĥ5Ĥbh1Ĥ rot1Ĥoct1Ĥqoc, ~21!

where

Ĥbh5Ĥ01 f kÎ z , ~22!

is a pure phenomenological part introduced in order to rep
duce the bandhead energy in the form

Ebh5E01 f kK, ~23!

were E0 and f k are free parameters. The bandhead ene
Ebh is considered proportional toK in analogy to what hap-
pens in the five-dimensional quadrupole oscillator mo
~see Appendix 6B of Ref.@1#!, as well as in the standar
rotation-vibration model~see Sec. 6.5 of Ref.@14#!. The K
dependence ofEbh plays an important role in our approac
5-3
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MINKOV, DRENSKA, RAYCHEV, ROUSSEV, AND BONATSOS PHYSICAL REVIEW C63 044305
since it provides the correct value of the bandhead ang
momentum projectionK in the variation procedure describe
below.

We remark that the Hamiltonian of Eq.~21! is not a rota-
tional invariant in general. It does not commute with the to
angular momentum operators and, as a result, any state
given angular momentumI is energy split with respect to th
quantum numberK. Therefore, the physical relevance of th
Hamiltonian depends on the possibility to determine in
unique way the angular momentum projection. Our basic
sumption is thatK is not frozen within the sequence of stat
of the collective rotational band. We suggest that for a
given angular momentumI the projectionK should be deter-
mined so as to minimize the respective collective ener
The resulting octupole band is then the yrast sequence o
energy levels produced by our model Hamiltonian. It sho
be mentioned that a similar procedure has been used in R
@15,16# in relation to theDI 52 staggering effect in superde
formed nuclei.

IV. THE DIAGONAL PARTS OF THE HAMILTONIAN

As a first step in testing our Hamiltonian we consider
diagonal part

Ĥd5Ĥbh1Ĥ rot1Ĥoct
d 1Ĥqoc, ~24!

where the operatorĤoct
d [ĤF1(1) represents the diagonal pa

of the pure octupole HamiltonianĤoct of Eq. ~10!.
The following diagonal matrix element is then obtaine

EK~ I !5E01 f kK1AI~ I 11!1A8K2

1 f 11S 5

2
K32

3

2
KI ~ I 11! D1 f qoc

1

I 2

3@15K5214K3I ~ I 11!13KI 2~ I 11!2#. ~25!

Following the above-mentioned assumption for the an
lar momentum projectionK, we determine the yrast sequen
E(I ) by minimizing for each value ofI the expression of Eq
~25! as a function of integerK in the range2I<K<I . The
obtained energy spectrum depends on six model parame
E0 is a constant contributing to the bandhead energy;f k is
determined in order to correspond to the correct bandh
energy of the octupole band forI 51, in which case one ha
K51 as well.~This is appropriately modified in the case
bands starting with higherK. For example, inK55 bands
the lowest angular momentum isI 55, and f k is fixed in
order to provide the correct bandhead energy forI 5K55.!
A and A8 are the quadrupole inertial parameters wh
should in general correspond to the quadrupole shape~axes
ratio! of the relevant nucleus;f 11 and f qoc are the parameter
of the diagonal octupole@Eq. ~12!# and quadrupole-octupol
@Eq. ~20!# interactions respectively. In what follows we giv
fixed values to the first four parameters (E0 , f k , A, A8) and
vary the last two parameters (f 11, f qoc) in order to examine
the influence of the last two terms of Eq.~25! on the odd-
even staggering pattern.
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A schematic energy spectrum of this kind, obtained fo
sample set of parameter values, is given in Table I. It is s
that the ‘‘yrast’’ values of the quantum numberK, resulting
from the minimization procedure described above, gradu
increase with the increase of the angular momentumI. We
remark that these values ofK correspond to the local minima
of the energy expression of Eq.~25! as a function ofK,
which is illustrated in Fig. 1 for the same set of paramete
We see that these minima appear for positive values ofK, are
well determined, and their depth increases with the incre
of the angular momentumI.

TABLE I. The ‘‘yrast’’ energy levels,E(I ) ~in keV!, and the
respectiveK values~in \) obtained from Eq.~25! for the parameter
set E05500 keV, f k527.5 keV, A512 keV, A856.6 keV, f 11

50.56 keV, f qoc50.085 keV, by minimizing the energy with re
spect toK for each given value ofI. See Sec. IV for further discus
sion.

I E(I ) K I E(I ) K I E(I ) K

1 522.772 1 13 2335.81 5 25 5453.12 1
2 568.327 1 14 2576.57 6 26 5694.49 1
3 637.095 1 15 2827.57 6 27 5935.50 1
4 728.710 1 16 3082.36 7 28 6157.50 1
5 840.857 2 17 3344.94 7 29 6378.29 1
6 971.155 2 18 3608.18 8 30 6575.37 1
7 1123.22 2 19 3877.05 8 31 6770.62 1
8 1288.09 3 20 4143.16 9 32 6937.23 1
9 1472.71 3 21 4413.03 9 33 7101.62 1
10 1668.56 4 22 4676.45 10 34 7232.21 1
11 1880.56 4 23 4942.01 10 35 7360.44 1
12 2101.68 5 24 5197.18 11 36 7449.45 1

FIG. 1. The diagonal energy matrix elementEK(I ) ~in MeV!,
Eq. ~25!, is plotted as a function ofK ~in \) for I 51,2, . . .,10, for
the parameter setE05500 keV,f k527.5 keV,A512 keV,A8
56.6 keV,f 1150.56 keV,f qoc50.085 keV.
5-4
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‘‘BEAT’’ PATTERNS FOR THE ODD-EVEN . . . PHYSICAL REVIEW C63 044305
These results indicate that the rotational motion of a s
tem with stable quadropole-octupole deformation is ass
ated with complex angular momentum dynamics, due to
complex shape contributions to collectivity. More precise
the following theoretical proposition is formed. For this kin
of rotational motion the increase in the total angular mom
tum of the system is associated with an energetically fav
able increase in its third projectionK on the body-fixed axis.
This means that the vector of the angular momentum d
ates ‘‘step by step’’ from the ‘‘x-y’’ body-fixed plane~which
is perpendicular to the body-fixed ‘‘z axis’’! as its magnitude
increases. In other words, the higher angular momenta
be attended by stronger precession, or ‘‘wobbling motio
of the system. These findings resemble the recent results@17#
obtained within the framework of a self-consistent crank
HFB approach. Application of the method to some Os i
topes has demonstrated that high-K bands become importan
in the high angular momentum region@17#.

Such a behavior of the spectrum could also be interpre
as a multiband-crossing phenomenon, since the obta
yrast sequence can be considered as the envelope o
curves with different values of the quantum numberK, as it
is illustrated in Fig. 2. This interpretation can, however,
considered as a mathematical description, not necessarily
plying the physical existence of several bands with differ
values ofK.

Thus, our schematic consideration suggests that the r
tional motion of a system with stable quadrupole-octup
deformations invokesK values essentially higher than th
ones usually considered in microscopic studies. We rem
that the situation considered here is essentially different fr
the case of pure quadrupole rotations, where the bandheK
value always provides the minimum of the collective ro
tional energy along the whole band@for example, Erot
5AI(I 11)1A8K2]. Thus the obtained wobbling motio

FIG. 2. The diagonal energy matrix elementEK(I ) ~in MeV!,
Eq. ~25!, is plotted as a function ofI ~in \) for K510,11,12,13, for
the parameter set of Fig. 1.
04430
-
i-
e
,

-
r-

i-

ill
’

d
-

d
ed
the

m-
t

ta-
e

rk
m

-

appears as an effect of the higher multipolarity of the co
sidered collective interactions. The extent to which theK
values appearing in our procedure provide physically reas
able interpretations of various nuclear collective modes w
be considered in Sec. VI, where the limitation toK<3 will
be studied.

Now we can examine the fine structure of the collect
bands obtained in the above model procedure. We se
Table I that theK values characterizing the levels with in
creasingI are grouped in couples containing two success
values of I ~one even and one odd!. This fact implies the
presence of an odd-even staggering effect, as we shall im
diately see. A measure of the odd-even staggering effec
the quantity

Stg~ I !56DE~ I !24DE~ I 21!24DE~ I 11!1DE~ I 12!

1DE~ I 22!, ~26!

with

DE~ I !5E~ I 11!2E~ I !. ~27!

The quantity Stg(I ) is proportional to the discrete approx
mation of the fourth derivative of the functionDE(I ), i.e.,
proportional to the fifth derivative of the energyE(I ), and is
able to demonstrate fine deviations from the pure rotatio
behavior, as has been demonstrated in Ref.@5# for the octu-
pole bands of several light actinides. An analog of this qu
tity has been introduced earlier@18–20# for the study ofDI
52 staggering in nuclear superdeformed bands.

The way in which the appearance of theK values in
couples for successive values ofI leads to odd-even stagge
ing can be seen from Table I, using the second term of
~25! as an example. In Table I we see that couples oK
values appear forI>8. In this region the contribution of the
second term of Eq.~25! to DE(I ) is zero for even values o
I, while it is 1 f k for odd values ofI. Then we easily see
from Eq.~26! that the contribution of the second term of E
~25! to Stg(I ) is 18 f k for odd values ofI, while it is
28 f k for even values ofI. Therefore the second term of Eq
~25! leads to odd-even staggering of constant amplitude.
fourth, fifth, and sixth terms of Eq.~25! depend nonlinearly
on K and/or I, and therefore give odd-even staggering
varying amplitude. In the case of the fourth term, it is easy
see that it gives staggering with amplitude increasing linea
as a function ofI. @The termsE0 and AI(I 11) do not
contribute to the odd-even staggering, as it is known fr
Ref. @5#.#

Several examples of odd-even staggering occurring fr
Eq. ~26! for different sets of parameter values used in E
~25! are given in Fig. 3. The parametersE0 and f k have been
kept constant in all parts of Fig. 3, while the parametersA
andA8 have been kept constant in all parts of Fig. 3 exc
the last one@Fig. 3~f!#. In contrast, the parametersf 11 and
f qoc have been given different values in the various parts
Fig. 3.

Figure 3~a! illustrates a long odd-even staggering patte
which looks similar to the ‘‘beats’’ observed in the octupo
bands of some light actinides@5# ~with 220Ra, 224Ra, and
5-5
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FIG. 3. Odd-even staggering patterns@calculated using Eq.~26!# as functions ofI, obtained from the diagonal Hamiltonian of Eq.~24!
for several different sets of model parameters, given on the figures. Part~b! corresponds to the same set of parameters as Table I and
1 and 2. The first four parameters remain the same in all parts of the figure, except~f!.
ig

d
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m-
226Ra being probably the best examples!, a difference being
that in the realistic cases of Ref.@5# the amplitude of the
‘‘beats’’ seems to be decreasing with increasingI, while in
Fig. 3~a! the opposite seems to hold.

In Fig. 3~b! the increased values off 11 and f qoc provide a
wide angular momentum region~up to I;40) with a regular
staggering pattern. The further increase off qoc results in a
staggering pattern with different amplitudes, shown in F
3~c!.

The further increase off 11 and f qoc leads to a staggering
pattern with many ‘‘beats,’’ as shown in Fig. 3~d!. Notice
04430
.

that in Fig. 3~d! the first three ‘‘beats’’ are completed byI
'40, while in Fig. 3~a! the first three ‘‘beats’’ are complete
by I'70.

Figure 3~e! illustrates what happens in the case of vanis
ing quadrupole-octupole interaction term (f qoc50), keeping
the rest of the parameters the same as in Figs. 3~b! and 3~c!.
We see that in the present case the ‘‘beat’’ effect occurs v
frequently, while in Figs. 3~b! and 3~c! the change was much
slower.

Finally, an example with almost constant staggering a
plitude is shown in Fig. 3~f!. It resembles the form of the
5-6
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odd-even staggering predicted in the SU~3! limit of various
algebraic models~see Ref.@5# for details and relevant refer
ences!. It also resembles the odd-even staggering see
some octupole bands of light actinides@5# ~with 220Th being
probably the best example!.

V. THE NONDIAGONAL PARTS OF THE HAMILTONIAN

After seeing in the previous section the main features
the diagonal part of the Hamiltonian, we can now focus o
attention on the general Hamiltonian of Eq.~21!, including
the various nondiagonal terms given in Eqs.~11!,~13!–~17!.
The main problem in this case is the fact thatK is in general
not a good quantum number. We can, however, make an
sis for small values of the respective paramet
(a2 , f 12, f 13, f 21, f 22, f 23), which keepK ‘‘asymptotically’’
good. Keeping these parameters small means that we u
weak K-band-mixing interaction, which guarantees that
any explicit energy minimum appearing in the diagonal c
the corresponding eigenvalue of the perturbed Hamilton
will be uniquely determined. Thus we are able to obtain
the perturbed Hamiltonian aK-mixed yrast energy sequenc
analogous to the one we got in the previous section for
diagonal part of the Hamiltonian.

Our numerical analysis of the Hamiltonian eigenvec
systems shows that the parameters of the nondiagonal t
should be smaller by an order of magnitude in compariso
the value of the parameterf 11. In addition, by examining the
corresponding matrix elements in the Appendix, we ded
that the following pairs of nondiagonal terms give identic
contributions to the energy spectrum:ĤA2

and ĤF2(1) ;

ĤF1(2) and ĤF1(3) ; ĤF2(2) and ĤF2(3) . Therefore it suffices

to keep from now on only the termsĤF1(2) ,ĤF2(1) ,ĤF2(2) .
In Fig. 4 two staggering patterns in the presence

K-band-mixing terms are illustrated. In the calculation w
have included, as we have already mentioned, the nondi
nal termsĤF1(2) , ĤF2(1) , andĤF2(2) , along with the already
considered diagonal Hamiltonian of Eq.~24!. The three non-
diagonal terms have been included with two different sets
parameters~both obeying the above mentioned condition th
the values of the parameters accompanying the nondiag
terms should be at least an order of magnitude smaller
the value of the parameterf 11), shown in Figs. 4~a! and 4~b!,
while the parameters of the diagonal part have been kep
same as in Fig. 3~b! ~and in Table I!. Comparing Figs. 3~b!
and 4~a! we see that the nondiagonal terms affect more
verely the higher angular momentum region by decreas
the staggering amplitude. Moreover, the larger values for
parameters of the nondiagonal terms, shown in Fig. 4~b!,
reduce more seriously the staggering pattern in the hig
angular momentum region, as one can see by compa
Figs. 3~b! and 4~b! and noticing the different scales on th
vertical axes of the two figures. The pattern appearing in F
4~b! resembles the experimental situation in218Rn and228Th
@5# ~odd-even staggering with amplitude decreasing a
function of I ).
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VI. LOW- K „KÏ3… ANALYSIS OF THE MODEL
FORMALISM

A discussion on theK values appearing in our model con
sideration is appropriate in this place. Usually from micr
scopic point of view the eigenvalues of the total angu
momentum projectionI z are restricted toK5<3. This re-
quirement is well justified in the case of octupole vibratio
of quadrupole deformed nuclei. It reflects the shell mo
concept that the octupole degrees of freedom could be g
erated by an octupole-octupolel53 interaction~where l
stands, as usual, for the multipolarity! which couples single-
particle states of opposite parity@4#. In particular, this as-
sumption gives a satisfactory interpretation for the fine str
ture of negative parity rotational bands built on octupo
vibrations.

In view of the above, it is interesting to examine o
formalism in the case when the space of theK values is
restricted toKmax53. Indeed such a test is important esp
cially for the low angular momentum regions, where the
trinsic structure of octupole degrees of freedom is mic
scopically well studied.

FIG. 4. Odd-even staggering patterns@calculated using Eq.~26!#

obtained by adding the three nondiagonal termsĤF1(2) @Eq. ~13!#,

ĤF2(1) @Eq. ~15!#, andĤF2(2) @Eq. ~16!# to the diagonal Hamiltonian
of Eq. ~24!, for two different sets of model parameters, given on t
figures. The first six parameters are the same as in Figs. 1, 2,
3~b!.
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Along these lines, we performed a schematic calculat
including the valuesK50,1,2,3 in the angular momentum
region up toI 510, as well as another calculation includin
the valuesK50,1,2,3 in the angular momentum region up
I 516. The yrast sequences obtained are given in Table
and III, respectively, while the resulting staggering patte
are shown in Fig. 5. We see that our formalism provide
regular staggering pattern for the states up toI 510 @Fig.
5~a!# and a ‘‘beat’’ pattern for the spectrum up toI 516 @Fig.
5~b!#. These examples~obtained for the parameter value
given in Tables II and III, respectively! illustrate that our
approach is capable to provide reasonable staggering pat
under the restriction toK<3, at least in the low angula
momentum region withI 510–16. In other words, the sche
matic model gives reasonable results under the restrictio
K<3, at least in the microscopically accessible angular m
mentum regions.

It is, however, important to remark that our approach s
gests a rather more extended treatment of the collective
tupole degrees of freedom, which is expected to be usefu
view of the increasing bulk of data indicating possible sta
octupole deformations in several nuclei, the light actinid
providing the best examples. Some of these bands~the octu-
pole bands in2242226Ra and2242228Th, for example! possess
rather well pronounced rotational structures~see Table I in
Ref. @5#!. Our proposition is that in these cases the concep
a rotating quadrupole-octupole shape should be more
dent. In these cases, in contrast to the pure octupole vi
tions, it is nota priori clear why the combined quadrupole

TABLE III. Same as Table I, but for the parameter setE0

5100 keV, f k50.896 keV, A519.2 keV, A8518.24 keV, f 11

50.49 keV, f qoc50.074 keV. The restrictionK<3 has been im-
posed. See Sec. VI for further discussion.

I E(I ) K I E(I ) K

1 138.40 0 9 1803.42 1
2 215.20 0 10 2177.43 1
3 330.40 0 11 2580.53 2
4 484.00 0 12 3017.25 2
5 676.00 0 13 3490.32 2
6 905.66 1 14 3991.13 3
7 1167.54 1 15 4521.73 3
8 1466.79 1 16 5087.69 3

TABLE II. Same as Table I, but for the parameter setE050
keV,f k50 keV,A512 keV,A859.96 keV,f 1150.75 keV,f qoc

50.15 keV. The restrictionK<3 has been imposed. See Sec.
for further discussion.

I E(I ) K I E(I ) K

1 24.00 0 6 487.94 1
2 72.00 0 7 640.19 2
3 144.00 0 8 811.21 2
4 237.97 1 9 994.40 3
5 351.64 1 10 1194.18 3
04430
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octupole intrinsic configurations should be restricted toK
<3 projection values. Namely, for these kinds of rotation
motion our collective formalism suggests thatK could be
higher than 3. One can easily see that for the relatively w
deformed nuclei, such as2242226Ra and2242228Th, the Nils-
son orbitals do not exclude the presence of reasonablK
.3 intrinsic configurations@21#. This remark is of particular
importance for the higher angular momentum regionI
>10–16), where pair breaking effects are possible.

Another important question to be examined is whether
energy gain in case of yrast rotations withK.3 is larger
than the intrinsic energy necessary to raiseK above 3. There
is no a priori answer to this question, which would be a
interesting problem for future combined efforts from bo
collective and microscopic points of view. Here we just r
mark that for the collective motion considered the ene
gain rapidly increases with the increase of the angular m
mentum~see the depth of the minima in the curves of Fig.!.

VII. FURTHER TESTS OF THE MODEL FORMALISM

The restriction toK<3 values, used in the previous se
tion, demonstrated that odd-even staggering and ‘‘beat’’ p
terns can indeed appear in this special case. This partic
collection ofK values (K50,1,2,3! has certain probability to

FIG. 5. Same as Fig. 3, but with the restrictionK<3 imposed in
the angular momentum regions:~a! I<10 and~b! I<16. The pa-
rameter sets correspond to Tables II and III, respectively.
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appear low in energy in the case of nuclei exhibiting oc
pole deformation, but other possibilities also exist. In fact
is well known from experiment that the variousK values are
built up through the pair-breaking mechanism. As a resulK
is not a smoothly increasing function~while I is!. Which K
values will appear lower in energy in each nucleus depe
strongly on the microscopic structure of the nucleus. On
therefore confronted with the following questions.

~1! Given a collection ofK values, which appear low in
energy in a specific nucleus because of microscopic reas
is the present formalism predicting odd-even staggering
not?

~2! What is the meaning of minimization with respect toK
in this case?

~3! In which order do the various allowed values ofK
appear asI is increasing?

We have performed several numerical tests, which n
not be reproduced here in detail, in order to answer th
questions. The following conclusions have been reached

~1! Given a collection ofK values which are nonsucce
sive integers~for example,K55,7,9,10,15!, odd-even stag-
gering and ‘‘beat’’ patterns do appear for certain values
the Hamiltonian parameters. One is therefore persuaded
in principle the model formalism can produce ‘‘beat’’ pa
terns for any microscopically directed collection ofK values.

~2! In the just mentioned case,K is not a continuous vari-
able. However, one can still minimize the energy with
spect toK, in the following sense: Given a collection ofK
values, for each value ofI one determines~among the mem-
bers of the collection! the K value for which the energy is
minimum.

~3! In all cases the allowed values ofK appear in increas
ing order asI is increasing, similarly to what occurs i
Tables I–III.

In all of the above we have been assuming thatK takes
only integer values, i.e., thatK is a good quantum numbe
This is an assumption of the model, which is quite usua
the realm of phenomenological models~but not in the case o
microscopic models!, in whichK is assumed to be a good~or
asymptotically good! quantum number. One might wonde
however, how strongly the appearance of odd-even stag
ing and ‘‘beat’’ patterns in the present model depends on
assumption. In order to confront this question, we have p
formed the following tests: We repeated the calculatio
concerning Figs. 3~a! and 3~b! allowing K to vary not with a
step of 1.0, but with a step of 0.5, or 0.1, or 0.01, or 0.00
as well as allowingK to be a continuous variable. The resu
need not be reproduced here in full detail, but the conclus
was that in both cases the odd-even staggering drops
matically as the step of the variation ofK decreases, and
practically vanishes whenK is a continuous variable. On
therefore concludes that the appearance of odd-even sta
ing and ‘‘beat’’ patterns in the present model strongly d
pends on the assumption thatK is a good~or asymptotically
good! quantum number, taking integer values, an assump
which is rather common among phenomenological mod
On the other hand, as has already been mentioned in
beginning of this section, practically any microscopically d
rected set of integer values ofK can lead to the appearance
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odd-even staggering and ‘‘beat’’ patterns within the fram
work of the present model.

In conclusion, the assumption thatK is a good~or asymp-
totically good! quantum number, therefore taking integ
values only, is a fundamental one as far as the appearan
odd-even staggering and ‘‘beat’’ patterns within the pres
model is concerned. OnceK is assuming only integer values
odd-even staggering and ‘‘beat’’ patterns can in principle
constructed~for appropriate parameter values in the Ham
tonian! for any set of microscopically directedK values lying
low in energy.

VIII. DISCUSSION

The staggering patterns illustrated so far~Figs. 3 and 4!
cover almost all odd-even staggering patterns seen in nuc
octupole bands. The amplitudes obtained for the sets of
rameters considered vary up to 300 keV. Staggering patt
with larger values of Stg(I ) can be easily obtained for dif
ferent parameter sets. On this basis it is reasonable to ass
that the model parameters can be adjusted appropriately s
to reproduce the staggering patterns seen in the octu
bands of the light actinides@5#, as well as in rotational nega
tive parity bands withK>1 built on octupole vibrations. In
the fitting procedure one should take into account the m
mization of the energy with respect toK for each given value
of I. Work in this direction is in progress.

At this point the following comments on the structure
the collective interactions used and the related symmet
are in place.

~1! The above-mentioned fact that the six nondiago
terms of the octupole Hamiltonian can be arranged into th
pairs, the terms belonging to the same pair giving equal c
tributions, indicates that only four terms of the octupo
Hamiltonian~the diagonal term plus three appropriately ch
sen nondiagonal terms! suffice for the determination of the
energy spectrum. This result reflects the fact that in the
trinsic frame of reference three octupole degrees of freed
from the total of seven ones, are related to the orienta
angles. In the present case we chose in Sec. V and in F

to keep the diagonal termĤF1(1) and the nondiagonal term

ĤF1(2) , ĤF2(1) , andĤF2(2) . Our analysis~related to the col-

lective rotations of the system! gives a natural way for de
termining the four collective octupole interaction term
which give independent contributions.

~2! The symmetry of the various combinations of sphe
cal harmonics appearing in Eqs.~3!–~9! has been considere
in detail in Ref.@10#. TheY30 term is axially symmetric, i.e.,
it has the symmetry of theD` group, while the termY31
2Y321 has the symmetry of theC2v group, the termY32
1Y322 has the symmetry of theTd group, and the term
Y332Y323 has the symmetry of theD3h group. From the
correspondence between Eqs.~3!–~9! and Eqs.~11!–~17! we
see that the diagonal termĤF1(1) is axially symmetric, while

the nondiagonal termsĤF1(2) , ĤF2(1) , and ĤF2(2) ~men-
5-9
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MINKOV, DRENSKA, RAYCHEV, ROUSSEV, AND BONATSOS PHYSICAL REVIEW C63 044305
tioned in the previous item 1! are constructed by using th
combinations (Y312Y321), (Y321Y322), and (Y33

2Y323).
~3! Concerning the role of the various terms in the od

even staggering effect, our schematic results of Secs. IV
V indicate that the nondiagonalK-band-mixing interactions
suppress the staggering pattern, while the axially symme

term ĤF1(1) is able to provide a ‘‘beat’’ staggering behavio

@see Fig. 3~e!#. The quadrupole-octupole termĤqoc does in-
fluence the staggering pattern, providing wider angular m
mentum regions with regular staggering. In short, the axia
symmetric term seems to be the most important one~among
the terms involving the octupole degrees of freedom! for the
production of ‘‘beat’’ behavior in the odd-even staggeri
pattern. However, it should be remembered at this point
the octupole and octupole-quadrupole terms are not the
ones contributing to the odd-even staggering effect. As
have already mentioned in Sec. IV, the termf kK, coming
from the bandhead energy, makes to the odd-even stagg
a contribution of constant amplitude, while theA8K2 term,
coming from the quadrupole part of the Hamiltonian, mak
a contribution to the odd-even staggering with an amplitu
which is increasing linearly as a function ofI. It should be
noticed, though, that these remarks are based only on a
schematic calculations and in no way are final conclusio
In order to reach safer conclusions about the relative imp
tance of the various terms in giving rise to a ‘‘beat’’ behav
of the odd-even staggering, one has to perform detailed
to the octupole bands of the light actinides, as mentio
above.

~4! As has already been commented on in Secs. IV and
the most general schematic results we have obtained sug
that in the high angular momentum region some highK val-
ues should be involved~as a result of the minimization of th
energy with respect toK for each given value ofI, which is
an important ingredient of our approach!. The fact that theK
quantum number is not a good quantum number~not even
approximately! of the relevant states has been realized lo
ago @22–24#. In microscopic calculations in the rare ear
region ~with 152<A<190) @22#, in which the valuesK
50,1,2,3 have been included, it has been seen that in
beginning of the region the valuesK50,1 are important for
the lowest 32 state, while in the middle of the region th
valuesK51,2 are important and in the far end of the regi
the valuesK52,3 are important@22#. These results are con
sistent with our low-K model analysis given in Sec. VI. Th
same authors have dealt with the actinide region (A>222) in
Ref. @23#. One of the authors of Refs.@22,23# in Ref. @24#
finds that the restriction toK<3 is not justifiable for large
energies. These findings are in agreement with our res
given in Table I as well as with our comments in the end
Sec. VI.

~5! Concerning the analysis in Sec. V and the above co
ments~3! and~4!, we remark that the restrictions imposed
the nondiagonal Hamiltonian terms~keepingK asymptoti-
cally good! are rather strong and reflect the particular phy
cal assumptions of our consideration. However, for a m
general quantum mechanical system there is no principal
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son to restrict the analysis by assuming the presence of s
nonaxial deformations only@25#. In this direction an exten-
sion of the present work not limited to small nondiagon
contributions could be of interest.

IX. CONCLUSIONS AND OUTLOOK

In summary, we have considered a Hamiltonian involvi
octupole and quadrupole terms, along with an octupo
quadrupole interaction and aK-dependent bandhead term
The octupole terms have been classified by using the irred
ible representations~irreps! of the octahedron groupO. By
minimizing the energy with respect to the angular mome
tum projectionK for each given value of the angular mome
tum I we have reached the conclusion thatK is increasing
with increasingI, even in the case in whichK is allowed to
assume only a restricted set of microscopically dictated v
ues, a result which can be interpreted as corresponding
wobbling motion. Various terms of the Hamiltonian give ris
to odd-even staggering depending onI in different ways, in
this way making the Hamiltonian able to produce seve
different odd-even staggering patterns, some of which h
been observed in the octupole bands of light actinides
order to examine the relative importance of the various te
giving rise to odd-even staggering, detailed fits of the oc
pole bands of the light actinides should be performed, a p
cedure which is not very simple because of the abovem
tioned minimization procedure involved in it. In addition, th
applicability of the present formalism to rotational ban
with K>1 built on octupole vibrations, which also demo
strate odd-even staggering effects, should be examined.
present Hamiltonian, because of the variety of odd-ev
staggering patterns it can produce, seems to be a good s
ing point for systematizing the different odd-even stagger
patterns seen in octupole bands, as well as in rotational ba
built on octupole vibrations. Work in this direction is i
progress.
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APPENDIX

Nonzero matrix elements of the operators of Eqs.~11!–
~17! in the statesuIK & with total angular momentumI and
projectionK, with X5I (I 11):
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^IK 12uĤA2
uI ,K&5

i

4
a2~K11!AX2~K11!~K12!AX2K~K11!,

^IK 22uĤA2
uIK &52

i

4
a2~K21!AX2~K21!~K22!AX2K~K21!,

^IK uĤF1(1)uIK &5
1

2
f 11K~5K223X!,

^IK 11uĤF1(2)uIK &5
1

16
f 12~3X215K2215K210!AX2K~K11!,

^IK 21uĤF1(2)uIK &5
1

16
f 12~3X215K2115K210!AX2K~K21!,

^IK 11uĤF1(3)I uK&5
i

16
f 13~3X215K2215K210!AX2K~K11!,

^IK 21uĤF1(3)uIK &52
i

16
f 13~3X215K2115K210!AX2K~K21!,

^IK 12uĤF2(1)uIK &5
1

2
f 21~K11!AX2~K11!~K12!AX2K~K11!,

^IK 22uĤF2(1)uIK &5
1

2
f 21~K21!AX2~K21!~K22!AX2K~K21!,

^IK 11uĤF2(2)uIK &5
1

8
f 22~X25K225K22!AX2K~K11!,

^IK 21uĤF2(2)uIK &5
1

8
f 22~X25K215K22!AX2K~K21!,

^IK 11uĤF2(3)uIK &52
i

8
f 23~X25K225K22!AX2K~K11!,

^IK 21uĤF2(3)uIK &5
i

8
f 23~X25K215K22!AX2K~K21!.
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@22# K. Neergård and P. Vogel, Nucl. Phys.A145, 33 ~1970!.
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